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Abstract: The aim of this study was to develop and validate a methodology to carry out olive
grove inventories based on open data sources and automatic photogrammetric and satellite image
analysis techniques. To do so, tools and protocols have been developed that have made it possible to
automate the capture of images of different characteristics and origins, enable the use of open data
sources, as well as integrating and metadating them. They can then be used for the development and
validation of algorithms that allow for improving the characterization of olive grove surfaces at the
plot and cadastral polygon scales. With the proposed system, an inventory of the Andalusian olive
grove has been automatically carried out at the level of cadastral polygons and provinces, which
has accounted for a total of 1,519,438 hectares and 171,980,593 olive trees. These data have been
contrasted with various official statistical sources, thus ensuring their reliability and even identifying
some inconsistencies or errors of some sources. Likewise, the capacity of the Sentinel 2 satellite
images to estimate the FCC at the cadastral polygon, parcel and 10 × 10 m pixel level has been
demonstrated and quantified, as well as the opportunity to carry out inventories with temporal
resolutions of approximately up to 5 days.

Keywords: automatic olive inventories; visual recognition; open data; Sentinel; photogrammetric

1. Introduction

The olive tree is one of the most representative crops in the Mediterranean basin
closely linked to the economy and culture of the region. Worldwide, the Mediterranean
basin is the producer of 99% of olive oil and the consumer of 87% [1].

Traditional olive groves have been and still are a very important component of the
Mediterranean landscape. To a considerable extent we could classify them as forests that
produce an important range of ecosystem services: healthy food, biodiversity, living soils,
carbon sequestration, culture, employment, life in villages, etc. Particularly with regard
to olive grove landscapes, the EU has shown great interest in their conservation through
strategies such as the European Landscape Convention [2], developing a specific tool for
the protection and management of olive groves.

The lack of economic sustainability is causing traditional olive groves to be at serious
risk of survival, disappearing on many occasions. More recently, this crop has been
changing from traditional rainfed olive groves with a low density of trees (less than
100 trees per hectare) to olive groves of medium and high density, mostly associated with
the introduction of irrigation, which is also promoting the substitution of various crops
(wheat, barley, sunflower, cotton) by high-density olive groves [3,4]. All this is causing
major changes in the management of the olive groves, especially in their intensification, as
well as in the economic, social and environmental impacts.

These changes have been strongly noted in one of the main olive-growing regions
in the world, Andalusia. Figure 1 and Table 1 show the difference in olive grove areas
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between 2015 and 2018. In general, there has been an increase in high-density plantations
to the detriment of low ones [5].

Table 1. Olive grove area (ha) per year and plantation density (trees/ha). Source: Analysis of the
density in olive plantations in Andalusia. Regional Ministry of Agriculture, Livestock and Fisheries.

Year <80 80–139 140–399 400–799 800–100 >1000 Unspecified

2015 111,191 687,220 659,600 35,860 1925 16,355 11,953
2016 108,921 688,689 674,750 38,484 2417 17,930 4659
2017 105,560 682,551 690,029 39,148 2284 23,788 8065
2018 103,257 675,352 711,594 39,889 2564 35,268 10,206
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Studies such as [3] indicate that this is causing a high environmental impact, among
which the problems derived from water needs stand out. However, there is also evidence
that the intensification of deficit irrigation has improved carbon sequestration, as investi-
gated by [6], through the modeling of the implications of climate variability and agricultural
management on the productivity and environmental performance of olive crops in the
Mediterranean. In addition, an increase in such intensification would increase irrigation
needs. For this reason, it is becoming more and more necessary to be able to systematize
the monitoring of olive tree density with detailed and permanently updated information in
large areas. Studies such as [7,8] show the need to provide more detailed information on
olive farming practices and to make and quantify proposals to increase specific sustainable
practices at the farm level [9].

In this regard, there are numerous publications related to data-capture mechanisms
in the field and the use of platforms for their management and visualization [10–15]. In a
complementary way, important efforts are being made to create common data spaces in the
agricultural field [16–22], which try to overcome the existing barriers regarding the global
management of data. The main obstacles found are the following: the complexity of data
management [23], the lack of interoperability [16,17,22], the insufficiency of storage units
and processing platforms [24,25], as well as the scarcity of reference architectures [23,26–30].
Overcoming these limitations would make it possible to take full advantage of the poten-
tial of data analysis and management, strengthening the capabilities of decision-making
support systems.

Further, the characterization and monitoring of large areas of crops is becoming a
key factor to improving and supporting decision-making. The combination of remote
data with ground measurements, obtained from interpretations of high spatial resolution
aerial photogrammetry through image analysis, significantly improves the ability to study
land processes. In this line, different studies are being promoted, as is the case of [31]
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where a methodology for landscape sampling, mapping and characterization of a complex
agroforestry system in sub-Saharan Africa is provided.

