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Abstract
The ability to inhibit incorrect behaviors is crucial for survival. In real contexts, 
cues that require stopping usually appear intermixed with indications to continue 
the ongoing action. However, in the classical Stop-signal task (SST), the unpre-
dictable stimuli are always signals that require inhibition. To understand the 
neural mechanisms activated by low-probability nonstop cues, we recorded the 
electroencephalography from 23 young volunteers while they performed a modi-
fied SST where the unpredictable stimuli could be either Stop or confirmatory Go 
signals (CGo). To isolate the influence of motor output, the SST was performed 
during overt and covert execution. We found that, paradoxically, CGo stimuli 
activated motor inhibition processes, and evoked patterns of brain activity similar 
to those obtained after Stop signals (N2/P3 event-related potentials and midfron-
tal theta power increase), though in lesser magnitude. These patterns were also 
observed during the imagined performance. Finally, applying machine learning 
procedures, we found that the brain activity evoked after CGo versus Stop signals 
can be classified above chance during both, overt and imagined execution. Our 
results provide evidence that unpredictable signals cause motor inhibition even 
when they require to continue an ongoing action.

1   |   INTRODUCTION

One key aspect of human behavior is the ability to inhibit 
unwanted or erroneous movements, whose dysfunction 
is at the basis of certain psychiatric pathologies 

(Diamond, 2013). The Stop-signal task (SST) is commonly 
used to study reactive motor inhibition that is, stopping an 
ongoing action. During the SST, participants respond to a 
“Go” signal, while unpredictably the “Go” signal is followed 
by a “Stop” signal, indicating that the motor action must 
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be stopped. The Stop signal activates a cortical network 
including areas like the anterior insula, anterior cingu-
late cortex, inferior frontal cortex, or the presupplemen-
tary motor area (Aron, 2011; Swick et al., 2011; van Boxtel 
et al., 2005). The Stop signal is associated to two compo-
nents of the event-related potentials (ERPs), Stop-N2 and 
Stop-P3, with maximum amplitude over midfrontal scalp 
locations. The Stop-N2 presumably reflects conflict moni-
toring, while the functional meaning of the Stop-P3 com-
ponent is still controversial (Huster et al., 2013). Although 
Stop-P3 has been related to the engagement of inhibi-
tory processes (Enriquez-Geppert et al.,  2010; Wessel & 
Aron, 2015), it seems more likely that this component is 
related to post-inhibitory operations, such as performance 
monitoring (Huster et al., 2020; Skippen et al., 2020), since 
behavioral inhibition precedes the onset of P3. However, 
the fact that the amplitude of this component is greater 
for Stop signals than for other infrequent stimuli that do 
not require motor inhibition suggests that Stop-P3 does 
reflect processes that are specific for action-stopping (Tatz 
et al., 2021). In the time-frequency domain, stop signals are 
associated to increased mid-frontal theta power-related to 
conflict detection and the N2 component-, reduced poste-
rior alpha power - related to visual attention processes-, 
and changes in mu and beta oscillations over central scalp 
locations -associated with sensory and motor functions- 
(Galdo-Alvarez et al.,  2016; González-Villar et al.,  2016; 
Huster et al., 2013; Wagner et al., 2018). In addition, fast 
bursts in the beta range over the right frontal cortex- asso-
ciated with the activation of a fronto-basal ganglia inhibi-
tory network- are also a common neural correlate of motor 
inhibition (Jana et al., 2020; Wessel, 2020).

There are some inherent problems when interpreting 
ERP data obtained from the classical SST. The compari-
son of Go versus Stop trials entails difficulties since the 
brain electrical activity evoked by the Go and Stop signals 
overlap within the Stop trials, and because both types of 
trials differ in their frequency. This design also causes 
problems in the baseline correction, given that the Stop 
signal is typically presented at variable delays (Ramautar 
et al., 2004), and makes it difficult to separate sensory- ver-
sus inhibitory-related brain activity, appearing at similar 
latencies and topographies (González-Villar et al., 2016). 
In addition, the SST may lack ecological validity. In real 
contexts, not all unexpected events require stopping the 
ongoing action; furthermore, stimuli that require stop-
ping or continuing an action can be very similar (e.g., a 
policeman indicating that we have to stop or continue). 
Nevertheless, in the classical SST, the unpredictable stim-
uli are always signals that require inhibition, while the 
brain activity evoked by unforeseen signals that require 
continuing the response has been poorly studied.

To better understand if signals with different meaning 
(but similar physical characteristics) activate analogous 
brain networks, while trying to overcome the method-
ological difficulties surrounding the classical SST, we re-
corded the EEG during a modified SST. The task included 
3 types of trials: Only Go signal (Go; white arrow); Go 
signal followed by a confirmation signal (herein named 
CGo; white arrow + green arrow); Go signal followed by 
a Stop signal (Stop; white arrow + red arrow). To isolate 
the role of actual motor output, the task was performed 
during overt execution and mental rehearsal (participants 
had to imagine responding or inhibiting the response). 
We compared ERPs and EEG time-frequency data ob-
tained in the three types of trials in overt and imagined 
conditions. Finally, to clarify to what extent the EEG 
activity evoked by infrequent signals that may require 
either stopping or continuing the action are distinctive, 
we applied a machine learning technique to classify EEG 
data evoked by Stop versus CGo trials during overt and 
imagined execution.

We predicted larger N2 and P3 amplitudes and mid-
frontal theta power modulation in Stop trials than in CGo 
or Go trials (and no differences between the latter), as well 
as lower brain activity modulation and reduced differ-
ences among the conditions in the mental rehearsal task. 
Finally, we expected to accurately classify brain signals 
evoked by Stop and CGo trials using machine learning al-
gorithms, both in overt and imagined execution.

