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Efficient Asymmetric Synthesis of an A-Ring Synthon for
Pd-Catalyzed Preparation of 1α-Hydroxyvitamin D
Metabolites and Analogs
Julian Loureiro,[a] Lars Kattner,[b] and Antonio Mouriño*[a]

The secondary parallel hypercalcemic effects associated with
the treatment of several hyperproliferative diseases with the
natural hormone 1α,25-dihydroxyvitamin D3 (calcitriol) and/or
known active vitamin D metabolites and analogs, demand the
development of efficient and rapid methods for the preparation
of vitamin D receptor (VDR) ligands as new selective and non-
calcemic agonists. Here we describe an efficient and adaptable
multigram-scale synthetic sequence to access an A-ring synthon

as useful precursor of the vitamin D triene system of 1α-
hydroxylated vitamin D derivatives via Pd-catalyzed carbocycli-
zation/Suzuki–Miyaura cross-coupling reactions in a protic
medium. The key step is an asymmetric Lewis acid-promoted
carbonyl-ene reaction to a chiral glyosylate ester to establish
the 1α-hydroxyl group of 1α,25-dihydroxyvitamin D3 and its
derivatives.

Introduction

Vitamin D3 (1) is a secosteroid produced in the skin by UV light
or ingested in food. This prohormone undergoes two enzymatic
hydroxylations, first in the liver to generate the major circulat-
ing metabolite 25-hydroxyvitamin D3 (2), and then in the kidney
leading to the hormonally active form 1α,25-dihydroxyvitamin

D3 (1,25D, calcitriol, 3) (Scheme 1). The latter induces gene
expression through the nuclear vitamin D receptor (VDR) to
regulate calcium homeostasis and pleiotropic actions including
cancer chemoprevention and modulation of the immune
system.[1–3]

Synthetic efforts[4] towards highly active and selective
analogs of 1,25D for treatment of several diseases have led to
the development of various convergent methods to directly
assemble the vitamin D triene system (Scheme 2). These
methods include the modified Julia olefination (route X),[5] the
popular Lythgoe’s Wittig-Horner approach (route Y),[6] based on
coupling between the lithium anion of phosphine oxide 4 (A-
ring fragment) and a ketone (CD-side chain fragment), and the
Pd-catalyzed addition/ring-closure strategy developed by Trost
(routeW),[7] which utilizes a vinyl bromide (CD-side chain
fragment) and an enyne of type 5 as precursor of the A-ring
fragment.[7]

More recently, we have developed a mild Pd0-catalyzed
tandem process, which involves the ring closure of enol-triflate
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Scheme 1. Vitamin D3 (1), 25-hydroxyvitamin D3 (2), and 1α,25-dihydroxyvi-
tamin D3 (3).

Scheme 2. Methods for the direct generation of vitamin D triene system.
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6, precursor of the A-ring[8a] followed by cross-coupling with an
alkenyl-boronic ester[8b] or related alkenyl Zn[9] or Ti[10] deriva-
tives (upper fragment) to generate the triene unit of vitamin D
metabolites and analogs modified in different parts of the
vitamin D skeleton (route Z).[11] Considerable synthetic efforts
have been directed towards the vitamin D A-ring precursors
such as phosphine oxide 4[12] and enyne 5,[13] but only one
synthesis of enol-triflate 6 (P=Sit-BuMe2) from (R)-carvone) has
been reported.[8] The latter intermediate was also used for the
preparation of phosphine oxide 4,[8a] important intermediate in
the Wittig-Horner approach (route Y). Drawbacks of the re-
ported synthesis of 6 such as the lability of the triethylsilyl ether
as protecting group[14] during the oxidative-cleavage of carvone
epoxides and the reproducibility in the formation of the enol-
triflate on a gram scale, led us to devise a new and more
efficient approach to enol-triflate 6 (P=SiEt3) as a valuable
intermediate for the Pd-catalyzed synthesis of the A-ring
fragment of the natural hormone 1,25D and its 1α-hydroxy-
derivatives (route Z, Scheme 2).[8]

Results and Discussion

The new synthesis of enol-triflate 6 features an asymmetric
glyoxylate-ene reaction between alkene 8 and the known chiral
glyoxylate 9[15] in the presence of tin tetrachloride as the Lewis-
acid to access the β-hydroxy-ketone (S)-7, precursor of the A-
ring[16] of 1α-hydroxy-vitamin D derivatives (Scheme 3).[17–19]

The synthesis of 6 began with chiral glyoxylate 9[15]

