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Abstract

Efficiency assessment is a valuable tool for industries that are regulated, such as the 

provision of drinking water. Hence, past research on this topic is wide. However, 

current, widely used approaches such as parametric, non-parametric and partial 

frontier methods present several limitations and pitfalls. Thus, here, the Efficiency 

Analysis Tree (EAT) method was trialled on a sample of water companies. This method 

overcomes overfitting issues, because it employs a combination of classification, 

regression tree methods, and non-parametric analyses. For comparative purposes, 

efficiency was also estimated using Data Envelopment Analysis (DEA) and Free 

Disposal Hull (FDH) non-parametric methods. The approach was applied empirically 

using a sample of English and Welsh water companies during 1991–2020. Average 

efficiency was estimated at 0.489, showing that water companies could save 51.1% of 

their costs if efficient. Except for the 2011–2015 period, efficiency increased over 

time, indicating that price reviews by the English and Welsh water regulator 

contributed to improving water company performance. The application of bootstrap 

regression analysis techniques showed that the main source of raw water, percentage 

of metered properties, population density, and percentage of water leakage 

represented environmental variables that significantly influenced the efficiency scores 

of water companies. The approach introduced here could be of use to water 

regulators, as it overcomes the existing limitations of traditional approaches 

employed to assess the performance of water companies, facilitating sound decision-

making.



3

Keywords: regression trees; efficiency analysis; performance; water utilities; 

environmental variables; water services.



4

1. INTRODUCTION

Measuring the efficiency of production processes is valuable for decision making units 

(DMUs). Such measurements show how inputs are used to generate outputs “i.e.” 

production technology, and evaluate the efficiency of processes. Efficiency measures 

the maximal (minimal) contraction of inputs (outputs) to generate the same level of 

output (input) (Farrell et al., 1957). The concept of efficiency has been widely used for 

monitoring the performance of several sectors of the economy such as education, 

health services, airports, e-commerce enterprises and banking (Iyer and Jain, 2019; 

Zakowska and Godycki-Cwirko, 2020; Pratap et al., 2022). Assessing efficiency in 

regulated industries (such as water, gas, and electricity) is of particular interest to 

researchers and policy makers (Berg and Marques, 2011; Daraio et al., 2020; Mergoni 

and De Witte, 2022), as it allows the impact of regulatory reforms and policies to be 

evaluated. Furthermore, it can be used to determine future cost allowances and tariffs 

for customers (Cetrulo et al., 2019; Goh and See, 2021).

Efficiency has been traditionally measured using parametric and non-parametric 

techniques. Parametric techniques use econometrics, such as Stochastic Frontier 

Analysis (SFA), to compare the inputs and outputs of units. SFA incorporates both 

noise and inefficiency “i.e.” it is stochastic. To do this, a functional form must be 

specified for the production technology “e.g.” Cobb-Douglas, translog, which makes 

different assumptions regarding the distribution of inefficiency “e.g.” half-normal, 

exponential (Wang et al., 2017). In contrast, non-parametric techniques do not have 

these requirements. Non-parametric methods build on linear programming models, 

such as Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). In this case, 
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the production frontier is not estimated econometrically, but is constructed using 

observed data on inputs and outputs. The production frontier under DEA is piecewise 

linear and convex, whereas under FDH the frontier is a step function (O´Donnell, 

2018). Non-parametric approaches assume that any deviation from the efficient 

frontier is only caused by inefficiency “i.e.” they are deterministic (Dyckhoff, 2018). To 

overcome the deterministic nature of this approach, other techniques have been 

proposed, such as the bootstrap DEA procedure and partial frontier techniques “e.g.” 

order-m(Simar and Wilson, 2007; Ferreira and Marques, 2017). However, it is 

challenging to select the number of bootstrap replications and optimal number of m 

(Villegas et al., 2019). Consequently, Esteve et al. (2020, 2021a) developed a new 

technique, called Efficiency Analysis Trees (EAT). This technique combines the 

Classification and Regression Trees (CART) proposed by Breiman et al. (1984) with 

non-parametric analysis to measure efficiency. By using regression trees, DMUs are 

separated into several regions using a set of different thresholds (Esteve et al., 2021b). 

The EAT approach adjusts the regression tree to estimate production frontiers and 

efficiency. Specifically, the free disposability assumption is imposed where the 

estimated value of the response (output) variable refers to its maximum (value), and 

not the average value. As a result, the estimated frontier utilizes a step function that 

allows efficiency scores to be measured. Esteve et al. (2020, 2021a) demonstrated that 

the EAT technique outperformed other non-parametric techniques (such as DEA and 

FDH), and improved the accuracy of efficiency measurements, because values are not 

overfitted. 

Thus, this study aimed to evaluate the efficiency of water utilities using EAT, the newly 

developed technique. The regression tree allowed the maximum (frontier) 
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expenditure required to provide water services to be visualised at different thresholds 

(rules). EAT allows the efficiency scores for each water utility to be estimated. To allow 

comparison, our study also estimated efficiency using non-parametric techniques 

(such as DEA and FDH). In parallel, we explored how several environmental variables 

(operational characteristics) influenced the efficiency of water utilities. Bootstrap 

regression analysis techniques were used, in which the EAT efficiency score was 

regressed against a set of factors associated with network quality, source of raw 

water, and population density. 

