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On a Class of Distributions
with Simple Exponential Tails

By M.C. JONES

Department of Statistics, The Open University, Walton Hall, Milton
Keynes MK7 6AA, U.K.

m.c.jones@open.ac.uk

Summary

A simple general construction is put forward which covers many uni-
modal univariate distributions with simple exponentially decaying tails (e.g.
asymmetric Laplace, log F and hyperbolic distributions as well as many new
models). The proposed family is a special subset of a regular exponential
family, and many properties flow therefrom. Two main practical points are
made in the context of maximum likelihood fitting of these distributions to
data. The first of these is that three, rather than an apparent four, param-
eters of the distributions suffice. The second is that maximum likelihood
estimation of location in the new distributions is precisely equivalent to a
standard form of kernel quantile estimation, choice of kernel being equiva-
lent to specific choice of model within the class. This leads to a maximum
likelihood method for bandwidth selection in kernel quantile estimation, but
its practical performance is shown to be somewhat mixed. Further distribu-
tion theoretical aspects are also pursued, particularly distributions related to
the main construction as special cases, limiting cases or by simple transfor-
mation.

Some key words: Asymmetric Laplace distribution; Bandwidth selection; Expo-
nential family; Hyperbolic distribution; Kernel quantile estimation; Log F distri-
bution; Maximum likelihood.
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1. Introduction

A continuous univariate distribution on R has simple exponential tails if
its density f has the properties

f(x) ∼ eαx as x → −∞, f(x) ∼ e−βx as x → ∞, (1)

for some α, β > 0. The archetypal example of such a distribution is the
asymmetric Laplace distribution given by

fAL(x) =
αβ

α + β
exp {αxI(x < 0) − βxI(x ≥ 0)} . (2)

For an excellent treatment of this distribution, see Kotz, Kozubowski and
Podgórski (2001, Chapter 3). It is particularly simple, its one drawback, to
some, being its ‘pointed’ nature at x = 0 and its non-differentiability there.

Which other distributions share the property of simple exponential tails?
I could think of two before starting this work — the log F and hyperbolic
distributions — and they will feature below. (Their properties include much
smoother behaviour than the asymmetric Laplace around x = 0.) The pur-
pose of this paper is to present a simple general construction involving the
two parameters α, β > 0 which affords a wide variety of distributions with tail
behaviour (1) (and of which the asymmetric Laplace, log F and hyperbolic
distributions remain probably the most important). The family proposed
will be a special subset of a regular exponential family.

Input to this construction will simply be one’s favourite (simple, symmet-
ric) distribution which has random variable XG, density g, distribution func-
tion G and first iterated (left-tail) distribution function G[2](x) =

∫ x
−∞ G(t)dt

which is G(x) times the mean residual life function (e.g. Bassan, Denuit and
Scarsini, 1999, and references therein). The latter does not exist if g(x) goes
as |x|−(γ+1) for 0 < γ ≤ 1 as x → −∞, so any such (very heavy tailed) distri-
butions — ‘Cauchy and heavier’ — are disqualified from consideration. Then,
G[2](x) = E{(x−XG)I(XG < x)}. Taking g to be symmetric (about zero) is
a convenience that affords particularly elegant simplifications without losing
importantly in generality and which will be followed virtually throughout
this paper.

The main construction and numerous basic properties are given in Sec-
tion 2. A variety of special cases are considered in Section 3. Distributions
linked to the main construction as limiting cases are derived in Section 4. In
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Sections 5 and 6, two major practical points are made in the context of max-
imum likelihood fitting of the new distributions to data. The first of these
(Section 5) explores whether the new construction really needs all four of
its parameters in practice. The answer is negative: three parameters suffice.
The second of these sections (Section 6) observes that maximum likelihood
estimation of location in the new distributions is precisely equivalent to a
standard form of kernel quantile estimation. (This was a major motivation
for the current work: specific choice of kernel is equivalent to specific choice
of model within the class.) This leads to a maximum likelihood method for
bandwidth selection in kernel quantile estimation, but its practical perfor-
mance is shown to be somewhat mixed. Finally, a number of distributions
related to our main construction through simple transformations are explored
in Section 7.

