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Abstract
We solve a logistic differential equation for generalized proportional Caputo frac-
tional derivative. The solution is found as a fractional power series. The coefficients
of that power series are related to the Euler polynomials and Euler numbers as well
as to the sequence of Euler’s fractional numbers recently introduced. Some numerical
approximations are presented to show the good approximations obtained by truncat-
ing the fractional power series. This generalizes previous cases including the Caputo
fractional logistic differential equation and Euler’s numbers.
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1 Introduction

The logistic ordinary differential equation u′(t) = u(t) · [1 − u(t)] appears in many
contexts and have different applications in physics [3, 8, 9, 11], medicine [17], econ-
omy [16], and even to study the evolution of the COVID-19 epidemic [13, 14].

The solution, for a given initial condition u(0) = u0, is

u(t) = u0
u0 + (1 − u0)e−t

.
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For u0 = 1/2, we have the classical logistic function

l(t) = 1

1 + e−t
.

Different versions and generalizations of the logistic equation have been considered
and, in particular, the fractional versions of the logistic differential equation [2–5, 12,
15].

For example, a fractional version has been studied:

Dαx(t) = x(t) · [1 − x(t)] (1.1)

with α ∈ (0, 1) and Dα the Caputo fractional derivative [7]. Although an analytical
expression for the solutions is not known, it has been solved using different techniques
such Euler’s numbers [4, 6], implicit solutions [10] or fractional power series [3].

We study a new generalization of the fractional differential equation (1.1) that
includes as a particular case the Caputo fractional logistic differential equation.

Moreover, we use fractional generalized proportional derivative having a singular
kernel.

We introduce a novel class of Euler’s numbers, the generalized proportional frac-
tional Euler numbers. We recall that Euler’s polynomials and Euler’s numbers are
related to the Riemann’s zeta function and to the logistic function [3]. The relevance
is apparent due to the importance of solving the famous Riemann Hypotheses.

This paper is organized as follows. In the next section we introduce the generalized
proportional fractional calculus with its basic concepts and properties. Then, it is
solved a simple linear fractional differential equations to motivate our technique in
order to solve a generalized fractional logistic differential equation. Finally in the last
section, we present the generalized proportional fractional Euler’s numbers. Euler’s
numbers appear in connection to the most important function in mathematics: the zeta
function.

2 Generalized proportional calculus

Let T > 0, α > 0 be the order of the fractional integral and ρ ∈ (0, 1] be the
proportion. For a functionu ∈ L1(0, T )wedefine the generalized proportional integral
of the function u as

I α, ρu(t) = 1

ρα · Γ (α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t − s)α−1u(s)ds, t ∈ [0, T ].

The correspondingCaputo generalized proportional fractional derivative for a function
u ∈ L1(0, T ) such that u ∈ AC[0, T ] is defined as [1]

CDα,ρu(t) = [(I 1−α,ρ ◦ D1,ρ)u](t)
= 1

ρ1−α · Γ (1 − α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t − s)−α D1,ρu(s)ds
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where

D1,ρu(t) = (1 − ρ)u(t) + ρu′(t).

We note that for ρ = 1 we obtain the classical Caputo fractional derivative [7]:

CDα,1u(s) = 1

Γ (1 − α)

∫ t

0
(t − s)−α u′(s) ds := C Dαu(t).

We recall that [1]

(I α,ρ(CDα,ρu))(t) = u(t) − u(0) · e ρ−1
ρ

t
.

Also, for β > 0, consider the function

ξρ,β(t) = e
ρ−1
ρ

t · tβ−1,

then

(I α,ρξρ,β)(t) = Γ (β)

ρα · Γ (β + α)
· e ρ−1

ρ
t · tβ−1+α = ξρ,β+α(t).

Wenowstudy somedifferential equations under this generalized fractional calculus.
Indeed, consider the nonlinear differential equation of the type

CDα,ρu(t) = f (t, u(t)) (2.1)

with the initial condition

u(0) = u0.

Here f : [0, T ] × R → R is a nonlinear function satisfying appropriate conditions.

3 Linear generalized proportional differential equations

Let σ ∈ L1(0, T ) so that the corresponding generalized proportional integral of σ

exists.
We begin with the simple case

CDα,ρu(t) = σ(t), u(0) = u0.

By applying the generalized proportional fractional integral, we have

u(t) − u0 · e ρ−1
ρ

t + 1

ραΓ (α)
=

∫ t

0
e

ρ−1
ρ

(t−s)
(t − s)α−1σ(s)ds, t ∈ [0, T ].
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Therefore,

u(t) = u0 · e ρ−1
ρ

t + 1

ραΓ (α)

∫ t

0
e

ρ−1
ρ

(t−s)
(t − s)α−1σ(s)ds, t ∈ [0, T ].