Our findings will clarify whether the brain activity 
commonly related to motor inhibition (N2, P3, and mid-
frontal theta power) is specific to Stop signals or is also 
evoked by infrequent signals that do not require inhibi-
tion. Also, the results of applying machine learning pro-
cedures will contribute to clarify whether the EEG data 
during imagined performance contain useful information 
to discriminate between trials that require stopping or 
continuing the action.

2   |   METHOD

2.1  |  Participants

Twenty-three volunteer students (all women) from the 
University of Santiago de Compostela, with an age range 
of 20–24  years (mean  =  20.58; SD  =  1.057) participated 
in the study. All reported having normal or corrected vi-
sion with glasses or contact lenses. Twenty participants 
were right-handed according to Edinburgh’s Manual 
Preference Inventory (Oldfield, 1971). None of the partici-
pants had a history of psychiatric or neurological illness or 
substance abuse.
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2.2  |  Stimuli and procedure

Participants were comfortably seated in an armchair 
and tested in a dimly lit, sound-attenuated room. The 
tasks were designed and presented with the STIM pro-
gram (Neuroscan Labs) in a 15-inch screen located at a 
distance of 100 cm from the participant’ eyes. The stim-
uli consisted of an arrowhead and a tail and had a size 
of 2.1° x 1.4° of visual angle presented on a black back-
ground. Participants had to respond using a response 
box that they hold with their hands. The primary task 
consisted in white arrows pointing to the left (50%) or 
to the right (50%). In some trials, the initial white arrow 
could change unpredictably to red or green after a vari-
able interval. The red arrow was a Stop signal, indicat-
ing to stop the already prepared or initiated response; 
the green arrow was a confirmation signal, indicating 
that the response should be emitted. Both stimuli (the 
red and green arrows) had a luminance of 75 lux. The 
task had 400 trials, 260 Go only trials (65%), 60 CGo tri-
als (15%), and 80 Stop trials (20%). The inter-trial inter-
val had a random value between 2100 ms and 2400 ms. 
For CGo and Stop trials, the second arrow had a delay 
of 166 ms (10 frames in a 60 Hz refresh rate monitor), 
233 ms (14 frames), or 300 ms (18 frames) after the ini-
tial Go signal. The delays were randomly selected and 
were equiprobable. The arrows had a total duration of 
500 ms (See Figure 1a). A training block was carried out 
at the beginning of the experiment.

The task was performed twice, first in overt execution 
and then in an imagined condition, with a 5-minute break 
in-between. Tasks were not counterbalanced as prior re-
ports revealed that covert motor performance benefits 
from overt motor practice (Carrillo-de-la-Peña et al., 2006; 
Cunnington et al., 1996). The task with imagined perfor-
mance had the same parameters as the task with overt 
performance. During the imagined condition, partici-
pants were instructed to imagine the execution of the 
action as vividly as possible (they should imagine them-
selves pressing the button after the white or green arrows 
and stopping the response after the red arrow), while they 
kept their hands on the response box without making any 
movement.

2.3  |  Psychophysiological recording and 
ERP analyses

EEG was recorded with a Neuroscan equipment 
(NeuroScan Labs, SynAmps Model 5083 amplifier) by 
28 Ag/AgCl electrodes positioned using the 10–20 in-
ternational system, and referenced to the left and right 
mastoids. The electrooculogram (EOG) was recorded 

from sites above and below the left eye and from elec-
trodes lateral to each eye. The AFz electrode was used 
as ground. Impedances were kept below 10  kΩ. The 
EEG signals were digitized at a rate of 500  Hz with a 
Neuroscan equipment (Neuroscan Laboratories, ver-
sion 4.1), and filtered online using a band-pass filter be-
tween 0.1 and 100 Hz and a notch filter of 50 Hz. The 
EEG was resampled to 250 Hz and filtered using a band 
pass FIR filter from 0.1  Hz to 40  Hz, as implemented 
in “pop_eegfiltnew” Eeglab function –filter order of 
8250 for 0.1 Hz and 84 for 40 Hz-. Epochs from −800 ms 
to 1800  ms were extracted time-locked to the events. 
Baseline correction was applied from −200 ms to 0 ms 
for epochs time-locked to Go signals, and from −500 to 
−300 for epochs time-locked to CGo and Stop signals. 
This different baseline interval for CGo and Stop epochs 
was selected to minimize the effect of the preceding Go 
signal. Note that averaged Stop epochs included trials 
with both successful and unsuccessful inhibitions. For 
Go, CGo, and unsuccessful inhibition conditions, only 
trials in which the direction of the arrow was correctly 
responded to were included. Epochs were linearly de-
trended using Matlab’s “detrend” function, and noisy 
epochs were rejected manually after visual inspection. 
Electrodes with high noise levels were removed and 
reconstructed using spherical splines interpolation. In 
the overt condition, a total of 27 electrodes were inter-
polated; for the imagined condition, it was a total of 18. 
Extended Independent Component Analysis was ap-
plied to remove artifacts. Noisy components were first 
marked using MARA software (Winkler et al.,  2014), 
and then removed after visual confirmation.

To ensure that no actual response was made during 
the imagined task, we recorded the electromyography 
(EMG) with bipolar electrodes placed on the ventral side 
of each forearm, trisecting the wrist–elbow distance (to 
record the activity of the flexor digitorum profundis, the 
flexor digitorum superficialis, and the flexor pollicis lon-
gus of both arms). To remove epochs with high EMG 
activity, we computed the root mean squared (RMS) of 
both EMG channels (left and right arm). Epochs that 
contained maximum RMS values during the poststim-
ulus interval (from 200 ms to 1000 ms for Go, and from 
−200 ms to 600 ms for CGo and Stop trials) that were 3 
times higher than the maximum value in baseline pe-
riod (from −200 ms to 0 ms for Go, and from −500 ms 
to −300 ms for CGo and Stop trials) were rejected (See 
Figure 3d). With this procedure, a mean of 7.7 ± 11% of 
the Go epochs, 7.1 ± 10% of the CGo, and 3.4 ± 4.8% of 
the Stop epochs were rejected. After the different data 
cleaning steps, the following mean number of epochs 
remained for further analysis: Overt Go = 235.3 ± 19.5 
epochs; Overt CGo  =  53.2  ±  5.2 epochs; Overt 
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Stop = 72.6 ± 5.7 epochs; Imagined Go = 219.9 ± 30.7 
epochs; Imagined CGo  =  50.7  ±  6.5 epochs; Imagined 
Stop = 70.5 ± 7.4 epochs. Finally, we measured the am-
plitudes of the N2 and P3 components for their analysis 
(see the “Statistical analysis” section).

