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Abstract: The increased concern about climate change is revolutionising the building materials sector,
making sustainability and environmental friendliness increasingly important. This study evaluates
the feasibility of incorporating recycled masonry aggregate (construction and demolition waste) in
porous cement-based materials using carbonated water in mixing followed (or not) by curing in a CO2

atmosphere. The use of carbonated water can be very revolutionary in cement-based materials, as it
allows hydration and carbonation to occur simultaneously. Calcite and portlandite in the recycled
masonry aggregate and act as a buffer for the low-pH carbonated water. Carbonated water produced
better mechanical properties and increased accessible water porosity and dry bulk density. The
same behaviour was observed with natural aggregates. Carbonated water results in an interlaced
shape of carbonate ettringite (needles) and fills the microcracks in the recycled masonry aggregate.
Curing in CO2 together with the use of carbonated water (concomitantly) is not beneficial. This study
provides innovative solutions for a circular economy in the construction sector using carbonated
water in mixing (adsorbing CO2), which is very revolutionary as it allows carbonation to be applied
to in-situ products.

Keywords: carbonated water; CO2 sequestration; accelerated carbonation; circular economy;
construction demolition waste

1. Introduction

Cement and concrete are used in building and construction work worldwide. The
construction industry producing cement and concrete can be regarded as the world’s
largest industry [1–3]. Construction is responsible for a great amount of CO2 release [4,5].
One tonne of cement emits approximately 0.6 to 0.8 tonnes of CO2 [1,6–8]. The CO2
concentration in the atmosphere has increased from 280 to 420 ppm in 2020 [9]. The
incorporation of waste and the proper use of resources are leading global challenges to
control the negative environmental impact of cement and concrete and preserve the planet.

High-emission countries are actively exploring carbon capture and utilisation (CCU)
or storage technologies. CCU is a novel method to reduce CO2 and turn CO2 into a com-
mercially interest product [10–12]. The carbonation and chemical reactions in cement-based
materials (CBMs) (Equations (1) to (5)) [13–18] occurs with CO2, affects cement hydration
products, and increases CaCO3 production [5,19,20]. As early as 1970, the idea of CO2
capture through carbonation with CBM appeared [21]. Carbonation of CBM, as an alternate
to CCU, reduces water absorption and curing time (useful in the precast industry), increases
density, and improves fragmentation resistance and mechanical properties [22–24].

Ca (OH)2 + CO2 → CaCO3 + H2O (1)

C− S−H + CO2 → CaCO3 + SiO2·nH2O (2)
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4Cao·Al2O3·13H2O + 4CO2 → 4CaCO3 + 2Al(OH)3 + 10H2O (3)

3CaO·SiO2 + 3CO2 + nH2O→ SiO2·nH2O + 3CaCO3 (4)

2CaO·SiO2 + 2CO2 + nH2O→ SiO2·nH2O + 2CaCO3 (5)

The concentration of CO2 in the environment must be increased for accelerated car-
bonation in different ways [14,15,18,23–30]. To increase this level of CO2, a carbonation
chamber is usually necessary [13] with or without pressure [31,32], with different levels
of CO2 or even submerging the samples in mixtures of different gases [33–35]. A review
on the effect of CO2 in cement-based materials on the physico-mechanical properties was
previously described in another study by Suescum-Morales et al. [36]. The carbonation rate
is determined by the diffusion of CO2 gas in the samples [35]. Carbonation products make
samples more dense, preventing the easy entry of CO2. The need for a high amount of CO2
in the curing environment implies the need for an accelerated carbonation chamber. An
attractive alternative is to apply carbonation technology during cement kneading. To avoid
the difficulty of CO2 diffusion and make CBM carbonation apply to in-situ products, the
kneading water is replaced by carbonated water (water with high CO2 content). Thus, it is
possible to start the carbonation simultaneously with the hydration process of the cement
and increase carbonation [20,37]. Furthermore, the hydration reaction of the cement occurs
much faster than that under normal curing conditions [5].

Construction and demolition waste (CDW) is produced during the demolition phases
of several types of construction building or infrastructures (over 30 billion tonnes per year
worldwide) [13,38,39]. CDW is composed of several types of waste, in addition to concrete
and ceramics, such as glass, stone, bituminous material, and others. Recycled aggregates
(RAs) are obtained from CDW with appropriate treatment (recycling plant treatment). A
possible simple classification of RA may be made, in a simple way [25]: (i) if the waste is
ceramic, the aggregate might be called recycled ceramic aggregates; (ii) if is concrete waste,
may be called recycled concrete aggregates (RCA); and (iii) if it is a mixture of the two
above, mixed recycled aggregates (MRA) [36,40].