Now, for λ ∈ R, let us study the following linear differential equation

CDα,ρu(t) = λu(t), u(0) = u0. (3.1)

The solution is known [1]

u(t) = u0e
ρ−1
ρ

tEα

(
λ

(
t

ρ

)α)
,

where Eα is the classical Mittag-Leffler function defined for any z ∈ C as

Eα(z) =
∞∑
n=0

zn

Γ (αn + 1)
.

We now re-obtain this solution as a fractional power series. Moreover, this will serve
as a clear introduction to our methodology. Indeed, take r = ρ−1

ρ
and let us assume

that the solution is given formally as the following fractional power series

u(t) = ert
∞∑
n=0

an(t
α)n .

Thus, formally,

I α,ρu(t) =
∞∑
n=0

an I
α,ρ(ert tαn) =

∞∑
n=0

an
Γ (αn + 1)

ραΓ (α(n + 1) + 1)
ert tα(n+1)

and

ert
∞∑
n=0

an(t
α)n = u0e

rt + λ

∞∑
n=0

an
Γ (αn + 1)

ραΓ (α(n + 1) + 1)
ert tα(n+1).

Equivalently,

ert
∞∑
n=0

an(t
α)n = u0e

rt + λ

∞∑
n=1

an−1
Γ (α(n − 1) + 1)

ραΓ (αn + 1)
ert tαn .

Identifying the coefficients, we get a0 = u0 and the recurrence formula

an = λan−1
Γ (α(n − 1) + 1)

ραΓ (αn + 1)
, n ≥ 1.
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880 J.J. Nieto

Fig. 1 Solutions of the linear generalized proportional fractional differential equations (3.1) with λ = 1
for the initial condition x0 = 1/2 and α = 1/2. For ρ = 1/2 in blue. For ρ = 1 the Caputo fractional
differential equation (3.2) in the middle (orange) and the classical logistic function below (green)

This implies that

an = a0

(
λ

ρα

)n 1

Γ (αn + 1)

so that

u(t) = u0e
rt

∞∑
n=0

(
λ

ρα

)n tαn

Γ (αn + 1)
= u0e

ρ−1
ρ

tEα(λ(
t

ρ
)α).

See Fig. 1. For ρ = 1, that is r = 0 we have the classical fractional Caputo equation

C Dαu = λu , u(0) = u0 (3.2)

whose solution is indeed given by

u(t) = u0 Eα(λtα).
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4 Logistic generalized proportional differential equations

We now consider a logistic-type equation corresponding to the nonlinear equation
(2.1) with

f (t, u(t)) = λu(t) − μe−r t u2(t) ,

where λ, μ ∈ R and r = ρ−1
ρ

, that is, the logistic fractional generalized proportional
differential equation

CDα,ρu(t) = λu(t) − μe−r t u2(t) , u(0) = u0. (4.1)

For μ = 0 we have the previous linear equation (3.1).
In the case ρ = 1, that is, r = 0, we obtain the following Caputo fractional logistic

differential equation

C Dαu(t) = λu(t) − μu2(t)

that has been solved recently [3].
As for the linear situation, we assume that

u(t) = ert
∞∑
n=0

an(t
α)n . (4.2)

Then, using the Cauchy product we get

e−r t u2(t) = ert
∞∑
n=0

bn(t
α)n , bn =

n∑
k=0

an−k · ak .

Therefore,

ert
∞∑
n=0

an(t
α)n = u0e

rt + λ

∞∑
n=1

an−1
Γ (α(n − 1) + 1)

ραΓ (αn + 1)
ert tαn

−μ

∞∑
n=1

bn−1
Γ (α(n − 1) + 1)

ραΓ (αn + 1)
ert tαn .