2 General construction and properties

The proposed general family of distributions with simple exponential tails
has density

fG(x) = K−1
G (α, β) exp{αx − (α + β)G[2](x)}. (3)

It is clear that as x → −∞, G[2](x) → 0 and that — the real key to the
construction — as x → ∞, G[2](x) ∼ x. That fG has simple exponential
tails as at (1) is thus clear. Note that this holds regardless of the weight of
the tails of allowed G.

The exponential tails also ensure integrability of fG so that the claim
that it defines a density is confirmed, albeit one for which the normalisation
constant KG(α, β) is not available in closed form in general. Likewise, the
exponential tails imply the existence of all moments of the distribution, but
their explicit formulae are also available only on a case-by-case basis. These
comments are reflected in the moment generating function associated with
(3) which, for −α < t < β, is immediately seen to take the form KG(α +
t, β − t)/KG(α, β). Similarly, the characteristic function is KG(α + it, β −
it)/KG(α, β). Define Kij

G(α, β) = ∂i+jKG(α, β)/∂αi∂βj . Then, inter alia, the
mean of distribution (3) is {K10

G (α, β) −K01
G (α, β)}/KG(α, β).

Densities (3) are, immediately, unimodal for all α, β > 0 with mode x0

satisfying G(x0) = α/(α+β) i.e. the mode of fG is at the α/(α+β)’th quantile
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of G. Moreover, densities (3) are all log-concave, i.e. strongly unimodal, in
x. Let XFG

follow the distribution with density fG. It is also the case that
E(G(XFG

)) = α/(α + β).
For symmetric g, two apparent alternative formulations turn out to be

essentially the same as (3). Let Ḡ[2](x) =
∫∞
x {1 − G(t)}dt = E{(XG −

x)I(XG > x)} be the first iterated right-tail distribution function; it is easy
to see that for symmetric g, Ḡ[2](x) = G[2](−x). First, one might consider
the density proportional to exp{−βx − (α + β)Ḡ[2](x)} but this is just the
distribution of −XFG

with the roles of α and β swopped. Second, one might
consider the more symmetric formulation in which the density is proportional
to

exp{−αḠ[2](x) − βG[2](x)}, (4)

but this turns out to be nothing other than density (3) again. This is because,
for symmetric g,

G[2](x) − Ḡ[2](x) = E(x − XG) = x.

Formulation (4), in particular, makes it immediately clear that fG is
symmetric (about zero) if and only if α = β (for symmetric g). Indeed, in
that case, symmetric densities are proportional to the α’th power of density
(3) with α = β = 1.

3. Special cases

3·1. The asymmetric Laplace distribution

The asymmetric Laplace density (2) is the very special case of density (3)
when G corresponds to a point mass at zero: G(x) = I(x ≥ 0), G[2](x) =
xI(x ≥ 0).

3·2. The log F distribution

Now let G be the logistic distribution so that G(x) = ex/(1 + ex) and
G[2](x) = log(1 + ex). It follows that the resulting density

fLF (x) ∝ eαx

(1 + ex)α+β
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and it can readily be calculated that KLF (α, β) = B(α, β) where B(·, ·) is the
beta function. This is none other than the log F distribution which dates
back to R.A. Fisher (as the z distribution) and which has appeared from
time to time and in a variety of guises in the literature since then. For a
partial review and references, see Jones (2006a).

The logistic distribution also ‘generates’ the log F distribution in the
following way. The ith order statistic of an i.i.d. sample of size n from the
logistic distribution follows the log F distribution with α = i, β = n + 1− i.
Moreover, in Jones (2004), I argue that replacing the integers i and n by a
pair of real parameters provides a general method for generating distributions
with two extra shape parameters from a simple initial distribution.

3·3. The hyperbolic distribution

Now let G be the (scaled) t2 distribution (the Student t distribution
on two degrees of freedom) such that G(x) = (1/2)(1 + x/

√
1 + x2) and

G[2](x) = (1/2)(x +
√

1 + x2). The resulting density is that of the hyper-
bolic distribution of Barndorff-Nielsen (1977), see also Barndorff-Nielsen and
Blaesild (1983):

fH(x) ∝ exp

{(
α − β

2

)
x −

(
α + β

2

)√
1 + x2

}
.