Literature reviews conducted by Cetrulo et al. (2019) and Goh and See (2021) 

demonstrated that many studies have evaluated the efficiency of water companies. 

The bibliometric analysis conducted by Goh and See (2021) identified 142 articles on 

benchmarking the performance of water companies during the years 2000-2019. 

Moreover, Cetrulo et al. (2019) identified that DEA was the most commonly used 

method to evaluate the efficiency of water companies. The aim of these previous 

studies was diverse. Some studies focused on comparing the efficiency of public and 

private companies (Estache and Trujillo, 2003; Molinos-Senante et al., 2016). It is also 

possible to observe benchmarking studies linked to the implementation of regulation 

processes (Berg and Lin, 2008; Drusiani et al., 2013). Other studies explored the impact 

of economies of scale, scope and density on the performance of water companies 

(Guerrini et al., 2015; Lo Storto, 2020). Several studies (Marques et al., 2014; Pinto et 

al., 2017) examined the influence of exogenous variables on the performance of water 

companies. However, all previous studies on this topic used traditional parametric and 

non-parametric methods. Despite the advantages of EAT, it has not been previously 

used to assess the efficiency of water companies. Hence, this study extends the 
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literature on this subject by employing a newly developed technique that combines 

decision tree analysis and production economics to improve the accuracy in evaluating 

the efficiency of water utilities. 

The paper unfolds as follows. Section 2 presents the methodologies employed in this 

study to estimate efficiency scores and the impact of environmental variables on 

efficiency. Section 3 describes the case study and sample data. Section 4 presents and 

discusses the main findings, whereas the final section concludes.

2. METHODOLOGY

2.1 Efficiency methods

Efficiency scores for a sample of water utilities were estimated using EAT, in which the 

predicted values of the response (output) variable were visualised through a decision 

tree. DMUs were split into several non-overlapping regions based on a set of 

thresholds of predictor (input) variables (James et al., 2013; Rebai et al., 2019). With 

EAT, the efficient frontier was estimated using step functions that satisfied the basic 

properties of microeconomics, such as free disposability. 

Let us consider  water companies to be evaluated. Assuming that the set of predictor 𝑛

variables is denoted as  with ,  is used to predict a set of 𝑥1,…,𝑥𝑚 𝒙𝒋 ∈ 𝑅 + 𝑗 = 1,...,𝑚

response variables denoted as  with . The EAT algorithm selects 𝑦1,…,𝑦𝑠 𝒚 ∈ 𝑅 +

predictor variable and threshold , in which  denotes the set of likely 𝑗 𝒔𝒋 ∈ 𝑆𝑗 𝑺𝒋

thresholds for variable to separate the data into two nodes,  and  (Esteve et al., 𝑗 𝑡𝑅 𝑡𝐿

2021a). The split is achieved by minimising the sum of the mean squared of error 
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(MSE); namely, the difference between the actual and response variables derived in 

that particular node. Mathematically, this is done as follows:

           (1)𝑅(𝑡𝐿) +𝑅(𝑡𝑅) =
1
𝑛∑(𝑥𝑖,𝑦𝑖) ∈ 𝑡𝐿

(𝑦𝑖 ― 𝑦(𝑡𝐿))2 +
1
𝑛∑(𝑥𝑖,𝑦𝑖) ∈ 𝑡𝑅

(𝑦𝑖 ― 𝑦(𝑡𝑅))2

where  presents the node of the tree,  is the MSE of each node ,  denotes the 𝑡 𝑅(𝑡) 𝑡 𝑛

sample size, and  and  represent the predicted value of the response 𝒚(𝒕𝑳) 𝒚(𝒕𝑹)

variable, which is derived based on the data that belongs to nodes,  and , 𝑡𝐿 𝑡𝑅

respectively. Nodes  and  denote the left and right nodes of the tree, respectively. 𝑡𝐿 𝑡𝑅

A regression tree is visualised graphically as shown in Figure 1.

𝑡_0

𝑡_1

𝑡_3 𝑡_4

𝑡_2

𝑡_5
     𝑦(𝑡3)                            𝑦(𝑡4)                               𝑦(𝑡5)

Figure 1. Example of a regression tree

The regression tree obtained using the EAT algorithm terminates when further 

meaningful splits of data are not feasible. This arises when  (Breiman 𝑛(𝑡) ≤ 𝑛𝑚𝑖𝑛 = 5

et al., 1984; Breiman et al., 2001; Esteve et al., 2020). EAT extends the CART approach 

by allowing the inclusion of two characteristics of production economics. First, it 

allows the frontier (maximum) variable to be estimated, rather than the average of 

the response variable. Second, the data from each node are split in a way that the free 
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disposability assumption is satisfied, while minimising Eq. (1). Both characteristics are 

accomplished by introducing the concept of Pareto-dominant nodes (for more details, 

see Esteve et al., 2020; 2021a; 2022). 