Mixed recycled aggregate (MRA) is the most widely produced RA in the world. The
non-existence of regulations and different sources is still limited the use of MRA [41].
Recycled masonry aggregate (RMA) differs from natural aggregates (NAs) mainly in terms
water absorption, higher porosity, and lower density [42,43]. MRA has had different uses:
as aggregates for masonry mortar, and as an aggregate for alkaline activated material
or CBM [41–48]. RMA is a type of MRA obtained from screening and crushing walls
waste [36,49–52].

There are two ways to produce accelerated carbonation in RCA [14]: in the aggregate
itself [7,42,53–55] or in the mixture of RCA with Portland cement [24,27,28,56]. However,
these studies do not investigate the effect of CO2 on CBMs made with RMA or RCA using
carbonated water as kneading water. This research would fill this information gap. Nor
has any literature been found that studies the simultaneous use of carbonated water and
CO2 curing.

This study mainly investigates the physico-mechanical properties of a porous CBM
with RMA, and carbonated water as kneading water and for subsequent curing in CO2.
To observe the effect of carbonated water on the microstructure of the hardened samples,
with NA and RMA, and cured under both regimes, scanning electron microscopy (SEM),
energy dispersive X-ray spectroscopy (EDS), and backscattered electron (BSE) were per-
formed. Thermogravimetric analysis and differential thermal analysis (TGA/DTA) was
also performed to determine the amount of CaCO3 in all cases. No studies have been found
that simultaneously use carbonated water as kneading water, under accelerated curing,
and using RMA as aggregate. The production of precast or in-situ non-reinforced CBM
products could be possible with the following approach: incorporation of waste (RMA),
with the added value to CO2, and inclusion of carbonated water as kneading water, which
can be very revolutionary.
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2. Materials and Methods
2.1. Materials

NA was used as a reference. NA and RMA were used in previous research [25,36,49,50].
The components of RMA according to UNE EN 933-11:2009 were: red ceramic bricks
(53.9%), masonry mortar (39.8%), unbound aggregates (5.7%), concrete (0.4%), and gypsum
particles (0.2%). Water absorption and dry bulk density (DBD) were measured according
to UNE-EN 1097-6:2013 [57]. DBD for NA and RMA was 2.63 g·cm−3 and 2.14 g·cm−3,
respectively. The amount of CaCO3 for NA and RMA (197 and 239 kg/m3 respectively)
was calculated using TGA/DTA. Water absorption was 0.79% for NA and 9% for RMA.
CEM II/A-V 42.5 R was used as cement [58] with a DBD of 2.89 g·cm−3 according to the
characteristics provided by the manufacturer.

As kneading water, two types of commercial water were used: normal water (H2O) and
carbonated water (CO2·H2O), both from the manufacturer Fuente Primavera, Spain. For
H2O, the pH value was 7.7 and the initial concentration of CO2 was between 0.2–0.5 mg·L−1.
For CO2·H2O, these values were 4.8 (for pH) and 14.1–14.4 mg CO2·L−1.

2.2. Experimental Design and Curing Conditions

NA and RMA were sieved: 2/4, 1/2, 0.5 /1, 0.25/0.5, 0.125/0.25, and 0/0.125 fractions
to reconstitute the lower limit indicated by ASTM C 144-04 [59]. Two gaps were achieved
by deleting the following fractions: 0.25/0.5 and <0.125 mm. Its mineral skeleton (with two
gaps) can facilitate the input of CO2 and total carbonation of the mix (more porous). Table 1
shows the reconstituted particle size distribution of NA.

Table 1. Spindle-shaped particle size limits.

Size (mm) ASTM C
144-04 (Limit) Fraction Size Original Percentage

Retained
Application of

2 Gaps
Particle Size Distribution

Obtained (Passing)

4 100 >4 0 0 100
2 88 2/4 12 16 84
1 62 1/2 26 35 49

0.5 32 0.5/1 30 40 9
0.25 8 0.25/0.5 24 0 9

0.125 1 0.125/0.25 7 9 0
0.075 0 <0.125 1 0 0
0.063 TOTAL 100 100 -

Equations (6) and (7) calculate the dry mass of each component:

Dry mass o f cement =
V·1·ρrd cement

6
(6)

Dry mass o f NA =
V·5·ρrd natural aggregate

6
(7)

where ρrd cement = 2.89 g/cm3 and ρrd natural aggregate= 2.63 g/cm3, which are the DBD of
cement and NA, respectively. A volume (V) of 1600 cm3 was manufactured in each mix.
According to Equation (7), the mass of NA was 3507 g. The mass of each fraction for NA
(Table 2) were obtained according to the 2 gap realized in Table 1. A total substitution of
NA by RMA in volume fraction by fraction was realized. To replace NA by RMA, the bulk
density was used [60].
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Table 2. Aggregate weights used by different fractions.

