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Abstract: In recent decades, the environmental impact caused by greenhouse gases, especially CO2,
has driven many countries to reduce the concentration of these gases. The study and development of
new designs that maximise the efficiency of CO2 capture continue to be topical. This paper presents a
review of the application of hydrotalcites as CO2 sinks. There are several parameters that can make
hydrotalcites suitable for use as CO2 sinks. The first question is the use of calcined or uncalcined
hydrotalcite as well as the temperature at which it is calcined, since the calcination conditions
(temperature, rate and duration) are important parameters determining structure recovery. Other
aspects were also analysed: (i) the influence of the pH of the synthesis; (ii) the molar ratio of its main
elements; (iii) ways to increase the specific area of hydrotalcites; (iv) pressure, temperature, humidity
and time in CO2 absorption; and (v) combined use of hydrotalcites and cement-based materials. A
summary of the results obtained so far in terms of CO2 capture with the parameters described above
is presented. This work can be used as a guide to address CO2 capture with hydrotalcites by showing
where the information gaps are and where researchers should apply their efforts.

Keywords: CO2 sinks; calcined hydrotalcite; one-coat mortar; CO2 curing

1. Introduction

The incessant consumption of energy, which goes hand in hand with modern life in
developed countries, has negative effects on the quality of the environment and ecosystems.
These impacts, caused by greenhouse gases (GHGs), are leading many countries to adopt
responsible environmental policies. Carbon dioxide (CO2) is the dominant anthropogenic
greenhouse gas (76%), responsible for global warming [1]. Before the industrial revolution
(1760s), the CO2 level was about 280 ppm [2], while today it could be considered at an
average level of 400 ppm [3,4]. According to the International Energy Agency (IEA, 2017),
the global mean temperature has increased by 1 ◦C above the preindustrial level due to
anthropogenic greenhouse gas emissions [5]. The increase in global average temperature
is expected to reach 1.5 ◦C by the end of 2040 [6,7], and it is therefore necessary to take
measures to reduce these CO2 levels.

To reduce these levels, two main carbon capture (CC) technologies are being pre-
sented [6,8]: (i) carbon capture, transport and storage technologies (CCS); and (ii) carbon
capture and utilisation technologies (CCU). CCSs are primarily aimed at mitigating GHGs
when fossil fuels are used for energy generation. CCS technologies are classified into
three types: pre-combustion, post-combustion, and oxy-fuel combustion capture [6]. CCS
technologies would remove around 20% of GHG emission by 2050 [9]. Captured CO2 can
be a source of recycled carbon, and CCU can provide more services and greater climate
change savings than capturing and storing CO2 underground [10]. The use of CO2 gives
an added value to these GHGs, which, together with the circular economy concept, can
mitigate climate change [11,12]
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Therefore, CO2 capture is expected to play an important role in the commercialisation
of future CCS technologies [13]. Many countries and research teams are considering
various candidate processes and materials [14], such as absorption [15], adsorption [16,17];
membranes [18] and cryogenic distillation systems [19]. Solid sorbents (carbon, silica,
calcium oxide, among others) are expanding as an emerging alternative for CO2 capture,
due to their great characteristics for such a task [20–22]. According to their temperature of
use, solid sorbents can be classified as follows [23]: (a) low temperature (<200 ◦C) [24–27];
(b) intermediate temperature (between 200–400 ◦C) [28,29]; and (c) high-temperature
(> 400 ◦C).