Therefore, the use of remote sensing has an increasingly important role in the continu-
ous, effective, precise and complete monitoring of large areas, being key in the decision-
making processes of agroforestry management [32,33]. It allows crop mapping to be
carried out at a low cost and with high frequency, which makes it possible to extend these
studies [6–8] to large areas.

For this reason, an aspect of great importance is the possibility of using the synergies
between automated procedures to identify and characterize the different ecological units
in olive groves from very high resolution images, such as orthophotos with a spatial
resolution of 0.5 m or superior. The analyses carried out with satellite images of lower
spatial resolution could substantially improve their usefulness and accuracy if models
based on spectral mixtures were developed using previous segmentations carried out
with image analysis techniques. These studies would make it possible to complement the
temporal resolutions of the systems for obtaining digital aerial orthophotography, such as
the National Plan for Aerial Orthography (PNOA) [34], whose update period is every three
years, which makes it impossible to update inventories periodically.

Regarding the treatment and processing of satellite images, there are platforms such
as Google Earth Engine (GEE), which provide easy access to a wide catalogue of images,
including those captured by the Sentinel 2-MSI (MultiSpectral Instrument) satellites, and
allow for the extraction of relevant vegetation indices in a simple way [35]. Vegetation
indices are capable of monitoring crop growth with high-resolution satellite images [36].
Among these indices, the NDVI (Normalized Difference Vegetation Index) has been defined
as a good tool to indicate significant changes in land use and cover [37,38]. NDVI shows
better results than other indices such as the adjusted vegetation index to the ground
(SAVI) [38] and is one of the most widespread, due to its simplicity and availability [39,40].
In addition, according to [41], the analysis of the NDVI for the estimation of the surface
of the crops and the qualitative evaluation of these with hydric stress, can lead to an
optimization in irrigation management systems.

Thus, it is very important to be able to automate the inclusion of new data, coming
from: (i) high-resolution aerial photogrammetry image analysis, such as the crown area,
Fraction Canopy Cover (FCC), tree density or the identification of different typologies;
(ii) analysis of the NDVI at the pixel and sub-pixel level; (iii) existing open data sources such
as the Geographic Information System of Agricultural Parcels SIGPAC [42], the Andalusian
Phytosanitary Information and Alert Network RAIF [43] and the Integrated Treatments in
Andalusia in Agriculture TRIANA [44]. Furthermore, it is necessary to enable the creation
of common data spaces that make it possible to value the tools for the conservation of the
olive grove and the detection of changes in its management.

In addition, the processing of measurements from high-resolution aerial frames is very
useful for improving the interpretation of satellite images; they provide field data from
which it is possible to calibrate the models. Recent studies have focused on the development
of tools to generate automated agroforestry inventories for the analysis of large areas [31].
These allow us to calibrate and optimize the analyses carried out with lower resolution
satellite images, which are needed in order to complement the studies with spectral mixture
analysis techniques of automatic pixel analysis, to improve feature extraction at the olive
tree level. Nevertheless, further work is still necessary to delve further into in order to
optimize results. In this study, the FCC-NDVI relationship has been evaluated.

We can summarize that it is necessary to obtain detailed information on large olive
grove areas, having the plot as the sampling unit and, where appropriate, scaling it to larger
territories, which will make it possible to carry out studies at the farm level and characterize
the ecosystem services of the olive grove crop providing tools to help decision making.

In this regard, the general objective of the work was to develop and validate a method-
ology to carry out olive grove inventories based on automatic analysis techniques of
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photogrammetric images of PNOA, satellite images of the Sentinel constellation and open
data sources.

2. Materials and Methods
2.1. Study Area

The study has been carried out in 11,488 olive grove polygons, which occupy a total
of 1,519,438 ha (shown in red in Figure 2), which represents 92% of the total olive grove
cultivation in Andalusia. The area was divided into eight zones that correspond to the
8 provinces of Andalusia, thus covering the most widespread varieties such as Picual,
Hojiblanca, Manzanilla Verdial, Lechín, Empeltre, Blanqueta, Farga and Arbequina, as well
as different plantation frameworks.
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2.2. Data Set

The set of high-resolution images used to characterize the olive grove comes from
aerial orthophotographs of the PNOA [34] obtained by photogrammetric flights with a
high-resolution digital camera. This image dataset has a spectral resolution of 3 bands
(blue, green, and red), a radiometric resolution of 12 bits per band, and a spatial resolution
of 50 cm.

To obtain the NDVI, images from Sentinel 2 [45] have been used, which provide
multispectral data with 13 bands in the visible, near-infrared and short-wave infrared
part of the spectrum. They have a spatial resolution of 10 m and a temporal resolution of
approximately 5 days.

The contrast and validation of the data was carried out through manual counts and
information from the RAIF of olive grove plots [43].