Mixes NA RMA 100%

Fraction Size (mm) Weight Used (g) BD * (g/cm3) Volume (cm3) BD * (g/cm3) Weight Used (g)

>4 0 - - - -
2/4 561 1.44 388.38 0.99 386
1/2 1216 1.49 813.53 1.05 855

0.5/1 1403 1.55 900.01 1.17 1053
0.25/0.5 0 - - - -

0.125/0.25 327 1.38 235.80 1.19 279
<0.125 0 - - - -

TOTAL 3507
(Equation (7)) 2574

* BD = Bulk density.

The samples were subjected to two curing environments (both with 21 ± 2 ◦C and
65 ± 10% of relative humidity): (i) normal climatic chamber (CC) and (ii) accelerated
carbonation chamber (CO2·C). For the CC, the CO2 concentration was 0.04%, and for the
CO2·C it was 5%. The CO2 used for this condition was provided by Linde (99.99995%
purity). Figure 1 shows the experimental design carried out.
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Figure 1. Experimental design carried out.

2.3. Kneading Process

Table 3 shows the composition of the mixes studied. The aggregates were pre-
saturated, according to the water absorption of each one of them (NA or RMA). Therefore
the w/c ratio used can be considered as effective. The kneading process was in accordance
with previous research [25,36].
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Table 3. Weights used for the different mixes (g).

Mortar Type NA RMA Cement Saturation Water Effective Water Total Water w/c Consistency
Index (mm)

H2O CO2·H2O H2O CO2·H2O

NA-H2O-(*) 3507 - 771 28 - 308 - 336 0.4 80 ±10
RMA-H2O-(*) - 2574 771 232 - 308 - 540 0.4 80 ±10

NA-CO2·H2O-(*) 3507 - 771 - 28 - 308 336 0.4 80 ±10
RMA-CO2·H2O-(*) - 2574 771 - 232 - 308 540 0.4 80 ±10

(*) CC or CO2-C.

Prismatic 40× 40× 160 mm casts were used [61]. The samples were keep in the mould
for 3 h. The samples were covered to prevent CO2 input/output during this time. After
this time (3 h), the samples were demoulded because the aim was to demould the samples
very quickly, similar to what happens in a precast plant. According to Pan et al. [35],
this pre-curing time is crucial to avoid water-saturated capillary pores resulting in a low
penetration rate of CO2 for the samples cured in CO2·C. The samples were then cured in
two chambers: CC and CO2·C for 1, 3, and 7 days of curing.

2.4. Test Methods

X-ray fluorescence spectrometry analysis (XRF) was realized with ZSX PRIMUS IV,
Rigaku equipment. A Bruker D8 Discover A 25 diffractometer were used for to obtain
X-ray diffraction (XRD) patterns. A CuKα radiation (λ = 1.54050 Ȧ; 40 Kv; 30 mA) was
used and scan angles between 10◦ to 70◦ (2θ) were programmed. The speed used was of
0.02 2θ min−1. For identifying the diffractograms, the International Database ICDD 2003
was used [62].

TGA/DTA were performed using a Setaram Setys Evolution 16/18 instrument with a
resolution of 0.002–0.02 µg. The heating increase was 5◦ min−1.

The flexural (FS) and compressive strength (CS) were obtained according to the Eu-
ropean Standard EN 1015-11 [61] for 1, 3, and 7 d of curing. The dry bulk density (DBD)
of hardened samples was determined according to European Standard EN 1015-10 [63].
Accessible porosity for water (APW) were measured according to European Standard UNE
83980 [64].

The morphology and composition of the mixes with NA and RMA under the CC
regime were studied using H2O and CO2·H2O. SEM, EDS, and BSE were obtained using
JEOL JSM 7800F at the age of 7 d. The objective was to observe the effect of carbonated
water on the microstructure of the hardened samples, with NA and RMA cured under CC
regime. They were then sputtered with gold to obtain the maximum image quality.

All the above tests were carried out in triplicate.

3. Results and Discussion
3.1. Characterization of Raw Materials

Figure 2 shows the XRD patterns of NA, RMA, and cement. Quartz (SiO2) (05-
0490) [62] was the main phase for NA and RMA. Other minority phases were also found
and were described in greater detail in other research [25,36]. The diffractogram of the
cement was in agreement with the finding of other authors [65–69]. Table 4 shows the XRF
results found for NA, RMA, and cement, which are in agreement with the phases found
in XRD.
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Table 4. XRF results for NA, RMA, and Cement.