Hydrotalcites are brucite-like layered materials, that have been known for over
150 years with a general formula of [M2+

1−xM3+
x (OH)2]

x+
(An−)x/n·mH2O, where M2+ and

M3+ represent divalent and trivalent cations, respectively, and A represents the interlayered
anion [30–35]. Hydrotalcites are known in the bibliography as LDHs (Layered double hy-
droxides). The layer charge is determined by the molar ratio, that is x = M3+/(M3+ + M2+),
and it varies between 0.2 and 0.4 [36–38]. The Mg3AlCO3 hydrotalcite is a type of LDH
commonly found in nature. Reviewing the literature, a wide range of applications of these
materials can be found [3]: catalytic applications [36,39–42], medical applications [43–46]
as additives for polymers [47,48], for adsorption of pollutants [49–51], water decontami-
nation [52,53], waste barriers [54–58], among various other applications. Several chemical
companies (e.g., BASF, SASOL, Clariant, Kisuma Chemicals, Sakai Chemicals, etc.) produce
several thousands of tonnes yearly, so it is an easily-available product [19]. Hydrotalcites, as
such, are not good CO2 absorbents due to poor basic properties and presence of entities that
hinder CO2 adsorption and are therefore subjected to thermal treatment (around 500 ◦C)
to obtain nearly amorphous metastable mixed solid solutions known as calcined layered
double hydroxides (CLDHs) [19]. In CLDHs, there is a loss of mass and a breakdown of its
structure, forming an oxide, according to Equation (1) [59]:

Mg6Al2(OH)16CO3·4H2O → Mg6Al2O9 + 12H2O + CO2 (1)

The CO2 emitted during calcination (Equation (1)) is identical to the CO2 captured
during the synthesis of hydrotalcite (Equation(2)):

Mg6Al2O9 + 12H2O + CO2 → Mg6Al2(OH)16CO3·4H2O (2)

Consequently, the CO2 balance of the calcined hydrotalcite is 0 (Equations (1) and (2)).
In this sense, all the CO2 captured by the calcined hydrotalcite represents a negative
CO2 balance. This will reduce the carbon footprint of those materials to which calcined
hydrotalcite is added.

Another characteristic of hydrotalcite is the memory effect, which allows the recon-
struction of the original shape of hydrotalcite when it is in a humid environment and in the
presence of CO2. CLDHs in a CO2 environment return to its initial state of LDHs [60–63].
The CO2 capture balance by the hydrotalcite in its reconstruction is positive and hence the
interest of using this material as a CO2 capture material is very great (in the last decade) [64].
Nowadays, the challenge is to develop new types of hydrotalcites with higher CO2 sorption
capacities, higher sorption/desorption kinetics, and good stability throughout consecutive
reutilisation cycles in similar operation conditions as those applied in a sorption-enhanced
steam reforming process [65].

These hydrotalcites (in their LDH or CLDHs form) can also be found as additives to
cement-based materials to improve resistance to chloride attack [66], durability [67–70] and
even the use of LDH as additives to improve the thermal insulation of the intumescent
fire retardant (IFR) coating [71]. Wu et al. [72] indicated that the structure regeneration of
CLDHs in a cement paste environment had also been revealed [69]. After calcination, a
large number of active sites produced what in favour of the improvement effect of CLDH
on cement [72]. Since hydrotalcites may be incorporated into various building material
mixtures, mortars, concretes and backfills, their application as accessible and affordable
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materials is prospective [73–75]. However, research in the field of hydrotalcites and cement-
based materials is still insufficient [72,76]. It is also difficult to find studies that add LDH or
CLDH to alkaline-activated materials [77,78].

It is even more difficult to find studies in which CLDHs are used as additives in order
to increase the CO2 capture capacity of cement-based materials. Ma et al. [79] reported the
adsorption of CO3

2− by CLDH seven times faster than LDH due to the release of anions af-
ter calcination, which can be very beneficial for CO2 capture. Suescum-Morales et al. [3,59]
added different percentages of CLDH (calcined Mg3AlCO3) in a one-coat mortar in order
to increase the CO2 capture capacity. Adding 5% of calcined hydrotalcite increased the CO2
capture capacity by 8.52% with respect to the reference mortar.

This paper presents a review of the application of hydrotalcites as CO2 sinks. Different
aspects were analysed: pH of the synthesis, the molar ratio (Mg/Al), the specific area,
pressure, temperature and time in CO2 absorption. A summary of the results obtained so
far in terms of CO2 capture with the parameters described above is presented. This work
can be used as a guide to address CO2 capture with hydrotalcites by showing where the
information gaps are and where researchers should apply their efforts.