Geospatial and crop data were obtained from SIGPAC [42] and varietal data
from TRIANA [43].

The different data were taken for the time interval between 1 January 2019 and
31 December 2019. This interval was selected based on the dates of the most recent PNOA
photos at the time of the study, which dated from 2019.

2.3. Programming Languages

The programming languages and the specific processes for which they have been used
are as follows:

• MATLAB 2021a (9.10) with two libraries, the Image Analysis Processing toolbox [46]
and openearthtools [47], was used for:

i. High resolution digital image processing.

• Python 3.6.13 was used for:
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i. Obtaining NDVI data through the Google Earth Engine platform [35]
ii. The creation of linear regression models.
iii. The calibration of the results.

• Python 3.8.5 was used for:

i. Automatic acquisition of PNOA images.
ii. The identification of the area of interest through shapefile files of the geographic

information system of agricultural parcels (SIGPAC).
iii. Development of APIs for the integration of different open data sources (SIGPAC,

RAIF, TRIANA)
iv. Data cleaning and preprocessing.

2.4. Procedure

The first step was to adapt and validate the tool developed in the study [48] for the
case of olive groves. Subsequently, the olive grove inventory was created from the data
obtained in the image processing with the validated tool. Then, the integration of metadata
from different open data sources such as SIGPAC, RAIF and TRAINA was carried out.
Finally, with the information generated in the inventory, the FCC-NDVI relationship was
evaluated at the polygon, plot, and pixel levels.

2.4.1. Validation of the Tool for Olive Groves

In order to validate the tool, the following steps were carried out: (i) manual counts of
33 olive grove plots chosen at random from the set of olive groves in Andalusia (Figure 3);
(ii) checks by an observer on the FCC mask obtained by the tool to validate the FCC
(Figure 4).
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2.4.2. Creation of an Inventory of Olive Groves

Figure 5 shows a summary of the methodology followed to prepare the inventory.
Each of the modules is detailed below.
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1. Open data sources

The data sources consulted to extract olive grove information were: the Andalusian
Phytosanitary Alert Network (RAIF) [43] for phytosanitary information and the Geo-
graphic Information System for Agricultural Parcels (SIGPAC) [42,49] and the TRIANA
program [44] for geographic and crop information.

RAIF is a set of open data obtained from the monitoring of pests and diseases in the
biological control stations, in addition to generic crop information. The data are displayed
in Excel files by crop type from 2006 to 2021. The information is updated every week.
The main parameters selected for this study were crop type, cultivated area, tree density
and crown diameter. These parameters have been used for the automatic validation of
the methodology.

TRIANA is a computer program for crop management, in addition to phytosanitary
information it provides crop information. The information provided by this data source is
the following: crop type, cultivated area, irrigation, nearest climatic season, planting frame,
main variety, planting date, secondary variety and planting date. This information has
been contrasted and included in the inventory.

The SIGPAC allows the geographic identification of parcels declared by farmers and
ranchers. It is accessible through WMS services [49]. The land is sectorized, the smallest
unit to be treated is this study is the plot (PROV;NUM;POL;PLOT). By selecting such a
sector, the relevant information of the sector is obtained, such as geospatial information,
land use, cultivated area, irrigated area and soil slope. The geospatial information provided
has been used to automate the download of high resolution images, and land use to identify
the area of interest (AOI).

From the different data sources, aspects such as complexity, access limitations, au-
tomation capacity, temporal and spatial frequencies, as well as the available time range
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were analyzed. After that, data acquisition was automated, carrying out temporally and ge-
ographically limited tests with the aim of evaluating the availability and access to the data.
Finally, different analysis, preprocessing and cleaning techniques were used, erroneous data
were eliminated through Random Forest techniques [50] and missing values were imputed
through the imputeTS and missForest libraries [51]. Lastly, to check the consistency of the
data, the data from the different sources were compared, eliminating non-coherent data,
thus generating a unified access point for reliable and contrasted agronomic data.

2. Automatic image acquisition

This module automates the downloading, identification and delimitation of study areas
from PNOA images for different ecosystems or crops and zones, obtaining a high-resolution
image of each polygon/plot and a shapefile with geographic and crop information.

The image download procedure was as follows:

i. Geospatial and crop information of the area of interest was obtained from the SIGPAC
shapefiles.

ii. The database stores geospatial and crop information at the polygon and/or plot level.
iii. The PNOA Downloader script takes the geospatial information from the DB and will

call the IGN WMS services to download the orthophotography.
iv. The PNOA Downloader script will generate two outputs: the orthophoto of the

polygon/plot with the AOI of the selected crop (olive grove for this particular study)
and a shapefile with metadata.

v. This processed information will be saved in the olive grove data inventory for later
interpretation by the tool for precise olive grove characterization.

