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Introduction

In recent years we have all become convinced of the importance of being able to understand
the evolution of a contagious disease that is spreading among the population. We also find
it interesting, in a world increasingly committed to the environment, to study how the pop-
ulations of different species that coexist in an habitat can evolve in the future. We want to
know how the economy works and how different actors or decisions may affect it and cause
changes that affect society; how different languages evolve and coexist in a territory; how the
chemical reactions, which are necessary to give rise to all those materials or medicines that
we need in our daily lives, are regulated and developed. We are also curious about things that
are much further away from us: astronomical phenomena, star movements or black holes.
All these subjects have something in common, and that is that we can approach, understand
and analyze them through differential equations. Then, it seems to be clear that the study of
differential equations is of great interest.

In this work, our aim is to accomplish the qualitative study of some ordinary differential
systems. Besides its fundamental role on applied mathematics, because they are an important
tool for modeling problems from other sciences, their study is also interesting on pure math-
ematics. Particularly, we will study polynomial differential systems, with special emphasis
on the Lotka-Volterra and Kolmogorov systems.

The Lotka-Volterra systems have been used for modeling many natural phenomena, such
as the time evolution of conflicting species in biology [84, 97, 141], chemical reactions [63],
physical problems as the coupling of waves in laser physics [80] or the evolution of neu-
tral species, electrons and ions in plasma physiscs [81], hydrodynamics [19], just as other
problems from social science and economics [54, 124].

These systems, which are polynomial differential equations of degree two, were initially
proposed, independently, by Alfred J. Lotka in 1925 and Vito Volterra in 1926, both in the
context of competing species.

The first contributions of Alfred J. Lotka were in 1910 in the field of autocatalytic chem-
ical reactions, studying models similar to the logistic equation. In 1920, Lotka extended the
model to organic systems, using a plant species and a herbivorous animal species. The ap-
plication to the study of the dynamics of a predator-prey system was proposed in 1925, in a
work which today we would consider to be included in the field called Biomathematics [92].

On his behalf, Volterra considered the same model simultaneously, in his case, to ex-
plain some observations made by her son-in-law, the marine biologist Umberto D’Ancona.
D’Ancona studied the fish catches in the Adriatic Sea and had noticed that the percentage of
predatory fish caught had increased during the years of World War I. This fact seemed confus-
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Introduction

ing, because the fishing effort had been reduced during that years, so Volterra was interested
in studying this situation.

In order to explain this behavior, Volterra stated a system of ordinary differential equa-
tions. He considered x(t) and y(t) the densities of prey and predators, respectively, and
reasoned about the growth rates in the next way: the growth rate of prey, ẋ/x, must be a
decreasing function on y, positive in absence of predators; furthermore, the growth rate of
predators, ẏ/y, must be an increasing function on x, negative in absence of prey. Assum-
ing the functions are linear, and taking positive constants a, b, c and d, the model stated by
Volterra was

ẋ = x(a� by),

ẏ = y(�c+ dx).

For this first model, the phase portrait on the positive quadrant, the unique region which
is interesting in the case of populations, consists on periodic orbits surrounding a singular
point (x̃, ỹ) = (c/d, a/b). The means of population densities along the orbits coincide whit
the values at the singular point. The decrease of the parameter a, which represents the growth
rate of prey in absence of predators, and the increase of c, the decrease rate of predators in
absence of prey, without changing the parameters b and d, has an effect on the means of the
densities of both populations, which corresponds with the observation of D’Ancona.

Volterra employed elegant reasonings, included in [132], nevertheless, his equations were
simple and unrealistic. For instance, the system implies that a prey population, in absence of
predators, would grow exponentially towards infinity.

Later, Lotka-Volterra systems were generalized and considered on arbitrary dimension, it
is:

ẋi = xi

0

@ai0 +
nX

j=1

aijxj

1

A , i = 1, ..., n.

Consequently, the applications of these systems started to multiply. On economic theory,
Lotka-Volterra systems are applied to many problems and, although their first appearance
in this field is usually attributed to Richard Goodwin in 1967 [60], as can be found in [37],
previous applications have been found. The Italian economist Giuseppe Palomba used these
equations on 1939 (see [56]). More recent applications on this field can be found on [55]
and [136].

In the field of hydrodynamics (see [19]), already in the decade of 1970, became evident
that low order systems of ordinary differential equations, particularly Lotka-Volterra systems,
were suitable for the simulation, at least qualitative, of many phenomena related with tran-
sition to turbulence in fluid flows. This turned out surprising because of the infinite number
of degrees of freedom of a fluid and the fact that the basic equations of motion are partial
differential equations.

From a more theoretical point of view, Brening and Goriely proved in [15, 16] that many
other differential systems coming from different sciences can be transformed into Lotka-
Volterra systems on dimension three. For example, these systems are equivalent to the repli-
cator differential equations used in game theory, economics and evolution, as can be seen
in [67].
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On the other side, in [76], Kolmogorov extended Lotka-Volterra systems to others of
arbitrary degree, i.e.,

ẋi = xiPi(x1, ..., xn), i = 1, ..., n,

where Pi are polynomials of degree at most m. These systems have also interesting applica-
tions in science, as in the study of black holes in cosmology. In [1] the qualitative analysis
of a Kolmogorov system on dimension three is performed, which appears in a natural way
while studying black holes with a Higgs field, see [14] for specific details.

While many other applications were appearing, for both the Kolmogorov and Lotka-
Volterra systems, the applications in the original field in which the original Lotka-Volterra
system appeared, population dynamics, continued developing. In [43] we have reviewed
some recently studied predator-prey systems, focusing on some of the features that have been
of special interest for the researchers.

For the mathematicians which have been interested in the study of these systems through-
out history, one of the fundamental objectives was the study of integrability, which is only
possible for a very restricted set of parameters.

In [21] some integrable cases of the Lotka-Volterra systems were obtained, using a gen-
eralized Carleman method, which can be consulted in [27], and the results were extended to
dimension n. In [29] the study of integrability of Lotka-Volterra systems on dimension two
was continued.

Certainly, the qualitative analysis of these systems has a special interest due to the diffi-
culty of studying their integrability. Qualitative theory of differential equations, which was
initiated by Poincare in [109], studies the behavior of differential equations by other means
which are not finding their solutions, and allows us, using tools from analysis and topology,
to solve them in a qualitative way, obtaining information about their properties.

For Lotka-Volterra systems on dimension two, D. Schlomiuk and N. Vulpe have carried
out a complete study of the global qualitative dynamics, classifying all possible phase por-
traits on the Poincaré disk, as it appears in [117]. For that purpose, they have used theory of
invariants. This theory has been developed for polynomial systems of arbitrary degree and
dimension but so far, only for the planar polynomial systems of degree two all the necessary
invariants are known. Those invariants have been obtained for first time in [8].

Regarding Lotka-Volterra systems on dimension three, there exist some partial results for
special cases in which the systems are simpler. For instance, it have been studied the May-
Leonard systems, a particular case in which only two parameters appear, that was proposed
in [98], representing the competition between three species. The fact that these systems have
only two parameters, instead of the twelve that present the general Lotka-Volterra systems
on dimension three, simplifies the study of the global dynamics, which has been carried out
in [12].

Despite the intricacy of their study, Lotka-Volterra equations on dimension three are really
interesting and have many applications, as mentioned above. However, there are not general
results about global dynamics on dimension three.

In this work, we accomplish the study of the global dynamics of Lotka-Volterra systems
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on dimension three, i.e.,

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

which have a rational first integral of degree two of the form x�1y�2z�3 . In Chapter 1, in
addition to the introduction of all the necessary preliminaries to make the work self-contained,
we use the Darboux theory of integrability to obtain a characterization of these systems. As a
result, we reduce the initial problem to a problem on dimension two, the study of the global
dynamics of the next two Kolmogorov families:

ẋ = x(a0 + a1x+ a2z
2 + a3z),

ż = z(c0 + c1x+ c2z
2 + c3z),

ẏ = y(b0 + b1yz + b2y + b3z),

ż = z(c0 + c1yz + c2y + c3z).

These families depend on eight parameters, which is a big number in order to classify
all their distinct topological phase portraits. Then we require that these Kolmogorov systems
have a Darboux invariant of the form estx�1z�2 for the first one and esty�1z�2 for the second,
and applying the Darboux theory of integrability, we reduce the study of the two previous
families to the study of the two following:

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) ,

which now depend on six parameters. For these Kolmogorov systems we give the topological
classification of all their phase portraits in the Poincaré disk. The Poincaré disk is the closed
unit disc where the plane R2 is identified with its interior and its boundary, the circle S1, is
identified with the infinity of R2. Note that in the plane R2 we can go to infinity in as many
directions as points has the circle S1.

In Chapter 2 we study the first family in the case it has only isolated singular points,
and in Chapter 3 we study the global phase portraits with infinitely many singular points at
infinity. The same is done with the second family in Chapters 4 and 5.

We also deal with the study of limit cycles in the Kolmogorov systems. Limit cycles,
i.e., isolated periodic orbits in the set of all periodic orbits of a differential system, play an
important role in the qualitative theory of differential equations. The behavior of many real-
world oscillatory systems have been modelized by limit cycles, see for instance the famous
limit cycle of van der Pol [110]. The study of the limit cycles was initiated by Poincaré
[108] and a great interest in their study was motivated by the famous 16th Hilbert problem
[65, 72, 82], which concerns the determination of the upper bound for the number of limit
cycles in polynomial vector fields of dimension two and degree n, and the investigation of
their relative positions.

We want to study the limit cycles of the Kolmogorov systems of degree three in R3 which
bifurcate in the zero-Hopf bifurcations of the singular points (a, b, c) which are not on the
invariant planes x = 0, y = 0 and z = 0 of the Kolmogorov systems

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),
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with P , Q and R polynomials of degree two. This study is carried out in Chapter 6.
To conclude we focus our attention on the applications. In Chapter 7, first of all, we

briefly present a review work which gives us a better understanding of how predator-prey
models have advanced in recent years and which are the topics and characteristics that have
particularly attracted the attention of researchers. Next, we study a predator-prey system
in the plane, for which we obtain its global phase portraits in the positive quadrant of the
Poincaré disk. Finally, we present a model in dimension three, with two prey and one preda-
tor, whose restriction to only two of the variables coincides with the previous model. For this
three-dimensional model we study different aspects of its qualitative dynamics, including the
existence of limit cycles.

We see, therefore, that population models have come a long way and are becoming more
and more realistic. Even so, and after having analyzed the literature, there are still many open
problems that are of interest to improve the existing models and that we would like to address
in the future.

Aims and objectives
The main goal of the PhD thesis is to accomplish the qualitative study of some ordinary
differential systems, particularly, the Lotka-Volterra and Kolmogorov systems. We work on
the following specific goals:

O1 Contribution to the qualitative study of the Lotka-Volterra systems on dimension three.

There are not general results about global dynamics of Lotka-Volterra systems on di-
mension three, despite their interest and the multiple applications that they have. To
make some progress in this field, we want to study the global dynamics of Lotka-
Volterra systems on dimension three, i.e.,

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

which have a rational first integral of degree two of the form x�1y�2z�3 . To this end,
we must address the following objectives:

O1.A Application of the Darboux theory of integrability to obtain a characterization
of these systems.
Through the work carried out to achieve this objective, we reduce the initial
problem to a problem on dimension two, the study of the global dynamics of
two Kolmogorov families. This objective is addressed in Chapter 1.

O1.B Reduction of the number of parameters through the requirement of suitable con-
ditions.
We must determine and impose conditions that allow us to reduce the number of
parameters, in order to face a manageable problem. This leads us to obtain two
Kolmogorov families in the plane. This objective is also addressed in Chapter 1.
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O1.C Study and topological classification of the global phase portraits of the obtained
families.
We study the two families of Kolmogorov systems obtained, distinguishing the
cases in which the singular points are isolated and the ones with a continuum of
singular points at infinity. These objectives are addressed for the first family in
chapters 2 and 3, respectively, and for the second family in chapters 4 and 5.

O2 Study of the limit cycles in the Kolmogorov systems.
Limit cycles are the isolated periodic orbits in the set of all periodic orbits of a differ-
ential system, and they play an important role in the qualitative theory of differential
equations. Specifically, we want to study the limit cycles of the Kolmogorov systems
of degree three in R3 which bifurcate in the zero-Hopf bifurcations of the singular
points (a, b, c) which are not on the invariant planes x = 0, y = 0 and z = 0 of the
Kolmogorov systems

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),

with P , Q and R polynomials of degree two. This study is carried out in Chapter 6.

O3 Analysis of the applications of polynomial systems to problems from other sciences,
and study of some concrete models.

O3.A Review of the predator-prey models studied in recent years.
Since Lotka-Volterra systems, in which this work focuses, were proposed in the
context of population dynamics, especially predator-prey dynamics, our aim is
to review the current development of this kind of systems.

O3.B Study of some predator-prey systems in dimensions two and three.
We want to study some predator-prey models from a qualitative point of view,
by analyzing, for example, the existence of limit cycles and the topological clas-
sification of their global phase portraits.

Methodology
This thesis follows the classic methodology in basic research in mathematics. In general,
the research begins by carrying out a comprehensive study of the topics to be addressed
and reviewing some classical and recent bibliographical references. Here we describe the
methods used in the development of the objectives O1-O3.

O1 Contribution to the qualitative study of the Lotka-Volterra systems on dimension three.

O1.A Apply the Darboux theory of integrability to obtain a characterization of these
systems.

O1.B Reduction of the number of parameters through the requirement of suitable con-
ditions.
To achieve these two objectives, our methodology is based on applying the re-
sults of Darboux theory of integrability, which can be found in [50, Chapter 8].
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O1.C Study and topological classification of the global phase portraits of the obtained
families.
For the classification of the finite and infinite singular points in the Poincaré disk,
we use the local chart formulation of the Poincaré disk, which can be found,
for example, in [50, Chapter 5]. For the study of the local phase portraits of
these singular points, we use the results for hyperbolic, semi-hyperbolic and
nilpotent singular points, which can be found in [50, Chapter 5]. For the singular
points whose linear part is identically zero we use the blow up technique (see
[4, 5, 49, 125, 130]).
For the study of the possible global phase portraits in the Poincaré disk, accord-
ing to the Theorem of Markus-Neumann-Peixoto, we determine all the possible
↵ and !-limits of the separatrices of the considered Kolmogorov systems.
Then, from all the possible global phase portraits in the Poincaré disk obtained,
we classify those that are realizable and from among them, we study which
are the topological equivalence classes by using, among other tools, invariants,
symmetries or rotations.

O2 Study of the limit cycles in the Kolmogorov systems.

In Chapter 6 we deal with this objective and, in order to accomplish it, we use the
averaging theory of first order (see [17,18,86,131]) to study the limit cycles bifurcating
from the zero-Hopf bifurcations of the Kolmogorov systems of degree three in R3.

O3 Analysis of the applications of polynomial systems to problems from other sciences,
and study of some concrete models.

O3.A Review of the predator-prey models studied in recent years.
To develop this objective, we carried out a review of the recent work in the field
of population dynamics, specifically in predator-prey systems, selecting some
characteristics that seemed relevant for the researchers in the last years. We
compare different models, analyzing their differences and similarities as well as
the different behaviors they show.

O3.B Study of some predator-prey systems in dimensions two and three.
To achieve this objective, the techniques and methodologies used in the devel-
opment of the previous objectives are combined to study some specific predator-
prey models.

The use of computers is an essential tool in different parts of the thesis. We use the
algebraic manipulator Mathematica 12.0.0.0 (for Mac OS X x86) to perform symbolic cal-
culations and represent graphics of solutions and phase portraits obtained numerically. All
the global and local phase portraits obtained as a result of the objective O1.C included in
this thesis are done with the software Inkscape. The software P4 [7] is used as a support in
Chapters 2 to 5, especially to study the feasibility of global phase portraits.
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Resumo

Os contidos desta tese, titulada Dinámica cualitativa de sistemas Lotka-Volterra e Kolmogorov
no plano e no espazo, son o resultado do traballo realizado por Érika Diz Pita durante os es-
tudos correspondentes ao Programa de Doutoramento en Matemáticas da Universidade de
Santiago de Compostela. Este traballo foi realizado en colaboración cos seus directores de
tese Jaume Llibre Saló (Universitat Autònoma de Barcelona) e M. Victoria Otero Espinar
(Universidade de Santiago de Compostela), así como coa profesora Claudia Valls Anglès
(Universidade de Lisboa), responsable da estancia de investigación preceptiva para optar á
mención internacional, e co profesor Renato Colucci (Università Politecnica delle Marche).

Esta tese céntrase no estudo da dinámica cualitativa de sistemas de ecuacións diferenciais
en dimensión dous e tres, especialmente de sistemas Lotka-Volterra e Kolmogorov. Estes sis-
temas permiten modelizar moitos procesos e fenómenos da natureza, así como problemas que
xorden noutras ciencias ou cuestións de carácter social. Por iso, o coñecemento da dinámica
destes sistemas resulta de interese non só dende un punto de vista teórico, senón tamén polas
súas múltiples aplicacións.

Fixéronse importantes avances no estudo destes sistemas, por exemplo, a dinámica dos
sistemas Lotka-Volterra en dimensión dous foi totalmente estudada en [117]. Con todo, para
os sistemas Lotka-Volterra en dimensión tres estudáronse só algunhas familias moi concretas,
como é o caso dos sistemas de May-Leonard [98], que dependen só de dous parámetros.

Nesta tese preténdese avanzar no estudo dos sistemas Lotka-Volterra en dimensión tres,
considerando unha familia máis xeral e cun maior número de parámetros. A caracterización
desta familia realízase no Capítulo 1, xunto coa introdución dos resultados preliminares nece-
sarios para o desenvolvemento dos capítulos posteriores. Nos Capítulos 2–5 estúdase com-
pletamente a dinámica global dos sistemas Kolmogorov planos obtidos como resultado desa
caracterización.

No Capítulo 6 abórdase o estudo dos ciclos límite, un dos elementos máis importantes
dentro da teoría cualitativa. Concretamente, caracterizamos os sistemas Kolmogorov de grao
tres en dimensión tres que posúen ciclos límite que aparecen a través dunha bifurcación zero-
Hopf. Empregamos para iso a técnica dos promedios de orden un.

Por último, no Capítulo 7, centrámonos nalgunhas aplicacións no ámbito da dinámica
de poboacións. Comezamos facendo unha revisión na que se comparan distintos modelos
poboacionais, analizando como estes son cada vez máis realistas e van incorporando distintas
características relativas ao comportamento das poboacións estudadas. Por último estudamos
dous modelos poboacionais, un en dimensión dous e outro en dimensión tres, con dúas presas
e un depredador, aplicando algunhas das técnicas introducidas con anterioridade.
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A continuación resumimos con máis detalle os contidos de cada un dos capítulos.

Capítulo 1: Preliminares
Neste primeiro capítulo, e co fin de que o traballo sexa autocontido, introducimos os concep-
tos e resultados que son necesarios para o desenvolvemento dos capítulos seguintes.

Comezamos incluíndo algunhas nocións elementais sobre campos vectoriais e puntos
singulares nas Seccións 1.1 e 1.2. Nesta última sección presentamos tamén os resultados
que permiten caracterizar localmente as singularidades non dexeneradas, semihiperbólicas e
nilpotentes dos sistemas polinomiais planos. Para estudar as singularidades cuxa parte lineal
é identicamente nula recorremos á técnica dos blow up’s, que introducimos tamén na Sección
1.2. En liñas xerais, esta técnica consiste en explotar ditas singularidades, converténdoas
nunha recta mediante un cambio de variable, de forma que o estudo das novas singularidades
que aparecen sobre esa recta permita determinar como é o comportamento das órbitas nunha
veciñanza do punto orixinal.

A continuación, na Sección 1.3, presentamos a compactificación de Poincaré, que nos
permite estudar o comportamento das órbitas no infinito, a partir dunha proxección do campo
en R2 sobre a esfera unidade S2, á que chamamos esfera de Poincaré. Grazas a esta técnica
podemos estudar os retratos de fases no disco de Poincaré, un espazo limitado obtido ao
proxectar a esfera sobre o plano z = 0, en lugar de en todo o plano R2. Identificamos o
interior do disco de Poincaré con R2 e a súa fronteira co infinito de R2, podendo así estudar
a dinámica dos sistemas nun veciñanza do infinito.

Nos retratos de fases que obtemos no disco de Poincaré, distinguimos as súas rexións
canónicas, as súas separatrices, e a configuración das separatrices, conceptos que se intro-
ducen na Sección 1.4. Nesta mesma sección enunciamos o Teorema de Markus-Neumann-
Peixoto, o fundamento teórico que nos permite facer a clasificación topolóxica dos retratos
de fases no disco de Poincaré en función das súas configuracións de separatrices.

Na Sección 1.5 presentamos un resultado que permite estudar as subvariedades formadas
por singularidades, en concreto as subvariedades normalmente hiperbólicas. Utilizamos este
resultado para o estudo dos casos nos que todos os puntos do infinito, que se corresponden
cos puntos da circunferencia S1, son singularidades.

Na Sección 1.6 introducimos o concepto de índice dunha singularidade, e enunciamos o
Teorema de Poincaré-Hopf, que garante que a suma dos índices de todas as singularidades
dun campo sobre a esfera S2 é igual a dous. Este resultado, aplicado aos campos sobre a
esfera de Poincaré, permítenos determinar o comportamento das órbitas nalgunhas rexións
do plano, onde non podemos concluír por outros métodos.

Un primeiro punto clave no noso traballo é a aplicación da teoría de Darboux para a
caracterización dos sistemas diferenciais. Na Sección 1.7 introducimos algúns conceptos e
resultados relacionados coa integrabilidade e as superficies invariantes e, ademais, aplicá-
molos para obter unha caracterización do noso problema. Recordamos que nos propoñemos
estudar os sistemas Lotka-Volterra en dimensión tres, é dicir, os sistemas

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),
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que teñen unha integral primeira racional de grado dous da forma x�1y�2z�3 . Aplicando
o teorema de integrabilidade de Darboux para sistemas polinomiais, logramos reducir o es-
tudo destes sistemas en dimensión tres ao estudo das seguintes dúas familias de sistemas
Kolmogorov no plano:

ẋ = x(a0 + a1x+ a2z
2 + a3z),

ż = z(c0 + c1x+ c2z
2 + c3z),

ẏ = y(b0 + b1yz + b2y + b3z),

ż = z(c0 + c1yz + c2y + c3z).

Estas familias dependen de oito parámetros, o cal supón aínda un número moi elevado
para levar a cabo a clasificación de todos os seus distintos retratos de fases globais. Esiximos
que estes sistemas Kolmogorov teñan un invariante de Darboux da forma estx�1z�2 no caso
da primeira familia, e da forma esty�1z�2 no caso da segunda. Aplicando de novo o teorema
de integrabilidade de Darboux reducimos o estudo das dúas familias previas ao estudo das
dúas seguintes, que tamén son de tipo Kolmogorov:

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .

O estudo da dinámica global destas familias, que agora dependen de seis parámetros, lévase
a cabo nos Capítulos 2–5.

Por último, na Sección 1.8, incluímos os resultados empregados para o estudo de ciclos
límite, tanto os relativos á técnica dos promedios, como ás bifurcacións de Hopf.

Capítulo 2: Clasificación da primeira familia Kolmogorov con singulari-
dades illadas
Neste capítulo estudamos a dinámica global da primeira das familias Kolmogorov obtidas
previamente, é dicir,

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(1)

O resultado principal relativo a esta familia é o seguinte:

Teorema 1. Os sistemas Kolmogorov (1) baixo as condicións H1
2 teñen 78 retratos de fases

topoloxicamente distintos no disco de Poincaré, dados na Figura 2.0.1.

Ao longo do capítulo lévase a cabo a proba deste resultado, realizando a clasificación
topolóxica global de todos os retratos de fases no disco de Poincaré.

Comenzamos estudando algunhas das propiedades dos sistemas na Sección 2.1, o que
nos permite impoñer certas condicións sobre os parámetros. En particular, consideraremos
c2 6= 0 para que os sistemas non se reduzan a sistemas Lotka-Volterra en dimensión dous, os
cales xa están estudados. Ademais, como esiximos que e�t(a0+c0µ)xzµ sexa un invariante
de Darboux, debemos considerar a condición a0 + c0µ 6= 0. Estudando as simetrías dos
sistemas podemos garantir que é suficiente estudar esta familia Kolmogorov cos parámetros
verificando

H1 = {c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0} ,
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pois en calquera outro caso obteríanse retratos simétricos respecto a algún dos xa obtidos.
Polo mesmo motivo, cando a0 = 0, podemos limitar o noso estudo ao caso con c0 > 0.
Podemos garantir tamén que nos casos nos que c1 = 0 ou c3 = 0, os retratos globais obtidos
deben ser simétricos con respecto ao eixo z ou x, respectivamente. Estudamos tamén a exis-
tencia de rectas invariantes e de puntos de contacto sobre as rectas z = cte. Isto axudaranos
a determinar, máis adiante, cales dos retratos de fases globais son realizables.

Na Sección 2.2 calculamos as singularidades finitas, estudamos todos os posibles retratos
de fases locais en torno a cada unha delas e facemos unha clasificación recollida nas Táboas
2.2.2 a 2.2.7. Probamos tamén que non existen ciclos límite. Eliminamos os casos nos que
existe un continuo de puntos singulares, nos cales os nosos sistemas poden reducirse a outros
máis sinxelos xa estudados, e traballamos entón con parámetros que satisfan as condicións:

H1
1 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0
 
.

Na Sección 2.3 estudamos as singularidades infinitas, traballando coa compactificación
de Poincaré dos sistemas.

En primeiro lugar estudamos a compactificación na carta local U1 da esfera, onde obtemos
que, ou ben a única singularidade infinita é a orixe da carta, ou ben todos os puntos do
infinito son singularidades. Este caso particular no que todo o infinito está formado por puntos
singulares, e que se corresponde coa condición µ = �1, estúdase de forma independente no
Capítulo 3. Considerando polo tanto as condicións

H1
2 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0, µ 6= �1
 
,

estudamos todos os posibles retratos de fases locais da orixe da carta U1, empregando a
técnica dos blow up’s. En concreto, realizamos dous blow up’s verticais e distinguimos casos
dicríticos e non dicríticos. Como resultado de estudar as singularidades existentes sobre
o divisor excepcional tras o segundo blow up, aparecen algúns casos nos que os retratos de
fases non están ben definidos, polo que é preciso realizar tamén un blow up horizontal. Como
resultado deste proceso obtemos un total de 47 retratos de fases locais distintos para a orixe
da carta U1, incluídos na Figura 2.3.1. Cabe mencionar que nalgúns casos queda aínda unha
indeterminación en certos sectores ao rematar o proceso. Eses sectores poden ser elípticos ou
hiperbólicos, e aínda que esta indeterminación podería solucionarse a nivel local aplicando
outros métodos, no noso caso optamos por resolvelo a nivel global baseándonos na teoría do
índice.

O estudo da compactificación na carta U2 resulta máis sinxelo. A orixe desta carta é un
punto singular hiperbólico, que pode ser un nodo ou un punto de sela.

A continuación facemos o paso do estudo local desenvolvido ata o momento ao estudo
global. Para iso recompilamos toda a información local obtida, partindo da clasificación nas
Táboas 2.2.2 a 2.2.7. Nalgúns dos casos recollidos nestas táboas as condicións determinan un
único retrato local nos puntos do infinito, pero en moitos outros temos que distinguir distintas
posibilidades.

Empregamos a teoría do índice e o Teorema de Poincaré-Hopf para completar o estudo
das singularidades infinitas realizado por medio de blow up’s, probando se as rexións non
determinadas corresponden a sectores elípticos ou hiperbólicos.

Cando as separatrices se poden conectar dunha única forma, obtemos un único retrato
global a partir da información local, mais en 14 casos aparecen tres posibles retratos globais.
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Empregando os resultados relativos á existencia de curvas invariantes e puntos de contacto,
probamos que en cada un deses 14 casos só un dos retratos globais é realizable.

Por último, na Sección 2.5, realizamos a clasificación topolóxica dos 102 retratos globais
obtidos. En primeiro lugar determinamos 19 clases de equivalencia en función de dous in-
variantes: o número de rexións canónicas e o número de separatrices. Dentro de cada unha
das clases, seleccionamos os invariantes apropiados para distinguir aqueles retratos topoloxi-
camente distintos, e buscamos os homeomorfismos entre aqueles topoloxicamente iguais me-
diante o uso, entre outros, de xiros ou simetrías.

Concluímos así a proba do resultado principal, obtendo a clasificación topolóxica global
de todos os retratos de fases no disco de Poincaré dos sistemas (1) que non teñen un continuo
de singularidades no infinito.

Capítulo 3: Clasificación da primeira familia Kolmogorov con singulari-
dades non illadas
Neste capítulo estudamos a primeira das familias de sistemas Kolmogorov cando todos os
puntos do infinito son singularidades. Este caso correspóndese co valor do parámetro µ = �1,
polo que estudamos os sistemas

ẋ = x
�
a0 + c1x+ c2z

2 + c3z
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(2)

A partir dos resultados obtidos no capítulo previo obtemos algunhas propiedades dos
sistemas, e determinamos unha serie de condicións que podemos impoñer aos parámetros
sen perda de xeneralidade, en concreto:

H̃1 =
�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 6= c0, a

2
0 + c21 6= 0

 
.

O noso resultado principal sobre a dinámica global dos sistemas (2) é o seguinte:

Teorema 2. Os sistemas Kolmogorov (2) baixo as condicións H̃1 teñen 22 retratos de fases
topoloxicamente distintos no disco de Poincaré, dados na Figura 3.0.1.

A existencia de singularidades finitas así como a clasificación dos seus retratos de fases
locais, realizase a partir dos resultados do Capítulo 2.

Na Sección 3.2, empregando a compactificación de Poincaré, estudamos a dinámica no
infinito. Neste caso, como xa se mencionou, todos os puntos do infinito son singularidades.
En primeiro lugar estudamos a orixe da carta U2, na cal a matriz Xacobiana ten un autovalor
nulo e outro non nulo. Isto permítenos aplicar o Teorema 1.5.1 e concluír que, ou ben hai
exactamente unha órbita que sae dese punto singular, ou ben unha única órbita que chega a
él.

Considerando a expresión da compactificación na carta U1 estudamos todos os demais
puntos do infinito. Nos puntos distintos da orixe estamos en condicións de aplicar o Teorema
1.5.1 e distinguir casos nos que a cada un deses puntos chega exactamente unha órbita e
outros nos que de cada punto sae exactamente unha órbita.

Por outra parte, para a orixe da carta U1 obtemos 12 retratos de fases locais distintos,
incluíndo casos nos que a singularidade é semihiperbólica e outros nos que é linealmente
cero. Nestes últimos recorremos ao emprego de blow up’s para realizar a desingularización.
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Combinando a información local, determinamos os retratos de fases globais a partir da
análise das posibles conexións das separatrices. En seis casos, as separatrices poden conec-
tarse de tres modos distintos. En cada un deses casos, probamos que solo un dos tres retratos
globais é realizable, obtendo finalmente un total de 29 retratos no disco de Poincaré.

Por último realizamos a clasificación topolóxica. Inicialmente consideramos o número
de singularidades finitas e a suma dos índices en todas as singularidades finitas como invari-
antes, e con eles determinamos 14 clases. Analizando as coincidencias topolóxicas dentro
de cada unha desas clases, obtemos finalmente 22 retratos globais topoloxicamente distintos,
probando así o resultado principal deste capítulo.

Capítulo 4: Clasificación da segunda familia Kolmogorov con singulari-
dades illadas
Neste capítulo abordamos o estudo da segunda das familias Kolmogorov, é dicir

ẏ = y (b0 + b1yz + b2y + b3z)) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .
(3)

Para estes sistemas obtemos o seguinte resultado sobre a súa dinámica global:

Teorema 3. Os sistemas Kolmogorov (3) baixo as condicións H2
2 teñen 52 retratos de fases

topoloxicamente distintos no disco de Poincaré, dados na Figura 4.0.1.

A estrutura da demostración é similar á descrita no Capítulo 2. Comenzamos estudando
propiedades dos sistemas, especialmente simetrías, que nos permiten traballar no seguinte
espacio de parámetros:

H2 = {b1 6= 0, c0 + b0µ 6= 0, b0 � 0, b2 � 0, b3 � 0} .

Despois estudamos a existencia de singularidades finitas e os seus retratos de fases locais,
obtendo a clasificación dada nas Táboas 4.2.2 a 4.2.5. Traballamos baixo as condicións

H2
1 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0

 
,

eliminando así os casos nos que existe un continuo de puntos singulares finitos, e que poden
reducirse a outros sistemas cuxa dinámica global xa foi estudada.

De novo, baixo a condición µ = �1 existe un continuo de singularidades no infinito, e
estudamos ese caso de forma independente no seguinte capítulo, traballando agora baixo as
condicions

H2
2 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0, µ 6= �1

 
.

Unha das diferencias respecto ao estudo da primeira familia, levado a cabo no Capítulo 2,
é que neste caso é necesario realizar dous procesos de desingularización mediante blow up’s,
un para a orixe da carta U1 e outro para a orixe da carta U2. Obtéñense 27 retratos locais no
primeiro caso e 26 no segundo, como se amosa nas Figuras 4.3.1. e 4.4.1. Neste caso tamén
se require combinar blow up’s verticais e horizontais.
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A partir da información local obtida, estudamos os retratos de fases globais no disco de
Poincaré. Nalgúns casos, a información local é completa e determina univocamente un retrato
de fases a través dunha única conexión posible das separatrices. Noutros casos, aplicamos
teoría do índice para determinar se certos sectores dos retratos de fases locais son elípticos ou
hiperbólicos, obtendo de novo un único retrato global ao conectar as separatrices. Noutros 11
casos podemos conectar as separatrices de tres formas diferentes, dando lugar a tres retratos
de fases globais. A diferencia do que ocorría coa primeira familia Kolmogorov, probamos
en cada un dos 11 casos que os tres retratos globais son realizables. Para iso, en cada caso
demostramos que para certos valores dos parámetros a conexión das separatrices ten lugar
sobre unha recta invariante, e perturbando os parámetros obtemos as outras dúas configu-
racións. Compróbase tamén numericamente co programa P4, e se inclúen valores para os que
cada un dos retratos se realiza.

Para concluír a demostración realizamos a clasificación topolóxica dos 106 retratos globais
obtidos, comezando por determinar clases de equivalencia en función do número de rexións
canónicas e separatrices. Finalmente probamos que existen un total de 52 retratos globais
topoloxicamente distintos no disco de Poincaré.

Capítulo 5: Clasificación da segunda familia Kolmogorov con singulari-
dades non illadas
Neste capítulo terminamos a clasificación dos retratos globlais das familias Kolmogorov
abordando o caso no que na segunda familia todos os puntos do infinito son singularidades.
Neste caso, no que o parámetro µ = �1, estudamos os sistemas

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 + b1yz + b2y + b3z) ,
(4)

baixo as condicións

H̃2 =
�
b1 6= 0, c0 � b0 6= 0, b0 � 0, b2 � 0, b3 � 0, b23 + c20 6= 0, b22 + b20 6= 0

 
,

que podemos asumir baseándonos nos resultados obtidos no capítulo anterior. O resultado
principal é o seguinte:

Teorema 4. Os sistemas Kolmogorov (4) baixo as condicións H̃2 teñen 13 retratos de fases
topoloxicamente distintos no disco de Poincaré, dados na Figura 5.0.1.

Seguindo unha estrutura similar á dos capítulos anteriores, estudamos as singularidades
finitas e os seus retratos de fases locais. Despois estudamos os puntos de equilibrio infini-
tos empregando a compactificación de Poincaré. Obtemos resultados sobre a dinámica en
veciñanzas das singularidades infinitas empregando o Teorema 1.5.1 para subvariedades nor-
malmente hiperbólicas, o Teorema 1.2.3 para singularidades semihiperbólicas e o Teorema
1.2.5 para singularidades nilpotentes.

A partir da información local obtemos os posibles retratos globais, realizando poste-
riormente unha clasificación topolóxica da que concluímos que existen 13 retratos globais
topoloxicamente distintos no disco de Poincaré.
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Capítulo 6: Bifurcación Zero-Hopf nos sistemas Kolmogorov en R3

Os ciclos límite teñen un importante papel na teoría cualitativa dos sistemas diferenciais, pois
aparecen no estudo de moitos fenómenos e procesos do mundo real.

Neste capítulo centrámonos no estudo dos ciclos limite nos sistemas Kolmogorov. En
concreto, estudamos os ciclos límite dos sistemas Kolmogorov de grao tres en R3 que apare-
cen a través dunha bifurcación zero-Hopf en calquera punto singular (a, b, c) que non está
sobre os planos invariantes x = 0, y = 0, z = 0. Estes sistemas teñen a forma xeral

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),

onde P , Q e R son polinomios de grao dous.
Facendo un reescalado do sistema, asumimos sen perda de xeneralidade que a singu-

laridade estudada é o punto (1, 1, 1). Caracterizamos cando esta singularidade é de tipo
zero-Hopf na Proposición 6.0.1, obtendo cinco casos distintos. O primeiro deles xa tiña sido
estudado en [85], polo que abordamos o estudo de todos os demais casos.

En cada unha das seccións seguimos unha organización similar, enunciando e probando
un teorema que caracteriza a existencia de dous ciclos límite que bifurcan do punto (1, 1, 1)
en cada caso: os Teoremas 6.1.1, 6.2.1 e 6.3.1. O Teorema 6.2.1 foi elaborado de forma que
permite unificar dous dos casos sen máis que redefinir algunhas constantes.

Para a demostración dos resultados, perturbamos os parámetros que definen o equilibrio
zero-Hopf, e realizamos transformacións sobre os sistemas para chegar á forma normalizada.
En liñas xerais, calculamos os sistemas con parte lineal en forma canónica de Jordan, facemos
un cambio a coordenadas cilíndricas, reescalamos co parámetro de perturbación e eliximos ✓
como nova variable independente.

Unha vez que os sistemas están na súa forma normalizada, aplicamos a teoría dos prome-
dios. Para iso calculamos a función promedio de primeira orde, f1 = (f11, f12) e calculamos
e estudamos as solucións da ecuación (f11, f12) = (0, 0). O Teorema 1.8.3 permítenos con-
cluír a existencia de ciclos límite.

Unha vez garantida a existencia dos ciclos límite, estudamos a súa estabilidade analizando
os autovalores da matriz Xacobiana nas solucións obtidas para a anterior ecuación.

Dentro de cada sección incluímos tamén unha subsección na cal se proporcionan exem-
plos concretos, a través dos valores dos parámetros, que proban que todos os conxuntos de
condicións incluídas nos resultados son non vacíos, e que, polo tanto, todos os casos que
contemplan as afirmacións dos teoremas son realizables.

Capítulo 7: Aplicacións
No último capítulo, aplicando as técnicas e resultados tratados nos capítulos anteriores, con-
sideramos algúns problemas específicos no campo da biomatemática. Dado que os sistemas
Lotka-Volterra e Kolmogorov teñen a súa orixe no campo da dinámica de poboacións, e xa
que as súas aplicacións neste ámbito seguen sendo de interese na actualidade e continúan
desenvolvéndose, centramos a nosa atención nesta área.

En primeiro lugar, na Sección 7.1 presentamos un traballo de revisión que nos propor-
ciona unha mellor comprensión de como os modelos depredador-presa avanzaron nos últi-
mos anos e cales son os temas e características que atraeron especialmente a atención dos
investigadores.
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Despois, na Sección 7.2 estudamos un modelo depredador-presa no plano dado por un
sistema Kolmogorov obtido a partir do sistema de Rosenzweig e MacArthur. Para este sis-
tema estudamos a súa dinámica no cuadrante positivo do disco de Poincaré, analizando os
posibles retratos de fases globais. Estudamos as singularidades finitas e infinitas e incluímos
un estudo da bifurcación de Hopf.

Finalmente, na Sección 7.3 estudamos un modelo en dimensión tres, con dúas especies
de presas e unha especie depredadora. A restrición deste sistema a dúas variables coincide
co modelo no plano estudado anteriormente. Para este modelo tridimensional, estudamos
distintos aspectos da súa dinámica cualitativa, incluíndo a existencia de singularidades e a
súa estabilidade, a existencia de ciclos límite e a bifurcación de Hopf ou as propiedades de
persistencia do sistema.
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Resumen

Los contenidos de esta tesis, titulada Dinámica cualitativa de sistemas Lotka-Volterra y Kol-
mogorov en el plano y en el espacio, son el resultado del trabajo realizado por Érika Diz
Pita durante los estudios correspondientes al Programa de Doctorado en Matemáticas de la
Universidad de Santiago de Compostela. Este trabajo ha sido realizado en colaboración con
sus directores de tesis Jaume Llibre Saló (Universitat Autònoma de Barcelona) y M. Victoria
Otero Espinar (Universidade de Santiago de Compostela), así como con la profesora Claudia
Valls Anglès (Universidade de Lisboa), responsable de la estancia de investigación preceptiva
para optar a la mención internacional, y con el profesor Renato Colucci (Università Politec-
nica delle Marche).

Esta tesis se centra en el estudio de la dinámica cualitativa de sistemas de ecuaciones
diferenciales en dimensión dos y tres, especialmente de sistemas Lotka-Volterra y Kolmogorov.
Estos sistemas permiten modelizar muchos procesos y fenómenos de la naturaleza, así como
problemas que surgen en otras ciencias o cuestiones de carácter social. Por ello, el conocimiento
de la dinámica de estos sistemas resulta de interés no solo desde un punto de vista teórico, si
no también por sus múltiples aplicaciones.

Se han hecho importantes avances en el estudio de estos sistemas, por ejemplo, la dinámica
de los sistemas Lotka-Volterra en dimensión dos ha sido totalmente estudiada en [117]. Sin
embargo, para los sistemas Lotka-Volterra en dimensión tres se han estudiado solo algunas
familias muy concretas, como es el caso de los sistemas de May-Leonard [98], definidos con
tan solo dos parámetros.

En esta tesis se pretende avanzar en el estudio de los sistemas Lotka-Volterra en dimen-
sión tres, considerando una familia más general y con un mayor número de parámetros. La
caracterización de esta familia se realiza en el Capítulo 1, junto con la introducción de los
resultados preliminares necesarios para el desarrollo de los capítulos posteriores. En los Capí-
tulos 2–5 se estudia completamente la dinámica global de los sistemas Kolmogorov planos
obtenidos como resultado de esa caracterización.

En el Capítulo 6 se aborda el estudio de los ciclos límite, uno de los elementos más
importantes dentro de la teoría cualitativa. Concretamente, caracterizamos los sistemas Kol-
mogorov de grado tres en dimensión tres que poseen ciclos límite que aparecen a través de
una bifurcación zero-Hopf. Empleamos para ello la técnica de los promedios de orden uno.

Por último, en el Capítulo 7, nos centramos en algunas aplicaciones en el ámbito de la
dinámica de poblaciones. Comenzamos haciendo una revisión en la que se comparan distintos
modelos poblacionales, analizando como estos son cada vez más realistas y van incorporando
distintas características reales relativas al comportamiento de las poblaciones estudiadas. Por
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último estudiamos dos modelos poblacionales, uno en dimensión dos y otro en dimensión
tres, con dos presas y un depredador, aplicando algunas de las técnicas introducidas con
anterioridad.

A continuación resumimos con más detalle los contenidos de cada uno de los capítulos.

Capítulo 1: Preliminares
En este primer capítulo, y con el fin de que el trabajo sea autocontenido, introducimos los
conceptos y resultados que son necesarios para el desarrollo de los capítulos siguientes.

Comenzamos incluyendo algunas nociones elementales sobre campos vectoriales y pun-
tos singulares en las Secciones 1.1 y 1.2. En esta última sección presentamos también los re-
sultados que permiten caracterizar localmente las singularidades no degeneradas, semihiper-
bólicas y nilpotentes de los sistemas polinomiales planos. Para estudiar las singularidades
cuya parte lineal es idénticamente nula recurrimos a la técnica de blowup’s, que introduci-
mos también en la Sección 1.2. A grandes rasgos, esta técnica consiste en explotar dichas
singularidades, convirtiéndolas en una recta mediante un cambio de variable, de forma que
el estudio de las nuevas singularidades que aparecen sobre esa recta nos permita determinar
como es el comportamiento de las órbitas en un entorno del punto original.

A continuación, en la Sección 1.3, presentamos la compactificación de Poincaré, que nos
permite estudiar el comportamiento de las órbitas en el infinito, a partir de una proyección
del campo en R2 sobre la esfera unidad S2, a la que llamaremos esfera de Poincaré. Gracias
a esta técnica podemos estudiar los retratos de fases en el disco de Poincaré, un espacio
acotado obtenido al proyectar la esfera sobre el plano z = 0, en lugar de en todo el plano R2.
Identificaremos el interior del disco de Poincaré con R2 y su frontera con el infinito de R2,
pudiendo así estudiar la dinámica de los sistemas en un entorno del infinito.

En los retratos de fases que obtenemos en el disco de Poincaré, distiguiremos sus re-
giones canónicas, sus separatrices, y la configuración de las separatrices, conceptos que se
introducen en la Sección 1.4. En esta misma sección enunciamos el Teorema de Markus-
Neumann-Peixoto, el fundamento teórico que nos permite hacer la clasificación topológica
de los retratos de fases en el disco de Poincaré en función de sus configuraciones de separa-
trices.

En la Sección 1.5 presentamos un resultado que permite estudiar las subvariedades for-
madas por singularidades, en concreto las subvariedades normalmente hiperbólicas. Uti-
lizamos este resultado para el estudio de los casos en los que todos los puntos del infinito,
que se corresponden con los puntos de la circunferencia S1, son singularidades.

En la Sección 1.6 introducimos el concepto de índice de una singularidad, y enunciamos
el Teorema de Poincaré-Hopf, que garantiza que la suma de los índices de todas las singula-
ridades de un campo sobre la esfera S2 es igual a dos. Este resultado, aplicado a los campos
sobre la esfera de Poincaré, nos permite determinar el comportamiento de las órbitas en al-
gunas regiones del plano, donde otros métodos no son concluyentes.

Un primer punto clave en nuestro trabajo es la aplicación de la teoría de Darboux para la
caracterización de los sistemas diferenciales. En la Sección 1.7 introducimos algunos con-
ceptos y resultados relacionados con la integrabilidad y las superficies invariantes y, además,
los aplicamos para obtener una caracterización de nuestro problema. Recordamos que nos
proponemos estudiar los sistemas Lotka-Volterra en dimensión tres, es decir, los sistemas
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ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

que tienen una integral primera racional de grado dos de la forma x�1y�2z�3 . Aplicando el
teorema de integrabilidad de Darboux para sistemas polinomiales, logramos reducir el estudio
de estos sistemas en dimensión tres al estudio de las siguientes dos familias de sistemas
Kolmogorov en el plano:

ẋ = x(a0 + a1x+ a2z
2 + a3z),

ż = z(c0 + c1x+ c2z
2 + c3z),

ẏ = y(b0 + b1yz + b2y + b3z),

ż = z(c0 + c1yz + c2y + c3z).

Estas familias dependen de ocho parámetros, lo cual supone todavía un número muy ele-
vado para llevar a cabo la clasificación de todos sus distintos retratos de fases globales. Exigi-
mos que estos sistemas Kolmogorov tengan un invariante de Darboux de la forma estx�1z�2

en el caso de la primera familia, y de la forma esty�1z�2 en el caso de la segunda. Aplicando
de nuevo el teorema de integrabilidad de Darboux reducimos el estudio de las dos familias
previas al estudio de las dos siguientes, que también son de tipo Kolmogorov:

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .

El estudio de la dinámica global de estas familias, que ahora dependen de seis parámetros, se
lleva a cabo en los Capítulos 2–5.

Por último, en la Sección 1.8, incluimos los resultados empleados para el estudio de ciclos
límite, tanto los relativos a la técnica de los promedios, como a la bifurcación de Hopf.

Capítulo 2: Clasificación de la primera familia Kolmogorov con singu-
laridades aisladas
En este capítulo estudiamos la dinámica global de la primera de las familias Kolmogorov
obtenidas previamente, es decir,

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(1)

Nuestro resultado principal es el siguiente:

Teorema 1. Los sistemas Kolmogorov (1) bajo las condiciones H1
2 tienen 78 retratos de fases

topológicamente distintos en el disco de Poincaré, dados en la Figura 2.0.1.

A lo largo del capítulo se lleva a cabo la prueba de este resultado, realizando la clasifi-
cación topológica global de todos los retratos de fases en el disco de Poincaré.

Comenzamos estudiando algunas de las propiedades de los sistemas en la Sección 2.1, lo
que nos permite imponer ciertas condiciones sobre los parámetros. En particular, considerare-
mos c2 6= 0 para que los sistemas no se reduzcan a sistemas Lotka-Volterra en dimensión dos,
los cuales ya están estudiados. Además, como exigimos que e�t(a0+c0µ)xzµ sea un invariante
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de Darboux, debemos considerar la condición a0 + c0µ 6= 0. Estudiando las simetrías de
los sistemas podemos garantizar que es suficiente estudiar esta familia Kolmogorov con los
parámetros verificando

H1 = {c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0} ,

pues en cualquier otro caso se obtendrían retratos simétricos respecto a alguno de los ya
obtenidos. Por el mismo motivo, cuando a0 = 0 podremos limitar nuestro estudio al caso
con c0 > 0. Podemos garantizar también que en los casos en los que c1 = 0 o c3 = 0, los
retratos globales obtenidos deben ser simétricos con respecto al eje z o x, respectivamente.
Estudiamos también la existencia de rectas invariantes y de puntos de contacto sobre las rectas
z = cte. Esto nos ayudará a determinar, más adelante, cuales de los retratos de fases globales
son realizables.

En la Sección 2.2 calculamos las singularidades finitas, estudiamos todos los posibles
retratos de fases locales en torno a cada una de ellas y damos una clasificación en las Tablas
2.2.2 a 2.2.7. Probamos también que no existen ciclos límite. Eliminamos los casos en los
que existe un continuo de equilibrios, en los cuales nuestros sistemas pueden reducirse a otros
más sencillos ya estudiados, y trabajamos así con parámetros que satisfacen las condiciones:

H1
1 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0
 
.

En la Sección 2.3 estudiamos las singularidades infinitas, trabajando con la compactifi-
cación de Poincaré de los sistemas.

En primer lugar estudiamos la compactificación en la carta local U1 de la esfera, donde
obtenemos que, o bien la única singularidad infinita es el origen de la carta, o bien todos
los puntos del infinito son singularidades. Este caso particular en el que todo el infinito está
formado por puntos singulares, y que se corresponde con la condición µ = �1, se estudia de
forma independiente en el Capítulo 3. Considerando por tanto las condiciones

H1
2 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0, µ 6= �1
 
,

estudiamos todos los posibles retratos de fases locales del origen de la carta U1, empleando
la técnica de blow up’s. En concreto, realizamos dos blow up’s verticales y distinguimos
casos dicríticos y no dicríticos. Como resultado de estudiar las singularidades existentes
sobre el divisor excepcional tras el segundo blow up, aparecen algunos casos en los que los
retratos de fases no están bien definidos, por lo que es necesario realizar también un blow
up horizontal. Como resultado de este proceso obtenemos un total de 47 retratos de fases
locales distintos para el origen de la carta U1, incluídos en la Figura 2.3.1. Cabe mencionar
que en algunos casos queda todavía una indeterminación en ciertos sectores al terminar el
proceso. Esos sectores podrían ser elípticos o hiperbólicos, y aunque esta indeterminación
podría solventarse a nivel local aplicando otros métodos, en nuestro caso hemos optado por
resolverlo a nivel global basándonos en la teoría del índice.

El estudio de la compactificación en la carta U2 resulta más sencillo. El origen de esta
carta es un punto singular hiperbólico, que puede ser un nodo o un punto de silla.

A continuación hacemos el paso del estudio local desarrollado hasta el momento al estu-
dio global. Para ello recopilamos toda la información local obtenida, partiendo de la clasi-
ficación en las Tablas 2.2.2 a 2.2.7. En algunos de los casos recogidos en estas tablas las
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condiciones determinan un único retrato local en los puntos del infinito, pero en muchos
otros debemos distinguir distintas posibilidades.

Empleamos la teoría del índice y el Teorema de Poincaré-Hopf para completar el estudio
de las singularidades infinitas realizado por medio de blow up’s, probando si las regiones no
determinadas se corresponden con sectores elípticos o hiperbólicos.

Cuando las separatrices se pueden conectar de una única forma, obtenemos un único
retrato global a partir de la información local, pero en 14 casos aparecen tres posibles retratos
globales. Empleando los resultados relativos a la existencia de curvas invariantes y puntos
de contacto, probamos que en cada uno de esos 14 casos solo uno de los retratos globales es
realizable.

Por último, en la Sección 2.5, realizamos la clasificación topológica de los 102 retratos
globales obtenidos. En primer lugar determinamos 19 clases de equivalencia en función de
dos invariantes: el número de regiones canónicas y el número de separatrices. Dentro de cada
una de las clases, seleccionamos los invariantes apropiados para distinguir aquellos retratos
topológicamente distintos, y buscamos los homeomorfismos entre aquellos topológicamente
iguales mediante el uso, entre otros, de giros o simetrías.

Concluimos así la prueba de nuestro resultado principal, obteniendo la clasificación topoló-
gica global de todos los retratos de fases en el disco de Poincaré de los sistemas (1) que no
tienen un continuo de singularidades en el infinito.

Capítulo 3: Clasificación de la primera familia Kolmogorov con singu-
laridades no aisladas
En este capítulo estudiamos la primera de las familias de sistemas Kolmogorov cuando todos
los puntos del infinito son singularidades. Este caso se corresponde con el valor del parámetro
µ = �1, por lo que estudiamos los sistemas

ẋ = x
�
a0 + c1x+ c2z

2 + c3z
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(2)

A partir de los resultados obtenidos en el capítulo previo obtenemos algunas propiedades
de los sistemas, y determinamos una serie de condiciones que podemos imponer a los paráme-
tros sin pérdida de generalidad, en concreto:

H̃1 =
�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 6= c0, a

2
0 + c21 6= 0

 
.

Nuestro resultado principal sobre la dinámica global de los sistemas (2) es el siguiente:

Teorema 2. Los sistemas Kolmogorov (2) bajo las condiciones H̃1 tienen 22 retratos de fases
topológicamente distintos en el disco de Poincaré, dados en la Figura 3.0.1.

La existencia de singularidades finitas así como la clasificación de sus retratos de fases
locales, se realiza a partir de los resultados del Capítulo 2.

En la Sección 3.2, empleando la compactificación de Poincaré, estudiamos la dinámica
en el infinito. En este caso, como ya se ha mencionado, todos los puntos del infinito son
singularidades. En primer lugar estudiamos el origen de la carta U2, en el cual la matriz
Jacobiana tiene un autovalor nulo y otro no nulo. Esto nos permite aplicar el Teorema 1.5.1
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y concluir que, o bien hay exactamente una órbita que sale de ese punto singular, o bien una
única órbita que llega a él.

Considerando la expresión de la compactificación en la carta U1 estudiamos todos los
demás puntos del infinito. En los puntos distintos del origen estamos en condiciones de
aplicar el Teorema 1.5.1 y distinguir casos en los que a cada uno de esos puntos llega exacta-
mente una órbita y otros en los que de cada punto sale exactamente una órbita.

Por otra parte, para el origen de la carta U1 obtenemos 12 retratos de fases locales dis-
tintos, incluyendo casos en los que la singularidad es semihiperbólica y otros en los que es
linealmente cero. En estos últimos recurrimos al empleo de blow up’s para realizar la desin-
gularización.

Combinando la información local, determinamos los retratos de fases globales a partir del
análisis de las posibles conexiones de las separatrices. En seis casos, las separatrices pueden
conectarse de tres modos distintos. En cada uno de esos casos, probamos que solo uno de los
tres retratos globales es realizable, obteniendo finalmente un total de 29 retratos en el disco
de Poincaré.

Por último realizamos la clasificación topológica. Inicialmente consideramos el número
de singularidades finitas y la suma de los índices en todas las singularidades finitas como
invariantes, y con ellos determinamos 14 clases. Analizando las coincidencias topologicas
dentro de cada una de esas clases, obtenemos finalmente 22 retratos globales topológicamente
distintos, probando así nuestro resultado principal de este capítulo.

Capítulo 4: Clasificación de la segunda familia Kolmogorov con singu-
laridades aisladas
En este capítulo abordamos el estudio de la segunda de las familias Kolmogorov, es decir

ẏ = y (b0 + b1yz + b2y + b3z)) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .
(3)

Para estos sistemas obtenemos el siguiente resultado sobre su dinámica global:

Teorema 3. Los sistemas Kolmogorov (3) bajo las condiciones H2
2 tienen 52 retratos de fases

topológicamente distintos en el disco de Poincaré, dados en la Figura 4.0.1.

La estructura de la demostración es similar a la descrita en el Capítulo 2. Comenzamos
estudiando propiedades de los sistemas, especialmente simetrías, que nos permiten trabajar
en el siguiente espacio de parámetros:

H2 = {b1 6= 0, c0 + b0µ 6= 0, b0 � 0, b2 � 0, b3 � 0} .

Después estudiamos la existencia de singularidades finitas y sus retratos de fases locales,
obteniendo la clasificación dada en las Tablas 4.2.2 a 4.2.5. Trabajamos bajo las condiciones

H2
1 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0

 
,

eliminando así los casos en los que existe un continuo de puntos singulares finitos, y que
pueden reducirse a otros sistemas cuya dinámica global ya ha sido estudiada.
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De nuevo, bajo la condición µ = �1 existe un continuo de singularidades en el infinito,
y estudiamos ese caso de forma independiente en el siguiente capítulo, trabajando ahora bajo
las condiciones

H2
2 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0, µ 6= �1

 
.

Una de las diferencias respecto al estudio de la primera familia, llevado a cabo en el Capí-
tulo 2, es que en este caso es necesario realizar dos procesos de desingularización mediante
blow up’s, un para el origen de la carta U1 y otro para el origen de la carta U2. Se obtienen
27 retratos locales en el primer caso y 26 en el segundo, como se muestra en las Figuras 4.3.1
y 4.4.1. En este caso también se requiere combinar blow up’s verticales y horizontales.

A partir de la informacion local obtenida, estudiamos los retratos de fases globales en el
disco de Poincaré. En algunos casos, la información local es completa y determina unívo-
camente un retrato de fases a través de una única conexión posible de las separatrices. En
otros casos, aplicamos teoría del índice para determinar si ciertos sectores de los retratos
de fases locales son elípticos o hiperbólicos, obteniendo de nuevo un único retrato global al
conectar las separatrices. En otros 11 casos podemos conectar las separatrices de tres formas
diferentes, dando lugar a tres retratos de fases globales. A diferencia de lo que ocurría con
la primera familia Kolmogorov, probamos en cada uno de los 11 casos que los tres retratos
globales son realizables. Para ello, en cada caso demostramos que para ciertos valores de los
parámetros la conexión de separatrices tiene lugar sobre una recta invariante, y perturbando
los parametros obtenemos las otras dos configuraciones. Se comprueba también numérica-
mente con el programa P4, y se incluyen valores para los que cada uno de los retratos se
realiza.

Para concluir la demostración realizamos la clasificación topológica de los 106 retratos
globales obtenidos, comenzando por determinar clases de equivalencia en función del número
de regiones canónicas y separatrices. Finalmente probamos que existen un total de 52 retratos
globales topológicamente distintos en el disco de Poincaré.

Capítulo 5: Clasificación de la segunda familia Kolmogorov con singu-
laridades no aisladas
En este capítulo terminamos la clasificación de los retratos globlales de las familias Kol-
mogorov abordando el caso en el que en la segunda familia todos los puntos del infinito son
singularidades. En este caso, en el que el parámetro µ = �1, estudiamos los sistemas

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 + b1yz + b2y + b3z) ,
(4)

bajo las condiciones

H̃2 =
�
b1 6= 0, c0 � b0 6= 0, b0 � 0, b2 � 0, b3 � 0, b23 + c20 6= 0, b22 + b20 6= 0

 
,

que podemos asumir basándonos en los resultados obtenidos en el capítulo anterior. Nuestro
resultado principal es el siguiente:

Teorema 4. Los sistemas Kolmogorov (4) bajo las condiciones H̃2 tienen 13 retratos de fases
topológicamente distintos en el disco de Poicaré, dados en la Figura 5.0.1.
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Siguiendo una estructura similar a los capítulos anteriores, estudiamos las singularidades
finitas y sus retratos de fases locales. Después estudiamos los puntos de equilibrio infini-
tos empleando la compactificación de Poincaré. Obtenemos resultados sobre la dinámica en
entornos de las singularidades infinitas empleando el Teorema 1.5.1 para subvariedades nor-
malmente hiperbólicas formadas por singularidades, el Teoremas 1.2.3 para singularidades
semihiperbólicas y el Teorema 1.2.5 para singularidades nilpotentes.

A partir de la información local obtenemos los posibles retratos globales, realizando pos-
teriormente una clasificación topológica de la que concluimos que existen 13 retratos globales
topológicamente distintos en el disco de Poincaré.

Capítulo 6: Bifurcación Zero-Hopf en los sistemas Kolmogorov en R3

Los ciclos límite tienen un importante papel en la teoría cualitativa de los sistemas dife-
renciales, pues aparecen en el estudio de muchos fenómenos y procesos del mundo real.

En este capítulo nos centramos en el estudio de los ciclos límite en los sistemas Kol-
mogorov. En concreto, estudiamos los ciclos límite de los sistemas Kolmogorov de grado
tres en R3 que aparecen a través de una bifurcación zero-Hopf en cualquier punto singular
(a, b, c) que no está sobre los planos invariantes x = 0, y = 0, z = 0. Estos sistemas tienen
la forma general

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),

donde P , Q y R son polinomios de grado dos.
Haciendo un reescalado del sistema, asumimos sin pérdida de generalidad que la singu-

laridad estudiada es el punto (1, 1, 1). Caracterizamos cuando esta singularidad es de tipo
zero-Hopf en la Proposición 6.0.1, obteniendo cinco casos distintos. El primero de ellos ya
había sido estudiado en [85], por lo que abordamos el estudio de todos los demás casos.

En cada una de las secciones seguimos una organización similar, enunciando y probando
un teorema que caracteriza la existencia de dos ciclos límite que bifurcan del punto (1, 1, 1)
en cada caso, los Teoremas 6.1.1, 6.2.1 y 6.3.1. El Teorema 6.2.1 ha sido elaborado de forma
que permite unificar dos de los casos sin más que redefinir algunas constantes.

Para la demostración de los resultados, perturbamos los parámetros que definen el equi-
librio zero-Hopf, y realizamos transformaciones sobre los sistemas para llegar a la forma
normalizada. A grandes rasgos, calculamos los sistemas con parte lineal en forma de Jordan,
hacemos un cambio a coordenadas cilíndricas, reescalamos con el parámetro de perturbación
y elegimos ✓ como nueva variable independiente.

Una vez que los sistemas están en su forma normalizada, aplicamos la teoría de los prome-
dios. Para ello calculamos la función promedio de primer orden, f1 = (f11, f12) y calculamos
y estudiamos las soluciones de la ecuación (f11, f12) = (0, 0). El teorema 1.8.3 nos permite
concluir la existencia de ciclos límite.

Una vez garantizada la existencia de los ciclos límite, estudiamos su estabilidad ana-
lizando los autovalores de la matriz Jacobiana en las soluciones obtenidas para la anterior
ecuación.

Dentro de cada sección incluimos también una subsección en la cual se proporcionan
ejemplos concretos, a través de los valores de los parámetros, que prueban que todos los

xxx



Resumen

conjuntos de condiciones incluidas en los resultados son no vacíos, y que por tanto, todos los
casos que contemplan las afirmaciones de los teoremas son realizables.

Capítulo 7: Aplicaciones
En el último capítulo, aplicando las técnicas y resultados tratados en los capítulos anteriores,
consideramos algunos problemas específicos en el campo de la biomatemática. Dado que
los sistemas Lotka-Volterra y Kolmogorov tienen su origen en el campo de la dinámica de
poblaciones, y ya que sus aplicaciones en este ámbito siguen siendo de interés en la actualidad
y continuan desarrollándose, centramos nuestra atención en esta área.

En primer lugar, en la Sección 7.1 presentamos un trabajo de revisión que nos proporciona
una mejor comprensión de como los modelos depredador-presa han avanzado en los últimos
años y cuales son los temas y características que han atraídos especialmente la atención de
los investigadores.

Después, en la Sección 7.2 estudiamos un modelo depredador-presa en el plano dado por
un sistema Kolmogorov obtenido a partir del sistema de Rosenzweig y MacArthur. Para este
sistema estudiamos su dinámica en el cuadrante positivo del disco de Poincaré, analizando
los posibles retratos de fases globales. Estudiamos las singularidades finitas e infinitas e
incluimos un estudio de la bifurcación de Hopf.

Finalmente, en la Sección 7.3 estudiamos un modelo en dimensión tres, con dos especies
de presas y una especie depredadora. La restricción de este sistema a dos variables coincide
con el modelo en el plano estudiado anteriormente. Para este modelo tridimensional, estudia-
mos distintos aspectos de su dinámica cualitativa, incluyendo la existencia de singularidades
y su estabilidad, la existencia de ciclos límite y de bifurcación de Hopf o las propiedades de
persistencia del sistema.
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The contents of this thesis, entitled Qualitative dynamics of planar and spatial Lotka-Volterra
and Kolmogorov systems, are the result of the work developed by Érika Diz Pita during the
PhD studies in Mathematics at the Universidade de Santiago de Compostela. This work
has been carried out in collaboration with her thesis advisors Jaume Llibre Saló (Universitat
Autònoma de Barcelona) and M. Victoria Otero Espinar (Universidade de Santiago de Com-
postela), as well as with Professor Claudia Valls Anglès (Universidade de Lisboa), respon-
sible for the research stay required to qualify for international mention, and with Professor
Renato Colucci (Università Politecnica delle Marche).

This thesis focuses on the study of the qualitative dynamics of differential systems in
dimension two and three, particularly of Lotka-Volterra and Kolmogorov systems. These
systems model many processes and phenomena of nature, as well as problems from other
sciences or social problems. Therefore, the study of the dynamics of these systems is of
interest not only from a theoretical point of view, but also for its multiple applications.

Important advances have been made in the study of these systems, for example, the dy-
namics of Lotka-Volterra systems in dimension two has been totally studied in [117]. How-
ever, for Lotka-Volterra systems in dimension three only some very specific families have
been studied, as is the case of the May-Leonard systems [98], defined with only two parame-
ters.

In this thesis we want to advance in the study of Lotka-Volterra systems in dimension
three, considering a more general family with a larger number of parameters. The charac-
terization of this family is carried out in Chapter 1, together with the introduction of the
preliminary results necessary for the development of the subsequent chapters. In Chapters
2 to 5 the global dynamics of the planar Kolmogorov systems obtained as a result of the
characterization is totally studied.

In Chapter 6 we deal with the study of limit cycles, one of the most important elements
within the qualitative theory. Specifically, we characterize Kolmogorov systems of degree
three in dimension three that have limit cycles appearing through a zero-Hopf bifurcation.
For this purpose we use the averaging theory of first order.

Finally, in Chapter 7, we focus on some applications in the field of population dynamics.
We begin with a review comparing different population models, analyzing how they are be-
coming more realistic and incorporating different characteristics related to the behavior of the
populations. Finally, we study two population models, one in dimension two and the other in
dimension three, with two prey and one predator, applying some of the techniques previously
introduced.
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Below we summarize with more detail the contents of each one of the chapters.

Chapter 1: Preliminaries
In the first chapter, and in order to make the work self-contained, we introduce the concepts
and results that are necessary for the development of the following chapters.

We begin by including some elementary notions about vector fields and singular points
in Sections 1.1 and 1.2. In the latter section we also present some results that allow us to
locally characterize nondegenerate, semi-hyperbolic and nilpotent singular points of planar
polynomial systems. To study singular points whose linear part is identically zero we resort
to the blowup’s technique, which we introduce also in Section 1.2. Roughly speaking, this
technique consists of exploding these singularities, transforming them into a straight line
by means of a variable change, so that the study of the new singularities that appear on this
straight line allows us to determine the behavior of the orbits in a neighborhood of the original
point.

Next, in Section 1.3, we present the Poincaré compactification, which allows us to study
the behavior of the orbits at infinity, starting from a projection of the field in R2 on the unit
sphere S2, which we call Poincaré sphere. Thanks to this technique we can study the phase
portraits on the Poincaré disk, a bounded space obtained by projecting the sphere onto the
plane z = 0, instead of on the whole plane R2. We identify the interior of the Poincaré disk
with R2 and its boundary with the infinity of R2, thus being able to study the dynamics of the
systems in a neighborhood of the infinity.

In the phase portraits that we obtain in the Poincaré disk, we distinguish their canonical
regions, their separatrices, and the configuration of the separatrices, concepts that are intro-
duced in Section 1.4. In this same section we state the Markus-Neumann-Peixoto Theorem,
the theoretical basis that allows us to do the topological classification of the global phase
portraits in the Poincaré disk by studying their separatrix configurations.

In Section 1.5 we present a result that allows us to study submanifolds formed by singular
points, in particular normally hyperbolic submanifolds. We use this result to study the cases
in which all points at infinity, which correspond to the points of S1, are singular points.

In Section 1.6 we introduce the concept of index of a singularity, and state the Poincaré-
Hopf Theorem, which guarantees that the sum of the indices of all singularities of a field on
the sphere S2 is equal to two. This result, applied to fields on the Poincaré sphere, allows
us to determine the behavior of orbits in some regions of the plane, where other methods are
inconclusive.

A first key point in our work is the application of Darboux theory of integrability to
the characterization of differential systems. In Section 1.7 we introduce some concepts and
results related to integrability and invariant surfaces and, in addition, we apply them to obtain
a characterization of our problem. We recall that we propose to study Lotka-Volterra systems
in dimension three, i.e., systems

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

which have a rational first integral of degree two of the form x�1y�2z�3 . Applying Dar-
boux’s integrability theorem for polynomial systems, we reduce the study of these systems in
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dimension three to the study of the two following families of planar Kolmogorov systems:

ẋ = x
�
a0 + a1x+ a2z

2 + a3z
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 + c1yz + c2y + c3z) .

These families depend on eight parameters, which is still a very large number to carry out
the topological classification of all their different global phase portraits. We require that these
Kolmogorov systems have a Darboux invariant of the form estx�1z�2 in the case of the first
family, and of the form esty�1z�2 in the case of the second one. Applying again Darboux’s
integrability theorem we reduce the study of the two previous families to the study of the next
two, which are also of Kolmogorov type:

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .

The study of the global dynamics of these families, which now depend on six parameters, is
carried out in Chapters 2 to 5.

Finally, in Section 1.8, we include the results used for the study of limit cycles, both those
related to the averaging theory and to the Hopf bifurcations.

Chapter 2: Classification of the first Kolmogorov family with isolated
singularities
In this chapter we study the global dynamics of the first Kolmogorov family obtained in the
previous chapter, that is,

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(1)

Our main result is the following:

Theorem 1. Kolmogorov systems (1) under conditions H1
2 have 78 topologically distinct

phase portraits in the Poincaré disk, given in Figure 2.0.1.

Throughout the chapter we develop the proof of this result by performing the global
topological classification of all phase portraits in the Poincaré disk.

We begin by studying some of the properties of the systems in Section 2.1, which allows
us to impose certain conditions on the parameters. In particular, we will consider c2 6= 0 so
that the systems do not reduce to Lotka-Volterra systems in dimension two, which are already
studied. Moreover, since we require that e�t(a0+c0µ)xzµ be a Darboux invariant, we must
consider the condition a0 + c0µ 6= 0. By studying the symmetries of the systems we can
guarantee that it is sufficient to study this Kolmogorov family with the parameters satisfying

H1 = {c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0} ,

because in any other case we would obtain phase portraits symmetrical to some of those
already obtained. For the same reason, when a0 = 0 we can limit our study to the case with
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c0 > 0. We can also guarantee that in the cases where c1 = 0 or c3 = 0, the global phase
portraits obtained must be symmetric with respect to the z or x axis, respectively. We also
study the existence of invariant lines and contact points on the straight lines z = cte. This
help us to determine, later, which of the global phase portraits are realizable.

In Section 2.2 we obtain the finite singularities, we study all possible local phase portraits
in each of them and give a classification in Tables 2.2.2 to 2.2.7. We also prove that there
are no limit cycles. We eliminate the cases where a continuum of singular points exists, in
which our systems can be reduced to simpler ones already studied, and thus we work with
parameters that satisfy the conditions:

H1
1 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0
 
.

In Section 2.3 we study the infinite singular points, working with the Poincaré compacti-
fication of the systems.

We first study the compactification on local chart U1 of the sphere, where we obtain that
either the only infinite singularity is the origin of the chart, or all points at the infinity are
singularities. This particular case in which the entire infinity consists of singular points, and
which corresponds to the condition µ = �1, is studied independently in Chapter 3. Then,
considering conditions

H1
2 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c1µ

2 6= 0, µ 6= �1
 
,

we study all possible local phase portraits at the origin of U1, employing the blow up tech-
nique. Specifically, we perform two vertical blow up’s and distinguish dicritical and nondi-
critical cases. As a result of studying the singularities existing on the exceptional divisor after
the second blow up, we find some cases in which the phase portraits are not well defined, so
it is necessary to perform also a horizontal blow up. As a result of this process we obtain a
total of 47 distinct local phase portraits for the origin of U1, included in Figure 2.3.1. It is
worth mentioning that in some cases there is still a indeterminacy in certain sectors at the end
of the process. These sectors could be elliptic or hyperbolic, and although this indeterminacy
could be solved locally by applying other methods, in our case we have chosen to solve it
when studying the global phase portraits by using index theory.

The study of the compactification in chart U2 is simpler. The origin of this chart is a
hyperbolic singular point, which can be a node or a saddle point.

Next we go from the local study developed so far to the global study. For this we combine
all the local information obtained, starting from the classification in Tables 2.2.2 to 2.2.7. In
some of the cases in these tables the conditions determine just one local phase portrait at the
infinity singular points, but in many others we must distinguish different possibilities.

We employ index theory and the Poincaré-Hopf Theorem to complete the study of infi-
nite singularities performed by the blow up technique, by proving whether the undetermined
regions correspond to elliptic or hyperbolic sectors.

When the separatrices can be connected in a unique way, we obtain one global phase por-
trait from the local information, but in 14 cases three possible global phase portraits appear.
Employing the results concerning the existence of invariant curves and contact points, we
prove that in each of those 14 cases only one of the global phase portraits is realizable.

Finally, in Section 2.5, we perform the topological classification of the 102 global phase
portraits obtained. We first determine 19 equivalence classes based on two invariants: the
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number of canonical regions and the number of separatrices. Within each of the classes,
we select appropriate invariants to distinguish those phase portraits that are topologically
distinct, and we search for homeomorphisms between those that are topologically equal by
using, among others, rotations or symmetries.

We thus conclude the proof of our main result, obtaining the global topological classifi-
cation of all phase portraits in the Poincaré disk of systems (1) that do not have a continuum
of singular points at infinity.