2. Calcined or Uncalcined Hydrotalcite to Capture CO2?

The answer is immediate: calcined hydrotalcite or its use under high temperatures
(around 400 ◦C so that the hydrotalcite becomes oxide and can be rebuilt in contact with
CO2). LDH are poor CO2 adsorbents in their natural or unburned form, which is due to a
poor basic property and the presence of entities that hinder CO2 adsorption. Hence, they
are subjected to thermal treatment to obtain nearly amorphous metastable mixed solid
solutions (CLDHs) [19]. Figure 1 shows two diagrams representing what happens during
the calcination of hydrotalcite of Mg3AlCO3 as shown (A) by W.J. Long et al. [77] and (B) by
Lauermannová et al. [73]. Both schemes attempt to represent the collapse of the structure
due to the loss of interlayer anions and moisture.
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2.1. Thermal Behaviour of Hydrotalcite by TGA/DTA

LDH undergoes several stages until it reaches CLDHs. There is even research that
attempts to explain this process in great detail and focuses on it alone [80,81]. It is very
important to choose a suitable calcination temperature, avoiding it being too high (to avoid
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higher energy consumption), or being too low (not producing the collapse of the structure
and hindering a higher CO2 capture). To distinguish the different stages, it is useful to
rely on thermogravimetric analysis (TGA) and differential thermal analysis (DTA) carried
out by Suescum-Morales et al. [33], shown in Figure 2. It should be noted that different
variations in temperature ranges may be encountered, approximately as shown below.
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Figure 2. TGA (solid lines) and DTA (dotted lines) for commercial hydrotalcite of MgAlCO3 [33].

First of all, a loss of humidity is observed, up to a temperature of about 105 ◦C. The
second stage occurs from 105 to 270 ◦C, where the water hydration of the hydrotalcite
structure is lost (leading to a decrease in basal spacing) [82–84]. There are authors who
indicate that between 200 and 300 ◦C, the OH− groups attached to Al3+ are lost [19]. The
third stage, from 270 to 540 ◦C, is where the dehydroxilation of the hydrotalcite takes place
and the loss of the carbonate anion of the interlayer in the form of CO2 occurs. The layer
structure collapses (Figure 1), and the LDH converts to a mixed-oxide MgO-like phase [85].
In the last stage, from 540 to 1000 ◦C, very small weight losses are observed, attributed to
the loss of residual OH− groups.

From the above, it can be seen that the calcination temperature affects the capacity to
capture CO2 in CLDHs. Different structural characteristics are presented in the different
stages of thermal decomposition. From this analysis, the ideal calcination temperature of the
hydrotalcite under study can be determined, which is characteristic and unique depending
on the type of hydrotalcite. Most research indicates that the calcination temperature of
a Mg-Al LDH is around 400 ◦C [86–88]. However, the performance of a TGA/DTA for
each specific case would allow observing the exact calcination temperature. Therefore,
specific experimental tests are necessary to further verify the influence of the calcination
temperature on adsorption. This is discussed in the following sections of this review, using
XRD, SEM/TEM, pH measurements in the synthesis, influence of molar ratio, and specific
surface area measurements.

2.2. Thermal Behaviour of Hydrotalcite by XRD

The appropriate calcination temperature can also be determined by XRD temperature
variation analysis. The thermal decomposition sequence of Mg-Al-CO3 hydrotalcite is well
documented. Miyata, 1980 and Hibino et al., 1995 [82,89] studied the XRD variation at
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different temperatures, shown in Figure 4 (non-calcined, 150, 250, 350, 500, 850 and 1000 ◦C).
The diffraction patterns of MgO can be identified between 400 ◦C and 850 ◦C, given the
amorphous nature of Al2O3 at this temperature. For 900 ◦C the spinal phase (MgAl2O3)
was formed. Given these experiences, the following chemical equations can be posed, with
the different temperature ranges, to help us understand the process (Equations (3)–(5)):