3. Identification of elements of interest

Image analysis techniques were used for preprocessing [52,53], segmentation [54,55] and
classification [56]. In addition, specific developments carried out in previous studies [48]
were used to identify the elements of interest in the high-resolution images obtained in
point 2. Based on the regularity present in the olive grove, false positives were considered
to be those elements whose area or eccentricity were much higher than the average of the
detected objects, which allowed for the elimination of elements of other species. As a result,
a .TIFF image was obtained with the identified elements and a shapefile with metadata per
polygon, thus obtaining automated information on the number of trees, FCC, tree density
and tree canopy area. These data obtained from the interpretation of the images were
stored in the database to form part of the olive grove data inventory.

2.4.3. FCC-NDVI Evaluation

The evaluation of the FCC-NDVI relationship was carried out considering the polygon
and geographical area of the whole Andalusia as the sampling unit and also another
approximation with the pixel sampling unit and the geographical area as a plot.

The steps followed are detailed below:

i. Polygon-level study. The polygon was taken as the sampling unit and the different
months of the year 2019 and provinces were evaluated. For this calculation, the mean
values of the NDVI of the polygons were taken for each month and the FCC obtained
in the characterization of olive groves through orthophotos of the PNOA of 2019. A
total of 10,031 polygons were used.

ii. Plot-level study. The plot was taken as the sampling unit. The evaluation was carried
out with a subset of plots from one of the provinces. In the same way as for the
polygon, the mean values of the NDVI of the plots for the summer months and the
FCC obtained in the characterization of the olive grove through orthophotos of the
PNOA of 2019 were taken. A total of 287 plots were used.

iii. Pixel-level study. Finally, a pixel-level study was carried out, selecting a plot (PROV_14,
NUM_900,POL_18,PLOT_14) with diversity in terms of plantation frames and a
Sentinel image corresponding to the month of August 2019. This evaluation was
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carried out by comparing the mean NDVI of each pixel of the Sentinel image, with
the pixels of a 10 × 10 m resolution image generated from the FCC obtained in the
characterization of olive groves. An image with a size of 95 × 57 pixels was used
(see Figure 6).
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for the date 2 August 2019; (d) Generated NDVI image from image (b).

In all the procedures, it has been considered that the FCC does not present significant
variability in one year.

Figure 7 shows the methodology followed to develop the FCC estimation model from
the NVDI.

1. Olive grove data extraction

From the olive grove data inventory, the shapefile (shp) files were obtained with the
necessary geographic information to obtain the NDVI by remote sensing and the FCC of
the polygons and plots for the validation data.

2. Remote sensing data

A Python script was developed that obtained the NDVImean time series for each plot
and polygon from the ShapeFile obtained in the characterization of the olive grove, as well
as the images necessary for the evaluation at the pixel level.
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3. Validation data

The data considered as real for the calibration and validation of the model were
extracted from the FCC obtained in the olive grove characterization.

4. Data analysis

The data collected were grouped by province and month and two simple linear
regression models were evaluated to model the relationship between FCC and NDVI:
scikit-learn and statsmodels approach (Equation (1))

FCC = β1· NDVImean + β0 (1)

To evaluate the model, the data were divided into two groups: a training group for
calibration, in which 80% of the data were used, and a test group, with the remaining data,
to evaluate the capacity of the model prediction. The goodness of fit of the model was
evaluated using the coefficient of determination (R-squared), the p-value statistics were
determined (using the F-Test), and the performance of the model was evaluated using the
mean squared error (rmse). After generating the model, the confidence interval was used
to measure the uncertainty associated with the prediction.
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3. Results
3.1. Validation of the Tool for Olive Groves

Table 2 shows the results of the estimation and real value of the number of trees and
FCC, as well as the relative error of the 33 plots where the manual counts were made.

As an example, Figure 8 shows the results of four plots (PROV-14, MUN-900, POL-
40, PLOT-60; PROV-23, MUN-60, POL-3, PLOT-88; PROV-14, MUN-57, POL-1, PARC-58;
PROV-14, MUN-57, POL-2, PARC-49), where the ability of the tool to measure olive groves
with different plantation frameworks as well as treeless areas is appreciated.
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Table 2. Results of the validation of the tool for olive groves in 33 plots.