Consequently, the predicted (estimated) values of the response variable for a given 

node ,  must be equal to, or higher (or equivalently, must not be smaller), than 𝑡 𝑦(𝑡),

the those belonging to the Pareto-dominant node. Mathematically, the fulfilment of 

the free disposability assumption in the regression tree that is built based on the EAT 

algorithm is expressed as follows:

 𝑦(𝑡𝐿) = 𝑚𝑎𝑥{𝑚𝑎𝑥{𝑦𝑖:(𝑥𝑖,𝑦𝑖) ∈ 𝑡𝐿},𝑦(𝐼𝑇(𝑘|𝑡 ∗ →𝑡𝐿,𝑡𝑅)(𝑡𝐿))}

                                         (2)𝑦(𝑡𝑅) = 𝑦 (𝑡) 

where  denotes the sub-tree that is produced from applying the EAT algorithm,  is 𝑇 𝑘

the number of splits, , and  presents the highest 𝑦(𝐼𝑇(𝑘|𝑡 ∗ →𝑡𝐿,𝑡𝑅)(𝑡𝐿)) 𝑦(𝐼𝑇(𝑘|𝑡 ∗ →𝑡𝐿,𝑡𝑅)(𝑡𝑅))

estimate of variable  at Pareto-dominance nodes of  and , respectively (Esteve et 𝑦 𝑡𝐿 𝑡𝑅

al., 2020). Thus, the predictor function is non-decreasing, and the estimated 

production frontier looks like a step function (Aparicio et al., 2021; Esteve et al., 

2021a). Thus, the production technology estimated using EAT is defined as follows:

  (3)𝑃𝑇𝑇𝑘 = {(𝑥,𝑦) ∈ 𝑅𝑚 + 1
+ :𝑦 ≤ 𝑑𝑇𝑘(𝑥)}

where  denotes the predictor estimator related to sub-tree 𝑑𝑇𝑘(𝑥) 𝑇𝑘.

Cross-validation techniques could be used to obtain the best regression tree, such as 

the optimal number of leaf nodes or the minimum number of DMUs in a node for a 

split to arise (Green et al., 2021; Elbeltagi et al., 2022). Overall, the tree constructed 
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using the EAT algorithm uses a vector of inputs and outputs, and each node of the tree 

uses a sub-matrix of these data. Each node uses a predictor and a set of thresholds to 

produce a predicted value of the response variable. Each split is determined by 

minimising the MSE. The EAT algorithm applies the free disposability assumption, so 

the estimated frontier looks like a step function, and the predicted (estimated) value 

of the response variable is the frontier, not the average. Given that the EAT algorithm 

produces a size increasing sequence of trees, i.e., , {𝑡0} < 𝑇1 < 𝑇2 <  ... < 𝑇𝐾 =  𝑇𝑚𝑎𝑥

ensuring that each tree  fulfils free disposability. Thus, according to Esteve et al. 𝑇𝐾

(2021), the opposite sequence ( ) was used for the 𝑇𝑚𝑎𝑥 > 𝑇𝐾 ― 1 > 𝑇𝐾 ― 2 > ... > {𝑡0}

pruning process as a sequence of subtrees. Hence, we note that the following 

relationship among the estimated outputs of the pruned EAT, DEA and FDH 

approaches exist as indicated by Esteve et al. (2021)  𝑑𝑇 ∗ (𝑥) ≥ 𝑑𝑇𝑚𝑎𝑥(𝑥) ≥ 𝑓𝐹𝐷𝐻(𝑥).

The efficiency score when using EAT is derived by solving the following linear equation:

  (4)𝜃𝐸𝐴𝑇(𝑥𝑘,𝑦𝑘) = min 𝜃

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 ∑
𝑡 ∈ 𝑇 ∗ 𝜆𝑡𝑎𝑡

𝑗 ≤ 𝜃𝑥𝑗𝑘,                𝑗 = 1,…,𝑚

 ∑
𝑡 ∈ 𝑇 ∗ 𝜆𝑡𝑑𝑡

𝑟𝑇 ∗ (𝑎𝑡) ≥ 𝑦𝑟𝑘,     𝑟 = 1,…,𝑠

 ∑
𝑡 ∈ 𝑇 ∗ 𝜆𝑡 = 1

 𝜆𝑡 ∈ {0,1},                               𝑖 = 1,…,𝑛          

where  is the efficiency score,  are points in the input-output space for 𝜃 (𝑎𝑡,𝑑𝑇 ∗ (𝑎𝑡))

all , in which * denotes the final sub-tree, and  are intensity variables used to 𝑡 ∈ 𝑇 ∗ 𝜆

construct the efficient frontier. A value of one indicates that the unit under evaluation 

(water utility in this study) is fully efficient. 
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Finally, to allow comparison, we estimate the efficiency scores of two alternative non-

parametric approaches, DEA and FDH. DEA constructs a piecewise convex efficient 

frontier, whereas FDH estimates an efficient frontier that looks like a step function1. 