Mg6Al2(OH)16CO3·4H2O → Mg6Al2(OH)16CO3 + 4H2O 100 < T < 250 °C (3)

Mg6Al2(OH)16CO3 → 6Mg(Al)O + 8H2O + CO2400 < T < 850 °C (4)

6MgO + Al2O3 → MgAl2O4 + 5MgO 900 < T < 1000 °C (5)

Figure 3 shows the similar XRD obtained by several authors by calcination at 500 ◦C
for different periods: firstly, the XRD obtained by W.J. Long et al. [77] (Figure 3a) shows
how at a temperature of 500 ◦C for 3 h the layered structure collapses and also shows
the production of mixed oxides. Figure 3b shows a similar result, but in this case using
a calcination time of 2 h, and the same temperature (500 ◦C) [33]. This leads to a large
saving of energy in the calcination of LDH, with a consequent lowering of the carbon
footprint. Already, Z. Yang et al. [67] calcined at 500 ◦C for 3 h, obtaining a similar result.
Even Q.Tao et al. [90] heated at 500 ◦C for 4 h, obtaining similar results (Figure 3c). Similar
results in XRD were obtained by S.I. Garcés Polo et al. [91] for CLDH. None of the previous
authors [33,67,77,91] indicated the amount of sample used in the calcination, which may
have led to these observed differences. Although different calcination temperatures have
been used with similar results, there are no economic studies of the cost of calcination;
studies of this type, with times, temperatures and quantities of LDH to be calcined, would
be very useful for these materials in industrial applications. It would also be very important
to carry out a real carbon footprint calculation (UNE EN 15804:2012), which determines the
real CO2 sink capacity in each specific case (amount of hydrotalcite, type of furnace, etc.).
Only two studies have been found that indicate the amount of hydrotalcite calcined (100
and 1 g respectively) [92,93]. Annotations of this type, i.e., what quantity is fed into the
LDH kiln, are very important in order to maximise the efficiency of the calcination process.
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2.3. Thermal Behaviour of Hydrotalcite by SEM/TEM

Figure 5a shows SEM images of commercial LDH and CLDH Mg-Al from
W.J. Long et al. [77]. After 3 h at 500 ◦C, the structure collapses. A decrease in size was
also observed. P. Cai et al. [95] obtained similar results (Figure 5b) with the same tempera-
ture and time of calcination. After 4 h at 450 ◦C on Mg-Al LDH, C. Geng et al. [96] observed
a decrease in particle size, and the hexagonal shape was hardly noticeable (Figure 5c). No
other studies using different temperatures (different at 500 ◦C) and calcination times have
been found that show SEM images of LDH and CLDH. Studies along these lines could fill
this information gap.
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Figure 6A shows the TEM images of LDH and CLDH, after 2 h at 500 ◦C, obtained
by Suescum-Morales et al. [33]. In CLDH, small pores were formed, attributable to the
dehydration process, dehydroxilation of the OH− groups, and to the decomposition of
the interlayer carbonate. C Hobbs et al. [97] studied the evolution of a Mg-Al LDH under
different temperatures using a rate of 10 ◦C/min (Figure 6B). At a temperature of 20 ◦C
(LDH), they have a well-defined platelet shape; the porous structure is clearly visible at
850 ◦C. S Luo et al. [98] also obtained the same porous structure in CLDH, as shown in
Figure 6C.
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Different heating rates have been used in LDH calcination; a heating rate of 10 ◦C/min
was used in Mg/Al LDH by several authors [99–102] and a heating rate of 5 ◦C /min
was used by [103]. It is known that if the heating rate is slower, the thermal effects are
better observed (better porous structure). However, if the ramp is slower, it takes more
time and wastes more energy; if the heating is too fast, the porous structure will be worse.
These differences should be extensively studied, both from an energy point of view (higher
consumption and, therefore, higher carbon footprint produced by the kiln when the larger
ramp is used), and from the point of view of the efficiency of the CLDH itself. Another
very important aspect is the kinetics of LDH, which has been extensively discussed in other
research [104,105].