PROV MUN POL PLOT No. of Estimated
Trees

No. of Real
Trees

Relative
Error

FCC Esti-
mated FCC Real Relative

Error

Córdoba 900 32 43 576 581 0.009 2315.00 2545.75 9.064
Córdoba 900 40 45 759 783 0.030 6795.00 6377.50 6.546
Córdoba 900 40 59 485 480 0.011 1908.25 1959.25 2.603
Córdoba 19 12 77 3207 3173 0.011 56,190.25 57,106.75 1.605
Córdoba 55 9 79 53 53 0.000 1021.25 1105.75 7.642
Córdoba 56 30 84 418 475 0.121 7844.75 7840.00 0.061
Córdoba 57 1 20 391 384 0.018 5837.50 6143.25 4.977
Córdoba 57 1 24 447 442 0.012 7237.50 7439.25 2.712
Córdoba 57 1 58 495 526 0.059 10,169.75 10,360.25 1.839
Córdoba 57 2 50 279 280 0.002 5731.00 5752.50 0.374

Jaén 1 10 365 519 536 0.032 15,946.75 15,953.50 0.042
Jaén 2 4 30 458 454 0.010 6539.00 6539.00 0.000
Jaén 2 10 245 258 235 0.097 3181.75 3108.25 2.365
Jaén 2 11 256 266 262 0.014 3529.50 3610.25 2.237
Jaén 2 17 274 341 368 0.072 10,360.25 10,383.75 0.226
Jaén 2 21 236 199 197 0.011 3053.00 3123.50 2.257
Jaén 2 23 86 342 310 0.102 6587.75 6790.75 2.989
Jaén 2 29 30 390 394 0.010 5100.00 5115.75 0.308
Jaén 2 31 202 272 248 0.097 4580.00 4631.75 1.117
Jaén 2 32 137 290 281 0.033 6149.25 6152.75 0.057
Jaén 2 52 176 413 405 0.019 11,923.75 11,923.75 0.000
Jaén 2 56 29 468 450 0.041 9426.50 9465.75 0.415
Jaén 2 64 20 1902 1886 0.008 34,505.00 34,571.25 0.192
Jaén 2 66 76 1339 1303 0.028 14,844.50 14,392.75 3.139
Jaén 2 71 148 696 681 0.023 17,895.25 17,728.75 0.939
Jaén 2 83 15 2212 2105 0.051 57,297.75 57,328.25 0.053
Jaén 15 6 443 167 158 0.054 3849.75 3860.00 0.266
Jaén 17 23 4 788 766 0.029 25,289.25 25,089.75 0.795
Jaén 26 15 115 1776 1733 0.025 37,741.25 37,676.25 0.173
Jaén 38 5 279 658 666 0.012 13,617.25 13,495.50 0.902
Jaén 53 5 52 317 320 0.010 34,764.50 34,477.50 0.832
Jaén 53 12 3 908 835 0.088 11,470.75 11,916.00 3.737
Jaén 53 43 8 691 542 0.274 10,750.25 11,021.50 2.461

3.2. Creation of Inventories of Olive Groves

After the validation of the developed automatic analysis tool, the olive grove area of
Andalusia as a whole was characterized. Table 3 collects the detail of the entire surface
characterized by the olive grove tool. The columns Processed Surface, FCC and number
of trees, are the data calculated by the automatic analysis tool. The Total Surface column
corresponds to the total hectares of olive groves by province, with data collection from
the olive grove production capacity carried out by the Andalusian Government for the
2021–2022 campaign.

Table 3. Summary of the characterized olive grove area.

Province_ID Polygons Processed Surface (ha) FCC (ha) No. of Trees Total Surface, (ha)

4_Almería 1549 18,892 6045.44 2,542,010 22,092
11_Cádiz 542 29,088 7272.00 2851,288 30,220
14_Córdoba 1767 350,086 73,518.06 39,785,516 370,124
18_Granada 1820 182,918 45,250.26 21,474,448 205,683
21_Hueva 926 33,299 9656.71 3,707,114 35,710
23_Jaén 1375 532,741 111,875.61 57,981,776 587,932
29_Málaga 1653 136,501 34,125.25 14,663,327 140,864
41_Sevilla 1856 235,913 44,202.54 28,975,114 251,340
TOTAL 11,488 1,519,438 331,945.87 171,980,593 1643,965
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Figure 8. Processing result of 4 plots (14,900,40,60; 23,60,3,88; 14,57,1,58; 14,57,2,49); (a) Input image;
(b) Image.tiff at the output; (c) Binary mask with the objects detected.

Individualized information was obtained from the units of interest at the polygon and
plot level. These processed data form part of the olive grove inventory, which served as
support for advanced analytical applications.

Considering the polygon as the study unit allows for a broader view of the olive
grove landscape and minimizes edge-processing errors from image analysis, in addition
to eliminating double imputation in the tree count of those trees found in the plot edges.
Another important aspect is that the analysis at the polygon level allows for a perception of
the landscape as a whole, identifying areas with trees and their continuity between plots,
as well as other units larger than the plot and of interest for decision-making on a larger
scale. From them, the plots can be segregated, to obtain more precise information on the
plantation framework and estimation of the crown area. Figure 9 shows an example of a
processed polygon, where different plantation frames and treeless areas can be seen.