2.4  |  Time-frequency analysis

Time-frequency analysis was performed by convolving 
the EEG data with a family of complex Morlet wavelets 
ranging in frequency from 2 to 35  Hz in 30 logarithmi-
cally increasing steps, and with logarithmically increas-
ing cycles, from 3  cycles at the lowest frequency to 8 at 
the highest frequency. Power data obtained after convo-
lution was baseline corrected by transforming the power 
change of each time-frequency pixel to dB, relative to the 
mean power in the baseline interval of each frequency. 
The baseline interval was from −500 to −300 ms when the 
analysis was performed time-locked to the first arrow (Go 
trials), and from −600 to −400 when it was time-locked 
to the second arrow (CGo or Stop trials). Midfrontal theta 

power was measured for later analysis (further details are 
given in the “Statistical analysis” section).

2.5  |  Machine learning classification

To determine if brain signals contain information about 
the inhibitory meaning of the stimuli, and not only 
about their salience, we used an approach similar to 
that used in previous studies (Bae & Luck, 2018; Foster 
et al.,  2017). To increase the signal-to-noise ratio, tri-
als in each condition (CGo and Stop) were randomly 
divided into three parts (using the same number of ep-
ochs in each third for each condition, determined by the 
condition with the lowest number of trials), and then 
averaged them, obtaining three different ERPs for each 
condition. Subsequently, 2/3 ERPs (in each condition) 
were used to train the algorithm, and the remaining 
1/3 was used for prediction. This was repeated 3 times, 
using a different 1/3 for the prediction (threefold cross-
validation). The decoding procedure, performed for 
each time-point, and using the 28 scalp electrodes, was 

F I G U R E  1   (a) Task description. (b) Violin plots of the mean reaction times (RTs) for each condition with behavioral response: Go; 
confirmatory Go (CGo) and unsuccessfully stopped trials (US). These mean reaction times were measured from the presentation of the 
first Go arrow. (c) Histograms showing all the single reaction times (gathering all the trials and all the participants) in each one of the 
three conditions with responses. Histograms for the CGo and Stop conditions are time-locked to the presentation of the second arrow. 
Green histogram shows that in the CGo condition there is a much lower amount of responses around 300 ms after the presentation of the 
confirmatory signal. (d) Scatter plot. The x-axis shows the stop-signal reaction time (SSRT), and the y-axis shows the subtraction of reaction 
times of the CGo minus Go trials. A positive correlation between the two indices can be observed
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repeated 200 times, with different epochs randomly as-
signed to the three bins (2 prediction and 1 test) in each 
iteration. Machine learning classification was done with 
a support vector machine algorithm (SVM) in Matlab, 
using a code adapted from Bae and Luck (2019). Given 
that this is a binary classification (either CGo or Stop 
trial) the chance performance was 50%. For the training 
of the SVM we used the “fitcsvm” Matlab function. For 
each participant, the decoding accuracy was temporally 
smoothed with a centered moving average by sliding 
a window of five time-points length, using the Matlab 
function “movmean.”

2.6  |  Statistical analysis

Repeated measures ANOVAs with condition (type of 
trial) as within-subject factor were used to analyze be-
havioral (reaction times) and electrophysiological data 
(N2, P3, theta power), for each task (overt vs. imagined) 
separately. The selection of different electrodes and time 
windows was based on both previous literature and visual 
inspection. The N2 component showed its maximum am-
plitude from 200 to 300  ms over frontocentral locations 
(FCz electrode), while P3 showed its maximum amplitude 
from 300 to 500 ms at centro-parietal locations. Given that 
the Stop-P3 is commonly measured in the Cz electrode, 
here we also used this location. Differences in mean am-
plitudes in these windows and locations were tested for 
significance using the ANOVAs. In addition, since the 
amplitude of the ERPs was lower in the imagined condi-
tion –and thus the mean amplitude could be less sensitive 
to condition differences in this task-, we also measured 
the peak amplitude of N2 and P3 for a complementary 
analysis. Theta power was measured in the time window, 
frequencies, and location where it peaked (from 200 ms to 
450 ms, 3.5–7 Hz, and at the FCz electrode).

Finally, to clarify whether there were any task dif-
ferences (overt vs. imagined) in the measured indexes 
(N2, P3, and theta), comparisons between tasks (overt 
vs. imagined) were made using repeated measures 
ANOVAs.

Post hoc paired t tests were used to evaluate significant 
differences, with Holm adjustment for multiple compari-
sons (Holm, 1979).

In addition to frequentist statistics, we also report re-
sults from Bayesian statistics. Both statistical approaches 
were conducted using JASP 0.14.1 software. For the 
Bayesian ANOVA alternative we used a prior for fixed ef-
fects = 0.5; while for the Bayesian t test, we used a default 
Cauchy prior with a scale value of 0.707. A common way 
to interpret the reported Bayes Factors (BF10) is using the 
categorization proposed by Lee and Wagenmakers (2013). 

In this classification BF10 between 1 and 3 are labeled as 
“anecdotal evidence” in favor of the alternative hypothe-
sis, between 3 and 10 as “moderate evidence”, between 10 
and 30 as “strong evidence”, between 30 and 100 as “ very 
strong evidence”, and larger BFs as “extreme evidence” 
in favor of the alternative hypothesis. Conversely, values 
between 1 and 1/3 are labeled as “anecdotal evidence” 
in favor of the null hypothesis, between 1/3 and 1/10 as 
“moderate evidence”, between 1/10 and 1/30 as “strong 
evidence”, and so on.