Chapter 3: Classification of the first Kolmogorov family with non-isolated
singularities
In this chapter we study the first family of Kolmogorov systems when all points at infinity are
singular points. This case corresponds with the value of the parameter µ = �1, so we study
the systems

ẋ = x
�
a0 + c1x+ c2z

2 + c3z
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

(2)

From the results obtained in the previous chapter we obtain some properties of the sys-
tems, and we determine some conditions that we can impose on the parameters without loss
of generality, namely:

H̃1 =
�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 6= c0, a

2
0 + c21 6= 0

 
.

Our main result on the global dynamics of systems (2) is as follows:

Theorem 2. Kolmogorov systems (2) under conditions H̃1 have 22 topologically distinct
phase portraits in the Poincaré disk, given in Figure 3.0.1.

The existence of finite singular points and the classification of their local phase portraits
is carried out based on the results of Chapter 2.

In Section 3.2, by using the Poincaré compactification, we study the dynamics at infinity.
In this case, as already mentioned, all points at infinity are singularities. We first study the
origin of chart U2, in which the Jacobian matrix has a zero eigenvalue and a nonzero eigen-
value. This allows us to apply Theorem 1.5.1 and conclude that either there is exactly one
orbit leaving that singular point, or there is exactly one orbit that arrives at it.

Considering the expression of the compactification in chart U1 we study all other points
at infinity. At the points which are not the origin we can apply Theorem 1.5.1 and distinguish
cases in which to each one of these points arrives exactly one orbit and others in which from
each point leaves exactly one orbit.

On the other hand, for the origin of chart U1 we obtain 12 different local phase portraits,
distinguishing cases in which the singularity is semi-hyperbolic and others in which it is
linearly zero. In the latter we resort to the use of blow up’s to perform the desingularization.

Combining local information, we determine the global phase portraits from the analysis
of the possible connections of the separatrices. In six cases, the separatrices can be connected
in three different ways. In each of these cases, we prove that only one of the three global
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phase portraits is realizable, finally obtaining a total of 29 phase portraits in the Poincaré
disk.

Finally, we perform the topological classification. First we consider the number of finite
singularities and the sum of the indices on all the finite singularities as invariants, and with
them we determine 14 equivalence classes. By analyzing the topological coincidences within
each of these classes, we finally obtain 22 topologically distinct global portraits, thus proving
the main result of this chapter.

Chapter 4: Classification of the second Kolmogorov family with isolated
singularities
In this chapter we address the study of the second Kolmogorov family, i.e.,

ẏ = y (b0 + b1yz + b2y + b3z)) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) .
(3)

For these systems we obtain the following result about their global dynamics:

Theorem 3. Kolmogorov systems (3) under conditions H2
2 have 52 topologically distinct

phase portraits in the Poincaré disk, given in Figure 4.0.1.

The structure of the proof is similar to that described in Chapter 2. We begin by studying
properties of the systems, especially symmetries, which allow us to work in the following
parameter space:

H2 = {b1 6= 0, c0 + b0µ 6= 0, b0 � 0, b2 � 0, b3 � 0} .

Then we study the existence of finite singular points and their local phase portraits, obtaining
the classification given in Tables 4.2.2 to 4.2.5. We work under conditions

H2
1 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0

 
,

thus eliminating the cases in which there is a continuum of finite singular points, in which the
systems can be reduced to others whose global dynamics have already been studied.

Under condition µ = �1 there exists a continuum of infinite singular points, and we
study that case independently in the following chapter, considering here the conditions

H2
2 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0, µ 6= �1

 
.

One of the differences with respect to the study of the first family, carried out in Chapter
2, is that in this case it is necessary to perform two desingularization processes using blow
up’s, one for the origin of chart U1 and another for the origin of chart U2. We obtain 27 local
phase portraits in the first case and 26 in the second case, as shown in Figures 4.3.1 and 4.4.1.
In this case it is also necessary to combine vertical and horizontal blow up’s.

From the local information obtained, we study the global phase portraits in the Poincaré
disk. In some cases, the local information is complete and univocally determines a global
phase portrait through a unique possible connection of the separatrices. In other cases, we
apply index theory to determine whether certain sectors of the local phase portraits are elliptic
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or hyperbolic, and then we obtain again a unique global phase portrait by connecting the sep-
aratrices. In 11 other cases we can connect the separatrices in three different ways, obtaining
three global phase portraits. In contrast to the first Kolmogorov family, we prove in each of
the 11 cases that all the three global phase portraits are realizable. For this, in each case we
show that for certain values of the parameters the connection of separatrices takes place over
an invariant line, and by perturbing the parameters we obtain the two other configurations.
We also check it numerically with the program P4, and include values for which each of the
phase portraits is realized.

To conclude the proof we perform the topological classification of the 106 global portraits
obtained, starting by determining equivalence classes according to the number of canonical
regions and separatrices. Finally, we prove that there are a total of 52 topologically distinct
global phase portraits in the Poincaré disk.

Chapter 5: Classification of the second Kolmogorov family with non-
isolated singularities
In this chapter we finish the classification of the global phase portraits of the Kolmogorov
families by addressing the case in which in the second family all points at infinity are singu-
larities. In this case, in which the parameter µ = �1, we study the systems

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 + b1yz + b2y + b3z) ,
(4)

under conditions

H̃2 =
�
b1 6= 0, c0 � b0 6= 0, b0 � 0, b2 � 0, b3 � 0, b23 + c20 6= 0, b22 + b20 6= 0

 
,

that we can assume based on the results obtained in the previous chapter. Our main result is
as follows:

Theorem 4. Kolmogorov systems (4) under conditions H̃2 have 13 topologically distinct
phase portraits in the Poincaré disk, given in Figure 5.0.1.

Following a similar structure to the previous chapters, we study finite singularities and
their local phase portraits. Then we study infinite singular points using the Poincaré com-
pactification. We obtain results on the dynamics in neighborhoods of infinite singularities
by employing Theorem 1.5.1 for normally hyperbolic submanifolds consisting on singular
points, Theorem 1.2.3 for semi-hyperbolic singularities and Theorem 1.2.5 for nilpotent sin-
gularities.

From the local information we obtain the possible global phase portraits, subsequently
performing a topological classification from which we conclude that there are 13 topologi-
cally distinct global portraits in the Poincaré disk.

Chapter 6: Zero-Hopf bifurcation on Kolmogorov systems in R3

Limit cycles play an important role in the qualitative theory of differential equations, since
they appear in the study of many phenomena and processes of the real world.
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Summary

In this chapter we focus on the study of limit cycles in the Kolmogorov systems. Specifi-
cally, we study the limit cycles of the Kolmogorov systems of degree three in R3 that appear
through a zero-Hopf bifurcation at any singular point (a, b, c) that is not on the invariant
planes x = 0, y = 0, z = 0. These systems have the general form

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),

where P , Q and R are polynomials of degree two.
Doing a reescaling we assume without loss of generality that we study the singular point

(1, 1, 1). We characterize when this singularity is zero-Hopf in Proposition 6.0.1, obtaining
five different cases. The first of them has already been studied in [85], so we address the
study of the other cases.

In each one of the sections we follow a similar organization, stating and proving a theorem
characterizing the existence of two limit cycles emerging from the point (1, 1, 1) in each case:
Theorems 6.1.1, 6.2.1 and 6.3.1. Theorem 6.2.1 has been done in such a way that unifies two
of the cases by simply redefining some constants.

For the proof of the results, we perturb the parameters defining the zero-Hopf equilibrium
and perform transformations on the systems to obtain the normalized form. Roughly speak-
ing, we compute the systems whose linear part is in Jordan canonical form, make a change
to cylindrical coordinates, rescale with the perturbation parameter, and choose ✓ as the new
independent variable.

Once the systems are in its normalized form, we apply averaging theory. For this we
compute the first order average function, f1 = (f11, f12) and compute and study the solutions
of the equation (f11, f12) = (0, 0). Theorem 1.8.3 allows us to conclude the existence of limit
cycles.

Once the existence of limit cycles is guaranteed, we study their stability by analyzing the
eigenvalues of the Jacobian matrix in the solutions obtained from the previous equation.

Within each section we also include a subsection in which concrete examples are pro-
vided, through the parameter values, that prove that all sets of conditions included in the
results are non-empty, and that therefore, all cases in the statements of the theorems are real-
izable.

Chapter 7: Applications
In the last chapter, applying the techniques and results discussed in the previous chapters, we
consider some specific problems in the field of biomathematics. Since the Lotka-Volterra and
Kolmogorov systems have their origin in the field of population dynamics, and since their
applications in this field are still of interest nowadays and continue to be developed, we focus
our attention on this area.

First, in Section 7.1, we present a review that provides us with a better understanding
of how predator-prey models have advanced in recent years and which are the topics and
features that have attracted particular attention from researchers.

Then, in Section 7.2, we study a planar predator-prey model given by a Kolmogorov
system obtained from the Rosenzweig and MacArthur system. For this system we study its
dynamics in the positive quadrant of the Poincaré disk, analyzing all the possible global phase
portraits. We study finite and infinite singularities and include a study of the Hopf bifurcation.
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Summary

Finally, in Section 7.3 we study a model in dimension three, with two prey species and
one predator species. The restriction of this system to two variables coincides with the planar
model previously studied. For this three-dimensional model, we study different aspects of its
qualitative dynamics, including the existence of singularities and their stability, the existence
of limit cycles, the Hopf bifurcation or the persistence properties of the system.
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Chapter 1

Preliminaries

In this first chapter we present some results that will be needed throughout the manuscript.
First we introduce some notions about vector fields and singular points, particularly focusing
on the results and methods that will allow us to determine the local phase portraits at the
singular points. Later, we introduce the Poincaré compactification and the main ideas of
topological equivalence, as this will be essential for the objective addressed in chapters 2 to
5. The results about index theory will be used also throughout those chapters. We also include
a brief section about normally hyperbolic submanifolds, as it is needed to study the particular
cases addressed in Chapters 3 and 5. Then we present some basic notions and results of the
Darboux theory of integrability, and further we apply them to the characterization of one of
our main problems, as a preliminary step for its complete study in later chapters. Finally,
we include the results about limit cycles, bifurcations and averaging theory that we need in
Chapters 6 and 7. All these results are included here as this work aspires to be self-contained.

1.1 Vector fields
Let D be an open subset of the euclidean plane R2. We define a vector field of class Cr on
D as a Cr map X : D ! R2 where X(x) represents the free part of a vector attached at the
point x 2 D. The r can be a positive integer, +1 or !, in which case C! represents the class
of the analytic functions. A vector field defines a differential equation

ẋ = X(x), (1.1.1)

where x 2 D, and ẋ denotes the derivative of x with respect to t. We say that x is the
dependent variable and t the independent variable, although we usually also refer to t as the
time.

The differential equation (1.1.1) is autonomous since X = X(x) does not depend on t,
and along this manuscript we will always work with this kind of equations.

The solutions of this differential equation are differentiable maps ' : I ! D such that

d'

dt
(t) = X('(t)),

where I is an interval on which the solution is defined and t 2 I .
Let p 2 D and ' : I ! D be a solution of (1.1.1) such that '(0) = p. The solution ' is

called maximal if for every solution  : J ! D such that I ⇢ J and ' =  |I then I = J
and, consequently ' =  . In this case we denote the interval of definition as Ip and call it
the maximal interval.

1
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A point p 2 D is a singular point, a singularity or an equilibrium point if X(p) = 0 and
it is a regular point if X(p) 6= 0. If x is a singular point of X , then '(t) = x, with t 2 R, is
a solution of (1.1.1), that is, '̇(t) = X('(t)) = X(x) = 0. If L is a straight line and q is a
point of L, we say that q is a contact point of L with the vector field X if X(q) is parallel to
L.

If ' : Ip ! D is a maximal solution, it is either regular or constant (if it consist only
on a singular point). The image �p = �(p) = {'(t) : t 2 Ip} ⇢ D endowed with the
orientation induced by ', in case ' is regular, is called the trajectory or orbit associated to
the maximal solution ' or to the point p. We will denote �+ = {'(t) : t 2 Ip \ R+} and
�� = {'(t) : t 2 Ip \ R�}.

We say that an orbit 'p(t) of X is periodic if there exists a real number c > 0 such that
'p(t+ c) = 'p(t) for every t 2 R.

We introduce now the concepts of ↵ and !- limit sets of an orbit. Let 'p(t) be the orbit
passing through the point p defined on its maximal interval Ip = (ap, bp). If bp = 1, we can
define the set

!(p) = {q 2 D : there exist {tn} with tn ! 1 and '(tn) ! q when n ! 1} ,

and in the same way, if ap = �1, we can define the set

↵(p) = {q 2 D : there exist {tn} with tn ! �1 and '(tn) ! q when n ! 1} .

These sets !(p) and ↵(p) are called the !-limit set and the ↵-limit set of p, respectively.
We say that a periodic orbit �1 is a limit cycle if there exists another orbit �2 such that

↵(�2) = �1 or !(�2) = �1.

1.2 Singular points
Now we focus on singular points, defining the different types and introducing the results for
studying them. Consider a planar Cr vector field X = (P,Q) and a singular point p. We say
that the matrix

DX(p) =

0

BBB@

@P

@x
(p)

@P

@y
(p)

@Q

@x
(p)

@Q

@y
(p)

1

CCCA

is the linear part of the vector field X at the singular point p, and it will allow us to classify
the point p. According to the eigenvalues of this matrix the singular point p can be of one of
the following types:

• Hyperbolic if the two eigenvalues have real part different from zero.

• Semi-hyperbolic if exactly one eigenvalue is equal to zero.

• Nilpotent if both eigenvalues are equal to zero but DX(p) 6⌘ 0.

• Lineraly zero if DX(p) ⌘ 0.
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1.2 Singular points

• Linearly a center if the eigenvalues of DX(p) are purely imaginary without being zero.
In that case, and if the vector field X is analytic, it can have either a center or a focus
at p. We say that it is a center if there is an open neighborhood consisting, besides
the singularity, of periodic orbits. It is a focus if there is an open neighborhood such
that the orbit through any of its points tends to the singular point spirally in positive or
negative time.

We will say that p is non-degenerate if it is either hyperbolic or linearly a center, i.e., if
zero is not an eigenvalue. We also call hyperbolic and semi-hyperbolic singularities elemen-
tary singular points.

In order to study the different cases systematically, we introduce some definitions and
results. Let us consider now that the vector field X is defined in a compact neighborhood V
of p such that X(p) = 0 and X(q) 6= 0 for all q 2 V \ {p}.

(i) We say that p is a center if there exists a neighborhood W ✓ V of p such that @W is a
periodic orbit and all orbits in W\ {p} are periodic.

(ii) We say that p is an attracting focus or node if there exists a neighborhood W ✓ V
of p such that at all points of @W the vector field points inward and for all q 2
V \ {p} , !(q) = {p} and ��(q) \ @V 6= ;.

(iii) We say that p is a repelling focus or node if there exists a neighborhood W ✓ V
of p such that at all points of @W the vector field points outward and for all q 2
V \ {p} , ↵(q) = {p} and �+(q) \ @V 6= ;.

(iv) We say that p has a non-trivial finite sectorial decomposition if we are not in the previ-
ous cases and if there exist a finite number of orbits tending to p, namely c0, ..., cn�1,
each cutting @V transversely at one point pi, in the sense that @V is a transverse sec-
tion near pi, and with the property that between ci and ci+1 (with cn = c0), we have
one of the following situations with respect to the sector Si, defined as the compact
region bounded by the point p, ci, ci+1 and the piece of @V between pi and pi+1:

(1) Attracting parabolic sector. At all points of [pi, pi+1] ⇢ @V the vector field
points inward, and for all q 2 Si\ {p} , !(q) = {p} and ��(q) \ @V 6= ;. See
Figure 1.2.1(a).

(2) Repelling parabolic sector. At all points of [pi, pi+1] ⇢ @V the vector field
points outward, and for all q 2 Si\ {p} , ↵(q) = {p} and �+(q)\ @V 6= ;. See
Figure 1.2.1(b).

(3) Hyperbolic sector. There exists a point qi 2 (pi, pi+1) ⇢ @V with the property
that at all points of [pi, qi) the vector field points inward (respectively outward)
while at all points of (qi, pi+1] the vector field points outward (respectively in-
ward). At qi the vector field is tangent at @V and the tangency is external in the
sense that the orbit of qi stays outside V , and for all q 2 Si\ci [ ci+1 [ qi we
have �+(q) \ @V 6= ; and ��(q) \ @V 6= ;. See Figure 1.2.1(c).

(4) Elliptic sector. There exists a point qi 2 (pi, pi+1) ⇢ @V with the property
that �(qi) ⇢ V with !(qi) = ↵(qi) = {p}. At all points q 2 [pi, qi) the
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vector field points inward, �+(q) ⇢ V and !(q) = p. We denote by S[pi,qi] =S
q2[pi,qi]

�+(q). At all points q 2 (qi, pi+1] the vector field points outward,
��(q) ⇢ V and ↵(q) = {p}. We denote by S[qi,pi+1] =

S
q2[qi,pi+1]

��(q). At
all points q of S\

�
S[pi,qi] [ S[qi,pi+1] [ {p}

�
we have �(q) ⇢ V with !(q) =

↵(q) = {p}. The same may also be true for [pi, qi] and [qi, pi+1] interchanged.
See Figure 1.2.1(d).

If X is defined in a neighborhood U of the singular point p we say that X has the finite
sectorial decomposition property at p if there exists some neighborhood V ⇢ U of p such
that X |V satisfies one of the conditions (i), (ii), (iii) or (iv).

In the first three cases there is only one sector, so we speak about a trivial sectorial
decomposition. In the last case, we denote respectively by e, h and r the number of elliptic,
hyperbolic and parabolic sectors. Since we are not in the cases (i), (ii) or (iii), we need that
e, h or both are different from zero. We try to maintain r as small as possible, both by
joining two adjacent parabolic sectors and by adding a parabolic sector to an elliptic one if it
is adjacent to it. Hence the remaining parabolic sectors can only be the ones lying between
two hyperbolic sectors. We call this a minimal sectorial decomposition. Since X(pi) and
X(pi+1) cannot both be pointing inward (or outward) if Si is a hyperbolic or an elliptic
sector, it is clear that e+ h is always even.

(a) Attracting sector. (b) Repelling sector.

 
(c) Hyperbolic sector. (d) Elliptic sector.

Figure 1.2.1: Sectors near a singular point.

Once we have defined the different types of singular points we will introduce the results
to study them. These results provide the local phase portrait at the origin of systems which are
in a normal form, so if we want to apply them to a general polynomial differential system we
have to move the singular point we want to study to the origin and then put the system in the
required normal form. Then, before stating the results, we remind some basic but important
tools. First note that we can always move a singular point p = (x0, y0) to the origin of
coordinates. If p is a singular point of the differential system

ẋ = P (x, y), ẏ = Q(x, y),

then the point (0, 0) is a singular point of the system

ẋ = P (x, y), ẏ = Q(x, y),

4



1.2 Singular points

where x = x+ x0 and y = y+ y0, and the functions P (x, y) and Q(x, y) start with terms of
order one in x and y. Thus we get a system of the form

ẋ = ax+ by + F (x, y), ẏ = cx+ dy +G(x, y),

where the first partial derivatives of F and G are zero at the origin.
Also we recall that by a linear change of coordinates the linear part DX(0, 0) can be

placed in real Jordan canonical form. If the singularity is hyperbolic, the Jordan form is
✓
�1 0
0 �2

◆
or
✓
�1 1
0 �1

◆
or
✓

↵ �
�� ↵

◆
,

with �1�2 6= 0, ↵ 6= 0 and � > 0. In the semi-hyperbolic case and the linearly center case,
we obtain, respectively ✓

� 0
0 0

◆
and

✓
0 �
�� 0

◆
,

with � 6= 0 and � > 0. And finally, in the nilpotent case and the linearly zero case, we obtain,
respectively, ✓

0 1
0 0

◆
and

✓
0 0
0 0

◆
.

If we allow a time rescaling introducing a new time variable u = �t for some � > 0, then
we can also suppose that in the hyperbolic case one of the eigenvalues �1 or �2 is equal to ±1
and either ↵ = ±1 or � = 1, while in the semi-hyperbolic case � = ±1 and in the linearly
center case � = 1.

These considerations will be necessary to apply the following results to our polynomial
differential systems. Now let state the results that provide the local phase portraits in the cases
of non-degenerated, semi-hyperbolic and nilpotent singular points, except for linear centers,
in which case other tools must be used, as Lyapunov constants, but we will not deal with this
situation in our work.

Theorem 1.2.1 (Non-Degenerated Singular Points Theorem). Let (0, 0) be an isolated sin-
gular point of the vector field X , given by

ẋ = ax+ by +A(x, y),

ẏ = cx+ dy +B(x, y),
(1.2.2)

where A and B are analytic in a neighborhood of the origin with A(0, 0) = B(0, 0) =
DA(0, 0) = DB(0, 0) = 0. Let �1 and �2 be the eigenvalues of the linear part DX(0, 0) of
the system at the origin. Then the following statements hold.

(i) If �1 and �2 are real and �1�2 < 0, then (0, 0) is a saddle (see Figure 1.2.2(a)). If we
denote by E1 and E2 the eigenspaces of respectively �1 and �2, then one can find two
invariant analytic curves, tangent respectively to E1 and E2 at the origin, on one of
which points are attracted towards the origin, and on one of which points are repelled
away from the origin. On these invariant curves X is C!-linearizable. There exists a
C1 coordinate change transforming (1.2.2) into one of the following normal forms:

ẋ = �1x, ẏ = �2y,
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in the case �2/�1 2 R\Q, and

ẋ = x
�
�1 + f(xkyl)

�
, ẏ = y

�
�2 + g(xkyl)

�
,

in the case �2/�1 = �k/l 2 Q with k, l 2 N and where f and g are C1 functions. In
this case systems (1.2.2) are C0-conjugate to

ẋ = x, ẏ = �y.

(ii) If �1 and �2 are real with |�1| � |�2| and �1�2 > 0, then (0, 0) is a node (see Figure
1.2.2(b)). If �1 > 0 (respectively �1 < 0) then it is repelling or unstable (respectively
attracting or stable). There exists a C1 coordinate change transforming (1.2.2) into

ẋ = �1x, ẏ = �2y,

in case �2/�1 /2 N, and into

ẋ = �1x, ẏ = �2y + �xm,

for some � = 0 or 1, in case �2 = m�1 with m 2 N and m � 1. In this case systems
(1.2.2) are C0-conjugate to

ẋ = �x, ẏ = �y,

with � = ±1 and �1� > 0.

(iii) If �1 = ↵ + i� and �2 = ↵ � i� with ↵,� 6= 0, then (0, 0) is a “strong” focus (see
Figure 1.2.2(c)). If ↵ > 0 (respectively ↵ < 0), it is repelling or unstable (respectively
attracting or stable). There exists a C1 coordinate change transforming (1.2.2) into

ẋ = ↵x+ �y, ẏ = ��x+ ↵y.

In this case systems (1.2.2) are C0- conjugate to

ẋ = �x, ẏ = �y,

with � = ±1 and ↵� > 0.

(iv) If �1 = i� and �2 = �i� with � 6= 0, then (0, 0) is a linear center, topologically, a
“weak” focus or a center (see Figures 1.2.2(c) and (d)).

x

y

(a)

x

y

(b)

y

x

(c)

x

y

(d)

Figure 1.2.2: Phase portraits of non-degenerate singular points.
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1.2 Singular points

Remark 1.2.2. The denomination strong focus in (iii) is used to describe singular points
whose linear part DX(0, 0) is already a focus, while the denomination weak focus is used in
the case DX(0, 0) is a center.

Theorem 1.2.3 (Semi-Hyperbolic Singular Points Theorem). Let (0, 0) be an isolated singu-
lar point of the vector field X given by

ẋ = A(x, y),

ẏ = �y +B(x, y),

where A and B are analytic in a neighborhood of the origin with A(0, 0) = B(0, 0) =
DA(0, 0) = DB(0, 0) = 0 and � > 0. Let y = f(x) be the solution of the equation
�y + B(x, y) = 0 in a neighborhood of the point (0, 0), and suppose that the function
g(x) = A(x, f(x)) has the expression g(x) = amxm + o(xm), where m � 2 and am 6= 0.
Then there always exists an invariant analytic curve, called the strong unstable manifold,
tangent at the origin to the y-axis, on which X is analytically conjugate to

ẏ = �y;

it represents repelling behavior since � > 0. Moreover the following statements hold.

(i) If m is odd and am < 0, then (0, 0) is a topological saddle (see Figure 1.2.3(a)).
Tangent to the x-axis there is a unique invariant C1 curve, called the center manifold,
on which X is C1-conjugate to

ẋ = �xm(1 + axm�1), (1.2.3)

for some a 2 R. If this invariant curve is analytic, then on it X is C!-conjugate to
(1.2.3).
System X is C1-conjugate to

ẋ = �xm(1 + axm�1), ẏ = �y,

and is C0-conjugate to

ẋ = �x, ẏ = y.

(ii) If m is odd and am > 0, then (0, 0) is a unstable topological node (see Figure 1.2.3(b)).
Every point not belonging to the strong unstable manifold lies on an invariant C1

curve, called a center manifold, tangent to the x-axis at the origin, and on which X is
C1-conjugate to

ẋ = xm(1 + axm�1), (1.2.4)

for some a 2 R. All these center manifolds are mutually infinitely tangent to each other,
and hence at most one of them can be analytic, in which case X is C!- conjugate on
it to (1.2.4).
System X is C1-conjugate to

ẋ = xm(1 + axm�1), ẏ = �y,
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and is C0-conjugate to

ẋ = x, ẏ = y.

(iii) If m is even, then (0, 0) is a saddle-node, that is, a singular point whose neighborhood
is the union of one parabolic and two hyperbolic sectors (see Figure 1.2.3(c)). Modulo
changing x into �x, we suppose that am > 0. Every point to the right of the strong un-
stable manifold (side x > 0) lies on an invariant C1 curve, called a center manifold,
tangent to the x-axis at the origin, and on which X is C1-conjugate to

ẋ = xm(1 + axm�1), (1.2.5)

for some a 2 R. All these center manifolds coincide on the side x  0 and are hence
infinitely tangent at the origin. At most one of these center manifolds can be analytic,
in which case X is C!-conjugate on it to (1.2.5). System X is C1-conjugate to

ẋ = xm(1 + axm�1), ẏ = �y,

and is C0-conjugate to

ẋ = x2, ẏ = y.

x

y
 

(a)

x

y
 

(b)

x

y
 

(c)

Figure 1.2.3: Phase portraits of semi-hyperbolic singular points.

Remark 1.2.4. The case � < 0 can be reduced to � > 0 by changing X into �X . We also
recall that in case g(x) = A(x, f(x)), as defined in Theorem 1.2.3, is identically zero, then
there exists an analytic curve consisting of singularities.

Theorem 1.2.5 (Nilpotent Singular Points Theorem). Let (0, 0) be an isolated singular point
of the vector field X given by

ẋ = y +A(x, y),

ẏ = B(x, y),

where A and B are analytic in a neighborhood of the origin and also DA(0, 0) = DB(0, 0) =
0. Let y = f(x) be the solution of the equation y + A(x, y) = 0 in a neighborhood of the
point (0, 0) and consider the functions

F (x) = B(x, f(x)) and G(x) = (@A/@x+ @B/@y) (x, f(x)).

Then the following statements hold.
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1.2 Singular points

(i) If F (x) ⌘ G(x) ⌘ 0, then the phase portrait of X is given by 1.2.4(a).

(ii) If F (x) ⌘ 0 and G(x) = bxn+o(xn) for n 2 N with n � 1 and b 6= 0, then the phase
portrait of X is given by Figure 1.2.4(b) or (c).

(iii) If G(x) ⌘ 0 and F (x) = axm + o(xm) for m 2 N with m � 1 and a 6= 0, then

(a) If m is odd and a > 0, then the origin of X is a saddle as in Figure 1.2.4(d) and
if a < 0, then it is a center or a focus as in Figure 1.2.4(e-g).

(b) If m is even then the origin of X is a cusp as in Figure 1.2.4(h).

(iv) If F (x) = axm+o(xm) and G(x) = bxn+o(xn) with m 2 N, m � 2, n 2 N, n � 1,
a 6= 0 and b 6= 0, then we have

(a) If m is even, and

(a1) m < 2n+ 1, then the origin of X is a cusp as in Figure 1.2.4(h).
(a2) m > 2n + 1, then the origin of X is a saddle-node as in Figure 1.2.4(i)

or (j).

(b) If m is odd and a > 0 then the origin of X is a saddle as in Figure 1.2.4(d).

(c) If m is odd, a < 0 and

(c1) Either m < 2n + 1, or m = 2n + 1 and b2 + 4a(n + 1) < 0, then the
origin of X is a center or a focus as in Figure 1.2.4(e-g).

(c2) n is odd and either m > 2n+1, or m = 2n+1 and b2 +4a(n+1) � 0,
then the phase portrait of the origin of X consist of one hyperbolic and
one elliptic sector as in Figure 1.2.4(k).

(c3) n is even and either m > 2n+1, or m = 2n+1 and b2+4a(n+1) � 0,
then the origin of X is a node as in Figure 1.2.4(l) or (m). The node is
attracting if b < 0 and repelling if b > 0.

The previous results provide a total classification of non-degenerated, semi-hyperbolic
and nilpotent singular points, except, as we said before, for the linear centers. All these
results and their proofs can be found in Chapters 2 and 3 of [50]. Whereas, to study a singular
point for which the Jacobian matrix is identically zero, the only possibility is studying each
singular point case by case. The main technique to perform the desingularization of a linearly
zero singular point is the blow up technique.

The desingularization theorem for planar vector fields was first stated by Bendixson in
1901 without proof. Seidenberg gave the first rigorous proof of the theorem for the analytic
case (see [125]). The desingularization procedure was extended to C1 vector fields of “Lo-
jasiewicz” type in [49]. Van den Essen found a transformed proof of the desingularization
theorem for analytic vector fields (see [130]).

9



Preliminaries

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 1.2.4: Phase portraits of nilpotent singular points.

Roughly speaking the idea behind the blow up technique is to explode, through a change
of variables that is not a diffeomorphism, the singularity to a line. Then, for studying the
original singular point, one studies the new singular points that appear on this line, and this
is simpler. If some of these new singular points are linearly zero, the process is repeated.
Dumortier proved that this iterative process of desingularization is finite (see [49]).

Consider a real planar polynomial differential system of the form

ẋ = P (x, y) = Pm(x, y) + . . . ,

ẏ = Q(x, y) = Qm(x, y) + . . . ,
(1.2.6)

where P and Q are coprime polynomials, Pm and Qm are homogeneous polynomials of
degree m 2 N and the dots mean higher order terms in x and y. Note that we are assuming
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that the origin is a singular point because m > 0. We define the characteristic polynomial of
(1.2.6) as

F(x, y) := xQm(x, y)� yPm(x, y),

and we say that the origin is a nondicritical singular point if F 6⌘ 0 and a dicritical singular
point if F ⌘ 0. In this last case Pm = xWm�1 and Qm = yWm�1, where Wm�1 6⌘ 0 is a
homogeneous polynomial of degree m � 1. If y � vx is a factor of Wm�1 and v = tan ✓⇤,
✓⇤ 2 [0, 2⇡), then ✓⇤ is a singular direction.

The homogeneous directional blow up in the vertical direction (resp. in the horizontal
direction) is the mapping (x, y) ! (x, z) = (x, y/x) (resp. (x, y) ! (z, y) = (x/y, y)),
where z is a new variable. This map transforms the origin of (1.2.6) into the line x = 0 (resp.
y = 0), which is called the exceptional divisor. The expression of system (1.2.6) after the
blow up in the vertical direction is

ẋ = P (x, xz), ż =
Q(x, xz)� zP (x, xz)

x
, (1.2.7)

that is always well-defined since we are assuming that the origin is a singular point. After
the blow up, we cancel an appearing common factor xm�1 (xm if F ⌘ 0). Moreover, the
mapping swaps the second and third quadrants in the vertical directional blow up and the
third and fourth quadrants in the horizontal blow up, after which the system writes as

ż =
P (yz, y)� zQ(yz, y)

y
, ẋ = P (yz, y).

The two following results provide the relationship between the original singular point of
system (1.2.6) and the new singularities of system (1.2.7). For more details see [5].

Proposition 1.2.6. Let 't = (x(t), y(t)) be a trajectory tending to the origin of system
(1.2.6), in forward of backward time. Suppose that F 6⌘ 0. Assume that 't is tangent to one
of the two angle directions tan ✓ = v, v 6= 1. Then the following statements hold.

1. The two angle directions ✓ = arctan v (in [0, 2⇡)) are characteristic directions.

2. The point (0, v) on the (x, z)-plane is an isolated singular point of system (1.2.7).

3. The trajectory 't corresponds to a solution of system (1.2.7) tending to the singular
point (0, v).

4. Conversely, any solution of system (1.2.7) tending to the singular point (0, v) on the
(x, z)-plane corresponds to a solution of system (1.2.6) tending to the origin in one of
the two angle directions tan ✓ = v.

Proposition 1.2.7. Consider system (1.2.6) and suppose that F ⌘ 0. Then for every non-
singular direction ✓ there exists exactly one semipath tending to the origin in the direction ✓
in forward or backward time. If ✓⇤ is a singular direction, there may be either no semipaths
tending to the origin in the direction ✓⇤, or a finite number, or infinitely many.
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Finally, to study the behavior of the solutions around the origin of system (1.2.6), it is
necessary to study the singular points of system (1.2.7) on the exceptional divisor. They
correspond to either characteristic directions in the nondicritical case, or singular directions
in the dicritical case. It may happen that some of these singular points are linearly zero, in
which case we have to repeat the process. As we said before, it is proved in [49] that this
chain of blow ups is finite.

1.3 Poincaré compactification
In order to study a planar vector field and to draw its phase portrait, working over the complete
real plane R2 is not easy. If the functions defining the vector field are polynomials, we can use
the Poincaré compactification, which allows us to control the orbits which tend to or come
from infinity, and to draw the phase portrait in a finite region. For this reason we will work
on the Poincaré sphere, introduced by Poincaré [109].

In this section we introduce the Poincaré compactification and we shall use the coordi-
nates (x1, x2) instead of (x, y). Consider two polynomials P and Q of arbitrary degree in the
variables x1 and x2 and let d be the maximum of the degrees of P and Q. The polynomial
vector field of degree d

X = P
@

@x1
+Q

@

@x2

defines the differential system

ẋ1 = P (x1, x2),

ẋ2 = Q(x1, x2).
(1.3.8)

We consider R2 as the plane in R3 defined by (y1, y2, y3) = (x1, x2, 1). We also
consider the sphere S2 =

�
y 2 R3 : y21 + y22 + y23 = 1

 
, which we call Poincaré sphere.

This sphere is tangent to R2 at the point (0, 0, 1). We may divide this sphere into H+ =�
y 2 S2 : y3 > 0

 
(the northern hemisphere), H� =

�
y 2 S2 : y3 < 0

 
(the southern hemi-

sphere) and S1 =
�
y 2 S2 : y3 = 0

 
(the equator). We consider the projection of the vector

field X from R2 to S2 given by the central projections f+ : R2 ! S2 and f� : R2 ! S2.
By definition, f+(x) is the intersection of the straight line passing through the point x and
the origin with the northern hemisphere of S2, and respectively for f�(x) with the southern
hemisphere:

f+(x) =

✓
x1

�(x)
,

x2

�(x)
,

1

�(x)

◆
, f�(x) =

✓
�x1

�(x)
,
�x2

�(x)
,

�1

�(x)

◆
,

where �(x) =
p

x2
1 + x2

2 + 1.
In this way we obtain induced vector fields in each hemisphere. The induced vector field

on H+ is
X(y) = Df+(x)X(x), where y = f+(x),

and the one in H� is

X(y) = Df�(x)X(x), where y = f�(x).
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We remark that X is a vector field on S2\S1 that is everywhere tangent to S2. Note that
the points at infinity of R2 (two for each direction) are in bijective correspondence with the
points of the equator of S2.

Now we would like to extend the induced vector field X from S2\S1 to S2. Unfortunately
it does not in general stay bounded as we get close to S1, obstructing the extension. It turns
out, however, that if we multiply the vector field by the factor ⇢(x) = xd�1

3 then, as we will
check in a moment, the extension becomes possible. The extended vector field on S2 is called
the Poincaré compactification of the vector field X on R2 and it is denoted by ⇢(X).

To make calculations we use the six local charts of S2 given by

Uk =
�
y 2 S2 | yk > 0

 
, Vk =

�
y 2 S2 | yk < 0

 
,

for k = 1, 2, 3, and the corresponding local maps

�k : Uk �! R2 and  k : Vk �! R2,

which are defined as

�k(y) =  k(y) =

✓
ym
yk

,
yn
yk

◆
,

for m < n and m,n 6= k. We denote by z = (u, v) the value of �k(y) or  k(y), for any
k, such that (u, v) will play different roles depending on the local chart we are considering.
Geometrically the coordinates (u, v) can be expressed as in Figure 1.3.1. The points of S1 in
any chart have v = 0.

Figure 1.3.1: The local charts (Uk,�k) for k = 1, 2, 3 of the Poincaré sphere.

In what follows we make a detailed calculation of the expression of ⇢(X) in the local chart
U1. We have X(x) = (P (x1, x2), Q(x1, x2)) and X(y) = Df+(x)X(x) with y = f+(x),
then

D�1(y)X(y) = D�1(y) �Df+(x)X(x) = D(�1 � f+)(x)X(x).
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Let X |U1 denote the system defined as D�1(y)X(y). Then

(�1 � f+)(x) = �1

✓
x1

�(x)
,

x2

�(x)
,

1

�(x)

◆
=

✓
x2

x1
,
1

x1

◆
= (u, v),

and

D(�1 � f+)(x) =

0

BB@

�x2

x2
1

1

x1

� 1

x2
1

0

1

CCA .

We have

X |U1 =

0

BB@

�x2

x2
1

1

x1

� 1

x2
1

0

1

CCA

✓
P (x1, x2)
Q(x1, x2)

◆

=

✓
�x2

x2
1

P (x1, x2) +
1

x1
Q(x1, x2),�

1

x2
1

P (x1, x2)

◆

=
1

x2
1

(�x2 P (x1, x2) + x1 Q(x1, x2),�P (x1, x2))

= v2
✓
�u

v
P

✓
1

v
,
u

v

◆
+

1

v
Q

✓
1

v
,
u

v

◆
,�P

✓
1

v
,
u

v

◆◆
.

Also

⇢(y) = yd�1
3 =

✓
1

�(x)

◆d�1

=
vd�1

�(z)d�1
= vd�1m(z),

where m(z) = (1 + u2 + v2)
1�d
2 . Therefore we can multiply the field X |U1 by ⇢(y),

which is equivalent to change the time variable t for a new variable s, so that dt = ⇢(y)ds.
This does not make any changes on the phase portrait, except the velocity at which orbits
are traveled. Now we have a compactification of the field on the local charts that has a well
defined polynomial expression:

⇢(y)(X |U1) = vd+1m(z)

✓
�u

v
P

✓
1

v
,
u

v

◆
+

1

v
Q

✓
1

v
,
u

v

◆
,�P

✓
1

v
,
u

v

◆◆
.

We notice that while X |U1 is not well defined when v = 0, p(X) |U1= ⇢X |U1 is well
defined along v = 0, since the multiplying factor vd+1 cancels any factor of v which could
appear in the denominator, so the extension of ⇢X to p(X) is defined on the whole of S1. In
order to simplify the extended vector field we also make a change in the time variable and
remove the factor m(z). Similar arguments can be applied to the rest of the local charts.

Summarizing, the Poincaré compactification of the vector field X is given by the follow-
ing expressions. In local chart (U1,�1) the expression is

u̇ = vd

�u P

✓
1

v
,
u

v

◆
+Q

✓
1

v
,
u

v

◆�
,

v̇ = �vd+1 P

✓
1

v
,
u

v

◆
,

(1.3.9)
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in (U2,�2) we have

u̇ = vd

P

✓
u

v
,
1

v

◆
� uQ

✓
u

v
,
1

v

◆�
,

v̇ = �vd+1 Q

✓
u

v
,
1

v

◆
,

(1.3.10)

and finally, in (U3,�3):

u̇ = P (u, v),

v̇ = Q(u, v).
(1.3.11)

Note that we do not need to go through the complete geometrical construction in order to get
these expressions. The expressions in (1.3.11) do not need any elaboration. To obtain (1.3.9)
we start with (1.3.8) and introduce coordinates (u, v) by the formulas (x1, x2) = (1/v, u/v).
This leads to a vector field X

u
which we multiply by vd�1. To obtain (1.3.10) we start with

(1.3.8) and introduce coordinates (u, v) by the formulas (x1, x2) = (u/v, 1/v). We again
multiply the obtained vector field X

v
by vd�1.

In the charts (Vk, k), with k = 1, 2, 3, the expression for ⇢(X) is the same as for
(Uk,�k) multiplied by (�1)d�1. Therefore, it is not necessary to study the system in these
charts independently, as it is enough to determine the behavior of the orbits based on the
behavior on charts (Ui,�i), with i = 1, 2, 3.

The equator S1 is invariant by the vector field ⇢(X) and all the singular points of ⇢(X)
which lie in this equator are called the infinite singular points of X . If y 2 S1 is an infinite
singular point, then �y is also an infinite singular point and they have the same (respectively
opposite) stability if the degree of vector field is odd (respectively even).

The image of the northern hemisphere of S2 onto the plane y3 = 0 under the orthogonal
projection ⇡ is called the Poincaré disk, and we denote it by D2. Since the orbits of ⇢(X)
on S2 are symmetric with respect to the origin of R3, we only need to consider the flow of
⇢(X) in the closed northern hemisphere, and we can project the phase portrait of ⇢(X) on
the northern hemisphere onto the Poincaré disk. We shall present the phase portraits of the
polynomial differential systems in the Poincaré disk, which is covered by charts U1,V1,U2

and V2 as in Figure 1.3.2.

U1

V1

U2

V2

Figure 1.3.2: The projection of the northern hemisphere on the Poincaré disk, with charts U1,
V1, U2 and V2.
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1.4 Topological equivalence and phase portraits
We introduce the notion of equivalence between two vector fields which allows us to compare
their phase portraits. Let X1 and X2 be two vector fields defined on open subsets D1 and
D2 of R2, respectively. We say that X1 is topologically equivalent to X2 when there exists
a homeomorphism h : D1 ! D2 which sends orbits of X1 to orbits of X2 preserving
(or reversing) the orientation. More precisely, let p 2 D1 and �1p be the oriented orbit of
X1 passing through p; then h(�1p) is an oriented orbit of X2 passing through h(p). Such a
homeomorphism h is called a topological equivalence between X1 and X2.

A topological equivalence h defines an equivalence relation between vector fields defined
on open sets D1 and D2 = h(D1) of R2. A topological equivalence h between X1 and X2

maps singular points to singular points, and periodic orbits to periodic orbits.
Since we will be working on the Poincaré disk, we will say that two polynomial vector

fields X1 and X2 on R2 are topologically equivalent if there exists a homeomorphism on
the Poincaré disk which preserves the infinity S1 and sends the trajectories of the flow of
⇡(⇢(X1)) to the trajectories of the flow of ⇡(⇢(X2)), preserving or reversing the orientation
of all the orbits.

Our objective is to give a topological classification of the phase portraits of some differen-
tial systems. Generally, by a phase portrait of the vector field X , we mean the set of oriented
orbits of X . It consists of singularities and regular orbits, oriented according to the maximal
solutions describing them, hence in the sense of increasing t. Usually the phase portrait is
represented by drawing a number of significant orbits, representing the orientation by arrows
(in case of regular orbits).

For linear vector fields it is possible to describe all conjugacy classes, but this is not for
nonlinear vector fields. However, there exists a general characterization of the topological
equivalence classes for vector fields on the plane. In order to present it, we introduce some
definitions. The vector field X needs only to be sufficiently regular to admit the existence of
a continuous flow (local Lipschitz continuity suffices). We consider a differential equation
ẋ = X(x) where X is a locally Lipschitz function on R2 and let �(s, x) be the flow defined
by the differential equation. Following the notation of the works of Markus and Neumann, we
denote by (R2,�) the flow defined by the differential equation. By the theorem of continuous
dependence on initial conditions, the flow (R2,�) is continuous. We say that a flow (R2,�)
is a parallel flow if it is topologically equivalent to one of the following flows:

(i) The flow defined on R2 by the differential system

ẋ = 1, ẏ = 0,

which we denote by strip flow.

(ii) The flow defined on R2\ {0} by the differential system given in polar coordinates

r0 = 0, ✓0 = 1,

which we denote by annulus flow.
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(iii) The flow defined on R2\ {0} by the differential system given in polar coordinates

r0 = r, ✓0 = 1,

which we denote by spiral flow.

Given a maximal open region on R2 on which the flow is parallel, it is interesting to know
the orbit structure of its boundary, where we can find the following types of orbits:

(i) a singular point,

(ii) a periodic orbit for which there does not exist a neighborhood entirely consisting of
periodic orbits,

(iii) an orbit �(p), homeomorphic to R for which there does not exist a neighborhood N of
�(p) such that

(1) for all q 2 N ↵(q) = ↵(p) and !(q) = !(p),

(2) the boundary @N of N , that is @N = N\N , is formed by ↵(p), !(p) and two
orbits �(q1) and �(q2) such that ↵(p) = ↵(q1) = ↵(q2) and !(p) = !(q1) =
!(q2).

We will call separatrix to a orbit satisfying (i), (ii) or (iii). The set of all separatrices of X is
closed and we denote it by ⌃X . We call V a canonical region if it is a maximal connected
component of R2\⌃X , in which case it necessarily is invariant under the flow.

Proposition 1.4.1. Every canonical region of (R2,�) is parallel, given by either a strip, an
annular or a spiral flow.

On the Poincaré disk we consider as separatrices of ⇡(⇢(X)) the finite singular points,
the limit cycles, the orbits on the boundary of a hyperbolic sector at a finite or an infinite
singular point, and also any orbit at the infinity S1. The separatrix configuration of ⇡(⇢(X))
is the union of an orbit of each canonical region with the set ⌃X , and it is denoted by ⌃

0

X .
We denote by S (respectively R) the number of separatrices (respectively canonical regions)
of a vector field ⇡(⇢(X)).

We say that two separatrix configurations ⌃
0

X1
and ⌃

0

X2
are topologically equivalent if

there is a homeomorphism h : D2 ! D2 such that h(⌃
0

X1
) = ⌃

0

X2
. We say that two

separatrix configurations are topologically distinct if they are not topologically equivalent.
The following theorem of Markus [96], Neumann [103] and Peixoto [106] allows us to

investigate only the separatrix configuration of a polynomial differential system in order to
determine its global phase portrait.

Theorem 1.4.2. The phase portraits in the Poincaré disk of two compactified polynomial
vector fields ⇡(⇢(X1)) and ⇡(⇢(X2)) with finitely many separatrices are topologically equiv-
alent if and only if their separatrix configurations ⌃

0

X1
and ⌃

0

X2
are topologically equivalent.
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1.5 Normally hyperbolic submanifolds
Here we summarize a result that allows us to study systems which have a submanifold con-
sisting of singular points, for more details see [38, 66]. If we have a smooth flow 't on a
manifold M and C is a submanifold of M consisting entirely of singular points, we say that
C is normally hyperbolic if the tangent bundle to M over C splits into three subbundles TC,
Es and Eu invariant under the flow and satisfying that d't contracts Es exponentially, d't

expands Eu exponentially and TC is the tangent bundle of C. For these submanifolds the
following result holds:

Theorem 1.5.1. Let C be a normally hyperbolic submanifold consisting of singular points
for a flow 't. Then there exist smooth stable and unstable manifolds tangent along C to
Es � TC and Eu � TC respectively. Furthermore, both C and the stable and unstable
manifolds are permanent under small perturbations of the flow.

1.6 Indices of singular points
Given an isolated singularity q of a vector field X , defined on an open subset of R2 or S2, we
define the index of q by means of the Poincaré Index Formula. We assume that q has the finite
sectorial decomposition property. Let e, h and r denote the number of elliptic, hyperbolic and
parabolic sectors of q, respectively, and suppose that e+ h+ r > 0. Then the index of q is

iq = (e� h)/2 + 1.

The index is always integer, we only need to see that in the previous definition e � h is
always even since, as we said in Section 1.2, e + h is always even. Moreover, given any
integer n 2 Z, there exists a singular point which index is n.

In Section 1.2 we have defined the different type of sectors: parabolic, hyperbolic and
elliptic, and the finite sectorial decomposition property for an isolated singular point different
from a center or a focus. By definition, we say that a center and a focus have neither elliptic,
hyperbolic, nor parabolic sectors and their index is +1.

If X is a vector field on S2, it is called a tangent vector field to S2 if for every p 2 S2,
X(p) belongs to the tangent plane TpS2 to S2 at the point p. We recall that the Poincaré
compactification of a vector field on R2 introduced in Section 1.3 is a tangent vector field on
the sphere, so the next result will be useful in our work.

Theorem 1.6.1 (Poincaré-Hopf). For every tangent vector field on S2 with a finite number of
singular points, the sum of their indices is 2.

1.7 Invariants and application of the Darboux theory of in-
tegrability

In order to characterize the Lotka-Volterra systems that we want to study, we use the Dar-
boux theory of integrability, which provides a link between the integrability of polynomial
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vector fields and the number of invariant algebraic surfaces that they have. The basic results
on dimension two can be found in Chapter 8 of [50], and these results have been extended
to Rn and Cn in [88–90]. We apply this theory to general Lotka-Volterra systems on dimen-
sion three, and then to the Kolmogorov resulting systems in dimension two. We state the
definitions and results in dimension three, their restriction to R2 being analogous.

We consider a real polynomial differential system in dimension three, that is, a system of
the form

ẋ = P (x, y, z),

ẏ = Q(x, y, z),

ż = R(x, y, z),

(1.7.12)

where P,Q and R are polynomials in the variables x, y and z. The degree of the polynomial
system is m = max {degP, degQ, degR} and we assume that these polynomials are rel-
atively prime in the ring of complex polynomials in the variables x, y and z. The vectorial
field associated to system (1.7.12) can be represented by the differential operator

X = P
@

@x
+Q

@

@y
+R

@

@z
.

Definition 1.7.1. The polynomial system (1.7.12) is integrable on an open subset U of R3

if there exists a nonconstant analytic function H : U ! R, called a first integral of the
system on U , which is constant on all trajectories (x(t), y(t), z(t)) of system (1.7.12) con-
tained in U , that is, H(x(t), y(t), z(t)) is constant for all values of t for which the solution
(x(t), y(t), z(t)) is defined and contained in U .

Definition 1.7.2. Let U ⇢ R3 be an open set. We say that an analytic function H(x, y, z, t) :
U ⇥R ! R is an invariant of the polynomial vector field X on U if H(x, y, z, t) is constant
for all values of t for which the solution (x(t), y(t), z(t)) is defined and contained in U .

Obviously, if an invariant H is independent of t, then it is a first integral. The information
provided by an invariant is weaker than the one provided by a first integral. An invariant,
in general, gives information only about either the ↵ or the !-limit set of the orbits of the
system.

If the first integral H is a rational function, then we say that H is a rational first integral.
For a rational first integral we always assume that the polynomials in the numerator and the
denominator are coprime. If the maximum between the degrees of the polynomials of the
numerator and the denominator of a rational first integral is d, then we say that the rational
first integral H has degree d.

Definition 1.7.3. Let f 2 R[x, y, z], f not identically zero. The algebraic surface f(x, y, z) =
0 is an invariant algebraic surface of the polynomial system (1.7.12) if for some polynomial
K 2 R[x, y, z] we have

Xf = P
@f

@x
+Q

@f

@y
+R

@f

@z
= Kf.

The polynomial K is called cofactor of the invariant algebraic surface f = 0. We note that,
since the polynomial system has degree m, any cofactor has degree at most m� 1.
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On the points of the algebraic surface f = 0 the gradient (@f/@x, @f/@y, @f/@z) of
f is orthogonal to the vector field X . Hence at every point of f = 0 the vector field X is
tangent to the curve f = 0, so this surface is formed by trajectories of the vector field X .
This justifies the name invariant algebraic surface, since it is invariant under the flow defined
by X .

Definition 1.7.4. An irreducible invariant algebraic surface f = 0 is an invariant algebraic
surface such that f is an irreducible polynomial in the ring R[x, y, z].

Clearly H is a first integral of system (1.7.12) on U if and only if XH = PHx+QHy +
RHz ⌘ 0 on U .

Definition 1.7.5. Let f, g 2 R[x, y, z] such that f and g are relatively prime in the ring
R[x, y, z], or that g = 1. Then the function exp(f/g) is a exponential factor of system
(1.7.12) if there exists a polynomial L 2 R[x, y, z] of degree at most m� 1 such that

P
@ exp(f/g)

@x
+Q

@ exp(f/g)

@y
+R

@ exp(f/g)

@z
= L exp(f/g).

The polynomial L is called the cofactor of the exponential factor exp(f/g).

Definition 1.7.6. A Darboux invariant for system (1.7.12) is an invariant H of the form

H(x, y, z, t) = f�1
1 . . . f�p

p Fµ1
1 . . . Fµq

q est,

where fi = 0 are invariant algebraic surfaces of system (1.7.12) for i = 1, ..., p, and Fj are
exponential factors of system (1.7.12) for j = 1, ..., q, �i, µj 2 R and s 2 R\ {0}.

Theorem 1.7.7 (Darboux Integrability Theorem for Polynomial Systems). Suppose that a
polynomial system (1.7.12) of degree m admits p irreducible invariant algebraic surfaces
fi = 0, with cofactors Ki for i = 1, . . . , p. Then, the next statements hold:

(i) There exist �i 2 R not all zero such that
Pp

i=1 �iKi = 0 if and only if the function
f�1
1 . . . f

�p
p is a first integral of system (1.7.12).

(ii) There exist �i 2 R not all zero such that
Pp

i=1 �iKi = �s for some s 2 R\ {0} if and
only if the function f�1

1 . . . f
�p
p exp(st) is an invariant of system (1.7.12).

As previously stated, our objective is to study the global dynamics of Lotka-Volterra
systems on dimension three, it is,

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

(1.7.13)

which have a rational first integral of degree two of the form x�1y�2z�3 . The Darboux theory
of integrability allows us to obtain a characterization of these systems, which can be classified
into three families.
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We consider the irreducible invariant algebraic surfaces f1(x, y, z) = x, f2(x, y, z) = y
and f3(x, y, z) = z, with cofactors K1, K2 and K3, respectively. As Ki is the cofactor of fi
we have that

Xfi = P
@fi
@x

+Q
@fi
@y

+R
@fi
@z

= Kifi.

For f1 = x we have

Xx = P
@x

@x
+Q

@x

@y
+R

@x

@z
= P = K1x,

and so we get the first cofactor K1 = a0 + a1x + a2y + a3z. Similarly, for f2 and f3 we
obtain cofactors K2 = b0 + b1x+ b2y + b3z and K3 = c0 + c1x+ c2y + c3z, respectively.

Applying Theorem 1.7.7, since we assume that x�1y�2z�3 is a first integral of the system,
we get that there exist �i 2 R, with i 2 {1, 2, 3}, not all zero, such that

P3
i=1 �iKi = 0, it

is,

�1 · (a0+a1x+a2y+a3z )+�2 · (b0+b1x+b2y+b3z )+�3 · (c0+c1x+c2y+c3z ) = 0.

Apart from the trivial solution {�1 = 0, �2 = 0, �3 = 0}, there are three solutions of this
equation:

S1 = {c0 = 0, c1 = 0, c2 = 0, c3 = 0, �2 = 0, �1 = 0} ,

S2 =

⇢
b0 = �c0�3

�2
, b1 = �c1�3

�2
, b2 = �c2�3

�2
, b3 = �c3�3

�2
, �1 = 0

�
, and

S3 =

⇢
a0 =

�b0�2 � c0�3
�1

, a1 =
�b1�2 � c1�3

�1
, a2 =

�b2�2 � c2�3
�1

,

a3 =
�b3�2 � c3�3

�1

�
,

which give rise to three families of Lotka-Volterra polynomial differential systems of degree
two in R3, with a first integral of the form x�1y�2z�3 . Now we will characterize each one of
these families.

At first we consider the family given by solution S1. As the parameters ci, i = 0, ..., 3,
are zero, we have that ż = 0 and Lotka-Volterra systems (1.7.13) are reduced to:

ẋ = x ( a0 + a1x+ a2y + a3z ),

ẏ = y ( b0 + b1x+ b2y + b3z ),

ż = 0.

As ż = 0, z is constant and these systems have H = z as a first integral. Note that if we
consider the first integral H = x�1y�2z�3 , and we apply the conditions given by S1, it is
�1 = �2 = 0, we obtain H = z�3 with �3 = 2, for getting the degree two, but we will
consider the simplest first integral. In each invariant plane z = constant, we have a Lotka-
Volterra polynomial differential system in R2. The phase portrait of these systems has been
studied in [117], so we are not going to deal with this case.
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Let us consider now the second family, given by the solution S2. This solution provides
the values of parameters bi as a function of the parameters �2, �3 and ci, with i = 0, .., 3, so
we can replace them in the expression of ẏ, obtaining

ẏ = y

✓
�c0�3

�2
� c1�3

�2
x� c2�3

�2
y � c3�3

�2
z

◆
.

If we denote � = ��3/�2, then the original Lotka-Volterra systems become

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = �y(c0 + c1x+ c2y + c3z),

ż = z(c0 + c1x+ c2y + c3z).

Given that �1 = 0, the first integral H = x�1y�2z�3 is reduced to H = y�2z�3 , but if this is
a first integral, also

H =
�
y�2z�3

�� 1
�2 = y�1z�

�3
�2 = y�1z� =

z�

y
.

is a first integral. If we want H to be rational of degree two, we must take � = 2. In each
level H = 1/h, with h 6= 0, we will have

1

h
=

z2

y
=) y = hz2,

and then, for each h, the initial Lotka-Volterra systems on dimension three reduce to the
systems on dimension two

ẋ = x ( a0 + a1x+ a2 h z2 + a3z ),

ż = z ( c0 + c1x+ c2 h z2 + c3z ).

We must study the phase portrait of the systems of this family, but it is equivalent to study the
phase portraits of the family of Kolmogorov systems on dimension two

ẋ = x ( a0 + a1x+ a2z
2 + a3z ),

ż = z ( c0 + c1x+ c2z
2 + c3z ).

In the particular cases in which H is zero or infinity, the differential systems on dimension
three are reduced to Lotka-Volterra systems on dimension two, having in each case z = 0
and y = 0, respectively. We recall that these systems had already been studied in [117].

At last we consider the family given by solution S3, which provides the values of pa-
rameters ai in function of parameters �i, bi and ci, with i = 0, ..., 3. Replacing them in the
expression of ẋ we obtain:

ẋ = x

✓
�b0�2 � c0�3

�1
+

x (�b1�2 � c1�3)

�1
+

y (�b2�2 � c2�3)

�1
+

z (�b3�2 � c3�3)

�1

◆
,
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1.7 Invariants and application of the Darboux theory of integrability

and if we denote
� = ��2

�1
and µ = ��3

�1
,

and replace it again in the previous expression, we obtain that in this case the initial Lotka-
Volterra systems have the form:

ẋ = x ( b0�+ c0µ+ x (b1�+ c1µ) + y (b2�+ c2µ) + z (b3�+ c3µ) ),

ẏ = y ( b0 + b1x+ b2y + b3z ),

ż = z ( c0 + c1x+ c2y + c3z ).

By hypothesis, we have the first integral H = x�1y�2z�3 . Thus, we also can consider as a
first integral

H = (x�1y�2z�3)�
1
�1 = x�1 y�

�2
�1 z�

�3
�1 =

y�zµ

x
.

We want H to be rational of degree two so we must take � = µ = 1. In each level H = 1/h,
with h 6= 0, we will have

1

h
=

yz

x
=) x = hyz,

and then, for each h, the initial Lotka-Volterra systems on dimension three are reduced to the
differential systems on dimension two

ẏ = y ( b0 + b1hyz + b2y + b3z ),

ż = z ( c0 + c1hyz + c2y + c3z ).

As in the previous case, we must study the phase portrait of this family of differential sys-
tems, which is equivalent to study the phase portraits of the following Kolmogorov family on
dimension two:

ẏ = y ( b0 + b1yz + b2y + b3z ),

ż = z ( c0 + c1yz + c2y + c3z ).

In conclusion, we have reduced the initial problem, the study of the global dynamics of
Lotka-Volterra systems on dimension three with a rational first integral of degree two, to
another problem on dimension two: study the global dynamics of the next two Kolmogorov
families:
ẋ = x(a0 + a1x+ a2z

2 + a3z),

ż = z(c0 + c1x+ c2z
2 + c3z),

(1.7.14)
ẏ = y(b0 + b1yz + b2y + b3z),

ż = z(c0 + c1yz + c2y + c3z).
(1.7.15)

These systems depend on eight parameters and the classification of all their distinct topo-
logical phase portraits is huge. For this reason we study a subclass of them.

For systems (1.7.14) we study the subclass of them having a Darboux invariant of the
form estx�1z�2 . By Theorem 1.7.7(ii), the expression �1Kx + �2Kz + s must be zero,
where Kx and Ky are the cofactors of the invariant planes x = 0 and z = 0, respectively.
Note that s and �21 + �22 can not be zero.
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We obtain the cofactors Kx = a0 + a1x+ a2z2 + a3z and Kz = c0 + c1x+ c2z2 + c3z
and then, solving the equation �1Kx + �2Kz + s = 0, we get the two following non-trivial
solutions

S̃1 =

⇢
s = �a0�1 � c0�2, a1 = �c1�2

�1
, a2 = �c2�2

�1
, a3 = �c3�2

�1

�
and

S̃2 = {s = �c0�2, c1 = 0, c2 = 0, c3 = 0, �1 = 0} .

Therefore, we get two subfamilies from the initial one (1.7.14). According to the condi-
tions given by solution S̃1, the first subfamily is

ẋ = x

✓
a0 �

c1�2
�1

x� c2�2
�1

z2 � c3�2
�1

z

◆
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
.

If we denote �2/�1 = µ and �1 = �, these systems become

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

and the Darboux invariant is x�z�µe�t�(a0+c0µ). But if this is a Darboux invariant, also it
is xzµe�t(a0+c0µ). Note that in order that we have a Darboux invariant a0 + c0µ cannot be
zero.

If we consider now the solution S̃2, we get the subfamily

ẋ = x
�
a0 + a1x+ a2z

2 + a3z
�
,

ż = c0z,

which is equivalent to the previous one, taking µ = 0 and interchanging the variables x and
z, so it is sufficient to study the first system, and we deal with that problem in Chapters 2 and
3.

For systems (1.7.15) we study the subclass having a Darboux invariant of the form esty�1z�2 ,
and we proceed in the same way that we did with systems (1.7.14).

At first, the expression �1Ky + �2Kz + s must be zero by Theorem 1.7.7(ii), with Ky

and Kz the cofactors of the invariant planes y = 0 and z = 0, respectively. We recall that s
and �21 + �22 can not be zero.

We obtain the cofactors Ky = b0 + b1yz + b2y + b3z and Kz = c0 + c1yz + c2y + c3z
and solving the equation �1Kx + �2Kz + s = 0, we get the following non-trivial solution

⇢
c1 = �b1�1

�2
, c2 = �b2�1

�2
, c3 = �b3�1

�2
, s = �b0�1 � c0�2

�
,

which leads to the systems

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z

✓
c0 �

b1yz�1
�2

� b2y�1
�2

� b3z�1
�2

◆
.
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If we denote �2 = � and �1 = �µ, then the systems become

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) ,

and the Darboux invariant is y�µz�e�t�(c0+b0µ). But if this is a Darboux invariant, also it is
yµze�t(c0+b0µ). Note that in order that we have a Darboux invariant c0+ b0µ cannot be zero.
We study these systems in Chapters 4 and 5.

1.8 Limit cycles: bifurcation and averaging theory
As defined in Section 1.1, a limit cycle is a periodic orbit �1 such that there exists another
orbit �2 satisfying ↵(�2) = �1 or !(�2) = �1. In this section we introduce some concepts
related to limit cycles and techniques for studying their existence.

Let us consider an autonomous system

ẋ = f(x), x 2 Rn, (1.8.16)

and let L0 be a periodic orbit of (1.8.16). Given a point x0 2 L0 we consider a cross-section
� to the periodic orbit, i.e., a smooth hypersurface of dimension n � 1 intersecting L0 and
nowhere tangent to it. The simplest choice of � is a hyperplane orthogonal to L0 at the point
x0. Consider now orbits of (1.8.16) near L0. The periodic orbit L0 is an orbit that starts at
the point x0 on � and returns to � at the same point x0. As the solutions depend smoothly on
their initial conditions, an orbit starting at a point x 2 � sufficiently close to x0 also returns to
� at some point x̃ 2 � near x0. Moreover, nearby orbits also intersect � transversally. Then
we have a map P : � ! � that sends x into P (x) = x̃. This map P is called the Poincaré
map associated with L0. The point x0 is a fixed point of the Poincaré map as P (x0) = x0,
and the stability of this fixed point is equivalent to the stability of the periodic orbit L0. More
details can be found, for example, in [78, 87, 107].

Definition 1.8.1. Given the autonomous differential equation (1.8.16) with periodic solution
'(t), transversal � and Poincaré map P with fixed point a. The solution '(t) is stable if for
each " > 0 we can find �(") such that

||x0 � a||  �, x0 2 � ) ||Pn(x0)� a||  ", n = 1, 2, 3, ...

Definition 1.8.2. Given the autonomous differential equation (1.8.16) with periodic solution
'(t), transversal � and Poincaré map P with fixed point a. The solution '(t) is asymptoti-
cally stable if it is stable and if there exists � > 0 such that

||x0 � a||  �, x0 2 � ) lim
n!1

Pn(x0) = a.

Now we present some results that we use to study the existence of limit cycles. Let us
consider a system that depends on some parameters

ẋ = f(x,↵),
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where x 2 Rn and ↵ 2 Rm represent the variables and the parameters, respectively. As
the parameters vary, the phase portrait of the system also varies, and there are two possibili-
ties: the system can remain topologically equivalent to the original one, or it can change its
topology. The appearance of a topologically nonequivalent phase portrait under a variation
of parameters is called a bifurcation.

We say that a singular point of an autonomous system in Rn is a Hopf singular point if
it is an isolated singular point with linear part having a pair of purely imaginary eigenvalues
±i� with � 2 R+. We say that a singular point of an autonomous system in R3 is zero- Hopf
if it is an isolated singular point with linear part having one zero eigenvalue and a pair of
purely imaginary eigenvalues ±i� with � 2 R+. These points are important because under
some assumptions a small-amplitude limit cycle bifurcates from them.

On chapter 6 we study limit cycles emerging from a zero-Hopf singular point in the
interior of the positive octant of the Kolmogorov systems of degree three in R3. On Chapter
7 we study the Hopf bifurcation on two systems in the context of population dynamics: a
planar Kolmogorov system obtained from the Rosenzweig-MacArthur system, and a three-
dimensional system which represents a two prey and one predator ecosystem.

We summarize the averaging theory of first order, which provides sufficient conditions
for the existence of periodic orbits for a periodic differential system depending on small
parameters. This result is applied in Chapter 7 to study when a limit cycle appears by Hopf
bifurcation on the Kolmogorov systems of degree three and dimension three. For additional
details and the proof of the result see [17, 18, 86] and [131, Theorems 11.5, 11.6].

Theorem 1.8.3. We consider the following differential system

x0(t) = "F1(t, x) + "2R(t, x, "), (1.8.17)

where F1 : R ⇥ D ! Rn and R : R ⇥ D ⇥ (�"f , "f ) ! Rn are continuous functions,
T -periodic in the first variable and D is an open subset of Rn. We define f1 : D ! Rn as

f1(z) =

Z T

0
F1(s, z)ds,

and assume that:

1. F1 and R are locally Lipschitz with respect to x;

2. for a 2 D with f1(a) = 0, there exists a neighborhood V of a such that f1(z) 6= 0 for
all z 2 V \(a) and dB(f1, V, 0) 6= 0, where dB(f1, V, 0) is the Brouwer degree.

Then for |"| > 0 sufficiently small, there exists a T -periodic solution '(·, ") of system (1.8.17)
such that '(·, ") ! a as " ! 0. The kind of stability of the limit cycle is given by the
eigenvalues of the Jacobian matrix at the point a.

Note that a sufficient condition for showing that the Brouwer degree of a function f at a
point a is nonzero, is that the Jacobian of the function f at a, when it is defined, is nonzero
(see [91]).

With this result, in Chapter 6, we are able to prove the existence of limit cycles that appear
by a Hopf bifurcation. Then we also study the stability of the limit cycles by analyzing the
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1.8 Limit cycles: bifurcation and averaging theory

the eigenvalues at the critical point of the averaged function f1; see Theorem 11.6 in [131]
for more theoretical details.

But this is not the only way to study this bifurcation. Now we introduce the theoretical
basis that allow us to study it in Chapter 7. More details can be found in [78, Chapter 3].

Consider a system depending on one parameter of the form:

ẋ1 = ↵x1 � x2 � x1(x
2
1 + x2

2),

ẋ2 = x1 + ↵x2 � x2(x
2
1 + x2

2).
(1.8.18)

The origin is a singular point for all the values of the parameter, and the Jacobian matrix at
this point is

A =

✓
↵ �1
1 ↵

◆
,

with eigenvalues �1,2 = ↵± i. We can write the system in polar form as

⇢̇ = ⇢(↵� ⇢2),

'̇ = 1.
(1.8.19)

Bifurcations of the phase portrait of this system when ↵ passes through zero can be analyzed
since the equations in (1.8.19) are uncoupled. For any value of ↵, the first equation has the
singular point ⇢ = 0, which is stable if ↵ < 0, remains stable at ↵ = 0 but with a rate of
solution convergence to zero which is not exponential, and is unstable for ↵ > 0. There is
another stable singular point ⇢ =

p
↵ for ↵ > 0. The second equation represents a rotation

with constant speed. Then, combining the motions defined by both equations we obtain that
system (1.8.18) has a singular point at the origin which is a stable focus for ↵ < 0 and an
unstable focus for ↵ > 0. At ↵ = 0 the singular point is topologically equivalent to the stable
focus. For ↵ > 0 the singular point is surrounded by one stable limit cycle. All orbits except
the origin tend to the limit cycle as t tends to infinity. This is a Hopf bifurcation.

In the same way we can analyze the system

ẋ1 = ↵x1 � x2 + x1(x
2
1 + x2

2),

ẋ2 = x1 + ↵x2 + x2(x
2
1 + x2

2),
(1.8.20)

which undergoes a Hopf bifurcation at ↵ = 0. In this case there is an unstable limit cycle
surrounding the origin which disappears when ↵ crosses zero from negative to positive values.
The singular point at the origin has the same stability that for system (1.8.18).

The bifurcation in system (1.8.18) is called supercritical because the limit cycle exists
for positive values of the parameter ↵, while the bifurcation in system (1.8.20) is called
subcritical since the limit cycle appears for negative values of ↵.

Later we will state two theorems that characterize when we can put a two-dimensional
system in the normal forms that we have analyzed, but first it is necessary to have a formula
to compute the so called first Lyapunov coefficient, `1.

Let us write the system in the form

ẋ = A(↵)x+
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4),
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where A is the Jacobian matrix, and B and C are symmetric multilinear vector functions. We
consider two complex eigenvectors p, q of the matrix A satisfying

Aq = i!q, AT p = �i!p, and hp, qi = 1,

where h·, ·i means the standard scalar product in C2. Then the first Lyapunov coefficient is

`1(0) =
1

2!0
Re(ig20g11 + !0g21),

where
g20 = hp,B(q, q)i , g11 = hp,B(q, q)i and g21 = hp, C(q, q, q)i .

Theorem 1.8.4. Suppose that two-dimensional system

dx

dt
= f(x,↵), x 2 R2, ↵ 2 R, (1.8.21)

with smooth f , has for all sufficiently small |↵| the equilibrium x = 0 with eigenvalues

�1,2(↵) = µ(↵)± i!(↵),

where µ(0) = 0, !(0) = !0 > 0. Let the following conditions be satisfied:

(B.1) `1(0) 6= 0;

(B.2) µ0(0) 6= 0.

Then, there are invertible coordinate and parameter changes and a time reparametrization
transforming (1.8.21) into

d

d⌧

✓
y1
y2

◆
=

✓
� �1
1 �

◆✓
y1
y2

◆
± (y21 + y22)

✓
y1
y2

◆
+O(||y||4).

By dropping the O(||y||4) terms it can be obtained the following result:

Theorem 1.8.5. A generic system in dimension two with one parameter

ẋ = f(x,↵)

having at ↵ = 0 the singular point x = 0 with eigenvalues

�1,2(0) = ±i!0, !0 > 0,

is locally topologically equivalent near the origin to one of the following normal forms:
✓

ẏ1
ẏ2

◆
=

✓
� �1
1 �

◆✓
y1
y2

◆
± (y21 + y22)

✓
y1
y2

◆
.

These two theorems together with the formula for computing the first Lyapunov coeffi-
cient and the analysis of the normal forms previously summarized, provide us the necessary
tools for studying the Hopf bifurcation in the planar systems presented in Chapter 7. We also
study the Hopf bifurcation numerically, in Section 7.3.4, for a system in dimension three.
The results included here can be generalized to dimension n, as can be seen in [78, Chapter
5], but we do not include the generalization here as we do not perform a general bifurcation
analysis for the three-dimensional system.
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Chapter 2

Classification of the first
Kolmogorov family with isolated

singularities

In this chapter we study the global dynamics of the first family of Kolmogorov systems
obtained in Chapter 1, i.e.,

ẋ = x
�
a0 � µ(c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

(2.0.1)

for which we give the topological classification of all their global phase portraits in the
Poincaré disk. We work under conditions

H1
2 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0, µ 6= �1
 
,

as the case with µ = �1, in which there are a continuum of singular points at the infinity,
is studied in Chapter 3, and we prove that in any other case the systems can be reduced to
simpler systems already studied. Our main result is the following:

Theorem 2.0.1. Kolmogorov systems (2.0.1) under conditions H1
2 have 78 topologically dis-

tinct phase portraits in the Poincaré disk, given in Figure 2.0.1.

The complete proof of Theorem 2.0.1, which includes the contents of the research article
[42]1, is given in this chapter and organized as follows. In Section 2.1 we give some properties
of the systems that allow us to simplify the topological classification by reducing the number
of phase portraits appearing. In Section 2.2 we study the local phase portraits of the finite
singular points applying Theorems 1.2.1 and 1.2.3 and in Section 2.3 we study the singular
points at infinity, for which is necessary to apply the blow up technique. Finally, in Section
2.4 we study all the possible global phase portraits and we determine the different topological
equivalence classes, proving Theorem 2.0.1.