Under DEA, efficiency is measured by assuming that the variable returns to scale, and 

requires the solution of the following linear equation:

  (5)𝜃𝐷𝐸𝐴(𝑥𝑘,𝑦𝑘) = min 𝜃

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 ∑𝑛
𝑖 = 1𝜆𝑖𝑥𝑗𝑖 ≤ 𝜃𝑥𝑗𝑘,           𝑗 = 1,…,𝑚

 ∑𝑛
𝑖 = 1𝜆𝑖𝑦𝑟𝑖 ≥ 𝑦𝑟𝑘,             𝑟 = 1,…,𝑠

 ∑𝑛
𝑖 = 1𝜆𝑖 = 1

 𝜆𝑖 ≥ 0,                               𝑖 = 1,…,𝑛          

To calculate the efficiency scores under FDH, the following linear equation is used:

  (6)𝜃𝐹𝐷𝐻(𝑥𝑘,𝑦𝑘) = min 𝜃

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 ∑𝑛
𝑖 = 1𝜆𝑖𝑥𝑗𝑖 ≤ 𝜃𝑥𝑗𝑘,                𝑗 = 1,…,𝑚

 ∑𝑛
𝑖 = 1𝜆𝑖𝑦𝑟𝑖 ≥ 𝑦𝑟𝑘,                 𝑟 = 1,…,𝑠

 ∑𝑛
𝑖 = 1𝜆𝑖 = 1

 𝜆𝑖 ∈ {0,1},                            𝑖 = 1,…,𝑛          

To assess the relationship between the efficiency scores estimated using EAT, DEA, 

and FDH, Spearman´s rank-correlation coefficient is used. It is a non-parametric 

1More details on DEA and FDH are available in Cooper et al. (2011).
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approach that was appropriate for our case study, because the efficiency scores are 

non-normally distributed.

For a more in-depth examination of efficiency scores estimated using the EAT, DEA 

and FDH methods, kernel density analysis is conducted. Kernel density provides 

valuable information about the distribution of efficiency scores computed across the 

682 observations (water companies). According to Henderson and Parmeter (2015), 

in our case study, the density function is defined as follows:

  (7)𝑓(𝜃) =
1

682ℎ∑682
𝑘 = 1𝐾[1

ℎ(𝜃 ― 𝜃𝑘)]

where  is the efficiency score for the water company ;  is a kernel function and,  𝜃𝑘  𝑘 𝐾

 is a smoothing bandwidth parameter. Based on past research (Castillo-Gimenez et ℎ

al., 2019; Ding et al., 2020), a Gaussian function is used for the kernel function which 

is as follows:

               (8)𝐾(𝜃) = ( 2𝜋) ―1exp ( ―
1
2𝜃2)

The kernel density analysis is conducted for the efficiency scores estimated using the 

EAT, DEA and FDH methods.

2.2. Environmental variables influencing efficiency

Potential factors influencing the efficiency scores estimated in Section 2.1 are 

investigated. The potential impact of certain operating characteristics on company 

efficiency is explored, such as population density and source of water collection. We 

perform truncated regression using the efficiency score (values between zero and 1) 

as a dependent variable and the vector of operating characteristics as independent 
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variables (Ananda, 2018; Wang et al., 2020; Sala-Garrido et al., 2021a). Typically used 

Tobit regression might generate biased estimates, due to serial correlation among 

efficiency scores, error terms, and explanatory variables (Simar and Wilson, 2007). 

Therefore, bootstrap truncated regression developed by Simar and Wilson (2007) is 

used. The regression model is defined as follows:

  (9)𝜃𝑖 = 𝛽0 + 𝛽𝑖𝜂′𝑖 + 𝑦𝑒𝑎𝑟𝑖 + 𝜀𝑖

where  captures the efficiency score obtained from the previous stage,  is the 𝜃𝑖 𝛽0

constant term,  is the set of operating characteristics of any water company , and𝜼′𝒊 𝑖

 is the parameters that must be estimated. We also includes dummies for each year 𝛽𝑖

observed in the sample, captured by the term .  denotes the error (noise) term, 𝑦𝑒𝑎𝑟𝑖 𝜀𝑖

and follows the standard normal distribution. 

The truncated maximum likelihood is maximised with respect to the estimated 

parameters and variance of the error (Badunenko and Tauchmann, 2019). A 

parametric bootstrap of the truncated regression is employed to obtain unbiased beta 

coefficients and valid confidence intervals (Simar and Wilson, 2007). 

3. CASE STUDY DESCRIPTION

The empirical application conducted focused on measuring the efficiency in the 

provision of water services by several water utilities in England and Wales during 

1991–2020. The water utilities that were evaluated included both water and sewerage 

companies (WaSCs) and water only companies (WoCs). Being natural monopolies, an 

economic regulator, the Water Services Regulation Authority (Ofwat), was set up to 

monitor the performance of utilities. Every five years, the regulator evaluates the 
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efficiency of the water utilities to delineate a baseline future cost allowance (Molinos-

Senante et al., 2017). The results of this performance assessment are translated into 

revenue allowance and price limits, including allowed charges to customers (price 

review).

Predictors and response variables were selected based on past research on this topic 

(see review by See, 2015; Cetrulo et al., 2019; Goh and See, 2021). The response 

variable was defined as the annual total expenditure of water services measured in 

millions of ₤ (Saal et al., 2007; Bottasso et al., 2011; Sala-Garrido et al., 2021b). Total 

expenditure was defined as the sum of operating and capital expenditure from the 

provision of water services. Three predictor variables were selected. The first variable 

was the volume of drinking water delivered, which was measured in megalitres per 

year (De Witte and Marques, 2010; Molinos-Senante et al., 2017). The second 

predictor variable was the number of water connected properties, which was 

measured in thousands per year (Bottasso and Conti, 2009; Molinos-Senante et al., 

2014). The third predictor variable the length of water mains, which was measured in 

thousands of kilometres (km).