To evaluate if the decoding accuracy was above 
chance, we used a cluster-based permutation approach 
as described in Bae and Luck’s (2019) work. First, a one-
tailed, one-sample t test was performed for each time 
point (81 time points, from −400 to 1200 ms) in the ob-
served data. We then extracted the clusters of contigu-
ous time points for which the p values were < .001, and 
summed the total t values of each cluster (t mass val-
ues). To determine whether a cluster was larger than the 
expected by chance, the data were permuted 1000 times. 
In each permutation the target labels (CGo or Stop) 
were shuffled. To account for temporal auto-correlation 
of the EEG data, the same target labels were used for all 
the time points in each epoch. As in the original calcu-
lation of the decoding accuracy, the decoding accuracy 
for permutations was also repeated 600 times (3 times 
[using a different 1/3 for the prediction] *200 itera-
tions). Again, for each permutation the averaged decod-
ing accuracy values were smoothed across time using a 
five-point moving window. The cluster with the highest 
t mass was saved in each permutation. The p value of a 
cluster was calculated by the position of the observed t 
mass value in the ordered t mass values of the permu-
tations. A cluster was considered significant if it had a 
t mass value above the 99% of the null distribution. We 
report p < .001 if the observed cluster had a t mass value 
higher than the 1000 clusters obtained during permuta-
tions. In addition, for descriptive purposes, we also re-
port the t values and p values of a one-tailed one-sample 
t test of the mean accuracy in the cluster that was de-
tected as significant after permutation testing. This pro-
cedure was independently performed for the overt and 
for the imagined tasks.

3   |   RESULTS

3.1  |  Behavioral results

During the overt task participants had a 96.3% of cor-
rect responses in Go trials, a 94.9% in CGo trials, and 
a 61.7% of correct inhibitions in Stop trials. We per-
formed an ANOVA to assess the effect of condition 



6 of 14  |      GONZÁLEZ-VILLAR et al.

(Go, CGo, and unsuccessful Stop [US]) on reaction 
times (RTs). We found a main effect of condition in RTs 
(Go = 486 ± 42 ms; CGo = 566 ± 78 ms; US = 420 ± 39 ms; 
F[2,44] = 127; p < .001; BF10 = 2.23e16). Post hoc paired 
comparisons with Holm correction showed significant 
differences between the three measures (p < .001 in all 
cases), with the faster reaction times for the US trials, 
followed by the Go trials, and the slowest for the CGo 
trials (See Figure 1b). Figure 1c shows the histograms 
using the single reaction times from all the trials and 
participants; it can be observed that in contrast to the 
other conditions, the CGo condition shows a bimodal 
distribution, with a noticeable decrease in the total 
number of responses at around 300  ms after the pres-
entation of the CGo arrow, which suggests that the CGo 
signal produces an interference observed in the behav-
ior after 300 ms. Supplementary Figure S1 (Section A) 
shows that this decrease in the number of responses 
after 300  ms is observed in each of the signal delays 
used (i.e., 166, 233 or 300 ms between Go and CGo ar-
rows). Supplementary Figure S1 (Section B) shows the 
proportion of US trials for each participant.

The mean stop-signal delay (the time between presen-
tation of the Go signal and presentation of the stop signal) 
was 232 ± 0.9 ms. The Stop-signal reaction time (SSRT), 

computed using the integration method (Verbruggen 
et al., 2019), was 220 ± 23 ms. To further explore whether 
there is a relation between the SSRT and the interference 
produced by the CGo signal, we conducted a post hoc 
analysis by calculating the Pearson correlation between 
the SSRT and the difference CGo RT minus Go RT. We 
found that the indexes were positively correlated (r = 0.46; 
p = .026) (See Figure 1d), suggesting that the time required 
to inhibit an undesired response is related to the interfer-
ence produced by an unpredicted confirmatory signal, and 
that both indices may be reflecting the functioning of sim-
ilar mechanisms.

3.2  |  Brain electrical activity during the 
overt SST

Figure  2 shows the ERPs and time-frequency decom-
positions for each condition during overt execution. It 
can be observed that similar waveforms and topogra-
phies are evoked during CGo and Stop trials, although 
the ERP components show larger amplitude in the stop 
condition.

We first performed an ANOVA on the N2 mean ampli-
tude from 200 to 300 ms at the FCz electrode, comparing Go, 

F I G U R E  2   (a) Event-related potentials for Go, confirmatory Go (CGo), and Stop trials at the FCz, Cz, and Pz electrodes; shaded areas 
show the windows used to compute the mean amplitude for each component. Right column shows the topographies of N2 and P3 for each 
condition. (b) Time-frequency decomposition for each condition at the FCz electrode. Lower row shows the topographies of theta power 
(measured in a window from 3.5 to 7 Hz and 200 to 450 ms). On the right-hand side, the time-course of the theta power in each condition is 
shown (shaded area shows the time window used for statistical analyses)
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CGo, and Stop trials. We found a main effect of condition 
(F[2,44] = 8.33; p = .001; BF10 = 36.82). Post hoc paired com-
parisons with Holm correction showed that the amplitude 
of this component was significantly higher in Stop than in 
Go trials (t[22] = 3.76; p = .003; BF10 = 32.90), and higher in 
CGo than in Go trials (t[22] = 2.54; p = .037; BF10 = 2.94), 
but no significant differences were observed between CGo 
and Stop trials (t[22] = −1.37; p = .18; BF10 = 0.50). We also 
performed a post hoc complementary exploratory analysis 
by measuring the peak of N2 (the most negative value in a 
window from 150 to 350 ms in the FCz electrode). Results 
of peak amplitude were congruent with mean amplitude of 
N2, and confirmed a main effect of condition (F[2,44] = 7.77; 
p  =  .003; BF10  =  25.26). Significant pairwise comparisons 
were also congruent: Go versus CGo (t[22] = 2.46; p = .036; 
BF10  =  2.66) and Go versus Stop (t[22]  =  3.90; p  <  .001; 
BF10 = 11.34), but not CGo versus Stop (t[22] = 1.44; p = .157; 
BF10 = 0.99).