1Erika Diz-Pita (Departamento de Estatística, Aánlise Matemática e Optimización, Universidade de Santiago
de Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona) and María
Victoria Otero-Espinar (Departamento de Estatística, Aánlise Matemática e Optimización, Universidade de Santiago
de Compostela), Phase portraits of a family of Kolmogorv systems depending on six parameters, Electronic Journal
of Differential Equations (ISSN: 1072-6691), 35 (2021). Published by Texas State University. The final authenticated
version is available online at: https://ejde.math.txstate.edu/Volumes/2021/35/diz.pdf.
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First Kolmogorov family (I)

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

R17 R18 R19 R20

Figure 2.0.1 (1 out of 4): The topologically distinct phase portraits of systems (2.0.1) in the
Poincaré disk.
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R21 R22 R23 R24

R25 R26 R27 R28

R29 R30 R31 R32

R33 R34 R35 R36

R37 R38 R39 R40

Figure 2.0.1 (2 out of 4): The topologically distinct phase portraits of systems (2.0.1) in the
Poincaré disk.
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First Kolmogorov family (I)

R41 R42 R43 R44

R45 R46 R47 R48

R49 R50 R51 R52

R53 R54 R55 R56

R57 R58 R59 R60

Figure 2.0.1 (3 out of 4): The topologically distinct phase portraits of systems (2.0.1) in the
Poincaré disk.
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R61 R62 R63 R64

R65 R66 R67 R68

R69 R70 R71 R72

R73 R74 R75 R76

R77 R78

Figure 2.0.1 (4 out of 4): The topologically distinct phase portraits of systems (2.0.1) in the
Poincaré disk.
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2.1 Properties of the systems
In this section we state some results that will be used on the classification in order to reduce
the number of phase portraits appearing. At first, note that if c2 = 0, then systems (2.0.1)
are Lotka-Volterra systems in dimension two. A global topological classification of these
systems has been completed in [117], so we limit our study to the case c2 6= 0. We recall
that, for obtaining systems (2.0.1), we have supposed that systems (1.7.14) have a Darboux
invariant e�t(a0+c0µ)xzµ, so it is required that a0 + c0µ 6= 0.

Proposition 2.1.1. Consider systems (2.0.1) and suppose that (x̃(t), z̃(t)) is a solution of
these systems. If we change c1 by �c1, we get the systems

ẋ = x
�
a0 � µ(�c1x+ c2z

2 + c3z)
�
,

ż = z
�
c0 � c1x+ c2z

2 + c3z
�
,

(2.1.2)

for which (�x̃(t), z̃(t)) is a solution.

Proof. In order to prove that (�x̃, z̃) is a solution of (2.1.2), we must verify that

� ˙̃x = �x̃
�
a0 � µ(+c1x̃+ c2z

2 + c3z)
�
,

ż = z
�
c0 + c1x̃+ c2z

2 + c3z
�
,

which can be obtained immediately from the fact that (x̃, z̃) is a solution of (2.0.1).

Proposition 2.1.2. Consider systems (2.0.1) and suppose (x̃, z̃) is a solution of these systems.
If we change c3 by �c3, we get the systems

ẋ = x
�
a0 � µ(c1x+ c2z

2 � c3z)
�
,

ż = z
�
c0 + c1x+ c2z

2 � c3z
�
,

(2.1.3)

for which (x̃, �̃z) is a solution.

Proof. In order to prove that (x̃,�z̃) is a solution of (2.1.3), we must verify that

˙̃x = x̃
�
a0 � µ(+c1x̃+ c2z

2 + c3z)
�
,

�ż = �z
�
c0 + c1x̃+ c2z

2 + c3z
�
,

which is deduced immediately from the fact that (x̃, z̃) is a solution of (2.0.1).

Remark 2.1.3. By Propositions 2.1.1 and 2.1.2 we can limit our study to Kolmogorov systems
(2.0.1) with c1 and c3 non negatives. In the cases with these parameters negatives, we will
obtain phase portraits symmetric to the ones obtained in the positive cases, with respect to
the z-axis when we change the sign of c1, and with respect to the x-axis when we change the
sign of c3.

Corollary 2.1.4. Consider systems (2.0.1) and suppose (x̃(t), z̃(t)) is a solution. If c1 = 0,
then (�x̃(t), z̃(t)) is also a solution.
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Corollary 2.1.5. Consider systems (2.0.1) and suppose (x̃(t), z̃(t)) is a solution. If c3 = 0,
then (x̃(t),�z̃(t)) is also a solution.

Remark 2.1.6. The previous corollaries simplify the study of the cases with c1 = 0 or c3 = 0,
because they prove that the phase portraits have to be symmetric with respect to the z-axis
and the x-axis respectively, and this fact is useful in the process of obtaining the global phase
portraits from the local results.

Theorem 2.1.7. Let ( ˜x(t), z̃(t)) be a solution of systems (2.0.1). In the next cases we obtain
another systems with solution (�x̃(�t),�z̃(�t)).

1. If a0, c0 and c2 are not zero, and we change the sign of all of them.

2. If a0 = 0 and we change the sign of c0 and c2, which are not zero.

3. If c0 = 0 and we change the sign of a0 and c2, which are not zero.

Proof. In the first case, by changing the sign of a0, c0 and c2, we get the systems

ẋ = x
�
�a0 � µ(c1x� c2z

2 + c3z)
�
,

ż = z
�
�c0 + c1x� c2z

2 + c3z
�
.

(2.1.4)

We must prove that these equations hold for (�x̃,�z̃,�t). At first, for (�x̃,�z̃) we get

� ˙̃x = �x̃
�
�a0 � µ(�c1x̃� c2z̃

2 � c3z̃)
�
,

� ˙̃z = �z̃
�
�c0 � c1x̃� c2z̃

2 � c3z̃
�
,

it is

˙̃x = �x̃
�
a0 � µ(c1x̃+ c2z̃

2 + c3z̃)
�
,

˙̃z = �z̃
�
c0 + c1x̃+ c2z̃

2 + c3z̃
�
,

Then by changing the sense in which orbits are described, i.e., changing t by �t, we obtain
that (�x̃,�z̃,�t) is a solution for systems (2.1.4). Similar arguments prove cases 2 and
3.

Remark 2.1.8. In order to classify all the phase portraits of the Kolmogorov systems (2.0.1),
according to the previous results, it is sufficient to consider a0 � 0, and when a0 = 0 we can
also consider c0 > 0.

Remark 2.1.9. In short, according to the previous results and considerations, from now on
it will be sufficient to study the Kolmogorov systems (2.0.1) with their parameters satisfying

H1 = {c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0} .

Theorem 2.1.10. For systems (2.0.1) the next statements hold.

1. If c1 6= 0, then on any straight line z = cte 6= 0, there exists only one contact point.
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2. Suppose c1 = 0. Then if c23 > 4c0c2, there exist two invariant straight lines z =
(
p
c23 � 4c0c2 � c3)/(2c2) and z = �(

p
c23 � 4c0c2 + c3)/(2c2) and there are not

contact points on any other line z = cte 6= 0; if c23 = 4c0c2, there exists one invariant
straight line z = �c3/(2c2) and there are not contact points on any other line z =
cte 6= 0. If c23 < 4c0c2, there are not contact points in any line z = cte 6= 0.

Proof. First we suppose c1 6= 0 and consider a straight line z = z0 6= 0. Then the contact
points on this straight line are those on which ż = 0 and, as z0 6= 0, the only possible contact
point is the one that satisfies c0 + c1x + c2z20 + c3z0 = 0, i.e., the point such that its first
coordinate is x = �(c2z20 + c3z0 + c0)/c1.

We consider now the case with c1 = 0. Then looking for the points on the straight line
z = z0 6= 0 satisfying ż = 0, we obtain that they must satisfy the condition c0+c2z20+c3z0 =
0, and solving this equation we get that either there are no contact points, or a full straight
line of contact points, or two straight lines of contact points, depending on the solutions z0 of
that equation.

Proposition 2.1.11. For systems (2.0.1) the following statements hold.

(i) If a0 + c0µ > 0 and µ > 0, then for orbits which are not on the axes their !-limit is
one of the singular points at infinity and their ↵-limit is one of the singular points on
the axes.

(ii) If a0 + c0µ > 0 and µ < 0, then for orbits which are not on the axes their !-limit
is over the x-axis and their ↵-limit is over the z-axis, and they can be either finite or
infinite singular points.

(iii) If a0 + c0µ < 0 and µ > 0, then for orbits which are not on the axes their !-limit is
one of the singular points on the axes and their ↵-limit is one of the singular points at
infinity.

(iv) If a0 + c0µ < 0 and µ < 0, then for orbits which are not on the axes their !-limit
is over the z-axis and their ↵-limit is over the x-axis, and they can be either finite or
infinite singular points.

Proof. At first we recall that e�t(a0+c0µ)xzµ is a Darboux invariant of systems (2.0.1), so
that it is constant and non zero on the orbits (x(t), z(t)) which are not on the axes.

If a0+c0µ > 0, then limt!1 e�t(a0+c0µ) = 0, so necessarily limt!1 x(t)z(t)µ = ±1.
If µ > 0, then or limt!1 x(t) = ±1 or limt!1 z(t) = ±1, so the !-limit of the orbits has
to be an infinite singular point. If µ < 0, then or limt!1 x(t) = ±1 or limt!1 z(t) = 0,
so the !-limit of the orbits has to be over the x-axis, but it can be a finite or infinite singular
point.

Also we have limt!�1 e�t(a0+c0µ) = +1, so necessarily limt!�1 x(t)z(t)µ = 0. If
µ > 0, then or limt!�1 x(t) = 0 or limt!�1 z(t) = 0, so the ↵-limit of the orbits has
to be over the axes. If µ < 0, then or limt!�1 x(t) = 0 or limt!�1 z(t) = ±1, so the
↵-limit of the orbits has to be over the z-axis, but it can be a finite or infinite singular point.

An analogous reasoning is valid in the case a0 + c0µ < 0.
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2.2 Finite singular points

2.2 Finite singular points
Lemma 2.2.1. Systems (2.0.1) have the following finite singular points:

• P0 = (0, 0), under any conditions.

• P1 =

 
0,

�c3 +
p

c23 � 4c0c2
2c2

!
and P2 =

 
0,

�c3 �
p
c23 � 4c0c2
2c2

!
if c23 > 4c0c2.

• P3 =

✓
0,� c3

2c2

◆
if c23 = 4c0c2.

• P4 =

✓
a0
c1µ

, 0

◆
if c1µ 6= 0.

Moreover, if a0 = 0 and c1µ = 0, all the points on the z-axis are singular points.

Proof. The condition x = 0 makes zero the first component of the vector field, and the same
does z = 0 with the second component, so the origin is always a singularity.

If we look for the singularities on z-axis, then c0+ c2z2+ c3 must be zero. If c23 > 4c0c2,
this equation has two different solutions, z = (�c3 ±

p
c23 � 4c0c2)/2c2, that lead to the

singularities P1 and P2. If c23 = 4c0c2, the equation has only one solution, z = �c3/2c2, that
leads to the singularity P3.

If we look for the other singularities on x-axis, then we must solve a0 � µc1x = 0. If
c1µ 6= 0, we get the unique solution x = a0/µc1, which leads to the singular point P4. If
a0 6= 0 and c1µ = 0, there is no solution so new singularities do not appear. At last, if
c1µ = 0 and a0 = 0, then all the points on z = 0 are singularities.

Finally, if there exists some singular point not on the axes, it must satisfy that

a0 � µ(c1x+ c2z
2 + c3z) = 0,

c0 + c1x+ c2z
2 + c3z = 0.

From these equations we get that a0 + c0µ = 0, which contradicts our hypothesis. We
conclude that there are not singular points outside the axes.

Remark 2.2.2. As we have said, if c1µ = 0 and a0 = 0, all the points on z = 0 are singular
points. In this case systems (2.0.1) are of the form

ẋ = �µxz(c2z + c3),

ẏ = z(c0 + c2z
2 + c3z).

If we introduce the time variable s such that ds = zdt, then we get systems

dx

ds
= �µx(c2z + c3),

dz

ds
= c0 + c2z

2 + c3z,
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First Kolmogorov family (I)

which are quadratic systems with an invariant straight line x = 0. These systems have been
studied in [6] so it is not necessary to consider this case.

According to this, from now on we will add the restriction that a20 + (c1µ)2 6= 0 , so we
will consider the hypothesis

H1
1 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0
 
.

Furthermore, we will use the notation Rc =
p

c23 � 4c0c2, in order to simplify the expres-
sions appearing.

Theorem 2.2.3. Systems (2.0.1) have no limit cycles.

Proof. The straight lines x = 0 and z = 0 are invariant sets, and by Lemma 2.2.1, all the
singular points of systems (2.0.1) are over these axes. If there were any periodic orbit in the
plane it would be surrounding one of the singular points and therefore it would intersect an
invariant set, which is not possible.

As a result, assuming H1
1 there are 6 different cases according to the finite singular points

existing for systems (2.0.1), which are given in Table 2.2.1.

Case Conditions Finite singular points

1 c
2
3 > 4c0c2, c1µ 6= 0 P0, P1, P2, P4

2 c
2
3 > 4c0c2, c1µ = 0, a0 > 0 P0, P1, P2

3 c
2
3 = 4c0c2, c1µ 6= 0 P0, P3, P4

4 c
2
3 = 4c0c2, c1µ = 0, a0 > 0 P0, P3

5 c
2
3 < 4c0c2, c1µ 6= 0 P0, P4

6 c
2
3 < 4c0c2, c1µ = 0, a0 > 0 P0

Table 2.2.1: The different cases for the finite singular points.

Once we have obtained the singular points, we will study their local phase portraits. The
results are summarized in the next lemmas.

Lemma 2.2.4. Assuming H1
1 , the origin is always an isolated singular point for systems

(2.0.1), and we have the next classification for its phase portraits:

(1) If a0c0 6= 0, the singularity is hyperbolic and two cases are possible:

(1.a) If c0 < 0, then the origin is a saddle point.
(1.b) If c0 > 0, then the origin is an unstable node.

(2) If a0 6= 0 and c0 = 0, the singularity is semi-hyperbolic, and we must consider the
following possibilities:

(2.a) If c3 6= 0, then the origin is a saddle-node.
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2.2 Finite singular points

(2.b) If c3 = 0 and also

• c2 < 0, then the origin is a topological saddle.
• c2 > 0, then the origin is a topological unstable node.

(3) If a0 = 0, the origin is a semi-hyperbolic saddle-node.

Proof. The eigenvalues of the linear part are a0 and c0. At first, if a0 and c0 are not zero, the
origin is hyperbolic. By Theorem 1.2.1, since a0 is non negative, we distinguish cases (1.a)
and (1.b) according to the sign of c0.

Suppose that c0 = 0, in which case the singular point is semi-hyperbolic. Applying
Theorem 1.2.3, and according to the notation employed, we get f(z) = 0 and g(z) = c2z3 +
c3z2.

If c3 6= 0, also the quadratic term is non-zero, so we get a saddle-node. If c3 = 0, then
we must distinguish the cases saddle and node, depending on the sign of c2.

Finally, if a0 = 0, the singular point is also semi-hyperbolic, and again by Theorem 1.2.3,
with f(x) = 0 and g(x) = �c1µx2, we obtain that the origin is a saddle-node.

We recall that a0+c0µ is not zero by hypothesis, so a0 and c0 can not be zero at the same
time.

Lemma 2.2.5. Assuming H1
1 , let c23 > 4c0c2. Then, P1 is an isolated singularity of systems

(2.0.1), and the next statements hold:

(1) If c0 = 0, then P1 runs into the origin.

(2) If c0 6= 0 , then P1 is hyperbolic. We distinguish the following phase portraits:

(2.a) If c2(a0 + c0µ)(Rc � c3) < 0 , then P1 is a saddle.

(2.b) If a0 + c0µ < 0 and c2(Rc � c3) < 0, then P1 is a stable node.

(2.c) If a0 + c0µ > 0 and c2(Rc � c3) > 0, then P1 is an unstable node.

Proof. At first we move the singular point to the origin obtaining the systems

ẋ = �c2µxz
2 � c1µx

2 �Rcµxz + (a0 + c0µ)x,

ż = c2z
3 + c1xz +

3Rc � c3
2

z2 +
c1(Rc � c3)

2c2
x+

Rc(Rc � c3)

2c2
z.

The eigenvalues of the linear part of these systems are �1 = a0+ c0µ and �2 = Rc(Rc�
c3)/(2c2), so by hypothesis the first of them is non-zero.

Suppose that �2 is zero. Then Rc � c3 must be zero, it is,
p

c23 � 4c0c2 = c3, but then,
c23 � 4c0c2 = c23, so c0c2 = 0, and, since c2 6= 0 by hypothesis, c0 = 0. Assuming this
condition we get that

p
c23 = c3, so c3 must be non-negative. Given the expression of P1, it

is clear that in this case it coincides with the origin.
In any other case, the singular point P1 is hyperbolic, and by Theorem 1.2.1 we obtain

the three possibilities (2.a)–(2.c).
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Lemma 2.2.6. Assuming H1
1 , let c23 > 4c0c2. Then P2 is a hyperbolic isolated singularity of

systems (2.0.1), and the next statements hold:

(1) If c2(a0 + c0µ) < 0, then P2 is a saddle.

(2) If a0 + c0µ < 0 and c2 < 0, then P2 is a stable node.

(3) If a0 + c0µ > 0 and c2 > 0, then P2 is an unstable node.

Proof. If we move the singular point to the origin we get the system

ẋ = �c2µxz
2 � c1µx

2 +Rcµxz + (a0 + c0µ)x,

ż = +c2z
3 + c1xz �

3Rc + c3
2

z2 � c1(Rc + c3)

2c2
x+

Rc(Rc + c3)

2c2
z.

The eigenvalues of the linear part are �1 = a0 + c0µ and �2 = Rc(Rc + c3)/(2c2).
Proceeding in the same way as in Lemma 2.2.5, we obtain that �2 = 0 if and only if c0 = 0
and c3 < 0, which contradicts the hypothesis. Therefore the singular point P2 is always
hyperbolic, and applying Theorem 1.2.1 we discern the cases (1)–(3). In order to simplify
the conditions that define these cases, we note that Rc > 0 and Rc + c3 > 0, and so the sign
of �2 is the same as the sign of c2.

Lemma 2.2.7. Assuming H1
1 , let c23 = 4c0c2. Then P3 is an isolated singularity of systems

(2.0.1), and the next statements hold:

(1) If c3 = 0, then P3 runs into the origin.

(2) If c3 6= 0, then P3 is a semi-hyperbolic saddle-node.

Proof. Moving the singular point to the origin we get the system

ẋ = �c2µxz
2 � c1µx

2 + (a0 + c0µ)x,

ż = c2z
3 + c1xz �

c3
2
z2 � c1c3

2c2
x.

The eigenvalues of the linear part are �1 = a0 + c0µ and �2 = 0, so the singular point
is always semi-hyperbolic. We obtain the systems associated to the Jordan canonical form of
the linear part, which are

u̇ =� c21c
2
3µ

4c2(a0 + c0µ)2
u3 +

c1c3µ

a0 + c0µ
u2v � c2µuv

2 � c1µu
2 + (a0 + c0µ)u,

v̇ =� c31c
3
3(µ+ 1)

8c22(a0 + c0µ)3
u3 +

c21c
2
3

�
µ+ 3

2

�

2c2(a0 + c0µ)2
u2v � c1c3(µ+ 3)

2(a0 + c0µ)
uv2 + c2v

3

� 4c21c2c3(µ+ 1)(a0 + c0µ) + c21c
3
3

8c22(a0 + c0µ)2
u2 +

4c1c23 + 8(a0 + c0µ)c1c2
8c2(a0 + c0µ)

uv.
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2.2 Finite singular points

For these systems, we can apply Theorem 1.2.3. With f(v) = 0 and g(v) = c2v3 �
(c3/2)v2, we conclude that, if c3 6= 0, then the singular point is a saddle-node. Note that if
c3 = 0, then the singular point coincides with the origin.

Lemma 2.2.8. Assuming H1
1 , let c1µ 6= 0. Then P4 is an isolated singularity of systems

(2.0.1), and the next statements hold:

(1) If a0 = 0, the singularity P4 runs into the origin.

(2) If a0 6= 0, the singularity P4 is hyperbolic, and we distinguish the next phase portraits:

(2.a) If (a0 + c0µ)µ > 0, P4 is a saddle.

(2.b) If µ(a0 + c0µ) < 0, P4 is an stable node.

Proof. Moving the singular point to the origin we get the systems

ẋ = �c2µxz
2 � c1µx

2 � c3µxz �
a0c2
c1

z2 � a0x� a0c3
c1

z,

ż = c2z
3 + c1xz + c3z

2 +

✓
a0
µ

+ c0

◆
z.

We obtain the eigenvalues �1 = �a0 and �2 = (a0 + c0µ)/µ. Note that if a0 = 0, then
the singular point coincides with the origin. In any other case, the singular point is hyperbolic.
By Theorem 1.2.1 we discern the cases saddle and node.

Lemma 2.2.9. Assuming the conditions H1
1 , there are 50 different cases according to the

local phase portrait of finite singular points, which are given in Tables 2.2.2–2.2.7.

Proof. We have to analyze cases 1 to 6 in Table 2.2.1 and determine the local phase portraits
of the singular points existing in each one of them, according to their individual classification.

We start with the first one, in which the conditions, c23 > 4c0c2 and c1µ 6= 0 hold. The
singular points are P0, P1, P2 and P4. We shall consider three subcases: a0 = 0, c0 = 0 and
a0c0 6= 0.

Consider case c0 = 0 in which the origin is a saddle-node and P1 collides with the origin.
Since c0 = 0 and a0 > 0, the singular point P2 is a saddle if c2 < 0, and an unstable node if
c2 > 0.

In these two cases P4 can be either a saddle if µ > 0, or a stable node if µ < 0. This
leads to cases 1.1 to 1.4 in Table 2.2.2.

We continue with the case a0 = 0 in which P0 is again a saddle-node, but in this case
it coincides with P4. Suppose that P1 is an unstable node, then we have c0µ > 0 and
c2(Rc � c3) > 0. By Remark 2.1.8, we will only consider the case c0 > 0. Then if c2 > 0,
also Rc � c3 > 0, and taking into account the expression of Rc and squaring both terms, we
get that c23 � 4c0c2 > c23, so c0c2 < 0, which leads to a contradiction. The same occurs if we
suppose c2 < 0. Therefore, P1 cannot be an unstable node. If P1 is a saddle, then P2 can be
a saddle or an unstable node, but not a stable node, which is only possible if c0 < 0, by an
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analogous reasoning to the previous one. If P1 is a stable node, then c0µ < 0, so P2 can be a
saddle or a stable node, but not an unstable node because it requires that c0µ > 0. This leads
to cases 1.5 to 1.8.

The last case is a0c0 6= 0 in which the origin is a hyperbolic singular point. We start with
the case in which P0 is a saddle, and then c0 < 0. First we consider that P1 is also a saddle,
and so c2(a0 + c0µ)(Rc � c3) < 0. If P2 is a saddle, then c2(a0 + c0µ) < 0, and we get
Rc� c3 > 0. From this we deduce like in previous cases that c0c2 < 0, but we are supposing
c0 < 0 and so c2 > 0 and a0 + c0µ < 0. From the last inequality a0 < �c0µ, and so µ has
to be positive. In short, µ(a0 + c0µ) < 0 and consequently P4 can only be a stable node. If
P0 and P1 are saddles, but P2 is a stable node, reasoning in an analogous way we get that P4

is again a stable node. This leads to cases 1.9 and 1.10.
Note that if P0 and P1 are saddles, it is impossible for P2 to be an unstable node. In that

case we would have that c0 < 0, c2 > 0, a0 + c0µ > 0 and Rc � c3 < 0. From this last
inequality we get that c0c2 > 0, which is a contradiction.

We consider now the cases where P0 is saddle and P1 an unstable node, in which the
conditions c0 < 0, a0 + c0µ > 0 and c2(Rc � c3) > 0 hold. It is obvious that P2 cannot be a
stable node because it requires that a0 + c0µ < 0, so P2 is a saddle if c2 < 0 and an unstable
node if c2 > 0. In both cases P4 can be either a saddle if µ > 0, or a stable node if µ < 0.
This leads to cases 1.11 to 1.14.

Note that the case with P0 a saddle and P1 a stable node is not possible, because we
would have c0 < 0, a0 + c0µ < 0 and c2(Rc � c3) < 0. If c2 > 0, then Rc � c3 < 0 whence
we deduce c0c2 > 0 and get a contradiction. The same argument is valid if c2 < 0.

Let us study now the cases where P0 is an unstable node, i.e., the ones with c0 > 0.
First we prove that it is impossible that P1 is an unstable node. In that case we would have
a0 + c0µ > 0 and c2(Rc � c3) > 0. If we suppose c2 > 0, then Rc � c3 > 0 and we
deduce c0c2 < 0 which is a contradiction. The same reasoning is valid with c2 < 0. We
consider now the case with P1 saddle. If we suppose that P2 is a stable node, we arrive at a
contradiction, so only the cases P2 saddle and unstable node are possible. In both of them,
P4 can be either a saddle or a stable node. This leads to cases 1.15 to 1.18.

At last we have the case with P1 a stable node, in which we have a0+ c0µ < 0, condition
that makes not possible for P2 to be an unstable node. Then we have the cases with P2 a
saddle or a stable node. In both cases, by the condition 0 < a0 < �c0µ, we get that µ < 0,
so µ(a0 + c0µ) > 0 and therefore P4 is a saddle. This leads to cases 1.19 and 1.20.

Now we study case 2 of Table 2.2.1, in which c23 > 4c0c2, c1µ = 0 and a0 6= 0. We shall
consider three cases: c0 < 0, c0 > 0 and c0 = 0.

We start with case c0 < 0 in which P0 is a saddle. If P1 is a saddle, then P2 can be
a saddle or a stable node. If P2 is an unstable node, then we have the conditions c2(a0 +
c0µ)(Rc � c3) < 0, c2 > 0 and a0 + c0µ > 0, so Rc � c3 < 0, and we deduce c0c2 > 0
which is a contradiction.

P1 cannot be a stable node, because in that case we would have the conditions c0 < 0,
a0 + c0µ < 0 and c2(Rc � c3) < 0 which lead to a contradiction in the following way: If
c2 > 0, then Rc � c3 < 0, and squaring we deduce c0c2 > 0, which is not possible because
c0 < 0 and we are supposing c2 > 0. An analogous reasoning works in the case c2 < 0. If
P1 is an unstable node, then P2 can be either a saddle or an unstable node, but not a stable
node because it requires a0 + c0µ to be negative, but we already know that this expression is
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positive because it is a condition in order that P1 be an unstable node. This leads to cases 2.1
to 2.4 of Table 2.2.3.

We continue with the subcase c0 > 0, in which P0 is an unstable node. If P1 is a saddle,
then P2 can be a saddle or an unstable node. If P2 is a stable node, then we have the conditions
c0 > 0 , c2(a0 + c0µ)(Rc � c3) < 0, a0 + c0µ < 0 and c2 < 0. Thus we have Rc � c3 < 0
and squaring we obtain c0c2 > 0 which is a contradiction. This leads to cases 2.5 and 2.6.

If P1 is a stable node, it can be proved similarly to previous cases that P2 cannot be an
unstable node. This leads to cases 2.7 and 2.8.

P1 cannot be an unstable node, because in that case we would have the conditions c0 > 0,
a0 + c0µ > 0 and c2(Rc � c3) > 0 which lead to a contradiction in the following way: If
c2 > 0, then Rc � c3 > 0, and squaring we deduce c0c2 < 0, which is not possible because
c0 > 0 and we are supposing c2 > 0. An analogous reasoning works in the case c2 < 0.

Al last we have the subcase c0 = 0. Necessarily c3 6= 0 so the origin is a saddle-node.
Also we have that P1 coincides with the origin. For the singular point P2 we have that it is a
saddle if c2 < 0 and an unstable node if c2 > 0. This leads to cases 2.9 and 2.10.

We study case 3 of Table 2.2.1 in which c23 = 4c0c2 and c1µ 6= 0. Then c0 = 0 if and only
if c3 = 0. We consider a0 > 0 and c0 < 0, then the origin is a saddle and P3 a saddle-node
(as c3 6= 0). The singular point P4 is either a saddle or a stable node, depending on the sign
of µ(a0+ c0µ). The same is valid in the case a0 > 0 and c0 < 0, except for the origin, which
is now an unstable node. We get the cases 3.1 to 3.4 of Table 2.2.4.

We continue with the case in which a0 = 0 and so P0 is a saddle-node, P4 coincides with
P0 and P3 is a saddle-node. This correspond with case 3.5.

At last we have the condition c0 = 0, under which P3 coincides with P0. If c2 < 0, then
it is a topological saddle and if c2 > 0, it is a topological unstable node. In any case P4 can
be either a saddle or a stable node. This leads to cases 3.6 to 3.9.

Now we address the case 4 of Table 2.2.1 in which c23 = 4c0c2, c1µ = 0 and a0 6= 0. The
origin is a saddle if c0 < 0 and an unstable node if c0 > 0. If c0 = 0, then c3 = 0 so we
must distinguish two semi-hyperbolic possibilities for the origin: if c2 < 0, it is a topological
saddle and if c2 > 0, it is a topological unstable node. The classification of P3 is totally
determined by the one of P0, because it only depends on whether c3 is zero or not. We get
cases 4.1 to 4.4.

In case 5 of Table 2.2.1 the conditions c23 < 4c0c2 and c1µ 6= 0 hold. The singular points
are P0 and P4. From condition c23 < 4c0c2 we get that c0 6= 0. If a0 = 0, then the origin
is a saddle-node and P4 coincides with the origin. If a0 6= 0, then both singular points are
hyperbolic, and it leads to cases 5.2 to 5.5.

At last, in case 6 of Table 2.2.1, we have the conditions c23 < 4c0c2, c1µ = 0 and a0 6= 0.
The unique singular point is the origin and as c0 cannot be zero, it is either a saddle or an
unstable node.
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Case 1: c
2
3 > 4c0c2, c1µ 6= 0

Sub. Conditions Classification

1.1 a0 > 0, c0 = 0, µ > 0, c2 < 0 P0 ⌘ P1 saddle-node, P2 saddle, P4 saddle
1.2 a0 > 0, c0 = 0, µ > 0, c2 > 0 P0 ⌘ P1 saddle-node, P2 unstable node,

P4 saddle
1.3 a0 > 0, c0 = 0, µ < 0, c2 < 0 P0 ⌘ P1 saddle-node, P2 saddle, P4 stable

node
1.4 a0 > 0, c0 = 0, µ < 0, c2 > 0 P0 ⌘ P1 saddle-node, P2 unstable node,

P4 stable node
1.5 a0 = 0, c0 > 0, c2µ < 0,

Rc � c3 > 0
P0 ⌘ P4 saddle-node, P1 saddle, P2 saddle

1.6 a0 = 0, c0 > 0, Rc � c3 < 0, µ > 0,
c2 > 0

P0 ⌘ P4 saddle-node, P1 saddle,
P2 unstable node

1.7 a0 = 0, c0 > 0, µ < 0, Rc � c3 < 0,
c2 > 0

P0 ⌘ P4 saddle-node, P1 stable node,
P2 saddle

1.8 a0 = 0, c0 > 0, µ < 0, c2 < 0,
Rc � c3 > 0

P0 ⌘ P4 saddle-node, P1 stable node,
P2 stable node

1.9 a0 > 0, c0 < 0, µ > 0, a0 + c0µ < 0,
c2 > 0, Rc � c3 > 0

P0 saddle, P1 saddle, P2 saddle, P4 stable node

1.10 a0 > 0, c0 < 0, c2 < 0, µ > 0,
a0 + c0µ < 0, Rc � c3 < 0

P0 saddle, P1 saddle, P2 stable node,
P4 stable node

1.11 a0 > 0, c0 < 0, c2 < 0, µ > 0,
a0 + c0µ > 0, Rc � c3 < 0

P0 saddle, P1 unstable node, P2 saddle,
P4 saddle

1.12 a0 > 0, c0 < 0, c2 < 0, µ < 0,
a0 + c0µ > 0, Rc � c3 < 0

P0 saddle, P1 unstable node, P2 saddle,
P4 stable node

1.13 a0 > 0, c0 < 0, µ > 0, a0 + c0µ > 0,
c2 > 0, Rc � c3 > 0

P0 saddle, P1 unstable node, P2 unstable node,
P4 saddle

1.14 a0 > 0, c0 < 0, µ < 0, a0 + c0µ > 0,
c2 > 0, Rc � c3 > 0

P0 saddle, P1 unstable node, P2 unstable node,
P4 stable node

1.15 a0 > 0, c0 > 0, µ(a0 + c0µ) > 0,
c2(a0 + c0µ) < 0, Rc � c3 > 0

P0 unstable node, P1 saddle, P2 saddle,
P4 saddle

1.16 a0 > 0, c0 > 0, µ(a0 + c0µ) < 0,
c2(a0 + c0µ) < 0, Rc � c3 > 0

P0 unstable node, P1 saddle, P2 saddle,
P4 stable node

1.17 a0 > 0, c0 > 0, µ > 0, Rc � c3 < 0,
a0 + c0µ > 0, c2 > 0

P0 unstable node, P1 saddle, P2 unstable node,
P4 saddle

1.18 a0 > 0, c0 > 0, µ < 0, Rc � c3 < 0,
a0 + c0µ > 0, c2 > 0

P0 unstable node, P1 saddle, P2 unstable node,
P4 stable node

1.19 a0 > 0, c0 > 0, µ < 0, a0 + c0µ < 0,
Rc � c3 < 0, c2 > 0

P0 unstable node, P1 stable node, P2 saddle,
P4 saddle

1.20 a0 > 0, c0 > 0, µ < 0, a0 + c0µ < 0,
c2 < 0, Rc � c3 > 0

P0 unstable node, P1 stable node,
P2 stable node, P4 saddle

Table 2.2.2: Classification in case 1 of Table 2.2.1 according to the local phase portraits of
finite singular points.

44



2.2 Finite singular points

Case 2: c
2
3 > 4c0c2, c1µ = 0, a0 > 0

Sub. Conditions Classification

2.1 c0 < 0, c2(a0+c0µ) < 0, Rc�c3 > 0 P0 saddle, P1 saddle, P2 saddle
2.2 c0 < 0, Rc � c3 < 0, a0 + c0µ < 0,

c2 < 0
P0 saddle, P1 saddle, P2 stable node

2.3 c0 < 0, a0 + c0µ > 0, Rc � c3 < 0,
c2 < 0

P0 saddle, P1 unstable node, P2 saddle

2.4 c0 < 0, a0 + c0µ > 0, c2 > 0,
Rc � c3 > 0

P0 saddle, P1 unstable node, P2 unstable node

2.5 c0 > 0, c2(a0+c0µ) < 0, Rc�c3 > 0 P0 unstable node, P1 saddle, P2 saddle
2.6 c0 > 0, Rc � c3 < 0, a0 + c0µ > 0,

c2 > 0
P0 unstable node, P1 saddle, P2 unstable node

2.7 c0 > 0, a0 + c0µ < 0, Rc � c3 < 0,
c2 > 0

P0 unstable node, P1 stable node, P2 saddle

2.8 c0 > 0, a0 + c0µ < 0, c2 < 0,
Rc � c3 > 0

P0 unstable node, P1 stable node,
P2 stable node

2.9 c0 = 0, a0 > 0, c2 < 0 P0 ⌘ P1 saddle-node, P2 saddle
2.10 c0 = 0, a0 > 0, c2 > 0 P0 ⌘ P1 saddle-node, P2 unstable node

Table 2.2.3: Classification in case 2 of Table 2.2.1 according to the local phase portraits of
finite singular points.

Case 3: c
2
3 = 4c0c2, c1µ 6= 0

Sub. Conditions Classification

3.1 a0 > 0, c0 < 0, µ(a0 + c0µ) > 0 P0 saddle, P3 saddle-node, P4 saddle
3.2 a0 > 0, c0 < 0, µ(a0 + c0µ) < 0 P0 saddle, P3 saddle-node, P4 stable node
3.3 a0 > 0, c0 > 0, µ(a0 + c0µ) > 0 P0 unstable node, P3 saddle-node, P4 saddle
3.4 a0 > 0, c0 > 0, µ(a0 + c0µ) < 0 P0 unstable node, P3 saddle-node,

P4 stable node
3.5 a0 = 0, c0 > 0 P0 ⌘ P4 saddle-node, P3 saddle-node
3.6 c0 = 0, a0 > 0, c2 < 0, µ > 0 P0 ⌘ P3 topological saddle, P4 saddle
3.7 c0 = 0, a0 > 0, c2 < 0, µ < 0 P0 ⌘ P3 topological saddle, P4 stable node
3.8 c0 = 0, a0 > 0, c2 > 0, µ > 0 P0 ⌘ P3 topological unstable node, P4 saddle
3.9 c0 = 0, a0 > 0, c2 > 0, µ < 0 P0 ⌘ P3 topological unstable node,

P4 stable node

Table 2.2.4: Classification in case 3 of Table 2.2.1 according to the local phase portraits of
finite singular points.
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Case 4: c
2
3 = 4c0c2, c1µ = 0, a0 > 0

Sub. Conditions Classification

4.1 c0 < 0 P0 saddle, P3 saddle-node
4.2 c0 > 0 P0 unstable node, P3 saddle-node
4.3 c0 = 0, c2 < 0 P0 ⌘ P3 topological saddle
4.4 c0 = 0, c2 > 0 P0 ⌘ P3 topological unstable node

Table 2.2.5: Classification in case 4 of Table 2.2.1 according to the local phase portraits of
finite singular points.

Case 5: c
2
3 < 4c0c2, c1µ 6= 0

Sub. Conditions Classification

5.1 a0 = 0 P0 ⌘ P4 saddle-node
5.2 a0 > 0, c0 < 0, µ(a0 + c0µ) > 0 P0 saddle, P4 saddle
5.3 a0 > 0, c0 < 0, µ(a0 + c0µ) < 0 P0 saddle, P4 stable node
5.4 a0 > 0, c0 > 0, µ(a0 + c0µ) > 0 P0 unstable node, P4 saddle
5.5 a0 > 0, c0 > 0, µ(a0 + c0µ) < 0 P0 unstable node, P4 stable node

Table 2.2.6: Classification in case 5 of Table 2.2.1 according to the local phase portraits of
finite singular points.

Case 6: c
2
3 < 4c0c2, c1µ = 0, a0 > 0

Sub. Conditions Classification

6.1 c0 < 0 Problemas de espacio P0 saddle
6.2 c0 > 0Problemas de espacio P0 unstable node

Table 2.2.7: Classification in case 6 of Table 2.2.1 according to the local phase portraits of
finite singular points.

2.3 Infinite singular points
In order to study the behavior of the trajectories of systems (2.0.1) near infinity, we consider
its Poincaré compactification. For the moment we assume the same hypothesis H1

1 than in
previous sections. According to equations (1.3.9) and (1.3.10), we get the compactification in
the local charts U1 and U2 respectively. From Section 1.3, it is enough to study the singular
points over v = 0 in chart U1 and the origin of chart U2.

In chart U1 systems (2.0.1) write

u̇ = c2(µ+ 1)u3 + c3(µ+ 1)u2v + (c0 � a0)uv
2 + c1(µ+ 1)uv,

v̇ = c2µu
2v + c3µuv

2 � a0v
3 + c1µv

2.
(2.3.5)
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Taking v = 0 we get u̇ |v=0= c2(µ + 1)u3 and v̇ |v=0= 0. Therefore, if µ = �1, all the
points at infinity are singular points, and we will deal with this situation in Chapter 3. In
other case, if µ 6= �1, the only singular point is the origin of U1, which we denote by O1.
The linear part of systems (2.3.5) at the origin is identically zero, so we must use the blow up
technique to study it.

From now on we include the condition µ 6= �1 in our hypothesis, so we will work under
conditions

H1
2 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0, µ 6= �1
 
.

The study of the local phase portraits of the singular point O1 by means of the blow up
technique leads to the following result which is proved in Subsections 2.3.1 and 2.3.2.

Lemma 2.3.1. Assuming hypothesis H1
2 , the origin of chart U1 is an infinite singular point

of systems (2.0.1), and it has 47 distinct local phase portraits described in Figure 2.3.1.
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Figure 2.3.1 (1 out of 3): Local phase portraits of the infinite singular point O1.
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Figure 2.3.1 (2 out of 3): Local phase portraits of the infinite singular point O1.
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Figure 2.3.1 (3 out of 3): Local phase portraits of the infinite singular point O1.

For systems (2.3.5), if c1 6= 0, the characteristic polynomial is F = �c1uv2 6⌘ 0,
so the origin is a nondicritical singular point. If c1 = 0, the characteristic polynomial is
F = �c3u2v� c2u3v� c0uv3, which cannot be identically zero because c2 6= 0, so we have
also a nondicritical singular point. We will study these two cases separately in Subsections
2.3.1 and 2.3.2.
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2.3.1 Case c1 non-zero
Consider c1 6= 0. We introduce the new variable w1 on systems (2.3.5) by means of the
variable change uw1 = v, and get the systems

u̇ = (c0 � a0)u
3w2

1 + c3(µ+ 1)u3w1 + c2(µ+ 1)u3 + c1(µ+ 1)u2w1,

ẇ1 = �c0u
2w3

1 � c3u
2w2

1 � c2u
2w1 � c1uw

2
1.

(2.3.6)

Now we cancel the common factor u, getting the systems

u̇ = (c0 � a0)u
2w2

1 + c3(µ+ 1)u2w1 + c2(µ+ 1)u2 + c1(µ+ 1)uw1,

ẇ1 = �c0uw
3
1 � c3uw

2
1 � c2uw1 � c1w

2
1,

(2.3.7)

for which the only singular point on the exceptional divisor is the origin, and it is linearly
zero, so we have to repeat the process. Now the characteristic polynomial is F = �c2(µ +
2)u2w1 � c1(µ + 2)uw2

1 , so the origin is a non dicritical singular point if µ 6= �2 and it
is dicritical if µ = �2. In both cases we introduce the new variable w2 doing the change
uw2 = w1, obtaining the systems

u̇ = (c0 � a0)u
4w2

2 + c3(µ+ 1)u3w2 + c2(µ+ 1)u2 + c1(µ+ 1)u2w2,

ẇ2 = (a0 � 2c0)u
3w3

2 � c3(µ+ 2)u2w2
2 � c1(µ+ 2)uw2

2 � c2(µ+ 2)uw2.
(2.3.8)

In the nondicritical case we have to eliminate the common factor u, obtaining

u̇ = (c0 � a0)u
3w2

2 + c3(µ+ 1)u2w2 + c2(µ+ 1)u+ c1(µ+ 1)uw2,

ẇ2 = (a0 � 2c0)u
2w3

2 � c3(µ+ 2)uw2
2 � c1(µ+ 2)w2

2 � c2(µ+ 2)w2.
(2.3.9)

But in the dicritical case, when µ = �2, we must cancel the common factor u2 from systems
(2.3.8), hence we obtain the systems

u̇ = (c0 � a0)u
2w2

2 � c3uw2 � c2 � c1w2,

ẇ2 = (a0 � 2c0)uw
3
2.

(2.3.10)

Nondicritical case

In this case it is necessary to study the singular points of systems (2.3.9) on the exceptional
divisor. The origin is always a singular point, and we denote it by Q0. As µ+ 2 6= 0, there is
another singular point, Q1 = (0,�c2/c1), and we shall determine their local phase portraits.
For the origin, the eigenvalues of the linear part are �1 = c2(µ + 1) and �2 = �c2(µ + 2),
so they are both non-zero and the singular point is hyperbolic. By Theorem 1.2.1 we get the
three following possibilities:

• If µ 2 (�1,�2) [ (�1,+1), the origin is a saddle.

• If c2 > 0 and µ 2 (�2,�1), the origin a stable node.

• If c2 < 0 and µ 2 (�2,�1), the origin is an unstable node.
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For the singular point Q1, after doing a translation to the origin, we obtain eigenvalues
�1 = 0 and �2 = c2(µ + 2), so it is semi-hyperbolic. We place the systems in real Jordan
canonical form and apply Theorem 1.2.3, which gives us the next classification:

• If c2(a0 + c0µ) > 0, then Q1 is a topological saddle.

• If c2(µ+ 2) > 0 and (µ+ 2)(a0 + c0µ) < 0, then Q1 is a topological unstable node.

• If c2(µ+ 2) < 0 and (µ+ 2)(a0 + c0µ) > 0, then Q1 is a topological stable node.

These conditions come together in the seven subcases (a) to (g) listed below:

(a) If µ 2 (�1,�2) [ (�1,+1) and c2(a0 + c0µ) > 0, then Q0 is a saddle and Q1 is a
topological saddle.

In order to determine the phase portrait around the w2-axis for systems (2.3.9), we
must fix the sign of c2, which determines the position of the singular point Q1 and also
the sign of µ + 1, which determines the sense of the flow along the x-axis. Thus, we
deal with the following subcases.

Subcase (a.1). Let µ < �2 (so µ+ 1 < 0), and c2 > 0. Then the singular point Q1 is
on the negative part of the w2-axis and the expression u̇ |w2=0= c2(µ+1)u determines
the sense of the flow. The phase portrait is the one in Figure 2.3.3(a).

To return to systems (2.3.8) we multiply by u, thus the orbits in the second and third
quadrants change their orientation. Moreover, all the points on the w2-axis become
singular points. The resultant phase portrait is given in Figure 2.3.3(b).

When going back to the (u,w1)-plane, the second and third quadrants swap from the
(u,w2)-plane, the exceptional divisor shrinks to a point and hence the orbits are slightly
modified. Attending to the expressions u̇ |w1=0= c2(µ+ 1)u2 and ẇ1 |u=0= �c1w2

1 ,
we know the sense of the flow along the axes. Following Proposition 1.2.6, the sepa-
ratrix of the singular point Q1 in the (u,w2)-plane, becomes the separatrix with slope
�c2/c1 at the (u,w1)-plane.

The phase portrait around the w1 is not determined with this blow up, so it is necessary
to do a horizontal blow up in systems (2.3.7). We introduce the variable w3 = u/w1

and obtain the systems

ẇ3 = (2c0 � a0)w
2
3w

3
1 + c3(µ+ 2)w2

1w
2
3 + c2(µ+ 2)w1w

2
3 + c1(µ+ 2)w1w3,

ẇ1 = �c0w3w
4
1 � c3w3w

3
1 � c2w3w

2
1 � c1w

2
1.

(2.3.11)

Eliminating a common factor w1 we get

ẇ3 = (2c0 � a0)w
2
3w

2
1 + c3(µ+ 2)w1w

2
3 + c2(µ+ 2)w2

3 + c1(µ+ 2)w3,

ẇ1 = �c0w3w
3
1 � c3w3w

2
1 � c2w3w1 � c1w1.

(2.3.12)

The exceptional divisor is the line w1 = 0, and the singular points over this line are the
origin and the point (�c1/c2, 0). Under the conditions of this subcase, the origin is a
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stable node and the point (�c1/c2, 0) is a semi-hyperbolic saddle, with the configura-
tion given in Figure 2.3.2(a). Now to return to systems (2.3.11) we multiply by w1 so
the orbits in the third and fourth quadrants change their orientation. Moreover, all the
points on the w3-axis become singular points. The resultant phase portrait is given in
Figure 2.3.2(b).

w3

w1

(a)

w3

w1

(b)

Figure 2.3.2: Horizontal blow up in nondicritical case (1.1).

Going back to the (u,w1)-plane, the third and fourth quadrants swap from the (w3, w1)-
plane, the exceptional divisor shrinks to a point and the orbits are modified. Attending
to the sense of the flow along the axes and following again Proposition 1.2.6, the sep-
aratrix of the singular point (�c1/c2, 0) in the (w3, w1)-plane becomes the separatrix
with slope �c1/c2 at the (u,w1)-plane, and now this Proposition determines totally the
behavior in all the regions of the plane. We obtain that the phase portrait for systems
(2.3.7) is the one given in Figure 2.3.3(c).

Lastly we multiply by u and undo the first vertical blow up to return to the (u, v)-plane.
We swap the second and the third quadrants and contract the exceptional divisor to the
origin. According to Proposition 1.2.6, the orbits tending to the origin in forward
or backward time, become orbits tending to the origin in forward or backward time
with slope zero, i.e., tangent to the u-axis. According to the expressions u̇ |v=0=
c1µv2 � a0v3 and u̇ |v=0= c2(µ+ 1)u3, which determine the sense of the flow along
the axes, we get the local phase portrait L1 of Figure 2.3.1 at the origin of systems
(2.3.5).
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u

(a)

w2

u

(b)

w1

u

(c)

w1

u
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Figure 2.3.3: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Nondicritical
case (a.1).
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2.3 Infinite singular points

Subcase (a.2). If we maintain µ < �2 but take c2 < 0, the reasoning is essentially
similar to the one we have given in the previous case, and we obtain the phase portrait
L2 of Figure 2.3.1.

Subcase (a.3). Let µ > �1 and c2 > 0. This determines the position of singular point
Q1 and the sense of the flow along the axes, so around the w2-axis we obtain the phase
portrait given in Figure 2.3.4(a).

We multiply by u obtaining the phase portrait given in Figure 2.3.4(b), as the orbits in
the second and third quadrants change their orientation and all the points in the w2-axis
become singular points.

In order to undo the variable change we analyze the sense of the flow along the axes
according to the expressions u̇ |w1=0= c2(µ + 1)u2, which determines that the flow
goes in the positive sense of the u-axis, and ẇ1 |u=0= �c1w2

1 which determines that
the flow goes in the negative sense of the w1-axis. Moreover, we swap the second and
third quadrants, and press the exceptional divisor into the origin, modifying the orbits
in accordance with Proposition 1.2.6. We obtain the phase portrait given in Figure
2.3.4(c). Multiplying again by u we obtain the phase portrait 2.3.4(d).
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Figure 2.3.4: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Nondicritical
case (a.3).

Now we have to undo the second variable change. We note that u̇ |v=0= c2(µ+ 1)u3,
so the flow gets away from the origin along the u-axis. Nevertheless, the sense of the
flow along the v-axis is not determined by v̇ |u=0= c1µv2 � a0v3, it depends on the
constant µ. If µ < 0, the flow goes in the negative sense of the v-axis and the phase
portrait is totally determined, obtaining the L4 in Figure 2.3.1.

In the case with µ = 0 the phase portrait is not determined around the v-axis in the
third and fourth quadrants, and in the case with µ > 0 it is not determined around
the v-axis in none of the quadrants. The information we get in both cases is given in
Figure 2.3.5, where the non determined regions are shaded in blue. To complete the
phase portraits we must do a horizontal blow up. We introduce the variable w4 = u/v
on systems (2.3.5) obtaining the systems

ẇ4 = c2w
3
4v

2 + c3w
2
4v

2 + c0w4v
2 + c1w4v,

v̇ = c2µw
2
4v

3 + c3µw4v
3 � a0v

3 + c1µv
2.
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First Kolmogorov family (I)

If we eliminate a common factor v we get

ẇ4 = c2w
3
4v + c3w

2
4v + c0w4v + c1w4,

v̇ = c2µw
2
4v

2 + c3µw4v
2 � a0v

2 + c1µv,
(2.3.13)

and the only singular point of these systems over the exceptional divisor v = 0 is the
origin. If µ > 0, it is an unstable node and if µ = 0, it is a semi-hyperbolic saddle-
node.

u

v

µ > 0

u

v

µ = 0

Figure 2.3.5: Information obtained from vertical blow up in nondicritical case (a.3).

We follow the same steps in the two cases, illustrated in Figures 2.3.6 and 2.3.7. We
draw the phase portrait for systems (2.3.13) as can be seen in Subfigures (a); then
we multiply by v obtaining phase portraits in Subfigures (b) and lastly we undo the
variable change according to Proposition 1.2.6. The phase portraits in the (u, v)-plane
are not determined around the u-axis in the third and fourth quadrants, i.e., in the
regions colored in blue in Subfigures (c), but nevertheless combining this information
with the obtained from the vertical blow ups, we can conclude that the phase portrait
when µ > 0 is the L3 of Figure 2.3.1 and if µ = 0, the phase portrait is the L5.
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v

(a)

w4

v

(b)

u

v

(c)

Figure 2.3.6: Horizontal blow up in the nondicritical case (a.3) with µ > 0.

Subcase (a.4). Let µ > �1 and c2 < 0. By a similar reasoning to the previous one, we
obtain the phase portraits L6 and L7 of Figure 2.3.1 for µ > 0 and µ < 0, respectively.

(b) If µ 2 (�1,�2)[ (�1,+1), c2(µ+ 2) > 0 and (µ+ 2)(a0 + c0µ) < 0, then Q0 is
a saddle and Q1 a topological unstable node. We must distinguish two cases according
to the sign of c2.
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2.3 Infinite singular points

v

w4

(a)

v

w4

(b)

u

v

(c)

Figure 2.3.7: Horizontal blow up in the nondicritical case (a.3) with µ = 0.

Subcase (b.1). We consider c2 < 0, so µ < �2 and a0 + c0µ > 0. The singular
point Q1 is on the positive w2-axis and it is an unstable node, so the sense of the flow
along the axes is determined, and we obtain the phase portrait given in Figure 2.3.8(a).
Multiplying by u we obtain Figure 2.3.8(b).
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Figure 2.3.8: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Nondicritical
case (b.1).

We see that for systems (2.3.7) the flow goes in the negative sense along the w1-axis
and in the positive sense along the u-axis, according to the expressions u̇ |w1=0=
c2(µ + 1)u2 and ẇ1 |u=0= �c1w2

1 . If we undo the variable change modifying the
orbits in accordance with Proposition 1.2.6, the only information we get is that there
are orbits that left the origin in the first quadrant and orbits that arrive to the origin in the
third quadrant, all with slope �c2/c1, but also there must exist hyperbolic or elliptic
sectors on these quadrants, and this is not well determined and neither is the phase
portrait in the second and fourth quadrants. In any case, we would like to point that
the determination of whether the sectors in the first and third quadrants are hyperbolic
or elliptic can be done by means of index theory applied in the global phase portraits.
More detailed explanations will be given in Section 2.4, but roughly speaking, we know
that the index of the vector field on the sphere must be 2, and this index is the sum of
the indices of all singularities, which depend on the sectors that they have, so if the
index is 2 considering two elliptic sectors in a particular singular point, it cannot be 2
if we change those sectors for hyperbolic ones. This argument can be used to conclude
in cases in which the only indeterminacy raised from the vertical blow up is of this
type.
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First Kolmogorov family (I)

Here we study the phase portrait with a horizontal blow up. We must introduce the
variable w3 = u/w1 in systems (2.3.7) as done in subcase (a.1), so we obtain the
same systems (2.3.11) and then (2.3.12) by eliminating a common factor w1. The
singular points over w1 = 0 are the origin, which is a stable node, and the point
(�c1/c2, 0), which is a semi-hyperbolic unstable node. The phase portrait is given in
Figure 2.3.9(a). To return to systems (2.3.11) we multiply by w1 and obtain 2.3.9(b).

w3

w1

(a)

w3

w1

(b)

Figure 2.3.9: Horizontal blow up in nondicritical case (b.1).

We can go back from the (w3, w1)-plane to the (u,w1)-plane of systems (2.3.7) un-
doing the variable change according to Proposition 1.2.6. Now the phase portrait is
well defined in all the plane and we obtain that the separatrix of the singular point
(�c1/c2, 0) in the (w3, w1)-plane, becomes the separatrix with slope �c1/c2 at the
(u,w1)-plane, and the behavior is well determined in all the regions of the plane. We
obtain that the phase portrait for systems (2.3.7) is the one given in Figure 2.3.8(c).
Multiplying by u we obtain the phase portrait in Figure 2.3.8(d) and undoing the first
vertical blow up we return to the (u, v)-plane, concluding that the phase portrait of O1

is L8 of Figure 2.3.1.
From now on, we will omit the reasonings about how to undo the variable changes for
obtaining the final phase portrait, because they are similar to the ones in the previous
cases. The results obtained are the following.
Subcase (b.2). Let c2 > 0, so µ > �1 and a0+c0µ < 0. We obtain the phase portraits
L9 and L10 of Figure 2.3.1 for µ > 0 and µ < 0, respectively. In L9 it is possible to
consider hyperbolic sectors instead of the elliptic ones, but applying index theory in
the global phase portraits obtained in our study, we note that only the phase portrait
with elliptic sectors is feasible.

(c) If µ 2 (�1,�2) [ (�1,+1), c2(µ + 2) < 0, (µ + 2)(a0 + c0µ) > 0, then Q0 is a
saddle and Q1 a topological stable node. If c2 > 0, we obtain the phase portrait L11 of
Figure 2.3.1, and if c2 < 0, we obtain the phase portraits L12, L13 and L14 of Figure
2.3.1 for µ > 0, µ < 0 and µ = 0, respectively. In L11 and L12 it would be possible
that the elliptic sectors appearing were hyperbolic sectors, but again we have proved
in all the global phase portraits that only the elliptic option is feasible according to the
index theory.

(d) If c2 > 0, µ 2 (�2,�1) and a0 + c0µ > 0, then Q0 is a stable node and Q1 a
topological saddle. We obtain the phase portrait L15 of Figure 2.3.1.
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2.3 Infinite singular points

(e) If c2 > 0, µ 2 (�2,�1) and a0 + c0µ < 0, then Q0 is a stable node and Q1 a
topological unstable node. We obtain the phase portrait L11 of Figure 2.3.1.

(f) If c2 < 0, µ 2 (�2,�1) and a0 + c0µ < 0, then Q0 is an unstable node and Q1 a
topological saddle. We obtain the phase portrait L16 of Figure 2.3.1.

(g) If c2 < 0, µ 2 (�2,�1) and a0 + c0µ > 0, then Q0 is an unstable node and Q1 a
topological stable node. We obtain the phase portrait L8 of Figure 2.3.1.

Dicritical case

In the dicritical case, i.e., when µ = �2, we must work with systems (2.3.10) and studying the
singular points on the exceptional divisor. In this case there is only one singular point, R =
(0,�c2/c1). After moving the singular point to the origin, we obtain that the eigenvalues of
the linear part are

�1 =
c2c3 � c2

p
c23 + 4c2(a0 � 2c0)

2c1
and �2 =

c2c3 + c2
p

c23 + 4c2(a0 � 2c0)

2c1
,

and the determinant is �(c32(a0 � 2c0))/c21, so it is nonzero according to the hypothesis
c2 6= 0, a0 + c0µ 6= 0, and so the singular point is non-degenerated. We will study separately
the next subcases.

(a) If c23 < �4c2(a0 � 2c0) and c2c3 < 0, then P is a stable focus. We shall distinguish
two subcases depending on the sign of the parameter c2, because it determines if the
singular point is on the positive or negative u-axis. Let us consider c2 > 0. In Figure
2.3.10 the blowing-down process is represented. The phase portrait around the u-axis
is the one given in Figure 2.3.10(a), multiplying by u2 we obtain (b), undoing the
second variable change we obtain (c), multiplying by u we get (d) and finally, undoing
the first variable change we get the phase portrait L11 of Figure 2.3.1. Taking c2 < 0
and by the same method we obtain the phase portrait L8 of Figure 2.3.1.
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Figure 2.3.10: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Dicritical case
(a) with c2 > 0.

(b) If c23 < �4c2(a0 � 2c0) and c2c3 > 0, then P is an unstable focus. The reasoning is
analogous to the one on the previous case and we obtain the same phase portraits: L11

of Figure 2.3.1 if c2 > 0 and L8 if c2 < 0.
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First Kolmogorov family (I)

(c) If c23 = �4c2(a0 � 2c0) and c2c3 < 0, or if c2(c3 �
p
c23 + 4c2(a0 � 2c0)) < 0,

c23 > �4c2(a0 � 2c0) and c2(c3 +
p

c23 + 4c2(a0 � 2c0)) < 0, then P is a stable
node. Again, we study the case with c2 > 0. The blowing-down process is represented
in Figure 2.3.11, specifically, the phase portraits corresponding to systems (2.3.10),
(2.3.8), (2.3.7) and (2.3.6).

The final phase portrait obtained is again L11 of Figure 2.3.1. If we consider c2 < 0
we obtain the phase portrait L8.

u

w2

Systems (2.3.10)

u

w2

Systems (2.3.8)

w1

u

Systems (2.3.7)

w1

u

Systems (2.3.6)

Figure 2.3.11: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Dicritical case
(c) with c2 > 0.

(d) If c23 = �4c2(a0 � 2c0) and c2c3 > 0, or if c2(c3 �
p
c23 + 4c2(a0 � 2c0)) > 0,

c23 > �4c2(a0 � 2c0) and c2(c3 +
p

c23 + 4c2(a0 � 2c0)) > 0, then P is an unstable
node. Analogously to the stable case, we obtain the phase portrait L11 of Figure 2.3.1
if c2 > 0, and L8 if c2 < 0.

(e) If c23 > �4c2(a0�2c0) and (c3�
p
c23 + 4c2(a0 � 2c0))(c3+

p
c23 + 4c2(a0 � 2c0)) <

0, or if c3 = 0 and c2(a0 � 2c0) > 0, then P is a saddle. The blowing-down consid-
ering c2 > 0 is represented in Figure 2.3.12. The final result is L17 of Figure 2.3.1. If
we take c2 < 0, we obtain the phase portrait L18.
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Figure 2.3.12: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Dicritical case
(e) with c2 > 0.

(f) If c3 = 0 and c2(a0 � 2c0) < 0, then P is a linear center. In this case, the singular
point P could be a center or a focus. The case with a focus has already been studied
in subcases (a) and (b). Let us study now the center case, in particular the one with
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2.3 Infinite singular points

c2 > 0. The blowing-down process is represented in Figure 2.3.13. Finally, we get to
the same phase portrait as in the focus case, i.e., L11 of Figure 2.3.1. In the same way,
if we suppose c2 < 0, we obtain the phase portrait L8 of Figure 2.3.1. Therefore, in
the case in which P is a linear center, regardless of whether it is a center or a focus,
qualitatively, the phase portrait obtained for O1 is L11 if c2 > 0 and L8 if c2 < 0.
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Figure 2.3.13: Desingularization of the origin of systems (2.3.5) with c1 6= 0. Dicritical case
(f) with c2 > 0.

2.3.2 Case c1 zero
We consider systems (2.3.5) and do the same variable change that we do in the case with
c1 6= 0. We obtain obviously the systems (2.3.6) but taking c1 = 0, i.e.,

u̇ = (c0 � a0)u
3w2

1 + c3(µ+ 1)u3w1 + c2(µ+ 1)u3,

ẇ1 = �c0u
2w3

1 � c3u
2w2

1 � c2u
2w1.

In this case we can cancel a common factor u2, getting the systems

u̇ = (c0 � a0)uw
2
1 + c3(µ+ 1)uw1 + c2(µ+ 1)u,

ẇ1 = �c0w
3
1 � c3w

2
1 � c2w1,

(2.3.14)

for which we must study the singular points on the exceptional divisor, i.e., on the straight
line u = 0.

The origin S0 = (0, 0) is always a singular point. The other singular points on this line
are those for which w1 is a solution of c0w2

1 + c3w1 + c2 = 0 so, if c0 6= 0 and c23 > 4c0c2,
then

S1 = (0,�(Rc + c3)/(2c0)) and S2 = (0, (Rc � c3)/(2c0))

are singular points. If c0 6= 0 and c23 = 4c0c2, then

S3 = (0,�c3/(2c0))

is a singular point, and finally, if c0 and c3 are non-zero,

S4 = (0,�c2/c3)

is a singular point. In summary we shall study the five cases given in Table 2.3.1. For doing
this we study separately the local phase portrait of each singular point assuming in each case
the necessary hypothesis for its existence.
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First Kolmogorov family (I)

Case Conditions Singular points

(A) c0 = 0, c3 = 0. S0.
(B) c0 = 0, c3 6= 0. S0, S4.
(C) c0 6= 0, c23 < 4c0c2. S0.
(D) c0 6= 0, c23 = 4c0c2. S0, S3.
(E) c0 6= 0, c23 > 4c0c2. S0, S1, S2.

Table 2.3.1: Cases according to singular points on the exceptional divisor of systems (2.3.14).

Lemma 2.3.2. The local phase portraits for the singular points of systems (2.3.14) are the
following:

1. The singular point S0 is hyperbolic and
• If µ > �1, it is a saddle.

• If c2 > 0 and µ < �1, it is a stable node.

• If c2 < 0 and µ < �1, it is an unstable node.

2. The singular point S1 is hyperbolic and
• If c0(a0 + c0µ) < 0, it is a saddle.

• If c0 > 0 and (a0 + c0µ) > 0, it is a stable node.

• If c0 < 0 and (a0 + c0µ) < 0, it is an unstable node.

3. The singular point S2 is hyperbolic and
• If c0(a0 + c0µ)(Rc � c3) < 0, it is a saddle.

• If c0(Rc � c3) > 0 and (a0 + c0µ) > 0, it is a stable node.

• If c0(Rc � c3) < 0 and (a0 + c0µ) < 0, it is an unstable node.

4. The singular point S3 is a semi-hyperbolic saddle-node.
5. The singular point S4 is a hyperbolic saddle if c2 > 0 and a hyperbolic stable node if

c2 < 0.

Proof.

1. For the linear part at the origin S0, we get the eigenvalues �1 = c2(µ + 1) and �2 =
�c2, so it is hyperbolic and applying Theorem 1.2.1 we get the three possible phase
portraits.

2. For the singular point S1 we get the eigenvalues �1 = (a0 + c0µ)(2c0c2 � c23 �
c3Rc)/(2c20) and �2 = �Rc(Rc + c3)/(2c0). It is immediate from the hypothesis that
�2 is not zero and, if �1 was zero, then

2c0c2�c23�c3Rc = 0 ) (2c0c2�c23)
2 = c23R

2
c ) 4c20c

2
2�4c0c2c

2
3+c43 = c43�4c0c2c

2
3

and so 4c20c
2
2 = 0, which contradicts our hypothesis. We will prove that expressions

2c0c2�c23�c3Rc and 2c0c2�c23+c3Rc can not be positive. Suppose that c0c2 > 0, so
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2.3 Infinite singular points

we have c23�2c0c2 > c23�4c0c2 > 0 and then 2c0c2�c23 < 0. If 2c0c2�c23�c3Rc > 0,
then 2c0c2 � c23 > c3Rc > 0 which is a contradiction, so 2c0c2 � c23 � c3Rc must be
negative. If 2c0c2 � c23 + c3Rc > 0, then 2c0c2 � c23 > �c3Rc so, in addition to the
above we have

��2c0c2 � c23
�� < c3Rc and squaring we get

(2c0c2 � c23)
2 < c23R

2
c ) 4c20c

2
2 � 4c0c2c

2
3 + c43 < c43 � 4c0c2c

2
3 ) 4c20c

2
2 < 0

reaching again to a contradiction. Let us consider now the case c0c2 < 0. If 2c0c2 �
c23 � c3Rc > 0, then 2c0c2 > c23 + c3Rc > 0, which is a contradiction, so again we
have 2c0c2 � c23 � c3Rc < 0, an by the same reasoning as in the previous case we
conclude again than 2c0c2�c23+c3Rc < 0. Thus, S1 is hyperbolic and applying again
Theorem 1.2.1 we get the three possibilities and their corresponding conditions.

3. The reasoning is analogous to the one in the previous case.

4. The singular point S3 is semi-hyperbolic, and by Theorem 1.2.3 it is always a saddle-
node.

5. The singular point S4 is hyperbolic and by Theorem 1.2.1 it can be a saddle if c2 > 0
or a stable node if c2 < 0.

According to Lemma 2.3.2, we obtain the next 26 subcases from the five given in Table
2.3.1.

Case (A). The only singular point is the origin, so we have the next three possibilities.

(A.1) If c0 = c3 = 0 and µ > �1, then S0 is a saddle. In order to define totally the phase
portrait around the w1-axis for systems (2.3.14), we must set the sign of c2, which
determines the sense of the flow along the axes.
Subcase (A.1.1). Considering c2 > 0, on the v-axis the points are attracted towards the
origin, and on the u-axis points are repelled away from the origin, so the phase portrait
is the given in Figure 2.3.14(a). Then we have to multiply by u2, and so all the points
on the w1-axis become singular points, getting the phase portrait in Figure 2.3.14(b).
We undo the variable change and verify the sense of the flow along the axes, concluding
that the final phase portrait is the L19 given in Figure 2.3.1.
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Figure 2.3.14: Desingularization of the origin of systems (2.3.5) with c1 = 0. Subcase
(A.1.1).
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First Kolmogorov family (I)

Subcase (A.1.2). Considering c2 < 0, we obtain the phase portrait L20 of Figure 2.3.1.

(A.2) If c0 = c3 = 0, µ < �1 and c2 > 0, then S0 is a stable node. We obtain the phase
portrait L21 of Figure 2.3.1.

(A.3) If c0 = c3 = 0, µ < �1 and c2 < 0, then S0 is an unstable node. We obtain the phase
portrait L22 of Figure 2.3.1.

Case (B). Fixed the phase portrait of S4, only two phase portraits are possible for the origin,
as the sign of c2 is determined, and so we get the four following cases.

(B.1) If c0 = 0, c3 6= 0, µ > �1 and c2 > 0, then S0 and S4 are both saddle points
and S4 is on the negative w1-axis. According to the expression of systems (2.3.14),
it is, u̇ |w1=0= c2(µ + 1)u and ẇ1 |u=0= �c2w1 � c3w2

1 � c0w3
1 , we determine the

sense of the flow along the axes. We get the phase portrait given in Figure 2.3.15(a).
Multiplying by u2 we obtain the phase portrait in Figure 2.3.15(b), in which all the
points on the w1-axis are singular points. Now we undo the blow up according to
the expression of systems (2.3.5) and Proposition 1.2.6. The separatrix of the saddle
S4 which is not on the axes, become a separatrix on the second and fourth quadrants
passing through the origin. The hyperbolic sector on the first quadrant remains the
same, and the one on the second quadrant moves to the third quadrant. On second
and fourth quadrants we have got two different sectors, in one of them remains the
hyperbolic sector and in the other, colored in blue in Figure 2.3.15(c), the phase portrait
is not defined.
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Figure 2.3.15: Desingularization of the origin of systems (2.3.5) with c1 = 0. Case (B.1).

We do a horizontal blow up introducing the variable w5 = u/v in systems (2.3.5),
obtaining

ẇ5 = c2w
3
5v

2 + c3w
2
5v

2 + c0w5v
2,

v̇ = c2µw
2
5v

3 + c3µw5v
3 � a0v

3,

and eliminating a common factor v2 we get

ẇ5 = c2w
3
5 + c3w

2
5 + c0w5,

v̇ = c2µw
2
5v + c3µw5v � a0v.
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2.3 Infinite singular points

The only singular point on the exceptional divisor v = 0 is the origin which is a semi-
hyperbolic saddle-node as represented in Figure 2.3.16(a). If we multiply by v2 the
phase portrait is the same but with a line of singular points on the w5-axis as shown
in Figure 2.3.16(b). Now undoing the blow up there are also some regions where the
phase portrait is not defined, but combining the information we get here, included in
Figure 2.3.16(c) with the obtained previously in the vertical blow up, given in Figure
2.3.15(c), we can conclude that the phase portrait for O1 is L23 of Figure 2.3.1.

v

w5

(a)

v

w5

(b)

u

v

(c)

Figure 2.3.16: Horizontal blow up in the case (B.1).

(B.2) If c0 = 0, c3 6= 0, µ > �1 and c2 < 0, then S0 is a saddle and S4 a stable node. We
obtain the phase portrait L24 of Figure 2.3.1.

(B.3) If c0 = 0, c3 6= 0, µ < �1 and c2 > 0, then S0 is a stable node and S4 is a saddle. We
obtain the phase portrait L25 of Figure 2.3.1.

(B.4) If c0 = 0, c3 6= 0, µ < �1 and c2 < 0, then S0 is an unstable node and S4 is a stable
node. We obtain the phase portrait L26 of Figure 2.3.1.

Case (C). The only singular point is the origin so we distinguish three cases, and obtain the
same local phase portrait that in case (A), but under different conditions.

(C.1) If c0 6= 0, c23 < 4c0c2 and µ > �1, then S0 is a saddle. Attending to the sign of
c2, which determines the sense of the flow on the axes, we consider the following
subcases: If c2 > 0, we obtain the phase portrait L19 of Figure 2.3.1, and if c2 < 0,
we obtain the phase portrait L20 of Figure 2.3.1.

(C.2) If c0 6= 0, c23 < 4c0c2, µ < �1 and c2 > 0, then S0 is a stable node. We obtain the
phase portrait L21 of Figure 2.3.1.

(C.3) If c0 6= 0, c23 < 4c0c2, µ < �1 and c2 < 0, then S0 is an unstable node. We obtain the
phase portrait L22 of Figure 2.3.1.

Case (D). Apart from the origin, there exists the singular point S3, which is always a saddle
node, regardless of the conditions, so again we get only three subcases:
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(D.1) If c0 6= 0, c23 = 4c0c2 and µ > �1, then S0 is a saddle and S3 is a saddle-node.
We must distinguish four subcases according to the signs of c0 and a0 + c0µ, which
determine the position of the saddle-node S3 and its sectors. If c0 > 0 and a0 + c0µ >
0, we obtain the phase portrait L27 of Figure 2.3.1; if c0 > 0 and a0 + c0µ < 0, the
phase portrait L28 of Figure 2.3.1; if c0 < 0 and a0 + c0µ > 0, the phase portrait L29

and if c0 < 0 and a0 + c0µ < 0, the phase portrait L30.

(D.2) If c0 6= 0, c23 = 4c0c2, µ < �1 and c2 > 0, then S0 is a stable node and S3 is a saddle-
node. We distinguish two subcases setting the sign of a0 + c0µ which determines the
position of the sectors of the saddle-node S3. If a0 + c0µ > 0, we obtain the phase
portrait L31 of Figure 2.3.1, and if a0 + c0µ < 0, we obtain the phase portrait L32 of
Figure 2.3.1.

(D.3) If c0 6= 0, c23 = 4c0c2, µ < �1 and c2 < 0, then S0 is an unstable node and S3 is a
saddle-node. The only possibility is that a0 + c0µ > 0, so there are no subcases, and
we obtain the phase portrait L33 of Figure 2.3.1.

Case (E). There exist three singular points, with three possible phase portraits for each of
them, however, many of the combinations are not possible, and only 13 subcases will be
feasible.

First, due to the conditions which define the local phase portrait in each singular point,
it is obvious that if S1 is a stable node, then S2 can not be an unstable node, and if S1 is an
unstable node, S2 can not be a stable node, due to the sign of a0 + c0µ.

If S0 and S2 were stable nodes and S1 a saddle, the conditions c2 > 0, Rc � c3 < 0, and
c0 < 0 will hold. Squaring both terms in the condition Rc < c3 we obtain c23 � 4c0c2 < c23,
and then c0c2 > 0, which is a contradiction. The same reasoning is valid in the next two cases.
If S0 and S2 are unstable nodes and S1 a saddle, then the conditions c2 < 0, Rc� c3 < 0 and
c0 > 0 hold, and if S0 is an unstable node, S1 a stable node and S2 a saddle, then the same
three conditions hold.

If S0, S1 and S2 are stable nodes, the conditions c2 > 0, Rc � c3 > 0 and c0 > 0 hold.
Now we take condition Rc < c3 and squaring both terms we obtain c23 � 4c0c2 < c23, and
then c0c2 > 0, which is now a contradiction.

If S0 is a stable node and S1 an unstable node, the conditions µ < �1, c0 < 0 and
a0 + c0µ < 0 hold. Then according to the signs of c0 and µ which are fixed, a0 < �c0µ < 0
which contradicts the hypothesis H1

2 . The same reasoning is valid if S0 and S1 are unstable
nodes, because the same conditions hold. Now we will study the feasible cases.

