WILEY-VCH

European Chemical Societies Publishing

Your research is important and needs to be shared with the world

Benefit from the Chemistry Europe Open Access Advantage

- Articles published open access have higher readership
- Articles are cited more often than comparable subscription-based articles
- All articles freely available to read, download and share.

Submit your paper today.

www.chemistry-europe.org

www.eurjoc.org

Efficient Asymmetric Synthesis of an A-Ring Synthon for Pd-Catalyzed Preparation of 1α -Hydroxyvitamin D Metabolites and Analogs

Julian Loureiro,^[a] Lars Kattner,^[b] and Antonio Mouriño^{*[a]}

The secondary parallel hypercalcemic effects associated with the treatment of several hyperproliferative diseases with the natural hormone 1α ,25-dihydroxyvitamin D₃ (calcitriol) and/or known active vitamin D metabolites and analogs, demand the development of efficient and rapid methods for the preparation of vitamin D receptor (VDR) ligands as new selective and noncalcemic agonists. Here we describe an efficient and adaptable multigram-scale synthetic sequence to access an A-ring synthon

Introduction

Vitamin D₃ (1) is a secosteroid produced in the skin by UV light or ingested in food. This prohormone undergoes two enzymatic hydroxylations, first in the liver to generate the major circulating metabolite 25-hydroxyvitamin D₃ (2), and then in the kidney leading to the hormonally active form 1α ,25-dihydroxyvitamin

Scheme 1. Vitamin D_3 (1), 25-hydroxyvitamin D_3 (2), and $1\alpha,\!25$ -dihydroxyvitamin D_3 (3).

[a] Dr. J. Loureiro, Prof. A. Mouriño Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas, Universidad de Santiago, Avda Ciencias s/n, 15782 Santiago de Compostela, Spain E-mail: antonio.mourino@usc.es
[b] Dr. L. Kattner ENDOTHERM GmbH,

Science-Park II, 66123 Saarbrücken, Germany

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/ejoc.202200314
- © 2022 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

as useful precursor of the vitamin D triene system of 1 α -hydroxylated vitamin D derivatives via Pd-catalyzed carbocyclization/Suzuki–Miyaura cross-coupling reactions in a protic medium. The key step is an asymmetric Lewis acid-promoted carbonyl-ene reaction to a chiral glyosylate ester to establish the 1 α -hydroxyl group of 1 α ,25-dihydroxyvitamin D₃ and its derivatives.

 D_3 (1,25D, calcitriol, **3**) (Scheme 1). The latter induces gene expression through the nuclear vitamin D receptor (VDR) to regulate calcium homeostasis and pleiotropic actions including cancer chemoprevention and modulation of the immune system. $^{[1-3]}$

Synthetic efforts^[4] towards highly active and selective analogs of 1,25D for treatment of several diseases have led to the development of various convergent methods to directly assemble the vitamin D triene system (Scheme 2). These methods include the modified Julia olefination (route X),^[5] the popular Lythgoe's Wittig-Horner approach (route Y),^[6] based on coupling between the lithium anion of phosphine oxide 4 (Aring fragment) and a ketone (CD-side chain fragment), and the Pd-catalyzed addition/ring-closure strategy developed by Trost (route W),^[7] which utilizes a vinyl bromide (CD-side chain fragment) and an enyne of type 5 as precursor of the A-ring fragment.^[7]

More recently, we have developed a mild Pd^{0} -catalyzed tandem process, which involves the ring closure of enol-triflate

Scheme 2. Methods for the direct generation of vitamin D triene system.