Oxides NA RMA Cement

F2O - 0.74 -
Na2O 0.82 0.71 0.29
MgO 1.06 1.65 1.00
Al2O3 5.82 10.79 6.59
SiO2 49.63 34.44 18.29
P2O5 0.07 0.12 0.13
SO3 0.03 2.52 4.02

Cl2O3 - 0.05 0.07
K2O 1.52 2.18 1.09
CaO 5.60 12.18 45.61
TiO2 0.27 0.54 0.41

Cr2O3 0.04 0.02 -
MnO2 0.04 0.06 0.05
Fe2O3 1.74 3.55 2.85
CuO - - 0.04
ZnO - 0.02 0.02
SrO - 0.03 0.05

Rb2O - - 0.01
BaO 0.03 0.03 0.06

BALANCE CO2 32.32 30.61 19.43
TOTAL 67.68 69.39 80.57

3.2. Compressive and Flexural Strength

Figure 3 shows the CS results for the four mixes and two curing regimes at ages
of 1, 3, and 7 days of curing. When comparing NA-H2O-CC with NA-CO2·H2O-CC at
1 day of age, CS decreased by 8.6%. According to Valdemir dos Santos et al. [20], this
result is related to the reduced AFm formation in the microstructure during the early
hydration period [20]. Similar results were reported by Lippiatt et al. [5] in a cement paste
aged 1 d using carbonated water. In addition, the low pH value of carbonated water
(4.8) can negatively affect the strength [70], delay the setting [71], and produce changes
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in the cement paste structure [72]. It is possible that a low pH leads to the reduction
of hydrated calcium silicate and hydrated calcium aluminate because the reactions of
equations 8–10 occur. Additionally, the amount of Portlandite present decreases. Therefore,
the structure of the cement paste will be weaker. Nevertheless, at 3 and 7 d, an increment
of 18% and 12.5% was obtained, respectively, when using carbonated water for the NA
mixture and CC regime. When kneading cement and water, the pH increases rapidly,
and this solution becomes saturated with Ca(OH)2 after 24 h [73,74]. Furthermore, the
calcite phase found in NA (Figure 2) can act as a buffer when added to carbonated water,
as observed by Lippiatt et al. [5] to achieve simultaneous hydration and carbonation in
cement. This saturated solution of Ca(OH)2, together with CO2 in the carbonated water,
favoured the carbonation reaction and increased CS at 3 and 7 d [22–24]. Equations (8)–(10)
show the chemical reaction with carbonated water [20].

CO2(gaseous) + 2OH−(gaseous) ↔ CO3
2−

(aqueous) + H2O(liquid) (8)

Ca(OH)2(aqueous) ↔ Ca2+
(aqueous) + 2OH−(aqueous) (9)

Ca2+
(aqueous) + CO3

2−
(aqueous) + H2O(liquid) ↔ CaCO3(solid) + H2O(liquid) (10)
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Compared to NA, RMA mixture under CC regime, using carbonated and normal water
(RMA-H2O-CC and RMA-CO2·H2O-CC), had slightly lower CS. This loss of mechanical
properties agreed with other studies when the percentage of substitution of NA for RA was
100% [14,75–79]. However, compared to normal water, the carbonated water was beneficial
in this case for all ages of curing (19.3%, 12.1%, and 4.4% for 1, 3, and 7 d, respectively) due
to the presence of CaCO3 and Ca(OH)2 in RMA (Figure 2). These phases act as a buffer
of carbonated water [5], increase pH, avoid the loss of mechanical resistance, and delay
hydration [70,71] that occur in the mixture with NA with 1 d of curing. Thus, carbonated
water with RMA can improve the mechanical strength under the CC regime.

For NA and RMA mixtures, the increase in CS in samples cured with CO2·C (NA-
H2O-CC vs. NA-H2O-CO2·C and RMA-H2O-CC vs. RMA-H2O-CO2·C) agree with the
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results in [13,14,18,24,27,28,56,80–82]. For NA mixtures, with 1 d and under CO2·C, when
using carbonated water in the kneading, compared with normal water, decreased the CS by
38.77% (NA-H2O-CO2·C vs. NA-CO2·H2O-CO2·C). The low pH value of carbonated water
along with accelerated carbonation (CO2·C) results in a negative effect on strength [70]
and delayed setting [71], which lowers the pH values of the mix [83–85]. For 3 d of curing,
the effect of carbonated water on CS was still negative. For 7 d of curing, an increment of
13.3% was observed. This could indicate the regulation of pH [22–24] and the carbonation
of the sample.