3. Influence of the pH Used in the Synthesis in CO2 Capture

Generally, LDH used for CO2 capture has been synthesised by the coprecipitation
method [33,34]. In this respect, Wang et al. [106] studied the effect of pH variation on the
synthesis (coprecipitation method) in the range of 6.5–14. Subsequently, they studied the
effect of the variation of this parameter on CO2 capture. The pH that produced the best
adsorption was 12 (23.76 mg/g). In other previous research, Wang et al. [88] indicated
that the best pH value used for the synthesis of hydrotalcite oriented for CO2 capture was
between 10 and 12.

The crystallinity of the HT samples increases with the pH value of the synthesis, while
the BET surface area decreases with increasing synthesis pH (in the range of 6.5–9 pH
values). However, from a pH value of 10, the BET surface area increases suddenly, which
can be seen in Figure 7, taken from Wang et al. [88].
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In other research studies, a pH of 7 was used by León et al. [25] and Rossi et al. [27], a
pH of 9 was used by Torres-Rodriguez et al. [26], and a pH of 8 by Suescum-Morales et al. [33].
In summary, we must take into account that the pH value in the synthesis is fundamen-
tal in the development of the morphology, porous structure, as well as in the chemical
composition (Mg/Al ratio).

4. Influence of the Molar Ratio (Mg/Al) of Its Main Elements in CO2 Capture

The properties of LDH are also strongly influenced by the M2+/M3+ ratio, cation type
and anion type. For a higher capture capacity of CO2, large interlayer spacing, high layer
charge density and a greater number of basic sites are desirable. A high Al content increases
the density, but decreases the layer spacing. A high Mg content increases the number of
basic sites. In the consulted bibliography, optimal Mg/Al ratios are considered to vary
from 1:1 to 3:1 [19,106–109].

Kim et al. [110] studied the effect of high Mg/Al ratios on the CO2 sorption with
hydrotalcites prepared with the coprecipitation method using ratios between 3 and 30. The
highest CO2 capture capacity was obtained (407.9 mg/g) for an Mg/Al ratio of 20, using
temperatures of 240 ◦C.

M. Salomé Macedo et al. [111] studied the influence of different Mg/Al ratios (from 2
to 20) to be used as CO2 sorbents at high temperature. The best results were obtained for an
Mg/Al ratio of 7 at 1 bar of pressure and 300 ◦C (71.3 mg/g). These authors indicated that,
in general, one observes a gradual increase in the sorption capacity for the same synthesis
pH with the increase in the Mg/Al ratio.

The relationship between the pH of the synthesis, the molar ratio and the specific
surface area obtained is very important. For example, Kim et al. [110] obtained the highest
surface area with a molar ratio of 3 (256 m2/g−). M. Salomé Macedo et al. [111] showed
that the BET specific surface area and total pore volume of samples clearly depend on the
Mg/Al molar ratio. Suescum-Morales et al. [33] showed that the higher the specific surface
area, the higher the CO2 capture capacity. Therefore, the specific surface area seems to be a
very important factor in determining the CO2 capture.

As a summary, it can be said that although the molar ratio is very important in terms
of CO2 capture, there are also many other factors that affect this parameter: the pH of
the synthesis, the nature of the anion, pressure used, and absorption temperature, among
others, are the most important.
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5. Ways to Increase the Specific Area of Hydrotalcites

The extensive literature presented in this paper highlights the significant interest of
researchers in using LDH and CLDH as CO2 adsorbents. Several strategies have been im-
plemented in order to increase the CO2 capture capacities: replacing cations or anions [88],
different preparation methods [112], calcination, working temperatures and pressures [113]
and alkali doping [29,114], among others.