6, precursor of the A-ring^[8a] followed by cross-coupling with an alkenyl-boronic ester^[8b] or related alkenyl Zn^[9] or Ti^[10] derivatives (upper fragment) to generate the triene unit of vitamin D metabolites and analogs modified in different parts of the vitamin D skeleton (route Z).^[11] Considerable synthetic efforts have been directed towards the vitamin D A-ring precursors such as phosphine oxide $\mathbf{4}^{[12]}$ and envne $\mathbf{5}^{[13]}_{t}$ but only one synthesis of enol-triflate 6 ($P = Sit-BuMe_2$) from (R)-carvone) has been reported.^[8] The latter intermediate was also used for the preparation of phosphine oxide 4,^[8a] important intermediate in the Wittig-Horner approach (route Y). Drawbacks of the reported synthesis of 6 such as the lability of the triethylsilyl ether as protecting group^[14] during the oxidative-cleavage of carvone epoxides and the reproducibility in the formation of the enoltriflate on a gram scale, led us to devise a new and more efficient approach to enol-triflate 6 ($P = SiEt_3$) as a valuable intermediate for the Pd-catalyzed synthesis of the A-ring fragment of the natural hormone 1,25D and its 1α -hydroxyderivatives (route Z, Scheme 2).^[8]

Results and Discussion

The new synthesis of enol-triflate **6** features an asymmetric glyoxylate-ene reaction between alkene **8** and the known chiral glyoxylate **9**^[15] in the presence of tin tetrachloride as the Lewisacid to access the β -hydroxy-ketone (**S**)-**7**, precursor of the A-ring^[16] of 1 α -hydroxy-vitamin D derivatives (Scheme 3).^[17-19]

The synthesis of 6 began with chiral glyoxylate 9^[15] (Scheme 4). The diastereoselective SnCl₄-assisted ene reaction between **9** and olefin **8** provided a mixture of β -hydroxy esters 10 (dr 8:1 ratio),^[19] which could be separated by HPLC (SI). The mixture of diastereoisomers 10 was subjected to oxidative cleavage^[20] with catalytic osmium tetroxide in the presence of potassium periodate to give, after MPLC separation (VersaFlash Silica Ø 40×150 mm 20–45 μ m, 7% *i*-PrOH/hexanes), pure β hydroxy ketone 7 (79% yield). Figure 1 shows the proposed transition state for the asymmetric ene-reaction leading to (S)-10. Hydroxyl-directed reduction of (S)-7 with [HB(OAc)₃NMe₄]^[21] provided a mixture of alcohols (4R)-11 and (4S)-11 (95:5, ¹H-NMR ratio), which upon crystallization from Et₂O/hexanos provided pure (R)-11 as determined by ¹H NMR (lack of diastereomeric peak at δ 4.07). Diol (4*R*)-11 was then converted to 12 by protective silulation (Et₃SiCl) (94% yield, two steps). Benzylic ether 12 was converted to aldehyde 14 by selective deprotection (H₂, Pd/C) followed by periodinane oxidation (DMP) of the resulting alcohol 13 (79% yield, two steps). Exposure of 14 to Corey-Fuchs chain extension conditions

Scheme 3. Retrosynthesis for enol-triflate 6 through intermediate 7.

Scheme 4. Synthesis of enol-triflate 6. Reactions and conditions: (a) $SnCl_4$ (1.1 equiv.), slow addition to 9 (>99% ee), CH_2Cl_2 , -78 °C, 1 h, then 8 (1.1 equiv.), slow addition (1 h), -78 °C, 3 h (95%; (b) OsO_4 (cat), KIO_4 (2 equiv.), dioxane/ H_2O (3:1), 23 °C, 12 h (79%); (c) $HB(OAc)_3NMe_4$ (2.5 equiv.), HOAc/MeCN (1:2), -25 °C, 4 h (95%); (d) TESCI (3 equiv.), imidazole (6 equiv.), DMAP (0.3 equiv.), DMF, 23 °C, 12 h (99%); (e) H_2 , Pd/C, Et₂O, 23 °C, 12 h (88%); (f) DMP (1.1 equiv.), CH₂Cl₂, 23 °C, 20 min (90%); (g) CBr₄ (3 equiv.), Z1 (3 equiv.), PPh₃ (3 equiv.), CH₂Cl₂, -78 °C, 30 min (94%); (i) MeLi (3.3 equiv.), Et₂O, -78 °C, 1 h (80%). TESCI = chlorotriethylsilane, DMAP = 4-dimethylaminopyridine.

Figure 1. Proposed transition state for the Lewis acid-assisted carbonyl-ene reaction.