The same behaviour was observed in the samples with RMA (RMA-H2O-CO2·C vs.
RMA-CO2·H2O-CO2·C), although with minor decreases for 1 and 3 d. This is again due
to CaCO3 and Ca(OH)2 in RMA (Figure 2) acting as a buffer of carbonated water [5],
maintaining a pH higher than that with NA. Thus, carbonated water under accelerated
carbonation (with NA and RMA) is beneficial only after 7 d of curing.

The FS results for all the mixes under CC and CO2-C at the ages of 1, 3, and 7 d, in
Figure 4, reveal the same trend as CS.
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3.3. DBD and APW

DBD and APW are shown in Figure 5 for 7 d of curing under CC and CO2·C. On
the NA mixture, under the CC regime, the use of carbonated water as kneading water,
compared with normal water, incremented the DBD by 3.3%. This result agrees with the
increase in the mechanical properties in Figures 3 and 4. Carbonated water favours the
carbonation reaction at 7 d of curing, increasing the DBD [22–24]. The APW also increased
by 5.28% when using carbonated water during kneading. This result is in accordance with
Valdemir et al. [20], who found that CO2 released by the carbonated water could generate
additional porosity. The same behaviour was observed with RMA (RMA-H2O-CC and
RMA-CO2·H2O-CC), in which DBD increased by 0.8% and APW by 19.06%.
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For the RMA mixture under the CC regime, when using carbonated and normal water
(RMA-H2O-CC and RMA-CO2·H2O-CC), DBD and APW were higher than those in the
same mixtures with NA. This agrees with the lower particle dry density, and higher water
absorption of RMA reported in [51,79,86].

For the NA and RMA mixtures, using normal water, an increase in DBD and a decrease
in APW were observed for samples cured in CO2·C (NA-H2O-CC vs. NA-H2O-CO2·C and
RMA-H2O-CC vs. RMA-H2O-CO2·C). These mechanical properties could be due to sample
carbonation, as observed in [13,14,18,24,27,28,56,80]. Carbonated water for kneading water
under accelerated carbonation, compared to normal water, increased the DBD and APW
(NA-H2O-CO2·C vs. NA-CO2·H2O-CO2·C and RMA-H2O-CO2·C vs. RMA-CO2·H2O-
CO2·C). These results agree with the mechanical properties observed in Figures 3 and 4.

3.4. XRD

XRD obtained for NA using normal and carbonated water as kneading water under
CC are shown in Figure 6. For normal water at 1 d, the main phases found were quartz
(05-0490) [62], calcite (05-0586) [62], dolomite (11-0078), albite (10-0393) [85], and microline
(19-0926) [84], which agrees with the fundamental composition of NA in Figure 2. Ha-
trurite (86-0402) [62], larnite (33-0302) [62] from the cement used (Figure 2), portlandite
(44-1481) [62], and ettringite (37-1479) [62] from the reaction products of Ordinary Portland
cement (OPC) [87,88] were also observed. Comparing the phases found using normal
or carbonated water as kneading water, a sharp decrease of the phases hatrurite and
larnite were observed (Inset Figure 6 labelled “C3S and C2S”, red colour “1 day normal
water”, purple colour “1 day carbonated water”). Furthermore, the formation of portlandite
Ca(OH)2 was affected by the carbonated water as kneading water (Inset Figure 7 labelled
“Portlandite”, red colour “1 day normal water”, purple colour “1 day carbonated water”)
and is in accordance with Equation (7). The loss of intensity of hatrurite and larnite peaks
and delay in the formation of portlandite were also reported by Hou et al. [71] with acid
water. The observed results can be because of the pH of the carbonated water (4.8) and
decreased mechanical strength at 1 d of curing, as shown in Figures 4 and 5.

Comparing the diffractogram of 1 d with those obtained at the ages of 3 and 7 d for
carbonated water, the same phases were identified but an increase in the intensity was ob-
served in the calcite phase (Inset Figure 6 labelled “CaCO3 (3 days)” and “CaCO3 (7 days)”),
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suggesting that carbonated water as kneading water produced carbonation [22–24]. This
also explains the increased mechanical strength in Figures 3 and 4 and DBD in Figure 5.
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Figure 7. XRD for RMA with normal and carbonated water under CC.

