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A B S T R A C T   

In construction projects, contingency reserves have traditionally been estimated based on a percentage of the 
total project cost, which is arbitrary and, thus, unreliable in practical cases. Monte Carlo simulation provides a 
more reliable estimation. However, works on this topic have focused exclusively on the effects of aleatoric un-
certainty, but ignored the impacts of other uncertainty types. In this paper, we present a method to quantitatively 
determine project cost contingency reserves based on Monte Carlo Simulation that considers the impact of not 
only aleatoric uncertainty, but also of the effects of other uncertainty kinds (stochastic, epistemic) on the total 
project cost. The proposed method has been validated with a real-case construction project in Spain. The ob-
tained results demonstrate that the approach will be helpful for construction Project Managers because the 
obtained cost contingency reserves are consistent with the actual uncertainty type that affects the risks identified 
in their projects.   

1. Introduction 

All projects involve risk because projects aim to create a unique 
outcome. In addition, projects are developed in an environment of am-
biguity, complexity and uncertainty, which implies a lack of information 
and knowledge about the environment and the future (Baccarini, 1996; 
Cagliano et al., 2015; Fan et al., 2008; Lam and Siwingwa, 2017). This 
unstable, uncertain and changing environment is responsible for altering 
project objectives (Association for Project Management, 2010; Hosny 
et al., 2018; Seyedhoseini et al., 2009). To address the causes that in-
fluence project planning and its consequences, the Risk Management 
process has been developed over the years. It is a structured approach to 
address the implications of risk in projects and to establish contingencies 
that ensure development and meet the planned objectives. 

Risk Management consists of three distinct phases: risk identifica-
tion, assessment and response (Zhang and Fan, 2014). Identification 
corresponds to the process of identifying and documenting the risks that 
affect the project. Evaluation refers to the study of the identified risks by 
an analysis of characteristics and the occurrence probability and asso-
ciated impact. Finally, risk response focuses not only on considering the 
appropriate steps to be taken to manage risks but also on implementing 
and assessing such responses. 

During the risk assessment, two main types of analysis, namely 
qualitative and quantitative, are distinguished (Hong et al., 2016; Moret 
and Einstein, 2016). The former is the assessment of the priority of risks 
and their relevance in the project (Allahi et al., 2017; El-Sayegh, 2008; 
Gosling et al., 2013; Hosny et al., 2018; Moreno-Cabezali and 
Fernandez-Crehuet, 2020). This process is performed by studying the 
occurrence probability and the associated impact on scope, time and 
cost (Hillson, 2005; Moreno-Cabezali and Fernandez-Crehuet, 2020). 

The quantitative assessment aims to numerically measure risk- 
related changes in project objectives (AACE - American Association of 
Cost Engineering, 2011; Kwon and Kang, 2019). Only those institutions 
with a high degree of maturity can incorporate a quantitative analysis 
into the standard risk management process to look beyond the project 
boundaries for elements that can alter the fundamental conditions of a 
project’s planning (Cagliano et al., 2015). Precisely some techniques 
based on the quantitative assessment allow us to estimate the contin-
gency margins for the cost and time buffers for the deadline (Long and 
Ohsato, 2008). It is a matter of establishing a reserve fund consisting of a 
time buffer and a reserve budget item to cover the impact of risks and 
uncertainty by protecting project owners from undesired results 
(Uzzafer, 2013). 

Contingency needs to be adequately predicted, budgeted and 
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controlled throughout the project implementation period and, therefore, 
many risk assessment techniques aim to estimate the minimum contin-
gencies needed to ensure the project’s success, and doing this in a 
structured approach to Risk Management involves a significant 
improvement in contingency estimation accuracy (Akintoye and 
MacLeod, 1997; Mak and Picken, 2000). 

Several authors have studied different processes to estimate and 
allocate contingencies in projects (Baccarini, 2004; Baccarini and Love, 
2014; El-Kholy et al., 2020; Hammad et al., 2016; Idrus et al., 2011; 
Kwon and Kang, 2019; Lorance and Wendling, 2001; Thal et al., 2010; 
Touran, 2003; Traynor and Mahmoodian, 2019), but none has done this 
by conducting an integrated analysis of duration and cost risks to 
include all the possible uncertainty types that may impact project 
activities. 

Elms (2004) and Frank (1999) distinguish between two uncertainty 
types: aleatoric uncertainty (described by variability, meaning that 
there is a wide range of possible outcomes) and epistemic uncertainty 
(due to ambiguity or imperfect knowledge). Hillson (2014) widens this 
division by adding two additional uncertainty types to the above clas-
sification: stochastic uncertainty (also called “event risk”, and defined as 
“possible future events”) and ontological uncertainty (also known as 
“unknown-unknowns”, which is unknown knowledge of what is 
impossible to know). Chapman and Ward (2011) offer a similar classi-
fication by dividing uncertainty into four different types: ambiguity 
(lack of complete/perfect knowledge); inherent variability (implies the 
equivalent of the events that always occur); the uncertainty of events 
(involves events, conditions, circumstances or scenarios that may, or 
may not, happen and further associated specific responses); systemic 
uncertainty (involves simple forms of dependence or complex feedback 
and feeding relations, including general or systemic ones). 