(Ph₃P=CBr₂)^[21] led to dibromide **15**, which was reduced with DIBAL-H to remove the chiral auxiliary, leading to aldehyde **16** (91 % yield, two steps). At this point, we expected that methyllithium would serve as a nucleophile to attack the carbonyl group of **16** to form the corresponding alkoxides, as well as a base to generate the triple bond. Indeed, addition of methyllithium to **16** produced a mixture of alkynols, which were oxidized with Dess-Martin periodinane to give the alkynone **17** (85 % yield, two steps) as a single product as shown by its ¹³C-NMR spectrum (two single peaks at δ 77.4 and 67.78 assigned to both CH-OTES, respectively). Notably, the methylation step

allows for isotopic labeling of the vitamin D-A-ring at C19.^[16] Ketone **17** was treated with LDA and the resulting enolate was trapped with Comins' reagent [*N*-(2-pyridyl)-triflimide]^[22] to afford the desired enol-triflate **6** (80% yield) (34% overall yield from **9**, 11 steps), whose identity was established by comparison (¹H NMR, ¹³C NMR, and $[\alpha]_{25}^{25}$) with an authentic sample.^[9]

Conclusion

In summary, a concise asymmetric synthesis of (35,5R)-3,5-bis [(triethylsilyl) oxy]oct-1-en-7-yn-2-yl trifluoro methanesulfonate (enol-triflate **6**), from chiral glyosylate **9**, has been achieved by an efficient approach featuring a Lewis acid-assisted asymmetric carbonyl-ene reaction (11 steps, 34% overall yield). The enyne **6** is a useful intermediate for the rapid and efficient preparation of new 1 α -hydroxy-vitamin D₃ analogs of potential therapeutic potential via Pd⁰-catalyzed carbocyclization/cross coupling cascades. The synthetic sequence can be used for the multi-gram scale generation of chiral β -hydroxy ketones.

Acknowledgements

This research was funded by ENDOTHERM GmbH, Xunta de Galicia (GRC/ED431B/20) and the University of Santiago de Compostela (Spain).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: A-Ring synthons \cdot Carbonyl-ene reaction \cdot Chiral β -hydroxy ketones $\cdot 1\alpha$ -Hydroxyvitamin D \cdot Palladium

- The Calcium Homeostatic Steroid Hormone (Eds.: A. W. Norman, A. W. Vitamin D, Academic Press, New York, 1979.
- [2] R. Bouillon, W. H. Okamura, A. W. Norman, Endocr. Rev. 1995, 16, 200– 257.
- [3] a) Vitamin D (Eds.: D. Feldman, F. W. Glorieux, J. W. Pike), Academic Press, New York, 1997. b) Vitamin D, 2nd edition (Eds.: D. Feldman, J. W. Pike, J. S. Adams), Elsevier Science: New York, 2011.