It turns out that KH(α, β)= (α + β)K1(
√

αβ)/
√

αβ where K1(·) is a Bessel
function. This parametrisation is not, perhaps, the most usual one which
takes as parameters π = (α − β)/2

√
αβ and ξ =

√
αβ (Barndorff-Nielsen

and Blaesild, 1983), but it is one of the alternative forms listed by those au-
thors. Of course, consideration of log fH and its hyperbolic form makes the
hyperbolic distribution an especially natural member of the class of distribu-
tions with simple exponential tails from the viewpoint of linear asymptotes
for the log density.

In Jones (2004), I argued that the two most tractable and useful order
statistic distributions were the log F distribution, generated by the logistic,
and the skew t distribution of Jones and Faddy (2003), generated via the
order statistics of the t2 distribution. In this paper, I find myself suggest-
ing that the two most obviously tractable and useful (smooth) alternatives
(with exponential tails) to the asymmetric Laplace distribution are, again,
the log F distribution, generated in an alternative fashion by the logistic,
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together with a rather different distribution, the hyperbolic distribution, but
one which turns out also to be generated by the t2 distribution. I find the
place of the t2 distribution at the heart of this kind of distribution theory
intriguing, even more so now than when I wrote extolling the simple virtues
of the t2 distribution in Jones (2002).

3·4. The doubly double exponential distribution

One can actually take g to be a Laplace distribution in which case the
following interesting new distribution arises:

fDDE(x) = K−1
DDE(α, β)

{
exp(αx − cex) if x < 0,

exp(−βx − ce−x) if x ≥ 0,
(5)

where c = (α + β)/2, KDDE(α, β) = c−αΓc(α) + c−βΓc(β) and Γc(d) =∫ c
0 zd−1e−zdz is the incomplete gamma function.

In the case where α is an integer, the distribution with density of the
form exp(αx− cex), x ∈ R, is the asymptotic distribution of the α’th largest
order statistic of an i.i.d. sample from a distribution with exponential tails
(Gumbel, 1958), shifted in location by an amount depending on c. Density
(5) consists, therefore, of splicing together a Gumbel extreme value distri-
bution with parameter α and a negative Gumbel extreme value distribu-
tion with parameter β (appropriately located). Density (5) is differentiable
everywhere, non-differentiability of g translating to lack of a second con-
tinuous derivative of fDDE(x) at x = 0. Note that the mode of (5) is at
x0 = log(α/c)I(α < β) − log(β/c)I(α ≥ β), not 0. Both Laplace and Gum-
bel distributions are sometimes known as double exponential distributions,
so with what can be conceived to be dual use of both such distributions, the
doubly double exponential distribution seems a good name!

3·5. Other smooth distributions

Further smooth f ’s arise from further smooth distributions G with sup-
port the whole of R, but none seems more attractive than, or as tractable
as, those already considered. One example that it is natural to consider is
the normal-based distribution with

fN (x) ∝ exp [αx − (α + β){xΦ(x) + φ(x)}]
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where φ and Φ are the standard normal density and distribution functions.
Differences between (smooth) densities are, in any case, not very marked.

See Fig. 1 for three sets of log F , hyperbolic and normal-based densities
(the latter computed numerically), all normalised to have unit variance and
means strategically placed along the line to allow clarity of viewing. What
differences there are between densities show up mainly in the centres of the
distributions.

* * * Fig. 1 about here * * *

My colleague Karim Anaya made the excellent observation that H [2](x) ≡
xH(x) + h(x) has the properties of a first iterated left-tail distribution func-
tion, provided again that the otherwise arbitrary density function h (and
distribution function H) are such that h is not ‘very heavy left-tailed’ in the
sense described in Section 1. The distribution function associated with H [2]

is, of course, not H but H(x) + xh(x) + h′(x), which differs from H except
in the case H = Φ. However, this method of construction of G[2]’s tends to
add complication and so no examples will be pursued.

3·6. Three-piece distributions

The asymmetric Laplace distribution is a two-piece distribution in the
sense that its density can be thought of as being made up of two smooth
parts joined together continuously but, in this case, not differentiably. If I
drop the requirement that G be symmetric and employ instead a distribution
on R+, further two-piece distributions ensue, but they will not be considered
here.