(E.1) If c0 6= 0, c23 > 4c0c2, µ > �1, c0(a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0 and c0(a0 +
c0µ)(Rc � c3)(2c0c2 � c23 + c3Rc) > 0, then S0, S1 and S2 are saddles. We must
distinguish two subcases depending on the position of singular points S1 and S2 on the
w1-axis. First, if S1 is on the negative w1-axis and S2 on the positive w1-axis, which
corresponds with conditions c0 > 0, Rc � c3 > 0 and c2 < 0, we obtain the phase
portrait L34 of Figure 2.3.1. Note that if Rc�c3 > 0, the singular points S1 and S2 are
one on the positive part of the axis and other on the negative part, and in any case, the
absolute value of the second coordinate of S1 is greater or equal than the absolute value
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of the second coordinate of S2, and this determines the relation between the slopes of
the orbits in the phase portraits.

Conversely, if we have S1 on the positive w1-axis and S2 on the negative one, i.e.,
under conditions c0 < 0, Rc � c3 > 0 and c2 > 0, we obtain the phase portrait L35 of
Figure 2.3.1.

(E.2) If c0 6= 0, c23 > 4c0c2, µ > �1, c0(a0+c0µ)(2c0c2�c23�c3Rc) > 0, c0(Rc�c3) > 0
and (a0 + c0µ)(2c0c2 � c23 + c3Rc) < 0, then S0 and S1 are saddles and S2 is a stable
node. If c0 > 0 then Rc � c3 > 0 and so c23 � 4c0c2 > c23 and c0c2 < 0. If
a0+c0µ > 0 then 2c0c2�c23�c3Rc > 0 which is not possible because 2c0c2 < 0 and
we subtract two positive terms. Conversely, if a0 + c0µ < 0, then 2c0c2 � c23 < c3Rc

and 2c0c2 � c23 > �c3Rc, so
��2c0c2 � c23

�� < c3Rc. Squaring we get 4c20c22 < 0 which
is not possible. If c0 < 0, then Rc � c3 < 0 and we deduce c2 < 0. If a0 + c0µ < 0
then 2c0c2 � c23 � c3Rc > 0, but c23 � 2c0c2 > c23 � 4c0c2 > 0, so 2c0c2 � c23 < 0 and
subtracting c3Rc > 0 the result can not be positive.

In conclusion we deduce that c0, c2 < 0 and a0 + c0µ > 0. Hence we have �(Rc +
c3)/(2c0) > (Rc � c3)/(2c0) > 0. This determines the only possible position of
singular points which are both in the positive w1-axis, S1 under S2. Undoing the blow
up we obtain the phase portrait L36 of Figure 2.3.1.

(E.3) If c0 6= 0, c23 > 4c0c2, µ > �1, c0(a0+c0µ)(2c0c2�c23�c3Rc) > 0, c0(Rc�c3) < 0
and (a0 + c0µ)(2c0c2 � c23 + c3Rc) > 0, then S0 and S1 are saddles and S2 is an
unstable node. Therefore we deduce that 0 > (Rc � c3)/2c0 > �(Rc + c3)/2c0, so
both singular points are on the negative w1 axis, S1 under S2. We obtain the phase
portrait L37 of Figure 2.3.1.

(E.4) If c0 6= 0, c23 > 4c0c2, µ > �1, c0 > 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) < 0 and
c0(Rc � c3)(a0 + c0µ)(2c0c2 � c23 + c3Rc) > 0, then S0 and S2 are saddles and S1

is a stable node. Then we deduce that �(Rc + c3)/2c0 < (Rc � c3)/2c0 < 0, so both
singular points are on the negative w1 axis, S1 under S2. We obtain the phase portrait
L38 of Figure 2.3.1.

(E.5) If c0 6= 0, c23 > 4c0c2, µ > �1, c0 > 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) < 0,
c0(Rc � c3) > 0 and (a0 + c0µ)(2c0c2 � c23 + c3Rc) < 0, then S0 is a saddle and S1

and S2 are stable nodes. We obtain the phase portrait L45 of Figure 2.3.1.

(E.6) If c0 6= 0, c23 > 4c0c2, µ > �1, c0 < 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0 and
(a0+ c0µ)(Rc� c3)(2c0c2� c23+ c3Rc) < 0, then S0 and S2 are saddles and S1 is an
unstable node. Hence we deduce that 0 < (Rc � c3)/2c0 < �(Rc + c3)/2c0, so both
singular points are on the positive w1 axis, S2 under S1. We obtain the phase portrait
L47 of Figure 2.3.1.

(E.7) If c0 6= 0, c23 > 4c0c2, µ > �1, c0 < 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0,
Rc � c3 > 0 and (a0 + c0µ)(2c0c2 � c23 + c3Rc) > 0, then S0 is a saddle and S1 and
S2 are unstable nodes. We obtain the phase portrait L46 of Figure 2.3.1.
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(E.8) If c0 6= 0, c23 > 4c0c2, c2 > 0, µ < �1, c0(a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0 and
c0(a0 + c0µ)(Rc � c3)(2c0c2 � c23 + c3Rc) > 0, then S0 is a stable node and S1 and
S2 are saddles. We obtain the phase portrait L39 of Figure 2.3.1.

(E.9) If c0 6= 0, c23 > 4c0c2, c2 > 0, µ < �1, c0(a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0,
c0(Rc � c3) < 0 and (a0 + c0µ)(2c0c2 � c23 + c3Rc) > 0, then S0 is a stable node,
S1 is a saddle and S2 is an unstable node. We obtain the phase portrait L40 of Figure
2.3.1.

(E.10) If c0 6= 0, c23 > 4c0c2, c2 > 0, µ < �1, c0 > 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) < 0
and (a0 + c0µ)(Rc � c3)(2c0c2 � c23 + c3Rc) > 0, then S0 and S1 are stable nodes
and S2 is a saddle. We obtain the phase portrait L41 of Figure 2.3.1.

(E.11) If c0 6= 0, c23 > 4c0c2, c2 < 0, µ < �1, c0(a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0 and
c0(a0 + c0µ)(Rc � c3)(2c0c2 � c23 + c3Rc) > 0, then S0 is an unstable node and S1

and S2 are saddles. We obtain the phase portrait L42 of Figure 2.3.1.

(E.12) If c0 6= 0, c23 > 4c0c2, c2 < 0, µ < �1, c0(a0 + c0µ)(2c0c2 � c23 � c3Rc) > 0,
c0(Rc� c3) > 0 and (a0+ c0µ)(2c0c2� c23+ c3Rc) < 0, then S0 is an unstable node,
S1 is a saddle and S2 is a stable node. We obtain the phase portrait L43 of Figure 2.3.1.

(E.13) If c0 6= 0, c23 > 4c0c2, c2 < 0, µ < �1, c0 > 0, (a0 + c0µ)(2c0c2 � c23 � c3Rc) < 0,
Rc � c3 > 0, (a0 + c0µ)(2c0c2 � c23 + c3Rc) < 0, then S0 is an unstable node and S1

and S2 are stable nodes. We obtain the phase portrait L44 of Figure 2.3.1.

Note that in phase portraits L22, L30, L33, L43, L46 and L47 of Figure 2.3.1 it is possible
to consider hyperbolic sectors instead of the elliptic ones, but we have only represented the
elliptic cases by the same reason given before for phase portraits L8, L9, L11 and L12., i.e.,
because applying index theory to the phase portraits in the sphere S2 described in Section 2.4,
we prove that they are the only feasible.

Completed the study in the local chart U1, we address the study of the origin of chart U2

which turned out to be much simpler. The systems in this chart have the expression

u̇ = �c1(µ+ 1)u2v + (a0 � c0)uv
2 � c3(µ+ 1)uv � c2(µ+ 1)u,

v̇ = �c1uv
2 � c0v

3 � c3v
2 � c2v.

(2.3.15)

Lemma 2.3.3. Assuming hypothesis H1
2 , the origin of chart U2 is an infinite singular point

of systems (2.0.1). It is a saddle if µ < �1, a stable node if c2 > 0 and µ > �1, and an
unstable node if c2 < 0 and µ > �1.

Proof. It is clear that the origin is a singular point of systems (2.3.15), and we denote it by
O2. The eigenvalues of the linear part at O2 are �1 = �c2(µ + 1) and �2 = �c2, which
are both non-zero, so the singular point is hyperbolic. By Theorem 1.2.1 we get the three
possible phase portraits and the conditions defining them.

66



2.4 Global phase portraits

2.4 Global phase portraits
Our aim in this section is to give the topological classification of all the global phase portraits
of systems (2.0.1) by proving Theorem 2.0.1. To this end we bring together the local informa-
tion obtained in the previous sections. We start our classification from cases in Tables 2.2.2
to 2.2.7. In some of them the conditions determine only one local phase portrait in each one
of the infinite singular points but, in many others, we shall distinguish several possibilities.
In some cases the local information gives rise to only one global phase portrait, this occurs
when the separatrices can be connected in only one way, but in other cases several global
possibilities appear, and we shall prove which of them are feasible.

In Table 2.4.1 we give, for each case of the Tables 2.2.2 to 2.2.7, the local phase portrait
of the infinite singularities O1 and O2 (in most cases it depends on the parameters), and also
the global phase portrait on the Poincaré disk obtained. Now we detail the reasonings in some
cases, although they will not be showed in all cases to avoid repetitions.

We recall that we are denoting the origins of charts U1 and U2 as O1 and O2 respectively,
and in this section, to simplify the explanations, we will denote by Q1 the origin of chart V1

and by Q2 the origin of V2.

2.4.1 Cases with a totally-determined local phase portrait at infinity
First, we show an example of how to proceed in those cases where all local phase portraits of
the singular points, both finite and infinite, are fully determined, and where, in addition, the
separatrices can only be connected in one way.
Case 1.2. We must combine the local information to get the global phase portrait. The
infinite singular point O1 has the local phase portrait L3 given in Figure 2.3.1, and O2 is a
stable node. Regarding the finite singular points, in this case the systems have an unstable
node P2 which is on the negative z-axis and a saddle P4 which is on the positive x-axis.
The origin is a saddle-node and by the local configuration of the other singular points we
can conclude that it has the three separatrices over the axes which connect with the singular
points Q1, P2 and P4. Also we know that the part of the x-axis which connects P4 with O1

is a separatrix. Apart from those, the systems have two separatrices which arrive at Q1 from
the second and third quadrants, respectively, and two separatrices leaving the singular point
P4 on the first and fourth quadrants, respectively, as can be seen in Figure 2.4.1.

There is only one possible connection for these separatrices: the ones that leave P4 go to
O2 and Q2, respectively; the separatrix that arrives to Q1 in the second quadrant comes from
the origin and the one that arrives to Q1 from the third quadrant comes from the node P2.
Then we obtain phase portrait G2 in Figure 2.4.10, which has 19 separatrices and 6 canonical
regions.

With the same reasonings we can obtain the global phases portraits in the following cases:
1.3 with µ > �1; 1.4; 1.7 with µ > �1 or µ < �2; 1.8; 1.12 with µ > �1; 1.13; 1.14;
1.16 with µ > �1; 1.18 with µ < �2; 1.20; 2.3 with µ > �1; 2.4; 2.5; 2.6 with c1 = 0
and µ < �1; 2.8; 2.9; 2.10; 3.2 with µ 2 (�1, 0); 3.4 with µ < �2; 3.5 with µ 2 (�1, 0);
3.7 with µ > �1; 3.8; 3.9; 4.1 with µ = 0 or with c1 = 0, µ > �1 and a0 + c0µ > 0; 4.2
with c1 = 0, µ < �1 and a0 + c0µ > 0; 4.3 with µ > �1; 4.4; 5.1 with µ > �1; 5.3 with
µ > �1; 5.4 with µ > �1; 5.5; 6.1 with µ > �1; and 6.2.
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Figure 2.4.1: Separatrices provided by local information in case 1.2.

2.4.2 Cases with undetermined sectors at infinity
Here we give an example of how we deal with the cases in which there are infinite singular
points whose local phase portrait is not totally determined in the results obtained by mean
of the blow up technique. In these cases, the indeterminacy comes from the fact that some
sectors could be either elliptic or hyperbolic. We apply the index theory introduced in Section
1.6 to show that only one of the options is possible.

Case 1.1. The infinite singular point O1 has the local phase portrait L12 given in Figure 2.3.1,
and O2 is an unstable node. As we said in Section 2.3, the elliptic sectors appearing in phase
portrait L12 could be hyperbolic sectors if we attend only to local results, but now having all
the global information we can prove that they are elliptic by using index theory. By Theorem
1.6.1, the sum of the indices of all the singular points on the Poincaré sphere has to be 2.
To compute this sum, we must consider that the finite singular points on the Poincaré disk
appear twice on the sphere (on the northern hemisphere and on the southern hemisphere).
Thus, if we denote indF the sum of the indices of finite singular points, and indI the sum of
the indices of infinite singular points on the Poincaré disk, the equality 2indF + indI = 2
must be satisfied.

In this particular case, the finite singular points are a saddle-node, whose index is 0, and
two saddles, whose index is -1, so indF = �2. We deduce that indI must be 6. The infinite
singular points are O1 and O2, the origins of the local charts U1 and U2, and the origins of
the symmetric local charts V1 and V2, which have the same index. Since O2 is a node, and so
it has index 1, we get that the sum of the indices of O2 and its symmetric must be 4, i.e., the
index of O2 has to be 2. From the Poincaré formula for the index given in Section 1.6, we get

e� h

2
+ 1 = 2 ) e� h = 2.

Hence only the case with tho elliptic sectors on the local phase portrait L12 is possible,
because if we had two hyperbolic sectors instead of the elliptic ones, the index of O2 would
be zero.

Once determined the local phase portraits, by analyzing the possible connection of the
separatrices we get that in this case 1.1 there is only one possible phase portrait on the
Poincaré disk, which is G1 in Figure 2.4.10.

We recall that by an analogous application of index theory in the corresponding cases, it
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can be concluded that elliptic sectors appearing on local phase portraits L8, L9, L11, L22,
L30, L33, L43, L46 and L47 of O1 are indeed elliptic rather than hyperbolic.

Then, this kind of arguments based on the index of the singular points allow us to com-
plete the proof and determine the global phase portraits in the following cases: 1.1; 1.3 with
µ < �1; 1.5; 1.7 with µ < �1; 1.9; 1.11; 1.12 with µ < �1; 1.15; 1.16 with µ < �1; 2.1;
2.3 with c1 = 0, and µ < �1; 3.1; 3.2 with µ < �1; 3.5 with µ < �1; 3.6; 3.7 with µ < �1;
4.1 with c1 = 0 and µ < �1; 4.3 with c1 = 0 and µ < �1; 5.1 with µ < �1; 5.2; 5.3 with
µ < �1; 5.4 with µ < �1; 6.1 with c1 = 0 and µ < �1.

2.4.3 Cases with three possible global phase portraits
Here we focus on cases in which the separatrices can be connected in three different forms
based on the local information obtained in the previous sections.

Case 1.6. In this case O1 has the local phase portrait L3 and O2 is a stable node. From the
local results we can obtain three possible global phase portraits, given in Figure 2.4.2.

Subcase 1 Subcase 2 Subcase 3

Figure 2.4.2: Possible global phase portraits in case 1.6.

By Theorem 2.1.10, on the straight lines z = z0 6= 0 cannot be more than one contact
point, but as it is shown in Figure 2.4.3, if subcases 1 and 2 are feasible, there exist straight
lines z = z0 with �(Rc + c3)/(2c2) < z0 < (Rc � c3)/(2c2) on which there exist two
contact points, so we deduce that the only possible global phase portrait is the subcase 3, i.e.,
G10 of Figure 2.4.10.

Subcase 1 Subcase 2

Figure 2.4.3: Straight lines with two contact points on the two first subcases of 1.6.

Case 1.10. In this case O1 has the local phase portrait L6 and O2 is an unstable node. From
the local results we can obtain three possible global phase portraits, but in two of them shown
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in Figure 2.4.4, we can find straight lines z = z0 6= 0 with with (Rc � c3)/(2c2) < z0 <
�(Rc + c3)/(2c2), on which there are two contact points, so according to Theorem 2.1.10
they are not possible. Then, the only possibility is the phase portrait G20 of Figure 2.4.10.

Subcase 1 Subcase 2

Figure 2.4.4: Lines with two contact points on two subcases of 1.10.

Case 2.2. In this case O1 has the local phase portrait L47 and O2 is an unstable node. We
must use index theory, as in the previous section, to determine some sectors at infinity, ob-
taining that they are elliptic. Then, from the local results and applying Corollary 2.1.4 which
states that the phase portrait is symmetric, we obtain three possible global phase portraits, the
ones given in Figure 2.4.5. Note that if we were not guaranteed that the phase portraits are
symmetric, there would be a total of nine possible connections for the separatrices.

Subcase 1 Subcase 2 Subcase 3

Figure 2.4.5: Possible global phase portraits in case 2.2.

By Theorem 2.1.10 we know that, under the conditions of this case, two invariant lines
z = (Rc � c3)/2c2 and z = �(Rc + c3)/2c2 must exist, and it is only possible on subcase
1, which provides the phase portrait G42 of Figure 2.4.10.

Case 2.6. Here we distinguish three subcases and, in two of them, three global phase portraits
appear, but in each case we use different arguments to prove which of the options is realizable.

If µ = 0, then O1 has the local phase portrait L5 and O2 is a stable node. We obtain
three phase portraits, but we conclude that two of them are not feasible because we can find
straight lines z = z0 6= 0 with two contact points, as it is shown in Figure 2.4.6. Therefore
there is only one global phase portrait: G50 of Figure 2.4.10.

If c1 = 0 and µ > �1, then O1 has the local phase portrait L38 and O2 is a stable
node. We obtain three possible global phase portraits, the ones given in Figure 2.4.7. By
Theorem 2.1.10 we know that, under the conditions of this case, two invariant lines z =
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Subcase 1 Subcase 2

Figure 2.4.6: Straight lines with two contact points on two subcases of case 2.6 with µ = 0.

(Rc � c3)/(2c2) and z = �(Rc + c3)/(2c2) must exist, and it is only possible in the subcase
3, which provides the phase portrait G51 of Figure 2.4.10.

If c1 = 0 and µ < �1, then O1 has the local phase portrait L41 and O2 is a saddle. In
this case we obtain only one phase portrait which is G52 of Figure 2.4.10.

Subcase 1 Subcase 2 Subcase 3

Figure 2.4.7: Possible global phase portraits in case 2.6 with c1 = 0 and µ > �1.

Case 3.2. Here we distinguish three subcases and, in two of them, there is only one possible
global phase portrait. More precisely, if µ < �1, then O1 has the local phase portrait L8, O2

is a saddle and the global phase portrait is G64. If µ 2 (�1, 0), then O1 has the local phase
portrait L13, O2 is an unstable node and we obtain the phase portrait G65.

If µ > 0, then O1 has the local phase portrait L6 and O2 is an unstable node, and we get
three phase portraits, the ones given in Figure 2.4.8. By Theorem 2.1.10, there must exist a
contact point on each straight line z = z0, but if in subcases 1 and 2 if we take a straight
line z = z0 with z0 > �c3/(2c2), there are not contact points on it, so those subcases are
not feasible. The only possibility is the subcase 3, which provides the phase portrait G63 of
Figure 2.4.10.

Case 4.2. Here we distinguish five different subcases. First if c1 = 0, µ < �1 and a0+c0µ >
0, then O1 has the local phase portrait L31 and O2 is a saddle. In this case we obtain the global
phase portrait G90.

If c1 = 0, µ < �1 and a0 + c0µ < 0, then O1 has the local phase portrait L32 and
O2 is a saddle. By Corollary 2.1.5 the phase portrait must be symmetric so we obtain three
possibilities, given in Figure 2.4.9. We further know that there must exist an invariant straight
line z = �c3/2c2, so we can deduce that subcase 2 is not feasible because that invariant
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Subcase 1 Subcase 2 Subcase 3

Figure 2.4.8: Possible global phase portraits in case 3.2 with µ > 0.

straight line does not exist. As we also know that this invariant straight line is a separatrix in
the local phase portrait of O1, the one appearing in L32, the subcase 3 is not feasible, because
there would exist another separatrix over the invariant straight line that does not appear on
L32. So finally the only possible phase portrait is G91.

The same happens in the next cases in which we initially obtain three possibilities but we
can discard two of them with the same arguments, so finally we get the next results. If µ = 0,
then O1 has the local phase portrait L5 and O2 is a stable node and we obtain the global phase
portrait G87. If c1 = 0, µ > �1 and a0 + c0µ > 0, then O1 has the local phase portrait L27,
O2 is a stable node and we obtain the phase portrait G88. Finally, if c1 = 0, µ > �1 and
a0 + c0µ < 0, then O1 has the local phase portrait L28, O2 is a stable node, and the global
phase portrait is G89.

Subcase 1 Subcase 2 Subcase 3

Figure 2.4.9: Possible global phase portraits in case 4.2 with c1 = 0, µ < �1 and a0+c0µ <
0.

The same methods that we have used in the previous cases for determine which of the
global phase portraits are realizable, must be used in some other cases, namely: 1.17; 1.18
with µ � �2; 1.19; 2.7; 3.3; 3.4 with µ � �2; 3.5 with µ > 0; and finally, 4.1 with c1 = 0,
µ > �1 and a0 + c0µ < 0.

In subcases of 1.19 and 3.3 with µ < �1 it is also necessary to apply index theory to de-
termine completely the local phase portraits at infinity, before obtaining the three possibilities
for the global phase portraits.
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2.4 Global phase portraits

Case Conditions O1 O2 Global
1.1 L12 Unstable node G1
1.2 L3 Stable node G2

1.3
µ < �1 L8 Saddle G3

µ 2 (�1, 0) L13 Unstable node G4

1.4

µ < �2 L1 Saddle G5
µ 2 (�1, 0) L4 Saddle G6
µ 2 (�2,�1) L15 Saddle G7

µ = �2 L17 Saddle G8
1.5 L12 Unstable node G9
1.6 L3 Stable node G10

1.7
µ 2 (�1, 0) L10 Stable node G11
µ < �1 L11 Saddle G12

1.8

µ < �2 L2 Saddle G13
µ 2 (�1, 0) L7 Unstable node G14
µ 2 (�2,�1) L16 Saddle G15

µ = �2 L18 Saddle G16
1.9 L9 Stable node G19

1.10 L6 Unstable node G20
1.11 L12 Unstable node G17

1.12
µ < �1 L8 Saddle G21

µ 2 (�1, 0) L13 Unstable node G22
1.13 L3 Stable node G18

1.14

µ < �2 L1 Saddle G23
µ 2 (�1, 0) L4 Stable node G24
µ 2 (�2,�1) L15 Saddle G25

µ = �2 L17 Saddle G26
1.15 L12 Unstable node G27

1.16
µ < �1 L8 Saddle G35

µ 2 (�1, 0) L13 Unstable node G36
1.17 L3 Stable node G28

1.18

µ < �2 L1 Saddle G37
µ 2 (�1, 0) L4 Stable node G38
µ 2 (�2,�1) L15 Saddle G39

µ = �2 L17 Saddle G40

1.19
µ 2 (�1, 0) L10 Saddle G29
µ < �1 L11 Saddle G30

1.20

µ < �2 L2 Saddle G31
µ 2 (�1, 0) L7 Unstable node G32
µ 2 (�2,�1) L16 Saddle G33

µ = �2 L18 Saddle G34

Table 2.4.1 (1 out of 3): Classification of global phase portrais of systems (2.0.1).
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Case Conditions O1 O2 Global
2.1 L46 Stable node G41
2.2 L47 Unstable node G42

2.3
µ = 0 L14 Unstable node G43

c1 = 0, µ > �1 L36

c1 = 0, µ < �1 L43 Saddle G44

2.4
µ = 0 L5 Stable node G45

c1 = 0, µ > �1 L35 Stable node G46
c1 = 0, µ < �1 L39 Saddle G47

2.5
µ = 0 L14 Unstable node G48

c1 = 0, µ > �1 L45

c1 = 0, µ < �1 L44 Saddle G49

2.6
µ = 0 L5 Stable node G50

c1 = 0, µ > �1 L38 Stable node G51
c1 = 0, µ < �1 L41 Saddle G52

2.7
µ > �1 L37 Stable node G53
µ < �1 L40 Saddle G54

2.8
µ > �1 L34 Unstable node G55
µ < �1 L42 Saddle G56

2.9
µ = 0 L14 Unstable node G57

c1 = 0, µ > �1 L24

c1 = 0, µ < �1 L26 Saddle G58

2.10
µ = 0 L5 Stable node G59

c1 = 0, µ > �1 L23 Stable node G60
c1 = 0, µ < �1 L25 Saddle G61

3.1 L12 Unstable node G62

3.2
µ > 0 L6 Unstable node G63
µ < �1 L8 Stable node G64

µ 2 (�1, 0) L13 Unstable node G65

3.3
µ > 0 L3 Stable node G66
µ < �1 L11 Stable node G68

µ 2 (�1, 0) L10 Stable node G67

3.4

µ < �2 L1 Saddle G69
µ 2 (�1, 0) L4 Stable node G70
µ 2 (�2,�1) L15 Saddle G71

µ = �2 L17 Saddle G72

3.5
µ > 0 L3 Stable node G73

µ 2 (�1, 0) L10 Stable node G74
µ < �1 L11 Saddle G75

3.6 L12 Unstable node G76

3.7
µ < �1 L8 Saddle G77

µ 2 (�1, 0) L13 Unstable node G78

Table 2.4.1 (2 out of 3): Classification of global phase portrais of systems (2.0.1).
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2.4 Global phase portraits

Case Conditions O1 O2 Global
3.8 L3 Stable node G79

3.9

µ < �2 L1 Saddle G80
µ 2 (�1, 0) L4 Stable node G81
µ 2 (�2,�1) L15 Saddle G82

µ = �2 L17 Saddle G83

4.1

µ = 0 L14 Unstable node G84
c1 = 0, µ > �1, a0 + c0µ > 0 L29

c1 = 0, µ > �1, a0 + c0µ < 0 L30 Unstable node G85
c1 = 0, µ < �1 L33 Saddle G86

4.2

µ = 0 L5 Stable node G87
c1 = 0, µ > �1, a0 + c0µ > 0 L27 Stable node G88
c1 = 0, µ > �1, a0 + c0µ < 0 L28 Stable node G89
c1 = 0, µ < �1, a0 + c0µ > 0 L31 Saddle G90
c1 = 0, µ < �1, a0 + c0µ < 0 L32 Saddle G91

4.3
µ = 0 L14 Unstable node G92

c1 = 0, µ > �1 L20

c1 = 0, µ < �1 L22 Saddle G93

4.4
µ = 0 L5 Stable node G94

c1 = 0, µ > �1 L19 Stable node G95
c1 = 0, µ < �1 L21 Saddle G96

5.1
µ > 0 L3 Stable node G97

µ 2 (�1, 0) L10 Stable node G98
µ < �1 L11 Saddle G99

5.2 L12 Unstable node G76

5.3
µ > 0 L6 Unstable node G100
µ < �1 L8 Saddle G77

µ 2 (�1, 0) L13 Unstable node G78

5.4
µ > 0 L3 Stable node G79

µ 2 (�1, 0) L10 Stable node G101
µ < �1 L11 Saddle G102

5.5

µ < �2 L1 Saddle G80
µ 2 (�1, 0) L4 Stable node G81
µ 2 (�2,�1) L15 Saddle G82

µ = �2 L17 Saddle G83

6.1
µ = 0 L14 Unstable node G92

c1 = 0, µ > �1 L20

c1 = 0, µ < �1 L22 Saddle G93

6.2
µ = 0 L5 Stable node G94

c1 = 0, µ > �1 L19 Stable node G95
c1 = 0, µ < �1 L21 Saddle G96

Table 2.4.1 (3 out of 3): Classification of global phase portraits of systems (2.0.1).
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First Kolmogorov family (I)

G1 [R=8, S=21] G2 [R=6, S=19] G3 [R=5, S=18] G4 [R=6, S=19]

G5 [R=5, S=18] G6 [R=4, S=17] G7 [R=6, S=19] G8 [R=7, S=20]

G9 [R=7, S=20] G10 [R=6, S=19] G11 [R=6, S=19] G12 [R=5, S=18]

G13 [R=5, S=18] G14 [R=4, S=17] G15 [R=6, S=19] G16 [R=7, S=20]

G17 [R=8, S=23] G18 [R=6, S=21] G19 [R=7, S=22] G20 [R=6, S=21]

Figure 2.4.10 (1 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.
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2.4 Global phase portraits

G21 [R=5, S=20] G22 [R=6, S=21] G23 [R=5, S=20] G24 [R=4, S=19]

G25 [R=6, S=21] G26 [R=7, S=22] G27 [R=9, S=24] G28 [R=7, S=22]

G29 [R=6, S=21] G30 [R=6, S=21] G31 [R=5, S=20] G32 [R=4, S=19]

G33 [R=6, S=21] G34 [R=7, S=22] G35 [R=5, S=20] G36 [R=6, S=21]

G37 [R=5, S=20] G38 [R=5, S=20] G39 [R=6, S=21] G40 [R=7, S=22]

Figure 2.4.10 (2 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.
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G41 [R=8, S=21] G42 [R=7, S=20] G43 [R=6, S=19] G44 [R=6, S=19]

G45 [R=4, S=17] G46 [R=6, S=19] G47 [R=8, S=21] G48 [R=6, S=19]

G49 [R=6, S=19] G50 [R=5, S=18] G51 [R=6, S=19] G52 [R=4, S=17]

G53 [R=6, S=19] G54 [R=7, S=20] G55 [R=4, S=17] G56 [R=6, S=19]

G57 [R=6, S=17] G58 [R=6, S=17] G59 [R=4, S=15] G60 [R=4, S=15]

Figure 2.4.10 (3 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.
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2.4 Global phase portraits

G61 [R=6, S=17] G62 [R=8, S=21] G63 [R=6, S=19] G64 [R=5, S=18]

G65 [R=6, S=19] G66 [R=7, S=20] G67 [R=6, S=19] G68 [R=6, S=19]

G69 [R=5, S=18] G70 [R=5, S=18] G71 [R=6, S=19] G72 [R=7, S=20]

G73 [R=6, S=17] G74 [R=6, S=17] G75 [R=5, S=16] G76 [R=6, S=17]

G77 [R=3, S=14] G78 [R=4, S=15] G79 [R=5, S=16] G80 [R=3, S=14]

Figure 2.4.10 (4 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.
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G81 [R=3, S=14] G82 [R=4, S=15] G83 [R=5, S=16] G84 [R=6, S=17]

G85 [R=5, S=16] G86 [R=6, S=17] G87 [R=5, S=16] G88 [R=4, S=15]

G89 [R=4, S=15] G90 [R=4, S=15] G91 [R=5, S=16] G92 [R=4, S=13]

G93 [R=4, S=13] G94 [R=3, S=12] G95 [R=2, S=11] G96 [R=2, S=11]

G97 [R=5, S=14] G98 [R=4, S=13] G99 [R=3, S=12] G100 [R=5, S=16]

Figure 2.4.10 (5 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.
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2.5 Topological equivalences

G101 [R=4, S=15] G102 [R=5, S=16]

Figure 2.4.10 (6 out of 6): Global phase portraits of systems (2.0.1) on the Poincaré disk.

Remark 2.4.1. The global phase portraits G43, G48, G57, G84 and G92 can appear both
under condition c1 = or c1 6= 0, so as we are interested in the topological classification we
represent only the non-symmetric case respect to z-axis, but also the symmetric is possible.

The same situation occurs with global phase portraits G9, G13–G16, G18, G19, G23–
G27, G31-G36, G41, G45–G49, G55, G56, G76–G83, G92–G102, which can appear under
condition c3 = 0 or c3 6= 0, so they can present the symmetric or the non-symmetric form
respect to x-axis, although we only represent one of them because we are only interested on
the topological classification.

2.5 Topological equivalences
In the previous sections we have obtained the 102 global phase portraits given in Figure
2.4.10. There are 19 different classes according to their number of canonical regions and
separatrices, and within each class we distinguish which ones are topologically equivalent in
the following result.

Proposition 2.5.1. For Kolmogorov systems (2.0.1) there are 19 classes according to the
number of canonical regions and separatrices. Taking into account the topological equiva-
lences, we get:

(i) Four distinct phase portraits with 8 canonical regions and 21 separatrices.

(ii) Thirteen distinct phase portraits with 6 canonical regions and 19 separatrices.

(iii) Six distinct phase portraits with 5 canonical regions and 18 separatrices.

(iv) Five distinct phase portraits with 4 canonical regions and 17 separatrices.

(v) Seven distinct phase portraits with 7 canonical regions and 20 separatrices.

(vi) One phase portrait with 8 canonical regions and 23 separatrices.

(vii) Five distinct phase portraits with 6 canonical regions and 21 separatrices.

(viii) Three distinct phase portraits with 7 canonical regions and 22 separatrices.

(ix) Three distinct phase portraits with 5 canonical regions and 20 separatrices.

81



First Kolmogorov family (I)

(x) One phase portrait with 4 canonical regions and 19 separatrices.

(xi) One phase portrait with 9 canonical regions and 24 separatrices.

(xii) Six distinct phase portraits with 6 canonical regions and 17 separatrices.

(xiii) Six distinct phase portraits with 4 canonical regions and 15 separatrices.

(xiv) Seven distinct phase portraits with 5 canonical regions and 16 separatrices.

(xv) Three distinct phase portraits with 3 canonical regions and 14 separatrices.

(xvi) Three distinct phase portraits with 4 canonical regions and 13 separatrices.

(xvii) Two distinct phase portraits with 3 canonical regions and 12 separatrices.

(xviii) One phase portrait with 2 canonical regions and 11 separatrices.

(xix) One phase portraits with 5 canonical regions and 14 separatrices.

Proof. We proof this proposition by studying the topological equivalences within each one
of the 19 classes provided by the number of separatrices and canonical regions.

(i) For systems (2.0.1) we have obtained four phase portraits with 8 canonical regions and
21 separatrices, namely, G1, G41, G47 and G62 of Figure 2.4.10. In the phase portraits
G1 and G62 there are two elliptic sectors, in G41 there are four and in G47 there are no
elliptic sectors. Furthermore in G1 there are two separatrices that connect the saddle-
node with other finite singular points but in G62 there is only one. Then, all the phase
portraits in this class are topologically distinct.

(ii) For systems (2.0.1) we have obtained 19 phase portraits with 6 canonical regions and
19 separatrices, namely, G2, G4, G7, G10, G11, G15, G43, G44, G46, G48, G49, G51,
G53, G56, G63, G65,G67, G68 and G71 of Figure 2.4.10. First we consider different
subclasses attending to two invariants, the number of elliptic sectors and the sum of the
indices at the finite singular points, denoted by indF .

The phase portraits G44 and G49 have 4 elliptic sectors and indF = �1. If we move
the node to the origin in G44 we obtain G49, so they are topologically equivalent.

The only phase portrait with two elliptic sectors is the G68, so it is topologically dis-
tinct from all the others. The same occurs with phase portrait G56, which is the only
with no elliptic sectors and indF = 3.

Phase portraits G43 and G48 have no elliptic sectors and indF = �1. They are topo-
logically equivalent as we can obtain G48 by moving the node in G43 to the origin.

Phase portraits G7, G15 and G71 have no elliptic sectors and indF = 2. G7 is topo-
logically equivalent to G71 after moving the node of G7 to the origin and doing a
symmetry with respect to the x-axis. G7 is topologically distinct from G15 because in
G7 there are five separatrices which arrive or leave the saddle-node and in G15 there
are only four of those separatrices.
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2.5 Topological equivalences

Phase portraits G46, G51 and G53 have no elliptic sectors and indF = 1. If we move
the saddle in G51 to the origin we obtain G46, so they are topologically equivalent.
G46 is distinct from G53 due to the relative position of the finite singular points, in
both phase portraits the three finite singular points are on the z-axis, in G46 the saddle
is between the nodes but in G53 it is not.

All the remaining phase portraits have no elliptic sectors and indF = 0.

G4 is topologically equivalent to G65 by moving the saddle in G4 to the origin and
doing a symmetry with respect to the x-axis. G65 is equivalent to G67 by moving the
saddle in G67 to the origin, doing a rotation of 180� and changing t by �t.

G4 is different from G2 and G63 because in G2 and G63 there are an infinite singular
point which is connected with finite singularities by three separatrices and in G4 there
is not such infinite singular point.

G2 is distinct from G10, G11 and G63 because in G2 the saddle has three separatrices
that connect with infinite singular points but in G10, G11 and G63 only two separatri-
ces of the saddle connect with the infinity.

In G4 there are two types of orbits in the parabolic sector at the saddle-node, the ones
which go to a finite singular point and those who go to an infinite singular point. In
G10 all the orbits on that sector go to the infinity and in G11 are three different types
of orbit in that sector as they can go to two different infinite singular point or to a finite
singular point. Then, G4, G10 and G11 are distinct.

Finally, G63 is distinct from G10 and G11. In G63 the two separatrices that separate the
parabolic sector from the hyperbolic sectors in the saddle-node go to infinite singular
points while in G10 and G11 one of them goes to a finite singular point.

Summarizing, we have thirteen distinct phase portraits which can be represented by
G2, G4, G7, G10, G11, G15, G43, G44, G46, G53, G56, G63 and G68.

(iii) For systems (2.0.1) we have obtained eight phase portraits with five canonical regions
and 18 separatrices, namely, G3, G5, G12, G13, G50, G64, G69 and G70 of Figure
2.4.10. Attending to the number of elliptic sectors and the sum indF we have three
subclasses.

First, G3, G12 and G64 have two elliptic sectors. G3 is topologically equivalent to G64
by moving the saddle in G3 to the origin and doing a symmetry with respect to the x-
axis. G3 is distinct from G12 because in G3, to the infinite singular point at which
arrive orbits from the parabolic sector of the saddle node, also arrive two separatrices
from finite singular points but in G12 no separatrix arrives to that infinite singular point.

G50 is the only phase portrait with no elliptic sectors and indF = 1.

G5, G13, G69 and G70 have no elliptic sectors and indF = 2. G5 is topologically
equivalent to G69 by moving the unstable node in G5 to the origin and doing a sym-
metry with respect to the x-axis. G5 is distinct from G13 because in G5 there are four
separatrices that start or end in the saddle node, but in G13 there are five of those sep-
aratrices. Finally, G70 is distinct from G5 and G13 because in G70 there is an infinite
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singular point connected with finite singularities by three separatrices and there is not
such infinite singularity in G5 or G13.

Summarizing we have six different phase portraits in this class which can be repre-
sented by G3, G5, G12, G13, G50 and G70.

(iv) For systems (2.0.1) we have obtained five phase portraits with 4 canonical regions and
17 separatrices, namely, G6, G14, G45, G52 and G55 of Figure 2.4.10. G45 and G52
have indF = 1 and they are topologically distinct because in G45 there is an infinite
singularity connected with finite singularities by three separatrices and in G52 there
is not such infinite singular point. G6 and G14 have indF = 2 and they are distinct
because in G14 the two unstable separatrices which leave the saddle-node go to finite
singular points, but in G6 one of them goes to a infinite singular point. Lastly, G55 is
the only phase portrait with indF = 3.

(v) For systems (2.0.1) we have obtained seven phase portraits with 7 canonical regions
and 20 separatrices, namely, G8, G9, G16, G42, G54, G66 and G72 of Figure 2.4.10. In
a first subclass, G9, G42 and G54 have two elliptic sectors and they are all topologically
distinct as the sum indF in each of them is �2, �1 and 1 respectively. In a second
subclass G8 and G66 have no elliptic sectors and indF = 0, and they are distinct
because in G8 there is an infinite singular point which is connected by four separatrices
with finite singular points and in G66 there is not such infinite singularity. Lastly, G16
and G72 have no elliptic sectors and they are distinct because in G6 the two unstable
separatrices which leave the saddle-node go to finite singular points, but in G72 one
of them goes to a infinite singularity. Then all the phase portraits in this class are
topologically distinct.

(vi) For systems (2.0.1) we have obtained only one phase portraits with 8 canonical regions
and 23 separatrices, the G17 of Figure 2.4.10, so no proof is required.

(vii) For systems (2.0.1) we have obtained nine phase portraits with 6 canonical regions
and 21 separatrices, namely, G18, G20, G22, G25, G29, G30, G33, G36 and G39
of Figure 2.4.10. G30 is the only with two elliptic sectors so it is distinct from all
the others. G25, G33 and G39 have no elliptic sectors and indF = 2, and they are all
topologically equivalent. If we move the saddle in G33 to the origin, we do a symmetry
with respect to the z-axis and we change t by �t we obtain G25. If we move the saddle
to the origin in G39 we obtain G25.

In the last subclass, with no elliptic sectors and indF = 0 we have the phase portraits
G18, G20, G22, G29 and G36. If we move in G29 the saddle which is on the negative
x-axis to the origin, we do a rotation of 180� and we change t by �t we obtain G22.
If we move the unstable node in G22 to the origin we obtain G36, so these three phase
portraits are topologically equivalent. G18 is distinct from G20 and G22 because in
G18 there is an infinite singular point which is connected with finite singular points
by three separatrices and there is not such infinite singular point in the other phase
portraits. G20 is distinct from G22 because in G20 there are two infinite singular
points which are connected with finite singular points by two separatrices, and in G22
there are not such infinite singularities.
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2.5 Topological equivalences

(viii) For systems (2.0.1) we have obtained five phase portraits with 7 canonical regions and
22 separatrices, namely, G19, G26, G28, G34 and G40 of Figure 2.4.10. G19 has two
elliptic sectors and G28 has no elliptic sectors and indF = 0 so they are different from
all the other phase portraits which have no elliptic sectors and indF = 2. Those other
phase portraits, G26, G34 and G40 are topologically equivalent. If we move the saddle
in G26 to the origin we obtain G40. If we move the stable node in G26 to the origin,
we do a symmetry with respect to the z-axis and we change t by �t we obtain G34.

(ix) For systems (2.0.1) we have obtained six phase portraits with 5 canonical regions and
20 separatrices, namely, G21, G23, G31, G35, G37 and G38 of Figure 2.4.10. First, in
G21 and G35 there are two elliptic sectors and these phase portraits are topologically
equivalent by moving the node in G21 to the origin. The other phase portraits have
no elliptic sectors. G23 is equivalent to G31 by moving the saddle in G31 to the
origin, doing a symmetry with respect to the z-axis and changing t by �t. G23 is also
equivalent to G37 by moving the saddle in G37 to the origin. Finally, G37 is distinct
to G38 because in G38 there is an infinite singularity connected with finite singular
points by three separatrices and in G37 there is not such infinite singularity. Thus we
have three distinct phase portraits which can be represented by G23, G38 and G21.

(x) For systems (2.0.1) we have obtained two phase portraits with 4 canonical regions and
19 separatrices, the G24 and the G32 of Figure 2.4.10. If we move the node in G24
to the origin, we do a symmetry with respect to the z-axis and we change t by �t we
obtain G32, so both phase portraits are equivalent.

(xi) For systems (2.0.1) we have obtained only one phase portrait with 9 canonical regions
and 24 separatrices, the G27 of Figure 2.4.10, so no proof is required.

(xii) For systems (2.0.1) we have obtained eight phase portraits with 6 canonical regions
and 17 separatrices, namely, G57, G58, G61, G73, G74, G76, G84 and G86 of Figure
2.4.10. We consider subclasses depending on the number of elliptic sectors and the
indF . First, G58 and G84 have four elliptic sectors, and they are topologically equiv-
alent by moving the saddle in G58 to the origin and doing a symmetry with respect to
the x-axis. G76 is the only phase portrait with two elliptic sectors and G61 is the only
with no elliptic sectors and indF = 1, so they are not equivalent to any other. G57 and
G84 have no elliptic sectors and indF = �1 and they are topologically equivalent by
moving the saddle in G57 to the origin and doing a symmetry with respect to the x-
axis. Finally, G73 and G74 have no elliptic sectors and indF = 0, but their as distinct
because in G73 there is an infinite singular point connected by three separatrices with
finite singular points, and in G74 there is not such infinite singular point.

(xiii) For systems (2.0.1) we have obtained eight phase portraits with 4 canonical regions
and 15 separatrices, namely, G59, G60, G78, G82, G88, G89, G90 and G101 of Figure
2.4.10. First we divide the phase portrait attending to the indF . G82 is the only with
indF = 2. G78 and G101 have indF = 0, and they are topologically equivalent as if
we move in G78 the node to the origin, we do a symmetry with respect to the z-axis
and we change t by �t, we obtain G101.
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All the remaining phase portraits have indF = 1. G59 is different from G60, G89
and G90 as in G59 there is an infinite singular point which is the !-limit of three
separatrices which start in finite singular points, and in G60, G89 and G90 there is not
such infinite singular point. G60 is topologically equivalent to G88 by moving the node
in G60 to the origin and doing a symmetry with respect to the x-axis. G89 is distinct
from G88 and G90 because in G89 there are orbits which connect two infinite singular
points and in G88 and G90 there are not such orbits. Lastly, G88 is distinct from G90
because in G88 there are two infinite singular points at which arrive two separatrices
from finite singularities, and in G90 there are not such infinite singular points.
Summarizing we have six topologically different phase portraits which can be repre-
sented by G82, G78, G59, G60, G89 and G90.

(xiv) For systems (2.0.1) we have obtained eight phase portraits with 5 canonical regions and
16 separatrices, namely, G75, G79, G83, G85, G87, G91, G100 and G102 of Figure
2.4.10. We focus on the number of elliptic sectors and the indF in each one of the
phase portraits. G75, G85, G91 and G102 have two elliptic sectors, and the sum indF
in each one of them is 0, �1, 1 and �2 respectively, so they are all distinct. On the
other hand G79, G83, G87 and G100 have no elliptic sectors. The sum indF is 2 in
G83, 1 in G87 and 0 in G79 and G100, so we only have to prove if G79 and G100
are topologically equivalent, and indeed they are. If we move the node to the origin in
G79, we do a symmetry with respect to the z-axis and we change the time variable t
by �t, we get G100.

(xv) For systems (2.0.1) we have obtained three phase portraits with 3 canonical regions
and 14 separatrices, namely, G77, G80 and G81 of Figure 2.4.10. The phase portrait
G77 has two elliptic sectors so it is topologically distinct from G80 and G81 which do
not have elliptic sectors. In G80 and G81 there are two separatrices which connect a
infinite singular point with a finite singular point, and in the region limited by those
separatrices there is a finite singular point in G81 but none in G80.

(xvi) For systems (2.0.1) we have obtained three phase portraits with 4 canonical regions
and 13 separatrices, namely, G92, G93 and G98 of Figure 2.4.10. The phase portrait
G93 which has four elliptic sectors is distinct from G92 and G98 which do not have
any elliptic sector. G92 is also distinct from G98 as both have only one finite singular
point which is a saddle in G92 and an unstable node in G98.

(xvii) For systems (2.0.1) we have obtained two phase portraits with 3 canonical regions
and 12 separatrices, the G94 and the G99 of Figure 2.4.10. These phase portraits are
topologically distinct because G94 has two elliptic sectors and G99 has no elliptic
sectors.

(xviii) For systems (2.0.1) we have obtained two phase portraits with 2 canonical regions and
11 separatrices, the G95 and the G96 of Figure 2.4.10, and we can transform G96 into
G95 with a rotation of 90�, so they are topologically equivalent.

(xix) For systems (2.0.1) we have obtained only one phase portrait with 5 canonical regions
and 14 separatrices, the G97 of Figure 2.4.10, so no proof is required.
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2.5 Topological equivalences

The classification given in Table 2.4.1 together with Proposition 2.5.1, prove our main
result in this chapter, i.e., Theorem 2.0.1.

Figure 2.0.1 includes the representatives of each one of the topological equivalence classes,
which correspond to the portraits in Figure 2.4.10 as indicated in Table 2.5.1
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Representative Phase portraits

R1 G1
R2 G2
R3 G3, G64
R4 G4, G65, G67
R5 G5, G69
R6 G6
R7 G7, G71
R8 G8
R9 G9

R10 G10
R11 G11
R12 G12
R13 G13
R14 G14
R15 G15
R16 G16
R17 G17
R18 G18
R19 G19
R20 G20
R21 G21, G35
R22 G22, G29, G36
R23 G23, G31, G37
R24 G24, G32
R25 G25, G33, G39
R26 G26, G34, G40
R27 G27
R28 G28
R29 G30
R30 G38
R31 G41
R32 G42
R33 G43, G48
R34 G44, G49
R35 G45
R36 G46, G51
R37 G47
R38 G50
R39 G52

Representative Phase portraits

R40 G53
R41 G54
R42 G55
R43 G56
R44 G57, G84
R45 G58, G86
R46 G59
R47 G60, G88
R48 G61
R49 G62
R50 G63
R51 G66
R52 G68
R53 G70
R54 G72
R55 G73
R56 G74
R57 G75
R58 G76
R59 G77
R60 G78, G101
R61 G79, G100
R62 G80
R63 G81
R64 G82
R65 G83
R66 G85
R67 G87
R68 G89
R69 G90
R70 G91
R71 G92
R72 G93
R73 G94
R74 G95, G96
R75 G97
R76 G98
R77 G99
R78 G102

Table 2.5.1: Representatives of each equivalence class and their corresponding global phase
portraits of systems (2.0.1).
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Chapter 3

Classification of the first
Kolmogorov family with

non-isolated singularities

The current chapter includes the contents of the research article [45]1, in which we study
systems (2.0.1) in the particular case with µ = �1. In this case all the singular points at
infinity are singular points. It was proved in Section 2.1 and Lemma 2.2.1 that systems
(2.0.1) can be studied under conditions

H1
1 =

�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 + c0µ 6= 0, a20 + c21µ

2 6= 0
 
,

as any other case can be reduced to satisfy such conditions either using symmetries, or elimi-
nating known phase portraits as in the cases in which there exist infinitely many finite singular
points. Then taking µ = �1 we will study the systems

ẋ = x
�
a0 + c1x+ c2z

2 + c3z
�
,

ż = z
�
c0 + c1x+ c2z

2 + c3z
�
,

(3.0.1)

under conditions

H̃1 =
�
c2 6= 0, a0 � 0, c1 � 0, c3 � 0, a0 6= c0, a

2
0 + c21 6= 0

 
.

Moreover, from Remark 2.1.8, when a0 is zero it is enough to study the case with c0 positive.
Our main objective in this chapter is to prove the following result, which provides the

topological classification of all global phase portraits of systems (3.0.1) on the Poincaré disk.

Theorem 3.0.1. Kolmogorov systems (3.0.1) under conditions H̃1 have 22 topologically dis-
tinct phase portraits in the Poincaré disk, given in Figure 3.0.1.

1Érika Diz-Pita (Departamento de Estatística, Aánlise Matemática e Optimización, Universidade de Santiago
de Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona) and María
Victoria Otero-Espinar (Departamento de Estatística, Análise Matemática e Optimización, Universidade de San-
tiago de Compostela), Phase portraits of a family of Kolmogorov systems with infinitely many singular points
at infinity, Communications in Nonlinear Science and Numerical Simulation, (ISSN:1007-5704, EISSN:1878-
7274), 104 (2022), 106038. Published by Elsevier. The final authenticated version is available online at:
https://doi.org/10.1016/j.cnsns.2021.106038
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First Kolmogorov family (II)

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

R17 R18 R19 R20

Figure 3.0.1 (1 out of 2): The topologically distinct phase portraits of systems (2.0.1) in the
Poincaré disk.

90



3.1 Local study of finite singular points

R21 R22

Figure 3.0.1 (2 out of 2): The topologically distinct phase portraits of systems (3.0.1) in the
Poincaré disk.

This Chapter is organized as follows: In Section 3.1 we give the classification of the local
phase portraits of the finite singular points, in Section 3.2 we study the local phase portraits
at the infinite singular points, and finally in Section 3.3 we prove Theorem 3.0.1.

3.1 Local study of finite singular points
From Section 2.2, if we consider the condition µ = �1, we get that the singular points of
systems (3.0.1) are

P0 = (0, 0), P1 =

✓
0,

Rc � c3
2c2

◆
and P2 =

✓
0,�Rc + c3

2c2

◆
if c23 > 4c0c2,

P3 =

✓
0,� c3

2c2

◆
if c23 = 4c0c2 and P4 =

✓
�a0
c1

, 0

◆
if c1 6= 0.

From Table 2.2.1 in Section 2.2, we get six cases depending on the coexistence of finite
singular points, given in Table 3.1.1.

Case Conditions Finite singular points

1 c
2
3 > 4c0c2, c1 6= 0 P0, P1, P2, P4

2 c
2
3 > 4c0c2, c1 = 0, a0 6= 0 P0, P1, P2

3 c
2
3 = 4c0c2, c1 6= 0 P0, P3, P4

4 c
2
3 = 4c0c2, c1 = 0, a0 6= 0 P0, P3

5 c
2
3 < 4c0c2, c1 6= 0 P0, P4

6 c
2
3 < 4c0c2, c1 = 0, a0 6= 0 P0

Table 3.1.1: The different cases for the finite singular points.

From Lemma 2.2.9 and Tables 2.2.2 to 2.2.2 in Section 2.2, assuming the condition µ =
�1, we get the following classification for the local phase portraits of the finite singular
points, with 34 subcases.
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First Kolmogorov family (II)

Case 1: c
2
3 > 4c0c2, c1 6= 0

Sub. Conditions Classification
1.1 a0 > 0, c0 = 0, c2 < 0 P0 ⌘ P1 saddle-node, P2 saddle, P4 stable

node
1.2 a0 > 0, c0 = 0, c2 > 0 P0 ⌘ P1 saddle-node, P2 unstable node, P4

stable node
1.3 a0 = 0, c0 > 0, Rc � c3 < 0, c2 > 0 P0 ⌘ P4 saddle-node, P1 stable node, P2 sad-

dle
1.4 a0 = 0, c0 > 0, c2 < 0, Rc � c3 > 0 P0 ⌘ P4 saddle-node, P1 stable node, P2 stable

node
1.5 a0 > 0, c0 < 0, c2 < 0, a0 � c0 > 0,

(Rc � c3) < 0
P0 saddle, P1 unstable node, P2 saddle, P4 sta-
ble node

1.6 a0 > 0, c0 < 0, a0 � c0 > 0, c2 > 0,
Rc � c3 > 0

P0 saddle, P1 unstable node, P2 unstable node,
P4 stable node

1.7 a0 > 0, c0 > 0, a0 � c0 > 0,
c2 < 0, Rc � c3 > 0

P0 unstable node, P1 saddle,
P2 saddle, P4 stable node

1.8 a0 > 0, c0 > 0, Rc�c3 < 0, a0�c0 >

0, c2 > 0
P0 unstable node, P1 saddle,
P2 unstable node, P4 stable node

1.9 a0 > 0, c0 > 0, a0�c0 < 0, Rc�c3 <

0, c2 > 0
P0 unstable node, P1 stable node, P2 saddle, P4

saddle
1.10 a0 > 0, c0 > 0, a0 � c0 < 0, c2 < 0,

Rc � c3 > 0
P0 unstable node, P1 stable node, P2 stable
node, P4 saddle

Table 3.1.2: Classification in case 1 of Table 3.1.1 according to the local phase portraits of
finite singular points.

Case 2: c
2
3 > 4c0c2, c1 = 0, a0 > 0

Sub. Conditions Classification
2.1 c0 < 0, a0 � c0 > 0, Rc � c3 < 0,

c2 < 0
P0 saddle, P1 unstable node, P2 saddle

2.2 c0 < 0, a0�c0 > 0, c2 > 0, Rc�c3 >

0
P0 saddle, P1 unstable node, P2 unstable node

2.3 c0 > 0, c2(a0 � c0) < 0, Rc � c3 > 0 P0 unstable node, P1 saddle, P2 saddle
2.4 c0 > 0, Rc � c3 < 0, a0 � c0 > 0,

c2 > 0
P0 unstable node, P1 saddle, P2 unstable node

2.5 c0 > 0, a0 � c0 < 0, Rc � c3 < 0,
c2 > 0

P0 unstable node, P1 stable node, P2 saddle

2.6 c0 > 0, a0�c0 < 0, c2 < 0, Rc�c3 >

0
P0 unstable node, P1 stable node, P2 stable
node

2.7 c0 = 0, a0 > 0, c2 < 0 P0 ⌘ P1 saddle-node, P2 saddle
2.8 c0 = 0, a0 > 0, c2 > 0 P0 ⌘ P1 saddle-node, P2 unstable node

Table 3.1.3: Classification in case 2 of Table 3.1.1 according to the local phase portraits of
finite singular points.
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3.1 Local study of finite singular points

Case 3: c
2
3 = 4c0c2, c1 6= 0

Sub. Conditions Classification
3.1 a0 > 0, c0 < 0, a0 � c0 > 0 P0 saddle, P3 saddle-node, P4 stable node
3.2 a0 > 0, c0 > 0, a0 � c0 < 0 P0 unstable node, P3 saddle-node , P4 saddle
3.3 a0 > 0, c0 > 0, a0 � c0 > 0 P0 unstable node, P3 saddle-node , P4 stable

node
3.4 a0 = 0, c0 > 0 P0 ⌘ P4 saddle-node, P3 saddle-node
3.5 c0 = 0, a0 > 0, c2 < 0 P0 ⌘ P3 topological saddle, P4 stable node
3.6 c0 = 0, a0 > 0, c2 > 0 P0 ⌘ P3 topological unstable node, P4 stable

node

Table 3.1.4: Classification in case 3 of Table 3.1.1 according to the local phase portraits of
finite singular points.

Case 4: c
2
3 = 4c0c2, c1 = 0, a0 > 0

Sub. Conditions Classification
4.1 c0 < 0 P0 saddle, P3 saddle-node
4.2 c0 > 0 P0 unstable node, P3 saddle-node
4.3 c0 = 0, c2 < 0 P0 ⌘ P3 topological saddle
4.4 c0 = 0, c2 > 0 P0 ⌘ P3 topological unstable node

Table 3.1.5: Classification in case 4 of Table 3.1.1 according to the local phase portraits of
finite singular points.

Case 5: c
2
3 < 4c0c2, c1 6= 0

Sub. Conditions Classification
5.1 a0 = 0 P0 ⌘ P4 saddle-node
5.2 a0 > 0, c0 < 0, a0 � c0 > 0 P0 saddle, P4 stable node
5.3 a0 > 0, c0 > 0, a0 � c0 < 0 P0 unstable node, P4 saddle
5.4 a0 > 0, c0 > 0, a0 � c0 > 0 P0 unstable node, P4 stable node

Table 3.1.6: Classification in case 5 of Table 3.1.1 according to the local phase portraits of
finite singular points.

Case 6: c
2
3 < 4c0c2, c1 = 0, a0 > 0

Sub. Conditions Classification
6.1 c0 < 0 Problemas de espacio P0 saddle
6.2 c0 > 0 Problemas de espacio P0 unstable node

Table 3.1.7: Classification in case 6 of Table 3.1.1 according to the local phase portraits of
finite singular points.
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3.2 Local study of infinite singular points
In order to study the behavior of the trajectories of systems (3.0.1) near infinity we consider
the Poincaré compactification. We assume the hypothesis H̃1. According to equations (1.3.9)
and (1.3.10), we get the compactification in the local charts U1 and U2 respectively. To study
all the infinite singular points, it is enough to study the singular points over v = 0 in chart U1

and the origin of chart U2.
We start with the study of the origin of chart U2, which is simpler. The systems in this

chart have the expression

u̇ = (a0 � c0)uv
2,

v̇ = �c1uv
2 � c0v

3 � c3v
2 � c2v.

Over the line v = 0 we get u̇ |v=0= v̇ |v=0= 0, then all points at infinity are singular points,
including the origin which is the only we must study in this chart. At the origin of this chart,
one of the eigenvalues of the Jacobian matrix is zero and the other is �c2. Applying Theorem
1.5.1 given in Section 1.5, we can conclude that if c2 > 0 there is exactly one orbit outside
the infinity that goes to the origin of U2 and if c2 < 0 there is exactly one orbit from outside
the infinity that leaves the origin of U2.

Now we address the study of the infinite singular points in the local chart U1, where the
expression of the systems is

u̇ = (c0 � a0)uv
2,

v̇ = �c2u
2v � c3uv

2 � a0v
3 � c1v

2.
(3.2.2)

Taking v = 0 we get again that all points at infinity in this chart are singular points. At the
origin, the eigenvalues of the Jacobian matrix are both zero. At a point (u0, 0) with u0 6= 0
the eigenvalues are one zero and the other �c2u2

0 so, if c2 > 0, then the nonzero eigenvalue
is negative and exactly one orbit outside the infinity arrives at each infinite singular point
on chart U1 distinct from the origin. If c2 < 0 the nonzero eigenvalue is positive so from
each infinite singular point on chart U1 distinct from the origin leaves exactly one orbit from
outside the infinity.

From the previous reasoning we can state the following result.

Lemma 3.2.1. For any infinite singular point of systems (3.0.1) distinct from the origin of
chart U1 the following statements hold:

• If c2 > 0 exactly one orbit outside the infinity arrives to the singular point.

• If c2 < 0 exactly one orbit from outside the infinity leaves the singular point.

Now we must study in detail the origin of chart U1, which we will name O1. For this
singular point we will prove the following result.

Lemma 3.2.2. The origin of chart U1 is an infinite singular point of systems (3.0.1) and it
has 12 distinct local phase portraits described in Figure 3.2.1.
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Figure 3.2.1: Local phase portraits at the infinite singular point O1.

To prove Lemma 3.2.2, at first, we must eliminate a common factor v from systems (3.2.2)
obtaining:

u̇ = (c0 � a0)uv,

v̇ = �c2u
2 � c3uv � a0v

2 � c1v.
(3.2.3)

Now we must study the origin of these systems, which we name Õ1, and which is now the
only singular point over v = 0. The eigenvalues of the Jacobian matrix at Õ1 are zero and
�c1, so if c1 6= 0 the singular point of systems (3.2.3) is semi-hyperbolic and we can study
it applying Theorem 1.2.3. If c1 = 0 we must study this singular point with the blow up
technique.

3.2.1 Case with Õ1 semi-hyperbolic
In order to apply the theorem for semi-hyperbolic singular points, we must change the sign
of the flow, as the result requires the nonzero eigenvalue to be positive. We obtain systems

u̇ = (a0 � c0)uv,

v̇ = c2u
2 + c3uv + a0v

2 + c1v,

95



First Kolmogorov family (II)

and applying the mentioned result we get that the origin of these systems is a saddle point if
c2(a0 � c0) > 0 and a topological unstable node if c2(a0 � c0) < 0. Then, reversing the
orientations, the singular point Õ1 is a saddle if c2(a0 � c0) > 0 and a topological stable
node if c2(a0 � c0) < 0. Before obtaining the corresponding phase portraits for O1, we will
distinguish four cases according to the sign of c2 and a0 � c0.

(a) If c2 > 0 and a0 � c0 > 0 then Õ1 is a saddle as in Figure 3.2.2(a). If we multiply by
v to go back to systems (3.2.2), then all the points at the u-axis become singular points
and the orientation of the orbits in the third and fourth quadrants is reversed. Thus, for
O1 we obtain the local phase portrait in Figure 3.2.2(b), which is L1 of Figure 3.2.1.

v

u

(a) Origin of systems (3.2.3)

u

v

(b) Origin of systems (3.2.2)

Figure 3.2.2: Local phase portraits of Õ1 and O1 with c2 > 0 and a0 � c0 > 0.

(b) If c2 < 0 and a0 � c0 < 0 then Õ1 is also a saddle, but with the sectors in a different
position as in the previous case. Going back to systems (3.2.2) we obtain phase portrait
L2 of Figure 3.2.1.

(c) If c2 > 0 and a0 � c0 < 0 then Õ1 is a stable topological node as represented in Figure
3.2.3(a). If we multiply by v to go back to systems (3.2.2), then all the points of the
u-axis become singular points and the orientation of the orbits in the third and fourth
quadrants is reversed. We obtain the local phase portrait in Figure 3.2.3(b), which is L3

of Figure 3.2.1.

v

u

(a) Origin of systems (3.2.3)

v

u

(b) Origin of systems (3.2.2)

Figure 3.2.3: Local phase portraits of Õ1 and O1 with c2 > 0 and a0 � c0 < 0.

(d) If c2 < 0 and a0 � c0 > 0 then Õ1 is also a stable topological node, but with its orbits
in a different position as in the previous case. Going back to systems (3.2.2) we obtain
phase portrait L4 of Figure 3.2.1.
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3.2.2 Case with Õ1 linearly zero
In this subsection we study the local phase portrait of the origin of systems (3.2.3) assuming
c1 = 0. In order to do that we use the blow up technique. First we note that the characteristic
polynomial is F = �c2u3�c3u2v�c0uv2, which cannot be identically zero because c2 6= 0,
so the singular point Õ1 is nondicritical.

We introduce the variable w1 by means of the variable change uw1 = v, and we obtain
the systems:

u̇ = (c0 � a0)u
2w1,

ẇ1 = �c0uw
2
1 � c3uw1 � c2u.

We eliminate a common factor u so we get

u̇ = (c0 � a0)uw1,

ẇ1 = �c0w
2
1 � c3w1 � c2.

(3.2.4)

We must study the singular points of these systems over the line u = 0, which are the points
with the first coordinate zero and the second one a solution of the equation �c0w2

1 � c3w1 �
c2 = 0. In the following we will distinguish several subcases.

(A) If c0 = 0 and c3 = 0, then there are no singular points over the line u = 0, as c2 6= 0 by
hypothesis.

Subcase (A.1). If c2 > 0, we have for systems (3.2.4) the phase portrait given in Figure
3.2.4(a). If we multiply by u, then all the points over the w1-axis become singular points,
and the orbits on the second and third quadrants reverse their orientation, so we get the
phase portrait in Figure 3.2.4(b). If we undo the blow up, contracting the exceptional
divisor to the origin, and swapping the second and third quadrants, we obtain, for systems
(3.2.3), the phase portrait in Figure 3.2.4(c). Lastly, if we multiply by v we get the local
phase portrait for O1, the origin of systems (3.2.2), which has a line consisting of singular
points, the u-axis, and it is the phase portrait L5 given in Figure 3.2.1.

u

w1

(a)

u

w1

(b)

u

v

(c)

Figure 3.2.4: Desingularization of the origin of systems (3.2.2) with c0 = c1 = c3 = 0 and
c2 > 0.

Subcase (A.2). If c2 < 0 the vertical blow up does not determine the phase portrait, it
only give us the information that over the u-axis the flow is vertical and it goes in the
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positive sense. We must do a horizontal blow up to determine the phase portrait. In
systems (3.2.3) we introduce the variable w2 by means of the change vw2 = u, and with
the hypothesis of this case we get the systems

ẇ2 = c2w
3
2v,

v̇ = �c2w
2
2v � a0v

2.
(3.2.5)

Eliminating a common factor v we obtain

ẇ2 = c2w
3
2,

v̇ = �c2w
2
2 � a0v,

(3.2.6)

and for these systems the only singular point over the line v = 0 is the origin, which is
semi-hyperbolic. Applying Theorem 1.2.3 we obtain that it is a stable topological node.
The phase portrait around the origin for systems (3.2.6) is the one in Figure 3.2.5(a),
and multiplying by v, the phase portrait for systems (3.2.5) is the one in Figure 3.2.5(b).
Undoing the blow up, contracting the exceptional divisor into the origin and swapping
the third and fourth quadrants, we get that in the first and second quadrants the orbits
arrive to the origin tangent to the v-axis and in the third and fourth quadrants the orbits
leave the origin tangent to the v-axis, this together with the information from the vertical
blow up leads to the phase portrait in Figure 3.2.5(c). At last, if we multiply again by v
we obtain the local phase portrait for O1 which is L6 of Figure 3.2.1.

w1

v

(a)

w2

v

(b)

u

v

(c)

Figure 3.2.5: Desingularization of the origin of systems (3.2.2) with c0 = c1 = c3 = 0 and
c2 < 0.

(B) If c0 = 0 and c3 > 0 then we have the hyperbolic singular point Q1 = (0,�c2/c3). At
this point the eigenvalues of the Jacobian matrix are �1 = a0c2/c3 and �2 = �c3 so we
have two subcases.

Subcase (B.1). If c2 > 0 the vertical blow up does not determine the behavior of the
orbits around the v-axis in the second and fourth quadrants. Then we do a horizontal
blow up introducing the variable vw2 = u in systems (3.2.3):

ẇ2 = c2w
3
2v + c3w

2
2v,

v̇ = �c2w
2
2v + c3w2v

2 � a0v
2,

(3.2.7)
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3.2 Local study of infinite singular points

and we eliminate a common factor v:

ẇ2 = c2w
3
2 � c3w

2
2,

v̇ = �c2w
2
2v � c3w2v � a0v.

(3.2.8)

For systems (3.2.8) there are two singular points over the line v = 0, the origin which is
a semi-hyperbolic saddle-node and the point (�c3/c2, 0) which is a saddle. The phase
portrait around the w2-axis for systems (3.2.8) is the one in Figure 3.2.6(a), and multi-
plying by v, the phase portrait for systems (3.2.7) is the one in Figure 3.2.6(b). Undoing
the blow up we get the phase portrait in Figure 3.2.6(c). Finally, if we multiply again by
v, we obtain the local phase portrait for O1 which is L7 of Figure 3.2.1.

w1

v

(a)

w1

v

(b)

u

v

(c)

Figure 3.2.6: Desingularization of the origin of systems (3.2.2) with c0 = c1 = 0, c3 > 0
and c2 < 0.

Subcase (B.2). If c2 < 0 then Q1 is a stable node. We must do again a horizontal blow
up to determine the local phase portrait, and thus we obtain again the phase portrait L6

of Figure 3.2.1.

(C) If c0 6= 0, c3 = 0 and c0c2 > 0, there are no singular points over u = 0.

Subcase (C.1). If c0 and c2 are positive, we obtain again the phase portrait L5 of Figure
3.2.1 by undoing the blow up.

Subcase (C.2). If c0 and c2 are negative, we obtain again the phase portrait L6 of Figure
3.2.1, but in this case it is necessary to do a horizontal blow up to conclude.

(D) If c0 6= 0, c3 = 0 and c0c2 < 0, there are two hyperbolic singular points over u = 0,
namely, Q2 = (0,

p
�c2/c0) and Q3 = (0,�

p
�c2/c0). By studying the eigenvalues

of the Jacobian matrix at both points, we distinguish three subcases.

Subcase (D.1). If c0 > 0 and a0� c0 > 0 then Q2 is a stable node and Q3 is an unstable
node. Undoing the blow up we obtain the phase portrait L6 of Figure 3.2.1.

Subcase (D.2). If c0 > 0 and a0 � c0 < 0 then Q2 and Q3 are saddle points with the
orientation of the hyperbolic orbits given in Figure 3.2.7(a). If we multiply by u and then
we undo the blow up we obtain, respectively, the phase portraits in Figure 3.2.7(b) and
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Figure 3.2.7(c). Multiplying by u again, we obtain that the local phase portrait for O1 is
L8 of Figure 3.2.1.

u

w1

(a)

u

w1

(b)

u

v

(c)

Figure 3.2.7: Desingularization of the origin of systems (3.2.2) with c3 = 0, c0 > 0, c2 < 0
and a0 � c0 < 0.

Subcase (D.3). If c0 < 0 and a0 � c0 > 0 then Q2 and Q3 are saddle points with
a different orientation than in the previous case. Now the vertical blow up does not
determine the behavior of the orbits around the v-axis, so we must do a horizontal blow
up introducing the variable w2 such that vw2 = u. Then we obtain

ẇ2 = c2w
3
2v + c0w2v,

v̇ = �c2w
2
2v � a0v

2,
(3.2.9)

and if we eliminate a common factor v:

ẇ2 = c2w
3
2 + c0w2,

v̇ = �c2w
2
2 � a0v.

(3.2.10)

For systems (3.2.10) there are three singular points over the line v = 0, the origin which
is a stable node, and two saddle points (±

p
�c0/c2, 0). The phase portrait around the

w2-axis for systems (3.2.10) is the one in Figure 3.2.8(a). If we multiply by v we get the
phase portrait in Figure 3.2.8(b) for systems (3.2.9). Blowing down we obtain the phase
portrait in Figure 3.2.8(c). If we multiply again by v we obtain the local phase portrait
for O1 which is L9 of Figure 3.2.1.

w1

v

(a)

w1

v

(b)

u

v

(c)

Figure 3.2.8: Desingularization of the origin of systems (3.2.2) with c3 = 0, c0 < 0, c2 > 0
and a0 � c0 > 0.
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(E) If c0 6= 0, c3 6= 0 and c23 � 4c0c2 < 0 then there are no singular points over the straight
line u = 0.

Subcase (E.1). If c2 > 0 we obtain phase portrait L5 of Figure 3.2.1.

Subcase (E.2). If c2 > 0, it is necessary to do a horizontal blow up, and thus we obtain
the phase portrait L6 of Figure 3.2.1.

(F) If c0 6= 0, c3 6= 0 and c23 � 4c0c2 > 0 then there are two hyperbolic singular points over
u = 0, namely,

Q4 = (0,�(c3 +
q

c23 � 4c0c2)/(2c0)) and Q5 = (0,�(c3 �
q
c23 � 4c0c2)/(2c0)).

We study these singular points and study separately the following six subcases.

Subcase (F.1). If a0 � c0 > 0, c0 > 0 and Rc � c3 > 0 then Q4 is an unstable node and
Q5 a stable node. Blowing down we obtain phase portrait L6 of Figure 3.2.1.

Subcase (F.2). If a0 � c0 > 0, c0 > 0 and Rc � c3 < 0 then Q4 is an unstable node and
Q5 a saddle. Blowing down we obtain phase portrait L7 of Figure 3.2.1.

Subcase (F.3). If a0 � c0 > 0, c0 < 0 and Rc � c3 > 0 then Q4 and Q5 are saddle
points, but the vertical blow up does not determine the behavior of the orbits around the
v-axis. Doing a horizontal blow up we obtain phase portrait L9 of Figure 3.2.1.

Subcase (F.4). If a0 � c0 > 0, c0 < 0 and Rc � c3 < 0 then Q4 is a saddle and Q5 is
a stable node. Again the vertical blow up is not enough to determine the phase portrait.
With a horizontal blow up we obtain phase portrait L10 of Figure 3.2.1.

Subcase (F.5). If a0 � c0 < 0, c0 > 0 and Rc � c3 > 0 then Q4 and Q5 are saddle
points. Blowing down we obtain phase portrait L8 of Figure 3.2.1.

Subcase (F.6). If a0 � c0 < 0, c0 > 0 and Rc � c3 < 0 then Q4 is a saddle and Q5 is a
stable node. Blowing down we obtain phase portrait L11 of Figure 3.2.1.

(G) If c0 6= 0, c3 6= 0 and c23 � 4c0c2 = 0 then we have the singular point Q6 =
(0,�c3/(2c0)), which is a semi-hyperbolic saddle-node. Attending to the position of
the different sectors we have the following cases.

Subcase (G.1). If c0(a0 � c0) > 0 and c0 > 0, blowing down we obtain phase portrait
L7 of Figure 3.2.1.

Subcase (G.2). If c0(a0 � c0) < 0 and c0 > 0, blowing down we obtain phase portrait
L11 of Figure 3.2.1.

Subcase (G.3). If c0(a0 � c0) < 0 and c0 < 0 the vertical blow up does not determine
the phase portrait of O1. Doing a horizontal blow up we get the phase portrait L12 of
Figure 3.2.1.
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3.3 Global phase portraits
In this section we bring together the local information obtained in Sections 3.1 and 3.2 to
prove Theorem 3.0.1. In each case of Tables 3.1.2 to 3.1.7, the conditions determine the
phase portrait of O1, i.e., only one of the local phase portraits L1 to L12 in Figure 3.2.1
can appear in each case, except in case 4.2. In this case 4.2 we must distinguish two cases
determined by the sign of a0 � c0.