- [4] For reviews, see: a) H.-G. Schmalz, E. Walzer in Vitamin D Active Compounds, Vol 3. (Ed: G. Quinkert), VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1985, pp 41–122; b) H.-G Schmalz, E. Walzer in Vitamin D Active Compounds Part II, Vol. 4 (Ed: G. Quinkert), VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1986, pp 131–258; c) H.-G. Schmalz, E. Walzer in Vitamin D Active Compounds Part III (Ed: Quinkert), VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1986, pp 131–258; c) H.-G. Schmalz, E. Walzer in Vitamin D Active Compounds Part III (Ed: Quinkert), VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1987, pp 1–86; d) H. Dai, G. H. Posner, Synthesis 1994, 1383–1398; e) G. D. Zhu, W. H. Okamura, Chem. Rev. 1995, 95, 1877–1952; f) S. Krause, H.-G. Schmalz in Organic Synthesis Highlights (Ed: H.-G. Schmalz), Wiley and VCH: Weinheim, Germany, 2000, pp 212–217; g) G. H. Posner, M. Kahraman, Eur. J. Org. Chem. 2003, 3889–3895; h) A. S. Chapelon, D. Moraleda, R. Rodríguez, C. Ollivier, M. Santelli, Tetrahedron 2007, 63, 11511–11616.
- [5] P. R. Blakemore, P. J. Kocienski, S. Marzcak, J. Wicha, Synthesis 1999, 1209–1215.
- [6] B. Lythgoe, Chem. Soc. Rev. 1981, 10, 449-475.
- [7] B. M. Trost, J. Dumas, M. Villa, J. Am. Chem. Soc. 1992, 114, 9836–9845.
- [8] a) A. Mouriño, M. Torneiro, C. Vitale, S. Fernández, J. Pérez-Sestelo, J. S. Anné, C. Gregorio, *Tetrahedron Lett.* **1997**, *38*, 4713–4716; b) P. Gogoi, R. Sigüeiro, S. Eduardo, A. Mouriño, *Chem. Eur. J.* **2010**, *16*, 1432–1435.
- [9] a) C. Gómez-Reino, C. Vitale, M. Maestro, A. Mouriño, Org. Lett. 2005, 7, 5885–5887; b) P. Anthony, R. Sigüeiro, T. Huet, Y. Sato, N. Ramalanjaona, L. C. Rodrigues, A. Mouriño, D. Moras, N. Rochel, J. Med. Chem. 2010, 53, 1159–1171.
- [10] F. Molnar, R. Sigüeiro, Y. Sato, C. Araujo, I. Schuster, P. Anthony, J. Peluso, M. Muller, A. Mouriño, D. Moras, N. Rochel, *PLoS One* 2011, 66, e1812.
- [11] For a related approach, see: T. Hanazawa, A. Koyama, T. Wada, E. Morishige, S. Okamoto, F. Sato, Org. Lett. 2003, 5, 523–525.
- [12] a) W. H. Miles, K. B. Connell, G. Ulas, H. H. Tuson, E. A. Dethoff, V. Mehta, A. J. Thrall, J. Org. Chem. 2010, 75, 6820–6829; b) C. Liu, Y.-Z. Yin, L.-Q. Tang, Z.-P. Liu, Curr. Org. Synth. 2012, 9, 1–25.
- [13] Y.-Z. Yin, J.-P. Li, C. Liu, L.-Q. Tang, Z.-P. Liu, Curr. Org. Synth. 2011, 8, 374–392.
- [14] Fluoride-based deprotection of the triethylsilyl group (TES ether) in vitamin D derivatives is faster and milder than the deprotection of bulkier groups such as the *tert*-butyldimethylsilyl group (TBS ether).
- [15] a) J. K. Whitesell, R. M. Lawrence, H. H. Chen, J. Org. Chem. 1986, 51, 4779–4784; b) J. González, C. Aurigemma, L. Truesdale, Org. Synth. 2002, 79, 93.
- [16] Steroidal numbering is used for discussion.
- [17] For reviews on the asymmetric ene-reaction, see: a) J. K. Whitesell, Acc. Chem. Res. 1985, 18, 280–284; b) K. Mikami, M. Shimizu, Chem. Rev. 1992, 91, 1021–1050.
- [18] For applications of glyoxylated 9 in synthesis, see: a) Y. Gao, P. Lane-Bell, J. C. Vederas, *J. Org. Chem.* 1998, *163*, 2133–2143; b) A. K. Miller, C. C. Hughes, J. J. Kennedy-Smith, S. N. Gradl, D. Trauner, *J. Am. Chem. Soc.* 2006, *128*, 17057–17062.
- [19] For other applications of the ene reaction in the synthesis of vitamin D derivatives, see: a) E. G. Baggiolini, J. A. lacobelli, B. M. Hennessy, M. R. Uskokovic, J. Am. Chem. Soc. 1982, 104, 2945–2948; b) K. Mikami, A. Osawa, A. Isaka, E. Sawa, M. Shimizu, M. Terada, N. Kubodera, N. Tsugawa, T. Okano, Tetrahedron Lett. 1998, 139, 3359–3362; c) L. F. Courtney, M. Lange, M. R. Uskokovic, P.-M. Wovkulich, Tetrahedron Lett. 1998, 39, 3363–3366.
- [20] Ozonolysis of 10 (30 g proved to be iqually effective.
- [21] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769–3772.
- [22] D. L. Comins, A. Dehghani, C. J. Foti, S. P. Joseph, Org. Synth. 1997, 74, 77–83.

Manuscript received: March 16, 2022 Revised manuscript received: April 5, 2022