Instead, consider G to be a symmetric distribution on finite support
(which, without loss of generality, I shall take to be (−1, 1)). These re-
sult in three-piece distributions. The simplest case is that G be uniform
so that G(x) = (1/2)(1 + x)I(−1 < x < 1) + I(x ≥ 1). It follows that
G[2](x) = (1/4)(1 + x)2I(−1 < x < 1) + xI(x ≥ 1) and thence that

fU(x) ∝




exp(αx) if x < −1,

exp
(
− αβ

α+β

)
exp

{
−(1/4)(α + β)

(
x − α−β

α+β

)2
}

if − 1 ≤ x < 1,

exp(−βx) if x ≥ 1.

(6)

It can readily be evaluated that
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KU(α, β) =
1

α
e−α +

1

β
e−β

+ 2

√
π

α + β
exp

{
− αβ

α + β

}{
Φ

(
β

√
2

α + β

)
− Φ

(
−α

√
2

α + β

)}
.

Density (6) is the result of the very simple piecewise method of continuously
— but not differentiably — joining two lines and a quadratic centre on the
log density scale. Equivalently, it consists of a normal centre on to which
exponential, rather than normal, tails have been grafted. In the symmetric
case with α = β, (6) is the density associated with the ‘most robust’ M-
estimator of Huber (1964, p.75; rescale (6) by factor k and take α = k2 to
match Huber’s parameterisation).

Higher order contact between pieces can be achieved by replacing the
quadratic by a higher order polynomial by, for example, replacing uniform
g by other symmetric beta g(x) ∝ (1 − x2)m−1I(−1 < x < 1) for integer
m > 1. See also Section 6.

4. Related distributions I: limiting cases

For the purposes of this section, consider

1

σ
fG

(
x − µ

σ

)
=

1

σKG(α, β)
exp

{
α

(x − µ)

σ
− (α + β)G[2]

(
x − µ

σ

)}
(7)

with (symmetric) G not being a degenerate distribution. It turns out that
one can take µ = 0 in Sections 4.1 and 4.2.

4·1. α, β → 0

Immediately, the asymmetric Laplace is the limiting form of (7) obtained
by letting σ tend to zero. This normalisation is, clearly, appropriate for the
situation where α, β → 0. In particular, in the symmetric case of α = β with
limiting (symmetric) Laplace distribution, one can take σ = α.
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4·2. α = β → ∞
From (7) with α = β,

KG(α, α) =
∫ ∞

−∞
exp{α(x − 2G[2](x))}dx

= exp(−2αG[2](0))
∫ ∞

−∞
exp[α{x − 2(G[2](x) − G[2](0))}]dx


 exp(−2αG[2](0))
∫ ∞

−∞
exp{−αx2g(0)}dx

= exp(−2αG[2](0))

√
π

αg(0)
,

the Taylor approximation being justified by the integrand in the second line
being 1 for x = 0 and vanishingly small otherwise. (Note that 2G[2](0) =
E(|XG|) which has already implicitly been assumed to exist.) Now take

σ =
√

2αg(0). Then,

− log σ − log fG

(
x

σ

)

 −1

2
log(2π) +

√
α

2g(0)
x

− 2α


G[2]


 x√

2αg(0)


− G[2] (0)





 −1

2
log(2π) − 1

2
x2

and the standard normal distribution ensues.

4·3. α → ∞, β fixed

Define 	(x) > 0 to be the limiting expression for G[2](x) − x as x → ∞.
Take µ and σ large such that α	((x−µ)/σ) ∼ 	1(x) > 0 for large x and some
function 	1. Then, the exponential part of (7) is

exp

[
−β

(x − µ)

σ
− (α + β)

{
G[2]

(
(x − µ)

σ

)
− (x − µ)

σ

}]

and this affords a limiting density of the form

K(β)−1 exp {−βx − 	1(x)} (8)
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on appropriate support.
Formula (8) works for the asymmetric Laplace distribution because then

	1(x) = 0 and the limiting case as the left-hand tail parameter α → ∞ is, of
course, the exponential distribution on R+. (Ditto for all distributions gen-
erated by g’s on finite support.) For the log F distribution, the appropriate
normalisation is µ = − log α, σ = 1, so that 	1(x) = e−x and the limiting
density is proportional to e−βx exp(−e−x), x ∈ R. This Gumbel extreme
value limiting distribution corresponds to the log F ’s interpretation as an
order statistic distribution (Jones, 2004, Section 4.6). It is a consequence of
the logistic’s exponential tails and the same limiting distribution applies to
e.g. the doubly double exponential distribution. For the hyperbolic distri-
bution, take µ = 0, σ = 4/α, so that the limiting density is proportional to
exp{−(βx + (1/x))}, x ∈ R+. This is the positive hyperbolic distribution
(e.g. Barndorff-Nielsen and Blaesild, 1983, whose formula (7) incorporates a
scale parameter).