(Scheme 4). The diastereoselective SnCl4-assisted ene reaction
between 9 and olefin 8 provided a mixture of β-hydroxy esters
10 (dr 8 : 1 ratio),[19] which could be separated by HPLC (SI). The
mixture of diastereoisomers 10 was subjected to oxidative
cleavage[20] with catalytic osmium tetroxide in the presence of
potassium periodate to give, after MPLC separation (VersaFlash
Silica Ø 40×150 mm 20–45 μm, 7% i-PrOH/hexanes), pure β-
hydroxy ketone 7 (79% yield). Figure 1 shows the proposed
transition state for the asymmetric ene-reaction leading to (S)-
10. Hydroxyl-directed reduction of (S)-7 with [HB(OAc)3NMe4]

[21]

provided a mixture of alcohols (4R)-11 and (4S)-11 (95 : 5, 1H-
NMR ratio), which upon crystallization from Et2O/hexanos
provided pure (R)-11 as determined by 1H NMR (lack of
diastereomeric peak at δ 4.07). Diol (4R)-11 was then converted
to 12 by protective silylation (Et3SiCl) (94% yield, two steps).
Benzylic ether 12 was converted to aldehyde 14 by selective
deprotection (H2, Pd/C) followed by periodinane oxidation
(DMP) of the resulting alcohol 13 (79% yield, two steps).
Exposure of 14 to Corey-Fuchs chain extension conditions

(Ph3P=CBr2)
[21] led to dibromide 15, which was reduced with

DIBAL-H to remove the chiral auxiliary, leading to aldehyde 16
(91% yield, two steps). At this point, we expected that meth-
yllithium would serve as a nucleophile to attack the carbonyl
group of 16 to form the corresponding alkoxides, as well as a
base to generate the triple bond. Indeed, addition of meth-
yllithium to 16 produced a mixture of alkynols, which were
oxidized with Dess-Martin periodinane to give the alkynone 17
(85% yield, two steps) as a single product as shown by its 13C-
NMR spectrum (two single peaks at δ 77.4 and 67.78 assigned
to both CH-OTES, respectively). Notably, the methylation stepScheme 3. Retrosynthesis for enol-triflate 6 through intermediate 7.

Scheme 4. Synthesis of enol-triflate 6. Reactions and conditions: (a) SnCl4
(1.1 equiv.), slow addition to 9 (>99% ee), CH2Cl2, � 78 °C, 1 h, then 8
(1.1 equiv.), slow addition (1 h), � 78 °C, 3 h (95%; (b) OsO4 (cat), KIO4

(2 equiv.), dioxane/H2O (3 :1), 23 °C, 12 h (79%); (c) HB(OAc)3NMe4
(2.5 equiv.), HOAc/MeCN (1 :2), � 25 °C, 4 h (95%); (d) TESCl (3 equiv.),
imidazole (6 equiv.), DMAP (0.3 equiv.), DMF, 23 °C, 12 h (99%); (e) H2, Pd/C,
Et2O, 23 °C, 12 h (88%); (f) DMP (1.1 equiv.), CH2Cl2, 23 °C, 20 min (90%);
(g) CBr4 (3 equiv.), Zn (3 equiv.), PPh3 (3 equiv.), CH2Cl2, 0 °C to 23 °C, 1.5 h,
then 14, 23 °C, 1.5 h (97%); (h) DIBAL-H (1.1 equiv.), CH2Cl2, � 78 °C, 30 min
(94%); (i) MeLi (3.3 equiv.), Et2O, � 78 °C, 1 h; (j) DMP (1.1 equiv.), CH2Cl2,
23 °C, 30 min (85%, 2 steps); (k) LDA (2.2 equiv.), THF, � 78 °C, 30 min,. N-(5-
chloro-2-pyridyl)-triflimide, (1.5 equiv.), 23 °C, 1 h (80%). TESCl=chlorotrie-
thylsilane, DMAP=4-dimethylaminopyridine.

Figure 1. Proposed transition state for the Lewis acid-assisted carbonyl-ene
reaction.
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allows for isotopic labeling of the vitamin D-A-ring at C19.[16]

Ketone 17 was treated with LDA and the resulting enolate was
trapped with Comins’ reagent [N-(2-pyridyl)-triflimide][22] to
afford the desired enol-triflate 6 (80% yield) (34% overall yield
from 9, 11 steps), whose identity was established by compar-
ison (1H NMR, 13C NMR, and a½ �25D ) with an authentic sample.[9]

Conclusion

In summary, a concise asymmetric synthesis of (3S,5R)-3,5-bis
[(triethylsilyl) oxy]oct-1-en-7-yn-2-yl trifluoro methanesulfonate
(enol-triflate 6), from chiral glyosylate 9, has been achieved by
an efficient approach featuring a Lewis acid-assisted asymmetric
carbonyl-ene reaction (11 steps, 34% overall yield). The enyne 6
is a useful intermediate for the rapid and efficient preparation
of new 1α-hydroxy-vitamin D3 analogs of potential therapeutic
potential via Pd0-catalyzed carbocyclization/cross coupling
cascades. The synthetic sequence can be used for the multi-
gram scale generation of chiral β-hydroxy ketones.
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