Past studies that benchmarked the efficiency of water companies (Ananda, 2018; 

Cetrulo et al., 2019; D´Inverno et al., 2020; Goh and See, 2021) showed that several 

operating characteristics (or environmental variables) impact performance, and 

should be part of the assessment exercise. Hence, we included several operating 

characteristics that we were related to the quality of the network, source of raw 

water, and density of the areas served by water utilities. The percentage of water 

leakage was used to reflect the quality of network (Brea-Solis et al., 2017). The 
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percentage of raw water collected from rivers and reservoirs was used to indicate the 

source of raw water. The average pumping head was used as a proxy for the energy 

required to extract, treat, and deliver water to end users (Molinos-Senante and 

Maziotis, 2018). The percentage of metered properties was used as an indicator of 

efficiency (Brea-Solis et al., 2017). Population density was defined as population 

divided by the area supplied by the water company as an environmental variable (Sala-

Garrido et al., 2021a; 2021b). Table 1 presents the descriptive statistics of the 

variables used in the analysis. 

Table 1. Descriptive statisticts of the English and Welsh water companies

Variables Units Mean St.Dev. Min Max
Volume of water delivered Ml/year 244105 258269 10216 1049122
Water connected properties 000s 1057 1083 37 4047
Length of mains km 14560 13754 480 47151
Total expenditure Millions of £ 159 170 5 866
Water leakage % 15 5 5 36
Water taken from rivers % 23 24 0 87
Water taken from reservoirs % 32 27 0 100
Water metered properties % 30 20 3 87
Average pumping head nr 128 36 52 224
Water population density 000s/km2 0.475 0.327 0.134 2.810

Number of DMUs: 682

4. RESULTS AND DISCUSSION

4.1 Efficiency estimation 

Figure 3 presents the regression tree from implementing the EAT algorithm. Each node 

shows the identification number, MSE, number of DMUs, predictor that the split was 

based on, and predicted value of the response variable, which is the frontier value. All 

variables “i.e.” water connected properties, length of water mains, and volume of 

drinking water delivered) contributed towards predicting total expenditure (Figure 2). 

Water connected properties (wcprop) and length of mains (mainskm) had a major 
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impact on costs, as shown in the regression tree (Figure 3). Different levels of frontier 

expenditure were required, as shown by the different set of thresholds for predictor 

variables. 

0
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mainskm wcprop wdtot
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Figure 2. Variable importance for the EAT regression tree

Delivering water to more than 2,000,000 connected properties per year could require 

an operating expenditure of ₤865 million, representing the maximum (frontier) 

expenditure. For connected properties of less than 2,000,000 and a network of pipes 

of 11,645 thousands of kilometres, maximum expenditure could reach ₤335 million. 

However, for smaller networks “i.e.” 2,824–11,645 thousands of kilometres, the 
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predicted required efficient total expenditure was ₤143.5 million. Lower expenditure 

was needed “i.e.” ₤34.3 million when the length of mains did not exceed 2,824 

thousands of kilometres. Thus, the higher the number of connected properties, the 

higher the number of pipes that must be laid to deliver drinking water, raising 

company costs. 
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Figure 3. Regression Tree for English and Welsh water companies from EAT algorithm

Table 2 summarizes the efficiency scores obtained from the EAT algorithm, DEA 

methods and FDH methods. The efficiency scores were larger for DEA and FDH 

compared to EAT. Several water companies had an efficiency score of 1 for FDH and 
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DEA. In particular, 25% and 5% of the total number of DMUs under FDH and DEA, 

respectively, were fully efficient, and constructed the efficient frontier. Under EAT, six 

out of 682 DMUs (0.9%) had an efficiency score of 1. Thus, there is a risk of overfitting 

when estimating efficiency frontiers under FDH and DEA. This result is consistent with 

past research (Pereira et al., 2021). 

Table 2. Summary statistics of efficiency scores for English and Welsh water companies

Method Mean St.Dev. Minimum Maximum
Number of 

efficient 
DMUs

FDH 0.789 0.211 0.252 1.000 171
DEA 0.715 0.153 0.159 1.000 34

All 0.489 0.236 0.139 1.000 6
WoCs 0.500 0.252 0.139 1.000 4EAT
WaSCs 0.476 0.214 0.154 1.000 2

The average efficiency score under FDH and DEA was estimated to be 0.789 and 0.715, 

respectively. Thus, the potential savings in costs among English and Welsh water 

companies under FDH and DEA were 21.1% and 28.5%, respectively. In contrast, the 

average efficiency score based on EAT was 0.489, meaning water companies could 

save 51.1% of costs if they operated like the efficient ones. Spearman's rank-order 

correlation (Table 3) showed that there the efficiency scores of EAT and FDH were 

more correlated than DEA. This difference was attributed to EAT and FDH estimates 

being generated via a step function efficient frontier, whereas DEA constructs a 

convex piecewise frontier. Nevertheless, differences among average efficiency scores 

computed using DEA, FDH and EAT demonstrated the importance of selecting an 

adequate method to estimate the performance of utilities (Valero-Carreras et al., 

2021). This issue is even more relevant when efficiency scores are used for 

benchmarking purposes. For instance, the English and Welsh water industry are 
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regulated via price caps, in the form of RPI+K, where RPI is Retail Price Index and K 

consists of two parts, Q and X. The former represents the price increase to finance 

environmental improvements, while X is the offset in productivity (Helm, 2020). 