XRD obtained for NA using normal and carbonated water as kneading water under
CC are shown in Figure 7. With carbonated water (Figure 7 inset labelled “C3S and C2S”),
we observed a decrease in the peaks of the phases hatrurite and larnite. In addition, the
formation of portlandite Ca(OH)2 was not significantly delayed when using carbonated
water (Figure 8 inset labelled “Portlandite”). Both processes were due to the presence
of CaCO3 and Ca(OH)2 in RMA (Figure 2). These phases acted as a buffer [5]. Hence,
carbonated water can increase the mechanical properties at 1 d of age with RMA than with
NA (Figures 3 and 4). These results highlight that RMA, acting as a buffer for carbonated
water during kneading, avoids a decrease in pH without adding CaCO3 or Ca(OH)2, as
previously proposed in [5,89]. Owing to its mineralogical composition, RMA has a similar
effect as CaCO3 and Ca(OH)2.
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Figure 8. XRD for NA with normal and carbonated water under CO2·C.

At 3 and 7 d with normal water, the same phases were identified as that of 1 d.
Comparing these diffractograms with that obtained for 3 and 7 d using carbonated water, a
higher intensity was observed in the calcite peaks (Figure 7 inset labelled “CaCO3 (3 days)”
and “CaCO3 (7 days)”). This behaviour was already observed in the samples with NA
(Figure 7) and indicates that the carbonated water produced carbonation [22–24]. This
supports the increase in mechanical strength with carbonated water (in Figures 3 and 4)
and DBD (in Figure 5).

XRD obtained for NA using normal and carbonated water as kneading water under
CO2·C are shown in Figure 8. For 1 d, with normal water, the same phases as in CC were
found. For 3 and 7 d, the disappearance of the portlandite phase was observed (Figure 8
inset labelled “Effect CO2”), which shows the consumption portlandite when it comes into
contact with CO2 (Equation (1)). This concurs with an increase in the mechanical strength
in samples cured in CO2·C (Figures 3 and 4). This was due to samples carbonation, as
reported in [13,14,18,24,27,28,56,80]. The same phases were found for 1, 3, and 7 d with
carbonated water. The portlandite also disappeared at the age of 3 and 7 d.
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The effect of carbonated water at 1 d, under the CO2·C regime, is almost the same as
that under CC (Figure 6). However, a decrease in the peaks of the hatrurite and larnite
phases were observed (Figure 8 inset labelled “C3S and C2S”). For 3 d, the effect of carbon-
ated water (Figure 6) is negligible on the calcite formed with respect to the effect produced
by the carbonation chamber (Figure 8), because the amount of CO2 contributed by the
CO2·C regime is greater than that of the carbonated water (Figure 8 inset labelled “CaCO3
(3 days)”, similar intensity found for CaCO3 peaks). These results agree with the delay in
setting [71] and strength development [70] due to the initial decrease in pH produced by
combining carbonated water and CO2-C regimes. At 7 d, a greater intensity was observed
in the calcite phase, more with carbonated water than with normal water (Figure 8 inset
labelled “CaCO3 (7 days)”). This indicates that pH had been regulated [22–24] and that
carbonation of the sample is better than in with normal water and agrees with the results
of the mechanical properties in Figures 4 and 5 and DBD in Figure 6.

XRD obtained for RMA using normal and carbonated water as kneading water under
CO2·C are shown in Figure 9. At 1 d, with normal water, the phases found were the
same as those found in the CC regime (Figure 7). For 3 and 7 d, the disappearance of
the portlandite phase was observed (Figure 9 inset labelled “Effect CO2”), indicating
carbonation (Equation (1)) [13–17].
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With carbonated water, the same phases were observed as that with normal water. For
1 d, a light decrease of hatrurite and larnite were observed (Figure 9 inset labelled “C3S and
C2S”, red colour “1 day normal water”, purple colour “1 day carbonated water”), indicating
that carbonated water has a retarding effect on the development of mechanical properties at
a young age. As with NA (Figure 8), the same behaviour, including calcite peak intensities,
was observed at the age of 3 d (Figure 9 inset labelled “CaCO3 (3)”). The low pH value of
carbonated water along with accelerated carbonation (CO2·C) which also lowers the pH,
negatively affects the strength, although less in the case of NA (Figures 3 and 4). At 7 d of
curing, the calcite peaks were similar with carbonated and normal water (Figure 9 inset
labelled “CaCO3 (7)”) and agree with the mechanical properties in Figures 3 and 4 and
DBD in Figure 5.

3.5. SEM

Figure 10 shows a general SEM and elemental composition mapping of the NA mixture
with normal and carbonated water as kneading water under CC at low magnification (NA-
H2O-CC vs. NA-CO2·H2O-CC). Two main zones were detected: siliceous aggregate and
cement paste. The main element in the aggregates is Si and agrees with the chemical
composition (Table 4), XRD (Figure 2) results. The main elements contained in the cement
paste were Ca, Al, K, and Mg. At low magnification, no differences were observed using
carbonated water.
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Figure 10. SEM images and elemental composition mapping of NA with normal and carbonated
water under normal curing regime CC (NA-H2O-CC vs. NA-CO2·H2O-CC) at low magnification.