Once determined the local phase portrait at the singular points, in most cases the place
where born and die the separatrices is determined in a unique way. We draw these separa-
trices, one orbit in each canonical region which does not have an infinite number of singular
points in the boundary, and three orbits (representing the infinite number of them existing)
in each canonical region with an infinite number of singular points in the boundary. Thus
we obtain the global phase portraits in Figure 3.3.6. In Table 3.3.1 we indicate which is the
global phase portrait obtained in each case from the ones included in Figure 3.3.6.

Now we focus on the cases in which the separatrices can be connected in three different
ways, namely 1.8, 1.9, 2.4, 2.5, 3.2 and 3.3. In the following we explain how it can be
determined which of the three options is realizable.
Case 1.8. By Theorem 2.1.10(1) in Section 2.1 we know that on any straight line z = cte 6= 0
there exists exactly one contact point. Two of the three global phase portraits obtained by
connecting the separatrices contradict this result. In both cases, if we take the line z =
(Rc � c3)/2c2 we can find two contact points on it, one is the singular point P1 and the other
is a point on the third quadrant, as shown in Figure 3.3.1. We can ensure the existence of
this contact point as if we choose, for example, the point indicated with a square in Figure
3.3.1, the orbit passing through this point has as ↵-limit the origin and as !-limit the singular
point P4, i.e., it is an orbit as the one drawn with dashed line, and that allows us to prove
the existence of the contact point indicated with a cross. The same occurs in the two phase
portraits included in Figure 3.3.1, then we can conclude that these two phase portraits are
not realizable, and there is only one global phase portrait in case 1.8, and it is the G8 as it is
indicated in Table 3.3.1.

Figure 3.3.1: Global phase portraits appearing on case 1.8 that are not realizable.

Case 1.9. Here we can apply the same result than in the previous case to dismiss two global
phase portraits. If we take a straight line z = z0 with �(Rc + c3)/(2c2) < z0 < (Rc �
c3)/(2c2), then over this line there are two contact points, one in the third quadrant and other
in the fourth quadrant, as shown in Figure 3.3.2. Thus the only global phase portrait in case
1.9 is the G9.
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3.3 Global phase portraits

Figure 3.3.2: Global phase portraits appearing on case 1.9 that are not realizable.

Case 2.4. In this case we can connect the separatrices in three different ways by applying
Corollary 2.1.4 in Section 2.1, because it ensures that the phase portraits must be symmetric
with respect to the z-axis. Otherwise we would have more possible phase portraits. By
Theorem 2.1.10(2) in Section 2.1, we know that there must exist two invariant straight lines
z = (�c3 ± Rc)/(2c2), i.e., the lines z = cte passing through the singular points P1 and
P2. This is only possible in one of the three global phase portraits obtained by connecting the
separatrices, namely in the G14 of Figure 3.3.6. In the other two global phase portraits these
two invariant lines does not exist, as can be seen in Figure 3.3.3.

Figure 3.3.3: Global phase portraits appearing on case 2.4 that are not realizable.

Case 2.5. Here we can use the same arguments than in the previous case to prove that the
only realizable phase portrait is the G15, so we do not give more details.

Case 3.2. We must apply again Theorem 2.1.10(1). In two of the three global phase portraits
obtained by connecting the separatrices, if we take the line z = �c3/(2c2) we can find two
contact points on it, one is the singular point P3 and the other is a point on the third quadrant,
as shown in Figure 3.3.4. Thus, these two phase portraits are no realizable, and the only
global phase portrait in case 3.2 is the G20, as indicated in Table 3.3.1.

Case 3.3. The same arguments that in the previous case are valid here. In Figure 3.3.5 the
line with two contact points is represented in the two global phase portraits that are indeed
not realizable. The only possible phase portrait in this case is the G21 of Figure 3.3.6.
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Figure 3.3.4: Global phase portraits appearing on case 3.2 that are not realizable.

Figure 3.3.5: Global phase portraits appearing on case 3.3 that are not realizable.

Case Subcase O1 Global
1.1 L4 G1
1.2 L1 G2
1.3 L3 G3
1.4 L2 G4
1.5 L4 G5
1.6 L1 G6
1.7 L4 G7
1.8 L1 G8
1.9 L3 G9

1.10 L2 G10
2.1 L10 G11
2.2 L9 G12
2.3 L6 G13
2.4 L7 G14
2.5 L11 G15
2.6 L8 G16
2.7 L6 G17
2.8 L7 G18

Case Subcase O1 Global
3.1 L4 G19
3.2 L3 G20
3.3 L1 G21
3.4 L3 G22
3.5 L4 G23
3.6 L1 G24
4.1 L12 G25

4.2
a0 � c0 > 0 L7 G26
a0 � c0 < 0 L11 G27

4.3 L6 G28
4.4 L5 G29
5.1 L3 G30
5.2 L4 G23
5.3 L3 G31
5.4 L1 G24
6.1 L6 G28
6.2 L5 G29

Table 3.3.1: Classification of global phase portraits of systems (3.0.1).
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G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

G13 G14 G15 G16

G17 G18 G19 G20

Figure 3.3.6 (1 out of 2): Global phase portraits of systems (3.0.1) in the Poincaré disk.
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G21 G22 G23 G24

G25 G26 G27 G28

G29 G30 G31

Figure 3.3.6 (2 out of 2): Global phase portraits of systems (3.0.1) in the Poincaré disk.

We have obtained 34 global phase portraits given in Figure 3.3.6, but some of them are
topologically equivalent so we must study these equivalences. In order to apply Theorem
1.4.2 and determine which of them are topologically equivalent by studying the separatrix
configurations, we consider only the open Poincaré disk. We will distinguish classes of equiv-
alence according to the following invariants: the number of finite singular points and the sum
of the indices at the finite singular points, denoted by indF . This classification is given in
Table 3.3.2. Then within each class we prove which of the phase portraits are topologically
equivalent and which are not.

Class 1. Global phase portrait G5 is topologically equivalent to G7 because if we move
the unstable node in G5 to the origin we obtain G7. G5 is topologically distinct to G9 as in
G9 all the orbits arriving to the stable node come from the unstable node or from a unique
infinite singular point while in G5 there are orbits that arrive to the stable node from infinitely
many infinite singular points. Then in this class there are two topologically different phase
portraits represented by G5 and G9.

Class 2. G6 is topologically equivalent to G10 by moving the stable node in G6 to the
origin, doing a symmetry with respect to the z-axis and doing a change of the time variable t
by �t. G6 is different from G8 because in G6 there are four separatrices that connect infinite
singular points with finite singular points and in G8 there are five separatrices of this kind. In
this class there are two topologically different phase portraits represented by G6 and G8.
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3.3 Global phase portraits

Class N� finite singular points indF Global phase portraits
1

4
0 G5,G7,G9

2 2 G6,G8,G10
3

3

-1 G11,G13
4 0 G1, G3, G19, G20
5 1 G12,G14,G15
6 2 G2,G4,G21
7 3 G16
8

2

-1 G17, G25
9 0 G22, G23, G31
10 1 G18, G26, G27
11 2 G24
12

1
-1 G28

13 0 G30
14 1 G29

Table 3.3.2: Classes of equivalence according to the number of finite singular points and to
the indF .

Class 3. G11 is topologically equivalent to G12 by moving the node in G11 to the origin.
Then in this class there is only one topologically different phase portrait.

Class 4. G1 is different from G3 as to the node in G1 arrive orbits from infinitely many
infinite singular points but in G3 only from one infinite singular point. G1 is topologically
equivalent to G19 by moving the saddle in G1 to the origin and doing a symmetry with respect
to the x-axis. G1 is topologically equivalent to G20: we must move the saddle in G20 to the
origin and the unstable node to the positive x-axis, and then the saddle-node to the origin and
the saddle to the positive z-axis. Then we must do a symmetry with respect to the z- axis and
a change of the time variable t by �t. In this class there are two topologically different phase
portraits represented by G1 and G3.

Class 5. G12 is topologically equivalent to G14 by moving the saddle in G14 to the
origin. G14 is different from G15 because in both global phase portraits there are two nodes,
but in G14 they have the same stability and in G15 one is stable and the other is unstable. In
this class there are two topologically different phase portraits represented by G12 and G15.

Class 6. G2 is different from G4 because in both phase portraits there are two nodes,
but in G2 they have different stability and in G4 the same. G21 is different from G2 and G4
because in G2 and G4 there are nine separatrices in the open Poincaré disk and in G21 there
are 10 separatrices. Then in this class all the phase portraits are topologically different.

Class 8. G17 is topologically equivalent to G25 by moving the saddle-node in G17 to the
origin and doing a symmetry with respect to the x-axis. Then in this class there is only one
topologically different phase portrait.

Class 9. G22 is different from G23 because they have different kind of finite singular
points. G23 is topologically equivalent to G31 by moving the node in G23 to the origin,
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doing a symmetry with respect to the z-axis and a change of the time variable t by �t. In this
class there are two topologically different phase portraits represented by G22 and G23.

Class 10. G18 is topologically equivalent to G26 by moving the node in G18 to the origin
and doing a symmetry with respect to the x-axis. G26 is different from G27 because in G26
there are a separatrix that connects two finite singular points and in G27 there is not a such
separatrix. In this class there are two topologically different phase portraits represented by
G18 and G27.

Note that classes 7,11,12,13 and 14 have only one global phase portrait each of them.
In summary, we have obtained 22 different phase portraits in the Poincaré disk for systems
(3.0.1), so we have proved Theorem 3.0.1. This 22 phase portraits are described in Figure
3.0.1, where we include a representative of each one of the topological equivalence classes.
These representatives correspond with the phase portraits in Figure 3.3.6 as indicated in Table
3.3.3.

Rep. Phase portraits
R1 G1, G19, G20
R2 G2
R3 G3
R4 G4
R5 G5, G7
R6 G6, G10
R7 G8
R8 G9

Rep. Phase portraits
R9 G11, G13

R10 G12, G14
R11 G15
R12 G16
R13 G17, G25
R14 G18, G26
R15 G21
R16 G22

Rep. Phase portraits
R17 G23, G31
R18 G24
R19 G27
R20 G28
R21 G29
R22 G30

Table 3.3.3: Representatives of each equivalence class and their corresponding global phase
portraits of systems (3.0.1).
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Chapter 4

Classification of the second
Kolmogorov family with isolated

singularities

In this chapter we study the global dynamics of the second family of Kolmogorov systems
obtained in Chapter 1, i.e., the systems

ẏ = y (b0 + b1yz + b2y + b3z)) ,

ż = z (c0 � µ(b1yz + b2y + b3z)) ,
(4.0.1)

for which we give the topological classification of all the global phase portraits in the Poincaré
disk. We prove that it is sufficient to study these systems under conditions

H2
2 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0, µ 6= �1

 
,

since in any other case they can be reduced to simpler systems already studied, except the
case with µ = �1, in which there is a continuum of singular points at infinity, but we study
that case in detail in Chapter 5. Our main result is the following.

Theorem 4.0.1. Kolmogorov systems (4.0.1) under conditions H2
2 have 52 topologically dis-

tinct phase portraits in the Poincaré disk, given in Figure 4.0.1.

Based on the contents of the research article [44]1, we give the complete proof of Theorem
4.0.1, organized as follows: In Section 4.1 we give some properties of the systems that are
useful to simplify the task of determine all the topologically distinct phase portraits of the
systems. In Section 4.2 we study the local phase portrait of the finite singular points, and in
Sections 4.3 and 4.4 we do the same with the infinite singular points, applying the blow up
technique. Finally, in Section 4.5 we prove Theorem 4.0.1.

1Erika Diz-Pita (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de
Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona) and María Victo-
ria Otero-Espinar (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de
Compostela), Planar Kolmogorov systems coming from spatial Lotka-Volterra systems, International Journal of Bi-
furcation and Chaos, (ISSN:1007-5704, EISSN:1878-7274), 31(3) (2021), 2150201. Published by World Scientific.
The final authenticated version is available online at: https://doi.org/10.1142/S0218127421502011.

109

https://doi.org/10.1142/S0218127421502011


Second Kolmogorov family (I)

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

R17 R18 R19 R20

Figure 4.0.1 (1 out of 3): The topologically distinct phase portraits of systems (4.0.1) in the
Poincaré disk.
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R21 R22 R23 R24

R25 R26 R27 R28

R29 R30 R31 R32

R33 R34 R35 R36

R37 R38 R39 R40

Figure 4.0.1 (2 out of 3): The topologically distinct phase portraits of systems (4.0.1) in the
Poincaré disk.
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R41 R42 R43 R44

R45 R46 R47 R48

R49 R50 R51 R52

Figure 4.0.1 (3 out of 3): The topologically distinct phase portraits of systems (4.0.1) in the
Poincaré disk.

4.1 Properties of the systems
In this section we state some results that will be useful to reduce the number of global phase
portraits appearing. First, note that if b1 = 0, then systems (4.0.1) are Lotka-Volterra systems
in dimension two. A global topological classification of these systems has been completed
in [117], so we limit our study to the case b1 6= 0.

We recall that for obtaining systems (4.0.1) we have supposed that systems (1.7.15) have
the Darboux invariant yµze�t(c0+b0µ), so it is required that c0 + b0µ 6= 0. The proofs of the
next propositions are simple and analogous to those of the results in Section 2.1 so we omit
them.

Proposition 4.1.1. Let (ỹ(t), z̃(t)) be a solution of systems (4.0.1). In the next cases we
obtain other systems with solution (�ỹ(�t),�z̃(�t)).

1. If c0, b0 and b1 are not zero, and we change the sign of all of them.

2. If b0 = 0 and we change the sign of c0 and b1, which are not zero.

3. If c0 = 0 and we change the sign of b0 and b1, which are not zero.
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Remark 4.1.2. By Proposition 4.1.1 we can limit our study to Kolmogorov systems (4.0.1)
with b0 non-negative. In the cases with this parameter negative, we would obtain phase
portraits symmetric to the ones obtained in the cases with the positive parameter. When
b0 = 0 we will consider also c0 > 0.

Proposition 4.1.3. Consider systems (4.0.1) and suppose that (ỹ(t), z̃(t)) is a solution of
these systems. If we change b1 by �b1 and b2 by �b2 (respectively b3 by �b3), then (�ỹ(t), z̃(t))
(respectively (ỹ(t),�z̃(t))) is a solution of the obtained systems.

Corollary 4.1.4. Consider systems (4.0.1) and suppose (ỹ(t), z̃(t)) is a solution. If b2 = 0
(respectively b3 = 0) and we change b1 by �b1, then (�ỹ(t), z̃(t)) (respectively (ỹ(t),�z̃(t)))
is a solution.

Remark 4.1.5. In order to classify all the phase portraits of the Kolmogorov systems (4.0.1),
according to the previous results, it is sufficient to consider b2 � 0 and b3 � 0. When
b2b3 = 0 we will consider also b1 > 0.

Remark 4.1.6. In short, according to the previous results and considerations, from now on
it will be sufficient to study the Kolmogorov systems (4.0.1) with their parameters satisfying

H2 = {b1 6= 0, c0 + b0µ 6= 0, b0 � 0, b2 � 0, b3 � 0} ,

and with c0 > 0 if b0 = 0, and b1 > 0 if b2b3 = 0.

4.2 Finite singular points
Systems (4.0.1) have the following finite singularities:

P0 = (0, 0), P1 =

✓
0,

c0
µb3

◆
if µb3 6= 0 and P2 =

✓
�b0
b2
, 0

◆
if b2 6= 0.

Moreover, if µb3 = 0 and c0 = 0, all the points on the z-axis are singular points, and if
b22 + b20 = 0 all the points on the y-axis are singular points. In both cases the systems can be
reduced to quadratic systems with an invariant straight line. More precisely, if µb3 = 0 and
c0 = 0, then by condition b0µ+ c0 6= 0 we must have b3 = 0, and systems (2.0.1) are of the
form

ẏ = (b0 + b1yz + b2y),

ż = �µyz(b1z + b2).

If we introduce the time variable s such that ds = ydt, then we get the quadratic systems

dy

ds
= b0 + b1yz + b2y,

dz

ds
= �µz(b1z + b2).
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with the invariant line z = 0.
In the second case, if b20 + b22 = 0 systems (2.0.1) write

ẏ = y(b1yz + b3z),

ż = z(c0 � µb1yz � µb3z).

If we introduce the time variable s such that ds = zdt, we obtain again quadratic systems:

dy

ds
= y(b1y + b3),

dz

ds
= c0 � µb1yz � µb3z.

These systems also have an invariant line y = 0.
As this kind of systems have been already studied in [6], from now on we will consider

the hypothesis

H2
1 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, (µb3)

2 + c20 6= 0, b22 + b20 6= 0
 
.

Theorem 4.2.1. Systems (4.0.1) have no limit cycles.

Proof. The straight lines y = 0 and z = 0 are invariant sets and all the singular points of
systems (4.0.1) are over these axes. If there were any periodic orbit in the plane, it would
be surrounding one of the singular points, and therefore it would intersect an invariant set,
which is not possible.

Assuming H2
1 there are four different cases according to the finite singular points existing

for systems (4.0.1), which are given in Table 4.2.1. Then we study the possible local phase
portraits in each one of the finite singular points under the hypothesis H2

1 .

Case Conditions Finite singular points

1 µb3 6= 0, b2 6= 0 P0, P1, P2

2 µb3 6= 0, b2 = 0, b0 6= 0 P0, P1

3 µb3 = 0, c0 6= 0, b2 6= 0 P0, P2

4 µb3 = 0, c0 6= 0, b2 = 0, b0 6= 0 P0

Table 4.2.1: The different cases for the finite singular points.

The origin is always an isolated singular point for systems (4.0.1), and we have the next
classification for its phase portraits: If b0c0 6= 0 the origin is hyperbolic and two cases are
possible, it is a saddle point if c0 < 0, and it is an unstable node if c0 > 0. If b0c0 = 0 the
origin is a semi-hyperbolic saddle-node.

When P1 is a singular point of systems (4.0.1), it can present different phase portraits
although it is always a hyperbolic singular point, except when it coincides with the origin. If
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4.2 Finite singular points

c0 6= 0, then P1 is hyperbolic and it can present the following phase portraits: If c0µ(b0µ +
c0) > 0, then P1 is a saddle; if c0 > 0, µ < 0 and b0µ + c0 > 0, it is a stable node; and
finally, if c0 < 0 and µ(b0µ+ c0) > 0, it is an unstable node. The singular point P1 collides
with the origin if c0 = 0.

When P2 is a singular point of systems (4.0.1), it is a saddle if b0µ + c0 > 0, and it is a
stable node if b0µ+ c0 < 0. If b0 = 0 then P2 collides with the origin.

Now, combining the classifications given above for the phase portraits of the singular
points, we obtain the following result:

Lemma 4.2.2. Assuming hypothesis H2
1 there are 22 different cases according to the local

phase portrait of the finite singular points of systems (4.0.1), which are given in Tables 4.2.2
- 4.2.5.

Proof. We have to analyze cases 1 to 4 in Table 4.2.1 and determine the local phase portraits
of the singular points existing in each one of them, according to their individual classification.

We start with the first one, in which the conditions µb3 6= 0 and b2 6= 0 hold. The singular
points are P0, P1 and P2.

Consider the case with c0 < 0 and b0 6= 0, in which the origin is a saddle. Then P1 can
be a saddle if µ(b0µ + c0) < 0, or an unstable node if µ(b0µ + c0) > 0. If P1 is a saddle,
then P2 is a stable node, because if it was a saddle with b0µ + c0 > 0, then µ < 0 and so
b0µ < 0 and b0µ + c0 < 0, which is a contradiction. If P1 is an unstable node, then P2 can
be either a saddle or a stable node. This leads to cases 1.1 to 1.3 in Table 4.2.2.

We continue with the case c0 > 0 and b0 > 0, in which P0 is an unstable node. Now P1

can be a saddle or a stable node. If P1 is a saddle, then P2 can be a saddle or a stable node,
but if P1 is a stable node, then b0µ+ c0 > 0, and so P2 is always a saddle. This leads to cases
1.4 to 1.6.

If P0 is a saddle-node with c0 = 0 and b0 > 0, then P1 coincides with the origin and
P2 can be a saddle or a stable node. If P0 is a saddle-node with b0 = 0 and c0 > 0, then
P2 coincides with the origin and P1 can be a saddle or a stable node. We recall that by the
hypothesis it is not possible to have b0 and c0 simultaneously zero; b0 is non negative and
if b0 = 0 then we consider c0 > 0 by Proposition 4.1.1, so this allows us to conclude the
classification in case 1 of Table 4.2.1.

Now we study case 2 of Table 4.2.1, in which µb3 6= 0, b2 = 0 and b0 6= 0. The singular
points are P0 and P1. If P0 is a saddle, then P1 can be only a saddle or an unstable node,
by the sign of the parameter c0. Likewise the sign of c0 determines that if P0 is an unstable
node, P1 can be a saddle or a stable node. This leads to cases 2.1 to 2.4 of Table 4.2.3. At
last, if c0 = 0 then P1 coincides with the origin and it is a saddle-node.

We address the case 3 of Table 4.2.1, in which µb3 = 0, c0 6= 0 and b2 6= 0. The origin
can be a saddle or an unstable node and in both cases P2 can be a saddle or a stable node, as
b0 6= 0. If b0 = 0 then P2 coincides with the origin and it is a saddle-node.

Finally, in case 4 of Table 4.2.1, we have the conditions µb3 = 0, c0 6= 0, b2 = 0 and
b0 6= 0. The unique singular point is the origin and as c0b0 cannot be zero, it is either a saddle
or an unstable node.
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Case 1: µb3 6= 0, b2 6= 0

Sub. Conditions Classification

1.1 b0 > 0, c0 < 0, µ > 0, (b0µ+ c0) < 0 P0 saddle, P1 saddle, P2 stable node
1.2 b0 > 0, c0 < 0, µ > 0, b0µ+ c0 > 0 P0 saddle, P1 unstable node, P2 saddle
1.3 b0 > 0, c0 < 0, µ < 0, b0µ+ c0 < 0 P0 saddle, P1 unstable node, P2 stable node
1.4 b0 > 0, c0 > 0, µ > 0, b0µ+ c0 > 0 P0 unstable node, P1 saddle, P2 saddle
1.5 b0 > 0, c0 > 0, µ < 0, b0µ+ c0 < 0 P0 unstable node, P1 saddle, P2 stable node
1.6 b0 > 0, c0 > 0, µ < 0, b0µ+ c0 > 0 P0 unstable node, P1 stable node, P2 saddle
1.7 c0 = 0, µ > 0 P0 ⌘ P1 saddle-node, P2 saddle
1.8 c0 = 0, b0 > 0, µ < 0 P0 ⌘ P1 saddle-node, P2 stable node
1.9 b0 = 0, µ > 0 P0 ⌘ P2 saddle-node, P1 saddle

1.10 b0 = 0, c0 > 0, µ < 0 P0 ⌘ P2 saddle-node, P1 stable node

Table 4.2.2: Classification in case 1 of Table 4.2.1 according to the local phase portraits of
finite singular points.

Case 2: µb3 6= 0, b2 = 0, b0 6= 0

Sub. Conditions Classification

2.1 b0 > 0, c0 < 0, µ > 0, b0µ+ c0 < 0 P0 saddle, P1 saddle
2.2 b0 > 0, c0 < 0, µ(b0µ+ c0) > 0 P0 saddle, P1 unstable node
2.3 b0 > 0, c0 > 0, µ(b0µ+ c0) > 0 P0 unstable node, P1 saddle
2.4 b0 > 0, c0 > 0, µ < 0, b0µ+ c0 > 0 P0 unstable node, P1 stable node
2.5 c0 = 0, b0 > 0 P0 ⌘ P1 saddle-node

Table 4.2.3: Classification in case 2 of Table 4.2.1 according to the local phase portraits of
finite singular points.

Case 3: µb3 = 0, c0 6= 0, b2 6= 0

Sub. Conditions Classification

3.1 b0 > 0, c0 < 0, µ > 0, b0µ+ c0 > 0 P0 saddle, P2 saddle
3.2 b0 > 0, c0 < 0, b0µ+ c0 < 0 P0 saddle, P3 stable node
3.3 b0 > 0, c0 > 0, b0µ+ c0 > 0 P0 unstable node, P2 saddle
3.4 b0 > 0, c0 > 0, µ < 0, b0µ+ c0 < 0 P0 unstable node, P2 stable node
3.5 b0 = 0, c0 > 0 P0 ⌘ P3 saddle-node

Table 4.2.4: Classification in case 3 of Table 4.2.1 according to the local phase portraits of
finite singular points.
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4.3 Local study of infinite singular points in chart U1

Case 4: µb3 = 0, c0 6= 0, b2 = 0, b0 6= 0

Sub. Conditions Classification

4.1 b0c0 < 0 P0 saddle
4.2 b0 > 0, c0 > 0 P0 unstable node

Table 4.2.5: Classification in case 4 of Table 4.2.1 according to the local phase portraits of
finite singular points.

4.3 Local study of infinite singular points in chart U1

In order to study the behavior of the trajectories of systems (4.0.1) near infinity, we consider
its Poincaré compactification. For the moment we assume the same hypothesis H2

1 than in
previous sections. From Section 1.3 it is enough to study the singular points over v = 0 in
chart U1 and the origin of chart U2. We will deal with the study of the origin of chart U2

in Section 4.4, so now we focus on the chart U1. According to equation (1.3.9) we get the
compactification in the local chart U1, where systems (4.0.1) write

u̇ = �b3(µ+ 1)u2v + (c0 � b0)uv
2 � b1(µ+ 1)u2 � b2(µ+ 1)uv,

v̇ = �b3uv
2 � b0v

3 � b1uv � b2v
2.

(4.3.2)

Taking v = 0 we get u̇ |v=0= �b1(µ + 1)u2 and v̇ |v=0= 0. Therefore, if µ = �1, all
points at infinity are singular points, and we will not deal with this situation in this chapter.
In other case, if µ 6= �1, the only singular point is the origin of U1, which we denote by
O1. As the linear part of systems (4.3.2) at the origin is identically zero, we use the blow
up technique to study it, leading to the next result, which is proved in Subsections 4.3.1 and
4.3.2.

From now on we include the condition µ 6= �1 in our hypothesis, so we will work under
conditions

H2
2 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, µ2b23 + c20 6= 0, b22 + b20 6= 0, µ 6= �1

 
.

Lemma 4.3.1. Assuming hypothesis H2
2 , the origin of chart U1 is an infinite singular point

of systems (4.0.1), and it has 27 distinct local phase portraits described in Figure 4.3.1.
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Figure 4.3.1 (1 out of 3): Local phase portraits of the infinite singular point O1.
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Figure 4.3.1 (2 out of 3): Local phase portraits of the infinite singular point O1.
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Figure 4.3.1 (3 out of 3): Local phase portraits of the infinite singular point O1.

In the following subsections we prove Lemma 4.3.1. For systems (4.3.2) the characteristic
polynomial is F = b2µuv2 + b1µu2v, so the origin is a nondicritical singular point if µ 6= 0
and it is dicritical if µ = 0. We will study these two cases separately.

We introduce the new variable w1 by means of the variable change uw1 = v, and get the
systems

u̇ = (c0 � b0)u
3w2

1 � b3(µ+ 1)u3w1 � b2(µ+ 1)u2w1 � b1(µ+ 1)u2,

ẇ1 = b3µu
2w2

1 � c0u
2w3

1 + b2µuw
2
1 + b1µuw1.

In the nondicritical case we have to cancel the common factor u obtaining

u̇ = (c0 � b0)u
2w2

1 � b3(µ+ 1)u2w1 � b2(µ+ 1)uw1 � b1(µ+ 1)u,

ẇ1 = b3µuw
2
1 � c0uw

3
1 + b2µw

2
1 + b1µw1.

(4.3.3)

In the dicritical case, when µ = 0, we must cancel the common factor u2 and we obtain the
systems

u̇ = (c0 � b0)uw
2
1 � b3uw1 � b2w1 � b1,

ẇ1 = �c0w
3
1.

(4.3.4)

4.3.1 Nondicritical case
At first, it is necessary to study the singular points of systems (4.3.3) on the exceptional
divisor. The origin is always a singular point, and we denote it by Q0. When b2 6= 0 there is
another singular point, Q1 = (0,�b1/b2).

The origin, Q0, is always hyperbolic. It is a saddle if µ 2 (�1,�1) [ (0,+1), a stable
node if µ 2 (�1, 0) and b1 > 0, and an unstable node if µ 2 (�1, 0) and b1 < 0. The
singular point Q1 is always a semi-hyperbolic saddle-node. These conditions come together
in the next five subcases.

(A) If b2 = 0, b0 6= 0 and µ 2 (�1,�1) [ (0,+1), then the only singular point on the
exceptional divisor is Q0 which is a saddle. In this case the vertical blow up done does
not provide a well determined phase portrait, so it is necessary to apply a horizontal
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blow up. In order to do that, we introduce the variable w1 = u/v on systems (4.3.2)
obtaining:

ẇ1 =� µb3v
2w2

1 � µb1vw
2
1 + c0v

2w1,

v̇ =� b3v
3w1 � b1v

2w1 � b0v
3,

(4.3.5)

and eliminating a common factor v we get the systems

ẇ1 =� µb3vw
2
1 � µb1w

2
1 + c0vw1,

v̇ =� b3v
2w1 � b1vw1 � b0v

2,
(4.3.6)

for which the only singular point on the exceptional divisor is the origin, and it is
linearly zero, so we have to repeat the process.

Now the characteristic polynomial is F = b1(µ�1)w2
1v�(b0+c0)w1v2, so the origin

is always nondicritical. Note that, as b1 6= 0, F ⌘ 0 if and only if c0 = �b0 and µ = 1,
but in that case b0µ+ c0 = 0 which contradicts hypothesis H2

2 . Now we introduce the
new variable w2 = w1/v, obtaining the systems

ẇ2 =� b3(µ� 1)w2
2v

2 � b1(µ� 1)w2
2v + (b0 + c0)w2v,

v̇ =� b3w2v
3 � b1w2v

2 � b0v
2,

(4.3.7)

and eliminating a common factor v, we get

ẇ2 =� b3(µ� 1)w2
2v � b1(µ� 1)w2

2 + (b0 + c0)w2,

v̇ =� b3w2v
2 � b1w2v � b0v.

(4.3.8)

The singular points of systems (4.3.8) on the exceptional divisor are the origin S0 and
the singular point S1 = ((b0 + c0)/(b1(µ � 1)), 0) if µ 6= 1 (note that it coincides
with the origin if b0 + c0 = 0). We determine their local phase portraits obtaining the
classification given below. We start with the cases in which the only singular point on
the exceptional divisor is the origin:

Subcase (A.1). If b0 + c0 = 0 and µ 6= 1, then the origin is a semi-hyperbolic saddle-
node. The relative position and orientation of the hyperbolic and parabolic sectors
depends on the sign of µ and µ� 1. Thus we deal with the following subcases.

(A.1.1). Let µ > 1. This determines the sense of the flow on the w2-axis, so the phase
portrait around this axis for systems (4.3.8) is the one in Figure 4.3.2(a).

To return to systems (4.3.7) we multiply by v, thus the orbits in the third and fourth
quadrants change their orientation. Moreover, all the points on the w2-axis become
singular points. The resultant phase portrait is given in Figure 4.3.2(b).

When going back to the (w1, v)-plane, the third and fourth quadrants swap from the
(w2, v)-plane, and the exceptional divisor shrinks to a point, and hence the orbits are
slightly modified. Attending to the expressions of ẇ1 |v=0= �µb1w2

1 and v̇ |w1=0=
�b0v2, we know the sense of the flow along the axes. Following Proposition 1.2.6,
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we get the phase portrait given in Figure 4.3.2(c), and multiplying again by v, the one
given in Figure 4.3.2(d).
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Figure 4.3.2: Desingularization of the origin of systems (4.3.2) in nondicritical case (A.1.1).

Finally, we must go back to the (u, v)-plane, swapping again the third and the fourth
quadrants and contracting the exceptional divisor to the origin. The orbits tending to
the origin in forward or backward time, became orbits tending to the origin in forward
or backward time tangent to the v-axis. For the origin of systems (4.3.2) we get the
local phase portrait L1

1 given in Figure 4.3.1.

(A.1.2). Let µ 2 (0, 1). In this case the phase portrait around the w2-axis for systems
(4.3.8) is the one in Figure 4.3.3(a), and multiplying by v, the phase portrait for systems
(4.3.7) is 4.3.3(b).

Here, if we try go back to the (w1, v)-plane, swapping the third and fourth quadrants
and shrinking the exceptional divisor, the phase portrait is not determined on the first
and third quadrants and around the w1-axis, and the only information we have is given
in Figure 4.3.3(c). We must do a vertical blow up on systems (4.3.6). We introduce the
new variable w3 = v/w1 and get the systems

ẇ1 = �b3µw
3
1w3 + c0w

2
1w3 � µb1w

2
1,

ẇ3 = b3(µ� 1)w2
1w

2
3 + b1(µ� 1)w1w3.

(4.3.9)

Now we eliminate a common factor w1:

ẇ1 = �b3µw
2
1w3 + c0w1w3 � µb1w1,

ẇ3 = b3(µ� 1)w1w
2
3 + b1(µ� 1)w3.

(4.3.10)

The only singular point on the exceptional divisor is the origin, which is a stable node.
The phase portrait around the w1-axis for systems (4.3.10) is the one in Figure 4.3.3(d),
and multiplying by v, the phase portrait for systems (4.3.9) is the one in Figure 4.3.3(e).
Undoing the vertical blow up we obtain Figure 4.3.3(f) where the behavior around the
v-axis, in the colored regions, is not determined. Combining this phase portrait with
the information in Figure 4.3.3(c), it is, that there are orbits which go to the origin
tangent to the v-axis on the second quadrant, and there are orbits which leave the
origin tangent to the v-axis on the fourth quadrant, we can conclude that for systems
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Figure 4.3.3: Desingularization of the origin of systems (4.3.2) in nondicritical case (A.1.2).

(4.3.6) we have phase portrait in Figure 4.3.3(g). In the second and fourth quadrants it
would be possible to have a hyperbolic sector or an elliptic one, but we have proved in
the global phase portraits, by applying index theory, that the only feasible option is the
one with the elliptic sector.
We must multiply by v and we get the phase portrait given in Figure 4.3.2(h) for sys-
tems (4.3.5). Now we undo the first horizontal blow up done and hence we obtain for
O1 the phase portrait L1

2 given in Figure 4.3.1, where the existence of the elliptic sector
is proved in the global phase portraits, as we have just mentioned.

(A.1.3). Taking µ < 0 and similarly to the first subcase, we obtain for O1 the local
phase portrait L1

3 given in Figure 4.3.1.

Subcase (A.2). If µ = 1 and b0 + c0 > 0, then the origin is a saddle. Here, when
undoing the blow ups, it is necessary again to do a vertical blow up on systems (4.3.6),
and after that we obtain the same phase portrait as in the first subcase, it is L1

1.

Subcase (A.3). If µ = 1 and b0 + c0 < 0, then the origin is a stable node. Again,
including a vertical blow up on systems (4.3.6), we obtain phase portrait L1

2. As in
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4.3 Local study of infinite singular points in chart U1

the first case in which we obtained this local phase portrait, the blow up does not
determine if the elliptic sectors are indeed elliptic, but we prove it when analyzing the
global phase portraits.

Now we consider the cases with two singular points on the exceptional divisor:

Subcase (A.4). If b0 + c0 > 0 and (b0µ+ c0)(µ� 1) < 0, then the origin and S1 are
saddles. The phase portrait for systems (4.3.8) is in Figure 4.3.4(a) and multiplying by
v, the phase portrait for systems (4.3.7) is in Figure 4.3.4(b).

w2

v

(a)

w2

v

(b)

Figure 4.3.4: Desingularization of the origin of systems (4.3.2) in nondicritical case (A.4).

To go back to the (w1, v)-plane we have to distinguish two cases, one with µ < �1
and other with µ 2 (0, 1). In the first one, the subsequent phase portraits are well
determined and we arrive easily to final phase portrait L1

5 in Figure 4.3.1. If µ 2 (0, 1),
the phase portrait for systems (4.3.6) is not determined. We must do a vertical blow
up, introducing the variable w3 = v/w1. We get the systems

ẇ1 = �b3µw
3
1w3 + c0w

2
1w3 � µb1w

2
1,

ẇ3 = b3(µ� 1)w2
1w

2
3 � (b0 + c0)w1w

2
3 + b1(µ� 1)w1w3,

and eliminating a common factor w1:

ẇ1 = �b3µw
2
1w3 + c0w1w3 � µb1w1,

ẇ3 = b3(µ� 1)w1w
2
3 � (b0 + c0)w

2
3 + b1(µ� 1)w3.

(4.3.11)

These systems have two singular points on the exceptional divisor: the origin, which
is a stable node, and the point (0, b1(µ� 1)/(b0 + c0)) which is a saddle. Studying the
sense of the flow on the axes, we get that the phase portrait for systems (4.3.11) is the
one in Figure 4.3.5(a). Multiplying by w1 and undoing the vertical blow up, we obtain,
respectively, the phase portraits in Figure 4.3.5(b) and (c). Now the phase portrait for
systems (4.3.6) is well determined, and we can go on undoing the first horizontal blow
up, getting the final phase portrait L1

4.
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Figure 4.3.5: Vertical blow up on systems (4.3.6) in nondicritical case (A.4).

Subcase (A.5). If b0 + c0 > 0 and (b0µ+ c0)(µ� 1) > 0, then the origin is a saddle
and S1 is a stable node. We must distinguish three cases in function of the sign of
µ � 1, which determines the position of the singular point Q1 on systems (4.3.8), and
the sense of the flow on the axes on systems (4.3.6). We do not get any new phase
portrait for O1 in this case. If we take µ < 0, then we obtain the same phase portrait
as in subcase A1.3, it is, L1

3, and with µ > 1, we obtain the phase portrait L1
1. At last,

with µ 2 (0, 1), we obtain the phase portrait L1
2, but in this case it is necessary to do a

vertical blow up on systems (4.3.6) during the desingularization process.

Subcase (A.6). If b0+c0 < 0 and (b0µ+c0)(µ�1) > 0, then the origin is a stable node
and S1 is a saddle. This case is similar to the previous one and we should distinguish
three cases: if µ < 0, we obtain the phase portrait L1

6; if µ > 1, we obtain phase
portrait L1

7; and if µ 2 (0, 1), we need to do a vertical blow up of systems (4.3.6) and
we obtain phase portrait L1

2. As we mentioned before, we have proved that the elliptic
sectors are always elliptic in the global phase portraits, although it is not provided by
the blow ups. Here, as in the first case in which we obtained this local phase portrait,
the blow up does not determine that the elliptic sectors are indeed elliptic, but we prove
it when analyzing the global phase portraits.

Subcase (A.7). If b0 + c0 < 0 and (b0µ + c0)(µ � 1) < 0, then the origin is a stable
node and S1 is an unstable node and we obtain again phase portrait L1

2.

(B) If b2 = 0, b0 6= 0 and µ 2 (�1, 0), then Q0 is a stable node. We obtain phase portraits
L1
8e and L1

8h. Note that the only difference is on the sectors that appear beside the
v-axis on the second and third quadrants. On L1

8e we have elliptic sectors and on L1
8h

we have hyperbolic sectors. It will be enough to apply index theory to know which of
them appears in a global phase portrait, as we will detail on Section 4.5.

(C) If b2 6= 0 and µ 2 (�1,�1) [ (0,+1), then Q0 is a saddle and Q1 a saddle-node.
We must distinguish eight cases. At first, the sign of b1 determines if singular point
Q1 is on the positive or the negative part of w1-axis. Also we must fix the signs of
µ and b0µ + c0 as they determine the position and orientation of the sectors at the
saddle-node. The different conditions to study and the corresponding results are given
in Table 4.3.1
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4.3 Local study of infinite singular points in chart U1

Subcase Conditions Phase portrait of O1

(C.1) b1 > 0, µ > 0, b0µ+ c0 < 0 L
1
9

(C.2) b1 > 0, µ > 0, b0µ+ c0 > 0 L
1
10

(C.3) b1 > 0, µ < �1, b0µ+ c0 > 0 L
1
11

(C.4) b1 > 0, µ < �1, b0µ+ c0 < 0 L
1
12

(C.5) b1 < 0, µ > 0, b0µ+ c0 < 0 L
1
13

(C.6) b1 < 0, µ > 0, b0µ+ c0 > 0 L
1
14

(C.7) b1 < 0, µ < �1, b0µ+ c0 > 0 L
1
15

(C.8) b1 < 0, µ < �1, b0µ+ c0 < 0 L
1
16

Table 4.3.1: Local phase portrait obtained for O1 in the subcases of case (C).

In subcases (C.1), (C.2), (C.5) and (C.6), it is necessary to do a horizontal blow up
to completely determine the phase portrait of O1. The process is the same in the four
cases so we describe it only for the first one. If we introduce the variable w1 = u/v in
systems (4.3.2) and we eliminate a common factor v we get

ẇ1 = �µb3w
2
1v � µb1w

2
1 � µb2w1 + c0w1v,

v̇ = �b3w1v
2 � b1w1v � b0v

2 � b2v.
(4.3.12)

The singular points of systems (4.3.12) on the exceptional divisor are the origin, which
in this case is a stable node, and the point (�b2/b1, 0) which is a saddle-node. Thus,
attending to the sense of the flow on the axes, the phase portrait of these systems
around the w1-axis is the one in Figure 4.3.6(a). Multiplying by w1 we get the phase
portrait in Figure 4.3.6(b). Then we undo the horizontal blow up: we swap the third
and fourth quadrants, contract the exceptional divisor into the origin and modify the
orbits according to Proposition 1.2.6. We recall that, for example, the separatrix of
singular point (�b2/b1, 0) which is on the third quadrant, goes into a separatrix on the
fourth quadrant that starts from the origin with slope �b2/b1. Now the phase portrait
for systems (4.3.2) is well determined and, as we said, it is L1

9 in Figure 4.3.1.

w1

v

(a)

w1

v

(b)

Figure 4.3.6: Horizontal blow up on systems (4.3.2) in nondicritical case (C.1).

(D) If b2 = 0, b0 6= 0 and µ 2 (�1,�1) [ (0,+1), then Q0 is a stable node and Q1

a saddle-node. We separate two cases as the sign of b0µ + c0 determines the position
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Second Kolmogorov family (I)

of the saddle-node sectors. If b0µ + c0 > 0, we obtain phase portrait L1
17 and if

b0µ+ c0 < 0, then we obtain phase portrait L1
18.

(E) If b2 = 0, b0 6= 0 and µ 2 (�1,�1) [ (0,+1), then Q0 is an unstable node and Q1

a saddle-node. If b0µ > 0, we obtain phase portrait L1
19 and if b0µ < 0, then we obtain

phase portrait L1
20.

4.3.2 Dicritical case
Now we study the case with µ = 0, i.e, the dicritical case. Systems (4.3.4) would have a
singular point on the exceptional divisor if and only if c0 = 0 and b2 6= 0, but as we are
considering µ = 0, it is not possible because then we would have b0µ + c0 = 0, which
contradicts hypothesis H2

2 . Then there are no singular points on the exceptional divisor.
We must consider four cases depending on the sign of b1 and on whether b2 is zero or not.

If b2 = 0 then the sign of u̇ does not change along the w1-axis, but if b2 6= 0, u̇ changes its
sign at the point (0,�b1/b2).

If b2 = 0, (then we assume b1 > 0 by Remark 4.1.6), the flow around the w1 axis
is as represented in Figure 4.3.7(a). Multiplying by u2 all the points on the w1-axis become
singular points, but the sense of the flow remains the same in all regions (see Figure 4.3.7(b)).
At last, going back to the (u, v)-plane, we get that there are orbits which tend to the origin
with any slope on quadrants first and fourth, and there are orbits leaving the origin with
any slope on quadrant second and third, but also there are sectors which are not determined
in these quadrants near the v-axis. This sectors, colored in Figure 4.3.7(c), can be elliptic or
hyperbolic, and this can be determined on the global phase portraits by applying index theory,
as we will explain on Section 4.5. As a result we can have phase portraits L1

21e or L1
21h in

Figure 4.3.1.

w1

u

(a)

w1

u

(b)

v

u

(c)

Figure 4.3.7: Desingularization of the origin of systems (4.3.2) in dicritical case with b2 = 0
and b1 > 0.

If b2 > 0 and b1 > 0, the flow on the w1 axis changes its direction at the point
(0,�b1/b2), as represented in Figure 4.3.8(a). Multiplying by u2 the sense of the flow does
not change, but all the points on the w1-axis become singular points (see Figure 4.3.8(b)).
Going back to the (u, v)-plane, there are again two sectors that are not well determined, the
ones colored in Figure 4.3.8(c) on quadrants second and fourth, and they can be either hy-
perbolic or elliptic. In this case, it can be proved by index theory that there are always a
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4.4 Local study of infinite singular points in chart U2

hyperbolic sector and an elliptic sector, but their positions change depending on the global
phase portrait we are studying. The two possibilities are L1

22eh and L1
22he in Figure 4.3.1.

w1

u

(a)

w1

u

(b)

v

u

(c)

Figure 4.3.8: Desingularization of the origin of systems (4.3.2) in dicritical case with b2 > 0
and b1 > 0.

If b2 > 0 and b1 < 0, similarly to the previous case we obtain phase portraits L1
23eh or

L1
23he in Figure 4.3.1.

We note that in this classification there are local phase portraits which are topologically
equivalent, see for example in Figure 4.3.1 the phase portraits L1

2, L1
8e and L1

22e, but we
maintain the distinction here as a result of the application of the blow up technique. In the
final global classification the phase portraits which are topologically equivalent are unified.

4.4 Local study of infinite singular points in chart U2

According to equation (1.3.10), we get the compactification in the local chart U2, where
systems (4.0.1) write

u̇ = b2(µ+ 1)u2v + (b0 � c0)uv
2 + b1(µ+ 1)u2 + b3(µ+ 1)uv,

v̇ = b2µuv
2 � c0v

3 + b1µuv + b3v
2.

(4.4.13)

In the local chart U2 we only need to study its singularity localized at the origin, denoted
by O2, because the other infinite singularities have already been studied in the local chart U1.
As the linear part of systems (4.4.13) at the origin is identically zero, we must use the blow
up technique to study it. We obtain the next result, which is proved below.

Lemma 4.4.1. Assuming hypothesis H2
2 the origin of the chart U2 is an infinite singular

point of systems (4.0.1), and it has 26 distinct local phase portraits described in Figure 4.4.1.
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Figure 4.4.1 (1 out of 2): Local phase portraits of the infinite singular point O2.
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Figure 4.4.1 (2 out of 2): Local phase portraits of the infinite singular point O2.

For systems (4.4.13), the characteristic polynomial is F = �b1u2v � b3uv2 6⌘ 0, so the
origin is a nondicritical singular point. We introduce the variable w1 by means of the variable
change uw1 = v and we eliminate a common factor u, then we get the systems

u̇ = (b0 � c0)u
2w2

1 + b2(µ+ 1)u2w1 + b3(µ+ 1)uw1 + b1(µ+ 1)u

ẇ1 = �b0uw
3
1 � b2uw

2
1 � b3w

2
1 � b1w1.

(4.4.14)

The singular points on the exceptional divisor u = 0 of systems (4.4.14) are the origin
S0 and the singular point S1 = (0,�b1/b3) if b3 6= 0. This point S1 is a semi-hyperbolic
saddle-node whenever it exists, while the origin can be a saddle if µ > �1, a stable node if
µ < �1 and b1 > 0, and an unstable node if µ < �1 and b1 < 0. Then we must study five
different subcases originated by these conditions.

(a) If b3 = 0, c0 6= 0 and µ > �1, then S0 is a saddle. Note that once we fix b3 = 0
we can assume b1 > 0 by Remark 4.1.6. In this case the vertical blow up done does
not provide a well determined phase portrait, so we must proceed similarly to the case
(A) in Section 4.3, doing a horizontal blow up. In order to do that, we introduce the
variable w1 = u/v on systems (4.4.13) and eliminate a common factor v obtaining:

ẇ1 = b2w
2
1v + b1w

2
1 + b0w1v,

v̇ = b2µw1v
2 + b1µw1v � c0v

2,
(4.4.15)

for which the only singular point on the exceptional divisor is the origin, and it is
linearly zero, so we have to repeat the process. The characteristic polynomial is F =
b1(µ � 1)w2

1v � (b0 + c0)w1v2, so the origin is always nondicritical by the same
reasoning as in (A). Now we introduce the new variable w2 = w1/v, obtaining the
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systems

ẇ2 = b2(1� µ)w2
2v

2 + b1(1� µ)w2
2v + (b0 + c0)w2v,

v̇ = b2µw2v
3 + b1µw2v

2 � c0v
2,

(4.4.16)

and eliminating a common factor v, we get

ẇ2 = b2(1� µ)w2
2v + b1(1� µ)w2

2 + (b0 + c0)w2,

v̇ = b2µw2v
2 + b1µw2v � c0v.

(4.4.17)

The singular points of systems (4.3.8) on the exceptional divisor are the origin Q0 and
the singular point Q1 = ((b0 + c0)/(b1(µ � 1)), 0) if µ 6= 1 (note that it coincides
with the origin if b0 + c0 = 0). We determine their local phase portraits obtaining the
following classification. We start with the cases in which the only singular point on the
exceptional divisor is the origin:

Subcase (a.1). If b0 + c0 = 0 and µ 6= 1, then the origin is a semi-hyperbolic saddle-
node. If µ > 1, it is necessary to do a vertical blow up of systems (4.4.15). We omit
the details as the process is similar to the explained in case A.1.1 for the singular point
O1. The phase portrait obtained for O2 is L2

1 given in Figure 4.3.1. If µ 2 (�1, 1), we
obtain phase portrait L2

2.

Subcase (a.2). If µ = 1 and c0(b0+ c0) > 0, then the origin is a saddle. If b0+ c0 < 0
and c0 < 0, we obtain again phase portrait L2

2 and if b0 + c0 > 0 and c0 > 0, then
we obtain phase portrait L2

3. In both cases it is necessary to do a vertical blow up of
systems (4.4.15).

Subcase (a.3). If µ = 1, c0 < 0, and b0 + c0 > 0, then the origin is an unstable
node. We obtain phase portrait L2

1. Here the same consideration we made in case (a.1)
about the elliptic sectors applies. The blow ups do not determine if the elliptic sectors
appearing are indeed elliptic or hyperbolic, but this would be concluded analyzing the
global phase portraits on Section 4.5. The same consideration applies also in (a.7)
when µ > 1.

Now we consider the cases with two singular points on the exceptional divisor:

Subcase (a.4). If c0 > 0, b0 + c0 > 0 and (b0µ + c0)(µ � 1) < 0, then the origin is
a saddle and Q1 a stable node. From these conditions we can deduce that µ 2 (�1, 1)
and then we obtain only one phase portrait which is the same L2

3.

Subcase (a.5). If c0 < 0, b0 + c0 < 0 and (b0µ+ c0)(µ� 1) > 0, then Q0 is a saddle
and Q1 is an unstable node. If µ > 1, it is necessary to do a vertical blow up of systems
(4.4.15), and then we obtain phase portrait L2

1. If µ 2 (�1, 1), we obtain phase portrait
L2
2.

Subcase (a.6). If c0(b0 + c0) > 0 and (b0 + c0)(b0µ + c0)(µ � 1) > 0, then Q0 and
Q1 are saddles. If µ 2 (�1, 1), b0+c0 > 0 and c0 > 0, we easily obtain phase portrait
L2
6. If µ > 1, b0 + c0 > 0 and c0 > 0, we obtain phase portrait L2

4 and if µ > 1,
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4.4 Local study of infinite singular points in chart U2

b0 + c0 < 0 and c0 < 0, we obtain phase portrait L2
5. In these two last cases it is

necessary to do a vertical blow up of systems (4.4.15). We detail it for the first case, it
is, with µ > 1, b0 + c0 > 0 and c0 > 0.

The phase portrait for (4.4.17) with the two saddles on the w2-axis is given in Figure
4.4.2(a), and the corresponding for systems (4.4.16) is in Figure 4.4.2(b). If we undo
the horizontal blow up, we must swap the third and fourth quadrants and shrink the
w2-axis into the origin. As a consequence, the separatrices of the saddle Q1 go into
two separatrices with slope (b0 + c0)/(b1(µ � 1)), one of them goes to the origin in
the third quadrant and the other leaves the origin in the first quadrant. There are four
sectors, colored in Figure 4.4.2(c), in which the behavior is not determined, so we must
do a vertical blow up.

w2

v

(a)

w2

v

(b)

w1

v

(c)

Figure 4.4.2: Desingularization of the origin of systems (4.4.13) case (a.6) with µ > 1,
c0 > 0 and b0 + c0 > 0.

Let us introduce the variable w3 = v/w1 and eliminate a common factor w1. We get
the systems

ẇ1 = b2w
2
1w3 + b0w1w3 + b1w1,

ẇ3 = b2(µ� 1)w1w
2
3 � (b0 + c0)w

2
3 + b1(µ� 1)w3.

(4.4.18)

These systems has two singular points on the exceptional divisor: the origin which is
an unstable node, and the point (0, b1(µ�1)/(b0+c0)) which is a saddle. Studying the
sense of the flow on the axes, we get that the phase portrait for systems (4.4.18) is the
one in Figure 4.4.3(a). Multiplying by w1 and undoing the vertical blow up, we obtain,
respectively, the phase portraits in Figure 4.4.3(c) and (d). Now the phase portrait for
systems (4.4.15) is well determined, and we just have to undo the first horizontal blow
up, getting the final phase portrait L2

4.

Subcase (a.7). If c0 < 0, b0+c0 > 0, and (b0µ+c0)(µ�1) > 0, then Q0 is an unstable
node and Q1 is a saddle. If µ > 1, we obtain phase portrait L2

1 and if µ 2 (�1, 1), we
obtain phase portrait L2

7.

Subcase (a.8). If c0 < 0, b0 + c0 > 0, and (b0µ + c0)(µ � 1) < 0, then Q0 is an
unstable node and Q1 is a stable node, and we obtain phase portrait L2

1.
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w3
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w1

v
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Figure 4.4.3: Desingularization of the origin of systems (4.4.13) case (a.6) with µ > 1,
c0 > 0 and b0 + c0 > 0.

(b) If b3 = 0, c0 6= 0, µ < �1 and b1 > 0, then the singular point S0 is a stable node. If
c0 > 0, we obtain phase portraits L2

8e and L2
8h, which differ on the sectors that appear

beside the v-axis on the second and third quadrants. On L2
8e we have elliptic sectors and

on L2
8h we have hyperbolic sectors. We apply index theory on the global phase portraits

to know which of them appears (see Section 4.5). If c0 < 0, the result is similar and
an undetermined sector also appears when undoing the blow up. Nevertheless, in this
case we have proved that in all the global phase portraits the undetermined sectors are
elliptic, so we have always phase portrait L2

9.

(c) If b3 > 0 and µ > �1, then the singular point S0 is a saddle and S1 is a saddle-
node. We distinguish four cases in function of the sign of b1 which determines the
position of S1, and the sign of b0µ+ c0 which determines the position of the sectors of
that singular point. With these signs fixed, we can determine and represent the phase
portrait of systems (4.4.17) and (4.4.16). Then, in each of the four cases, when going
back to the (u, v)-plane we must distinguish three cases depending on whether µ = 0,
µ 2 (�1, 0) or µ > 0. In the cases with µ > 0 there appears an undefined sector
which could be hyperbolic or elliptic. By doing a horizontal blow up in that cases,
it can be determined that those sectors are always elliptic, but we omit the details as
the process is the same that has been exposed in other cases. Another possibility is to
prove directly on the global phase portrait, by applying index theory, that those sectors
can only be elliptic. To avoid repetitions, we simply include the results obtained in
each case in Table 4.4.1.

(d) If b3 > 0, µ < �1 and b1 > 0, then the singular point S0 is a stable node and S1

is a saddle-node. The sign of b0µ + c0 determines the position of the sectors of the
saddle-node in systems (4.4.17), so we must distinguish two cases and undo the blow
up in each of them. If b0µ+ c0 > 0, we obtain phase portrait L2

23 and if b0µ+ c0 > 0,
we obtain L2

24.

(e) If b3 > 0, µ < �1 and b1 < 0, then S0 is an unstable node and S1 is a saddle-node.
As in the previous case we distinguish the case with b0µ+ c0 > 0, in which we obtain
phase portrait L2

25, and the case with b0µ+ c0 < 0, in which we obtain phase portrait
L2
26.
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Subcase Conditions Phase portrait of O2

(c.1) b1 > 0, b0µ+ c1 > 0

µ > 0 L
2
10

µ 2 (�1, 0) L
2
11

µ = 0 L
2
12

(c.2) b1 > 0, b0µ+ c1 < 0

µ > 0 L
2
13

µ 2 (�1, 0) L
2
14

µ = 0 L
2
15

(c.3) b1 < 0, b0µ+ c1 > 0

µ > 0 L
2
16

µ 2 (�1, 0) L
2
17

µ = 0 L
2
18

(c.4) b1 > 0, b0µ+ c1 < 0

µ > 0 L
2
19

µ 2 (�1, 0) L
2
20

µ = 0 L
2
21

Table 4.4.1: Local phase portraits for O2 obtained is the subcases of case (c).

4.5 Global phase portraits
In this section we give the topological classification of global phase portraits of systems
(4.0.1) by proving Theorem 4.0.1.

We bring together the local information obtained in Sections 4.2, 4.3 and 4.4. We start
our classification from the cases in Tables 4.2.2 to 4.2.5. In Table 4.5.1 we give, for each case
of the Tables 4.2.2 to 4.2.5, the local phase portrait of the infinite singular points O1 and O2.
In some of them the conditions determine only one local phase portrait in each one of the
infinite singular points, but in most cases, we shall distinguish several possibilities depending
on the parameters. Also in Table 4.5.1 we give the global phase portrait on the Poincaré disk
obtained. All these global phase portraits are given in Figure 4.5.5, where we also indicate
the number of separatrices (S) and canonical regions (R) that each of them has. We detail the
reasonings in some cases, although they will not be showed in all of them to avoid repetitions.
We recall that we are denoting the origins of charts U1 and U2 as O1 and O2 respectively, and
in this section, to simplify the explanations, we will denote by Q1 the origin of chart V1 and
by Q2 the origin of V2.

4.5.1 Cases with a totally-determined local phase portrait at infinity
First, we explain the process in a case where all local phase portraits are fully determined,
and the separatrices can only be connected in one manner.

Case 1.3. Let us consider the conditions µ < �1 and b1 > 0, so the infinite singular point
O1 has the local phase portrait L1

12 given in Figure 4.3.1, and O2 has the phase portrait L2
23

given in 4.4.1. We must combine the local information to get the global phase portrait. The
systems have an unstable node P1 which is on the positive z-axis and a stable node P2 which
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is on the negative x-axis. The origin is a saddle and it has its four separatrices over the axes
(as the axes are invariant). Also, by the local configurations of O1 and O2 we know that the
part of the z-axis which connects P1 with O1 is a separatrix, and the part of the x-axis which
connects P2 with Q1 is a separatrix. Apart from those, the systems have a separatrix leaving
the singular point O2 in the second quadrant and a separatrix which arrives at Q1 on the third
quadrant (see Figure 4.5.1). There is only one possible connection for these separatrices: the
separatrix which leaves O2 goes to P2 and the separatrix which arrives at Q1 starts at Q2.
Then we obtain phase portrait G9 in Figure 4.5.5, which has 19 separatrices and 6 canonical
regions.

Figure 4.5.1: Separatrices provided by local information in case 1.3 with µ < �1 and b1 > 0.

With the same reasonings we can obtain the global phase portraits in the other subcases
of 1.3 and also in the following: the subcases in 1.5 and 1.6 with b1 < 0; all subcases in
1.8 and in 1.10; subcases in 2.2, 2.4 and 2.5 with µ < �1; subcases in 3.2 with µ < �1 or
µ 2 (�1, 0); subcases in 3.3, 3.4 and 3.5 with µ 2 (�1, 0); subcases in 4.1 with µ < �1 and
subcases in 4.2 with µ 2 (0, 1), µ = 1 or µ > 1.

4.5.2 Cases with undetermined sectors at infinity
Now we will deal with some cases in which the local phase portrait of O1, O2 or both was
not totally determined in Sections 4.3 and 4.4, in the sense that they present certain sectors
which can be either hyperbolic or elliptic.

Case 1.1. We consider b1 < 0. The infinite singular point O1 has the local phase portrait L1
13

given in Figure 4.3.1, and O2 the phase portrait L2
19 given in Figure 4.4.1. We must prove

here that the elliptic sectors on both phase portraits are indeed elliptic.
The systems have a saddle P1 on the negative z-axis and a stable node P2 on the negative

x-axis. The origin is a saddle and it has the four separatrices over the axes. The repelling
separatrices of P1 are also over the z-axis, but the attracting ones should arrive to P1, one
in the third quadrant and other in the fourth quadrant. Also the systems have a separatrix
leaving the singular point O2 in the first quadrant and a separatrix leaving Q1 on the second
quadrant. Then, attending to the local phase portrait of each singular point, the only possible
connection is the following: there is a separatrix which goes from Q1 to the point P2 and a
separatrix from O2 to O1, the attracting separatrix of P1 on the third quadrant starts in Q1 and
the one in the fourth quadrant starts in Q2. As a result, there is a canonical region delimited

134



4.5 Global phase portraits

by Q2, the part of the z-axis which connects this point with P1, P1, and its separatrix on
the fourth quadrant (see Figure 4.5.2). If the sector on the local phase portrait of Q2 were
hyperbolic, then there would not be any possible ↵ or !-limit on the boundary for the orbits
in that region, but as it is not possible to have periodic orbits, this situation is no feasible, and
this sector should be elliptic. The same happens with the elliptic sector at O1. Anyway, this
can be proved also analytically by applying index theory.

Figure 4.5.2: Separatrix configuration in case 1.1 with b1 < 0 and regions in which local
phase portrait was not determined.

By Theorem 1.6.1 the sum of the indices of all the singular points on the Poincaré sphere
has to be 2. To compute this sum we must consider that the finite singular points on the
Poincaré disk appear twice on the sphere (on the northern hemisphere and on the southern
hemisphere). Thus if we denote by indF the sum of the indices of the finite singular points,
and by indI the sum of the indices of the infinite singular points, the equality 2indF +indI =
2 must be satisfied. In this particular case, the finite singular points are two saddles whose
index is �1, and a stable node which index is 1, so indF = �1. We deduce that indI must
be 4. The infinite singular points are O1 and Q1 which have the same index, and O2 and Q2

which have also the same index.
The singular point O1 has a hyperbolic sector so, if the non-determined sector is elliptic,

from the Poincaré formula for the index given in Section 1.6, O1 has index 1, and if the
non-determined sector were hyperbolic, O1 would have index 0. The same is valid for the
singular point O2. Then, if at any of these points O1 or O2 the sector were hyperbolic, the
sum of the index of that point and its symmetric would be zero, and so the sum of the other
point and its symmetric should be 4, which is not possible.

In other words,

indI = 2

✓
e� h

2
+ 1

◆
+ 2

 
ẽ� h̃

2
� 1

!
,

where e and h are the number of elliptic and hyperbolic sectors of O1 and ẽ and h̃ are the
number of elliptic and hyperbolic sectors of O2. As we know that indI = 4, then we obtain

(e+ ẽ)� (h+ h̃) = 0,

it is, considering both phase portraits of O1 and O2 together, there must be the same number
of elliptic and hyperbolic sectors. As we have a hyperbolic sector in each of them, the two
non-determined sectors must be elliptic.
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Second Kolmogorov family (I)

Case 3.3. We consider µ < �1. The infinite singular point O1 has the local phase portrait
L1
11 given in Figure 4.3.1, and O2 has the phase portrait L2

8e, but we must prove that we
actually have L2

8e instead of L2
8h.

The origin is an unstable node and the systems have a saddle P2 on the negative x-axis.
The attracting separatrices of P2 are over the x-axis, but the repelling separatrices should
leave P2, one in the second quadrant and other in the third quadrant. There is also a separatrix
leaving the singular point O1 in the fourth quadrant. There is only one possible way to
connect these separatrices: the systems have a separatrix which goes from P2 to O2, another
which goes from P2 to Q2 and the third one which goes from O1 to Q2. Then we have two
canonical regions, the ones colored in Figure 4.5.3, in which the only possibility is to have
elliptic sectors whose orbits have as alpha and omega-limits the singular point O2 and Q2

respectively. We verify this with Theorem 1.6.1. As we have a finite saddle with index �1
and a finite node with index 1, then indF = 0. From the equality 2indF + indI = 2 we
know that indI must be 2.

Figure 4.5.3: Separatrix configuration in case 3.3 with µ < �1 and regions in which local
phase portrait was not determined.

The local phase portrait of O1 is well determined and it has four hyperbolic sectors and
one parabolic sector, so

indO1 =
e� h

2
+ 1 =

0� 4

2
+ 1 = �1,

and also we know that indO1 = indQ1 and indO2 = indQ2 . Then

indI = 2indO1 + 2indO2 ) indO2 = 2,

and by the Poincaré formula, if e and h are the number of elliptic and hyperbolic sectors at
O2, then

e� h

2
+ 1 = 2 ) e� h = 2,

and as we have only two sectors to determine whether they are elliptic or hyperbolic, the only
possibility is that both are elliptic.

With similar reasonings we can conclude and prove the results in all the remaining sub-
cases, except the ones included in the following subsection.
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4.5 Global phase portraits

4.5.3 Cases with three possible global phase portraits
Here we focus on the cases in which the separatrices can be connected in three different
manners. As can be seen in Table 4.5.1, this happens in the subcases of 1.1, 1.2, 1.5, 1.6
and 1.7 in which b1 > 0, in both subcases of 1.4, in the subcase of 1.9 with b1 < 0, and in
the subcase of 3.3 with µ = 0, b3 > 0 and b1 > 0. We give a detailed explanation in the
following case:

Case 1.5. We consider the condition µ < �1 and b1 > 0. The origin is an unstable node,
there is a stable node P2 on the negative z-axis and saddle P1 on the negative x-axis. The
two attracting separatrices of P1 are over the z-axis, and the repelling ones leave the origin in
the third and fourth quadrants respectively. The infinite singular point O1 has the local phase
portrait L1

12 of Figure 4.3.1, and O2 has the phase portrait L2
23 of Figure 4.4.1. According

to these local phase portraits, the positive z-axis, the positive x-axis, and the part of the
negative x-axis between Q1 and P2 are separatrices. Moreover, there is another separatrix
which leaves O2 in the second quadrant and one that goes to Q1 in the third quadrant. There
is only one possible connection for the separatrices on the second and fourth quadrant, as it
is represented in Figure 4.5.4(a).

(a)

(b) (c)

(d)

Figure 4.5.4: Separatrices and possible configurations on the third quadrant on case 1.5 with
µ < �1 and b1 > 0.

We focus now on the third quadrant. We know that there is a separatrix leaving the point
P1 and another one going into Q1. If we analyze the possible !-limits of the separatrix
leaving P1 there are three options, the singular points Q1, Q2 and P2. If the !-limit is Q1,
then both separatrices should be the same, as the point Q1 does not have parabolic sectors
in the third quadrant. In that case, the configuration in the third quadrant is the one given in
Figure 4.5.4 (c), and this leads to the global phase portrait G20.

If the !-limit is P2, then only possibility for the other separatrix is that its ↵-limit is Q2.
The configuration in the third quadrant is given in Figure 4.5.4(b), and this leads to the global
phase portrait G19.

At last, if the !-limit is Q2, then the ↵-limit of the other separatrix is the origin. The
configuration in the third quadrant is given in Figure 4.5.4(d), and this leads to the global
phase portrait G21.
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Second Kolmogorov family (I)

In phase portrait G20 we have proved that the connection of the separatrices takes place on
the invariant straight line z = �1/2 for the values of the parameters b0 = b2 = b2 = c0 = 1,
b1 = 2 and µ = �2. The two remaining phase portraits can be obtained by perturbing just
one parameter.

We have also proved numerically, by using the program P4 (see [50, Chapter 9]), that the
three global phase portraits are realizable.

In Table 4.5.2 we give the values of the parameters for which we have found each phase
portrait, not only on this subcase but also in all the subcases in which three possibilities
appear. In all of them we have check that the three possibilities are realizable and in all the
triplets we have proved that in the phase portraits in which two separatrices connect, this
connection takes place on an invariant straight line. More precisely, in the phase portraits G2,
G20, G24 and G45 the invariant line is z = c0/µb3 and in the phase portraits G6, G14, G28,
G32, G36 and G81 the invariant line is y = �b0/b2.