Recent price reviews showed that the efficiency of water utilities is evaluated through 

benchmarking. This information is used to set a cost baseline scenario for each utility, 

which is then compared with the forecast costs of a utility submitted in business plans. 

This information is used to set cost and revenue allowances, which are translated into 

price limits for five years (Ofwat, 2020). In this context, using a reliable and robust 

method, such as EAT, is extremely relevant.

Table3. Spearman's rank-order correlation among efficiency scores

EAT FDH DEA
EAT 1.000 0.519 0.221
FDH 0.519 1.000 0.194
DEA 0.221 0.194 1.000

The computation of kernel densities for efficiency scores estimated using the EAT, DEA 

and FDH approaches allowed us to analyze the potential impact of each method used 

on the distribution of performance for the water companies evaluated. It also offered 

evidence of the concentration of efficiency around given scores. Figure 4 shows the 

kernel distributions of efficiency scores estimated using the EAT, DEA and FDH 

methods. It is illustrated that the mode of the distribution of efficiency scores 

estimated using the FDH and DEA methods is broadly similar whereas a different 

distribution was observed for efficiency scores based on the EAT approach.



20

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.0 0.2 0.4 0.6 0.8 1.0

EAT FDH DEA

De
ns

ity

Figure 4. Kernel densities of the efficiency scores estimated using Efficiency Analysis 

Tree (EAT), Free Disposal Hull (FDH) and Data Envelopment Analysis (DEA) methods.

The results based on EAT estimations showed that the mean efficiency of the English 

and Welsh water industry was 0.489. Non-relevant differences among WoCs and 

WaSCs were reported in terms of average efficiency scores. On average, WoCs and 

WaSCs could reduce their costs by 50% and 52.4%, respectively, to provide the same 

level of water services. Our results indicate that the water industry was characterised 

by high levels of inefficiency, with capacity to improve the managerial practices of 

companies to become more efficient, supporting previous studies (Portela et al., 2011; 

Byatt, 2017; Walker et al., 2020; Mocholi-Arce et al., 2021).

Evaluating the distribution of efficiency scores across companies, based on EAT 

algorithm method, provided insights on variation in the levels of inefficiency scores 

(Figure 5). Most DMUs associated with both WoCs and WaSCs reported an average 

efficiency score ranging between 0.21 and 0.60. Thus, over the entire study period, 

the potential savings in costs for most English and Welsh water companies varied 
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between 40% and 80%, on average. This finding corroborates the low efficiency levels 

that characterised the water industry. However, the average efficiency score was 

lower for WoCs compared to WaSCs on occasion. Specifically, 66 out of the 382 DMUs 

(17.3%) related to WoCs were considerably inefficient, as their mean efficiency score 

did not exceed 0.20 during the study period. In contrast, this value was 9.0% for 

WaSCs, as 27 out of 300 DMUs had efficiency scores lower than 0.20. DMUs with the 

highest efficiency scores “i.e.” higher than 0.8 were mostly WoSCs. Overall, 75 out of 

382 (19.6%) DMUs with average efficiency scores higher than 0.80 were WoCs. Not 

many WaSCs (30 out of 300; 10.0%) were within that efficiency range during the study 

period. Thus, while WoCs performed very well in terms of efficiency on several 

occasions in 1991–2020, efficiency, in most cases, did not exceed 0.60. Therefore, the 

management practices of WoCs must be considerably improved to reduce costs. 

WaSCs rarely showed high levels of efficiency. 
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Figure 5. Histogram with the distribution of efficiency scores for English and Welsh water 

companies.
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As the study period covered several price reviews, the average efficiency scores of 

WaSCs and WoCs, estimated using the EAT approach, were split in several sub-periods 

to link them with the regulatory cycle of the English and Welsh water industry (Figure 

6). There was an upward trend in average efficiency for both WoCs and WaSCs over 

the study period. Thus, the efficiency of the English and Welsh water industry 

improved over time. On average, the efficiency of water companies improved by 

39.5% between 1991–1995 and 2016–2020 (from 0.412 to 0.575, respectively). WaSCs 

achieved higher efficiency gains compared to WoCs. The efficiency of WaSCs improved 

by 57.5% on average over the same period (from 0.364 to 0.573). The improvement 

in the efficiency of WoCs was also considerable over the same period, but at a lower 

magnitude (25.2%; from 0.461 to 0.577, respectively). Although the efficiency scores 

of average WaSCs were lower compared to average WoCs in the first period (1991–

1995), they caught up with the most efficient WoCs and, in some cases, became more 

efficient than WoCs, on average. Therefore, the efficiency scores of WoCs and WaSCs 

converged over time.
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Figure 6. Average efficiency scores by regulatory period for English and Welsh water 

companies

During the 1991-95 period, the average efficiency score for WoCs and WaSCs 

remained low (0.461 and 0.364, respectively). Thus, the potential savings in costs 

among WoCs and WaSCs could have been of 53.9% and 63.6%, respectively. 