A good strategy would be to increase the specific surface area, as a larger specific
surface area would lead to a higher CO2 capture capacity. Wang et al. [115] intercalated
long carbon-chain organic anions, and it increased the CO2 capture capacity. This was
due to the increase in the interlayer distance from 0.78 to 3.54 nm (Figure 8). A similar
strategy was followed by Li et al. [116], except that in this case they used K2CO3 in the
LDH precursor of Mg3Al-stearate, again increasing the interlayer distance, and achieving a
higher CO2 capture capacity. A similar strategy was also followed by A. Hanif et al. [117].
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Another way to increase the specific surface area would be to directly exfoliate the LDH
in layers using bottom-up or top-down methods [118], although some authors indicate that
the layers could be restacked after drying [119]. To avoid this, García-Gallastegui et al. [86]
used graphene oxide as a support, where the negatively charged graphene oxide flakes
were well dispersed in the positively charged LDH layers. Another strategy was followed
by Othman et al. [120], who coated a MgAlCO3 hydrotalcite with zeolites in order to
increase the CO2 capture capacity. K. Wu et al. [121] were the first to use mesoporous
alumina to load LDH using the coprecipitation method, obtaining a large BET surface area
(278–378 m2/g).

A new method, called aqueous miscible organic solvent treatment (AMOST), uses
solvents such as acetone and methanol to wash the LDH wet slurry and remove the
intercalated water [119,122]. This method achieves larger surface areas and larger pore
volumes [119]. Figure 9 shows the diagram of the synthetic process used for AMOST using
acetone and K2CO3.



ChemEngineering 2022, 6, 50 10 of 18

ChemEngineering 2022, 6, x FOR PEER REVIEW 10 of 19 
 

 
Figure 8. General schemes of the structural changes of (a) Mg3Al-CO3 and (b) with organic anions 
adopted from abstract of Wang et al [115]  

 
Figure 9. General scheme of synthetic process of AMOST method using by adopted from Zhu et al 
[122]. 

6. Pressure, Temperature, and Capacity in CO2 Absorption and Use of CO2 Captured 
There are several parameters that can vary the CO2 capture capacity of a hy-

drotalcite; among the most important are temperature and pressure [33]. Table 1 shows a 
comparison of the capture capacity of different types of hydrotalcite under different 
conditions.  

  

Figure 9. General scheme of synthetic process of AMOST method using by adopted from
Zhu et al [122].

6. Pressure, Temperature, and Capacity in CO2 Absorption and Use of CO2 Captured

There are several parameters that can vary the CO2 capture capacity of a hydrotalcite;
among the most important are temperature and pressure [33]. Table 1 shows a comparison
of the capture capacity of different types of hydrotalcite under different conditions.

Table 1. Maximum adsorption capacities of CO2 for hydrotalcites reported in the literature.

Refs. Type LDH to CLDH? Mg/Al Molar
Ratio

Pressure
(Atm.)

Temperature
Isotherm

(◦C)

Capacity
Adsorption

(mg/g)

[29] Alkali-modified (K and CS) 300 ◦C for 3 h - 2 400 25.52

[38] K promoted
* Mg3AlCO3

LDH - 16.50 400 28.60

[122] * Mg3AlCO3 with treatment
AMOST 450 ◦C for 3 h 3 1 400 30.58

[22] K promoted
* Mg3AlCO3

400 ◦C for 4 h - 3.5 400 41.80

[64] K promoted
* Mg3AlCO3

400 ◦C for 3 h - 10 400 25.68

[2] K promoted commercial
hydrotalcite 400 ◦C for 6 h - 30 400 21.18

[117] * Mg3AlCO3 450 ◦C for 10 h 2 13 350 44.95

[114] K promoted
* Mg3AlCO3

450 ◦C for 3 h 2.9 20 350 44.94

[28] * Mg3AlCO3 400 ◦C for 4h 3 1 300 26.4
[7] * Mg3AlCO3 400 ◦C for 2h 2 1 300 46.21