For the P3 wave (measured as the mean amplitude 
from 300 to 500 ms at the Cz electrode) we also found 
a main effect of condition (F[2,44]  =  50.38; p  <  .001; 
BF10  =  1.42e9). Post hoc comparisons showed sig-
nificant differences between conditions in the three 
pairs: with higher amplitude for Stop than Go trials 
(t[22]  =  −8.69; p  <  .001; BF10  =  897,153.81), for Stop 
than CGo trials (t[22] = −5.20; p < .001; BF10 = 751.28), 
and for CGo than Go trials (t[22]  =  −5.73; p  <  .001; 
BF10  =  2357.40). Here, we also performed a post hoc 
complementary analysis measuring P3 peak ampli-
tude as the maximum value from 250 to 600 ms in the 
Cz electrode. Again, results were congruent with the 
ones reported for mean P3 amplitude, both for the 
main effect (F[2,44]  =  52.14; p  <  .001; BF10  =  5.92e51) 
and for pairwise comparisons: Go versus CGo 
(t[22] = −6.75; p < .001; BF10 = 1.26e18), Go versus Stop 
(t[22] = −10.01; p < .001; BF10 = 376,950.54), CGo ver-
sus Stop (t[22] = −3.25; p = .002; BF10 = 4.59e17).

For the midfrontal theta (measured as the mean power 
from 3.5 to 7 Hz and from 200 to 450 ms in the FCz elec-
trode) we found a main effect of condition (F[2,44] = 48.81; 
p  <  .001; BF10  =  1.6e8) (Go  =  1.97  ±  1.30  dB; 
CGo = 4.18 ± 1.98 dB; Stop = 4.88 ± 2.21 dB). Pairwise 
comparisons showed that theta power was significantly 
higher for Stop than CGo trials (t[22]  =  −2.40; p  =  .021; 
BF10 = 2.9), for Stop than Go trials (t[22] = −9.50; p < .001; 
BF10  =  52,552.47), and also for CGo than Go trials 
(t[22] = −7.10; p <  .001; BF10 = 96,055.78). Comparisons 
between unsuccessful stop (US) and successful stop (SS) 
trials in the overt task are reported in the Supplementary 
Figure S1 (Sections C and D). See also the Supplementary 
Figure S2 for an exploratory post hoc analysis performed 
on the time-frequency activity at the beta range.

3.3  |  Brain electrical activity during 
imagined performance of the SST

To assess whether a similar pattern of activity exists dur-
ing mental rehearsal, we compared ERPs amplitudes and 
theta power between Go, CGo, and Stop trials while the 
participants imagined performing the task. Figure 3 (sec-
tions a and b) shows the electrophysiological activity dur-
ing mental rehearsal. It can be observed that, in general, 
the pattern of activity is similar to that observed during the 
overt execution.

To measure N2 we used the mean value in a win-
dow from 200 to 300  ms over the FCz electrode. We 
found a main effect of condition (F[2,44] = 5.04; p = .011; 
BF10  =  5.80). Post hoc comparisons showed significant 
differences between Go and Stop trials, with higher ampli-
tude for the Stop trials (t[22] = 2.61; p = .048; BF10 = 3.32), 
but not between Stop and CGo trials (t[22] = 2.06; p = .10; 
BF10 = 1.30) or between CGo and Go trials (t[22] = 1.48; 
p = .15; BF10 = 0.56). As in the overt condition, and since 
the amplitudes of the ERPs are smaller during this task 
and mean window values could be masking some condi-
tion differences, we also performed a post hoc comple-
mentary analysis by measuring the peak of N2 (the most 
negative value in a window from 150 to 350  ms in the 
FCz electrode). Using peak amplitude we found a main 
effect of condition (F[2,44] = 4.16; p = .022; BF10 = 2.54), 
although post hoc comparisons did not show any differ-
ence between conditions (Go vs. CGo (t[22] = 0.85; p = .41; 
BF10 = 0.30); Go vs. Stop (t[22] = 2.15; p = .13; BF10 = 1.5); 
CGo vs. Stop (t[22] = 2.13; p = .14; BF10 = 1.43)).

For the P3 wave –using the mean value in a win-
dow from 300 to 500  ms– we found a main effect of 
condition (F[2,44]  =  3.39; p  =  .043; BF10  =  1.43), with-
out significant differences in the pairwise contrasts 
(Go vs. CGo (t[22] = −1.09; p =  .29; BF10 = 0.37); Go vs. 
Stop (t[22]  =  −2.29; p  =  .10; BF10  =  1.89); CGo vs. Stop 
(t[22] = −1.65; p =  .23; BF10 = 0.70)). We also measured 
the P3 peak amplitude as the maximum value from 250 
to 600 ms in the Cz electrode. We found a main effect of 
condition (F[2,44] = 7.84; p = .001; BF10 = 26.83); post hoc 
comparisons showed higher amplitude for Stop than Go 
trials (t[22] = −3.72; p = .004; BF10 = 17.99), and no signifi-
cant differences between Go and CGo trials (t[22] = −2.40; 
p =  .051; BF10 = 2.27) nor between CGo and Stop trials 
(t[22] = −1.69; p = .105; BF10 = 0.44).

For the midfrontal theta (measured as the mean power 
from 3.5 to 7 Hz and from 200 to 450 ms in the FCz elec-
trode) we found a main effect of condition (F[2,44] = 22.04; 
p  <  .001; BF10  =  51,241.89) (Go  =  0.90  ±  0.84  dB; 
CGo = 1.84 ± 1.54 dB; Stop = 2.73 ± 2.17 dB). Pairwise 
comparisons showed higher power for Stop than for 
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CGo (t[22] = −3.24; p = .003; BF10 = 72.89) and Go trials 
(t[22] = −6.64; p < .001; BF10 = 429.40), and for CGo than 
for Go trials (t[22] = −3.39; p = .003; BF10 = 147.74).