Therefore, the transition period from public to private ownership had no substantial 

impact on cost savings, supporting previous studies. For instance, Erbetta and Cave 

(2007) showed that the years after privatisation had no a major impact on the 

efficiency of companies. An upward trend in industry efficiency was observed in 1996–

2000. This trend was mainly driven by the gains in efficiency for average WaSCs, which 

improved from 0.364 to 0.432, on average. In contrast, the efficiency of WoCs 

remained constant. The 1994 price review introduced two main policies to boost 

industry performance. The first policy was related to higher allowed increases in 

customer tariffs (and more lax cost reduction targets) to invest in maintaining and 

upgrading the network (Molinos-Senante and Maziotis, 2018). The second policy was 

associated with promoting mergers among companies. These reforms might have 

explained improved company efficiency. Moreover, the 1999 price review was the first 

in which water companies were forced to reduce the prices charged to customers. The 

regulator wanted to ensure that any cost savings gained in previous years were passed 

to customers in terms of lower prices. This price review did not appear to affect the 

efficiency of water companies. Further cost savings were reported that might have 

allowed companies to regain any losses in their profits that occurred due to reduced 

revenue. Cost savings were higher for WoCs compared to WaSCs, supporting previous 

studies. For instance, Bottasso and Conti (2009) and Portela et al. (2011) observed that 
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improving industry efficiency resulted in less efficient companies moving closer to the 

frontier. However, there was potential for further cost savings in daily operations and 

the management of assets. 

The efficiency of the English and Welsh water industry improved considerably during 

the 2006-2010 period. Regulatory incentives might positively impact efficiency, such 

as sharing any outperformance in expenditure with customers and financial rewards 

and penalties when network quality improves (Villegas et al., 2019). The efficiency of 

WaSCs substantially improved (from 0.439 to 0.517, on average), whereas the mean 

efficiency of WoCs increased slightly (from 0.508 to 0.537). Therefore, less efficient 

WaSCs appeared to be trying to catch-up with the most efficient WoCs in the industry. 

In the 2011-2016 period, where cost reduction targets were tightened, efficiency 

slightly reduced. The 2009 price review might have been challenging for WoCs; in 

contrast, the mean efficiency of WaSCs exceeded that reported by WoCs. In the last 

period (2017–2020), the situation was reversed. During this period, the regulator 

introduced several incentives for companies to improve efficiency. For instance, it 

introduced a set of common and bespoke performance targets to monitor economic 

and environmental performance, and imposed financial rewards/penalties when 

these targets were met/not met (Villegas et al., 2019). The average efficiency of both 

WoCs and WaSCs became similar; however, considerable inefficiency remained, with 

the potential for improvement. 

4.2 Influence of environmental variables on efficiency scores

To analyse the influence of environmental variables on the efficiency of English and 

Welsh water companies, bootstrap regression analysis was conducted (Table 4). The 
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year dummies were statistically significant from zero (data not presented due to 

length restrictions). The percentage of water taken from rivers, average pumping head 

and percentage of water leakage had a statistically significant and negative impact on 

efficiency. In contrast, the percentage of metered properties and population positively 

affected efficiency. 

Specifically, the higher the percentage of raw water taken from rivers, the lower the 

efficiency, on average. This finding might be attributed to water taken from rivers 

requiring higher treatment compared to groundwater and, therefore, higher 

production costs. A similar result was obtained for average pumping head. Higher 

pumping requirements to abstract, treat and distribute water from different sources 

could increase energy costs and overall costs. Thus, water companies could reduce 

production costs by investing in more energy efficient pumps or by using renewable 

energy when abstracting and treating water. This approach could benefit people and 

the environment, as less carbon might be emitted to the atmosphere from the 

provision of water services. 

Higher levels of water leakage were related to lower efficiency levels (Table 4). This 

phenomenon might be attributed to the need for resources to deal with network 

incidents. Moreover, the lost water is drinking water that had already incurred 

economic costs through being abstracted and treated; however, these costs cannot 

be recovered through tariffs. Reducing the level of water leakage could enhance 

environmental sustainability, because more water would be available for people and 

the environment. The more metered properties that a water company has, the higher 

the level of efficiency. This phenomenon might be explained by the fact that metres 
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allow companies to better understand water use and costs, providing an opportunity 

to set costs that reflect tariffs. 

Population density positively impacted efficiency. As the population increased in an 

area, the costs to serve the people in this area could decline, indicating the existence 

of economies of density. Thus, densely populated areas could be less costly to serve 

than less densely populated areas, supporting previous studies on the water industry 

in other countries, including Portugal (Carvalho and Marques, 2016), Spain (Alvarez et 

al., 2014), Slovenia (Filippini et al., 2008), Italy (Guerrini et al., 2018), United States of 

America (Torres and Morrison-Paul, 2006) and Canada (Renzetti and Dupont, 2009).