Case Conditions O1 O2 Global

1.1
b1 > 0 L

1
9 L

2
13 G1, G2 or G3

b1 < 0 L
1
13 L

2
19 G4

1.2
b1 > 0 L

1
10 L

2
10 G5, G6 or G7

b1 < 0 L
1
14 L

2
16 G8

1.3

µ < �1, b1 > 0 L
1
12 L

2
23 G9

µ < �1, b1 < 0 L
1
16 L

2
25 G10

µ 2 (�1, 0), b1 > 0 L
1
18 L

2
14 G11

µ 2 (�1, 0), b1 < 0 L
1
20 L

2
20 G12

1.4
b1 > 0 L

1
10 L

2
10 G13, G14 or G15

b1 < 0 L
1
14 L

2
16 G16, G17 or G18

1.5

µ < �1, b1 > 0 L
1
12 L

2
23 G19, G20 or G21

µ < �1, b1 < 0 L
1
16 L

2
25 G22

µ 2 (�1, 0), b1 > 0 L
1
18 L

2
14 G23, G24 or G25

µ 2 (�1, 0), b1 < 0 L
1
20 L

2
20 G26

1.6

µ < �1, b1 > 0 L
1
11 L

2
22 G27, G28 or G29

µ < �1, b1 < 0 L
1
15 L

2
24 G30

µ 2 (�1, 0), b1 > 0 L
1
17 L

2
11 G31, G32 or G33

µ 2 (�1, 0), b1 < 0 L
1
19 L

2
17 G34

1.7
b1 > 0 L

1
10 L

2
10 G35, G36 or G37

b1 < 0 L
1
14 L

2
16 G38

1.8

µ < �1, b1 > 0 L
1
12 L

2
23 G39

µ < �1, b1 < 0 L
1
16 L

2
25 G40

µ 2 (�1, 0), b1 > 0 L
1
18 L

2
14 G41

µ 2 (�1, 0), b1 < 0 L
1
20 L

2
20 G42

Table 4.5.1 (1 out of 3): Classification of global phase portraits of systems (4.0.1).
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4.5 Global phase portraits

Case Conditions O1 O2 Global

1.9
b1 > 0 L

1
10 L

2
10 G43

b1 < 0 L
1
14 L

2
16 G44, G45 or G46

1.10

µ < �1, b1 > 0 L
1
11 L

2
22 G47

µ < �1, b1 < 0 L
1
15 L

2
24 G48

µ 2 (�1, 0), b1 > 0 L
1
17 L

2
11 G49

µ 2 (�1, 0), b1 < 0 L
1
19 L

2
17 G50

2.1 L
1
2 L

2
13 G51

2.2

µ 2 (�1, 0) L
1
8e L

2
14 G52

b0 + c0 = 0, µ > 1
L

1
1 L

2
10 G53

b0 + c0 > 0, µ � 1

b0 + c0 � 0, µ < �1 L
1
3 L

2
23 G54

b0 + c0 > 0, µ 2 (0, 1) L
1
4 L

2
10 G55

b0 + c0 < 0, µ < �1 L
1
6 L

2
23 G56

b0 + c0 < 0, µ > 1 L
1
7 L

2
10 G57

2.3

µ 2 (�1, 0) L
1
8e L

2
14 G58

µ 2 (0, 1) L
1
4 L

2
10 G59

µ < �1 L
1
3 L

2
23 G60

µ � 1 L
1
1 L

2
10 G61

2.4
µ 2 (�1, 0) L

1
8h L

2
11 G62

µ < �1 L
1
5 L

2
22 G63

2.5

µ 2 (�1, 0) L
1
8e L

2
14 G64

µ 2 (0, 1) L
1
4 L

2
10 G65

µ < �1 L
1
3 L

2
23 G66

µ � 1 L
1
1 L

2
10 G67

3.1 L
1
10 L

2
1 G68

3.2

b0 + c0 = 0, µ > 0
L

1
9 L

2
2 G69

b0 + c0 < 0, µ 2 (0, 1]

b0 + c0 < 0, µ > 1 L
1
9 L

2
5 G70

b0 + c0 < 0, µ 2 (0, 1) L
1
9 L

2
7 G71

µ < �1 L
1
12 L

2
9 G72

b0 + c0  0, µ 2 (�1, 0) L
1
18

L
2
2 G73

b0 + c0  0, µ = 0, b3 = 0 L
1
22eh

b0 + c0 > 0, µ 2 (�1, 0) L
1
18

L
2
7 G74

b0 + c0 > 0, µ = 0, b3 = 0 L
1
22eh

µ = 0, b3 > 0, b1 > 0 L
1
22eh L

2
15 G75

µ = 0, b3 > 0, b1 < 0 L
1
23eh L

2
21 G76

Table 4.5.1 (2 out of 3): Classification of global phase portraits of systems (4.0.1).
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Second Kolmogorov family (I)

Case Conditions O1 O2 Global

3.3

µ 2 (0, 1] L
1
10 L

2
3 G77

µ > 1 L
1
10 L

2
4 G78

µ < �1 L
1
11 L

2
8e G79

µ 2 (�1, 0) L
1
17

L
23 G80

µ = 0, b3 = 0 L
1
22he

µ = 0, b3 > 0, b1 > 0 L
1
22he L

2
12 G80, G81 or G82

µ = 0, b3 > 0, b1 < 0 L
1
23he L

2
18 G83

3.4
µ < �1 L

1
12 L

2
8h G84

µ 2 (�1, 0) L
1
18 L

2
6 G85

3.5

µ 2 (0, 1] L
1
10 L

2
3 G86

µ > 1 L
1
10 L

2
4 G87

µ < �1 L
1
11 L

2
8e G88

µ 2 (�1, 0) L
1
17

L
2
3 G89

µ = 0, b3 = 0 L
1
22he

µ = 0, b3 > 0, b1 > 0 L
1
22he L

2
12 G90

µ = 0, b3 > 0, b1 < 0 L
1
23he L

2
18 G91

4.1

b0 + c0  0, µ = 0, b3 = 0 L
1
21e

L
2
2 G92

b0 + c0  0, µ 2 (�1, 0) L
1
8e

b0 + c0 = 0, µ 2 (0, 1) L
1
2

b0 + c0 < 0, µ 2 (0, 1] L
1
2

b0 + c0 > 0, µ = 0, b3 = 0 L
1
21e

L
2
7 G93b0 + c0 > 0, µ 2 (�1, 0) L

1
8e

b0 + c0 > 0, µ 2 (0, 1), b0µ+ c0 < 0 L
1
2

b0 + c0 = 0, µ > 1
L

1
1 L

2
1 G94

b0 + c0 > 0, µ � 1

b0 + c0 � 0, µ < �1 L
1
3 L

2
9 G95

b0 + c0 > 0, µ 2 (0, 1), b0µ+ c0 > 0 L
1
4 L

2
1 G96

b0 + c0 < 0, µ < �1 L
1
6 L

2
9 G97

b0 + c0 < 0, µ > 1, b0µ+ c0 > 0 L
1
7 L

2
1 G98

b0 + c0 < 0, µ > 1, b0µ+ c0 < 0 L
1
2 L

2
5 G99

µ = 0, b3 > 0 L
1
21e L

2
15 G100

4.2

µ = 0, b3 > 0 L
1
21h L

2
12 G101

µ = 0, b3 = 0 L
1
21h

L
2
3 G102µ 2 (�1, 0) L

1
8h

µ 2 (0, 1) L
1
4

µ < �1, b0µ+ c0 > 0 L
1
5 L

2
8e G103

µ < �1, b0µ+ c0 < 0 L
1
3 L

2
8h G104

µ = 1 L
1
1 L

2
3 G105

µ > 1 L
1
1 L

2
4 G106

Table 4.5.1 (3 out of 3): Classification of global phase portraits of systems (4.0.1).
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4.5 Global phase portraits

Subcase Phase portrait Obtained for the values

1.1
b1 > 0

G1 b0 = 1/2, b1 = b2 = b3 = 1, c0 = �1, µ = 1/2

G2 b0 = 1/2, b1 = b2 = b3 = 1, c0 = �1, µ = 1

G3 b0 = 1/2, b1 = b2 = b3 = 1, c0 = �1, µ = 5/4

1.2
b1 > 0

G5 b0 = 2, b1 = b2 = b3 = 1, c0 = �1/2, µ = 1

G6 b0 = b1 = b2 = b3 = 1, c0 = �1/2, µ = 1

G7 b0 = 4/5, b1 = b2 = b3 = 1, c0 = �1/2, µ = 1

1.4
b1 > 0

G13 b0 = 2, b1 = b2 = b3 = c0 = µ = 1

G14 b0 = b1 = b2 = b3 = c0 = µ = 1

G15 b0 = 1/2, b1 = b2 = b3 = c0 = µ = 1

1.4
b1 < 0

G16 b0 = b2 = b3 = c0 = µ = 1, b1 = �2

G17 b0 = 1, b1 = �1, b2 = b3 = c0 = µ = 1

G18 b0 = b2 = b3 = c0 = µ = 1, b1 = �1/2

1.5
µ < �1, b1 > 0

G19 b0 = b2 = b3 = c0 = 1, b1 = 1, µ = �2

G20 b0 = b2 = b3 = c0 = 1, b1 = 2, µ = �2

G21 b0 = b2 = b3 = c0 = 1, b1 = 4, µ = �2

1.5
µ 2 (�1, 0), b1 > 0

G23 b0 = 4, b1 = 1, b2 = b3 = c0 = 1, µ = �1/2

G24 b0 = 4, b1 = 1/2, b2 = b3 = c0 = 1, µ = �1/2

G25 b0 = 4, b1 = 1/10, b2 = b3 = c0 = 1, µ = �1/2

1.6
µ < �1, b1 > 0

G27 b0 = 1/4, b1 = b2 = b3 = 1, c0 = 3, µ = �2

G28 b0 = b1 = b2 = b3 = 1, c0 = 3, µ = �2

G29 b0 = 5/4, b1 = b2 = b3 = 1, c0 = 3, µ = �2

1.6
µ 2 (�1, 0), b1 > 0

G31 b0 = b1 = b3 = 1, b2 = 7/4, c0 = 2, µ = �1/2

G32 b0 = b1 = b2 = b3 = 1, c0 = 2, µ = �1/2

G33 b0 = b1 = b3 = 1, b2 = 1/4, c0 = 2, µ = �1/2

1.7
b1 > 0

G35 b0 = b2 = b3 = µ = 1, b1 = 7/8, c0 = 0

G36 b0 = b1 = b2 = b3 = µ = 1, c0 = 0

G37 b0 = b2 = b3 = µ = 1, b1 = 9/8, c0 = 0

1.9
b1 < 0

G44 b0 = 0, b1 = �1/2, b2 = b3 = c0 = µ = 1

G45 b0 = 0, b1 = �1, b2 = b3 = c0 = µ = 1

G46 b0 = 0, b1 = �2, b2 = b3 = c0 = µ = 1

3.3
µ = 0, b3 > 0, b1 > 0

G80 b0 = 2, b1 = b2 = b3 = c0 = 1, µ = 0

G81 b0 = b1 = b2 = b3 = c0 = 1, µ = 0

G82 b0 = 1/2, b1 = b2 = b3 = c0 = 1, µ = 0

Table 4.5.2: Values of the parameters for which each global phase portrait is obtained in cases
with three possible configurations.
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Second Kolmogorov family (I)

G1 [R=7, S=20] G2 [R=6, S=19] G3 [R=7, S=20] G4 [R=7, S=20]

G5 [R=7, S=20] G6 [R=6, S=19] G7 [R=7, S=20] G8 [R=7, S=20]

G9 [R=6, S=19] G10 [R=6, S=19] G11 [R=6, S=19] G12 [R=6, S=19]

G13 [R=8, S=21] G14 [R=7, S=20] G15 [R=8, S=21] G16 [R=8, S=21]

G17 [R=7, S=20] G18 [R=8, S=21] G19 [R=6, S=19] G20 [R=7, S=20]

Figure 4.5.5 (1 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.
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4.5 Global phase portraits

G21 [R=7, S=21] G22 [R=7, S=20] G23 [R=5, S=18] G24 [R=6, S=19]

G25 [R=6, S=19] G26 [R=6, S=19] G27 [R=6, S=19] G28 [R=5, S=18]

G29 [R=6, S=19] G30 [R=6, S=19] G31 [R=7, S=20] G32 [R=6, S=19]

G33 [R=7, S=20] G34 [R=6, S=19] G35 [R=7, S=18] G36 [R=6, S=17]

G37 [R=7, S=18] G38 [R=7, S=18] G39 [R=6, S=17] G40 [R=6, S=17]

Figure 4.5.5 (2 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.
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Second Kolmogorov family (I)

G41 [R=6, S=17] G42 [R=6, S=17] G43 [R=7, S=18] G44 [R=7, S=18]

G45 [R=6, S=17] G46 [R=7, S=18] G47 [R=6, S=17] G48 [R=6, S=17]

G49 [R=6, S=17] G50 [R=6, S=17] G51 [R=7, S=18] G52 [R=5, S=16]

G53 [R=4, S=15] G54 [R=5, S=16] G55 [R=6, S=17] G56 [R=7, S=18]

G57 [R=6, S=17] G58 [R=5, S=16] G59 [R=8, S=19] G60 [R=7, S=18]

Figure 4.5.5 (3 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.
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4.5 Global phase portraits

G61 [R=6, S=17] G62 [R=6, S=17] G63 [R=5, S=16] G64 [R=5, S=14]

G65 [R=6, S=15] G66 [R=5, S=14] G67 [R=4, S=13] G68 [R=7, S=18]

G69 [R=4, S=15] G70 [R=6, S=17] G71 [R=6, S=17] G72 [R=5, S=16]

G73 [R=5, S=16] G74 [R=7, S=18] G75 [R=6, S=17] G76 [R=6, S=17]

G77 [R=6, S=17] G78 [R=8, S=19] G79 [R=5, S=16] G80 [R=7, S=18]

Figure 4.5.5 (4 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.
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Second Kolmogorov family (I)

G81 [R=7, S=18] G82 [R=6, S=17] G83 [R=7, S=18] G84 [R=6, S=17]

G85 [R=5, S=16] G86 [R=4, S=13] G87 [R=6, S=15] G88 [R=5, S=14]

G89 [R=5, S=14] G90 [R=6, S=15] G91 [R=6, S=15] G92 [R=4, S=13]

G93 [R=6, S=15] G94 [R=4, S=13] G95 [R=4, S=13] G96 [R=6, S=15]

G97 [R=6, S=15] G98 [R=6, S=15] G99 [R=6, S=15] G100 [R=5, S=14]

Figure 4.5.5 (5 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.
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4.6 Topological equivalences

G101 [R=6, S=15] G102 [R=6, S=15] G103 [R=4, S=13] G104 [R=6, S=15]

G105 [R=4, S=13] G106 [R=6, S=15]

Figure 4.5.5 (6 out of 6): Global phase portraits of systems (4.0.1) in the Poincaré disk.

4.6 Topological equivalences
In the previous sections we have obtained the 106 global phase portraits given in Figure 4.5.5.
There are 13 different classes according to the number of canonical regions and separatrices,
and within each class we distinguish which ones are topologically equivalent in the following
result.

Proposition 4.6.1. For Kolmogorov systems (4.0.1) there are 13 classes according to the
number of canonical regions and separatrices. Taking into account the topological equiva-
lences, we get:

(i) Seven distinct phase portraits with 7 canonical regions and 20 separatrices.

(ii) Six distinct phase portraits with 6 canonical regions and 19 separatrices.

(iii) Two distinct phase portraits with 8 canonical regions and 21 separatrices.

(iv) One phase portrait with 7 canonical regions and 21 separatrices.

(v) One phase portrait with 5 canonical regions and 18 separatrices.

(vi) Six distinct phase portraits with 7 canonical regions and 18 separatrices.

(vii) Eleven distinct phase portraits with 6 canonical regions and 17 separatrices.

(viii) Three distinct phase portraits with 5 canonical regions and 16 separatrices.

(ix) One phase portrait with 4 canonical regions and 15 separatrices.

(x) One phase portrait with 8 canonical regions and 19 separatrices.
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Second Kolmogorov family (I)

(xi) Three distinct phase portraits with 5 canonical regions and 14 separatrices.

(xii) Six distinct phase portraits with 6 canonical regions and 15 separatrices.

(xiii) Four distinct phase portraits with 4 canonical regions and 13 separatrices.

Proof. We do the proof for every one of the thirteen statements of the proposition.

(i) For systems (4.0.1) we have obtained 12 phase portraits with 7 canonical regions and
20 separatrices, namely, G1, G3, G4, G5, G7, G8, G14, G17, G19, G22, G31 and G33
of Figure 4.5.5. At first we divide the phase portraits in two subclasses attending to the
index of the finite singular points.

In G1, G3, G4, G5, G7, G8, G14 and G17 the sum of the indices of the finite singular
points is -1, and in the other phase portraits it is 1. Now we analyze the first subclass.
G1 and G3 are topologically different because the boundary of the elliptic sectors in
each of them is topologically different, by the same reason G1 is topologically different
from G4 and G3 topologically different from G4. G1 is topologically equivalent to G5
by doing a symmetry with respect to the line y � z = 0 and a change of the time
variable t by �t, and analogously G3 is topologically equivalent to G7 and G4 to G8.
The phase portrait G14 is topologically different from G1 and G3 because in these
two there are an elliptic sector with two finite singular points in the boundary which
does not exist in G14. Also G14 is topologically different from G4 because the fourth
quadrant of G14 is topologically different from all the quadrants of G4. This phase
portrait G14 is topologically equivalent to G17 by a symmetry with respect to the line
y + z = 0.

In the second subclass the phase portrait of G19 is topologically equivalent to G31 by
a symmetry with respect to the line y � z = 0. The phase portrait of G19 is different
from G22 and from G33, because the boundary of the elliptic sectors is different. G22
is topologically different from G33 because in the first one the saddle has two sepa-
ratrices which connect to finite singular points and two separatrices which connect to
infinite singular points, but in G33 there is only one separatrix which connects to a
finite singular point.

Thus we have only seven topologically distinct phase portraits between the 12 phase
portraits with 7 canonical regions and 20 separatrices, which can be represented by G1,
G3, G4, G14, G19, G22 and G33.

(ii) For systems (4.0.1) we have obtained 15 phase portraits with 6 canonical regions and
19 separatrices, namely, G2, G6, G9, G10, G11, G12, G20, G23, G25, G26, G27, G29,
G30, G32 and G34 of Figure 4.5.5.

We can consider a first subclass with the phase portraits in which there are two elliptic
sectors, i.e., G2 and G6, which are topologically equivalent by a symmetry with respect
to the line y � z = 0 and by changing the time variable t by �t.

Consider now a second subclass with the phase portraits with only one elliptic sector
which has in the boundary two singular points; this occurs in G9, G12, G26, G30 and
G34. Here G9 is topologically equivalent to G12 by a symmetry with respect to the line
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y�z = 0 and a change of t by �t. G26 is the same as G12 if we move the saddle point
to the origin, and G30 is the same as G26 with a symmetry along the line y � z = 0.
At last, G30 and G34 are topologically different because the two singular points in the
boundary of the elliptic sector in G30 are infinite and in G34 one is infinite and the
other is finite.
In the remaining phase portraits there is only one elliptic sector and it has three singular
points in the boundary. In the phase portraits G10, G11, G25 and G27 the saddle point
has two separatrices which connect with infinite singular points. G10 is topologically
equivalent to G11 by a symmetry along the line y+z = 0 and a change of t by �t. G10
is also topologically equivalent to G25 after moving the saddle of G25 to the origin,
doing a rotation of -90�, a symmetry with respect to the z-axis and a change of t by
�t. G25 is topologically equivalent to G27 with a symmetry along the line y � z = 0.
In the phase portraits G20, G23, G29 and G32 the saddle point has three separatrices
which connect with infinite singular points. Here G20 is topologically different from
G23 because in both the position of the finite singular points is the same but the elliptic
sector has a different position, so we can not get a transformation between them. By a
symmetry with respect to the line y � z = 0. G23 is topologically equivalent to G29
and G20 topologically equivalent to G32.
Thus, we have six topologically different phase portraits between the 15 phase portraits
with 6 canonical regions and 19 separatrices, which can be represented by G2, G9,
G34, G10, G10 and G23.

(iii) We have obtained for systems (4.0.1) four phase portraits with 8 canonical regions and
21 separatrices, namely, G13, G15, G16 and G18 of Figure 4.5.5. By a symmetry
with respect to the line y + z = 0, G13 is topologically equivalent to G16, and G15
topologically equivalent to G18. G13 is topologically different from G15 because the
boundary of the elliptic sectors is different.

(iv) For systems (4.0.1) we have obtained only one phase portrait with 7 canonical regions
and 21 separatrices, G21 of Figure 4.5.5.

(v) We have obtained for systems (4.0.1) two phase portraits with 5 canonical regions and
18 separatrices, G24 and G28 of Figure 4.5.5. These phase portraits are topologically
equivalent by doing a symmetry with respect to the line y � z = 0.

(vi) We have obtained for systems (4.0.1) 14 phase portraits with 7 canonical regions and
18 separatrices, namely, G35, G37, G38, G43, G44, G46, G51, G56, G60, G68, G74,
G80, G82 and G83 of Figure 4.5.5. We divide them into three subclasses attending to
the number of elliptic sectors that they have.
First, in G56, G60, G74, G80, G82 and G83 there is only one elliptic sector. G56 is
topologically different from G60 because in the second one there is a finite singular
point in the boundary of the elliptic sector, but in the first one there is not. We can
transform G56 into G74 with a rotation of -90� and a change of t by �t; G60 into G80
with a symmetry with respect to the line y � z = 0; G80 into G83 with a symmetry
with respect to the y-axis; and G82 into G56 by moving the saddle point to the origin
and doing a symmetry with respect to the line y � z = 0.
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We consider now the subclass with two elliptic sectors, in which we have G35, G37,
G38, G43, G44 and G46. Here G35 is topologically different from G37 and G38
because the boundary of the elliptic sectors is different. Also G37 is topologically
different from G38, as in the last one there is a separatrix which connects two infinite
singular points, and it does not exist in G37. We have that G35 and G44, G37 and G46,
G38 and G43 these are topologically equivalent with a symmetry with respect to the
line y + z = 0.

Finally, in G51 and G68 there are three elliptic sectors, and both are topologically
equivalent by a symmetry with respect to the line y � z = 0 and changing t by �t.

Thus we have 6 topologically different phase portraits which can be represented by
G56, G60, G35, G37, G38 and G51.

(vii) For systems (4.0.1) we have obtained 21 phase portraits with 6 canonical regions and
17 separatrices, namely, G36, G39, G40, G41, G42, G45, G47, G48, G49, G50, G55,
G57, G61, G62, G70, G71, G75, G76, G77, G81 and G84 of Figure 4.5.5. We divide
them into four subclasses.

First, in G62 and G84 there are no elliptic sectors, and both phase portraits are sym-
metric with respect to the line y � z = 0.

Second, in G36 and G45 there are two elliptic sectors, and both are symmetric with
respect to the line y + z = 0.

We consider now the phase portraits with one elliptic sector having the sum of the
indices of the finite singular points equal to 1: G39, G40, G41, G42, G47, G48, G49
and G50. Due to the differences between the boundary of the elliptic sectors we get
that G39 and G40, G39 and G41, G40 and G42, G41 and G42 are not topologically
equivalent. Also G40 is not topologically equivalent to G41 because in G40 there are
four separatrices which connect the origin with infinite singular points, but in G41 there
are only three. Similarly, G39 is not topologically equivalent G42 because in G42 there
are four separatrices which connect the finite saddle-node with infinite singular points,
but in G39 there are only three. By doing a symmetry with respect to the line y�z = 0
we get that G41 and G47, G42 and G48, G39 and G49, G40 and G50 are topologically
equivalent.

Finally, we consider the phase portraits with one elliptic sector having the sum of the
indices of the finite singular points equal to 0: G55, G57, G61, G70, G71, G75, G76,
G77, G81. Again due to the differences between the boundary of the elliptic sectors
we get that G55 and G57, G61 and G55, G61 and G57, G57 and G75, G61 and G75
are not topologically equivalent. G55 is topologically different from G75 because in
G55 there are two separatrices which connect infinite points but in G75 there are only
one. G76 is topologically different from G57 and from G61 because in G76 there are
two separatrices which connect infinite points, in G57 one and in G61 none. We can
transform G55 into G70 and G57 into G71 with a symmetry with respect to the line
y� z = 0 and a change of t for �t. If we rotate -90� the phase portrait G77 we obtain
G61, and at last if we move the stable node of G75 to the origin, we do a symmetry
with respect to the z-axis and we change t by �t we obtain G81.
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Thus we have 11 topologically different phase portraits between the 21 phase portraits
with 6 canonical regions and 17 separatrices, that can be represented by G36, G39,
G40, G41, G42, G55, G57, G61, G62, G75, G76.

(viii) For systems (4.0.1) we have obtained eight phase portraits with 5 canonical regions
and 16 separatrices.

In G52, G58, G72 and G79 there are two elliptic sectors, and these phase portraits are
all topologically equivalent. If we move the node in G52 to the origin, we get G58; if
we rotate 90� the phase portrait G52 we obtain G72, and with a symmetry with respect
to the line y � z = 0 we transform G58 into G79.

In G54, G63, G73 and G85 there are only one elliptic sector. G54 and G63 are topolog-
ically different because the boundary of the elliptic sector is different. G54 becomes
G73 with a rotation of 90� and G63 becomes G85 with a symmetry with respect to the
line y � z = 0.

Thus we have three distinct phase portraits which can be represented by G52, G54 and
G63.

(ix) For systems (4.0.1) we have obtained two phase portraits with 4 canonical regions and
15 separatrices, G53 and G69 of Figure 4.5.5. These phase portraits are topologically
equivalent by doing a symmetry with respect to the line y � z = 0 and changing the
time variable t by �t.

(x) For systems (4.0.1) we have obtained two phase portraits with 8 canonical regions and
19 separatrices, G59 and G78 of Figure 4.5.5. Both are topologically equivalent as we
can obtain G78 if we do a rotation of 90� in G59.

(xi) For systems (4.0.1) we have obtained five phase portraits with 5 canonical regions and
14 separatrices, namely, G64, G66, G88, G89 and G100 of Figure 4.5.5. G66 has two
elliptic sectors so it is topologically different from G64 and G100 which have only one.
G64 is topologically different from G100 because the only finite singular point is the
origin, which is a saddle-node in the first one and a saddle in the second one. With a
symmetry with respect to the line y � z = 0, we transform G4 into G88, and G66 into
G89. Thus we have three distinct phase portraits represented by G64, G66 and G100.

(xii) For systems (4.0.1) we have obtained 13 phase portraits with 6 canonical regions and
15 separatrices, namely, G65, G87, G90, G91, G93, G96, G97, G98, G99, G101,
G102, G104 and G106 of Figure 4.5.5. We consider three subclasses depending on the
number of the elliptic sectors.

In G65 G87, G90 and G91 there is only one elliptic sector. G65 is topologically equiv-
alent to G87 with a rotation of 90�. G65 is topologically different from G90 because
the boundary of the elliptic sectors is different, and by the same reason G95 is topo-
logically different from G91, and G90 from G91.

In G93, G96, G97, G98 and G99 there are two elliptic sectors. G93 is topologically
different from G96 because the boundary of the elliptic sectors is different. G93 is
topologically equivalent to G98 with a symmetry with respect to the line y + z = 0
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and a change of t by �t; the same occurs with G96 and G99. Also G97 and G98 are
symmetric with respect to the z-axis.

In G101, G102, G104 and G106 there are no elliptic sectors, and all these phase por-
traits are topologically equivalent. G101 is topologically equivalent to G102 moving
the separatrix in the third quadrant to the negative z-axis. G102 is symmetric to G104
with respect to the line y � z = 0, and G104 is symmetric to G106 with respect to the
z-axis.

In summary we have six topologically different phase portraits represented by G65,
G90, G91, G93, G96 and G101.

(xiii) We have obtained for systems (4.0.1) seven phase portraits with 4 canonical regions
and 13 separatrices, namely, G67, G86, G92, G94, G95, G103 and G105 of Figure
4.5.5. If we rotate 90� the phase portrait G67 we obtain G86. G67 is topologically
different from G92 because they have a different number of elliptic sectors. G92 is
topologically equivalent to G94 with a symmetry with respect to the line y+z = 0 and
a change of the time variable t by �t; and G94 topologically equivalent to G95 with a
symmetry with respect to the z-axis. In G92 the only finite singular point is the origin,
which is a saddle, and it is a node in G103, so both phase portraits are distinct. With the
same argument G67 is topologically different from G103, G92 from G105, and G67
from G103. Finally, G103 and G105 are topologically different because the first one
has elliptic sectors but not the second one has none. Then we have four topologically
different phase portraits represented by G67, G92, G103 and G105.

The classification given in Table 4.5.1, proved in Subsections 4.5.1, 4.5.2 and 4.5.3, to-
gether with Proposition 4.6.1, prove our main result, i. e., Theorem 4.0.1.

Figure 4.0.1 includes the representatives of each one of the topological equivalence classes,
which correspond to the phase portraits in Figure 4.5.5 as indicated in Table 4.6.1
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Representative Phase portraits

R1 G1, G5
R2 G2, G6
R3 G3, G7
R4 G4, G8
R5 G9, G12, G26, G30
R6 G10, G11, G25, G27
R7 G13, G16
R8 G14, G17
R9 G15, G18

R10 G19, G31
R11 G20, G32
R12 G21
R13 G22
R14 G23, G29
R15 G24, G28
R16 G33
R17 G34
R18 G35, G44
R19 G36, G45
R20 G37, G46
R21 G38, G43
R22 G39, G49
R23 G40, G50
R24 G41, G47
R25 G42, G48
R26 G51, G68

Representative Phase portraits

R27 G52, G58, G72, G79
R28 G53, G69
R29 G54, G73
R30 G55, G70
R31 G56, G74, G82
R32 G57, G71
R33 G59, G78
R34 G60, G80, G83
R35 G61, G77
R36 G62, G84
R37 G63, G85
R38 G64, G88
R39 G65, G87
R40 G66, G89
R41 G67, G86
R42 G75, G81
R43 G76
R44 G90
R45 G91
R46 G92, G94, G95
R47 G93, G97, G98
R48 G96, G99
R49 G100
R50 G101, G102, G104, G106
R51 G103
R52 G105

Table 4.6.1: Representatives of each equivalence class and their corresponding global phase
portraits of systems (4.0.1).

153





Chapter 5
Classification of the second

Kolmogorov family with
non-isolated singularities

The current chapter includes the contents of the research article [46]1, in which we study
systems (4.0.1) in the particular case with µ = �1. In this case all the singular points at
infinity are singular points. We recall that from Sections 4.1 and 4.2 we can study systems
(4.0.1) under conditions

H2
1 =

�
b1 6= 0, b0µ+ c0 6= 0, b0 � 0, b2 � 0, b3 � 0, (µb3)

2 + c20 6= 0, b22 + b20 6= 0
 
,

as in any other case they can be reduced to satisfy such conditions either using symmetries, or
eliminating known phase portraits, as in the cases in which there exist infinitely many finite
singularities. Then taking µ = �1 on systems (4.0.1) we will study the systems

ẏ = y (b0 + b1yz + b2y + b3z) ,

ż = z (c0 + b1yz + b2y + b3z) ,
(5.0.1)

under conditions

H̃2 =
�
b1 6= 0, c0 � b0 6= 0, b0 � 0, b2 � 0, b3 � 0, b23 + c20 6= 0, b22 + b20 6= 0

 
.

Moreover if b2b3 = 0 then it is enough to study the case with b1 > 0, and if b0 = 0 it is
enough to consider c0 > 0.

We give the topological classification of all global phase portraits of systems (5.0.1) on
the Poincaré disk, and our main result is the following.

Theorem 5.0.1. Kolmogorov systems (5.0.1) under conditions H̃2 have 13 topologically dis-
tinct phase portraits in the Poincaré disk, given in Figure 5.0.1.

1Érika Diz-Pita (Departamento de Estatística, Aánlise Matemática e Optimización, Universidade de Santiago
de Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona) and María
Victoria Otero-Espinar (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago
de Compostela), Planar Kolmogorov systems with infinitely many singular points at infinity, International Journal of
Bifurcation and Chaos, (ISSN:0218-1274, EISSN:1793-6551), 32(5) (2022), 106038. Published by World Scientific.
The final authenticated version is available online at: https://doi.org/10.1016/j.cnsns.2021.106038
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Second Kolmogorov family (II)

In this chapter we give the proof of Theorem 5.0.1 organized as follows: In Section
5.1 we give the classification of the local phase portraits of the finite singular points based
on the results of Chapter 4, in Section 5.2 we study the local phase portraits at the infinite
singular points, and finally in Section 5.3 we prove Theorem 5.0.1 by studying the global
phase portraits in the Poincaré disk.

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13

Figure 5.0.1: The topologically distinct phase portraits of systems (5.0.1) in the Poincaré
disk.
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5.1 Local study of finite singular points
Assuming the condition µ = �1, from Section 4.2 in Chapter 4 we know that the singular
points of systems (5.0.1) are

P0 = (0, 0), P1 =

✓
0,�c0

b3

◆
if b3 6= 0 and P2 =

✓
�b0
b2
, 0

◆
if b2 6= 0,

and from Table 4.2.1 we distinguish four cases depending on the existence of the singular
points. These cases are given in Table 5.1.1.

Case Conditions Finite singular points

1 b3 6= 0, b2 6= 0 P0, P1, P2

2 b3 6= 0, b2 = 0, b0 6= 0 P0, P1

3 b3 = 0, c0 6= 0, b2 6= 0 P0, P2

4 b3 = 0, c0 6= 0, b2 = 0, b0 6= 0 P0

Table 5.1.1: The different cases for the finite singular points.

Also from the results in Chapter 4 , taking µ = �1 in Lemma 4.2.2 and Tables 4.2.2 to
4.2.5, we get the following local classification in 15 subcases for the finite singular points.

Case 1: b3 6= 0, b2 6= 0

Sub. Conditions Classification
1.1 b0 > 0, c0 < 0 P0 saddle, P1 unstable node, P2 stable node
1.2 b0 > 0, c0 > 0, c0 � b0 < 0 P0 unstable node, P1 saddle, P2 stable node
1.3 b0 > 0, c0 > 0, c0 � b0 > 0 P0 unstable node, P1 stable node, P2 saddle
1.4 c0 = 0, b0 > 0 P0 ⌘ P1 saddle-node, P2 stable node
1.5 b0 = 0, c0 > 0 P0 ⌘ P2 saddle-node, P1 stable node

Table 5.1.2: Classification in case 1 of Table 5.1.1 according to the local phase portraits of
finite singular points.

Case 2: b3 6= 0, b2 = 0, b0 6= 0

Sub. Conditions Classification
2.1 b0 > 0, c0 < 0, c0 � b0 < 0 P0 saddle, P1 unstable node
2.2 b0 > 0, c0 > 0, c0 � b0 < 0 P0 unstable node, P1 saddle
2.3 b0 > 0, c0 > 0, c0 � b0 > 0 P0 unstable node, P1 stable node
2.4 c0 = 0, b0 > 0 P0 ⌘ P1 saddle-node

Table 5.1.3: Classification in case 2 of Table 5.1.1 according to the local phase portraits of
finite singular points.
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Case 3: b3 = 0, c0 6= 0, b2 6= 0

Sub. Conditions Classification
3.1 b0 > 0, c0 < 0, c0 � b0 < 0 P0 saddle, P2 stable node
3.2 b0 > 0, c0 > 0, c0 � b0 > 0 P0 unstable node, P2 saddle
3.3 b0 > 0, c0 > 0, c0 � b0 < 0 P0 unstable node, P2 stable node
3.4 b0 = 0, c0 > 0 P0 ⌘ P2 saddle-node

Table 5.1.4: Classification in case 3 of Table 5.1.1 according to the local phase portraits of
finite singular points.

Case 4: b3 = 0, c0 6= 0, b2 = 0, b0 6= 0

Sub. Conditions Classification
4.1 b0 > 0, c0 < 0 P0 saddle
4.2 b0 > 0, c0 > 0 P0 unstable node

Table 5.1.5: Classification in case 4 of Table 5.1.1 according to the local phase portraits of
finite singular points.

5.2 Local study of infinite singular points
Here we study the local phase portrait at the infinite singular points, and as it was said previ-
ously, we work under the hypothesis H̃2. The expression of the Poincaré compactification of
systems (5.0.1) in the local chart U1, according to equations (1.3.9), is

u̇ = (c0 � b0)uv
2,

v̇ = �b3uv
2 � b0v

3 � b1uv � b2v
2.

(5.2.2)

In chart U2, according to equations (1.3.10), the expression is

u̇ = (b0 � c0)uv
2,

v̇ = �b2uv
2 � c0v

3 � b1uv + b3v
2.

(5.2.3)

We want to study all the points at the infinity, which correspond with the line v = 0 of these
systems. To do that it is enough to study the singular points over v = 0 in chart U1 and the
origin of chart U2.

We easily check in systems (5.2.2) that all points over the line v = 0 are singular points.
The eigenvalues of the Jacobian matrix at these singular points are both zero at the origin and
at any other point (u0, 0) the eigenvalues are zero and �b1u0. If b1 > 0 (respectively, b1 < 0),
the nonzero eigenvalue is positive (respectively, negative) at the points on the negative u-axis,
which correspond with the infinite singular points at the second and fourth quadrants of the
Poincaré disk; the nonzero eigenvalue is negative for the infinite points at the first and third
quadrants on the Poincaré disk (respectively, positive). Then, by Theorem 1.5.1, we get the
following result:
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Lemma 5.2.1. For all the infinite singular point of systems (5.0.1) distinct from the origin of
charts U1 and U2 the following statements hold.

• If b1 > 0, to the points on the first and third quadrants arrives exactly one orbit from
outside the infinity, and from the points on the second and fourth quadrants leaves
exactly one orbit outside the infinity.

• If b1 < 0, from the points on the first and third quadrants leaves exactly one orbit
outside the infinity, and to the points on the second and fourth quadrants arrives exactly
one orbit from outside the infinity.

To study the origin of systems (5.2.2) we eliminate a common factor v from these systems
and then study the singular points over the line v = 0. We do that on Subsection 5.2.1 and
there we prove Theorem 5.2.2. The same occurs with the origin of chart U2, as the origin of
systems (5.2.3) is a singular point and the eigenvalues of the Jacobian matrix at that point are
both zero. We study this point in Subsection 5.2.2 proving Theorem 5.2.4. Note that Theorem
5.2.2 and Theorem 5.2.4 determine the local phase portrait at the origin of charts U1 and U2

in the Poincaré disk, but also at the origins of charts V1 and V2.

Theorem 5.2.2. The origin of chart U1 is an infinite singular point of systems (5.0.1) and
it has 3 topologically distinct local phase portraits, which taking into account the position
of the sectors and orientation of the orbits, give raise to the 8 phase portraits described in
Figure 5.2.1.
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Figure 5.2.1: Local phase portraits at the infinite singular point O1.

Remark 5.2.3. Note that phase portraits L1
1 to L1

4 correspond to the first equivalence class,
L1
5 and L1

6 to the second class, and L1
7 and L1

8 to the third class.
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Theorem 5.2.4. The origin of chart U2 is an infinite singular point of systems (5.0.1) and
it has 3 topologically distinct local phase portraits, which taking into account the position
of the sectors and orientation of the orbits, give raise to the 10 phase portraits described in
Figure 5.2.2.
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Figure 5.2.2: Local phase portraits at the infinite singular point O2.

Remark 5.2.5. Note that phase portraits L1
1 to L1

4 correspond to the first equivalence class,
L1
5 to L1

8 to the second class, and L1
9 and L1

10 to the third class.

5.2.1 Study of the origin of chart U1

To study the origin of chart U1, first we eliminate a common factor v from systems (5.2.2)
obtaining:

u̇ = (c0 � b0)uv,

v̇ = �b3uv � b0v
2 � b1u� b2v.

(5.2.4)

The only singular point of these systems over v = 0 is the origin, and the eigenvalues of
the Jacobian matrix at that point are zero and �b2. Then, this singular point can be semi-
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hyperbolic or nilpotent.

Semi-hyperbolic case. If b2 6= 0, then the origin of systems (5.2.4) is semi-hyperbolic,
so its phase portrait can be determined by Theorem 1.2.3, concluding that it is always a
saddle-node. In order to determine its local phase portrait it will be necessary to know the
position of the different sectors and the orientation of the orbits in the saddle-node, so we
must determine them depending on the parameters.

If b1 > 0, c0 � b0 > 0 and b0 = 0, then by the information given by the theorem and
the sense of the flow in the different regions, the position of the sectors of the saddle-node
and the orientation of the orbits for systems (5.2.4) is the one given in Figure 5.2.3(a). To
obtain the local phase portrait at the origin of chart U1 we must multiply by v, so that all the
points over the v-axis become singular points and the orbits on the third and fourth quadrants
reverse their orientation. Thus we obtain the phase portrait of Figure 5.2.3(b), which is also
L1
1 of Figure 5.2.1.
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Figure 5.2.3: Local phase portraits of the origins of systems (5.2.4) and (5.2.2) with b1 > 0
c0 � b0 > 0 and b0 = 0.

If b1 > 0, c0 � b0 > 0 and b0 > 0, the fact that the parameter b0 is nonzero makes that
systems (5.2.4) have a singular point on the negative v-axis, so that affects the phase portrait
but not in a neighborhood of the origin. Then we obtain the same phase portrait for O1 as in
the previous case, L1

1.
Similarly we determine the position of the sectors and the orientation of the orbits in the

remaining cases. If b1 > 0, c0� b0 < 0 and b0 > 0, we obtain the phase portrait L1
2 of Figure

5.2.1. If b1 < 0, c0 � b0 > 0 and b0 � 0, we obtain the phase portrait L1
3, and if b1 < 0,

c0 � b0 < 0 and b0 > 0, the phase portrait is L1
4.

Nilpotent case. If b2 = 0 then the origin of systems (5.2.4) is nilpotent so its phase
portrait can be determined by Theorem 1.2.5, which concludes that in this case the singular
point is either a saddle or it has a local phase portrait consisting of a hyperbolic sector and an
elliptic sector, depending on the parameters. It is also necessary to determine the position of
the sectors and the orientation of the orbits, and in order to do that we must take into account
the information given by the theorem and also analyze the sense of the flow in the different
regions depending on the parameters. Once we have determined the local phase portrait for
systems (5.2.4), we must multiply by v, so all the points over the line v = 0 become singular
points, and the orientation of the orbits on the third and fourth quadrants is reversed. Thus
we obtain for O1 the 8 phase portraits in Figure 5.2.2 under the following conditions:

If b2 = 0, b0 > 0, b1 > 0, c0 � b0 6= 2b0b1 and c0 � b0 > 0, the phase portrait at O1 is

161



Second Kolmogorov family (II)

L1
5. We obtain the same phase portrait if b2 = 0, b0 > 0, b1 > 0 and c0 � b0 = 2b0b1.

If b2 = 0, b0 > 0, b1 > 0, c0 � b0 6= 2b0b1 and c0 � b0 < 0, the phase portrait is L1
7.

If b2 = 0, b0 > 0, b1 < 0, c0 � b0 6= 2b0b1 and c0 � b0 > 0, the phase portrait is L1
6. The

same result is obtained for b2 = 0, b0 > 0, b1 < 0 and b0 � c0 = 2b0b1.
If b2 = 0, b0 > 0, b1 < 0, c0 � b0 6= 2b0b1 and c0 � b0 < 0, the phase portrait is L1

8.

5.2.2 Study of the origin of chart U2

As in the previous section, to determine the phase portrait at the singular point O2, we elimi-
nate a common factor v from systems (5.2.3). Then we study the singular points over the line
v = 0 of systems

u̇ = (b0 � c0)uv,

v̇ = �b2uv � c0v
2 � b1u+ b3v.

The only singular point over that line is the origin, and it presents a similar behavior than in
the previous case: it is semi-hyperbolic if b3 6= 0 and it is nilpotent if b3 = 0. In the semi-
hyperbolic case the singular point is always a saddle-node, and attending to the information
given by Theorem 1.2.3 and to the sense of the flow, we get four possibilities for the position
and orientation of the sectors in the saddle-node, which are associated with their correspond-
ing conditions in Table 5.2.1. In the nilpotent case the singular point can be a saddle or have
a hyperbolic and an elliptic sector. In the first case we found two possibilities for the position
of the saddle, and in the second case we found four different cases attending to the position
and orientation of the two sectors. The results are given in Table 5.2.1.

Conditions Phase portrait O2

b3 6= 0, b1 > 0, b0 � c0 > 0 L
2
1

b3 6= 0, b1 > 0, b0 � c0 < 0, c0 > 0 L
2
2

b3 6= 0, b1 < 0, b0 � c0 > 0 L
2
3

b3 6= 0, b1 < 0, b0 � c0 < 0, c0 > 0 L
2
4

b3 6= 0, c0 6= 0, b1 > 0, b0 � c0 6= 2b1c0, b0 � c0 < 0, c0 > 0 L
2
5

b3 6= 0, c0 6= 0, b1 > 0, b0 � c0 6= 2b1c0, b0 � c0 > 0, c0 < 0 L
2
6

b3 6= 0, c0 6= 0, b1 > 0, b0 � c0 6= 2b1c0, b0 � c0 > 0, c0 > 0
L

2
9

b3 6= 0, c0 6= 0, b1 > 0, b0 � c0 = 2b1c0, c0 > 0

b3 6= 0, c0 6= 0, b1 < 0, b0 � c0 6= 2b1c0, b0 � c0 < 0, c0 > 0
L

2
10

b3 6= 0, c0 6= 0, b1 < 0, b0 � c0 = 2b1c0, c0 > 0

b3 6= 0, c0 6= 0, b1 < 0, b0 � c0 6= 2b1c0, b0 � c0 > 0, c0 > 0 L
2
7

b3 6= 0, c0 6= 0, b1 < 0, b0 � c0 6= 2b1c0, b0 � c0 < 0, c0 < 0 L
2
8

Table 5.2.1: Conditions for each local phase portrait of O2.

5.3 Global phase portraits
In this section we prove Theorem 5.0.1 by obtaining all the possible global phase portraits
from the local information analyzed in Sections 5.1 and 5.2. In each case of Tables 5.1.2 to
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5.1.5 we must consider two subcases by setting the sign of b1, and once this sign is fixed the
local phase portrait at the infinite singular points is determined by Lemma 5.2.1 and Theorems
5.2.2 and 5.2.4. There is an exception to this, which is case 4.2 in Table 5.1.5, as in this case
we must consider four subcases fixing also the sign of c0 � b0. Thus we have 32 cases.

According to Theorem 1.4.2, we have to draw the separatrix configuration in each case.
We recall that the separatrices are the finite and infinite singular points, the limit cycles and
the separatrices of the hyperbolic sectors. Systems (5.0.1) do not have any limit cycles as if
they had a limit cycle, it must surround a finite singular point, but all the finite singular points
are over invariant lines, particularly over the axes, so there are no limit cycles. Then we have
to draw the local phase portraits of the singular points and the separatrices of the hyperbolic
sectors for which we have to determine their ↵ and !-limits. In 30 of the 32 cases the place
where the separatrices are born and die is determined in a unique way, so we obtain the
corresponding global phase portrait by drawing them and one orbit in each canonical region
which does not have an infinite number of singular points in the boundary, and three orbits
(representing the infinite number of them existing) in each canonical region with an infinite
number of singular points in the boundary.

The two remaining cases are 1.2 and 1.3 in Table 5.1.2, with b1 > 0. In these cases the ↵
and !-limits are not determined in a unique way, and we can connect the separatrices in three
different ways.

In case 1.2, if we fix b1 > 0, we obtain the phase portraits G3, G4 and G5 of Figure
5.3.2, depending on how we connect the separatrices on the third quadrant. We know from
the local information that there is a separatrix whose !-limit is the origin of chart V1 and a
separatrix whose ↵-limit the saddle P1 in the negative z-axis. Studying their possible ↵ and
!-limits, respectively, we obtain the configurations given in Figure 5.3.1. Note that in the
second case, the two separatrices are connected and so there is actually only one separatrix
on the quadrant.

If b2 = b1c0/b3, then the connection of the separatrices takes place on the invariant
straight line y = �c0/b3, and we have the global phase portrait G4, as the configuration in the
third quadrant is the one in Figure 5.3.1(b). The two remaining phase portraits can be obtained
by perturbing just one parameter. For example, setting the values b0 = 2, b1 = b2 = b3 = 1,
we obtain the phase portrait G3 for c0 = 1/2, G4 for c0 = 1 and G5 for c0 = 3/2.

(a) (b) (b)

Figure 5.3.1: Possible configurations on the third quadrant on case 1.2 with b1 > 0.

Similarly, if we fix b1 > 0 in case 1.3, we obtain three phase portraits, G7, G8 and G9
in Figure 5.3.2. The connection of the separatrices in G8 takes place on the invariant line
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y = �b0/b2 when b3 = b1b0/b2. Fixed the values c0 = 2, b1 = b2 = b3 = 1, we get the
phase portrait G7 for b0 = 1/2, G8 for b0 = 1 and G9 for b0 = 3/2.

We include all the global phase portraits obtained in Figure 5.3.2 and in Table 5.3.1 we
indicate which of them are obtained in each case.

Case Subcase O1 O2 Global

1.1
b1 > 0 L

1
2 L

2
1 G1

b1 < 0 L
1
4 L

2
3 G2

1.2
b1 > 0 L

1
2 L

2
1 G3, G4 or G5

b1 < 0 L
1
4 L

2
3 G6

1.3
b1 > 0 L

1
1 L

2
2 G7, G8 or G9

b1 < 0 L
1
3 L

2
4 G10

1.4
b1 > 0 L

1
2 L

2
1 G11

b1 < 0 L
1
4 L

2
3 G12

1.5
b1 > 0 L

1
1 L

2
2 G13

b1 < 0 L
1
3 L

2
4 G14

2.1
b1 > 0 L

1
7 L

2
1 G15

b1 < 0 L
1
8 L

2
3 G16

2.2
b1 > 0 L

1
7 L

2
1 G17

b1 < 0 L
1
8 L

2
3 G18

2.3
b1 > 0 L

1
5 L

2
2 G19

b1 < 0 L
1
6 L

2
4 G20

2.4
b1 > 0 L

1
7 L

2
1 G21

b1 < 0 L
1
8 L

2
3 G22

3.1
b1 > 0 L

1
2 L

2
6 G23

b1 < 0 L
1
4 L

2
8 G24

3.2
b1 > 0 L

1
1 L

2
5 G25

b1 < 0 L
1
3 L

2
7 G26

3.3
b1 > 0 L

1
2 L

2
9 G27

b1 < 0 L
1
4 L

2
10 G28

3.4
b1 > 0 L

1
1 L

2
5 G29

b1 < 0 L
1
3 L

2
7 G30

4.1
b1 > 0 L

1
7 L

2
6 G31

b1 < 0 L
1
8 L

2
8 G32

4.2

b1 > 0, c0 � b0 > 0 L
1
5 L

2
5 G33

b1 > 0, c0 � b0 < 0 L
1
7 L

2
9 G34

b1 < 0, c0 � b0 > 0 L
1
6 L

2
7 G35

b1 < 0, c0 � b0 < 0 L
1
8 L

2
10 G36

Table 5.3.1: Classification of the global phase portraits of systems (5.0.1).
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G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

G13 G14 G15 G16

G17 G18 G19 G20

Figure 5.3.2 (1 out of 2): Global phase portraits of systems (5.0.1) in the Poincaré disk.
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G21 G22 G23 G24

G25 G26 G27 G28

G29 G30 G31 G32

G33 G34 G35 G36

Figure 5.3.2 (2 out of 2): Global phase portraits of systems (5.0.1) in the Poincaré disk.

5.4 Topological equivalences
In the previous sections we have obtained the 36 global phase portraits given in Figure 5.3.2
and now we study which of them are topologically equivalent. As Theorem 1.4.2 only works
in regions with a finite number of singular points, we will consider the equivalences on the
open Poicaré disk, but this does not affect the result as if two separatrix configurations are
topologically equivalent, they will be still equivalent if we add the boundary of the disk,
because the boundary is filled of singular points. If they are not topologically equivalent they
will not be equivalent by adding the boundary of the disk.

We will consider classes of equivalence according to the following invariants: the number
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of finite singular points and the sum of the indices at the finite singular points, denoted by
indF . We give this first classification in Table 5.4.1 and then, within each class, we prove
which of the phase portraits are topologically equivalent.

Class N� finite sing. indF Global phase portraits

1 3 1 G1, G2, G4, G4, G5, G6, G7, G8, G9, G10
2

2
1 G11, G12, G13, G14

3 0 G15, G16, G17, G18, G23, G24, G25, G26
4 2 G19, G20, G27, G28
5

1
0 G21, G22, G29, G30

6 -1 G31, G32
7 1 G33, G34, G35, G36

Table 5.4.1: Classes of equivalence according to the number of finite singular points and to
the indF .

Class 1. First we can distinguish two subclasses depending on the number of separatrices
in the open Poincaré disk. There are 11 separatrices in phase portraits G1, G2, G4 and G8,
and 12 separatrices in phase portraits G3, G5, G6, G7, G9 and G10. In the first subclass,
G1 is topologically equivalent to G2 by doing a symmetry with respect to the line z = �y
and a change of the time variable t by �t. G1 is different from G4 as in G1 there are two
separatrices that start in the unstable node and in G4 there are three. G1 is also different from
G8 as in G1 there are two separatrices of the saddle that connect with the infinity and in G8
there are three. At last, G4 is topologically equivalent to G8 by doing a 90� rotation of G8
and then a symmetry with respect to the z-axis. In the second subclass, G3 is different from
G5 as in G3 the saddle has two separatrices that connect with the infinity and in G5 it has
three. By doing a symmetry with respect to the line y = z we transform G3 intro G7, G5 into
G9, and G6 into G10. G7 is different from G10 as in G7 there are three separatrices that start
in the unstable node and in G10 there are four. G9 is different from G10 as in G10 there is a
separatrix that connects two infinite singular points but in G9 there is not a such separatrix.

Class 2. G11 is different from G12 as in G11 the saddle-node has three separatrices that
connect with infinite singular points and in G12 it has four. G11 is topologically equivalent
to G13 and G12 to G14 by doing a symmetry with respect to the line y = z.

Class 3. G15 is topologically equivalent to G16 and G17 to G18 by doing a symmetry
with respect to the z-axis. G15 is different from G17 as in G15 there are two separatrices that
start at the node and in G17 there are four. G15 is topologically equivalent to G23 by doing a
rotation of 90� in G15 and a change of the time variable t by �t. We can also transform G25
into G18 by a rotation of 90�. Lastly we can transform G23 into G24 and G25 into G26 with
a symmetry with respect to the y-axis.

Class 4. G19 is topologically equivalent to G20 by a symmetry with respect to the z�
axis, G19 to G27 by a symmetry with respect to the line z = y, and G27 to G28 by a
symmetry with respect to y-axis.

Class 5. G21 is topologically equivalent to G22 by a symmetry with respect to the z�
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axis, G21 to G29 by a symmetry with respect to the line z = y, and G29 to G30 by a
symmetry with respect to y-axis.

Class 6. G31 is topologically equivalent to G32 by a symmetry with respect to the z-axis.
Class 7. G33 is topologically equivalent to G34 with a symmetry with respect to the line

z = y, and by a symmetry with respect to the z-axis, G33 is topologically equivalent to G35
and G34 to G36.

In summary, among these seven classes, we have found 13 topologically different phase
portraits in the Poincaré disk for systems (5.0.1), so we have proved Theorem 5.0.1. This
13 phase portraits are described in Figure 5.0.1, where we include a representative of each
one of the topological equivalence classes. These representatives correspond with the phase
portraits in Figure 5.3.2 as indicated in Table 5.4.2.

Rep. Phase portraits
R1 G1, G2
R2 G3, G7
R3 G4, G8
R4 G5, G9
R5 G6, G10

Rep. Phase portraits
R6 G11, G13
R7 G12, G14
R8 G15, G16, G23, G24
R9 G17, G18, G25, G26

Rep. Phase portraits
R10 G19, G20, G27, G28
R11 G21, G22, G29, G30
R12 G31, G32
R13 G33, G34, G35, G36

Table 5.4.2: Representatives of each equivalence class and their corresponding global phase
portraits of systems (5.0.1).

Now we give a second proof that shows that these 13 phase portraits are indeed topologi-
cally distinct.

Theorem 5.4.1. The 13 phase portraits of systems (5.0.1) included in Figure 5.0.1 are topo-
logically distinct.

Proof. We will consider six geometrical invariants in order to distinguish the phase portraits.

(I1) Number of finite singularities. The values of this invariant for the phase portraits R1 to
R13 are, respectively: 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1.

(I2) Sum of the index of the finite singularities. The values of this invariant for the phase
portraits R1 to R13 are: 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 0, -1, 1.

With these two invariants we can already determine that the phase portraits R10, R11,
R12 and R13 are topologically distinct between them and from all the others. We will not
determine other invariants for them.

(I3) Separatrices of the finite singularities connected with finite nodes. For the phase por-
traits R1 to R9 this invariant has the values: 2, 2, 1, 1, 2, 1, 1, 1, 1.

(I4) Number of connections between separatrices of the finite singularities and separatrices
of infinite singularities. The values of this invariant for the phase portraits R1 to R9
are: 2, 1, 2, 1, 1, 2, 2, 3, 1.
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With the four previous invariants we can guarantee that the phase portraits R1, R3, R4,
R8 and R9 are topologically distinct. Among the remaining phase portraits, R2 has the same
invariants as R5 and R6 the same as R7, so we will distinguish between them with the two
following invariants.

(I5) Number of infinite singularities receiving an infinite number of orbits from a finite
singularity. This invariant is 2 for R2 and 1 for R5.

(I6) Number of separatrices that leave the finite saddle-node in its parabolic sector and go
to an infinite singular point. This invariant is 1 for R6 and 2 for R7.

Then we have proved that all the 13 phase portraits are topologically distinct as they have
different values for the mentioned invariants.

169





Chapter 6

Zero-Hopf bifurcation on
Kolmogorov systems

In this chapter, although we continue with the study of the Kolmogorov systems, we do so
from a different point of view, focusing our attention on the existence of limit cycles. More
precisely, we study the limit cycles of the Kolmogorov systems of degree three in R3 which
appear by a zero-Hopf bifurcation of the singular points (a, b, c) which are not on the invariant
planes x = 0, y = 0 and z = 0. The results of this chapter are included in the work published
in [40] 1. We consider the systems

ẋ = xP (x, y, z), ẏ = yQ(x, y, z), ż = zR(x, y, z),

with P , Q and R polynomials of degree two. Doing the scaling (x, y, z) ! (x/a, y/b, z/c)
we can assume without loss of generality that (a, b, c) = (1, 1, 1). Therefore it is sufficient to
study the limit cycles which can bifurcate from the singular point (1, 1, 1) of the systems

ẋ = x
�
a1(x� 1) + a2(y � 1) + a3(z � 1) + a4(x� 1)2 + a5(x� 1)(y � 1)

+ a6(x� 1)(z � 1) + a7(y � 1)2 + a8(y � 1)(z � 1) + a9(z � 1)2
�
,

ẏ = y
�
b1(x� 1) + b2(y � 1) + b3(z � 1) + b4(x� 1)2 + b5(x� 1)(y � 1)

+ b6(x� 1)(z � 1) + b7(y � 1)2 + b8(y � 1)(z � 1) + b9(z � 1)2
�
,

ż = z
�
c1(x� 1) + c2(y � 1) + c3(z � 1) + c4(x� 1)2 + c5(x� 1)(y � 1)

+ c6(x� 1)(z � 1) + c7(y � 1)2 + c8(y � 1)(z � 1) + c9(z � 1)2
�
,

(6.0.1)

when this singular point is a zero-Hopf equilibrium, i.e., when the eigenvalues of the linear
part of the systems at (1, 1, 1) are of the form 0 and ±�i with � > 0. In the next result we
characterize when the singular point (1, 1, 1) is zero-Hopf.

Proposition 6.0.1. The singular point (1, 1, 1) of systems (6.0.1) is zero-Hopf if and only if
one of the following sets of conditions hold, with � = a3b3(b2�a1)�a2b23+a23b1 and � > 0:

1Erika Diz-Pita (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago
de Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona), María Victo-
ria Otero-Espinar (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de
Compostela) and Claudia Valls (Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa),
The zero-Hopf bifurcations in the Kolmogorov systems of degree 3 in R3, Communications in Nonlinear Science and
Numerical Simulation (ISSN: 1007-5704 , EISSN: 1878-7274), 95 (2021), 105621, Published by Elsevier. The final
authenticated version is available online at: https://doi.org/10.1016/j.cnsns.2020.105621.
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(i) � 6= 0, c3 = �a1 � b2, c1 =
1

�

�
a31b3 � a21a3b1 � a1

�
a3b1b2 � b3

�
2a2b1 + �2

��
�

b1(a2(a3b1 � b2b3) + a3
�
�2 + b22

�
)
�

and c2 =
1

�

�
a21a2b3 + a1a2(b2b3 � a3b1) +

a22b1b3 � a3b2
�
�2 + b22

�
+ a2

�
b3
�
�2 + b22

�
� 2a3b1b2

� �
.

(ii) � 6= 0, a3b3 6= 0, a2 =
a3b2
b3

, b1 =
a1b3
a3

, c2 = � (a1 + b2)2 + a3c1 + �2

b3
and

c3 = �a1 � b2.

(iii) � 6= 0, b3 6= 0, a1 = a2 = a3 = 0, c2 = �b22 + �2

b3
and c3 = �b2.

(iv) � 6= 0, a3 6= 0, b1 = b2 = b3 = 0, c1 = �a21 + �2

a3
and c3 = �a1.

(v) � 6= 0, b1 6= 0, a2 = �a21 + �2

b1
, a3 = b3 = c3 = 0 and b2 = �a1.

Proof. We want to characterize when the singular point (1, 1, 1) of systems (6.0.1) is a zero-
Hopf equilibrium. At first, through the change of variables (x, y, z) ! (x+1, y+1, z+1),
we translate the point (1, 1, 1) to the origin of coordinates, obtaining the systems:

ẋ = (1 + x)(a1x+ a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 + a8yz + a9z
2),

ẏ = (1 + y)(b1x+ b2y + b3z + b4x
2 + b5xy + b6xz + b7y

2 + b8yz + b9z
2),

ż = (1 + z)(c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2).

(6.0.2)

In order that the origin of these systems (6.0.2) can exhibit a zero-Hopf bifurcation we must
require that the eigenvalues of the linear part of the systems at the origin be of the form 0 and
±�i with � > 0. We compute the characteristic polynomial and require that it has the form
�(�2 + �2). Solving the resultant equation we get the five solutions given in (i)–(v).

The first of these five cases has been studied in [85]. More precisely, in Theorem 3
of [85] are provided sufficient conditions in order that the Kolmogorov systems (6.0.1) under
conditions (i) exhibit a zero-Hopf bifurcation from which two limit cycles bifurcate. The kind
of stability or instability of these limit cycles is also provided.

In the present chapter of this thesis we want to study the Kolmogorov systems (6.0.1)
under conditions (ii)–(v). To this end we use the averaging theory of first order, introduced
in Section 1.8, to study the limit cycles bifurcating from the zero-Hopf bifurcations of these
systems. We consider conditions (ii) in Section 6.1, while conditions (iii) and (iv) are consid-
ered together in Section 6.2 as their study is analogous. Finally, in Section 6.3, we deal with
conditions (v).

All the necessary computations for proving our results have been made with the algebraic
manipulator Mathematica 12.0.0.0 (for Mac OS X x86) in a computer MacBook Air of 2019.
The computations done with Mathematica were verified for family (ii) also with the software
Maple. Some of the expressions obtained in these computations are particularly long, so
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they are not included in the manuscript, but can be consulted in the downloadable documents
at [41].

6.1 Kolmogorov systems under conditions (ii)
Our main result concerning the Kolmogorov systems (6.0.1) under conditions (ii) is the fol-
lowing. The expressions of Ai, with i = 0, ..., 4, K1 and N are defined in Section 6.4.

Theorem 6.1.1. If a3b3 6= 0, N 6= 0, a2 = a3b2/b3, b1 = a1b3/a3, c3 = �a1 � b2,
c2 = �((a1+b2)2+a3c1+�2)/b3, A1 6= 0, A2 6= 0, A3 6= 0, and A0A4(A1A2�A0A3) >
0, then the Kolmogorov systems (6.0.1) have two limit cycles bifurcating from the zero-Hopf
equilibrium point (1, 1, 1). Moreover the following statements hold.

(a) If K1 > 0, A2A3(A0A3 � A1A2)N < 0 and |2A0A3 �A1A2| <
p
K1, then the two

limit cycles have a stable manifold formed by two cylinders and an unstable manifold
formed by two cylinders.

(b) If b3A2N > 0, b3A3(A0A3 �A1A2) > 0 and

• either K1 > 0, b3A1N(2A0A3 � A1A2 �
p
K1) < 0 and b3A1N(2A0A3 �

A1A2 +
p
K1) < 0,

• or K1  0 and b3A1N(2A0A3 �A1A2) < 0;

or if b3A2N < 0, b3A3(A0A3 �A1A2) < 0 and

• either K1 > 0, b3A1N(2A0A3 � A1A2 �
p
K1) > 0 and b3A1N(2A0A3 �

A1A2 +
p
K1) > 0,

• or K1  0 and b3A1N(2A0A3 �A1A2) > 0;

then one limit cycle is a local repeller, and the other is a local attractor.

(c) If b3A2N > 0, b3A3(A0A3 �A1A2) > 0, K1 > 0 and |2A0A3 �A1A2| <
p
K1; or

if A2A3(A0A3 �A1A2)N < 0 and

• either K1 > 0, b3A1N(2A0A3 � A1A2 �
p
K1) > 0 and b3A1N(2A0A3 �

A1A2 +
p
K1) > 0,

• or K1  0 and b3A1(2A0A3 �A1A2)N > 0;

then both limit cycles are unstable. One limit cycle is a local repeller, and the other
has a stable manifold formed by two cylinders and an unstable manifold formed by two
cylinders.

(d) If b3A2N < 0, b3A3(A0A3 �A1A2) < 0, K1 > 0 and |2A0A3 �A1A2| <
p
K1; or

if A2A3(A0A3 �A1A2)N < 0 and

• either K1 > 0, b3A1N(2A0A3 � A1A2 �
p
K1) < 0 and b3A1N(2A0A3 �

A1A2 +
p
K1) < 0,
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• or K1  0 and b3A1(2A0A3 �A1A2)N < 0;

then one limit cycle is a local attractor, and the other is unstable and has a stable
manifold formed by two cylinders and an unstable manifold formed by two cylinders.

(e) If K1 < 0, A2A3(A0A3 �A1A2)N < 0 and 2A0A3 = A1A2; then one limit cycle is
unstable and has a stable manifold formed by two cylinders and an unstable manifold
formed by two cylinders and we cannot decide about the stability of the other.

Proof of Theorem 6.1.1. We consider systems (6.0.1) under conditions (ii) of Proposition
6.0.1, and we proceed to study the limit cycles bifurcating from the zero-Hopf equilibrium
point, applying the averaging theory of first order, summarized in Theorem 1.8.3 of Sec-
tion 1.8. To do so we perturb the parameters a2, b1, c2 and c3 which define the zero-Hopf
equilibrium under the assumption (ii) as follows:

a2 =
a3b2
b3

+ "a21, b1 =
a1b3
a3

+ "b11,

c2 = � (a1 + b2)2 + a3c1 + �2

b3
+ "c21, c3 = �a1 � b2 + "c31,

where " is a small parameter and � > 0.
We write the linear part of systems (6.0.2) at the origin in its real Jordan normal form

J =

0

@
0 �� 0
� 0 0
0 0 0

1

A . (6.1.3)

The variables of the systems having its linear part in the real Jordan normal form are (X,Y, Z).
Then systems (6.0.1) under conditions (ii) of Proposition 6.0.1 become of the form

Ẋ = ��Y +O("),

Ẏ = �X +O("),

Ż = O(").

The complete explicit expression of these systems is given in systems (Ẋ, Ẏ , Ż) in file
ss[[2]], downloadable at [41].

We note that there are infinitely many linear changes of variables for writing the linear
part of systems (6.0.2) at the origin in its real Jordan normal form. This forces to choose
some of the entries (denoted by yi for i = 1, . . . , 9 in file ss[[2]]) of the changing matrix.
Thus in the file ss[[2]] we choose y1 = y7 = 1 and y2 = 0 in order to fix a unique changing
matrix.

We note that the choice of the matrix J given in (6.1.3) instead of the matrix

J =

0

@
0 0 0
0 �� 0
� 0 0

1

A
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6.1 Kolmogorov systems under conditions (ii)

is irrelevant. If we choose this last expression for the matrix in its real Jordan form, then
instead of doing the change to cylindrical coordinates (X,Y, Z) ! (r cos ✓, r sin ✓, Z), we
must do the change (X,Y, Z) ! (X, r cos ✓, r sin ✓). This change to cylindrical coordinates
is necessary in order to arrive to write the differential systems in the normal form for applying
the averaging theory described in Theorem 1.8.3

Now we want to write the systems in such a way that conditions of Theorem 1.8.3 are
satisfied. For this we write the systems in cylindrical coordinates by means of the change of
variables (X,Y, Z) ! (r cos ✓, r sin ✓, Z) obtaining systems (ṙ, ✓̇, Ż) of file ss[[2]].

In order to study the periodic solutions in a neighborhood of the origin, i.e., in a neigh-
borhood of the zero-Hopf equilibrium, we do the scaling (r, Z) ! ("R, "Z), where " > 0 is
the same parameter used before. We obtain systems (Ṙ, Ż) of file ss[[2]].

We take the variable ✓ as the new independent variable and so we obtain the system

R0 = "F11 +O("2), Z 0 = "F12 +O("2), (6.1.4)

with coefficients F11 and F12 given in the file ss[[2]].
Note that systems (6.1.4) are in the normal form (1.8.17), so we can apply the averaging

theory with T = 2⇡, x = (R,Z), t = ✓ and "R(✓, x, ") = O("2). The functions F11, F12

and R are C2 in x and 2⇡-periodic in ✓. Applying Theorem 1.8.3 we compute the averaging
function of first order f1 = (f11(R,Z), f12(R,Z)), and we obtain

f11 =
⇡R(A0 +A1Z)

a23b3�
5

, f12 = �⇡(A2Z +A3Z2 +A4R2)

a23b3�
5N

, (6.1.5)

where Ai, for i = 0, ..., 4, K1 and N are given in Section 6.4.
We look for the isolated solutions of the equation (f11(R,Z), f12(R,Z)) = (0, 0), and

we obtain, apart from the origin, the solutions

(R1, Z1) = (0,�A2/A3) and (R2, Z2) =
⇣
±
p

A0(A1A2 �A0A3)/(A1

p
A4),�A0/A1

⌘
.

We consider always the positive expression of R2, i.e., we consider the positive sign if
A1 > 0 and the negative sign if A1 < 0.

We compute the Jacobian matrix of f1, which is
0

BBB@

⇡(A0 +A1Z)

a23b2�
5

⇡RA1

a23b3�
5

� 2⇡RA4

a23b3�
5N

�⇡(A2 + 2A3Z)

a23b3�
5N

1

CCCA
,

and its determinant is ⇡2(�2A1A4R2+(A0+A1Z)(A2+2A3Z))/(a43b
2
3�

10N). Evaluating
the determinant at the solution (R1, Z1) we get that it is equal to

⇡2A2(A0A3 �A1A2)/(a
4
3b

2
3A3�

10N),

and at the solutions (R2, Z2) we get that it is equal to

2⇡2A0(A1A2 �A0A3)/(a
4
3b

2
3A1�

10N).
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From the hypothesis considered, these determinants are nonzero, therefore, it follows
from Theorem 1.8.3 that for " sufficiently small systems (6.1.4) have two 2⇡-periodic solu-
tions (R1(✓, "), Z1(✓, ")) and (R2(✓, "), Z2(✓, ")) such that (Rj(✓, "), Zj(✓, ")) ! (Rj , Zj)
for j = 1, 2 when "! 0.

Moreover the Jacobian matrix evaluated at the solution (R1, Z1) has eigenvalues equal to
⇡A2/(a23b3�

5N) and ⇡(A0A3 �A1A2)/(a23b3A3�5). Since the eigenvalues of the Jacobian
matrix evaluated at the solutions provide the stability of the fixed point corresponding to the
Poincaré map defined in a neighborhood of the solution, we have that:

• If A2b3N > 0 and A3b3(A0A3�A1A2) > 0, then the fixed point of the Poincaré map
has an unstable manifold of dimension two, and the corresponding periodic solution is
unstable and has an unstable manifold of dimension three, which is equivalent to say
that is a repelling periodic orbit.

• If A2b3N < 0 and A3b3(A0A3 � A1A2) < 0, then the fixed point of the Poincaré
map has a stable manifold of dimension two, and the associated periodic solution is
stable and has a stable manifold of dimension three, which is equivalent to say that is
a attracting periodic orbit.

• Finally, if A2A3N(A0A3�A1A2) < 0, the fixed point of the Poincaré map is a saddle
point with a stable manifold of degree one and an unstable manifold of degree one, and
the corresponding periodic solution is unstable and has a stable manifold formed by
two cylinders and an unstable manifold formed by two cylinders.

On the other hand, the Jacobian matrix evaluated at (R2, Z2) has eigenvalues equal to
⇡(2A0A3 �A1A2 ±

p
K1)/(2a23b3A1�5N), and so its stability is as follows:

• If K1 > 0, b3A1N(2A0A3 � A1A2 +
p
K1) > 0 and b3A1N(2A0A3 � A1A2 �p

K1) > 0 or if K1 < 0 and b3A1N(2A0A3 �A1A2) > 0, then the fixed point of the
Poincaré map has an unstable manifold of dimension two, and the periodic solution is
unstable and has an unstable manifold of dimension three.

• If K1 > 0, b3A1N(2A0A3�A1A2+
p
K1) < 0 and b3A1N(2A0A3�A1A2

p
K1) <

0 or if K1 < 0 and b3A1N(2A0A3 �A1A2) < 0, then the fixed point of the Poincaré
map has an unstable manifold of dimension two, and the periodic solution is stable and
has a stable manifold of dimension three.

• If K1 > 0 and �
p
K1 < 2A0A3�A1A2 <

p
K1, then the fixed point of the Poincaré

map is a saddle point with a stable manifold of degree one and an unstable manifold of
degree one, and the associated periodic solution is unstable and has a stable manifold
formed by two cylinders and an unstable manifold formed by two cylinders.

• If K1 < 0 and A1A2 = 2A0A3, the fixed point of the Poincaré map associated with
the periodic orbit is linearly stable, and we cannot decide about the stability of the
periodic orbit.

Combining the above information of the eigenvalues of the Jacobian matrix for both
(R1, Z1) and (R2, Z2) we get statements (a)–(e) in the theorem.
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6.1 Kolmogorov systems under conditions (ii)

Now we shall go back through the changes of variables and we obtain two periodic solu-
tions, for j = 1, 2, (xj(t, "), yj(t, "), zj(t, ")) bifurcating from (1, 1, 1) with a period tending
to 2⇡ when " ! 0. Moreover, (xj(t, "), yj(t, "), zj(t, ")) = (1, 1, 1) + O(") for j = 1, 2.
This completes the proof of the theorem.

6.1.1 Examples of Theorem 6.1.1

We provide examples showing that the conditions provided by Theorem 6.1.1 are non-empty.
Only the values of the parameters which are nonzero are given. Systems (6.0.1) with the set
of parameters

(
a1 = a3 = a5 = b1 = b2 = b3 = �1, a2 = �1� ", a4 = 1/2

c1 = 3/2, c2 = 7/2, c3 = 2, c6 = 4

)

have two limit cycles whose type of stability is given in statement (a) of Theorem 6.1.1. In
this case, as an example, we illustrate the two limit cycles exhibited for systems (6.0.1) with
this parameters, i.e.,

ẋ = x

✓
2 +

1

2
(x� 1)2 � x� (x� 1)(y � 1)� z � (1 + ")(y � 1)

◆
,

ẏ = y (3� x� y � z) ,

ż = z

✓
3

2
(x� 1) +

7

2
(y � 1) + 2(z � 1) + 4(x� 1)(z � 1)

◆
.

(6.1.6)

For this differential system the two real zeros of the averaged functions (6.1.5) which provide
the two limit cycles bifurcating from the equilibrium point (1, 1, 1) of system (6.1.6), when
this point has been translated to the origin of coordinates, are

(R,Z) = (0, 4/3) and (R,Z) = (
p

65/8,�2).

Going back through the changes of variables of the proof of Theorem 6.1.1, we get that the
initial conditions in the coordinates (x, y, z) at time t = 0 for the two limit cycles are

(0, 4"/3,�4"/3) and
�
(�3� 2

p
10/13)", (�1� 2

p
10/13)", (4 + 7

p
10/13)"

�
.

We compute numerically the two limit cycles starting at these initial conditions for the value
" = 5/1000, as can be seen in Figure 6.1.1.

The following sets of parameters satisfy, respectively, the four sets of conditions in state-
ment (b) of Theorem 6.1.1, so for all of them systems (6.0.1) have two limit cycles whose
type of stability is given in statement (b):
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Zero-Hopf bifurcation on Kolmogorov systems

Figure 6.1.1: The two limit cycles which have bifurcated from the zero-Hopf equilibrium point
(1, 1, 1) of system (6.1.6) with " = 5/1000, when this point has been translated to the origin of
coordinates.

(
a1 = a3 = �1, a2 = �1 + ", a4 = �7/8, a5 = 1, b1 = b2 = b3 = �1, c1 = 7/4,

c2 = 37/16, c3 = 2 + 5", c6 = 6

)
,

(
a1 = a3 = b1 = b2 = b3 = �1, a2 = �1 + ", a4 = �1/2, a5 = 1, c1 = 3/2,

c2 = 7/2, c3 = 2 + ", c6 = 5

)
,

(
a1 = a3 = a5 = b2 = �1, a2 = 1 + ", a4 = �7/8, b1 = 1 + ", b3 = 1,

c1 = 7/4, c2 = �37/16, c3 = 2� 5", c6 = 5

)
,

(
a1 = a3 = b2 = �1, a2 = 1 + ", a4 = 3/4, a5 = b1 = b3 = 1,

c2 = �5, c3 = 2� 3"

)
.

The following sets of parameters satisfy, respectively, the three sets of conditions in state-
ment (c) of Theorem 6.1.1, so for all of them, systems (6.0.1) have two limit cycles whose
type of stability is given in statement (c):

(
a1 = a3 = a5 = b1 = b2 = b3 = �1, a2 = �1 + ", a4 = 1/2, c1 = 3/2,

c2 = 7/2, c3 = 2 + ", c6 = 4

)
,

(
a1 = a5 = b3 = �1, a2 = �3/4� ", a3 = b1 = 1, b2 = 3/4,

c2 = 17/16, c3 = 1/4 + ", c6 = 2

)
,

(
a1 = a5 = b2 = b3 = c2 = �1, a2 = �3� ", a4 = 1/2,

b1 = �1/3, c1 = c6 = 2, c3 = 2 + 2"

)
.

178



6.2 Kolmogorov systems under conditions (iii) and (iv)

The following sets of parameters satisfy, respectively, the three sets of conditions in state-
ment (d) of Theorem 6.1.1, so for all of them, systems (6.0.1) have two limit cycles whose
type of stability is given in statement (d):

(
a1 = a3 = a5 = b2 = �1, a2 = 1 + ", a4 = �1/2, b1 = b3 = 1, c1 = 3/2,

c2 = �7/2, c3 = 2� ", c6 = 27/8

)
,

(
a2 = �1/4 + ", a3 = b2 = �1/2, a4 = 3, a5 = b3 = �1, c1 = �1/4,

c2 = 393/1024, c3 = 1/2 + 29", c6 = 33

)
,

(
a1 = a3 = a5 = b2 = �1, a2 = 1 + ", a4 = �2, b1 = b3 = 1,

c1 = 3/2, c2 = �7/2, c3 = 2� ", c6 = �1

)
.

Finally, systems (6.0.1) with the set of parameters
(
a1 = a3 = b1 = b2 = b3 = b9 = �1, a2 = �1 + ", c1 = 3/2,

c2 = 7/2, c3 = 2 + ", c6 = 44/3

)

have two limit cycles whose type of stability is given in statement (e) of Theorem 6.1.1.

6.2 Kolmogorov systems under conditions (iii) and (iv)
The main result concerning the Kolmogorov systems (6.0.1) under the conditions (iii) is the
following. The expressions of Bi with i = 0, ..., 4, and K2 are given in Section 6.4.

Theorem 6.2.1. If b3 6= 0, a1 = a2 = a3 = 0, c2 = �(b22 + �2)/b3, c3 = �b2, B1 6= 0,
B2 6= 0, B3 6= 0 and B0B4(B1B2 � B0B3) > 0, then the Kolmogorov systems (6.0.1)
have two limit cycles bifurcating from the zero-Hopf equilibrium point (1, 1, 1). Moreover
the following statements hold.

(a) If K2 > 0, B2B3(B0B3 � B1B2) > 0 and |B1B2 � 2B0B3| <
p
K2; then the two

limit cycles are unstable and have a stable manifold formed by two cylinders and an
unstable manifold formed by two cylinders.

(b) If B2 < 0, B3(B0B3 � B1B2) > 0, K2 > 0 and |B1B2 � 2B0B3| <
p
K2; or if

B2B3(B0B3 � B1B2) > 0, K2 > 0, B1 < 0 and B1B2 � 2B0B3 < �
p
K2; then

both limit cycles are unstable. One limit cycle is a local repeller, and the other has
a stable manifold formed by two cylinders and an unstable manifold formed by two
cylinders.