In the process of integrating and contrasting the information generated by the tool
with the different data sources consulted (RAIF; SIGPAC; TRIANA) some non-coherent
data were found regarding the cultivated area of olive groves of the RAIF and the SIGPAC.
Table 4 shows some records where there is no correspondence between the cultivated
area proposed by the RAIF and the cadastral references (SIGPAC). To avoid errors and
inconsistency, only the data that were consistent between the two sources were considered
from the RAIF. This allowed demonstrating the usefulness of the tool in the analysis
processes of different data sources.
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Figure 9. Example of processing a polygon (14,55,17) belonging to Córdoba: (a) Control image
generated by the tool; (b) Binary mask with identified trees.

Table 4. RAIF cultivated area data vs SIGPAC cultivated area.

PROV MUN POL PLOT Cultivated Area
RAIF (ha)

Cultivated Area
SIGPAC (ha)

Córdoba 1 7 60 104.56 52.22
Córdoba 25 4 107 146.90 62.47
Córdoba 39 17 9 199.53 8.10

Jaén 2 20 169 52.51 37.63
Jaén 60 1 37 109.10 46.13
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After contrasting and integrating the different sources of information, the data in-
cluded in the olive grove inventory were: (i) crown area, number of trees, FCC, cultivated
hectares and tree density from automatic analysis tool; (ii) plantation frame, diameter
crown, tree density (no. trees/ha cultivated) of the RAIF; (iii) type of crop, cultivated
area, irrigation and geographical limitation of the SIGPAC; (iv) crop type, cultivated area,
irrigation, nearest climatic season, planting frame, main variety, planting date, secondary
variety and planting date of TRIANA.

The evaluation of 1,519,438 ha of olive groves and the inclusion of metadata from open
data sources has allowed for the creation of inventories automatically, which will facilitate
evolutionary analyses, and establish the data structure for a more in-depth characterization,
identifying peculiarities automatically. In addition, it allows for obtaining general metrics,
such as those shown in Figures 10 and 11. Specifically, Figure 10 shows the metrics of the
ecological units obtained from the olive grove tool, such as the FCC and the number of trees,
and contrasts them with other sources of data consulted, such as the hectares of irrigated
land versus those of dry land of the processed area, obtained from the SIGPAC, which
allows adding value to the data. Figure 11 shows the estimate of the area by province, with
data calculated by the olive grove tool.
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Additionally, to identify critical points of robustness of the tool, the comparison of
calculated tree density and crown diameter was carried out, with one of the most complete
sources of the characteristics of olive groves at the plot level (RAIF). To do so, the 200 plots
that presented non-null values of these parameters for the year 2019 were selected. Table 5
shows the comparative analysis in a random set of 35 plots of the RAIF of Jaén.

Table 5. Comparative table of the data provided by the RAIF and the estimates made with the
developed tool.

ID Parcela Raif Calculated Relative Errors
ID Prov ID Mun ID Pol ID Par Cultivated

Area (ha)
Density

(Plants/ha)
Canopy

Diameter (m)
Cultivated
Area (ha)

Density
(Plants/ha)

Canopy
Diameter (m) Density Diameter

23 1 10 365 4.03 100 7.8 4.1 126.63 6.15 0.27 0.21

23 1 13 7 0.74 100 5.5 0.75 88.51 5.78 0.11 0.05

23 2 2 364 2.63 163 4 2.82 177.11 4.69 0.09 0.17

23 2 4 30 1.97 200 4 2.18 210.31 4.3 0.05 0.07

23 2 10 245 1.26 170 4 1.25 206.05 4.07 0.21 0.02

23 2 11 256 1.3 199 4 1.2 221.4 4.03 0.11 0.01

23 2 17 274 2.39 137 4 2.7 126.27 6.21 0.08 0.55

23 2 21 236 1.99 157 4 1.36 146.63 5,01 0.07 0.25

23 2 23 86 2.8 116 4 2.6 131.48 4.72 0.13 0.18

23 2 29 30 2.31 141 4 2.73 143.05 4.95 0.01 0.24

23 2 31 202 2.29 188 4 2.3 118.42 4.69 0.37 0.17

23 2 32 137 2.01 133 4 2 144.8 5.05 0.09 0.26

23 2 34 67 8.90 168 4 8.93 185.52 4.44 0.1 0.11

23 2 36 249 1.54 144 4 1.47 135.07 5.67 0.06 0.42

23 2 55 111 1.24 163 4 1.87 148.28 5.73 0.09 0.43

23 2 56 29 2.52 148 4 2.62 178.74 5.35 0.21 0.34

23 2 70 94 9.45 131 4 9.4 132.51 5.92 0.01 0.48

23 2 71 148 4.64 134 4 5.14 135.38 5.81 0.01 0.45

23 2 76 68 8.71 129 4 8.77 130.11 5.61 0.01 0.4

23 2 79 97 2.41 162 4 2.9 169.51 5.53 0.05 0.38

23 3 6 23 0.91 137 4 0.91 188.12 4.07 0.37 0.02

23 12 8 189 1.43 100 5.5 1.43 122.41 6.43 0.22 0.17

23 15 5 880 3.37 140 6.5 3.38 110.29 6.93 0.21 0.07

23 19 8 338 0.64 115 5 0.64 184.46 5.29 0.60 0.06

23 19 13 174 0.68 115 5.5 0.69 122.17 6 0.06 0.09

23 26 15 115 12.67 125 4 12.96 137.11 5.64 0.10 0.41

23 33 1 180 2.73 152 4 2.8 165.86 4.51 0.09 0.13

23 33 2 90 1.31 154 4 1.32 161.23 5.44 0.05 0.36
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Table 5. Cont.