Table 4. Influence of environmental variables on efficiency. Bootstrap regression analysis

Variables Coeff. Std. Err. z-stat p-value
Constant 0.317 0.121 2.619 0.008
% water taken from rivers -0.101 0.021 -4.809 0.000
% water taken from reservoirs -0.015 0.020 -0.750 0.453
% of metered properties 0.215 0.073 2.945 0.003
Average pumping head -0.051 0.030 -1.701 0.088
Population density 0.175 0.028 6.250 0.000
% of water leakage -0.314 0.033 -9.515 0.000
X2(35) 64.12

DMUs: 682
EAT efficiency is the dependent variable
Bold indicates that coefficients are statistically significant at 5% significance level
Bold italic indicates that coefficients are statistically significant at 10% significance level

5. CONCLUSIONS

Measuring efficiency and its determinants in the water industry is valuable for 

managers and regulators. This information can have both backward- and forward-

looking impacts. The efficiency of water companies in past years could be used to 

determine a future cost allowance and tariffs to customers. Traditionally, non-

parametric techniques “e.g.” DEA and FDH are used to measure efficiency. To 
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overcome overfitting issues, this study trialled a newly developed technique, called 

EAT, which combines decision tree and non-parametric analysis to estimate the 

efficient frontier and derive the efficiency of water companies. We also used 

bootstrap regression techniques to investigate the impact of several environmental 

variables on the efficiency of utilities. 

Through empirically applying the new approach to the English and Welsh water 

industry, we showed that the higher the number of connected properties, the higher 

the number of mains must be laid to deliver water, raising the total expenditure of 

companies. Considerable inefficiency was reported for the water industry in England 

and Wales during 1991–2020. Efficiency was 0.489 on average, indicating that the 

potential cost savings among water utilities were 51.1% to produce the same level of 

output. Moreover, WoCs were slightly more efficient compared to WaSCs (0.500 

versus 0.476 average efficiency, respectively). During the study period, most the 

efficiency score of most WoCs and WaSCs ranged between 0.21 and 0.60. On several 

occasions, WoCs achieved higher efficiency scores compared to WaSCs, on average. 

The industry’s efficiency improved over time, indicating that regulatory reforms and 

policies might contribute towards boosting the performance of utilities. Higher 

efficiency gains were achieved for average WaSCs compared to WoC; however, 

efficiency scores converged after 2006, indicating that the performance of WaSCs 

improved towards the most efficient companies in the industry, moving closer to the 

efficient frontier. However, industry performance could improve further, as efficiency 

levels remain low. Of note, the percentage of water taken from rivers and average 

pumping head raised costs and reduced efficiency. Water leakage also increased costs, 



28

because fixing leaks might require higher operational costs. In contrast, metered 

properties and population density positively impacted efficiency.

The findings of our study have several policy implications. We provided and 

implemented a robust methodology to improve accuracy and overcome the 

shortcomings of past approaches, allowing the efficiency of decision-making units to 

be evaluated. Managers could visualise the maximum expenditure required to provide 

water services based on different regulations. For instance, costs of companies might 

be considerably high when water services must be provided to more than two million 

connected properties. The approach developed here also allows policy makers to 

understand the level of inefficiency in the industry and, importantly, the most and 

least efficient companies. This information allows managers to ascertain how 

efficiency evolves over time, and whether gains or losses exist in the efficiency of 

different companies. Consequently, policy makers could quantify the savings in costs 

that companies could potentially achieve to improve performance. Our method also 

allows policy makers to assess the impact of regulatory reforms and policies on the 

efficiency of companies. 

The current study also explored how different operating characteristics affect 

efficiency. For instance, higher costs are associated with water that is taken from 

rivers and higher pumping. Thus, abstracting water from rivers might have high energy 

requirements to pump it into the network. Therefore, a more energy efficient use of 

pumps might be required to reduce costs. Moreover, the need to treat water from 

rivers might increase energy costs. Therefore, more energy efficient technologies, 

such as using energy from renewable sources, might represent potential solutions for 
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reducing cost. Fixing leaks might require the use of more resources, which could raise 

costs. In contrast, densely populated areas might be less costly to serve than urban 

areas. These factors could contribute to the costs and efficiency of companies, and 

should be included in the decision-making process of businesses. Dealing with other 

operating characteristics (such as water leakage and the use of less energy intensive 

activities) when producing water could have wider environmental impacts that are 

considered crucial in light of climate change. Consequently, utilities should focus on 

evaluating economic performance and improving environmental sustainability.

This study focused on estimating efficiency scores for water companies. This means 

that quality of service variables were not directly integrated in performance 

assessment. Future research could assess the “eco-efficiency” of water companies by 

integrating some relevant quality of service variables as undesirable outputs. 

Moreover, uncertainty in data is always an issue to be considered when efficiency 

scores are computed using non-parametric methods. In this study, an outlier 

identification analysis was conducted before estimating efficiency scores using the 

EAT, DEA and FDH methods. Nevertheless, as part of future research development on 

this topic, parametric approaches could also be employed to better identify outliers.
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