3.4  |  Brain activity in overt versus 
imagined performance

To verify that the amplitude and power modulation of 
brain activity is lower during mental rehearsal, we also 
compared electrophysiological indices between overt and 
imagined tasks (see Figure 3c). We performed a repeated-
measures ANOVA to assess the effect of task (including 
Go, CGo, and Stop trials). For the N2 component (FCz 
electrode in a window from 150 to 350  ms), no task dif-
ferences were observed using the mean window ampli-
tude (F[1,22] =  .46; p =  .5; BF10 = 0.56), but a significant 

main effect of task appeared using N2 peak amplitude 
data (F[1,22] = 5.99; p = .023; BF10 = 9.39), with higher am-
plitudes for this component during the overt condition. 
Differences were observed in the same direction using ei-
ther the mean amplitude of P3 (F[1,22] = 25.63; p <  .001; 
BF10 = 2778.27) or the maximum peak of P3 (F[2,44] = 26.02; 
p < .001; BF10 = 81,528.29), with higher values in the overt 
SST. Finally, theta power was significantly higher for the 
overt task (F[1,22] = 88.24; p <  .001; BF10 = 7.5e7). EMG 
activity in each task is depicted in Figure 3d.

3.5  |  Classification between CGo and 
stop trials using brain activity data

Finally, we tested if decoding accuracy between CGo and 
Stop epochs using a SVM algorithm was above chance 

F I G U R E  3   (a) Event-related potentials for Go, confirmatory Go (CGo), and Stop trials at the FCz, Cz and Pz electrodes during the 
imagined task. The topographies of the N2 and P3 components are shown on the right-hand side. (b) Time-frequency decomposition for 
each condition in the FCz electrode during the imagined task. Lower row shows the topographies of theta power (measured in a window 
from 3.5 to 7 Hz and 200 to 450 ms). Right column shows the time course of theta power (the shaded area indicates the time window used 
for the statistical comparison). (c) ERPs comparing go, CGo and stop trials during overt and imagined tasks tasks. (d) Root mean squared 
(RMS) electromyographic activity of the responding hand (averaging go, CGo, and stop epochs) for the overt task, and the imagined task 
before (dashed red line) and after (dashed black line) the elimination of the epochs with muscular activity
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level in both, overt and imagined tasks. For the overt task, 
permutation testing found a significant cluster (p < .001) 
at a time-range from 120 to 1200  ms. The one-tailed t 
test for the mean value of this cluster was t(32)  =  18.63; 
p < .001. For the imagined task, permutation testing found 
a significant cluster (p <  .001) from 120 to 760 ms. The 
one-tailed t test in the mean accuracy value of this cluster 
was t(32) = 19.98; p < .001. Figure 4 shows the decoding ac-
curacy at each time point during both tasks. It can be seen 
that accuracy decays after 600  ms in the imagined task, 
while it is maintained for longer in the overt task.

4   |   DISCUSSION

To better understand the brain activity associated to inhib-
itory processes, in the current study we used a modified 
version of the Stop-signal task (SST) with confirmatory Go 
signals (CGo) presented unpredictably after Go signals. 
Our results showed that unpredictable CGo nonStop sig-
nals also cause inhibition as evidenced by longer RTs and 
similar brain electrical activity, although with smaller am-
plitude to the one evoked by the Stop signals. This pattern 
of activity was also reproduced during mental rehearsal 
of the task. In addition, we found that the brain activity 
linked to the unpredictable CGo versus Stop signals can 
be classified above chance using machine learning algo-
rithms, both in overt and imagined performance.

During the overt task, we found that the presen-
tation of CGo signals slowed down reaction times, in 
comparison to Go signals presented alone. Previous 
studies found motor slowing associated to Go signals 
in selective stopping tasks that require to inhibit only a 
part of the response (Macdonald et al., 2012), and also 
after execution errors (Danielmeier & Ullsperger, 2011; 
Li et al., 2008). Here, we found that motor slowing can 
also occur after unpredictable infrequent signals, even 

if they confirm that the behavior is being correctly exe-
cuted. This effect is clearly illustrated in Figure 1, where 
there is a marked reduction in the total number of re-
sponses at around 300  ms after the CGo signal (green 
histogram), and supports recent research that found 
the engagement of inhibitory control after the presen-
tation of infrequent signals (Iacullo et al., 2020; Waller 
et al., 2019). The slowing after CGo signals suggest that 
the engagement of the hyperdirect inhibitory pathway 
(Hamani et al.,  2017) and the interruption of ongoing 
actions may happen before, or in parallel, to the full 
extraction of the meaning of the unpredictable signal. 
This idea is in line with the theory that surprise is ac-
companied by automatically engaged motor inhibition 
(Iacullo et al., 2020; Wessel & Aron, 2017); and also with 
the model “pause-then-cancel” which proposes that in-
hibition occurs in two steps. A first step, “pause”, which 
is initially activated after the presentation of surprising 
stimuli; and a second step, “cancel” (or continue for the 
case of CGo signals), that occurs after further evaluation 
of the stimuli (Schmidt & Berke, 2017; Tatz et al., 2021).

We also found that the slowing caused by CGo sig-
nals (computed as the difference in RTs to CGo minus Go 
trials) was correlated with the Stop-signal reaction time 
(SSRT). This finding suggests that the index (CGo RT-Go 
RT) may be a potential marker of the integrity of inhibi-
tory networks which complements the SSRT index, since 
it probably reflects processes more related to an unin-
tended and automatic inhibitory interference.