Identifying the coefficients corresponding to the powers of tα , we get

a0 = u0

and for n ≥ 1, the recurrence relation

an = λan−1
Γ (α(n − 1) + 1)

ραΓ (αn + 1)
− μbn−1

Γ (α(n − 1) + 1)

ραΓ (αn + 1)
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or

an(α, ρ, λ, μ) = Γ (α(n − 1) + 1)

ραΓ (αn + 1)
(λan−1 − μbn−1) . (4.3)

Taking the initial condition u(0) = 1/2 so that a0 = 1/2. Thus, for example,

a1 = ρ−α
(

λ
2 − μ

4

)
Γ (α + 1)

,

a2 =
ρ−αΓ (α + 1)

(
λρ−α

(
λ
2− μ

4

)
Γ (α+1) − μρ−α

(
λ
2− μ

4

)
Γ (α+1)

)

Γ (2α + 1)

and

Γ (3α + 1)

ραΓ (2α + 1)
· a3 =

λρ−αΓ (α + 1)

(
λρ−α

(
λ
2 − μ

4

)
Γ (α+1) − μρ−α

(
λ
2 − μ

4

)
Γ (α+1)

)

Γ (2α + 1)

−μ

⎛
⎜⎜⎜⎜⎝

ρ−2α
(

λ
2 − μ

4

)2
Γ (α + 1)2

+
ρ−αΓ (α + 1)

(
λρ−α

(
λ
2 − μ

4

)
Γ (α+1) − μρ−α

(
λ
2 − μ

4

)
Γ (α+1)

)

Γ (2α + 1)

⎞
⎟⎟⎟⎟⎠ .

For example, for α = 1/2, ρ = 1/4 and λ = μ = 1 we have the following values
of an(1/2, 1/4) for n = 0, 1, . . . , 15 (See Fig. 2)

1

2
,

1√
π

, 0,− 8

3π3/2 , 0,
512

45π5/2
, 0,− 4096

75π7/2 , 0,
8388608

30375π9/2 , 0,− 2751463424

1913625π11/2 ,

0,
43825846288384

5746615875π13/2 , 0,−168366428854943744

4108830350625π15/2
. . .

The solution of the classical ordinary differential equation

u′ = u(1 − u)

with the initial condition

u(0) = 1/2

is the logistic function

u(t) = 1

1 + e−t
=

∞∑
n=0

ant
n .
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Fig. 2 Coefficients for the generalized proportional fractional logistic equation for α = 1/2 and ρ = 1/4.

In this case, ρ = 1 , α = 1 , λ = μ = 1 and the recurrence relation is

an = 1

n

[
an−1 −

n−1∑
k=0

an−1−kak

]
.

The solution of new the logistic equation (4.1) is given by (4.2) and can be approx-
imated by (See Fig. 3)

pm(t) = ert
m∑

n=0

an(t
α)n , m ≥ 1.

5 Generalized proportional Euler numbers

We recall the Euler polynomials defined as

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n! , |t | < π.

123
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Fig. 3 Approximate solution pm (t) , m = 10, of the logistic generalized proportional fractional differential
equations (4.1) for the initial condition x0 = 1/2 and α = 1/2. For ρ = 1/2 in blue. For ρ = 1 the
corresponding approximate solution p10(t) of the Caputo fractional logistic differential equation (3.2)
(orange) and the classical logistic function below (green)

Taking x = 1 we derive

1

1 + e−t
=

∞∑
n=0

1

2
En(1)

tn

n! = 1

2
+ 1

4
t − 1

48
t3 + 1

480
t5 + · · · =

∞∑
n=0

ant
n,

where

an = 1

n
[an−1 −

n−1∑
k=0

an−1−kak] , n ≥ 1.

This logistic function is the solution of the logistic problem

u′ = u(1 − u) , u(0) = 1

2
.

It is well-known that the coefficients an are related to the Euler numbers En by

an = En

2 · n! .

123
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For a given a0 ∈ R and in view of (4.3), we define the generalized proportional
fractional Euler numbers by the recurrence relation

an(α, ρ, λ, μ) = Γ (α(n − 1) + 1)

ραΓ (αn + 1)
(λan−1 − μbn−1) . (5.1)

For λ = μ = 1 we denote an(α, ρ) = an(α, ρ, 1, 1). If in addition ρ = 1 then
an(α) = an(α, 1).

Obviously,

an(1, 1, 1, 1) = En

2 · n! .

Also,

an(α, 1, 1, 1) = Eα
n

2 · n! ,

where

Eα
n = Γ (αn + 1)an(α)

are the Euler fractional numbers introduced in [12] and studied in [3].
We therefore have generalized the Euler numbers En and the Euler fractional num-

bers Eα
n to the generalized proportional Euler’s fractional numbers

Eα,ρ,λ,μ
n = Γ (αn + 1) · an(α, ρ, λ, μ).

6 Conclusions

Wehave introduced a newgeneralization of the fractional logistic differential equation.
To find an explicit solution as a fractional power series, one is lead to the corresponding
general fractional Euler’s numbers.

Some figures are plotted to illustrate the results in order to compare the solutions of
the classical logistic equation, of the Caputo fractional logistic differential equations
and the new generalized proportional fractional logistic differential equation.
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