[91] * Mg3AlCO3 500 ◦C for 4 h 3 43.42 300 144.32
[92] Hydrotalcite of K-Na 650 ◦C for 6 h (100 g) 3 (K/Na ratio) 1.34 300 34.03
[112] * Mg3AlCO3 400 ◦C for 2h 2 1 300 41.53
[116] * K-Mg-Al 400 ◦C for 6 h 3 - 300 54.57
[86] * Mg-Al with graphene oxide 400 ◦C for 4 h - - 300 12.84

[35] Alkali metal (Na, Cs and K)
with * Mg3AlCO3

300 ◦C for -h 2 0.15 300 21.12

[123] K-loaded CNF supported
hydrotalcite 500 ◦C for 4 h - 1.1 250 62.27

[110] * (Mg/Al = 20) No information 20 1 240 407.97
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Table 1. Cont.

Refs. Type LDH to CLDH? Mg/Al Molar
Ratio

Pressure
(Atm.)

Temperature
Isotherm

(◦C)

Capacity
Adsorption

(mg/g)

[88] * Mg3AlCO3 - 3 1 200 23.32
[106] * Mg3AlCO3 400 ◦C for 1 h 3.1 1 200 23.76
[23] * Mg3AlCO3 400 ◦C for 4 h 1 200 39.60
[106] * Mg3AlCO3 400 ◦C for 6 h 3 1 200 36.52

[124] K promoted Gallium
substituted hydrotalcite 400 ◦C - - 200 39.80

[121] Mesoporous alumina with
Mg-Al LDH No 4 1 200 68.64

[26] * Mg3AlCO3 550 ◦C for 1 h 3 1 80 93.72
[25] * Mg3AlCO3 450 ◦C for 10 h 3 1 50 45.76
[27] * Mg3AlCO3 400 ◦C for 1 h 3 1 50 40.04
[120] * Mg-Al with coated zeolites 400 ◦C for 15 h 3 1 30 197.73
[93] * Ni-Mg-Al 650 ◦C for 7 h (1 g) - 1 20 70.62
[125] * Cu-Al 600 ◦C for 75 min 3 (Cu/Al ratio) 1 20 20.54
[33] * Mg3AlCO3 500 ◦C for 2 h 3 34.28 0 142.02

[34] Organohydrotalcites
TDD 1 500 ◦C for 2 h 3 35 0 176.66

* Hidrotalcite of. 1 Tetradecanedioate anions.

As can be seen in Table 1, it is uncommon to use pressures higher than atmospheric pres-
sure to measure CO2 capture capacity, except in some research [2,22,29,38,64,91,92,114,117].
It is much more unusual to find research using high pressures and low temperatures (be-
tween 0 and 40 ◦C) [33,34]. At a pressure of 35 atm, an amount of 1.34 g of CLDH reduce
CO2 in 1 m3 of air to preindustrial level [34]. Therefore, researchers have to pool their
efforts to study CO2 capture at high pressures and low application temperatures with
calcined hydrotalcites.

Another very important factor to take into account will be the analysis of the reversibil-
ity conditions of CO2 adsorption–desorption. For those materials in which it is reversible,
these could be used to purify different gas streams in cyclic adsorption–desorption pro-
cesses, as in the case of the use of CaO [21]. CaO could be used to capture CO2 from thermal
power plants or cement plants, to be stored and subsequently sold for use in different
industrial processes. There is research in which CO2 is used as a curing gas [11], capturing
CO2 (5.55 kg CO2/t mix), improving mechanical properties and decreasing curing times
(1 day in a CO2 chamber is similar to 7 days in a conventional chamber), which can lead to
an improvement in productivity. In addition, in order to avoid the inconvenience of using
an accelerated carbonation chamber, an unprecedented strategy has been introduced, where
an aqueous solution with injected CO2 is used as kneading water, with very promising
results [12]. In the case of irreversible processes, they could be used as CO2 sinks, either
alone or incorporated into other materials.