In line with the behavioral results, we observed that 
the electrical brain activity evoked by CGo trials had a 
similar topographic distribution to the one evoked by Stop 
signals––both elicited midfrontal N2 and P3 components 
and midfrontal theta power increase. N2 has been related 
to the detection of a conflict between the Go and no-Go 
signals or between the Go and Stop signals (Donkers & 
Van Boxtel, 2004; Nieuwenhuis et al., 2003). We found 
that the N2 was higher for Stop and CGo than for Go sig-
nals. Since CGo signals reinforce the response being exe-
cuted and thus are not conflicting, the larger N2 in CGo 
than in Go trials suggests that this component should not 
be interpreted exclusively in terms of conflict detection; it 
may be also reflecting attentional orienting to a salient or 
unpredicted stimulus. Similar conclusions can be drawn 
from the midfrontal theta results, which showed largest 
power increase in the Stop condition, followed by the CGo 
condition (in both, real and imagined tasks). Midfrontal 
theta is functionally related to N2, and has been related 
to conflict detection and the need for cognitive control 
(Cavanagh & Frank, 2014). Altogether, our findings sug-
gest that neural correlates classically related with conflict 
detection are, to some extent, automatically engaged after 
nonconflictive CGo trials.

F I G U R E  4   Decoding accuracy between CGo and stop trials at 
each time point during overt and imagined tasks. Bounded areas 
show the standard error of the mean. Boxes show clusters with 
significant differences above chance during overt (blue line) and 
imagined execution (red line)
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Regarding P3, we found that CGo trials elicited a P3 com-
ponent with similar topographic distribution, but smaller 
amplitude, than Stop-P3. This finding indicates that, al-
though P3 may partly reflect the processing of a second sig-
nal (confirmation or stop), this does not give full account of 
the difference found across conditions. The neural origins 
of Stop-P3 are believed to be in areas like the middle cingu-
late cortex or the inferior frontal cortex (Huster et al., 2010; 
Rubia et al., 2007; Schall et al., 2002), and this component 
usually shows greater amplitude when the response is cor-
rectly inhibited (Dimoska et al., 2003), supporting its role 
in the inhibition process. Our result of P3 in unpredictable 
CGo trials suggests the automatic engagement of the in-
hibitory cascade, although to a smaller degree than in Stop 
signals. Thus, ERP components previously interpreted as 
Stop-related activity are not exclusively elicited by Stop sig-
nals, but also appear after stimuli that do not require inhibi-
tion nor are in conflict with the ongoing motor plan.

Previous studies showed that unexpected/irrelevant sa-
lient stimuli trigger bottom-up processes likely related to 
the orientation response –and cause an involuntary motor 
interference (Dimoska et al., 2006; Novembre et al., 2018; 
Waller et al.,  2019; Wessel & Aron,  2017), that has been 
interpreted as evidence of the activation of inhibitory net-
works (Wessel & Aron, 2013, 2017; Wessel et al., 2016). Here, 
we found that also expected stimuli (although infrequent or 
unpredictable) that explicitly indicate continuing the ongo-
ing action lead to motor slowing (evidenced by slower RTs 
for the CGo trials) and the activation of motor inhibition 
networks (suggested by the higher N2 and P3 amplitudes 
and theta power for CGo than Go trials in the overt task). 
Thus, our observation suggests that CGo and Stop signals 
may activate overlapped neural networks, which may be 
driven by both, bottom-up (i.e., automatic inhibition in the 
face of a new signal) and top-down processes (i.e., detection 
of the meaning of the red arrow and activation of inhibitory 
mechanisms).

There is an ongoing debate about the existence of a 
specific inhibitory network (involving areas like the right 
Inferior Frontal Cortex, rIFC) versus a globalist account, 
which suggests that such areas are part of the multi-
demand cortex (MDC) and involved in several control 
processes (Aron et al., 2015; Hampshire & Sharp, 2015). 
Sharp et al. (2010) found similar fMRI activation over the 
rIFC in either CGo or Stop trials, concluding that this area 
is not inhibition specific, but related to attentional de-
tection. The advocates of the specificity of rIFC in stop-
ping argued that the CGo signals do engage inhibition for 
being salient, infrequent or unexpected (Aron et al., 2014), 
while the proponents of the MDC hypothesis rejected 
this presumption arguing that CGo stimuli are not sur-
prising as they occur on a substantial percentage of trials 
(Hampshire & Sharp, 2015). Our behavioral and EEG data 

support the idea that infrequent CGo signals also cause 
the activation––at least partially––of inhibition processes, 
and thus provide arguments for the advocates of the spec-
ificity hypothesis.

In recent years, much effort has been devoted to the 
development of brain-computer interface (BCI) devices. 
These systems are largely based on the hypothesis that 
brain activity during mental rehearsal is similar to that 
during overt execution (Jeannerod,  2001). Previous re-
search found a substantial overlap of brain activation 
during real and simulated execution and inhibition, 
with weaker neural recruitment during mental rehearsal 
(Carrillo-de-la-Peña et al., 2008; Galdo-Alvarez et al., 2016; 
González-Villar et al., 2016). We studied ERPs and time fre-
quency activity associated to CGo and Stop signals during 
the imagined execution of the modified SST and found sim-
ilar modulation of brain activity by trial type in the covert 
task (See Figure  3c). Nevertheless, the differences across 
conditions were smaller than in the overt task, being the 
comparison between CGo and Stop trials only significant 
for theta power, and not for the ERPs. This finding suggests 
that theta power may be a more sensitive index of conflict 
detection/inhibition than the N2 and P3 components.