ID Parcela Raif Calculated Relative Errors
ID Prov ID Mun ID Pol ID Par Cultivated

Area (ha)
Density

(Plants/ha)
Canopy

Diameter (m)
Cultivated
Area (ha)

Density
(Plants/ha)

Canopy
Diameter (m) Density Diameter

23 33 5 244 0.36 144 4 0.36 145.62 5.11 0.01 0.28

23 33 6 186 0.34 144 4 0.33 163.36 5.08 0.13 0.27

23 33 8 649 0.91 127 4 0.97 165.07 3.95 0.3 0.01

23 53 5 52 3.39 123 6.5 3.39 93.36 6.53 0.24 0

23 53 34 214 1.52 100 8 1.53 122.44 5.38 0.22 0.33

23 63 22 361 3.68 100 5 3.72 105.71 6.96 0.06 0.39

23 63 25 31 5.63 100 4 5.63 100.05 6.43 0.00 0.61

3.3. FCC-NDVI Evaluation
3.3.1. Results Using the Polygon as the Sampling Unit

Table 6 shows the results of the simple linear regression analysis between the NVDI
and FCC value data at the cadastral polygon level, aggregated at the province level and for
the months of the year with the best results.

Table 6. R-squared, rmse, month, and best-fit simple regression model for each observation area
(* p-values: <0.05; Models: S-L: Scikit-Learn; S-M: Stats-Models).

Province No Polygons
Simple Linear Regression Model

β0 β1 (NDVImean) R2 rmse Month Model

4—Almería 1.382 0.0518 * 1.1981 * 0.4302 0.1307 6 S-L
11—Cádiz 399 −0.1650 * 1.6168 * 0.6905 0.0952 8 S-L
14—Córdoba 1.524 −0.0725 * 1.1880 * 0.4883 0.0658 7 S-L
18—Granada 1.650 −0.1542 * 1.6365 * 0.6760 0.0976 6 S-M
21—Huelva 484 −0.1671 * 1.5987 * 0.8150 0.0888 8 S-L
23—Jaén 1.375 −0.1585 * 1.4799 * 0.6156 0.0721 6 S-L
29—Málaga 1.525 −0.1472 * 1.7326 * 0.6777 0.1060 7 S-M
41—Sevilla 1.692 −0.1144 * 1.1885 * 0.5480 0.0759 6 S-M

Figure 12 shows the best R-squared and rmse results and the month for which they
were obtained.
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3.3.2. Results Using the Plot as the Sampling Unit

Table 7 shows the results of the simple linear regression analysis of the different models
evaluated. The results show that the model that obtained the best approximation was the
simple Stats-Models model. In both cases, the p-values and the F-Test were significant.

Table 7. R-squared, rmse, month and best fit model for simple regression (* p-values: <0.05).

Model β0 β1 (NDVImean) R2 rmse Month

Simple S-L −0.0930 * 1.3436 * 0.7753 0.0538 8
Simple S-M −0.0931 * 1.3437 * 0.7900 0.0538 8

3.3.3. Results with the Pixel Sampling Unit

Table 8 shows the results of the simple linear regression analysis of the different models
evaluated. The results show that the model that obtained the best approximation was the
Scikit-Learn model, for the month of August. In both cases the p-values and the F-Test
were significant.

Table 8. R-squared, rmse, month and best fit model for simple regression (* p-values: <0.05).

Model β0 β1 (NDVImean) R2 rmse Month

Simple S-L −0.1677 * 1.3581 * 0.655 0.0729 8
Simple S-M −0.1678 * 1.3582 * 0.653 0.0729 8

4. Discussion

The objective of this work was to develop a system that allows for creating inventories
of olive groves at different scales from the integration of open data sources and calculated
automatically through image analysis. As a result, the characterization of 1,519,438 ha of
olive groves (92% of the olive grove area of Andalusia) was obtained. This study is in line
with [8], where a systematic analysis of the effects on the typology of the olive grove in the
countryside of Córdoba and with the strategies of the European Landscape Convention [2]
was carried out. In addition, it provides specific information at the polygon and plot level,
which serves to be able to evaluate the specific practices at the farm level, a need detected
in the studies [7,9].