In this context, the present paper aims to propose a methodology to 
calculate cost contingencies and their allocation in the project. To do so, 
we use Monte Carlo Simulation (MCS), a quantitative risk management 
technique that is considered suitable for cost contingency allocation 
(Barraza and Bueno, 2007; Chang and Ko, 2017; Liu et al., 2017). Ac-
cording to this technique, the first step is to identify the project risks. 
Once they have been identified, the probability of, and impact, on the 
project’s duration and cost objectives are estimated. Unlike previous 
works, in this paper we classify each risk according to the uncertainty 
type that causes it: aleatoric, stochastic, epistemic (Hillson, 2014). This 
classification allows us to model each risk according to a different dis-
tribution function depending on the uncertainty associated with each 
risk. After applying MCS, we obtain a cost distribution function that 
allows Project Managers to estimate the cost contingencies for their 
projects. The obtained cost distribution function depends on the un-
certainty type that affects each identified risk. 

Therefore, the novelty of our study, which differentiates it from other 
contingency reserve allocation techniques, is that simulation will 
include not only the aleatoric uncertainty of the project activities, but 
also other types of uncertainty, such as risk events (i.e., stochastic un-
certainty) and epistemic uncertainty (i.e., imperfect knowledge of the 
risk). This will allow a contingency reserve consistent to be obtained 
with the specific type of uncertainty (i.e., aleatoric, stochastic or 
epistemic) associated with each risk identified in the project. 

To validate the proposed method, we used data from a typical con-
struction project in which an Experts Committee filled in a Risk Register, 
including all the uncertainties that can affect the project objectives 
(aleatoric, stochastic, and epistemic). After performing MCS and ana-
lysing the obtained results, the project’s cost contingencies were deter-
mined. The contingency calculated by the method herein proposed 
offers a more reliable value (by considering the specific uncertainty type 
that affects each identified risk) versus the traditional estimate based on 
a simple percentage allocation on the base budget (used by the devel-
oper in this actual project). Finally, we demonstrate that the method 
proposed in this paper outperforms another related work that considers 
only the aleatoric uncertainty of activities in the quantitative analysis of 

contingencies, but simulation does not include any remaining un-
certainties identified in the project. 

From this point, the rest of the document is structured as follows. The 
literature review section reviews the most relevant research on the 
project cost contingencies analysis. Then we present the methodology 
followed throughout this research. In the next chapter, we apply the 
proposed method to a real construction project. We discuss the obtained 
results and compare them to other existing techniques featured in the 
literature, which allowed us to validate our proposal. Then the conclu-
sions and contributions are summarised. 

2. Literature review 

Contingency reserves, an amount of funds added to the base cost 
estimate to cover the estimated uncertainty and risk exposure, are 
defined by Project Management Institute (2017) as the budget in the cost 
baseline that is allocated to identified risks. Contingency reserves are 
often viewed as part of the budget intended to address the known un-
knowns that can affect a project. At the beginning of the project in the 
planning phase, as data and information are lacking, it is necessary to 
estimate contingencies to correct any possible deviations of the project 
from its objectives (Kwon and Kang, 2019). Project Management Insti-
tute (2017) differentiates contingencies into two categories: contin-
gency reserve for identified risks (known-unknowns); management 
reserve for unknown risks (unknown-unknowns). Both these risk types 
are handled differently. As known-unknown risks (known-unknowns) 
can be identified and, therefore, analysed and assessed, they can be 
integrated into a mathematical or simulation model that can be used to 
derive a quantitative contingency value for these known risks. For 
unknown-unknown risks (unknown-unknowns, i.e., risks that cannot be 
identified because we are not aware of their existence), only manage-
ment reserves can be assigned to be treated. For known risks, we can 
numerically estimate the value of contingencies using one of the existing 
methods in the literature. For unknown risks, allocation of management 
reserves is based on experience or using a reserve percentage of the total 
budget. 

The contingency estimate for known risks has traditionally been 
calculated as an arbitrary percentage of the budgeted base cost (Ahmad, 
1992; Moselhi, 1997). This percentage contingency allocation method 
has been a widespread technique and is mostly followed by some or-
ganisations with little or no risk maturity (Cagliano et al., 2015). The 
employed percentage can be modified from one project to another, or 
even in the same project. In other cases, this allocation percentage is 
established according to the value of the occurrence probability of risks 
based on the cost of each work package that they affect (Allahi et al., 
2017). 