(c) If B2 < 0, B3(B0B3 �B1B2) > 0 and

• either K2 > 0, B1(B1B2 � 2B0B3 �
p
K2) < 0 and B1(B1B2 � 2B0B3 +p

K2) < 0,

• or K2  0 and B1(B1B2 � 2B0B3) < 0;
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or if B2 > 0, B3(B0B3�B1B2) < 0, K2 > 0, B1 < 0 and B1B2�2B0B3 < �
p
K2;

then one limit cycle is a local attractor and the other limit cycle is a local repeller.

(d) If B2 > 0, B3(B0B3 � B1B2) < 0, K2 > 0 and |B1B2 � 2B0B3| <
p
K2; or if

B2B3(B0B3 �B1B2) > 0 and

• either K2 > 0, B1(B1B2 � 2B0B3 �
p
K2) < 0 and B1(B1B2 � 2B0B3 +p

K2) < 0,

• or K2  0 and B1(B1B2 � 2B0B3) < 0,

then one limit cycle is a local attractor and the other limit cycle is unstable and has
a stable manifold formed by two cylinders and an unstable manifold formed by two
cylinders.

(e) B2B0 < 0, K2 < 0 and B1B2 = 2B0B3; then one limit cycle is unstable and has
a stable manifold formed by two cylinders and an unstable manifold formed by two
cylinders, and we cannot decide about the stability of the other limit cycle.

Proof of Theorem 6.2.1. We consider systems (6.0.1) under conditions (iii) of Proposition
6.0.1. In order to study the zero-Hopf bifurcation we perturb the parameters a1, a2, a3, c2
and c3 which define the zero-Hopf equilibrium under conditions (iii) as follows

a1 = "a11, a2 = "a21, a3 = "a31, c2 = �b22 + �2

b3
+ "c21, c3 = �b2 + "c31,

where " is a parameter to be taken sufficiently small.
We write the lineal part of systems (6.0.2) at the origin in its real Jordan normal form, and

the associated systems become systems (Ẋ, Ẏ , Ż) of file ss[[3]], downloadable at [41]. Then
we write the systems in cylindrical coordinates obtaining systems (ṙ, ✓̇, Ż) in file ss[[3]], and
we do the scaling (r, Z) ! ("R, "Z) obtaining systems (Ṙ, Ż) in file ss[[3]].

As in the proof of Theorem 6.1.1, in order to apply Theorem 1.8.3, we take the variable ✓
as the new independent variable obtaining a system of the form

R0 = "F11 +O("2), Z 0 = "F12 +O("2),

whose coefficients F11 and F12 are given in the file ss[[3]]. The averaged function of first
order f1 = (f11(R,Z), f12(R,Z)) is

f11 =
⇡R(B0 +B1Z)

b23�
5

, f12 =
⇡(B2Z +B3Z2 +B4R2)

b23�
5

,

with Bi, for i = 0, ..., 4, and K2 given in Section 6.4. Solving the equation

(f11(R,Z), f12(R,Z)) = (0, 0)

we obtain two solutions

(R1, Z1) = (0,�B2/B3) and (R2, Z2) =
⇣
±
p

B0(B1B2 �B0B3)/(B1

p
B4),�B0/B1

⌘
.
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6.2 Kolmogorov systems under conditions (iii) and (iv)

Again we consider always the positive expression of R2. We compute the Jacobian matrix of
f1 and we get 0

BBB@

⇡(B0 +B1Z)

b23�
5

⇡RB1

b23�
5

2⇡RB4

b23�
5

⇡(B2 + 2B3Z)

b23�
5

1

CCCA
,

whose determinant is ⇡2(�2B1B4R2+(B0+B1Z)(B2+2B3Z))/(b43�
10). The determinant

at the solution (R1, Z1) is

⇡2B2(B1B2 �B0B3)/(b
4
3B3�

10),

and at the solution (R2, Z2) is

2⇡2B0(B0B3 �B1B2)/(b
4
3B1�

10).

From the hypothesis considered these determinants are nonzero, so it follows from Theo-
rem 1.8.3 that for " sufficiently small, systems (6.1.4) have two solutions (R1(✓, "), Z1(✓, "))
and (R2(✓, "), Z2(✓, ")) such that (Rj(✓, "), Zj(✓, ")) ! (Rj , Zj) for j = 1, 2 when "! 0.

The Jacobian matrix evaluated at the solution (R1, Z1) has eigenvalues equal to

�⇡B2/(b
2
3�

5) and ⇡(B0B3 �B1B2)/(b
2
3B3�

5).

We study the stability of the associated periodic orbit which is provided by these eigenvalues.

• If B2 < 0 and B3(B0B3 � B1B2) > 0, the associated periodic solution is unstable
and has an unstable manifold of dimension three.

• If B2 > 0 and B3(B0B3 �B1B2) < 0, then the associated periodic solution is stable
and has a stable manifold of dimension three.

• Finally, if B2B3(B0B3�B1B2) > 0, the periodic solution is unstable and has a stable
manifold formed by two cylinders and an unstable manifold formed by two cylinders.

On the other hand, the Jacobian matrix evaluated at (R2, Z2) has eigenvalues equal to
⇡(B1B2 � 2B0B3 ±

p
K2)/(2b23B1�5), and so

• If K2 > 0, B1(B1B2 � 2B0B3 +
p
K2) > 0 and B1(B1B2 � 2B0B3 �

p
K2) > 0,

or if K2 < 0 and B1(B1B2 � 2B0B3) > 0, then the associated periodic solution is
unstable and has an unstable manifold of dimension three.

• If K2 > 0, B1(B1B2 � 2B0B3 +
p
K2) < 0 and B1(B1B2 � 2B0B3 �

p
K2) < 0,

or if K2 < 0 and B1(B1B2 � 2B0B3) < 0, then the associated periodic solution is
stable and has a stable manifold of dimension three.

• If K2 > 0 and �
p
K2 < B1B2 � 2B0B3 <

p
K2, then the associated periodic

solution is unstable and has a stable manifold formed by two cylinders and an unstable
manifold formed by two cylinders.
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• If K2 < 0 and B1B2 � 2B0B3 = 0, the fixed point of the Poincaré map associated
with the periodic orbit is linearly stable, and we cannot decide about the stability of the
periodic orbit.

Combining the above information of the eigenvalues of the Jacobian matrix for both
(R1, Z1) and (R2, Z2) we get statements (a)–(e) of the theorem.

Now we shall go back through the changes of variables and we obtain two periodic solu-
tions, for j = 1, 2, (xj(t, "), yj(t, "), zj(t, ")) bifurcating from (1, 1, 1) with a period tending
to 2⇡ when " ! 0. Moreover, (xj(t, "), yj(t, "), zj(t, ")) = (1, 1, 1) + O(") for j = 1, 2.
This completes the proof of the theorem.

6.2.1 Examples of Theorem 6.2.1
We give examples showing that the conditions provided by Theorem 6.2.1 are non-empty.
We give only the values of the parameters which are nonzero. Systems (6.0.1) with the set of
parameters

{a1 = �2", a2 = ", a4 = c2 = 2, a7 = b1 = b2 = b3 = �1, c3 = 1}

have two limit cycles whose type of stability is given in statement (a) of Theorem 6.2.1.
The parameters

{a1 = �2", a2 = ", a4 = �7/2, a5 = 4, a7 = b1 = b2 = �1, b3 = c3 = 1, c2 = �2}

satisfy the first set of conditions in statement (b) of Theorem 6.2.1, and the parameters

{a1 = �2", a2 = ", a4 = �3, a7 = b3 = c3 = 1, b1 = b2 = �1, c2 = �2}

satisfy the second set of conditions. For both of them there exist two limit cycles for systems
(6.0.1) whose type of stability is given in statement (b).

The following sets of conditions satisfy, respectively, the three sets of conditions in state-
ment (c) of Theorem 6.2.1, so for all of them, systems (6.0.1) have two limit cycles whose
type of stability is given in statement (c):

{a2 = �", a4 = 4, a5 = �2, a7 = b1 = b2 = b3 = �1, c2 = 2, c3 = 1} ,
{a1 = 4", a3 = �", a4 = �2, a6 = �1, a7 = 1, b1 = b3 = �1, c2 = 1} ,
{a2 = �", a4 = �2, a7 = 1, b1 = b2 = b3 = �1, c2 = 2, c3 = 1} .

The following sets of conditions satisfy, respectively, the three sets of conditions in state-
ment (d) of Theorem 6.2.1, so for all of them, systems (6.0.1) have two limit cycles whose
type of stability is given in statement (d):

{a1 = 2", a2 = �", a4 = 1/2, a7 = b1 = b2 = b3 = �1, c2 = 2, c3 = 1} ,
{a2 = ", a4 = �1/16, a5 = �1/2, a7 = b3 = c3 = 1, b1 = b2 = �1, c2 = �2} ,
{a1 = �2", a3 = �", a6 = a7 = b3 = 1, b1 = c2 = �1} .
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Finally, systems (6.0.1) with parameters

{a3 = �", a4 = a7 = b1 = b3 = c9 = �1, c2 = 1}

have two limit cycles whose type of stability is given in statement (e) of Theorem 6.2.1.

This section is entitled Kolmogorov systems under conditions (iii) and (iv), and for the
moment we have only considered conditions (iii). This is enough as Kolmogorov systems
(6.0.1) under conditions (iv) are the same as under conditions (iii) but interchanging the
variables x and y, so if we change the conditions b3 6= 0, a1 = a2 = a3 = 0, c2 =
�(b22 + �2)/b3, c3 = �b2 into a3 6= 0, b1 = b2 = b3 = 0, c1 = �(a21 + �2)/a3, c3 = �a1,
and redefine the constants Bi for i = 0, ..., 4 as it is indicated in Section 6.4, the same
Theorem 6.2.1 holds.

6.3 Kolmogorov systems under conditions (v)
At last our main result concerning the Kolmogorov systems (6.0.1) under the conditions (v)
is the following, with the expressions of Di, for i = 0, ..., 4, and K4 given in Section 6.4.

Theorem 6.3.1. If b1 6= 0, a3 = b3 = c3 = 0, a2 = �(a21 + �2)/b1, b2 = �a1, D1 6= 0,
D2 6= 0, D3 6= 0 and D0D4(D1D2 � D0DB3) > 0, then the Kolmogorov systems (6.0.1)
have two limit cycles bifurcating from the zero-Hopf equilibrium point (1, 1, 1). Moreover
the following statements hold.

(a) If K4 > 0, D2D3(a1c1 + b1c2)(D0D3 � D1D2) > 0 and |D1D2 � 2D0D3| <p
K4; then the two limit cycles are unstable and have a stable manifold formed by two

cylinders and an unstable manifold formed by two cylinders.

(b) If b1D2(a1c1 + b1c2) < 0, b1D3(D0D3 �D1D2) > 0 and

• either K4 > 0, b1D1(a1c1+b1c2)(D1D2�2D0D2�
p
K4) < 0 and b1D1(a1c1+

b1c2)(D1D2 � 2D0D2 +
p
K4) < 0,

• or K4  0 and b1D1(a1c1 + b1c2)(D1D2 � 2D0D3) < 0;

or if b1D2(a1c1 + b1c2) > 0, b1D3(D0D3 �D1D2) < 0 and

• either K4 > 0, b1D1(a1c1+b1c2)(D1D2�2D0D2�
p
K4) > 0 and b1D1(a1c1+

b1c2)(D1D2 � 2D0D2 +
p
K4) > 0,

• or K4  0 and b1D1(a1c1 + b1c2)(D1D2 � 2D0D3) > 0;

then one limit cycle is a local repeller, and the other is a local attractor.

(c) If b1D2(a1c1+b1c2) < 0, b1D3(D0D3�D1D2) > 0, K4 > 0 and |D1D2 � 2D0D3| <p
K4; or if D2D3(a1c1 + b1c2)(D0D3 �D1D2) > 0 and

• either K4 > 0, b1D1(a1c1+b1c2)(D1D2�2D0D2�
p
K4) > 0 and b1D1(a1c1+

b1c2)(D1D2 � 2D0D2 +
p
K4) > 0,
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• or K4  0 and b1D1(a1c1 + b1c2)(D1D2 � 2D0D3) > 0;

then both limit cycles are unstable. One limit cycle is a local repeller, and the other
has a stable manifold formed by two cylinders and an unstable manifold formed by two
cylinders.

(d) If b1D2(a1c1+b1c2) > 0, b1D3(D0D3�D1D2) < 0K4 > 0 and |D1D2 � 2D0D3| <p
K4; or if D2D3(a1c1 + b1c2)(D0D3 �D1D2) > 0 and

• either K4 > 0, b1D1(a1c1+b1c2)(D1D2�2D0D2�
p
K4) < 0 and b1D1(a1c1+

b1c2)(D1D2 � 2D0D2 +
p
K4) < 0,

• or K4  0 and b1D1(a1c1 + b1c2)(D1D2 � 2D0D3) < 0;

then one limit cycle is a local attractor, and the other is unstable and has a stable
manifold formed by two cylinders and an unstable manifold formed by two cylinders.

(e) If D2D3(a1c1 + b1c2)(D0D2 � D1D2) > 0, K4 < 0 and D1D2 = 2D0D3; then
one limit cycle is unstable and has a stable manifold formed by two cylinders and an
unstable manifold formed by two cylinders and we cannot decide about the stability of
the other.

Proof of Theorem 6.3.1. We consider systems (6.0.1) under conditions (v) of Proposition
6.0.1. In order to study the zero-Hopf bifurcation we perturb the parameters a2, a3, b2,
b3 and c3 which define the zero-Hopf equilibrium point into the form

a2 = �a21 + �2

b1
+ "a21, a3 = "a31, b2 = �a1 + "b21, b3 = "b31, c3 = "c31,

where " is a sufficiently small parameter.
We write the systems with the linear part at the origin in its real Jordan normal form, then

we write it in cylindrical coordinates, and finally we do the scaling (r, Z) ! ("R, "Z). Thus
we obtain respectively systems (Ẋ, Ẏ , Ż) , (ṙ, ✓̇, Ż) and (Ṙ, Ż) of file ss[[5]], downloadable
at [41]. Taking ✓ as the new independent variable we obtain systems in the form

R0 = "F11 +O("2), Z 0 = "F12 +O("2) (6.3.7)

with coefficients F11 and F12 given in the file ss[[5]]. As in the previous proofs we are in con-
ditions to apply Theorem 1.8.3. The averaged function of first order f1 = (f11(R,Z), f12(R,Z))
is

f11 =
⇡R(D0 +D1Z)

b1�5
, f12 =

⇡(D2Z +D3Z2 +D4R2)

b1(a1c1 + b1c2)�5
,

with Di, for i = 0, ..., 4, and K4 given in Section 6.4. We look for the solutions of

(f11(R,Z), f12(R,Z)) = (0, 0),

and we obtain

(R1, Z1) = (0,�D2/D3) and (R2, Z2) =
⇣
±
p

D0(D1D2 �D0D3)/(D1

p
D4),�D0/D1

⌘
,
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considering the positive expression of R2.
We compute the Jacobian matrix of f1 and we get

0

BBB@

⇡(D0 +D1Z)

b1�5

⇡RD1

b1�5

2⇡RD4

b1�5(a1c1 + b1c2)

⇡(D2 + 2D3Z)

b1�5(a1c1 + b1c2)

1

CCCA
,

whose determinant is ⇡2(�2D1D4R2 +(D0 +D1Z)(D2 +2D3Z))/(b21�
10(a1c1 + b1c2)).

The determinant at the solution (R1, Z1) is

⇡2D2(D1D2 �D0D3)/(b
2
1D3�

10(a1c1 + b1c2)),

and at the solution (R2, Z2) is

2⇡2D0(D0D3 �D1D2)/(b
2
1D1�

10(a1c1 + b1c2)),

and both are nonzero by the hypotheses. By Theorem 1.8.3, for " sufficiently small systems
(6.3.7) have two solutions (R1(✓, "), Z1(✓, ")) and (R2(✓, "), Z2(✓, ")) such that, when " !
0, (Rj(✓, "), Zj(✓, ")) ! (Rj , Zj) for j = 1, 2.

The Jacobian matrix evaluated at the solution (R1, Z1) has eigenvalues equal to

�⇡D2/(b1�
5(a1c1 + b1c2)) and ⇡(D0D3 �D1D2)/(b1D3�

5).

We study the stability of the associated periodic orbit which is provided by these eigenvalues.

• If b1D2(a1c1 + b1c2) < 0 and b1D3(D0D3 � D1D2) > 0, the associated periodic
solution is unstable and has an unstable manifold of dimension three.

• If b1D2(a1c1+b1c2) > 0 and b1D3(D0D3�D1D2) < 0, then the associated periodic
solution is stable and has a stable manifold of dimension three.

• Finally, if D2D3(a1c1+b1c2)(D0D3�D1D2) > 0, the associated periodic solution is
unstable and has a stable manifold formed by two cylinders and an unstable manifold
formed by two cylinders.

On the other hand, the Jacobian matrix evaluated at (R2, Z2) has eigenvalues equal to

⇡(D1D2 � 2D0D3 ±
p
K4)/(2b1D1�

5(a1c1 + b1c2)).

Then:

• If K4 > 0, b1D1(a1c1 + b1c2)(D1D2 � 2D0D3 +
p
K4) > 0 and b1D1(a1c1 +

b1c2)(D1D2 � 2D0D3 �
p
K4) > 0, or if K4 < 0 and b1D1(a1c1 + b1c2)(D1D2 �

2D0D3) > 0, then the associated periodic solution is unstable and has an unstable
manifold of dimension three.

• If K4 > 0, b1D1(a1c1 + b1c2)(D1D2 � 2D0D3 +
p
K4) < 0 and b1D1(a1c1 +

b1c2)(D1D2 � 2D0D3 �
p
K4) < 0, or if K4 < 0 and b1D1(a1c1 + b1c2)(D1D2 �

2D0D3) < 0, then the associated periodic solution is stable and has a stable manifold
of dimension three.
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• If K4 > 0 and �
p
K4 < D1D2 � 2D0D3 <

p
K4, then the associated periodic

solution is unstable and has a stable manifold formed by two cylinders and an unstable
manifold formed by two cylinders.

• If K4 < 0 and D1D2 = 2D0D3, the fixed point of the Poincaré map associated with
the periodic orbit is linearly stable, and we cannot decide about the stability of the
periodic orbit.

Combining the above information we get statements (a)–(e) in the theorem. Going back
through the changes of variables we obtain two periodic solutions (xj(t, "), yj(t, "), zj(t, "))
for j = 1, 2 bifurcating from (1, 1, 1) with a period tending to 2⇡ when " ! 0. Moreover,
(xj(t, "), yj(t, "), zj(t, ")) = (1, 1, 1) + O(") for j = 1, 2. This completes the proof of the
theorem.

6.3.1 Examples of Theorem 6.3.1
We give examples showing that the conditions provided by Theorem 6.3.1 are non-empty. We
give only the values of the parameters which are nonzero. Systems (6.0.1) with parameters

{a1 = a9 = b1 = c1 = �1, a2 = a4 = 2, a3 = ", b2 = 1 + 2"}

have two limit cycles whose type of stability is given in statement (a) of Theorem 6.3.1. The
following sets of parameters satisfy, respectively, the four sets of conditions in statement (b)
of Theorem 6.3.1, so for all of them systems (6.0.1) have two limit cycles whose type of
stability is given in statement (b):

{a1 = b1 = c1 = �1, a2 = 2, a3 = �", a4 = �2, a6 = 3, a9 = 1, b2 = 1� (7/8)"} ,
{a1 = b1 = �1, a2 = 2, a3 = ", a4 = �2, a6 = �5, a9 = 1, b2 = c1 = 1} ,
{a1 = �1, a2 = �2, a3 = �", a4 = 2, a6 = 3, a9 = �1, b1 = b2 = c1 = 1} ,
{a1 = a9 = �1, a2 = �2, a3 = �", a4 = 2, a6 = 5, a9 = �1, b1 = b2 = c1 = 1} .

The following sets of parameters satisfy, respectively, the three sets of conditions in state-
ment (c) of Theorem 6.3.1, so for all of them systems (6.0.1) have two limit cycles whose
type of stability is given in statement (c).

{a1 = a9 = b1 = �1, a2 = 2, a3 = ", a4 = 3, a6 = �1, a9 = �1, b2 = c1 = 1, c9 = 2} ,
{a1 = a9 = �1, a2 = �2, a3 = �", a6 = �1, a9 = b1 = c1 = 1, b2 = 1 + (7/8)"} ,
(
a1 = a9 = c1 = �1, a2 = �2, a3 = �", a4 = 1, a6 = �1, a9 = b1 = 1, b2 = 1� 4",

c9 = �1/2

)
.

The following sets of parameters satisfy, respectively, the three sets of conditions in state-
ment (d) of Theorem 6.3.1, so for all of them systems (6.0.1) have two limit cycles whose
type of stability is given in statement (d):

{a1 = �1, a2 = �2, a3 = �", a4 = �3, a6 = b1 = b2 = c1 = 1, c9 = �2} ,
{a1 = b1 = c1 = �1, a2 = 2, a3 = ", a4 = �3, a6 = b1 = 1, b2 = 1 + 2", c9 = 2} ,
{a1 = b1 = c1 = �1, a2 = 2, a3 = ", a4 = �1, a6 = b1 = 1, b2 = 1 + 4", c9 = 1/2} .
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Finally, systems (6.0.1) with parameters

{a1 = a6 = b1 = �1, a2 = 2, a3 = (7/8)", b1 = 1, b2 = c1 = 1, c9 = 1/2}

have two limit cycles whose type of stability is given in statement (e) of Theorem 6.3.1.
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6.4 Notation

The expressions of Ai with i = 1, 2, 3, 4, K1 and N used in Section 6.1 are the following.

A0 = a3�
2
�
(a23b11 � b23a21)(a1(a1 + b2) + a3c1) + a3�

2(a3b11 + b3c31)
�
,

A1 = a61 (�2a9b3 + 2a3b9) + 2a51
�
b3 (a8b3 � 4a9b2)� a23b6 + a3 (a6b3 � b3b8 + 4b2b9)

�

+ a23
�
2
�
�b3

�
a9b

2
2 + b3(a7b3 � a8b2)

�
+ a33b4 � a23 (a4b3 � b3b5 + b2b6)

+ a3b3 (a6b2 � a5b3 + b3b7 � b2b8) + a3b
2
2b9
�
c21 + c1

�
4a23b4 � 2a3b2b6 + a3b3

(3b5 � 2a4 + c6) + b3
�
a6b2 + b22 + b3(2b7 � a5 + c8) + b2(b3 � b8 � 2c9)

��
�2

+ (2a3b4 + b3(b5 + c6))�
4
�
+ a1a3

�
�2a33c1(b6c1 � 2b2b4) + a23 (2c1 (�2b2

(a4b3 � b3b5 + b2b6) + (a6b3 � b3b8 + 2b2b9)c1) + (4b2b4 + (b3 � 4b6)c1)�
2
�

a3
�
2c1
�
2b2b3(a6b2 � a5b3 + b3b7 � b2b8) + 2b32b9 + b3(a8b3 � 2a9b2)c1

�

+
�
�2a4b2b3 � 2b22b6 + 4b2b9c1 + b2b3(3b5 + 2c1 + c6) + b3c1(3a6 � 3b8 � 2c9)

�

�2 + (b3 � 2b6)�
4
�
+ b3

�
4b2b3(a8b2 � a7b3)c1 +

�
a6b

2
2 + b32 + 2a8b3c1 + b2b3

(2b7 � a5 + c8) + b22(b3 � b8 � 2c9)
�
�2 + (a6 + b2 � b8 � 2c9)�

4 � 4a9b2c1
�
b22

+ �2
���

+ a41
�
2a33b4 + 2a3

�
3a6b2b3 � a5b

2
3 + b23b7 � 3b2b3b8 + 6b22b9 � 2a9b3c1

�

+ a23 (2b3b5 � 2a4b3 � 6b2b6 + 4b9c1) + a3(b3 + 4b9)�
2 � 2b3 (b3 (a7b3 � 3a8b2)

+ 2a9(3b
2
2 + �2)

��
+ a21

�
4a43b4c1 + 2a33

�
b22b4 � 4b2b6c1 + c1(2b3b5 � 2a4b3 + b9c1)

+ 2b4�
2
�
+ a3

�
2b22b3(a6b2 � a5b3 + b3b7 � b2b8) + 2b42b9 � 4b3

�
3a9b

2
2 + b3 (a7b3

� 2a8b2)) c1 +
�
4a6b2b3 + b22(3b3 + 4b9) + b3 (�4a9c1 + b3(2b7 � a5 + c8))

+ b2b3(b3 � 4(b8 + c9)))�
2 + (b3 + 2b9)�

4
�
+ a23

�
�2b32b6 + 8b2b3(a6 � b8)c1

� 2b3c1 (2a5b3 � 2b3b7 + a9c1) + 2b22(b3b5 + 6b9c1) + (b2(b3 � 6b6) + 4b9c1

+ b3(3b5 + c1 + c6))�
2 � 2a4b3(b

2
2 + �2)

�
� 2b3

�
a9(b

2
2 + �2)2 � b2b3 (�a7b2b3

+ a8(b
2
2 + �2)

���
+ a31

�
2a3

�
b2b3 (3a6b2 � 2a5b3 + 2b3b7 � 3b2b8) + 4b32b9 + 2b3c1

(a8b3 � 3a9b2)) + 4a33(b2b4 � b6c1) + a3 (3a6b3 + 3b2b3 � 3b3b8 + 8b2b9 � 2b3c9)

�2 + a23
�
�4a4b2b3 � 6b22b6 + 4b3(a6 � b8)c1 + 4b2(b3b5 + 3b9c1) + (b3 � 4b6)�

2
�

+ 2b3
�
�4a9b2(b

2
2 + �2) + b3

�
�2a7b2b3 + a8(3b

2
2 + �2)

���
,

A2 =� 2a3�
2
��
a23b11 � b23a21

�
(a1(a1 + b2) + a3c1) + a23b11�

2
� ⇣

(a1(a1 + b2) + a3c1)
2

+
�
2a21 + 2a1b2 + b22 + 2a3c1

�
�2 + �4

�
,
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A3 =� 2
⇣
(a1(a1 + b2) + a3c1)

2 +
�
2a21 + 2a1b2 + b22 + 2a3c1

�
�2 + �4

⌘ �
a61 (a3b9

� a9b3) + a51
�
b3 (a8b3 � 4a9b2)� a23b6 + a3 (a6b3 � b3b8 + 4b2b9)

�

+ a23
��
�b3

�
a9b

2
2 + b3(a7b3 � a8b2)

�
+ a33b4 � a23 (a4b3 � b3b5 + b2b6) + a3b3

(a6b2 � a5b3 + b3b7 � b2b8) + a3b
2
2b9
�
c21 +

�
b3 (a6b2 � a5b3) + 2a23b4

+ a3 (b3b5 � 2a4b3 � b2b6)) c1�
2 + (a3b4 � a4b3)�

4
�
+ a1a3

�
a33c1 (2b2b4 � b6c1)

+ a23
�
c1 (�2b2 (a4b3 � b3b5 + b2b6) + (a6b3 � b3b8 + 2b2b9) c1) + 2�2 (b2b4

� b6c1)) + a3
�
c1
�
2b2b3 (a6b2 � a5b3 + b3b7 � b2b8) + 2b32b9 + b3c1 (a8b3

� 2a9b2)) +
�
b2b3b5 � 2a4b2b3 � b22b6 + 2a6b3c1 � b3b8c1 + 2b2b9c1

�
�2 � b6�

4
�

+ b3
�
2b2b3c1(a8b2 � a7b3) +

�
a6b

2
2 � a5b2b3 + a8b3c1

�
�2 + a6�

4 � 2a9b2c1
�
b22

+ �2
���

+ a41
�
a33b4 + a23 (b3b5 � a4b3 � 3b2b6 + 2b9c1) + a3

�
3a6b2b3 � a5b

2
3

+ b23b7 � 3b2b3b8 + 6b22b9 � 2a9b3c1 + 2b9�
2
�
� b3

�
b3 (a7b3 � 3a8b2) + 2a9

�
3b22

+ �2
���

+ a31
�
2a33 (b2b4 � b6c1) + a23

�
2b2b3(b5 � a4)� 3b22b6 + 2a6b3c1

� 2b3b8c1 + 6b2b9c1 � 2b6�
2
�
+ a3

�
3b22b3(a6 � b8)� 2b2b

2
3(b7 � a5) + 4b32b9

� 6a9b2b3c1 + 2a8b
2
3c1 + (2a6b3 � b3b8 + 4b2b9)�

2
�
+ b3

�
�4a9b2

�
b22 + �2

�

+ b3
�
3a8b

2
2 � 2a7b2b3 + a8�

2
���

+ a21
�
2a43b4c1 + a33

�
b22b4 � 4b2b6c1 + c1 (2b3b5

� 2a4b3 + b9c1) + 2b4�
2
�
� a23

�
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Zero-Hopf bifurcation on Kolmogorov systems

Now we give the expressions of Bi with i = 1, 2, 3, 4, and K2 used in Section 6.2. Under
conditions (iii) of Proposition 6.0.1, the expressions are the following.

B0 = �2b3
�
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�
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On the other hand, under conditions (iv) of Proposition 6.0.1, the expression of K2 is
the same as under conditions (iii) but we redefine the expressions of Bi with i = 0, ..., 4 as
follows:

B0 = �2a3(a1a2 + a3c2)(b31a1 � b11a3) + �4a3(b31a2 + a3c31),

B1 = a3(a1a2 + a3c2)
�
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Finally, the expressions of Di with i = 1, 2, 3, 4 and K4 used in Section 6.3 are the
following.
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6.4 Notation
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Chapter 7

Applications: Differential systems
modelizing population dynamics

In the previous chapters we dealt with the qualitative study of some general Lotka-Volterra
and Kolmogorov systems. In the present chapter, by applying the techniques and results
from the previous ones, we consider some more specific systems motivated by real problems.
Since the Kolmogorov and Lotka-Volterra systems have their origin in the field of population
dynamics, and their applications in this field have been growing and improving over time, we
focus our attention on this branch.

First of all, in Section 7.1, we present the review work carried out in [43]1, which gives us
a better understanding of how predator-prey models have advanced in recent years and which
are the topics and characteristics that have particularly attracted the attention of researchers.

Next, in Section 7.2, we study a predator-prey system in the plane, for which we obtain
its global phase portraits in the positive quadrant of the Poincaré disk. This work is based on
the article [47]2.

Finally, Section 7.3 is based on the work published in [31]3. In that work we study a
model in dimension three, with two prey and one predator, whose restriction to only two of
the variables coincides with the previous model. For this three-dimensional model we study
different aspects of its qualitative dynamics, including the existence of limit cycles.

1Érika Diz-Pita (Departamento de Estatística, Análise Matemática e Optimización, Universidade de Santiago de
Compostela) and María Victoria Otero-Espinar (Departamento de Estatística, Análise Matemática e Optimización,
Universidade de Santiago de Compostela), Predator-prey models: a review on some recent advances, Mathematics
(EISSN: 2227-7390), 9 (2021), 1783. Published by MDPI. The final authenticated version is available online at:
https://doi.org/10.3390/math9151783.

2Érika Diz-Pita (CITMAga; Departamento de Estatística, Análise Matemática e Optimización, Universidade
de Santiago de Compostela), Jaume Llibre (Departament de Matemàtiques, Universitat Autònoma de Barcelona)
and María Victoria Otero-Espinar (CITMAga; Departamento de Estatística, Análise Matemática e Optimización,
Universidade de Santiago de Compostela), Global phase portraits of a predator-prey system, Electronic Journal
of Qualitative Theory of Differential Equations, (ISSN: 1417-3875), 16 (2022), 1–13. Published by University of
Szeged, Bolyai Institute. The final authenticated version is available online at: https://doi.org/10.3390/math9151783.
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Applications

7.1 Predator-prey systems: a review on some recent ad-
vances

Population dynamics is one of the most widely discussed topics within Biomathematics. The
study of the evolution of different populations has always been of special interest, starting
with populations of a single species, but evolving to more realistic models where different
species live and interact in the same habitat. Among them we can find models that study
competitive relationships, symbiosis, commensalism or predator-prey relationships.

In [43] we focus on predator-prey systems with the aim of give a state-of-art review of
recent predator-prey models which include Allee effect, fear effect, cannibalism and immi-
gration. We compare the qualitative results obtained for each of them, particularly regarding
the singular points, local and global stability and the existence of limit cycles.

Probably the most famous predator-prey models are Lotka-Volterra systems, which on
the other hand, have motivated the objectives of this thesis addressed in previous chapters

Actually, the study of predator-prey models has always been one of the hot spots in
Biomathematics, so there is a very big number of works on this topic, especially in dimension
two, it is, with one predator species and one prey species. For this reason we believe that the
work done in [43] may be of particular interest to those researchers involved in modeling this
kind of biological and ecological problems, allowing them to have an overview of the work
who is currently being carried out.

Therefore, our objective is to analyze several adaptations of predator-prey models that
have been done in the last years in order to model different real situations that appear in the
field of population dynamics.

We have decided to focus on some special issues to which researchers have devoted spe-
cial attention in recent years, particularly the study of the Allee effect, the influence of fear
effect, cannibalism and immigration. We introduce some works with influences between
them, which allow us to understand the importance of these biological aspects, through the
study of several models that are completed and improved in successive works.

The Allee effect appears when a population of prey has a really small density, so it makes
difficult for them to reproduce or survive. It was first introduced by Allee in [2]. There
are several works in the literature that analyze this effect in different population models and
conclude that it can have important effects on the system dynamics, including the stabilization
or destabilization of a system. It also can cause that the solutions of a system take a much
longer time to reach a stable equilibrium point.

Another issue to consider is that in certain ecosystems, prey may feel fear of predators and
act accordingly, making hunting more difficult for the predators. The theoretical reasonings
about the effect of fear behaviors are supported by real experiments. For example, Zanette,
White, Allen and Clinchy [143] conducted an experiment on song sparrows during a whole
breeding season by using electrical fence to eliminate direct predation of both juvenile and
adult song sparrows. No direct killing can happen in the experiment; however, broadcast of
vocal cues of known predators in the field was employed to mimic predation risk. Two groups
of female song sparrows were tested, among which one group was exposed to predator sounds
while the other group was not. The authors found that the group of song sparrows exposed
to predator sounds produced 40% less offspring than the other group. They believe this is
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because fewer eggs were laid, fewer eggs were successfully hatched, and fewer nestlings sur-
vived eventually. Also because there were behavioral changes including less time of adult
song sparrows on brood and less feeding to nestlings during breeding period. Similar experi-
ments on other birds and vertebrate species reported the same conclusions [34,121,139], it is,
even though there is no direct killing between predators and prey, the presence of predators
cause a reduction in prey population due to anti-predator behaviors.

We analyze different models with the presence of fear effect, combined with different
functional responses, with both omnivorous and specialist predators, with hunting coopera-
tion, with Allee effect and with prey refuge.

As we mentioned, we study ecosystems in which predators feed only on one prey species,
which we will call specialists, and others in which predators are omnivorous, it is, they will be
able to feed themselves from other resources. A special case of this is cannibalism, it is, the
act of killing and at least partial consumption of conspecifics. Cannibalism actively occurs
in more than 1300 species in the nature [111], and it has been mathematically modeled for
some ecosystems, as for example the European regional seas ecosystem model (ERSEM) for
the North Sea [9].

In the literature, one of the first contributions to the study of this topic was the work
of Kohlmeir [75], who considered cannibalism in the predator in the classic Rosenzweig-
McArthur model. In general, cannibalism has been considered primarily in predators, and
the results agree that it has stabilizing effects, and can cause the survival of a species that
would otherwise be driven to extinction. We have selected two works that illustrate well
the different effects of cannibalism when we add it to already well-known models, as the
Lotka-Volterra and the Holling-Tanner model. In addition, the inclusion of cannibalism is
considered not only in the predator species as usual, but also in the prey species.

Just as cannibalism or omnivorism can be adaptation strategies to the lack or shortage
of food, other types of strategies or behaviors can be induced by this lack of food or by the
hostility of the habitat, such as migration. In fact, most predator-prey systems in the wild
are not isolated, so it is important to consider the effects of the presence of some number
of immigrants. In [43] we focus on the works that study how the inclusion of immigration
changes the dynamics of the classic Rosenzweig-MacArthur and Lotka-Volterra models.

Although we have chosen the previous topics as the thread of our review, in many of
the considered works these ones appear combined with other biological characteristics such
as prey refugee, hunting cooperation or with different types of functional responses. Down
below we make some considerations and give some references about these topics.

Firstly, we recall that in ecology, a functional response is the intake rate of a predator as
a function of food density. The most usual classification of functional responses is the one
given by C. S. Holling, in which three types of responses are considered. The type I functional
response assumes that the consuming and hunting rates are linear up to a maximum where
they become constant. This linear increase assumes that the time needed by the predator to
process food is negligible and that consuming food does not interfere with searching food.
This is the functional response used in the Lotka-Volterra model.

The type II functional response is given by f(x) = ax/(1 + ahx), where x denotes the
food or prey density, a is the rate at which the predator encounters food items per unit of
food density, and h is the average time spent on processing a food item. This functional
response assumes that the consumption rate is decelerated with increased population as a
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consequence of a limited capacity in searching and processing food. This is the functional
response considered in the Rosenzweig-MacArthur model [114], which is a classical model
with logistic growth of the form:
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In type III functional response, the consumption rate is more than linear at low levels of
resource. This is suitable for instance in a population of predators that has to learn how to
hunt efficiently. This functional response is given by f(x) = nxp/(ap + xp), where a and n
are positive and p is an integer with p > 1.

These three types of functional responses are widely used in population dynamics models
and specially in predator-prey models, not only on ODE models but also on discrete models,
diffusion models, stochastic or fractional order models. Some interesting recent works that
study this kind of functional responses are [3, 25, 39, 102, 142, 146].

There are other types of functional responses, for example the one proposed by Taylor,
also known sometimes as Holling type IV functional response, which is given by the function

h(x) =
qx

x2 + bx+ a
,

where b � 0. Other models consider a functional response of ratio-dependent type, in which
the consider function is h(x) = a/x, with a 2 R.

Regarding the existence of prey refuge, it has also special interest in the study of predator-
prey populations, and many scholars have made great achievements in this aspect. There are
interesting works on this subject apart from the ones that we include in [43], i.e., those related
to the main topics of the work. Some interesting examples can be found in the following
references [73, 74, 94, 101, 120].

Finally, we would like to note that the third characteristic that we have mentioned, hunting
cooperation on predators, has been investigated by many authors in mathematical modeling,
but most of the time independently of the effect of fear on prey [11,48,104,112,129]. In [43]
we focus on the combination of both hunting cooperation and fear effect, which we believe
is particularly important due to the ecological evidence. For example, wolves cooperate
during hunting and when they are present, elks use anti-predator strategies and avoid areas
frequented by the wolves [113]. Elks respond to the presence of wolves by altering foraging,
vigilance, habitat selection, patterns of aggregation and sensitivity to environment [35, 36,
137,138]. In the same way, while lionesses show cooperative hunting behaviors [126], zebras
are affected by fear of predation risk, reaching areas where the encounter with lionesses is
less frequent [33].

As we have said, in [43] we focus on models with Allee effect, with fear effect, with
cannibalism and with immigration. We compare the proposed models whenever it is possible,
and we analyze how the inclusion of different biological characteristics affects the dynamics.

Some of the stated models show a very rich dynamics which is much more realistic that
the one of the first historical models. The following are some of the conclusions drawn from
the review performed.
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The inclusion of Allee effect in a predator-prey system can have important effects on the
dynamics; it can stabilize or destabilize the system or cause that the solutions of the system
take a much longer time to reach a stable equilibrium point as can be seen in [59, 100].
We note that the Allee effect can produce different consequences depending on whether it
is considered in the prey species or in the predator species, see for example the works of
Merdan [100] and Guan, Liu and Xie [61]. Also limit cycles can appear in systems with
Allee effect, as analyzed in the work of Wang, Xi and Wei [134], and even two limit cycles
can appear as proved in [58].

The conclusions about the influence of fear effect are not the same in all the studied
models. Considering a system with linear functional response and specialist predators, in
[135] the authors show that fear does not affect the dynamics, but considering omnivorous
predators, in [145] it is shown that the increase of the fear constant decreases the population
density of the species in the singular point and can even cause extinction. Also for the system
considered in [135], it is proved that if we change the functional response from lineal to
Holling type II, then the fear affects the dynamics: a value large enough for the fear parameter
can help to maintain the asymptotic stability of a singular point.

The stabilizing effect of fear is also showed when combined with other biological char-
acteristics. In [105] the fear effect is combined with hunting cooperation and it is shown that
when the system has oscillating behaviors, the increase of hunting cooperation or the increase
of fear effect produces the stabilization. Also a stabilizing effect appears when combining the
fear effect with prey refugee, as shown in [144].

In contrast, in [116] we see that the stabilizing effect does not appear when fear is com-
bined with Allee effect. In this case the only consequence is a reduction of the population
density in the positive singular point. Even replacing the usual Allee effect with a modi-
fied additive Allee effect, which in general gives rise to a more complex dynamics, similar
conclusions are obtained. This is studied in in [79].

Cannibalism had been principally considered in the predator species, and in that case the
results agreed that cannibalism stabilizes the system and causes persistence in a population
doomed to go extinct, but we have seen that considering cannibalism in prey species can
produce the opposite result, as it can destabilize the system [10].

Regarding the presence of immigration we can observe that it has a stabilizing effect, re-
ducing the amplitude of oscillations when they exist [127]. Even very small immigration can
cause that cyclic populations be stabilized, as proved in [128]. Furthermore, this stabilization
occurs whether immigration occurs on prey or predators.

We see, therefore, that population models have come a long way since the first Lotka-
Volterra systems, and they are becoming more and more realistic. Even so, and after having
analyzed the literature, there are still many open problems that are of interest to improve
the existing models and that we plan to address in the future, as will be specified in the
conclusions of the manuscript.

Finally, we would like to highlight that in most works studying populations dynamics, the
authors start by doing variable changes to obtain equivalent systems, for example by writing
them down in a dimensionless form, but, in many cases, those systems are transformed into
Kolmogorov systems, which again reinforces the usefulness of these systems that we have
been studying throughout the manuscript.
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7.2 The Rosenzweig-MacArthur model as a Kolmogorov sys-
tem

Rosenzweig and MacArthur introduced in [114] the following predator-prey model
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where the dot denotes the derivative with respect to the time t, x � 0 denotes the prey
density and y � 0 denotes the predator density. The parameter � > 0 is the death rate of the
predator, the function mx/(b+x) are the prey caught per predator per unit time, the function
rx(1 � x/K) is the growth of the prey in the absence of predator, and c > 0 is the rate of
conversion of prey to predator. This Rosenzweig-MacArthur system is a particular system of
the general predator-prey systems with a Holling type II functional response (see [69, 70]).

In [71] Huzak reduced the study of the Rosenzweig-MacArthur system to the study
of a Kolmogorov polynomial differential system. In order to do that the first step is to
do the rescaling (x, y, b, c, �) = (x/K, (m/rK)y, b/K, cm/r, �/r). After denoting again
(x, y, b, c, �) by (x, y, b, c, �) and doing a time rescaling multiplying by b + x, the obtained
Kolmogorov polynomial differential system of degree three is

ẋ = x(�x2 + (1� b)x� y + b),

ẏ = y((c� �)x� �b),
(7.2.1)

where b, c and � are positive parameters. It is interesting to study this system in the positive
quadrant of the plane R2, where it has ecological meaning. The work of Huzak is focused
in the study of the periodic sets that can produce the canard relaxation oscillations after
perturbations. He finds three types of limit periodic sets and studies their cyclicity by using
the geometric singular perturbation theory and the family blow up at (x, y, �) = (0, br/m, 0).
He proves that the upper bound on the number of limit cycles of the system is 1 or 2 depending
on the parameters.

We want to complete the study of the dynamics of systems (7.2.1) by classifying all
their phase portraits on the closed positive quadrant of the Poincaré disk, as in this way we
also can control the dynamics of the system near the infinity. This classification is given in
the following result, except for the case with the parameters satisfying 0 < b� < c � �,
�(�(b+1)+ c(b� 1))2 � 4c(c� �)2(c� �(b� 1)) < 0 and 1+ c� d� b� bd > 0, in which
we make a conjecture about the expected global phase portrait.

Theorem 7.2.1. The global phase portrait of system (7.2.1) in the closed positive quadrant
of the Poincaré disk is topologically equivalent to one of the three phase portraits of Figure
7.2.1 in the following way:

• If b� � c� �, the phase portrait is equivalent to phase portrait (A).

• If 0 < b� < c � � and �(�(b + 1) + c(b � 1))2 � 4c(c � �)2(c � �(b � 1)) � 0, the
phase portrait is equivalent to phase portrait (B).
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• If 0 < b� < c � �, �(�(b + 1) + c(b � 1))2 � 4c(c � �)2(c � �(b � 1)) < 0 and
1 + c� d� b� bd < 0, the phase portrait is equivalent to phase portrait (C).

(A) (B) (C)

Figure 7.2.1: Phase portraits of system (7.2.1) in the positive quadrant of the Poincaré disk.

Conjecture. The global phase portrait of system (7.2.1) in the closed positive quadrant of
the Poincaré disk if 0 < b� < c� �, �(�(b+1)+ c(b� 1))2 � 4c(c� �)2(c� �(b� 1)) < 0
and 1 + c� d� b� bd > 0, is also topologically equivalent to the one in Figure 7.2.1(C).

In Figure 7.2.2 are represented the regions and surfaces in the parameters space in which
each one of the phase portraits are realized. In the region I and over the surface S1 the phase
portrait is the one in Figure 7.2.1(A), and in the region III the phase portrait is the one in
Figure 7.2.1(B). In region II there are two subregions, II-a and II-b. It is proved that in the
region II-a the phase portrait is the one in Figure 7.2.1(C) and we conjecture that the phase
portrait is the same in the region II-b and over the surfaces S2 and S3.

7.2.1 Finite singular points
First we study the finite singular points of system (7.2.1) in the closed positive quadrant.
The origin P0 = (0, 0) and the point P1 = (1, 0) are singular points for any values of the
parameters, and P2 =

�
b�/(c� �), (�bc(� + b� � c))/(c� �)2

�
is a positive singular point

if c 6= � and 0 < b� < c� �. Note that if b� = c� �, then P1 = P2.
Now we study the local phase portraits at these singular points. The origin is a saddle

point, as the eigenvalues of the Jacobian matrix at this point are b and ��b. At the point P1

the eigenvalues are �b� 1 and ��b+ c� �. The first eigenvalue is always negative, but we
distinguish three cases depending on the second one. If c� � < b�, then P1 is a stable node;
if c� � > b�, then P1 is a saddle. If c� � = b�, P1 is a semi-hyperbolic singular point, and
from Theorem 1.2.3 we obtain that P1 = P2 is a saddle-node.

At the singular point P2 the eigenvalues of the Jacobian matrix are

�1,2 =
2

(c� �)2
(A±

p
�B),

where

A = �(c� �)� b�(c+ �) and B = �(�(b+ 1) + c(b� 1))2 � 4c(c� �)2(c� �(b� 1)).
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Figure 7.2.2: The regions I, II-a, II-b, III and the surfaces separat-
ing the different phase portraits: S1 : {d = c/(b+ 1) | b, c � 0}, S2 :
{d = (1 + c� b)/(b+ 1) | b, c � 0, (1 + c� b)/(b+ 1) < c/(b+ 1)} and S3 :
{d = c(1� b)/(1 + b) | b, c � 0}.

.

If B < 0, then the eigenvalues are complex. In this case, for A > 0, the singular point
P2 is an unstable focus, and for A < 0 it is a stable focus. We deal with this case B < 0 in
Section 7.2.4, where we study the Hopf bifurcation which takes place at P2.

If B = 0, we have �1 = �2 = A/(c � �)2 and in this case A cannot be zero, because if
A = 0, then b = (c� �)/(c+ �), and replacing this expression, B = �4c2(c� �)3/(c+ �),
so one of the conditions c = 0 or c� � = 0 must hold, but this is not possible as c > 0 from
the hypotheses, and if c = �, then b = 0 and again this contradicts the hypotheses. Then
A 6= 0 and its sign determines if the singular point is either a stable or an unstable node.

If B > 0 both eigenvalues are real. The determinant of the Jacobian matrix is

� b2c�

(c� �)2
(b� + � � c),

which is positive because the singular point P2 exists only if condition b� < c � � holds.
Then both eigenvalues are nonzero and have the same sign, particularly, if A > 0 both are
positive and P2 is an unstable node, and if A < 0 both are negative and P2 is a stable node.

The local phase portrait of the singular point P2 in the case with A = 0 will be proved in
Subsection 7.2.4.

In summary, we describe in Table 7.2.1 the finite singular points according to the values
of the parameters b, c and �.
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Case Conditions Finite singular points
1 b� > c� � P0 saddle, P1 stable node
2 b� = c� � P0 saddle, P1 saddle-node
3 0 < b� < c� �, B � 0, A > 0 P0 saddle, P1 saddle, P2 unstable node
4 0 < b� < c� �, B � 0, A < 0 P0 saddle, P1 saddle, P2 stable node
5 0 < b� < c� �, B < 0, A > 0 P0 saddle, P1 saddle, P2 unstable focus
6 0 < b� < c� �, B < 0, A < 0 P0 saddle, P1 saddle, P2 stable focus
7 0 < b� < c� �, B < 0, A = 0 P0 saddle, P1 saddle, P2 weak stable focus

Table 7.2.1: The finite singular points in the closed positive quadrant.

7.2.2 Infinite singular points
Now we consider the Poincaré compactification of system (7.2.1) as it allows us to study the
behavior of the trajectories near infinity.

In chart U1 system (7.2.1) writes

u̇ = uv2 � b(� + 1)uv2 + (b+ c� � � 1)uv + u,

v̇ = uv2 � bv3 + (b� 1)v2 + v.
(7.2.2)

The only singular point over v = 0 is the origin of U1, which we denote by O1. The linear
part of system (7.2.2) at the origin is the identity matrix, so O1 is an unstable node.

In chart U2 system (7.2.1) writes

u̇ = �u3 + (� + 1� b� c)u2v + b(� + 1)uv2 � uv,

v̇ = (� � c)uv2 + b�v3.
(7.2.3)

The origin of U2 is a singular point, O2, and the linear part of system (7.2.3) at O2 is iden-
tically zero, so we must use the blow up technique to study it. We do a horizontal blow
up introducing the new variable w1 by means of the variable change vw1 = u, and get the
system

ẇ1 = v2w3
1 + (1� b)v2w2

1 + bw1v
2 � w1v,

v̇ = (� � c)w1v
3 + b�v3.

(7.2.4)

Now rescaling the time variable we cancel the common factor v, getting the system

ẇ1 = vw3
1 + (1� b)vw2

1 + bw1v � w1,

v̇ = (� � c)w1v
2 + b�v2.

(7.2.5)

The only singular point on v = 0 is the origin, which is semi-hyperbolic. Applying Theorem
1.2.3 we conclude that it is a saddle-node. Studying the sense of the flow over the axis we
determine that the phase portrait around the origin of system (7.2.5) is the one in Figure
7.2.3(a). If we multiply by v the sense of the orbits on the third and fourth quadrants changes
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and all the points on the w1-axis become singular points. With these modifications we obtain
the phase portrait for system (7.2.4), given in Figure 7.2.3(b). Then we undo the blow up
going back to the (u, v)-plane. We must swap the third and fourth quadrants and shrink the
exceptional divisor to the origin. The phase portrait obtained for system (7.2.3) is not totally
determined in the shaded regions of the third and fourth quadrants (see Figure 7.2.3(c)). This
can be solved by doing a vertical blow up but, in our case, it is not necessary because we only
need to know the phase portrait of O2 in the positive quadrant of the Poincaré disk, which
corresponds with the positive quadrant in the plane (u, v), in which the phase portrait is well
determined.

v

w1

(a) System (7.2.5).

v

w1

(b) System (7.2.4).

v

u

(c) System (7.2.3).

Figure 7.2.3: Desingularization of the origin of system (7.2.3).

As a conclusion the local phase portrait at the infinite singular points is the same inde-
pendently of the values of the parameters, so in all cases of Table 7.2.1 the origin of chart U1,
i.e., the singular point O1, is an unstable node and the origin of chart U2, i.e., the singular
point O2 has only one hyperbolic sector on the positive quadrant of the Poincaré disk being
one separatrix at infinity and the other on x = 0.

7.2.3 Cases with no singular points in the positive quadrant

In the two first cases of Table 7.2.1 there are no singular points in the positive quadrant. The
finite singular points are the origin, denoted by P0, and P1, which are both over the axes.
The axes are invariant lines so there cannot exist a limit cycle surrounding these singular
points. Therefore, as we have determined the local phase portrait at the finite and infinite
singularities, and we know there are no limit cycles, we can study the global portrait in the
first quadrant of the Poincaré disk.

In both cases we obtain the same result since in the case in which P1 is a saddle-node,
studying the sense of the flow we determine that the parabolic sector of the saddle-node is
always on the positive quadrant of the Poincaré disk. Analyzing all the possible ↵ and !-
limits, the only possibility is that all the orbits leave the infinite singular point O1 and go to
the finite singular point P1. This phase portrait is given in Figure 7.2.1 (A).
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7.2 The Rosenzweig-MacArthur model as a Kolmogorov system

7.2.4 Cases with singular points in the positive quadrant
Existence of limit cycles

Theorem 7.2.2. If 0 < b� < c � � and A > 0, then there exists at least one limit cycle
surrounding singular point P2.

Proof. If conditions 0 < b� < c� � and A > 0 hold, then we have case 3 or 5 of Table 7.2.1.
In both cases singular point P1 is a saddle which has an unstable separatrix on the positive
quadrant, P2 is either an unstable node or an unstable focus, and O1 is an unstable node. By
Poincaré-Bendixon theorem, there must exists at least one limit cycle which is the !-limit
of the orbits leaving O1, the orbits leaving P2 and the separatrix of P1, as there are no other
singular points that can be the !-limit of all these orbits.

In cases 5, 6 and 7 of Table 7.2.1, the Jacobian matrix at the point P2 has complex eigen-
values because B < 0. In these cases we study the existence of Hopf bifurcation, leading to
the following result.

Theorem 7.2.3. The equilibrium P2 of system (7.2.1) undergoes a supercritical Hopf bifur-
cation at b0 = (c � �)/(c + �). For b > b0 the system has a unique stable limit cycle
bifurcating from the equilibrium point P2.

Proof. The Jacobian matrix at this equilibrium is

A(b) =

0

BB@

�b�(c(b� 1) + �(b+ 1))

(c� �)2
� b�

c� �

�bc(b� + � � c)

c� �
0

1

CCA ,

and it has eigenvalues µ(b)± !(b)i, where

µ(b) =
b

2(c� �)2
A and !(b) =

b

2(c� �)2
p
��B.

We get µ(b0) = 0 for

b0 =
c� �

c+ �
.

We are working under condition B < 0 and from this condition it can be deduced that
c� � > 0, so the expression obtained for b0 is positive. Therefore, at b = b0, the equilibrium
point P2 has a pair of pure imaginary eigenvalues ±i!(b) and the system will have a Hopf
bifurcation if some Lyapunov constant is nonzero and (dµ/db)(b0) 6= 0.

The equilibrium is stable for b > b0 (i.e., for A < 0) and unstable for b < b0 (i.e., for
A > 0). In order to analyze this Hopf bifurcation we will apply the results on Section 1.8,
so we must prove if the genericity conditions are satisfied. We check that the transversality
condition is satisfied as

dµ

db
(b0) = � �

2(c� �)
< 0,

and the sign is determined because c� � > 0.
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To check the second condition we must compute the first Lyapunov constant. We fix the
value b = b0 and then the equilibrium P2 has the expression

P2 =

✓
�

c+ �
,

c2

(c+ �)2

◆
.

We translate P2 to the origin of coordinates obtaining the system

"̇1 = �"31 �
�

c+ �
"21 � "1"2 �

�

c+ �
"2,

"̇2 = (c� �)"1"2 +
c2(c� �)

(c+ �)2
,

which can be represented as

"̇ = A"+
1

2
B(", ") +

1

6
C(", ", "),

where A = A(b0) and the multilinear functions B and C are given by

B(", ⌘) =

0

B@
� 2�

c+ �
"1⌘1 � "1⌘2 � "2⌘1

(c� �)"1⌘2 + (c� �)"2⌘1

1

CA ,

C(", ⌘, ⇣) =

0

@
6"1⌘1⇣1

0

1

A .

We need to find two eigenvectors p, q of the matrix A satisfying

Aq = i!q, AT p = �i!p, and < p, q >= 1,

as for example

q =

0

B@
� �

c+ �

i!

1

CA and p =

0

BB@

�c+ �

2�

i!
(c+ �)3

2c2�(c� �)

1

CCA .

Now we compute

g20 = hp,B(q, q)i = !2(c+ �)5 � c2�2(c+ �)

2�c4(c� �)
+

!(c+ �)3

2c2�(c� �)
i,

g11 = hp,B(q, q)i = � �(c+ �)

2c2(c� �)
, g21 = hp, C(q, q, q)i = � 3(c+ �)4

4c4(c� �)2
,
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7.2 The Rosenzweig-MacArthur model as a Kolmogorov system

and the first Lyapunov coefficient

`1 =
1

2!2
Re(ig20g11 + !g21) = � (c+ �)4

4c4!(c� �)2
,

which is negative for any values of the parameters, and so the second condition of theorem
1.8.4 is satisfied, and we can conclude that a unique stable limit cycle bifurcates from the
equilibrium point P2 through a Hopf bifurcation for b < b0 with b0�b sufficiently small.

Proposition 7.2.4. If 0 < b� < c� � and A > 0, the limit cycle surrounding singular point
P2 is unique.

Proof. This result follows from [83] by proving that system (7.2.1) with 0 < b� < c� � and
A > 0 satisfies conditions (i)-(iv) in Section 2 of [83].

Condition (i) holds taking g(x) = (c � �)x, which satisfies g(0) = 0 and g0(x) > 0 for
all x � 0, as we have assumed c� � > 0.

Condition (ii) holds for f(x) = �x2 + (1 � b)x + b, K = 1 and a = (1 � b)/2. From
condition A > 0 we deduce that

�(c� �)� b�(c+ �) > 0 ) c� �

c+ �
>

b�

�
) 1 >

c� �

c+ �
> b,

and condition b < 1 guarantees that a > 0.
Condition (iii) holds for � = b� and x⇤ = �b/(c � �). It can be proved that with the

expressions chosen for a and x⇤ the condition x⇤ < a, is equivalent to the condition A > 0:

x⇤ < a , �b

c� �
<

1� b

2
, 2�b < (1�b)(c��) , �b+bc < c�� , b <

c� �

c+ �
, A > 0.

Condition (iv) is satisfied with

x⇤ =
�b

c� �
and x⇤ = 1� bc

c� �
.

We have
d

dx

xf 0(x)

g(x)� �
=

�2x2(c� �) + 4x�b(b� 1)

((c� �)x� �b)2
,

which is always negative as the polynomial in the numerator is negative in x = 0 and has no
real roots.

Then, as conditions (i)–(iv) hold for our systems, we can conclude that the limit cycle is
unique.

Remark 7.2.5. Theorem 7.2.3 proves that the unique limit cycle of system (7.2.1) appears
from the equilibrium point P2 in a Hopf bifurcation. From the proof of Theorem 7.2.3 the
singular point P2 when B < 0 and A = 0 is a weak stable focus.

So far we have not proved if in cases 4, 6, and 7 of Table 7.2.1 there are or not limit
cycles. The following result proves that in some subcases there are not limit cycles.
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Theorem 7.2.6. If 0 < b� < c� �, A < 0 and 1 + c < d+ b+ bd, then system (7.2.1) does
not have periodic orbits in the set {(x, y) 2 R2 : x, z � 0}.

Proof. Let

f(x, y) = x(�x2 + (1� b)x� y + b) and g(x, y) = y((c� �)x� �b).

In order to prove the non existence of periodic orbits we use Bendixson-Dulac Theorem
that states that if there exists a function '(x, y) such that the term

�(x, y) =
@('f)

@x
+
@('g)

@y

does not change sign in a simply connected set S , then there are no periodic orbits on S .
We consider the function '(x, y) = 1/x. Then:

�(x, y) = 1 + c� d� 2x� b(d+ x)

x
.

We observe that there are no periodic orbits in the set

{(x, y) 2 R2
+ : x � 1},

because ẋ < 0 for all the points in this set, and for the same reason there are no periodic
orbits crossing the line {x = 1, y � 0}. As a consequence we can restrict to the case x < 1
for which we obtain

�(x, y) < 1 + c� d� bd

x
� b < 1 + c� d� bd� b.

Then �(x, y) < 0 in
�
(x, y) 2 R2 : 0  x  1, y � 0

 
if 1 + c � d � b � bd < 0 and we

conclude that there are no periodic orbits in the whole set
�
(x, y) 2 R2 : x � 0, y � 0

 
.

Conjecture. If 0 < b� < c � �, A < 0 (i. e, we are in cases 4,6, or 7 of Table 7.2.1) and
1 + c > d+ b+ bd, there are not limit cycles.

We have numerical evidences that the conjecture holds.

7.2.5 Phase portraits on the positive quadrant of the Poincaré disk
Now we study the global phase portraits of system (7.2.1) on the positive quadrant of the
Poincaré disk when there is a singular point in the positive quadrant, assuming the previous
Conjecture.

In case 3 of Table 7.2.1, by Theorem 7.2.2 there exist a unique limit cycle which is the
!-limit of all orbits leaving O1 and P2, and also the !-limit of the unstable separatrix leaving
P1 in the positive quadrant. Then the global phase portraits is the one in Figure 7.2.1(B).

In case 5 of Table 7.2.1 we have again that there exists a unique limit cycle attracting all
orbits in the positive quadrant. The global phase portrait is the same as the one in case 3 but
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here the singular point in the positive quadrant is an unstable focus instead of an unstable
node. As the local phase portraits of these two singular points are topologically equivalent
we have again phase portrait (B) of Figure 7.2.1.

In cases 4, 6 and 7 of Table 7.2.1, if 1 + c < d + b + bd, we have proved that there are
no limit cycles. In case 4 the only possibility is that the stable node P2 is a global attractor
for all orbits in the positive quadrant, and we have the global phase portrait given in Figure
7.2.1(C). In cases 6 and 7 of Table 7.2.1, P2 is a stable focus and attracts all the orbits of the
positive quadrant. As the local phase portrait of a stable focus is topologically equivalent to
a stable node, we also have here the phase portrait of Figure 7.2.1(C).

In the cases 4, 6 and 7 of Table 7.2.1, if the conditions 1 + c < d+ b+ bd does not hold,
we have assumed that there are not limit cycles, so the conjectured phase portraits will be the
same.

7.2.6 Conclusions
In this section we consider the Kolmogorov system (7.2.1), studied in [71] and obtained from
the classical Rosenzweig-MacArthur model.

We study the global dynamics of system (7.3.11) and give their phase portraits in the
closed positive quadrant of the Poincaré disk in Theorem 7.2.1.

If the parameters satisfy 0 < b� < c��, �(�(b+1)+c(b�1))2�4c(c��)2(c��(b�1)) <
0 and 1 + c� d� b� bd > 0, we are not able to determine the global phase portrait but we
make a conjecture which states that in that case the global phase portrait coincides with the
one in Figure 7.2.1(C). This point remains as an open problem and it would be interesting to
study it in the future.

Throughout this section we study the local phase portraits at the finite singular points, the
dynamics at the points of the infinity by means of the Poincaré compactification, and we also
analyze the existence of limit cycles.

We determine the conditions for which the system has at least one limit cycle in Theorem
7.2.2 and also more restrictive conditions for which the limit cycle is unique in Proposition
7.2.4 and for which it appears trough a Hopf bifurcation in Theorem 7.2.3.

7.3 A two prey and one predator system

In ecosystems in which predators and prey coexist, predators can influence the evolution of
their prey directly by eating them, but also indirectly. Theoretical biologists have pointed out
that indirect effects can be comparable or even larger than the direct effects.

The role played by indirect effects in population dynamics has been investigated in the
last decades, as can be seen for example in [13, 26, 57, 64, 93, 95, 99, 115, 123, 133, 140].

It has been pointed out that predator can alter the morphology or the behavior of the preys.
In particular, the preys, in order to avoid contacts with predators, may reduce their normal
activity or may stay hidden most of the time. An example (see [28]) is the case of indirect
effects by the existence of prey refuges, a characteristic which has been previously mentioned
in Section 7.1.
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Many kinds of indirect effects have been described in the literature (see [99] for a detailed
discussion), for example, indirect interactions in a plankton community were studied in [30].
The authors analyzed the effects of predator Daphnia over two groups of Phytoplankton of
different morphology (see [95], [115]), having Phosphorous as resource (see [115] or [64]).
In this case the predator prefers to predate the smaller size prey group and the other one take
advantages of it. The model has been analytically studied in [30] by using persistence theory
(see [122], [20]) and in [32] by bifurcation theory. Both studies suggest the importance of
indirect effects of predation in order to describe cases of coexistence in real life. In [22]
seasonal indirect effects have been considered showing the possibility of chaotic motion,
while in [23, 24] the authors have considered also the stochastic version of the model.

In [119] the authors consider the following two-prey one-predator model:

ẋ = rx
⇣
1� x

k

⌘
� cxz

a+ ↵⌘y + x
,

ẏ = y(� � �z),

ż =
bxz

a+ ↵⌘y + x
+ �yz �mz,

(7.3.6)

where x, y, z represent the population densities of the two preys and of the predator respec-
tively.

In this model, for the interaction between the first prey and the predator, they considered
a Holling type II functional response, where the handling time of predator for the second
prey is also involved, while for the interaction between the second prey and the predator
they considered a Lotka-Volterra functional response. It is also assumed that there is no
intraspecific interaction in the second prey population and its growth is exponential; as a
consequence there is a huge availability of the second prey in the absence of predator and
there is no searching time for the second prey population. They found necessary and sufficient
conditions for existence and stability of a non trivial equilibrium (see [119]).

In order to recover a more complex and realistic behavior we consider a modification of
the model which takes into account indirect effects of predation.

Regarding the model (7.3.6), since there is a higher availability of the second prey, it is
natural to suppose that the predator prefers to predate the second prey and the first one take
advantages of it. A simple way to model this situation consists in adding the indirect effect
term �Lyz in the second equation and the term Lyz in the first one, with the parameter L > 0
describing the intensity of indirect effects. The systems becomes

ẋ = rx
⇣
1� x

k

⌘
� cxz

a+ ↵⌘y + x
+Lyz,

ẏ = y(� � �z)�Lyz,

ż =
bxz

a+ ↵⌘y + x
+ �yz �mz.

(7.3.7)

We consider initial conditions x(0) � 0, y(0) � 0, z(0) � 0 and we assume all the pa-
rameters are positive and with the following meaning: r and k are the intrinsic growth rate
and carrying capacity of the first prey respectively; � and � are the intrinsic growth rate and
predation rate of the second prey respectively; a is the half saturation value of the predator;
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b is the maximum growth rate of the predator; c is the maximum rate of predation for first
prey item; m is the death rate of the predator in the absence of prey; ↵ is the quotient of the
handling time of the predator per second prey item and the handling time of the predator per
first prey item; ⌘ is the quotient of the capture rate of the second prey and the capture rate
of the first prey; and finally, � is the efficiency with which the second prey consumed by the
predator gets converted into predator biomass (see [119] for more details).

We note that the system is not of Kolmogorov type, indeed the first equation cannot be
written in the form

ẋ = xf(x, y, z).

Such systems can be regarded as semi-Kolmogorov systems using a terminology introduced
in [22].

For system (7.3.7) we perform the stability analysis of singular points and we analyze the
existence of limit cycles by Hopf bifurcation, as they play an important role in the qualitative
theory of differential systems. The rest of the chapter is organized as follows: in Subsection
7.3.1 we present a preliminary analysis of the features of the model on the invariant planes,
while in Subsection 7.3.2 we provide a study of the existence and stability of singular points.
In Subsection 7.3.3 we discuss the problem of persistence of the three species while in Sub-
section 7.3.4 we present a case of Hopf bifurcation. Finally, Subsection 7.3.5 contains some
conclusive remarks.

7.3.1 Analysis of the system on the invariant planes

First, we show that the dynamics of the system, considering positive initial conditions, is
contained in the first octant.

Theorem 7.3.1. The set {(x, y, z) 2 R3 : x, y, z � 0} is positively invariant for system
(7.3.7).

Proof. At first we must note that the planes z = 0 and y = 0 are invariant. On the plane
x = 0 we have ẋ = Lyz > 0, then solutions do not leave the positive octant, that is, the set
{(x, y, z) 2 R : x, y, z � 0} is positively invariant.

We analyze the dynamics on the boundary of {(x, y, z) 2 R : x, y, z � 0}. In order to
do that, we first study the dynamics on the coordinate axes and then on the planes y = 0 and
z = 0.

The three axes are invariant for the dynamics; in particular, any solution with initial con-
ditions on the x-axis tends to the equilibrium (k, 0, 0), any solution with initial conditions on
the z-axis tends to the equilibrium (0, 0, 0), and any solution with initial conditions on the
y-axis satisfies that y(t) tends to infinity when t tends to infinity. See Figure 7.3.1.
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Figure 7.3.1: The dynamics on the axes.

Now we present some considerations about the dynamics on the invariant planes. On the
invariant plane z = 0 the system is

ẋ = rx
⇣
1� x

k

⌘
,

ẏ = �y,

and for this system solutions are unbounded except that on the positive x-axis. The equilib-
rium points are (0, 0) and (k, 0). The eigenvalues of DF (0, 0) are r and �, which are both
positive, so this equilibrium is an unstable node. The eigenvalues of DF (k, 0) are �r and �,
so the equilibrium point is a saddle.

On the plane y = 0 the system is

ẋ = rx
⇣
1� x

k

⌘
� cxz

a+ x
,

ż =
bxz

a+ x
�mz,

(7.3.8)

and the singular points are (0, 0), (k, 0). If

kb > m(k + a),

there exists a further equilibrium point with coordinates (am/(b�m), z̄) where

z̄ =
r

c

✓
ba

b�m

◆✓
1� ma

k(b�m)

◆
.

The eigenvalues of DF (0, 0) are r and �m, so the origin is a saddle. The eigenvalues of
DF (k, 0) are �r and bk/(a + k) � m. The first one is negative and the second changes it
sign when bk = (a + k)m. When bk/(a + k) �m < 0, the singular point (k, 0) is a stable
node, and when bk/(a + k) �m > 0, it loses its stability, it becomes a saddle and the third
equilibrium appears.

The x-nullclines are x = 0 and z = (r/(ck))(k � x)(a + x). If bk/(a + k) = m, then
ż = (ba(x � k))/((a + x)(a + k))z is positive if x > k, and negative if x < k. The local
phase portrait in this case is given in Figure 7.3.2.
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x-nullclines
z-nullclines

x

z

E0E 1E

Figure 7.3.2: Phase portrait on the plane y = 0 with bk/(a+ k) = m.

When bk/(a+k) > m, the equilibrium (ma/(b�m), z̄) appears, as is it shown in Figure
7.3.3. The eigenvalues of the Jacobian matrix of system (7.3.8) at E2 are

�1,2 =
A1 ±

p
A2

A3
,

where

A1 = �cmr (k(m� b) + a(m+ b)) ,

A2 = c2mr
⇣
4bk(b�m)2(m(a+ k)� bk) +mr (k(m� b) + a(m+ b))2

⌘
,

A3 = 2bck(b�m).

(7.3.9)

x

z

x-nullclines
z-nullclines

E0E E1

E2

Figure 7.3.3: Phase portrait on the plane y = 0 with bk/(a+ k) > m.

Note that A3 > 0 by the existence conditions of the equilibrium point. These eigenvalues
are complex if A2 < 0, and in that case they have positive real part if

m <
b(k � a)

k + a
, (7.3.10)
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in which case E2 is unstable. If

m >
b(k � a)

k + a
, (7.3.11)

the real part of the eigenvalues is negative, so E2 is asymptotically stable. In the case with
A2 > 0, as the determinant of the Jacobian matrix is positive, it is not possible that the
eigenvalues have different sign. Then, if A1 is positive, both eigenvalues are positive and
E2 is unstable. In other case, from the conditions A1 +

p
A2 < 0 and A1 �

p
A2 < 0, we

would get that A1 < �
p
A2 < 0, which is a contradiction. In the same way we obtain that if

A1 < 0, then both eigenvalues are negative and E2 is asymptotically stable.
We give here some results about the possible existence of periodic orbits surrounding the

equilibrium point E2 in the plane y = 0.
The equilibrium point E2 is a Hopf equilibrium if and only if A1 = 0 and A2 < 0, it is,

when m = b(k� a)/(k+ a). Note that this occurs only for a < k. We recall that, in general,
when a differential system ẋ = F (x, µ) in Rn has an equilibrium x0 with eigenvalues ±!i,
it can exhibit a Hopf bifurcation, it is, a local bifurcation in which the equilibrium point
loses stability as a pair of complex conjugate eigenvalues of the linearization around the
equilibrium point cross the imaginary axis of the complex plane. To show that this bifurcation
takes place, it is necessary to compute the first Lyapunov coefficient `1(x0) of the differential
system at the equilibrium. When `1(x0) < 0, the equilibrium x0 is a weak focus of the
differential system restricted to the central surface of x0, associated to the pair of complex
eigenvalues, which cross the imaginary axis, and the limit cycle that emerges from x0 is
stable. In this case we say that the Hopf bifurcation is supercritical.

Theorem 7.3.2. The equilibrium E2 of system (7.3.8) undergoes a supercritical Hopf bifur-
cation at m0 = b(k� a)/(a+ k) > 0. For m < m0 the system has a unique and stable limit
cycle bifurcating from the equilibrium point E2.

Proof. We use the results presented on Section 1.8 for computing the first Lyapunov coef-
ficient `1 at the equilibrium E2. At first, to simplify calculations, we introduce in system
(7.3.8) a new time variable ⌧ by dt = (a+ x)d⌧ , obtaining the polynomial system:

ẋ =
r

k
x(k � x)(a+ x)� cxz,

ż = bxz �m(a+ x)z.

This system has the positive equilibrium

E2 =

✓
am

b�m
,�abr(m(a+ k)� bk)

ck(b�m)2

◆
,

which is the same as (am/(b�m), z) with the notation previously introduced. The Jacobian
matrix at this equilibrium is

A(m) =

0

BB@

�amr(k(m� b) + a(b+m))

k(b�m)2
� acm

b�m

�abr(m(a+ k)� bk)

ck(b�m)
0

1

CCA ,

212



7.3 A two prey and one predator system

and it has eigenvalues µ(m)± !(m)i, where

µ(m) = �amr(k(m� b) + a(b+m))

2k(b�m)2
and !(m) =

s

�a2bmr(m(a+ k)� bk)

k(b�m)2
.

We get µ(m0) = 0 for

m0 =
b(k � a)

a+ k
,

which is positive because as we have said before, a necessary condition for Hopf bifurcation
is a < k. Moreover

!2(m0) = �abr(a� k)(a+ k)

4k
> 0.