5. Maximum likelihood estimation I: too many scale
parameters

Let X1, ..., Xn be an i.i.d. sample from the location-scale version (7) of
density fG and assume that G is twice continuously differentiable. The asym-
metric Laplace distribution is therefore disqualified from consideration on
two counts, the second being the lack of a role for σ which cannot be sep-
arated from α and β in that case. (See Section 3.5 of Kotz, Kozubowski
and Podgórski, 2001, for a full account of maximum likelihood estimation
for the asymmetric Laplace distribution.) The (exact) unidentifiability of α,
β and σ in the asymmetric Laplace case suggests that there might be what
might be called a practical unidentifiability of α, β and σ in other cases of
fG. This proves to be so in the sense that the asymptotic correlation between
the maximum likelihood estimators of at least one pair of these parameters
is necessarily extremely high and therefore that there is no hope of estimat-
ing all these parameters well from data, nor indeed is there any need to:
in practice, one parameter can be dropped. This is because α, β and σ all
act as scale parameters, yet there are clear roles for only two scale parame-
ters, one associated with the left-tail of the distribution, the other with the
right (or perhaps one overall scale parameter and one parameter controlling
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the left-right difference). Relatedly, the tails of σ−1fG(σ−1(x − µ)) go like
e(α/σ)x as x → −∞ and e−(β/σ)x as x → ∞.

The elements of the observed and expected information matrices associ-
ated with maximum likelihood estimation in the four-parameter distribution
(7) are given in the Appendix. The main point concerning the unnecessary
nature of one of the scale parameters can, however, be demonstrated clearly
in the symmetric three-parameter case with α = β, as follows. The symme-
try of the distribution means that the location estimate µ̂ is asymptotically
independent of σ̂ and α̂. Using manipulations similar to those underlying the
Appendix, the elements of the submatrix of the expected information matrix
associated with σ̂ and α̂ are n times

Jσσ =
1

σ2
(1 + 2αE(X2

FG
g(XFG

))), Jσα = − 1

σα
and Jαα = M′′

G(α)

where MG(α) = log(KG(α, α)). The asymptotic correlation, r say, of σ̂ and
α̂ is therefore the following function of α only:

r(α) =
1

α{M′′
G(α)(1 + 2αE(X2

FG
g(XFG

)))}1/2
. (9)

When α → ∞, the manipulations at the start of Section 4.2 can be ex-
tended to show that M′′

G(α) ∼ 1/(2α2) and E(X2
FG

g(XFG
)) ∼ 1/(2α) so that

limα→∞ r(α) = 1. An asymptotic approximation of 1 for limα→0 r(α) also
seems to arise from other calculations. Indeed, an extraordinary closeness
of r(α) to unity for all α is obtained in numerical calculations. For the log
F and hyperbolic distributions, the minimum correlations that I obtained
numerically were 0.992 and 0.994, respectively! I did a similar analysis for
the four-parameter log F distribution in Jones (2006a) and obtained a (now
rather less impressive!) minimum correlation between σ̂ and each of α̂, β̂ and
2/(α̂ + β̂) of “almost 0.9”.

Treating the log F distribution as a three parameter distribution must
alleviate the computational problems noted with fitting the four-parameter
distribution by Brown et al. (1996) and Dupuis (2001). For more on the the-
ory of maximum likelihood estimation for the log F distribution see Prentice
(1975) and for the hyperbolic distribution see Barndorff-Nielsen and Blaesild
(1981).