However, this technique has been widely criticised in the literature 
because this proposed contingency allocation is subjective and based on 
intuition or experience, and is not rational and, therefore, lacks sound 
justification (Idrus et al., 2011; Mak and Picken, 2000). Lam and 
Siwingwa (2017) conclude that the allocation of cost contingencies by a 
given percentage is a method that is difficult to defend or justify for 
being based on observation and experience, which makes objectivity 
non-existent, whereas a statistical regression analysis better suits models 
with virtually or absolutely no information, as in early project planning 
stages. 

As a result, new methods of different natures emerge to address the 
problem of cost allocation as contingencies in projects. Baccarini (2005) 
and Baccarini and Love (2014), conducted their study on the commonest 
estimation methods. More recently, Islam et al. (2021) presented a 
comparison of different contingency cost methods/models/tools by de-
tailing the characteristics, advantages and disadvantages of each fol-
lowed method. 

Approaches like parametric regression, probabilistic distribution and 
simulation, and methods based on artificial intelligence, are used to 
quantify cost contingencies more objectively and accurately in projects. 
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Thus, Diab et al. (2017) apply multiple regression to analyse the de-
pendency relationship between predetermined cost contingency 
amounts and the perceived ratings of risk drivers assessed by project 
professionals, and Thal et al. (2010) apply multiple regression to predict 
cost overruns based upon empirical data available prior to contract 
award for a construction project. This regression analysis type provides a 
deterministic model and requires data from a considerable number of 
similar previous projects, which is not always possible for complex 
infrastructure projects. Other authors, such as Afzal et al. (2020), Idrus 
et al. (2011), Salah and Moselhi (2015), and Jung et al. (2015), use fuzzy 
techniques to convert semantic expert opinions into probabilities and 
percentage cost overruns. Other works focus on probabilistic models 
(Hoseini et al., 2020; Touran, 2003) or Artificial Neuronal Networks 
(ANN) (Lhee et al., 2012). 

Undoubtedly, one of the most widely used methods is MCS, which 
has many advantages compared to previous methods. For example, the 
statistics of the simulated project are obtained computationally without 
having to operate with analytical functions, and no simplifications in the 
analysed model are required to generate the system output. As a result, 
MCS is widely recognised as a valid technique, which means that its 
results are more likely to be accepted (Vose, 2008). In addition, MCS 
allows the analysis of the inputs that most affect the system output, 
which make it the commonest and most applicable tool for quantifying 
risks in large engineering projects (Liu et al., 2017). By focusing on the 
estimation of cost contingency reserves, Barraza and Bueno (2007) 
assign contingencies individually to each work package of the work 
breakdown structure (WBS). This method facilitates the improvement, 
efficiency and speed of taking corrective actions. In turn, the contin-
gency management process is more dynamic, provided we avoid having 
the bulk of our contingency assigned to the total project. In light of this, 
Hammad et al. (2016) propose a top-down approach to contingency 
allocation. This approach involves calculating the overall contingencies 
needed for the project and then allocating a portion to each WBS 
package. In its study, contingencies are assigned to each work package 
based on the uncertainty they bring to the project as a whole. Contin-
gency allocation is based on the proportion of the cost of each activity to 
the total budget. It also takes into account whether activities are on the 
critical path. The same authors (Hammad et al., 2015) present the re-
sults obtained from implementing their methodology to assign contin-
gencies to a project. Other authors propose developing a probabilistic 
model that incorporates cost uncertainty to allocate contingencies ac-
cording to the selected confidence level (Touran, 2003). 

Barraza and Bueno (2007) calculate cost contingencies using the 
difference between the maximum percentile of each activity, obtained 
by MCS, and its expected cost. In any case, this confidence percentile 
value, which is chosen after applying MCS, usually depends on risk 
appetite and the level of organisational maturity. Percentiles P50, P70 
and P80 are the most frequently used (Eldosouky et al., 2014), while the 
P80 percentile is the most widespread (Kwon and Kang, 2019; Lorance 
and Wendling, 2001; Traynor and Mahmoodian, 2019). 

Shahtaheri et al. (2017) follow an integrated approach that includes 
a probabilistic approach to project risks in conjunction with MCS in 
complex projects. Similarly, Chang and Ko (2017) apply an integrated 
approach to risk assessment and cost prediction using MCS. They use 
expert judgements to assess the risks associated with the activity cost in 
parametric forecasting and estimate the net present value (NPV) by 
considering the activity cost, revenue and the impact of associated risks. 
Finally, Maronati and Petrovic (2019) assess the project’s uncertainties 
and risks by taking into account both correlated and uncorrelated var-
iables for cost prediction. 