Therefore, at m = m0, the equilibrium point E2 has a pair of pure imaginary eigenvalues
±i!(m) and the system has a Hopf bifurcation. The equilibrium is stable for m > m0 and
unstable for m < m0. In order to analyze this Hopf bifurcation we apply Theorem 1.8.4,
so we must prove if the genericity conditions are satisfied. We check that the transversality
condition is satisfied as

µ0(m0) =
r(a� k)(a+ k)2

8abk
< 0,

where 0 represents the derivative with respect to m, and the sign is determined because a < k.
To check the second condition we must compute the first Lyapunov coefficient. We fix

the value m = m0 and then the equilibrium E2 has the expression

E2 =

✓
k � a

2
,
r(a+ k)2

4ck

◆
.

We translate E2 to the origin of coordinates obtaining the system

"̇1 = � r

k
"31 �

r(k � a)

2k
"21 � c"1"2 �

ck(k � a)

2k
"2,

"̇2 =
2ab

a+ k
"1"2 +

abr(a+ k)2

2ck(a+ k)
"1,

which can be represented as

"̇ = A"+
1

2
B(", ") +

1

6
C(", ", "),

where A = A(m0) and the multilinear functions B and C are given by

B(", ⌘) =

0

BB@

�r(k � a)

k
"1⌘1 � c("1⌘2 + "2⌘1)

2ab

a+ k
("1⌘2 + "2⌘1)

1

CCA ,
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C(", ⌘, ⇣) =

0

B@
�6r

k
"1⌘1⇣1

0

1

CA .

We need to find two eigenvectors p, q of the matrix A satisfying

Aq = i!q, AT p = �i!p, and < p, q >= 1,

as for example

q =
1

c(a� k)!

0

B@
c(a� k)

2

!i

1

CA and p =

0

B@

!

c(a� k)

2
i

1

CA .

Now we compute

g20 = hp,B(q, q)i = 4abk + r(a+ k)(a� k)

4k!(a+ k)
+

1

k � a
i,

g11 = hp,B(q, q)i = r(a� k)

4k!
, g21 = hp, C(q, q, q)i = � 3r

4k!2
,

and the first Lyapunov coefficient

`1 =
1

2!2
Re(ig20g11 + !g21) = �1

4
r!k3(a+ k)2.

This coefficient is negative for any values of the parameters, and so the second condition of
Theorem 1.8.4 is satisfied and we can conclude that a unique and stable limit cycle bifurcates
from the equilibrium point E2 through a Hopf bifurcation for m < m0.

Now we include some numerical experiments. We fix the parameters as follows:

r = k = 1, a = 0.9, b = 1.5, c = 1.

In this case m0 = 0.07894 and the eigenvalues of J(E2) are

�1,2 = ±0.266557 i.

In Figure 7.3.4 we represent the case m = 0.18 > m0, in which the equilibrium is locally
asymptotically stable. In Figure 7.3.5 we represent the case m = 0.05 < m0, in which the
equilibrium loses stability and a limit cycle arises due to Hopf bifurcation.
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100 200 300 400 500 600 700

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

Figure 7.3.4: The time histories and the solution for m = 0.18 > m0. In this case the
equilibrium is locally asymptotically stable and nearby solutions converge to it.
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Figure 7.3.5: The time histories and the solution for m = 0.05 < m0. In this case the
equilibrium is no more locally asymptotically stable and a stable limit cycle attracts nearby
solutions.

We conclude this section by determining a case in which there are no periodic orbits in
{y = 0} \ R3

+:

Theorem 7.3.3. If

r
⇣
1� a

k

⌘
+

bk �m(k + a)

k
< 0,

then system (7.3.8) does not admit periodic orbits in the set {(x, z) 2 R2 : x, z � 0} .

Proof. Let

f(x, z) = rx
⇣
1� x

k

⌘
� cxz

a+ x
and g(x, z) =

bxz

a+ x
�mz.

In order to prove the non existence of periodic orbits we use Bendixson-Dulac Theorem
that states that if there exists a function '(x, z) such that the term

�(x, z) =
@('f)

@x
+
@('g)

@z
does not change its sign in a simply connected set S , then there are no periodic orbits on S .
We consider then function '(y, z) = (a+ x)/x, then:

�(x, z) = r � a

k
r + b�m� 2

r

k
x� am

x
.
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We observe that, since ẋ < 0 for x � k, there are no periodic orbits in the set

{(x, z) 2 R2
+ : x � k},

and for the same reason there are no periodic orbits crossing the half line {x = k, z � 0}.
As a consequence we will restrict to the case x  k for which we obtain

�(x, z) < r � a

k
r + b�m� am

k
.

Then �(x, z) < 0 in {(x, z) 2 R2
+ : x  k} if r � a

k r + b�m� am
k < 0 and we conclude

that there are no periodic orbits in the whole set {(x, z) 2 R2
+}.

Remark 7.3.4. We observe that, for a < k, the condition of Theorem 7.3.3 on the non
existence of periodic orbits

r
⇣
1� a

k

⌘
+ b < m

a+ k

k
,

that is

m > r
k � a

k + a
+

bk

k + a
,

implies

m > b
k � a

k + a
,

and then is compatible with the results of bifurcation analysis.

7.3.2 Existence and stability analysis of equilibria
The first step for studying the dynamics of the system (7.3.7) is to find all the equilibrium
points and to analyze their stability.

Theorem 7.3.5. System (7.3.7) has the following boundary equilibria on @R3
+:

• E0 = (0, 0, 0) for any values of the parameters,

• E1 = (k, 0, 0) for any values of the parameters,

• If kb > m(a+ k), the equilibrium E2 = (ma/(b�m), 0, z̄) with

z̄ =
r

c

✓
ba

b�m

◆✓
1� ma

k(b�m)

◆
.

Proof. This result is obtained from direct calculation.

We also analyze the existence of non-trivial positive equilibria for system (7.3.7).
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Theorem 7.3.6. The system (7.3.7) has at least one positive equilibrium E⇤(x⇤, y⇤, z⇤) if
and only if

�cm� b(� + L)rx⇤
✓
1� x⇤

k

◆
> 0, (7.3.12)

where x⇤ is a solution of the equation

C4x
4 + C3x

3 + C2x
2 + C1x+ C0 = 0,

with the coefficients Ci, i = 0, ..., 4 defined below.

Proof. By direct calculation we obtain the equilibrium E⇤ = (x⇤, y⇤, z⇤), where

z⇤ =
�

� + L
,

y⇤ =
mc

�c+ bL
� (� + L)b

�(�c+ bL)
rx⇤

✓
1� x⇤

k

◆
,

and x⇤ is the solution of the equation

C4x
4 + C3x

3 + C2x
2 + C1x+ C0 = 0. (7.3.13)

We must require that x⇤ satisfies

�cm� b(� + L)rx⇤
✓
1� x⇤

k

◆
> 0

so that y⇤ is positive. This is always satisfied if

kbr
� + L

�
< 4cm. (7.3.14)

Otherwise this is satisfied when

x⇤ 2
 
0,

k

2
�

s
k2

4
� k�cm

br(� + L)

!
[
 
k

2
+

s
k2

4
� k�cm

br(� + L)
,1
!
. (7.3.15)
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The expressions of the coefficients in equation (7.3.13) are given by

C4 =
�

(�c+ bL)2
(� + L)2

�2

b2r2

k2
!,

C3 =
�

(bL+ c�)2
� + L

�

br

k

✓
�2

� + L

�
!br + �c+ bL

◆
,

C2 =
�

(bL+ c�)2
� + L

�

br

k

✓
m!

c� � bL

�
+ (a� k)(�c+ bL) +

� + L

�
!brk

◆
,

C1 =
1

(�c+ bL)2

✓
br
� + L

�
((m! � �a)(�c+ bL)� 2m!�c) + �cm(�c+ bL)+

(b�m)(�c+ bL)2
�
,

C0 =

✓
ma+

!m2c

�c+ bL

◆✓
�c

bL+ c�
� 1

◆
.

We apply Descartes rule of signs in equation (7.3.13) to study the existence of positive
roots. The coefficient of degree zero, C0, is always negative and the coefficient of degree
four, C4, is always positive. This means that there always exist a real positive and a real
negative zero of the polynomial. The other two zeroes can be complex or real with the same
sign.

The other coefficients of the polynomial can be positive, negative or zero and combining
all the possible signs we obtain that:

• If one of the following conditions holds then there exists three or one positive roots of
equation (7.3.13):

– C1 > 0 and C3 < 0.
– C1 > 0, C2 < 0 and C3 = 0.
– C1 = 0, C2 > 0 and C3 < 0.
– The signs of C3, C1 and �C2 are equal.

• In any other case, there exists one positive root of equation (7.3.13).

So that there exist at least one non-trivial interior equilibrium E⇤ = (x⇤, y⇤, z⇤) of the
system (7.3.7) if condition (7.3.12) is satisfied.

Corollary 7.3.7. A sufficient condition for system (7.3.7) has at least one positive equilibrium
E⇤(x⇤, y⇤, z⇤) is

kbr
� + L

�
< 4cm.

Remark 7.3.8. The positive equilibria, if they exist, are all on the plane z = �/(� + L).

Remark 7.3.9. Numerically, we have found different cases according to the existence of
positive solutions for the equation (7.3.13) and the existence of positive equilibria E⇤.
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• There exist systems for which there is only one positive solution x⇤ of equation (7.3.13),
and this solution is such that satisfies condition (7.3.12). As an example the system with
parameters:

a = 1/4, b = m = 1/2, c = ! = r = � = � = L = k = � = 1.

• There are systems for which there is only one positive solution x⇤ of equation (7.3.13),
and this solution does not satisfy condition (7.3.12), so there are no positive equilibria
for system (7.3.7). As an example the system with parameters:

a = b = c = r = � = � = k = � = 1, ! = 4, L = 1/4, m = 0.2.

• There are systems for which there are three positive solutions x⇤ of equation (7.3.13),
and only for one of these solutions condition (7.3.12) holds, so there are one positive
equilibrium for system (7.3.7). As an example the system with parameters:

a = � = 1/10, b = r = � = L = 1/2, c = 1, ! = 2, k = � = 2, m = 0.2.

• Also there are systems for which there are three positive solutions x⇤ of equation
(7.3.13), and none of them satisfies condition (7.3.12), so system (7.3.7) has none pos-
itive equilibria. As an example the system with parameters:

a = � = 1/4, b = � = L = 1/2, c = 1, ! = k = � = 2, r = 1 m = 0.2.

We have not found, numerically, any conditions for which equation (7.3.13) has three
positive solutions x⇤ and the three of them satisfy condition (7.3.12), but we are not able to
exclude this case analytically.

We analyze the local stability of the equilibria. To do this we consider the Jacobian matrix
of the vector field

J(x, y, z) =

0

B@
f1x f1y, f1z
0 � � (� + L)z �y(� + L)

f3x f3y f3z

1

CA

where

f1x = r � 2r

k
x� (a+ !y)cz

(a+ !y + x)2
f3x =

(a+ !y)bz

(a+ !y + x)2
,

f1y =
!cxz

(a+ !y + x)2
+ Lz, f3y = � !bxz

(a+ !y + x)2
+ �z,

f1z = � cx

a+ !y + x
+ Ly, f3z =

bx

a+ !y + x
+ �y �m,

and where we have set for simplicity ! = ↵⌘.

Theorem 7.3.10. The stability of the boundary equilibria is the following:
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• The equilibrium point E0 is always a saddle, the z-axis is the stable manifold and it
has an unstable manifold of dimension two.

• The equilibrium point E1 is a saddle with a stable manifold of dimension one if bk >
m(a+ k), and with a stable manifold of dimension two if bk < m(a+ k).

• The equilibrium point E2 is unstable if � > z(L + �) or if � < z(L + �) and one of
the following statements holds:

– A2 < 0 and condition (7.3.10) holds,

– A2 > 0 and A1 > 0.

The equilibrium point E2 is asymptotically stable if � < z(L + �) and one of the
following statements holds:

– A2 < 0 and condition (7.3.11) holds,

– A2 > 0 and A1 < 0,

where the coefficients Ai are the ones given in (7.3.9).

Proof. The local stability analysis of the equilibria E0 and E1 is the same as in the case
without indirect effects. For the equilibrium E0 = (0, 0, 0) the Jacobian matrix is

J(E0) =

0

@
r 0 0
0 � 0
0 0 �m

1

A ,

so there are two positive eigenvalues and one negative eigenvalue so that E0 is a saddle with a
stable manifold of dimension one, which is the z-axis, and an unstable manifold of dimension
two.

For the equilibrium E1 = (k, 0, 0) we have

J(E1) =

0

BBBB@

�r 0 � ck

a+ k

0 � 0

0 0
bk

a+ k
�m

1

CCCCA
.

Then, if
bk 6= m(a+ k),

E1 is a saddle, with two positive eigenvalues and one negative eigenvalue if

bk > m(a+ k),

and with one positive eigenvalue and two negative eigenvalues if

bk < m(a+ k).
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When the value of bk surpasses the value of m(a+k), a new equilibrium E2 = (ma/(b�
m), 0, z̄) appears, and the equilibrium E1 changes from having an unstable manifold of di-
mension two to an unstable manifold of dimension one. The Jacobian matrix of E2 is

J(E2) =

0

BBBBBBB@

�mr(k(m� b) + a(m+ b)))
bk(b�m)

r(bk �m(a+ k))(ab2L+ cm!(b�m))
bck(b�m)2

� cm

b

0 � +
abr(L+ �)(m(a+ k)� bk)

ck(b�m)2
0

r(bk �m(a+ k))
ck

r(bk �m(a+ k)(ab� +m!(m� b)))
ck(b�m)2

0

1

CCCCCCCA

with eigenvalues

�1 = � +
ab(m(a+ k)� bk)r(L+ �)

ck(b�m)2
, �2,3 =

A1 ±
p
A2

A3
,

and the coefficients Ai given in (7.3.9).
The sign of eigenvalues �2,3 has been analyzed in Subsection 7.3.1. We note that the

expression
�abr(L+ �)(m(a+ k)� bk)

ck(b�m)2

can be written as z(L+ �), so we conclude that the eigenvalue �1 is positive if

z <
�

L+ �
,

and it is negative in the other case. Combining the different possibilities for the three eigen-
values we obtain the conditions for the stability of E2.

Remark 7.3.11. We recall that in the case � = z(L + �), the equilibrium point E2 has two
non-zero eigenvalues in the plane y = 0, as stated in Subsection 7.3.1, and the third eigen-
value is zero. The direction on the flow in the y-direction is determined by the z coordinate.
Note that in this case ẏ = y(L+�)(z�z), so ẏ is positive if z < z and ẏ is negative if z > z.

Remark 7.3.12. We have seen that if (7.3.14) is satisfied, then there exists at least one posi-
tive equilibrium E⇤. We can prove that, at least in this case, the first eigenvalue �1 of J(E2)
is positive, that is E2 is unstable. We recall that �1 is positive if

z̄ =
r

c

✓
ba

b�m

◆✓
1� ma

k(b�m)

◆
 �

L+ �
.

In this case we observe that z̄  kbr

4cm
, in fact

r

c

✓
ba

b�m

◆✓
1� ma

k(b�m)

◆
 kbr

4cm
,

can be rewritten as
[k(b�m)� 2ma]2 � 0,

which is always satisfied.
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When all boundary equilibrium points are unstable we expect that there exist solutions
that are attracted by an interior equilibrium or a limit cycle.

Theorem 7.3.13. The positive equilibrium E⇤ is locally asymptotically stable if and only if
s1, s2, s3 > 0 and s1s2 � s3 > 0, where the constants s1, s2, s3 are defined below.

Proof. The characteristic polynomial of J(E⇤) is given by the following expression:

�3 + s1�
2 + s2�+ s3 = 0,

where s1 = �Tr(J(E⇤)),

s2 =

����
f1x f1y

0 0

����+
����
f1x f1z

f3x 0

����+
����

0 �y
⇤(� + L)

f3y 0

���� ,

and s3 = �det(J(E⇤)), it is,

s1 =m+ r

✓
2x⇤

k
� 1

◆
� �y

⇤ +
c�x

⇤ � (c� + bx
⇤(L+ �))(a+ x

⇤ + y
⇤
!)

(L+ �)(a+ x⇤ + !y⇤)2
,

s2 =m

✓
r � 2rx⇤

k
+

c�(a+ !y
⇤)

(L+ �)(a+ x⇤ + !y⇤)2

◆
� 1

k(L+ �)(a+ x⇤ + !y⇤)3

�
�y

⇤(L+ �)(k(r + �)� 2rx⇤)(a+ x
⇤ + !y

⇤)3 + (bL(r(k � 2x⇤)x⇤ � k�(x⇤ + y
⇤))

+ck��y
⇤ + b�x

⇤(kr � 2rx⇤ � k�))(a+ x
⇤ + !y

⇤)2 + k�x
⇤(b(2c+ L(a+ x

⇤ + y
⇤)

+�(a+ x
⇤)� c�y

⇤))(a+ x
⇤ + !y

⇤)� 2bck�(x⇤)2
�
,

s3 =
�

k(L+ �)(a+ x⇤ + !y⇤)4
�
r�y

⇤(k � 2x⇤)(L+ �)(a+ x
⇤ + !y

⇤)4 + (bk(Lrx⇤ + L�y
⇤

+r�x
⇤)� ck��y

⇤ � 2br(x⇤)2(L+ �))(a+ x
⇤ + !y

⇤)3 + x
⇤ (abr(k � 2x⇤)(L+ �)

�ck��y
⇤ � 2br(x⇤)(L+ �) + bk(Lrx⇤ � 2c� + L�y

⇤ + r�x
⇤)) (a+ x

⇤ + !y
⇤)2

+2bck�x⇤(a+ 2x⇤)(a+ x
⇤ + !y

⇤)� 2bck�(x⇤)2(a+ x
⇤)
�
.

We use Hurwitz criterion to study the stability of the equilibrium point E⇤, and we conclude that it
is asymptotically stable if and only if s1, s2, s3 > 0 and also the expression s1s2 � s3 is positive.

Remark 7.3.14. We observe that if

x⇤ 2
 
k

2
+

s
k2

4
� k�cm

br(� + L)
,1
!
,

then f1x is negative, that is Trace(J(E⇤)) < 0. This means that at least one eigenvalue has
negative real part.
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7.3.3 Some remarks about coexistence of the three species
The problem of the coexistence of the three species can be reformulated in mathematical
terms by finding the conditions for which the positive solutions starting in the interior of R3

+

do not approach the boundary of the set, @R3
+ as t tends to infinity. These ideas can be made

rigorous in the context of persistence theory (see [122]). There are several definitions that are
used by mathematicians depending on the context. If we consider a nonlinear system of the
form

ẋ(t) = f(x), x 2 Rn
+ (7.3.16)

then we have persistence (see [52]) if

xi(0) > 0, i = 1, . . . , n ) lim sup
t!+1

xi(t) > 0, i = 1, . . . , n,

while we have permanence (see [118]) if there exists m,M > 0, independent of xi(0) > 0,
such that

m  lim inf
t!+1

x(t)  lim sup
t!1

x(t)  M.

Finally, we have uniform persistence (see [68]) if there exists " > 0, independent of xi(0) >
0, such that

lim inf
t!+1

x(t) � ".

In many cases, the favorite choice for analysis is uniform persistence, since in real cases,
requiring that lim supt!+1 xi(t) > 0 is not sufficient. In fact, a small stochastic or non-
autonomous perturbations may lead solutions converge to the boundary. For this reason, in
general, it is important to require that lim supt!+1 xi(t) � " > 0. We recall the definition
introduced in [20]:

Definition 7.3.15. The system (7.3.16) is uniformly ⇢�persistent if there exists " > 0 such
that

lim inf
t!+1

⇢(x(t)) > ",

for x(0) such that
⇢(x(0)) > 0, x(0) 2 R̊3

+,

and where
⇢(x) = min{x1, x2, . . . , xn}.

In order to prove uniform persistence (see Theorem 8.17 and Theorem 5.2 in [122]) we
need to prove the following conditions:

(H1) There exists a compact attractor of bounded set.

(H2) The invariant sets of @R3
+ are weakly ⇢�repelling.

(H3) The invariant sets of @R3
+ are acyclic.
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Unfortunately, in the case of system (7.3.16), we cannot prove the existence of a compact
attractor of bounded set of R3

+ and as a consequence we are not able to obtain uniform persis-
tence of the system. This lack of dissipativity can be guessed by considering the unbounded
solutions on the invariant plane z = 0. Moreover, we recall that the divergence of the vector
field F associated to the system,

divF = f1x + � � (� + L)z + f3z,

is related to the evolution of the three dimensional volumes elements under the flow of the
system. We observe that it has a complex expression, in particular, there are no values of the
parameters for which it has a negative sign (which means contraction), on a region of @R3

+.
Moreover, while the first term and the second term are negative for high values of x and z
respectively, the third term is positive for high value of y.

Then, we are able only to prove conditions (H2) � (H3) which only ensures that the
invariant sets of @R3

+ does not attracts positive solutions. For condition (H2) we first recall
the definition:

Definition 7.3.16. A set M ⇢ R3
+ is called is called weakly ⇢�repelling if there is no

solution x(t) of system (7.3.16) starting at x0, with ⇢(x0) > 0, such that x(t) ! M as
t ! +1.

Theorem 7.3.17. We suppose that hypothesis of Theorem 7.3.3 is satisfied. Then the invariant
set of @R3

+ are weakly ⇢�repelling in any of the following cases

1. bk < k(a+m);

2. bk > k(a+m) and � >
ab(bk �m(a+ k))r(L+ �)

ck(b�m)2
.

Proof. In order to prove the theorem it is sufficient to show that the stable manifolds of the
invariant sets of @R3

+ are all contained in @R3
+.

The equilibria E0 and E1 have their stable manifolds on @R3
+ for any value of the parameters.

Then if
b� k(m+ a) < 0,

there are no further equilibria. Otherwise, if E2 exists, a sufficient condition that ensures that
its stable manifold is in @R3

+ consists in requiring that

� >
ab(bk �m(a+ k))r(L+ �)

ck(b�m)2
,

that is, its first eigenvalue is positive. To conclude the proof we have to exclude the existence
of other invariant set contained in @R3

+. We use theorem 7.3.3 that guarantees the non ex-
istence of periodic orbits in the plane y = 0, that is, the only invariant sets of @R3

+ are the
equilibria.

Now we pass to check condition (H3).
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Definition 7.3.18. Let A,B ⇢ @R3
+. Then A is chained to B in @R3

+, and we write A ) B
if there exists a total trajectory x(t) with x(0) /2 A [B such that

x(�t) ! A, x(t) ! B, for t ! +1.

Definition 7.3.19. A finite collection {M1, . . . ,Mk} of subsets of @R3
+ is called cyclic if

after possibly renumbering

M1 ) M1 or M1 ) M2 ) . . . ) Mj ) M1

in @R3
+ for some j 2 {2, . . . , k}. Otherwise it is called acyclic.

Thanks to this notion we are able to exclude the case in which orbits are attracted by an
heteroclinic cycle that connects the equilibria such as in the well known case of [98].

Theorem 7.3.20. If hypothesis of Theorem 7.3.3 is satisfied then the invariant sets {E0, E1, E2}
of @R3

+ are acyclic.

Proof. By hypothesis the only invariant sets of @R3
+ are equilibria. The analysis of the pre-

vious sections is sufficient to exclude the existence of cycles between equilibria.
In Figure 7.3.6 below we represent the case in which there are only two boundary equi-

libria (E0 and E1) while in Figure 7.3.7 we represent the case in which we have also E2. In
the latter situation we distinguish two cases: both eigenvalues with positive and both with
negative real part respectively.

In conclusion, although we are not able to prove uniform persistence, the above results
guarantee a sort of weak persistence of the three species.

x

z

E0 y

E1

Figure 7.3.6: Possible connections in the cases in which there exist only two boundary equi-
libria.
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E0E

E1E

Figure 7.3.7: Possible connections in the cases in which there exists three boundary equilib-
ria. In the first case the eigenvalues �2,3 of J(E2) both have positive real part while in the
second they have negative real part.

7.3.4 Hopf bifurcation
In this section we analyze the possible existence of a limit cycle generated by Hopf bifurca-
tion for the positive equilibrium E⇤. We recall that Hopf bifurcation occurs when a pair of
complex conjugate eigenvalues of the Jacobian matrix of an equilibrium crosses the imag-
inary axis. In this case a limit cycle arises and its stability character can be obtained by
the analysis of the first Lyapunov coefficient. If it is negative, the limit cycle is stable and
the bifurcation is called supercritical, otherwise it is unstable and the bifurcation is called
subcritical.

Because of the complexity of the system and the high number of parameters, we are not
able to perform a general bifurcation analysis. In this section we simplify this task by fixing
the value of parameters and using m as bifurcation parameter.

In detail, we set:

a = b = c = ↵ = ⌘ = r = 1, k = � =
1

2
, � =

4

10
, � = L =

1

10
.

With the above choice of the parameters we have

� = � + L,

and as a consequence z⇤ = 1. In this case the equilibrium is:

E⇤ = (x⇤, y⇤, 1)

where
y⇤ = 5

⇥
m� x⇤ + 2(x⇤)2

⇤

and x⇤ is the solution of the equation

D4x
4 +D3x

3 +D2x
2 +D1x+D0 = 0,
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with

D4 = 10 > 0, D3 = �9 < 0, D2 = 3 > 0, D1 = �1

2
(m� 1), D0 = �1

2
m(1 + 5m).

Moreover the Jacobian matrix at E⇤ is

J(E⇤) =

0

@
f1x f1y f1z
0 0 � 1

2y
⇤

f3x f3y 0

1

A

where

f1x = 1� 4x⇤ � (1 + y⇤)

(1 + x⇤ + y⇤)2
, f3x =

(1 + y⇤)

(1 + x⇤ + y⇤)2
,

f1y =
x⇤

(1 + x⇤ + y⇤)2
+

1

10
, f3y = � x⇤

(1 + x⇤ + y⇤)2
+

1

10
,

f1z = � x⇤

1 + x⇤ + y⇤
+

1

10
y⇤.

The characteristic polynomial is

p(�) = �3 + s1�
2 + s2�+ s1

where

s1 = �f1x = �Tr(J(E⇤)), s2 = �f1zf3x + y⇤(� + L)f3y,

s3 = �y⇤(� + L)
⇥
f1xf3y � f1yf3x

⇤
.

The Hurwitz matrix of the characteristic polynomial is given by

H(p) =

0

BB@

1 s2 0
s1 s3 0

s1s2 � s3
s1

0 0

1

CCA .

If s1 > 0, we always have a negative real eigenvalue, while if p0(�) > 0, that is s21�3s2 < 0,
we ensure that the other two eigenvalues are complex conjugate. If s1s2 � s3 > 0 (respec-
tively < 0) then we have at least two eigenvalues with negative (respectively positive) real
part. From Hurwitz-Routh criterion we obtain that a necessary condition for Hopf bifurcation
in this case becomes

s1s2 � s3 = f3x


f1xf1z �

1

2
y⇤f1y

�
= 0,

that is
f1xf1z �

1

2
y⇤f1y = 0.

We have numerically solved the previous equation by using the software Mathematica
and we obtained the critical value

mH = 0.2617.
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For this value we obtain s1 = 0.215694, s2 = �0.0410984, s3 = �0.0306826 and s21 �
3s2 = 0.169819.

For m = mH the eigenvalues of the Jacobian matrix J(E⇤) are

�1 = �0.9395, �2,3 = ±0.2027i.

We will see below that as m passes trough the value m = mH the real part of the eigen-
values �2,3 change sign from negative to positive. Then a limit cycle appears due to Hopf
bifurcation of the equilibrium E⇤. We are not able to exactly compute the first Lyapunov
exponent of the system, however simulations and the sign of the term s1s2 � s3 suggests that
the cycle is stable and the equilibrium looses stability. In Figure 7.3.8 below we represents
the solutions for m = mH , as we expect, they converge to a periodic solution of period
T = 2⇡/0.2027 = 30.9975.
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Figure 7.3.8: A limit cycle arises for m = mH . We have represented the solution and its
three components.

In order to illustrate the results of this section we present several numerical simulations.
We fix the parameters as above and initial data as follows:

x(0) = y(0) = z(0) =
1

10
.

In a first numerical experiment we fix m = 2/10 < mH and as we expect solutions converges
to the equilibrium

E⇤ = (0.2668, 0.3778, 1)

as can be seen in Figure 7.3.9 below. In this case the eigenvalues of J(E⇤) are

�1 = �0.5252, �2,3 = �0.0257± 0.1898i,

and have negative real parts.
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Figure 7.3.9: Graphic and time series of the solution for m = 2/10 < mH . The positive
equilibrium E⇤ is locally stable and nearby solutions converge to it.

In a second numerical experiment we set m = 4/10 > mH . The positive equilibrium point

E⇤ = (0.595, 2.57, 1)

is unstable, the eigenvalues of J(E⇤) are

�1 = �1.6157, �2,3 = 0.0136± 0.3237i.

We observe that the eigenvalues �2,3 now have positive real part and a Hopf bifurcation
occurs at mH = 0.2617. Solutions converge to a limit cycle as shown in Figure 7.3.10.
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Figure 7.3.10: Graphic and time series of the solution for m = 4/10 > mH . The positive
equilibrium E⇤ is unstable and solutions converge to a stable limit cycle.
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7.3.5 Conclusions
In this section we have considered a model describing the dynamics of an ecological system
with two prey species and a predator species, which is a modification of the model proposed
in [119]. In particular, due to the high availability of one of the two prey populations we
supposed that the predator prefers to predate the more available prey population while the
other one take advantages of it. Our main motivation for including this modification on the
system proposed in [119] is the fact that in the literature, theoretical biologists have pointed
out the importance of indirect effects in order to describe real cases of coexistence.

We have performed the stability analysis of equilibria and we have made a detailed anal-
ysis of the system on the invariant planes, including the study of the existence of Hopf bifur-
cation at the equilibrium point E2. We have proved that through this bifurcation a stable limit
cycle appears.

Regarding the existence of positive equilibria, the expression (7.3.13) and the verification
of one of the conditions (7.3.14) or (7.3.15), give us all the positive equilibrium points. The
expressions of the equilibria as a function of the parameters are too complicated and not
easy to handle. Because of this, we have not been able to determine, in general, for which
conditions appear none, one or three equilibria. We have obtained sufficient conditions for
the existence of at least one positive equilibrium (see Corollary 7.3.7). Also, for fixed values
of the parameters it is easy to compute the positive equilibria and maybe it would be possible
for certain subfamilies on which less parameters are considered. We have found values of
the parameters for which there exist one equilibrium point, and others for which there are not
any positive equilibria, but numerically, we have not found values for which three positive
equilibria exist, and therefore we think that probably this situation is not feasible, although
we have not been able to prove it.

We have shown that Hopf bifurcation can occur also at the positive equilibrium E⇤ and as
a consequence, coexistence of the three species via the existence of an attracting limit cycle
is possible, by taking into account indirect effects of predation. It is worth mentioning that
in [119] Hopf bifurcation is obtained only by considering a version of the model with time
delay.

Furthermore, we have included a detailed discussion about the problem of persistence of
the system. We have also included several numerical simulations in order to illustrate the
theoretical results.

Due to the complexity of the model, we have not been able to perform a complete bi-
furcation analysis, then this point remains as an open problem and it would be interesting to
study it in the future.
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This work, which is developed in the field of qualitative dynamics of differential equations,
includes some advances in the study of Lotka-Volterra and Kolmogorov systems.

First, we deal with the study of the dynamics of Lotka-Volterra systems in dimension
three, for which there are, as far as we know, neither global results nor results concerning
large subfamilies, but only works about very particular cases, with a reduced number of
parameters, such as the May Leonard systems [12, 98].

In Chapters 2 to 5, which include the results from the articles [42, 44–46], we consider
the Lotka-Volterra systems on dimension three, it is,

ẋ = x(a0 + a1x+ a2y + a3z),

ẏ = y(b0 + b1x+ b2y + b3z),

ż = z(c0 + c1x+ c2y + c3z),

which have a rational first integral of degree two of the form x�1y�2z�3 . We characterize
these systems by means of the Darboux theory of integrability, which allows us to reduce
their study to the study of two families of planar Kolmogorov systems. As these two families
turned out to be difficult to study in their totality, we have studied them with the restriction
that they have a Darboux invariant of the form estx�1z�2 for the first family, and a Darboux
invariant of the form esty�1z�2 for the second one.

While advancing in the study of Lotka-Volterra systems in dimension three, we have
performed the topological classification of the global dynamics of the two families of Kol-
mogorov systems, each of them depending on six parameters. The results we obtain show a
very rich dynamics, since for the first family we obtain a total of 100 topologically distinct
global phase portraits and for the second one a total of 65.

Another field in which we have contributed has been the study of limit cycles. In particu-
lar, we have given sufficient conditions for Kolmogorov systems of degree three and dimen-
sion three to have two limit cycles appearing through a zero-Hopf bifurcation.

On the other hand, we made a review of works on population dynamics, and we have also
studied two predator-prey models. First we studied a Rosenzweig-MacArthur predator-prey
model, which we reduced to a Kolmogorov system in the plane. For this system we deter-
mined its possible phase portraits in the positive quadrant of the Poincaré disk, performing
for this purpose a study of the dynamics at the finite and infinite singular points. We also
studied the existence of limit cycles appearing by means of Hopf bifurcation. Then, we stud-
ied a system with one predator and two preys that takes into account indirect effects. For
this model we studied the stability of its singular points and analyzed the existence of limit
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cycles appearing through Hopf bifurcation. We also studied the restriction of this system to
the invariant planes and discussed some results on persistence of the three species.

Therefore, there are different lines that have been started within this project, and we are
willing to continue studying them. In particular, we plan to focus our future work on the
topics that are commented below.

It is of special interest to continue the study of the global dynamics in the Poincare disk of
other subfamilies of the Lotka-Volterra systems in dimension three. This can be addressed by
setting other conditions directly on the Lotka-Volterra systems in dimension three (1.7.13),
or by considering other conditions for the Kolmogorov systems (2.0.1) and (4.0.1).

The results about the existence of limit cycles for the Kolmogorov systems obtained in
Chapter 6 can be extended to the Kolmogorov systems of higher dimension and higher degree.

Also for the Kolmogorov systems in dimension three and degree three that we have stud-
ied, we can apply the averaging theory of higher order, which may allow us to prove in some
cases the existence of more than two limit cycles.

Another line of work shall be centered in the applications to real problems. From a
theoretical point of view, the study of some existing population models can be improved. In
the review work [43] we have detected, for example, that most of them do not address the
study of the cases in which the singular points are not hyperbolic.

From our review we have found some characteristics that would be interesting to inves-
tigate more in detail. In the following we list some problems which we find interesting to
address in the future.

• The functional response considered in the systems significantly affects their behavior.
It seems possible that by changing the most classical functional responses and taking
others as for example of Holling type III, the behavior becomes more realistic, so it
would be interesting to study it.

• It would be interesting to consider models in which fear affects intraspecific competi-
tion, because as it is said in [135], there are arguments in support of this. It would be
also important to get experimental evidence of this phenomenon to model it as realistic
as possible.

• In some works, as [10], it is proved that cannibalism can lead to limit cycle dynamics,
but it would be interesting to determine the uniqueness or non uniqueness of limit
cycles for cannibalistic populations, and answer the question of how many limit cycles
can appear.

• The effect of cannibalism on predator and prey simultaneously has not been studied
as far as we know. But it is interesting to know what happens when both are consid-
ered and predator cannibalism has a stabilizing effect while prey cannibalism has a
destabilizing effect.

• In some articles, as in [128], the authors consider small immigration in prey or in
predator, but the case with immigration in both species is not studied. It would be
interesting to study the effect of immigration in both species simultaneously.
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Finally, we have started a work in which we are studying a problem of a different field:
the study of the dynamics of the segmented disk dynamo. We are applying some of the
techniques introduced in this thesis, as the Poincaré compactification or the blow up’s, but
also introducing some new and related results and tools, for example for dealing with the
study of the existence of Darboux invariants.

233





Bibliography

[1] J. Alavez-Ramírez, G. Blé, V. Castellanos and J. Llibre, On the global flow of a 3-
dimensional Lotka-Volterra system, Nonlinear Analysis, Theory, Methods and Appli-
cations, 75 (2012), 4114–4125.

[2] W. C. Allee, Animal aggregations: a study in general sociology, University of Chicago
Press, Chicago, 1931.

[3] M. K. A. Al-Moqbali, N. S. Al-Salti, I. M. Elmojtaba, Prey-Predator Models with
Variable Carrying Capacity, Mathematics, 6(6) (2018), 102.

[4] M. J. Álvarez, A. Ferragut and X. Jarque, A survey on the blow up technique, Interna-
tional Journal of Bifurcation and Chaos, 21(11) (2011), 3103–3118.

[5] A. A. Andronov, E. A. Leontovich, I. J. Gordon and A. G. Maier, Qualitative Theory
of 2nd Order Dynamic Systems, J. Wiley & Sons, 1973.

[6] J. C. Artés, Sistemes diferencials quadrátics, Universistat Autònoma de Barcelona,
1990.

[7] J. C. Artés, F. Dumortier, C. Herssens, J. Llibre and P. De Maesschalck, Computer
program P4 to study Phase Portraits of Planar Polynomial differential equations.
http://mat.uab.es/⇠artes/p4/p4.htm, 2005. [Online; accessed May 10, 2022]

[8] J. C. Artés, J. Llibre D. Schlomiuk and N. Vulpe, Geometric Configurations of Sin-
gularities of Planar Polynomial Differential Systems. A Global Classification in the
Quadratic Case, Birkhäuser, 2021.

[9] J. W. Baretta, W. Ebenhöh and P. Ruardij, The European regional seas ecosystem
model, a complex marine ecosystem model, Netherlands Journal of Sea Research,
33(3,4) (1995), 233–246.

[10] A. Basheer, E. Quansah, S. Bhowmick, R. D. Parshad, Prey cannibalism alters the dy-
namics of Holling-Tanner-type predator prey-models, Nonlinear Dynamics, 85 (2016),
2549–2567.

[11] L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics,
Bulletin of Mathematical Biology, 72 (2010), 94–121.

235

https://mat.uab.cat/~artes/p4/p4.htm


BIBLIOGRAPHY

[12] G. Blé, V. Castellanos, J. Llibre and I. Quilantán, Integrability and global dynamics of
the May-Leonard model, Nonlinear Analysis: Real World Applications, 14(1) (2013),
280–293.

[13] B. Bolker, M. Holyoak, V. Krivan, L. Rowe and O. Schmitz, Connecting theoretical
and empirical studies of trait-mediated interactions, Ecology, 84(5) (2003), 1101–
1114.

[14] P. Breitenlohner, G. Lavrelashvili and D. Maison, Mass inflamation and chaotic be-
haviour inside hairy black holes, Nuclear Physics B, 524 (1998), 427–443.

[15] L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra
equations, Physics Letters A, 133(7) (1988), 378–382.

[16] L. Brenig and A. Goriely, Universal canonical forms for time-continuous dynamical
systems, Physical Review A, 40(7) (1989), 4119–4122.

[17] A. Buica and J. Llibre, Averaging metods for finding periodic orbits via Brouwer de-
gree, Bulletin des Sciences Mathématiques, 28 (2004), 7–22.

[18] A. Buica, J. Llibre and O. Y. Makarenkov, On Yu. A. Mitropol’skii’s Theorem on Pe-
riodic Solutions of System of Nonlinear Differential Equations with Nondifferentiable
Right-Hand Sides, Doklady Mathematics, 78 (2008), 525–527.

[19] F. H. Busse, Transition to turbulence via the statistical limit cycle route, Synergetics,
39 (1978), Springer-Verlag, Berlin.

[20] G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proceedings
of the American Mathematical Society, 96 (3) (1968), 425–430.

[21] L. Cairó and M. R. Feix, Families of invariants of the motion for the Lotka-Volterra
equations: the linear polynomials family, Journal of Mathematical Physics, 33 (1992),
2440–2455.

[22] T. Caraballo, R. Colucci and X. Han, Non-autonomous dynamics of a semi-
Kolmogorov population model with periodic forcing, Nonlinear Analysis: Real World
Applications, 31 (2016), 661–680.

[23] T. Caraballo, R. Colucci and X. Han, Semi-Kolmogorov models for predation with
indirect effects in random environments, Discrete and Continuous Dynamical Systems
Journal, 21(7) (2016), 2129–2143.

[24] T. Caraballo, R. Colucci and X. Han, Predation with indirect effects in fluctuating
environments, Nonlinear Dynamics, 84(1) (2016), 115–126.

[25] M. F. Carfora and I. Torcicollo, Cross-Diffusion-Driven Instability in a Predator-Prey
System with Fear and Group Defense, Mathematics, 8 (2020), 1244.

[26] D. Cariveau, R. E. Irwin, A. K. Brody, L. S. Garcia-Mayeya and A. Von Der Ohe,
Direct and indirect effects of pollinators and seed predators to selection on plant and
floral traits, Oikos, 104(1) (2004), 15–26.

236



BIBLIOGRAPHY

[27] T. Carleman, Application de la théorie des equations intégrales linéaires aux systémes
d’equations différentielles non linéaires, Acta Mathematica, 59 (1932), 63–87.

[28] M. F. Carusela, F. R. Momo and L. Romanelli, Competition, predation and coexistence
in a three trophic system, Ecological Modelling, 220(19) (2009), 2349–2352.

[29] C. J. Christopher, Invariant algebraic curves and conditions for a center, Proceedings
of the Royal Society of Edinburgh, 124A (1994), 1209–1229.

[30] R. Colucci, Coexistence in a one-predator, two-prey system with indirect effects, Jour-
nal of Applied Mathematics, 2013 (2013), 625391.

[31] R. Colucci, É. Diz-Pita and M. V. Otero-Espinar, Dynamics of a two prey and one
predator system with indirect effect, Mathematics, 9 (2021), 436.

[32] R. Colucci and D. Nuñez, Periodic orbits for a three-dimensional biological differen-
tial systems, Abstract and Applied Analysis, 2013 (2013), 465183.

[33] N. Courbin, A. J. Loveridge, D. Macdonald, et al. Reactive responses of zebras to lion
encounters shape their predator-prey space game at large scale, Oikos, 125 (2016),
829–838.

[34] S. Creel, D. Christianson, S. Liley and J. A. Winnie, Predation risk affects reproductive
physiology and demography of elk, Science, 315 (2007).

[35] S. Creel and J. A. Winnie Jr., Responses of elk herd size to fine-scale spatial and
temporal variation in the ris of predation by wolves, Animal Behaviour 69 (2005),
1181–1189.

[36] S. Creel, J. A. Winnie Jr., B. Maxwell, et al., Elk alter habitat selection as an an-
tipredator response to wolves, Ecology, 86 (2005), 3387–3397.

[37] M. Desai and P. Ormerod, Richard Goodwin: A Short Appreciation, The Economic
Journal, 108(450) (1998), 1431–1435.

[38] R. L. Devaney, Collision Orbits in the Anisotropic Kepler Problem, Inventiones math-
ematicae, 45 (1978), 221–251.

[39] W. Ding and W. Huang, Global Dynamics of a Predator-Prey Model with General
Holling Type Functional Responses, Journal of Dynamics and Differential Equations
32 (2020), 965–978.

[40] É. Diz-Pita, J. Llibre, M. V. Otero-Espinar and C. Valls, The zero-Hopf bifurcations in
the Kolmogorov systems of degree 3 in R3, Communications in Nonlinear Science and
Numerical Simulation, 95 (2021), 105621.

[41] É. Diz-Pita, J. Llibre, M. V. Otero-Espinar and C. Valls, Supplementary Data to “The
zero-Hopf bifurcations in the Kolmogorov systems of degree 3 in R3”,

237



BIBLIOGRAPHY

[42] É. Diz-Pita, J. Llibre and M. V. Otero-Espinar, Phase portraits of a family of Kol-
mogorv systems depending on six parameters, Electronic Journal of Differential Equa-
tions, 35 (2021), 1–38.

[43] É. Diz-Pita and M. V. Otero-Espinar, Predator-prey models: a review on some recent
advances, Mathematics, 9 (2021), 1783.

[44] É. Diz-Pita, J. Llibre and M. V. Otero-Espinar, Planar Kolmogorov systems coming
from spatial Lotka-Volterra systems, International Journal of Bifurcation and Chaos,
31(3) (2021), 2150201.

[45] É. Diz-Pita, J. Llibre and M. V. Otero-Espinar, Phase portraits of a family of Kol-
mogorv systems with infinitely many singular points at infinity, Communications in
Nonlinear Science and Numerical Simulation, 104 (2022), 106038.

[46] É. Diz-Pita, J. Llibre and M. V. Otero-Espinar, Planar Kolmogorov systems with in-
finitely many singular points at infinity, International Journal of Bifurcation and Chaos,
32(5) (2022).

[47] É. Diz-Pita, J. Llibre and M. V. Otero-Espinar, Global phase portraits of a predator-
prey system, Electronic Journal of Qualitative Theory of Differential Equations, 16,
1–13.

[48] J. Duarte, C. Januário, N Martins, et al., Chaos and crises in a model for cooperative
hunting: A symbolic dynamics approach, Chaos, 19 (2009), 043102.

[49] F. Dumortier, Singularities of vector fields on the plane, Journal of Differential Equa-
tions, 23 (1977), 53–106.

[50] F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Sys-
tems, UniversiText, Springer-Verlag, New York, 2006.

[51] J. Estes, K. Crooks and K., R. Holt, Ecological Role of Predators, Enciclopedia of
Biodiversity, 4 (2001), 857–878.

[52] H. I. Freedman and P. Waltman, Mathematical analysis of some three-species food
chain models, Mathematical Biosciences, 33 (1977), 257–276.

[53] B. R. de Freitas, J. Llibre and J. C. Medrado, Limit cycles of continuous and dis-
continuous piecewise-linear differential systems in R3, Journal of Computational and
Applied Mathematics, 338 (2018), 311–323.

[54] X. Fu, P. Zhang and J. Zhang, Forecasting and analyzing internet user of China with
Lotka-Volterra model, Asia-Pacific Journal of Operational Research, 34(1) (2017),
1740006.

[55] G. Gandolfo, Economic dynamics, Fourth edition. Springer, Heidelberg, 2009.

[56] G. Gandolfo, Giuseppe Palomba and the Lotka-Volterra equations, Rendiconti Lincei,
19(4) (2008), 347–357.

238



BIBLIOGRAPHY

[57] J. Gomez and R. Zamora, Top-down effects in a tritrophic system: parasitoids enhance
plant fitness, Ecology, 75 (1994), 1023–1030.

[58] E. Gonzalez-Olivares, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and J. D.
Flores, Consequences of double Allee effect on the number of limit cycles in a predator-
prey model, Computers & Mathematics with Applications, 62 (2011), 2449–3463.

[59] E. Gonzalez-Olivares, J. Mena-Lorca, A. Rojas-Palma, et al., Dynamical complexities
in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey,
Applied Mathematical Modelling, 35(1) (2010), 366-381.

[60] R. M. Goodwin, A Growth Cycle, C. H. Socialism, Capitalism and Economic Growth,
Cambridge University Press, 1967.

[61] X. Guan, Y. Liu and X. Xie, Stability analysis of a Lotka-Volterra type predator-prey
system with Allee effect on the predator species, Communications in Mathematical
Biology and Neuroscience, 9 (2018).

[62] M. Han, J. Llibre and Y. Tian, On the Zero-Hopf Bifurcation of the Lotka-Volterra
Systems in R3, Mathematics, 8(7) (2020), 1137.

[63] R. H. Hering, Oscillations in Lotka-Volterra systems of chemical reactions, Journal of
Mathematical Chemistry, 5 (1990), 197–202.

[64] D. O. Hessen, T. Andersen, P. Brettum and B. A. Faafeng, Phytoplankton contribution
to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition,
Limnology and Oceanography: Methods, 48(3) (2003).

[65] D. Hilbert, Mathematische Probleme, Lecture, Second International Congress of
Mathematicians (Paris, 1900), Nachr. Ges. Wiss. G"ottingen Math. Phys. KL. (1900),
253–297; English translation: Bulletin of the American Mathematical Society 8
(1902), 437–479; Bulletin (New Series) of the American Mathematical Society, 37
(2000), 407–436.

[66] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics,
Vol. 583. Springer-Verlag, 1977.

[67] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Camb-
dridge University Press, Cambdridge, 1988.

[68] J. Hofbauer, A general cooperation theorem for hypercycles, Monatshefte für Mathe-
matik, 91 (1981), 233–240.

[69] C. S. Holling, The components of predation as revealed by a study of small-mammal
predation of the European pine sawfly, The Canadian Entomologist, 91(5) (1959),
293–320.

[70] C. S. Holling, Some characteristics of simple types of predation and parasitism, The
Canadian Entomologist, 91(7) (1959), 385–398.

239



BIBLIOGRAPHY

[71] R. Huzak, Predator-prey systems with small predator’s death rate, Electronic Journal
of Qualitative Theory of Differential Equations, 86 (2018), 1–16.

[72] Y. Ilyashenko, Centennial history of Hilbert’s 16th problem, Bulletin (New Series) of
the American Mathematical Society, 39 (2002), 301–354.

[73] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge,
Communications in Nonlinear Science and Numerical Simulation, 10 (2005), 681–
691.

[74] W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with holling type
II functional response incorporating a prey refuge, Journal of Differential Equations,
231(2) (2006), 534–550.

[75] C. Kohlmeier and W. Ebenhöh, The stabilizing role of cannibalism in a predator-prey
system, Bulletin of Mathematical Biology, 57(3) (1995), 401–411.

[76] A. Kolmogorov, Sulla teoria di Volterra della lotta per l’esistenza, Giornale dell’ Isti-
tuto Italiano degli Attuari, 7 (1936), 74–80.

[77] R. Kon, Stable Bifurcations in Multi-species Semelparous Population Models, Ad-
vances in Difference Equations and Discrete Dynamical Systems, Springer Proceed-
ings in Mathematics & Statistics, ICDEA, 2016, 3–25.

[78] Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer, 1998.

[79] L. Lai, Z. Zhu and F. Chen, Stability and Bifurcation in a Predator-Prey Model with
the Additive Allee Effect and the Fear Effect, Mathematics, 8 (2020), 1280.

[80] W. E. Lamb, Theory of an optical maser, Physical Review Journals, 134 (1964),
A1429–A1450.

[81] G. Laval and R. Pellat, Plasma Physics, Proceedings of Summer School of Theoretical
Physics, Gordon and Breach, NY, 1975.

[82] J. Li, Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, In-
ternational Journal of Bifurcation and Chaos, 13 (2003), 47–106.

[83] L. P. Liou and K. S. Cheng, On the uniqueness of a limit cycle for a predator-prey
system, SIAM Journal on Mathematical Analysis, 19(4) (1988), 867–878.

[84] J. Llibre and Y. P. Martínez, Dynamics of a competitive Lotka-Volterra systems in R3,
Acta Applicandae Mathematicae, 170 (2020), 569–577.

[85] J. Llibre, Y. P. Martínez and C. Valls, Limit cycles bifurcating of Kolmogorov systems
in R2 and in R3, Communications in Nonlinear Science and Numerical Simulation, 91
(2020), 105401.

[86] J. Llibre, D. D. Novaes and M. A. Teixeira, Higher order averaging theory for finding
periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563–583.

240



BIBLIOGRAPHY

[87] J. Llibre and A. E. Teruel, Introduction to the Qualitative Theory of Differential Equa-
tions, Birkhäuser Advanced Texts, 2014.

[88] J. Llibre and X. Zhang, Darboux theory of integrability in Cn taking into account the
multiplicity, Journal of Differential Equations, 246 (2009), 541–551.

[89] J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields
in Rn taking into account the multiplicity at infinity, Bulletin des Sciences Mathéma-
tiques, 133 (2009), 765–778.

[90] J. Llibre and X. Zhang, Rational first integrals in the Darboux theory of integrability
in Cn, Bulletin des Sciences Mathématiques, 134 (2010), 189–195.

[91] N. G. Lloyd, Degree theory, Cambridge Trends in Mathematics, 73, Cambridge Uni-
versity Press, 1978.

[92] A. J. Lotka, Elements of Physical Biology, Waverly Press by the Williams and Wilkins
Company, Baltimore, Md., U.S.A., 1925.

[93] V. Lundgren and E. Granéli, Grazer-induced defense in Phaeocystis globosa (Prymne-
siophyceae): influence of different nutrient conditions, Limnology and Oceanography:
Methods, 55(5) (2010).

[94] Z. Ma, S. Wang, W. Li and Z. Li, The effect of prey refuge in a patchy predator-prey
system, Mathematical Biosciences, 243(1) (2013), 126–130.

[95] R. Margalef, Life forms of Phytoplanktos as survival alternative in an unstable envi-
ronment, Oceanologica Acta, 134 (1978).

[96] L. Markus, Global structure of ordinary differential equations in the plane, Transac-
tions of the American Mathematical Society, 76 (1954), 127–148.

[97] R. M. May, Stability and Complexity in Model Ecosystems, Princeton NJ, 1974.

[98] R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,
SIAM Journal on Applied Mathematics, 29(2) (1975), 243–253.

[99] B. A. Menge, Indirect effects in marine rocky intertidal interaction webs: patterns and
importance, Ecological Monographs, 65(1) (1995), 21–74.

[100] H. Merdan, Stability analysis of a Lotka-Volterra type predator-prey system involving
Allee effects, The ANZIAM Journal, 52 (2010), 139–145.

[101] D. Mukherjee, The effect of prey refuges on a three species food chain model, Differ-
ential Equations and Dynamical Systems, 22(4) (2014), 413–426.

[102] N. Neroual and T. A. Sari, Predator-Prey System with Holling-Type Functional Re-
sponse, Proceedings of the American Mathematical Society, 148(12) (2020), 5127–
5140.

241



BIBLIOGRAPHY

[103] D. A. Neumann, Classification of continuous flows on 2-manifolds, Proceedings of the
American Mathematical Society, 48 (1975), 73–81.

[104] S. Pal, N. Pal and J. Chattopadhyay, Hunting cooperation in a discrete-time predator-
prey system, International Journal of Bifurcation and Chaos, 28 (2018), 1850083.

[105] S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Fear effect in prey and hunting co-
operation among predators in a Leslie-Gower model, Mathematical Biosciences and
Engineering, 16(5) (2019), 5146–5179.

[106] M. M. Peixoto, Proccedings of a simposium held at the university of Bahia, Academic
Press, New York, 1973, 349–420.

[107] L. Perko, Differential Equations and Dynamical Systems, 3rd Edition, Texts in Applied
Mathematics, Springer-Verlag, Berlin, 2001.

[108] H. Poincaré, Sur les courbes définies par une équation différentielle, Oevres complètes,
Vol. 1, 1928.

[109] H. Poincaré, Sur l’integration des équations différentielles du premier ordre et du pre-
mier degré I, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161–191.

[110] B. van der Pol, On relaxation-oscillations, The London, Edinburgh and Dublin
Philoshophical Magazine & Journal of Science, 2(7) (1926), 978–992.

[111] G. A. Polis, The evolution and dynamics of intraspecific predation, Anual Review of
Ecology and Systematics, 12 (1981), 225–251.

[112] L. Pribylová and A. Peniasková, Foraging facilitation among predators and its impact
on thestability of predator-prey dynamics, Ecological Complexity, 29 (2017), 30–39.

[113] W. J. Ripple and E. J. Larsen, Historic aspen recruitment, elk, and wolves in northern
Yellowstone National Park, Biological Conservation, 95 (2000), 361–370.

[114] M. Rosenzweig and R. MacArthur, Graphical representation and stability conditions
of predator-prey interaction, The American Naturalist, 97 (1963), 209–223

[115] O. Sarnelle, Daphnia as keystone predators: effects on phytoplankton diversity and
grazing resistance, Journal of Plankton Research, 27(12) (2005), 1229–1238.

[116] S. K. Sasmal, Population dynamics with multiple Allee effect induced by fear factors
- A mathematical study on prey-predator interactions, Applied Mathematical Mod-
elling, 64 (2018).

[117] D. Schlomiuk and N. Vulpe, Global topological classification of Lotka-Volterra
quadratic differential systems, Electronic Journal of Differential Equations, 64 (2012),
1–69.

[118] P. Schuster, K. Sigmund and R. Wolff, Dynamical systems under constant organiza-
tion III. Cooperative and competitive behaviour in hypercycles, Journal of Differential
Equations, 32 (1979), 357–368.

242



BIBLIOGRAPHY

[119] S. Sharma and G. P. Samanta, Dynamical behaviour of a two prey and one predator
system, Differential Equations and Dynamical Systems, 22 (2014), 125–145.

[120] S. Sarwardi, P. K. Mandal and S. Ray, Analysis of a competitive prey-predator system
with a prey refuge, Biosystems, 110(3) (2012), 133–148.

[121] M. J. Sheriff, C. J. Krebs and R. Boonstra, The sensitive hare: sublethal effects of
predator stress on reproduction in snowshoe hares, Journal of Animal Ecology, 78
(2009), 1249–1258.

[122] H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer-
ican Mathematical Society, Providence, 2011.

[123] W. E. Snyder and A. R. Ives, Generalist predators disrupt biological control by a
specialist parasitoid, Ecology, 82(3) (2001), 705–716.

[124] S. Solomon and P. Richmond, Stable power laws in variable economies; Lotka-
Volterra implies Pareto-Zipf, The European Physical Journal B, 27 (2002), 257–261.

[125] A. Seidenberg, Reduction of singularities of the differential equation Ady = Bdx,
American Journal of Mathematics, 90 (1968), 248–269.

[126] P. E. Stander, Cooperative hunting in lions: the role of the individual, Behavioral
Ecology and Sociobiology, 29 (1992), 445–454.

[127] J. Sugie and Y. Saito, Uniqueness of limit cycles in a Rosenzweig-MacArthur model
with prey immigration, SIAM Journal on Applied Mathematics, 72(1) (2012), 299-316.

[128] T. Tahara, M. K. Areja, T. Kawano, et al., Asymptotic stability of a modified Lotka-
Volterra model with small immigrations, Nature Scientific Reports, 8 (2018), 7029.

[129] M. Teixeira-Alves and F. M. Hilker, Hunting cooperation and Allee effects in preda-
tors, Journal of Theoretical Biology, 419 (2017), 13–22.

[130] A. Van den Essen, Reduction of Singularities of the Differential Equation Ady = Bdx,
Lecture Notes in Mathematics, 712 (1979), 248–269.

[131] F. Vehrulst, Nonlinear differential equations and dynamical systems, Universitext,
Springer, 1996.

[132] V. Volterra, Variazione flutuazioni del numero d’individus in specie animali conventi,
Atti della Accademia nazionale dei Lincei, 2 (1926), 31–113.

[133] M. R. Walsh and D. N. Reznick, Interactions between the direct and indirect effects
of predators determine life history evolution in a killifish, Proceedings of the National
Academy of Sciences of the United States of America, 105(2) (2008), 594–599.

[134] J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Jour-
nal of Mathematical Biology, 62(3) (2011), 291–331.

243



BIBLIOGRAPHY

[135] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interac-
tions, Journal of Mathematical Biology, 73(5) (2016) 1179–1204.

[136] A. W. Wijeratne, F. Yi and J. Wei, Bifurcation analysis in the diffusive Lotka-Volterra
system: an application to market economy, Chaos Solitons Fractals, 40(2) (2009),
902–911.

[137] J. A. Winnie Jr., D. Christianson, S. Creel et al. Elk decision-making rules are sim-
plified in the presence of wolves, Behavioral Ecology and Sociobiology, 61 (2006),
277.

[138] J. A. Winnie Jr. and S. Creel, Sex-specific behavioural responses of elk to spatial and
temporal variation in the threat of wolf predation, Animal Behaviour, 73 (2007), 215–
225.

[139] A. J. Wirsing and W. J. Ripple, A comparison of shark and wolf research reveals
similar behavioural responses by prey, Frontiers in Ecology and the Environment, 9
(2011), 335–341.

[140] J. T. Wootton, Indirect effects, prey susceptibility, and habitat selection: impacts of
birds on limpets and algae, Ecology, 73(3) (1992), 981–991.

[141] X. Xie and L. Niu, Global stability in a three-species Lotka-Volterra cooperation
model with seasonal succession, Mathematical Methods in the Applied Sciences,
44(18) (2021), 14807–14822.

[142] Y. Xie, Z. Wang, B. Meng and Z. Huang, Dynamical analysis for a fractional-order
prey-predator model with Holling III type functional response and discontinuous har-
vest, Applied Mathematics Letters, 106 (2020), 106342.

[143] L. Y. Zanette, A. F. White, M. C. Allen and M. Clinchy, Perceived predation risk
reduces the number of offspring songbirds produce per year, Science, 334 (2011),
1398–1401.

[144] H. Zhang, Y. Cai, S. Fu and W. Wang, Impact of the fear effect in a prey-predator model
incorporating a prey refuge, Applied Mathematics and Computation, 356 (2019), 328–
337.

[145] Z. Zhu, R. Wu, L. Lai and X. Yu, The influence of fear effect to the Lotka-Volterra
predator-prey system with predator has other food resource, Advances in Difference
Equations, 237 (2020).

[146] X. Zou, Y. Zheng, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a
stochastic Holling type II predator-prey model, Communications in Nonlinear Science
and Numerical Simulation, 83 (2020), 105136.

244



Further information

Articles and journals
In compliance with the rules of doctoral studies at Universidade de Santiago de Compostela
in Regulamento dos estudos de doutoramento na USC, DOG de 16 de setembro de 2020, we
provide some information regarding the articles on which this work is based and the journals
that published those articles. In particular we give the names of the authors, the title of
the journals, the year each article was published, the ISSN (or EISSN), the publisher, the
DOI-type link, the Journal Impact Factor and the quartile from the Journal Citation Reports,
the CiteScore rating and the quartile from Scopus, and some relevant information regarding
copyright and use of the articles. The links have been checked on May 10, 2022.

Chapter 2. Article [42].
TITLE: Phase portraits of a family of Kolmogorov systems depending on six parameters.
AUTHORS: É. Diz-Pita, J. Llibre and M. V. Otero-Espinar.
JOURNAL: Electronic Journal of Differential Equations.
YEAR: 2021.
ISSN: 1072-6691.
PUBLISHER: Texas State University.
LINK: https://ejde.math.txstate.edu/Volumes/2021/35/diz.pdf
JOURNAL IMPACT FACTOR: The data from 2021 is still not available. The data from 2020:
1.282 [Q2 in Mathematics (106/330)].
CITESCORE: The data from 2021 is still not available. The data from 2020: 1.7 [Q2 in
Mathematics - Analysis (72/164)].
INFORMATION REGARDING COPYRIGHT AND USE. The Electronic Journal of Differential
Equations is an open access journal. See the website https://ejde.math.txstate.edu, in which
the following statement can be found:
This work is licensed under a Creative Commons Attribution 4.0 International License. This
is an open access journal which means that all content is freely available without charges.
Users are allowed to read, download, copy, distribute, print, search, or link to the full texts
of the articles in this journal without asking prior permission from the publisher. This is in
accordance with the BOAI definition of open access. Authors hold their copyrights. (Also we
do not have page charges or access fees).

245

https://ejde.math.txstate.edu/Volumes/2021/35/diz.pdf
https://ejde.math.txstate.edu


Further information

Chapter 3. Article [45].
TITLE: Phase portraits of a family of Kolmogorov systems with infinitely many singular
points at infinity.
AUTHORS: É. Diz-Pita, J. Llibre and M. V. Otero-Espinar.
JOURNAL: Communications in Nonlinear Science and Numerical Simulation.
YEAR: 2022.
ISSN: 1007-5704.
PUBLISHER: Elsevier.
LINK: https://doi.org/10.1016/j.cnsns.2021.106038.
JOURNAL IMPACT FACTOR: The data from 2022 is still not available. The data from 2020:
4.260 [Q1 in Applied Mathematics (5/265), in Mathematics, Interdisciplinary Applications
(11/108) and in Mathematical Physics (3/55)].
CITESCORE: The data from 2022 is still not available. The data from 2020: 7.9 [Q1 in
Mathematics-Applied Mathematics (15/548), in Mathematics-Numerical Analysis (3/66) and
in Mathematics-Modeling and Simulation (16/290)].
INFORMATION REGARDING COPYRIGHT AND USE: Information about permissions can be
found in the website: https://www.elsevier.com/about/policies/copyright/permissions. Fur-
thermore, permission was directly requested from the publisher for the inclusion of the article
in this thesis, and the following information was received:
As a journal author, you retain rights for large number of author uses, including use by your
employing institute or company. These rights are retained and permitted without the need to
obtain specific permission from Elsevier. These include the right to include the article in full
or in part in a thesis or dissertation (provided that this is not to be published commercially).

Chapter 4. Article [44].
TITLE: Planar Kolmogorov systems coming from spatial Lotka-Volterra systems.
AUTHORS: É. Diz-Pita, J. Llibre and M. V. Otero-Espinar.
JOURNAL: International Journal of Bifurcation and Chaos.
YEAR: 2021.
ISSN: 0218-1274.
PUBLISHER: World Scientific Publishing.
LINK: https://doi.org/10.1142/S0218127421502011.
JOURNAL IMPACT FACTOR: The data from 2021 is still not available. The data from 2020:
2.836 [Q2 in Mathematics, Interdisciplinary Applications (30/108) and in Multidisciplinary
Sciences (29/72)].
CITESCORE: The data from 2021 is still not available. The data from 2020: 4.2 [Q1
in Mathematics-Applied Mathematics (81/548), in Mathematics-Modeling and Simulation
(64/290), in Multidisciplinary (13/110) and in Engineering-Miscellaneous (15/77)]
INFORMATION REGARDING COPYRIGHT AND USE: As indicated by the journal, a license
has been requested and accepted through Copyright Clearance Center (see Permissions).

246

https://doi.org/10.1016/j.cnsns.2021.106038
https://www.elsevier.com/about/policies/copyright/permissions
https://doi.org/10.1142/S0218127421502011


Further information

Chapter 5. Article [46].
TITLE: Planar Kolmogorov systems with infinitely many singular points at infinity.
AUTHORS: É. Diz-Pita, J. Llibre and M. V. Otero-Espinar.
JOURNAL: International Journal of Bifurcation and Chaos.
YEAR: 2022.
ISSN: 0218-1274.
EISSN: 1793-6551.
PUBLISHER: World Scientific Publishing.
LINK: https://doi.org/10.1142/S0218127422500651.
JOURNAL IMPACT FACTOR: The data from 2022 is still not available. The data from 2020:
2.836 [Q2 in Mathematics, Interdisciplinary Applications (30/108) and in Multidisciplinary
Sciences (29/72)].
CITESCORE: The data from 2021 is still not available. The data from 2020: 4.2 [Q1
in Mathematics-Applied Mathematics (81/548), in Mathematics-Modeling and Simulation
(64/290), in Multidisciplinary (13/110) and in Engineering-Miscellaneous (15/77)]
INFORMATION REGARDING COPYRIGHT AND USE: As indicated by the journal, a license
has been requested and accepted through Copyright Clearance Center (see Permissions).

Chapter 6. Article [40].
TITLE: The zero-Hopf bifurcations in the Kolmogorov systems of degree 3 in R3.
AUTHORS: É. Diz-Pita, J. Llibre, M. V. Otero-Espinar and C. Valls.
JOURNAL: Communications in Nonlinear Science and Numerical Simulation.
YEAR: 2021.
ISSN: 1007-5704.
PUBLISHER: Elsevier
LINK: https://doi.org/10.1016/j.cnsns.2020.105621.
JOURNAL IMPACT FACTOR: The data from 2021 is still not available. The data from 2020:
4.260 [Q1 in Applied Mathematics (5/265), in Mathematics, Interdisciplinary Applications
(11/108) and in Mathematical Physics (3/55)].
CITESCORE: The data from 2022 is still not available. The data from 2020: 7.9 [Q1 in
Mathematics-Applied Mathematics (15/548), in Mathematics-Numerical Analysis (3/66) and
in Mathematics-Modeling and Simulation (16/290)].
INFORMATION REGARDING COPYRIGHT AND USE: Information about permissions can be
found in the website: https://www.elsevier.com/about/policies/copyright/permissions. Fur-
thermore, permission was directly requested from the publisher for the inclusion of the article
in this thesis, and the following information was received:
As a journal author, you retain rights for large number of author uses, including use by your
employing institute or company. These rights are retained and permitted without the need to
obtain specific permission from Elsevier. These include the right to include the article in full
or in part in a thesis or dissertation (provided that this is not to be published commercially).

247

https://doi.org/10.1142/S0218127422500651
https://doi.org/10.1016/j.cnsns.2020.105621
https://www.elsevier.com/about/policies/copyright/permissions


Further information

Chapter 7. Article [43].
TITLE: Predator-prey models: a review on some recent advances.
AUTHORS: É. Diz-Pita and M. V. Otero-Espinar.
JOURNAL: Mathematics.
YEAR: 2021.
EISSN: 2227-7390.
PUBLISHER: MDPI.
LINK: https://doi.org/10.3390/math9151783.
JOURNAL IMPACT FACTOR: The data from 2021 is still not available. The data from 2020:
2.258 [Q1 in Mathematics (24/330)].
CITESCORE: The data from 2021 is still not available. The data from 2020: 2.2 [Q1 in
Mathematics-General Mathematics (75/378)].
INFORMATION REGARDING COPYRIGHT AND USE: Information about permissions can be
found in the website: https://www.mdpi.com/authors/rights where the following statement is
placed:
For all articles published in MDPI journals, copyright is retained by the authors. Articles are
licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone
may download and read the paper for free. In addition, the article may be reused and quoted
provided that the original published version is cited. These conditions allow for maximum
use and exposure of the work, while ensuring that the authors receive proper credit.

Chapter 7. Article [47].
TITLE: Global phase portraits of a predator-prey system.
AUTHORS: É. Diz-Pita, J. Llibre and M. V. Otero-Espinar.
JOURNAL: Electronic Journal of Qualitative Theory of Differential Equations.
YEAR: 2022.
ISSN: 1417-3875.
PUBLISHER: University of Szeged, Bolyai Institute.
LINK: https://doi.org/10.14232/ejqtde.2022.1.16.
JOURNAL IMPACT FACTOR: The data from 2022 is still not available. The data from 2020:
1.874 [Q1 in Mathematics (44/330), Q2 in Applied Mathematics (85/265)].
CITESCORE: The data from 2022 is still not available. The data from 2020: 1.7 [Q3 in
Mathematics-Applied Mathematics (303/548)].
INFORMATION REGARDING COPYRIGHT AND USE: The Electronic Journal of Qualitative
Theory of Differential Equations is a completely open access journal available online, as can
be seen in the website https://www.math.u-szeged.hu/ejqtde/subscrib.html, where the follow-
ing statement can be found:
The Electronic Journal of Qualitative Theory of Differential Equations is an open access
journal which means that all content is freely available without charge to the user or his/her
institution. Users are allowed to read, download, copy, distribute, print, search, or link to

248

https://doi.org/10.3390/math9151783%20
https://www.mdpi.com/authors/rights
https://doi.org/10.14232/ejqtde.2022.1.16
https://www.math.u-szeged.hu/ejqtde/subscrib.html


Further information

the full texts of the articles, or use them for any other lawful purpose, without asking prior
permission from the publisher or the author. This is in accordance with the BOAI definition
of open access. There are no charges and fees for publication, either.

Chapter 7. Article [31].
TITLE: Dynamics of a two prey and one predator system with indirect effect.
AUTHORS: R. Colucci, É. Diz-Pita and M. V. Otero-Espinar.
JOURNAL: Mathematics.
YEAR: 2021.
EISSN: 2227-7390.
PUBLISHER: MDPI.
LINK: https://doi.org/10.3390/math9040436.
JOURNAL IMPACT FACTOR: The data from 2021 is still not available. The data from 2020:
2.258 [Q1 in Mathematics (24/330)].
CITESCORE: The data from 2021 is still not available. The data from 2020: 2.2 [Q1 in
Mathematics-General Mathematics (75/378)].
INFORMATION REGARDING COPYRIGHT AND USE: Information about permissions can be
found in the website: https://www.mdpi.com/authors/rights where the following statement is
placed:
For all articles published in MDPI journals, copyright is retained by the authors. Articles are
licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone
may download and read the paper for free. In addition, the article may be reused and quoted
provided that the original published version is cited. These conditions allow for maximum
use and exposure of the work, while ensuring that the authors receive proper credit.

Author contributions
The contributions of the Ph.D. candidate were essential in all the included articles. The
candidate contributed to the design of the research and proofs, to the analysis of the results
and to the writing of the manuscripts.

Funding Information
• Former Ministerio de Educación, Cultura y Deporte, Government of Spain. Contract

FPU17/02125.

• As part of the Research Group GI-2136, Grupo de Investigación en Matemáticas (Uni-
versidade de Santiago de Compostela) both Xunta de Galicia (fund number ED431C
2019/10 with FEDER funds) and Agencia Estatal de Investigación of Spain (fund num-
bers MTM2016-79661-P with FEDER funds and PID2020-115155GB-I00).

• As part of the Grup de sistemes dinàmics (Universitat Autònoma de Barcelona), the
Agencia Estatal de Investigación of Spain (fund number MTM2016-7727-P and num-
ber PID2019-104658GB-I00 with FEDER funds).

249

https://doi.org/10.3390/math9040436
https://www.mdpi.com/authors/rights


Further information

Permissions

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D ���

250



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D ���

251



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D ���

252



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH��H�GD��H�DFGI��D���E��D����E���D��I���I�GF�I��HIG���DGI��H����IE�FH���I�D ���

253



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D ���

254



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D ���

255



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D ���

256



Further information

�������������� KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D

KWWSV���PDUNHWSODFH�FRS\ULJKW�FRP�UV�XL�ZHE�PS�OLFHQVH�������DI�F��I����H��H�H����I����G�E����IE�EE��H�D����EH��DDG�EE���II�IH�D ���

257



2UGLQDU\�GLೲHUHQWLDO�HTXDWLRQV�DUH�DQ�LPSRUWDQW�WRRO�IRU�WKH�
VWXG\�RI�PDQ\�UHDO�SUREOHPV��,Q�WKLV�WKHVLV�ZH�IRFXV�RQ�WKH�
TXDOLWDWLYH�G\QDPLFV�RI�VRPH�RUGLQDU\�GLೲHUHQWLDO�V\VWHPV��
SDUWLFXODUO\��WKH�/RWND�9ROWHUUD�DQG�.ROPRJRURY�V\VWHPV��:H�
DFFRPSOLVK�WKH�VWXG\�RI�VRPH�/RWND�9ROWHUUD�V\VWHPV�RQ�
GLPHQVLRQ�WKUHH��ZKLFK�ZH�FKDUDFWHUL]H�LQ�WZR�IDPLOLHV�RI�
SODQDU�.ROPRJRURY�V\VWHPV��:H�JLYH�WKH�FRPSOHWH�FODVVLೳFDWLRQ�
RI�WKH�JOREDO�SKDVH�SRUWUDLWV�LQ�WKH�3RLQFDU«�GLVN�IRU�WKRVH�
IDPLOLHV��:H�DOVR�DQDO\]H�WKH�OLPLW�F\FOHV�RI�WKH�WKUHH�
GLPHQVLRQDO�.ROPRJRURY�V\VWHPV�RI�GHJUHH�WKUHH�ZKLFK�DSSHDU�
WKURXJK�D�]HUR�+RSI�ELIXUFDWLRQ��6RPH�SDUWLFXODU�V\VWHPV�WKDW�
PRGHO�UHDO�SUREOHPV�LQ�WKH�ೳHOG�RI�SRSXODWLRQ�G\QDPLFV�DUH�DOVR�
VWXGLHG��
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