7. Combined Use of Hydrotalcites and Cement-Based Materials

The good and promising results obtained by the scientific community as adsorbents of
hydrotalcites suggest the idea of incorporating them into construction materials, such as
cement-based materials [66–70]. The ion exchange is the key feature that makes the use of
LDH/CLDH in building materials attractive. These, together with the memory effect of
CLDH, are the two suitable factors for the ion exchange and capture mechanism shown in
Figure 10 [75].
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In recent years, LDH/CLDH have emerged as a new class of engineering materials [75],
which can aid in the corrosion control of concrete structures and potentially prolong their
service life. Calcined hydrotalcite improves the durability of cement-base materials. One of
the first findings mixing hydrotalcites with concrete dates back to 2004 [126]. In 2013, there
were two very important contributions in this field [69,126].

This includes the use of LDH as an additive to improve the thermal insulation of the
intumescent fire retardant (IFR) coating [71]. Wu et al. [72] indicated that the structure
regeneration of CLDHs in a cement paste environment was also revealed [69]. After
calcination, a large number of active sites produced were improving the effect of CLDH
on cement [72]. Since hydrotalcites may be incorporated into various building materials
mixtures, mortars, concretes and backfills, their applications as accessible and affordable
materials is prospective [73–75]. However, research in the field of hydrotalcites and cement-
based materials is still insufficient [72,76].

It is also difficult to find studies that add LDH or CLDH to alkaline activated materi-
als [77,78]. Mixing LDH/CLDH in alkali-activated materials to improve the durability of
these materials may be a very interesting field for the scientific community.

It is even more difficult to find studies in which CLDHs are used as additives in order
to increase the CO2 capture capacity of cement-based materials. Ma et al. [79] reported the
adsorption of CO3

2− by CLDH seven times faster than LDH due to the release of anions af-
ter calcination, which can be very beneficial for CO2 capture. Suescum-Morales et al. [3,59]
added different percentages of CLDH (Mg3AlCO3) in a one-coat mortar in order to increase
the CO2 capture capacity. Adding 5% of calcined hydrotalcite increased the CO2 capture
capacity by 8.52% with respect to the reference mortar. One m2 of one-coat mortar with
5% of calcined hydrotalcites cleans 5540 m3 of air [3]. The use of these one-coat mortars in
building facades is a very promising strategy due to the large surface area exposed to the
atmosphere. Studies along these lines should be reinforced to improve this information gap.

8. Conclusions

Application of hydrotalcites as CO2 sinks and climate change mitigation is an emerging
line of research. In this review, a guide on CO2 capture by hydrotalcites is presented.

Firstly, the behaviour of hydrotalcites and the structural change from LDH to CLDH
and their properties with the calcination of LDH are presented. After a review of the
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literature, although the calcination temperatures are roughly similar, the times required to
produce these changes, as well as the amount of hydrotalcite to be calcined, are somewhat
diverse. Researchers must work together to clarify these factors so that they are not
ambiguous data. These data would be very important since, for industrial use and a
real application of these materials as CO2 sinks, technical and economic calculations are
necessary, which indicate the feasibility of using these products by companies. On the other
hand, hydrotalcites can also be excessively calcined, with the consequent waste of energy
(in time or temperature).

Secondly, the pH value in the synthesis is very important in the development of the
morphology, porous structure, as well as in the chemical composition. The molar ratio
(Mg/Al) is very important in terms of CO2 capture, although there are also many other
factors that affect this parameter: pH of the synthesis, nature of the anion, pressure used
and absorption temperature.

It is also important to develop strategies that increase the specific surface area of
hydrotalcites, as this is one of the most important factors in CO2 absorption capacity. After
a comparison of different studies (32 papers) on the capture capacity of LDH and CLDH, a
gap in information on CO2 capture capacities at high pressure and low temperature has
been observed. Therefore, researchers have to pool their efforts to study CO2 capture at
high pressures and low application temperatures using calcined hydrotalcites.

It is very difficult to find studies in which CLDHs are used as additives in order to
increase the CO2 capture capacity of cement-based materials. The ion exchange and the
memory effect of CLDH are key to the use of hydrotalcites as CO2 capture additives in
cement-based materials. Studies along these lines should be reinforced to improve this
information gap and mitigate climate change.
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