11



6 Maximum likelihood estimation II: kernel quantile
estimation

The first likelihood equation reads n−1∑n
i=1 G ((Xi − µ)/σ) = α/(α + β)

or equivalently

n−1
n∑

i=1

G
(

µ − Xi

σ

)
=

β

α + β
≡ p. (10)

The left-hand side of (10) is nothing other than the kernel estimator of the
distribution function at the point µ with bandwidth σ and kernel distri-
bution function G. Solving (10) for µ, the resulting µ̂(p) is precisely the
inversion kernel quantile estimator at p (Nadaraya, 1964, Azzalini, 1981).
It is well known that maximum likelihood location estimation in the asym-
metric Laplace distribution is equivalent to sample quantile estimation (e.g.
Koenker and Machado, 1999); here, for the first time, is a simple general-
isation to the case of kernel smoothed quantile estimation. It is somewhat
intriguing to note that the more tractable choices of G from a distribution
theory perspective and the usual preferred choices of G from a kernel es-
timation perspective (e.g. normal and Epanechnikov and other symmetric
beta kernels; Sections 3.5 and 3.6) differ. However, the relative indifference
to precise choice of kernel, bar perhaps smoothness considerations, matches
with the relative similarity of members of the class fG as in Fig. 1.

Define α + β = δ and fix p by choice of quantile. In this parametrisa-
tion, the tails of the underlying density go like e(1−p)(δ/σ)x as x → −∞ and
e−p(δ/σ)x as x → ∞. This makes it clear (again) that σ and δ are both acting
as scale parameters, but for current purposes it is appropriate to set δ = 1
(and hence completely fix α and β as 1 − p and p, respectively) and retain
σ, formula (10) still holding. Interestingly, the special case of the log F dis-
tribution with δ = 1 that corresponds to use of the logistic kernel in (10) is
precisely the NEF-GHS (natural exponential family generalized hyperbolic
secant) distribution of Morris (1982). In addition, when p = 1/2, Huber’s
‘most robust’ location M-estimator mentioned in Section 3.6 can now be
newly interpreted as an inversion kernel median estimator using a uniform
kernel.

But now we also have a (semi-)principled method of bandwidth selection
by choosing σ and µ simultaneously by maximum likelihood (in the model
with δ = 1). The second likelihood equation that should be solved in con-
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junction with (10) is

1

n

n∑
i=1

(Xi − µ)
{
p − G

(
µ − Xi

σ

)}
= σ. (11)

Uniqueness of the estimators of µ and σ is assured. In fact, it can be shown
that the left-hand sides of (10) and (11) are monotone decreasing in µ for
fixed σ and in σ for fixed µ, respectively, over appropriate ranges of values
and hence that simple (e.g. bisection) methods can be used successfully to
compute µ̂ and σ̂.

Simulation results using this methodology are, however, mixed. As an ex-
ample, Table 1 gives results for n = 50 and the standard normal distribution;
results for n = 100 and other distributions are qualitatively similar. The four
methods compared in Table 1 are the sample quantile, the Harrell and Davis
(1982) estimator and two estimators based on (10) with logistic G: the first
takes σ to be the ‘rule-of-thumb’ bandwidth associated with minimisation
of asymptotic mean squared error (Azzalini, 1981) assuming normality —
which is in fact the right assumption here; the second utilises (11). Taking
50, 000 replications resulted in standard errors such that the simulated mean
squared errors are (approximately) correct to the number of decimal places
shown.

* * * Table 1 about here * * *

The kernel method with σ chosen by (11) performs particularly well at
the median. This is because we are fitting a smooth symmetric log F distri-
bution rather than the sample quantile’s implicit Laplace distribution. This,
of course, can also be considered to be good robust estimation of location
via a particular M-estimator. Performance is rather worse for other quan-
tiles. The new estimator proves to be of roughly comparable quality to the
Harrell-Davis estimator (which is well thought of in the study of Sheather
and Marron, 1990) but not as good as the rule-of-thumb kernel estimator
(whose good performance persists for non-normal distributions). It struggles
particularly when p = 0.75 but seems to improve again for higher p. The
somewhat disappointing overall performance of the new estimator away from
the median must be associated with the fitting of particular skew log F distri-
butions that bear little relation to the symmetric distribution underlying the
data (although the same is true of the asymmetric Laplace distribution un-
derlying the sample quantile). Hence the words “a (semi-)principled method
of bandwidth selection” above!
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It is intended to explore the consequences of the above for kernel quantile
regression elsewhere.