However, by increasing the magnification over the cement paste zone, significant
differences were found when using carbonated water (Figure 11). First, it seems that the
structure of the cement paste with carbonated water was more porous than that obtained
with normal water. The qualitative analysis by SEM agrees with the highest APW found
with carbonated water (Figure 5). With normal water, it can be seen that the grains with
rounded faces and edges were formed around the cement particles. Nevertheless, with
carbonated water, large amounts of well-developed and intertwined needles particles, with
very high surface areas are observed. Considering the morphological similarities with
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ettringite Ca6[Al(OH)6]2 (SO4)3·26H2O, it can be speculated that the needle-like structure
is a carbonated ettringite with the chemical formula Ca6[Al(OH)6]2 (CO)3·26H2O [37].
Because of the high CO2 content of carbonated water, ion exchange occurs; that is, SO4

2−

is fully or partially replaced by CO3
2−. A similar result was found by Pingping et al. [27]

with water curing with CO2.
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Figure 11. SEM images and elemental composition mapping of NA (zone cement paste) with normal
and carbonated water under normal curing regime CC (NA-H2O-CC vs. NA-CO2·H2O-CC) at
medium magnification.

SEM images with higher magnification were taken to confirm the above results
(Figure 12). With normal water, grains with rounded faces and edges were observed.
However, with carbonated water, hexagonal- or orthorhombic-shaped (1) and needle-
shaped particles (2) were observed. EDS analysis of the hexagonal particle revealed the
presence of Ca, C, and O, indicating the possibility of CaCO3 [2,27]. This agrees with the
greater intensity of calcite observed in XRD with carbonated water for NA (Figure 6 vs.
Figure 7). For needle-shaped particles, EDS revealed a high concentration of C and O, indi-
cating that SO4

2− was fully or partially replaced by CO3
2− to form carbonate ettringite [37].

Boumaza et al. [19] formed carbonated crystals having hexagonal or orthorhombic shapes
between the needles of ettringite under a CO2 environment. The interlaced shape of the car-
bonate ettringite and greater presence of calcite (due to the carbonation produced by CO2
in the carbonated water) improved the mechanical properties (Figures 3 and 4) compared
to normal water.
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Figure 12. SEM images and EDS of NA (zone cement paste) with normal and carbonated water under
normal curing regime CC (NA-H2O-CC vs. NA-CO2·H2O-CC) at high magnification. Elemental
composition mapping.

Figure 13 shows a general SEM and elemental composition mapping of the RMA
mixture with normal and carbonated water under CC at low magnification (RMA-H2O-CC
vs. RMA-CO2·H2O-CC). In this case, two zones were observed: a siliceous aggregate or
piece of brick, which is in accordance with the nature of the RMA (Figure 2), and cement
paste containing Ca, Al, K, and Mg as the main elements. Furthermore, microcracks and a
possible interfacial transition zone (ITZ), which is the area between the old and the new
cement paste and is the weakest region in MRA mortar [3,90,91], were observed. These
could explain the decrease in mechanical properties (Figures 3 and 4) with the replacement
of NA by RMA (with normal and carbonated water under CC) and the higher porosity
found with RMA (Figure 5). At this magnification, no differences were found between
carbonated and normal water with RMA. The same areas as with normal water are also
found. This is contrary to what is observed with NA (Figure 10).

With slightly higher magnification, microcracks were more visible (Figure 14). There
were fewer microcracks when using carbonated water as the carbonatation products
(CaCO3 particles) can gradually fill pores and micropores [22–24,35]. This agrees with
the improvement in the mechanical properties observed with carbonated water in RMA
under the CC regime (RMA-H2O-CC vs. RMA-CO2·H2O-CC). Furthermore, this increase
in carbonation products was also observed in the XRD analysis (Figure 7). Notably, when
using RMA and carbonated water, the presence of carbonated ettringite was not observed,
unlike when using NA (Figures 11 and 12) due to the existence of calcite and portlandite in
RMA (Figure 2). Calcite and portlandite act as buffers for carbonated water [5], consuming
CO2 from carbonated water, especially portlandite (Equation (1)), thereby avoiding the full
or partial replacement of SO4