Effective BCI systems need to decode the different 
brain signals and identify which function each one corre-
sponds to. Here, we found that brain activity evoked by sig-
nals that demand totally opposite responses (continue or 
stopping) can be very similar, as evidenced by ERPs data. 
Nevertheless, we demonstrated that EEG signals contain 
decodable information about the inhibitory meaning––
and not only about bottom-up stimulus salience––during 
both overt execution and mental rehearsal of the SST. This 
decoding accuracy was above chance from 120 ms, show-
ing a local maximum at 200 ms, coincident with the N2 
component. However, its highest classification accuracy 
was between 400 ms and 600 ms, coincident with the P3 
component. This observation is in accordance with a re-
cent study using multivariate pattern analysis, that found 
that ERPs evoked by Stop signal could be decoded from 
“ignore” signals (analogous to our CGo signals) from 
180  ms after signal onset, although better classification 
accuracy was observed at P3 latencies (Tatz et al., 2021). 
Finally, an interesting finding is that the peak in decoding 
accuracy in the imagined condition reached levels similar 
to those observed in the overt condition, suggesting that 
the ability to discriminate between CGo and Stop EEG 
signals is also maintained in mental rehearsal. Thus, our 
findings suggest that brain indices related to motor stop-
ping can be differentiated from indices evoked by other 
infrequent stimuli from N2 latencies, but the accuracy 
is better at P3 latencies. This information is decodable 
during both overt and imagined performance, and can be 
potentially applied in the control of BCI systems.
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5   |   LIMITATIONS

One limitation in the present study was that CGo trials 
had less probability of appearance than Stop trials. (0.15 
vs. 0.2, respectively). This higher number of Stop than 
CGo trials was due to the objective of achieving a good 
signal-to-noise ratio to also obtain ERPs for the succes-
fully stopped (SS) and unsuccesfully stopped (US) trials. 
Although we do not know to what extent participants 
were aware of this difference, we performed explora-
tory analyses of the electrophysiological indices (N2 and 
P3), and they maintained their differences between con-
ditions both during the first half of the task (when par-
ticipants should be less aware of the differences in the 
Stop and CGo ratio) and during the second half (when 
participants should be more aware of the differences in 
the ratio).

In addition, in our task the red arrows always repre-
sented the need to stop the response, while green arrows 
represented to continue. It can be argued that since the 
representation of stop in red color is a culturally learned 
concept, the use of red arrows triggers greater automatic 
engagement of inhibitory mechanisms and is responsi-
ble of the pattern of results. However, we found that also 
green arrows cause inhibition and delay in reaction times.

Another limitation is that, due to its simplicity when 
programming the task, we used three fixed Stop-signal 
delays presented in a random and equiprobable manner, 
instead of using methods that are adaptive to the perfor-
mance of the participants, such as the staircase tracking 
algorithm. As a result, it was not always possible to obtain 
probabilities of responding to “Stop” trials at around 0.5 
what limits the reliability when computing the SSRT.

Finally, another potential limitation was the order of 
the tasks (always overt execution followed by mental re-
hearsal). This may have some fatigue effects, reducing at-
tention levels and presumably causing a reduction in the 
amplitude of ERPs (Boksem et al., 2005; Kato et al., 2009). 
Although counterbalancing could help to reduce order ef-
fects, we preferred that participants had recent experience 
in performing the SST to facilitate the execution of the 
imagined task, in line with previous studies (Carrillo-de-
la-Peña et al., 2006; Cunnington et al., 1996).

6   |   CONCLUSIONS

The results suggest that the brain activity elicited by un-
predictable and infrequent signals requiring opposite re-
sponses (either to continue or inhibit the action) can be 
very similar (producing motor slowing and activation of 
inhibitory neural networks) but still distinguishable and 
decodable, even when performed in imagination.
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FIGURE S1 (a) Histograms showing the single reaction 
times for the confirmatory go (CGo) trials -combining all 
the trials and all the participants. This figure shows the 
same data of Figure 1c (green histogram), but split by 
CGo signal delay. Time= 0 represents the presentation 
of the CGo signal. A reduction in the total number of 
responses at around 300 ms after the CGo signal can 
be observed in the 3 different delays. (b) Boxplot of the 
proportion of unsuccessful Stop [US] trials in relation 
to the total Stop trials. Each point represents a single 
participant. (c) Event-related potentials comparing 
US and successful Stop [SS] trials during the overt 
task. Dependent samples t-tests showed significant 
differences between US and SS trials in N2 mean 
amplitudes -measured from 200 to 300ms over FCz 
electrode- (t(22) = −4.85; p < .001; BF10 = 353.31); but not 
in P3 mean amplitudes -measured from 300 to 500ms 
over Cz electrode- (t(22) = 0.13; p = .9; BF10 = 0.22). The 
topographies of the N2 and P3 components are shown 
on the right-hand side. (d) Spectrograms of US and SS 
conditions, including topographies of the theta band 
between 200 and 500 ms, and the time-course of the 
theta power on the right-hand side. Dependent samples 
t-tests showed significant differences between US and 
SS trials in the theta band -measured as the mean power 
from 200 to 450 ms in the FCz electrode- (t(22) = 2.36; p 
= .027; BF10 = 2.14)
FIGURE S2 Time course of the power in the beta band 
(from 14 Hz to 24 Hz) over the electrodes in which it 
showed higher desynchronization (CP3 and CP4) and 
higher rebound (FCz). Topographic maps show the mean 
power measured in the area shaded in grey (from 200 ms 
to 600 ms to measure beta desynchronization and from 
800 ms to 1200 ms to measure beta rebound) in each of 
the 3 trial types. No effect of Condition (Go, CGo, Stop) 
was found for beta desynchronization during overt (F(1,22) 
= 3.05; p = .071; BF10 = 1.11) or imagined execution (F(1,22) 
= 2.07; p = .14; BF10 = 0.56). There was a main effect of 
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Condition for the beta rebound during overt performance 
(F(1,22) = 12.60; p < .001; BF10 = 478.82). Post-hoc test 
showed significant differences between the 3 conditions: 
Go vs CGo (t(22) = −2.1; p = .042; BF10 = 3.61), Go vs 
Stop (t(22) = 2.9; p = .012; BF10 = 4.29); CGo vs Stop (t(22) 
= 4.99; p < .001; BF10 = 145.89). Finally, no differences 
were observed for beta rebound in the imagined execution 
(F(1,22) = 0.44; p = .65; BF10 = 0.17)
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