7. Related distributions II: exponential tails and power tails

In this section, I will briefly explore distributions related to fG by simple
transformation.

7·1. Distributions with power tails on R+

Probably the most obvious transformation link to make is that associated
with ‘taking logs’. Let Y = eX , X = log Y . Then the density fG;+,p(y), y > 0,
of Y has the form

fG;+,p(y) =
yα−1

KG(α, β)
exp{−(α + β)G[2](log(y))}. (12)

In this way, the simple exponential tails of density fG translate to simple
power tails for fG;+,p(y):

fG;+,p(y) ∼ yα−1 as y → 0, fG;+,p(y) ∼ y−(β+1) as y → ∞.

Elsewhere (Jones, 2006b) I have argued that this behaviour at 0 — that of
the reciprocal of a random variable with a y−(α+1) right-hand density tail —
is the natural analogue of the power tail at infinity. Formula (12) might be
seen as directly generating densities with power tails on R+ starting from a
simple symmetric distribution on R.

Immediately and unsurprisingly, the power-tailed distribution associated
with the log F distribution on R is the F distribution on R+. The distri-
bution associated with fH is known as the log hyperbolic distribution and
it is in that guise that it is most often used as a model for (positive) data
(e.g. Barndorff-Nielsen, 1977). The distribution associated with fAL has the
simple two-piece density given by

fAL;+,p(y) =
αβ

α + β

{
yα−1I(0 < y < 1) + y−(β+1)I(y ≥ 1)

}
;

Fieller, Flenley and Olbricht (1992) put this ‘log-skew-Laplace’ distribution
forward as a more tractable alternative to the log hyperbolic distribution.
Further distributions with power tails on R+ can, of course, be derived from
other examples of fG.
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7·2. Distributions with power tails on R

In Jones (2006b), I argued that the following simple transformation from
Y ∈ R+ to Z ∈ R has the useful property of maintaining the power tails of
fG;+,p(y) in the density fG;p(z), say:

Z =
1

2

(
Y − 1

Y

)
= sinh(log(Y )). (13)

Combining this transformation with the exponential transformation to Y
from X leads to densities with power tails on R in the sense that

fG;p(z) ∼ z−(α+1) as z → −∞, fG;p(z) ∼ z−(β+1) as z → ∞.

But the combined transformation is nothing other than Z = sinh(X). And
the associated density is

fG;p(x) = K−1
G (α, β)

(z +
√

1 + z2)α

√
1 + z2

exp{−(α + β)G[2](sinh−1(z))}. (14)

The density generated by logistic G is particularly interesting:

fLF ;p(z) =
1

B(α, β)

(z +
√

1 + z2)α

√
1 + z2(1 + z +

√
1 + z2)α+β

.

This is the k = 1 special case of distribution (6.2) of Jones (2004) and, as
such, is, when α and β are integers, the distribution of an order statistic of
a random sample from the distribution with density

z +
√

1 + z2

√
1 + z2(1 + z +

√
1 + z2)2

.

(It is also interesting to note that the (scaled) t2 distribution is nothing other
than the distribution of sinh(L/2) where L follows the logistic distribution,
a simple relationship buried in Jones, 2004, but missed by Jones, 2002.) The
two-piece distributions associated with the asymmetric Laplace distribution
have density

fAL;p(z) =
αβ

(α + β)
√

1 + z2

{
(z +

√
1 + z2)αI(z < 0) + (

√
1 + z2 − z)βI(z ≥ 0)

}
.
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Taking logs and sinhs of X’s with particular distributions, different from
those considered here, is at the heart of the Johnson system of distributions
(Johnson, 1949, Johnson, Kotz and Balakrishnan, 1994a, Section 12.4.3). See
Jones (2006b) for material on the interplay between Johnson distributions
and transformation (13).

7·3. Distributions with exponential tails on R+

The inverse of transformation (13), Y = X +
√

1 + X2 = exp(sinh−1(X)),
can also be applied to densities with exponential tails on R to ‘maintain’
exponential tails on R+ in the sense that

fG;+,e(y) ∼ y−2e−α/(2y) as y → 0, fG;+,e(y) ∼ e−(β/2)y as y → ∞.