2− by CO3
2−.
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At higher magnification (Figure 15), no microcracks were observed due to the filling of
microcracks by the effect of carbonated water in the RMA. In addition, carbonate ettringite
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(needle-shaped particles) is not observed. The same behaviour was observed at very high
magnification (Figure 16). Therefore, carbonated water on the microstructure of RMA
serves the purpose of filling the microcracks. Studies on the influence of carbonated water
with RMA have not been found in the literature.
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3.6. TGA-DTA

To determine whether carbonated water produces a greater amount of CaCO3 in the
mixes with NA and RMA in CC regime, TGA/DTA was performed (Figure 17). Five stages
were observed for all the mixes with normal and carbonated water. In the stage from 480
to 1000 ◦C, CaCO3 decomposition occurred [2,56], attributed to the loss of mass resulting
from calcium carbonate decomposition. A high loss of mass in this range indicates high
calcium carbonate in the mix.
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For the mix with NA (Figure 17A), a mass loss of 3.8% and 9.19% were observed
for normal and carbonated water, respectively, (NA-H2O-CC vs. NA-CO2·H2O-CC) in
the range of 480–1000 ◦C, indicating a greater amount of CaCO3 (product of carbonation)
formation with carbonated water. This is in agreement with the mechanical properties
(Figures 3 and 4), DBD (Figure 6), XRD results (Figure 6), and SEM (Figures 10–12). The
temperature of the decomposition peak of CaCO3 is different between NA-H2O-CC and
NA-CO2·H2O-CC. This was due to the different “nature” of CaCO3. In the case of NA-
H2O-CC, this CaCO3 is the result of the hardening process of the cement [36,92]. In the case
of NA-CO2·H2O-CC, the calcium carbonate is the result of the carbonation produced in the
sample and by them exist a delayed in the decomposition temperature. In contrast, for the
mix with RMA (Figure 17B), the mass loss is 5.5 and 6.01 for normal and carbonated water,
respectively (RMA-H2O-CC vs. RMA-CO2·H2O-CC), between 480 and 1000 ◦C. In this case,
the difference in calcium carbonate formation was not as important as in NA (although it is
still greater with carbonated water than with normal water). This was already described in
the analysis of the intensity for calcite peaks in XRD. The difference between the intensity
of the peaks was greater in the NA mixture than in the RMA mixture, at the age of 7 d (see
Figure 6 inset labelled “CaCO3 (7 days)” vs. Figure 7 inset labelled “CaCO3 (7 days)”).
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4. Conclusions

This study presents an experimental study using carbonated water as kneading water
and its impact on the physical-mechanical properties of a porous CBM made with NA and
RMA. The main objective was to evaluate the influence of carbonated water together with
whether or not subsequent curing in carbonation chamber on the mechanical properties
and explain this behaviour using XRD, SEM, and TGA/DTA. The characterisation of the
mix composition with different aggregates (NA or RMA), normal water or carbonated
water as kneading water, and different hardening environments (different level of CO2)
were performed at 1, 3, and 7 d. The following conclusions were obtained:

• Carbonated water worsened mechanical properties at 1 d of curing with NA under
the CC regime, compared to normal water. The phases of CaCO3 and Ca(OH)2 in the
RMA, acted as a buffer for carbonated water.

• The low pH value of carbonated water and accelerated carbonation (CO2·C) further
lowers the pH, and negatively affects the strength at 1 d of normal curing for all
the mixes. The simultaneous utilization of carbonated water as kneading water and
subsequent curing in CO2 is not recommended.

• In all the mixtures studied, the effect of carbonated water increased the DBD (due
to carbonation) and APW, indicating that carbonated water generated additional
porosity. The carbonation reaction that occurs with carbonated water under CC
explains the increase in mechanical strength at 7 d of curing for NA and RMA. A
greater intensity in the CaCO3 peaks (XRD) and increased weight loss of calcite
decomposition (TGA/DTA) was also observed.

• The presence of interlaced needles of ettringite carbonate observed by SEM and the in-
creased presence of calcite (due to the carbonation produced by CO2 in the carbonated
water) resulted in better mechanical properties than normal water. Carbonated water
on the microstructure of the RMA results in the filling of microcracks (shown in the
SEM images). Ettringite carbonate was not observed in this case because of portlandite
in RMA, which consumed CO2 from carbonated water. Carbonated water as kneading
water using RMA could allow for the production of precast CBM products with good
mechanical properties without the need for CO2 curing chamber.

The utilization of carbonated water as kneading water in CBM with recycled aggre-
gates (circular economy) can be a novel and interesting procedure to obtain a more environ-
mentally friendly building material without the use of a carbonation chamber. At the same
time, it improves mechanical properties and contributes to climate change mitigation.
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