Our proposal has achieved unified and operational access to the different data sources,
allowing their publication and consumption through intuitive interfaces, facing the problem
of lack of interoperability indicated in [16,17,22]. To achieve this objective, configurable
algorithms have been developed that extract key agronomic information for different
attributes, including: (i) crop and phytosanitary information; (ii) access to PNOA high-
resolution aerial photogrammetry; (iii) access to images for remote sensing; (iv) time series
of the main vegetation indices. All these developments have a great potential to be used
for other purposes and crops.

Furthermore, the analysis and integration of the different data sources has allowed
their evaluation and comparison. With this, it has been possible to identify some non-
coherent data between the different sources studied (see Table 4). Additionally, as can be
seen in Table 5, in some cases there are quite a few differences between the data provided by
the RAIF and the estimated data, detecting relative errors that reach up to 37%. A detailed
analysis of these discrepancies has made it possible to identify that these deviations usually
occur in super-intensive olive groves, where the estimation of the area with the methods
used loses precision. For this reason, the use of different methodologies for calculating
areas based on the plantation framework is proposed for future work. Other discrepancies
could be partially explained considering that the data provided by the RAIF could to some
extent be the result of rounding, concluding that at least the most important discrepancies
with the estimated data would merit a comparison with real data. In the same sense,
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the automatic inclusion of this type of measurements would improve the confidence and
precision of those collected in the RAIF.

Another point to highlight from the work is the interpretation of data models through
image analysis and the use of remote sensing, which is key for the effective and continuous
monitoring in large areas [32,33]. The results of our study indicate that the NDVI calculated
from the Sentinel-MSI images, particularly in the summer season, has a high relationship
with the FCC in all provinces. During this period, the NDVI signal is not influenced by
vegetation cover between trees [57,58]. For the same reason, the prediction errors were
greater in the remaining seasons (winter, spring and autumn), since they are influenced
by the existing vegetation in the streets, which would also allow for characterizing this
herbaceous stratum by subtraction.

Our proposal has achieved precise approximations in the different provinces (R-squared
between 0.43 and 0.815), similar to those presented in other investigations for other
crops [59]. Regarding the results at the plot level, an R-squared of 0.79 was reached.
The usefulness of the models at the plot level, in addition to the estimation of the FCC,
allows for the identification of the plantation framework, as well as a more precise ap-
proximation of the crown area, allowing for the inclusion of more detailed cartographic
information in data sources, including existing data, such as RAIF, SIGPAC or TRIANA.

The studies carried out at the pixel level, where R-squared results of 0.655 were
achieved, have allowed us to delve into the calculation of spectral mixtures within pixels.
Despite the fact that the results were worse than those achieved at the plot level, it is
still an attractive line of work to interpret the satellite images at the pixel level and their
distribution in the territory.

Regarding the processing of high-resolution image analysis, the tool developed in the
study [48] was used, parameterizing it for olive cultivation and the different geographical
areas of Andalusia, which has shown the ability to extrapolate this tool to other ecosystems
and study areas. In this sense, the shapefiles generated with detailed geographic and
agronomic information are a valuable contribution to the inventory of olive groves that
allow delving into studies such as sub-pixel classification and the estimation of mixtures,
with the aim of classifying and accurately identifying the elements of the olive groves. This
raises an interest in multispectral images provided by remote sensing, which is proposed
for future studies.

5. Conclusions

The tools and protocols developed make it possible to automate the capture of images
of different characteristics and origins, as well as from different open data sources, and
integrate them and metadata them so that they can later be used for the development and
validation of algorithms that can improve the characterization of the surfaces of olive grove
at the plot and cadastral polygon scales.

The proposed system allows for identifying, locating, counting and measuring the
fraction of canopy cover (FCC) of olive trees in different locations, plantation frameworks,
varieties and tree cultivation techniques. It is robust and useful for carrying out automated
inventories of olive groves and incorporating them into decision support strategies.

An inventory of the Andalusian olive grove has been automatically carried out at the
level of cadastral polygons and provinces, which has accounted for a total of 1,519,438
hectares and 171,980,593 olive trees, data that have been contrasted with various official
statistical sources allowing us to ensure the reliability of this study and even identify some
inconsistencies or errors of some sources.

Obtaining singular information at the tree level opens up a great opportunity to
systematize the measurement of the impact of various farming practices, the measurement
of ecosystem services, the control of compliance with regulations and the granting of
public aid.
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The ability of Sentinel 2 satellite images to estimate the FCC at the cadastral polygon,
plot and 10 × 10 m pixel levels, as well as to perform inventories with temporal resolutions
of approximately up to 5 days, has been demonstrated and quantified.

The combination of object-oriented automatic image recognition techniques, with
automatic pixel analysis techniques, have allowed us to explore the opportunity of mixture
analysis to improve the estimation of olive trees and their characteristics, although it is still
necessary to delve further in order to optimize results.
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