(The extra scaling factor of 1/2 is inconsequential.) The ‘exponential tail
behaviour’ at zero is actually that of the reciprocal of a random variable
with exponential tail behaviour at infinity and is also rather similar to that
of the inverse Gaussian distribution, for which the power −2 is replaced by
−3/2.

To cut a longer story short, probably the most attractive distribution in
this family turns out to be that associated with the hyperbolic distribution:

fH;+,e(y) =
1

2KH(α, β)

(
1 +

1

y2

)
exp

{
1

2

(
−α

y
− βy

)}
.

This is a mixture of the positive hyperbolic distribution and its version
weighted by 1/y2, with mixture probabilities α/(α+β) and β/(α+β), respec-
tively. However, this is in competition with the log hyperbolic distribution
itself which arises from the limiting process of Section 7.3 and behaves as
e−1/y as y → 0 (as well as e−βy as y → ∞.). Note, however, that the limiting
process approach is less general than the transformation approach in that
not all limiting densities (8) have support R+. A class of cases that have the
required support arises from g having power upper tail x−(γ+1), γ > 1, for
then 	1(x) ∝ x−(γ−1) with density behaviour e−1/y(γ−1)

as y → 0.
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Appendix

Observed and expected information for the four-parameter case

Write MG(α, β) = logKG(α, β). Based on the log-likelihood

−n log σ − nMG(α, β) + α
n∑

i=1

(Xi − µ)
σ

− (α + β)
n∑

i=1

G[2]
(

Xi − µ

σ

)
,

it can readily be shown that the elements of the observed information matrix
(minus the second derivative of the log-likelihood) in the four-parameter case are
as follows:

ιµµ =
(α + β)

σ2

n∑
i=1

g

(
Xi − µ

σ

)
;

ιµσ =
(α + β)

σ2

n∑
i=1

(Xi − µ)
σ

g

(
Xi − µ

σ

)
;

ισσ =
1
σ2

{
n + (α + β)

n∑
i=1

(Xi − µ)2

σ2
g

(
Xi − µ

σ

)}
;

ιµα =
1
σ

{
n −

n∑
i=1

G

(
Xi − µ

σ

)}
=

βn

(α + β)σ
;

ιµβ = − 1
σ

n∑
i=1

G

(
Xi − µ

σ

)
= − αn

(α + β)σ
;

ισα =
1
σ

n∑
i=1

(Xi − µ)
σ

{
1 − G

(
Xi − µ

σ

)}
=

n

(α + β)σ

(
β

(X̄ − µ)
σ

− 1

)
;

ισβ = − 1
σ

n∑
i=1

(Xi − µ)
σ

G

(
Xi − µ

σ

)
= − n

(α + β)σ

(
1 + α

(X̄ − µ)
σ

)
;

ιαα = nM20
G (α, β); ιαβ = nM11

G (α, β) ιββ = nM02
G (α, β).

Here, X̄ = n−1∑n
i=1 Xi as usual.
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It is clear that, on taking expectations, the elements of the expected infor-
mation matrix are of the forms n times jµµ/σ2, jµσ/σ2, jσσ/σ2, jµα/σ, jµβ/σ,
jσα/σ, jσβ/σ, jαα, jαβ and jββ , respectively, where the j’s are functions of α and
β only. The j’s look much like the ι’s above except that the first three depend on
E(Xr

FG
g(XFG

)), r = 0, 1, 2, and E((X̄ − µ)/σ) = M10
G (α, β) −M01

G (α, β). There-
fore, the expected information matrix does not depend on µ at all and asymptotic
correlations are independent of σ too.
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Table 1: Mean squared errors associated with the estimation of normal quan-
tiles from samples of size n = 50 for specified p and four estimation methods.
The logistic kernel was used in the kernel methods. 50, 000 replications

Kernel; Kernel;
Sample Harrell- rule-of-thumb bandwidth

p quantile Davis bandwidth via (11)

0.50 0.032 0.027 0.032 0.022
0.75 0.037 0.032 0.031 0.035
0.9 0.063 0.049 0.047 0.049
0.95 0.086 0.076 0.068 0.075
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Fig. 1: Log F (solid), hyperbolic (dashed) and normal-based (dotted) distri-
butions with variance unity and β = 2 with, from left, means −8, 0 and 8
and α = 8, 2 and 0.25, respectively.
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