In this paper, we use MCS as a tool to estimate project cost contin-
gencies. To do so, as input variables we employ all the project risks 
identified in the planning phase (aleatoric, stochastic and epistemic 
uncertainties). As a result of the simulation, we obtain statistical data 
about the distribution function of the total project cost. From this point, 
Project Managers determine the margin of contingencies according to 

their risk aversion. The cost associated with the selected percentile is 
compared to the project’s planned cost. This method enables us to 
determine the necessary cost contingencies for the project depending on 
the uncertainty type associated with each identified risk. 

3. Research method 

To estimate the cost contingencies, we carry out an integrated 
analysis of programming and cost risk. To do so, we follow the model 
shown in Fig. 1, which can be divided into three distinct blocks. In the 
first one (Project Analysis), we use the detailed project schedule infor-
mation, which includes all the work to be performed, where the prece-
dence relation of each activity is reflected and allows us to build an AON 
(Activity On Node) graph-type diagram on which we represent the 
precedence relations of project activities following the recommended 
CPM (Critical Path Method) scheduling practice (AACE - American As-
sociation of Cost Engineering, 2011), which allows calculating the 
critical paths accurately as a basis for Monte Carlo simulation. In this 
phase, we plan the estimate of the cost and duration of activities. 

The second block of our model corresponds to project risk identifi-
cation and the subsequent risk assessments. A Risk Register is created 
that includes all the uncertainties that may impact both project duration 
and cost. To estimate cost contingencies, we include not only the iden-
tified risks that exclusively affect the project’s cost but also those risks 
that impact the duration of the activities making up the project (or 
impact the project as a whole). The reason for this decision is that longer 
or shorter activity duration varies the activity’s cost and, therefore, the 
total project cost. When modelling the cost of each project activity, we 
assume that there are fixed costs (independently of activity duration) 
and variable costs (proportional to activity duration). 

During the risk identification process, we consider the inherent 
aleatoric uncertainty in project activities. This uncertainty type means 
that duration and, therefore, the cost can take a random value, which 
can be modelled by a distribution function (Normal, Beta, Triangular, or 
others). The Project Risk Management Experts Committee must also 
identify those probabilistic risk events or situations that may occur and 
positively or negatively influence project objectives (duration and cost). 
This uncertainty type (stochastic uncertainty) is included in the risk 
register for further analyses and assessments before simulation. In the 
event of it not being possible to assess risk with absolute certainty (with 
a fixed percentage of probability), then semantic values can be used to 
identify and estimate it. This uncertainty type (epistemic) is also 
included as a risk in the register created for the project. 

Finally, each identified risk is associated with the activity which it 
might impact, and it is finally introduced as input variables into MCS. A 
comprehensive and adequately assessed Risk Register is essential to 
obtain accurate, correct, and reliable results. The Risk Register should 
include the occurrence probability of the risk and the impact it might 
have on the project’s objectives (measured as an impact on duration or 
cost). If the employed data are not quality data, or the risk identification 
and assessment process are incomplete, the outcome obtained as a 
contingency value for the project will not be realistic and will not be 
used confidently by Project Managers. 

The third and last block of our model includes MCS as a technique or 
tool. This tool is used to perform a quantitative analysis of the total 
project risk. Different commercial tools allow us to perform quantitative 
risk analyses (@Risk, Crystal Ball, Primavera, etc.). However, none of 
these tools offers adequate versatility to implement any particular 
project, or to incorporate the different identified uncertainty types 
(stochastic, aleatoric, and epistemic). Therefore, we developed an “ad 
hoc” algorithm in Matlab,1 which allows us to perform MCS and to meet 
the above requirements. The output of this integrated risk analysis 

1 The developed code has registered Intellectual Property (765–704822). The 
code is available to users with prior authorization from the author. 
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provides graphical representations and statistical data of the distribu-
tion functions of the total project duration and cost. In this way, we can 
know the probability of the duration and cost objectives being met by 
incorporating the risks that may affect the project. The analysis of the 
data obtained with MCS permits us to determine the cost contingency 
reserves that enable us to meet the risk threshold set by the project’s 
management. These reserves depend on Project Managers’ risk aversion. 
To calculate them, Project Managers choose the percentile of the prob-
ability distribution functions (PDF) with which they feel more confident. 

3.1. Project analysis 

Following the PMBOK guide (Project Management Institute, 2017), 
we should obtain a project schedule using the project activity list. This 
list of activities is obtained from the work packages described in the 
work breakdown structure (WBS) that contains all the work defined to 
complete the project scope. Based on the list of activities, and in 
compliance with the constraints imposed by the duration and prece-
dence relation of each activity, we obtain an AON network in which 
activities are scheduled at their earliest start date based on their pre-
cedence relations. These methods provide a schedule in which each 
project activity is set to start at an earlier time (i.e., activities are 
scheduled to start at an earlier time). 

One key input of the integrated risk analysis is to obtain an accurate 
realistic estimate of both the duration and cost of activities. The esti-
mated duration and cost values for each activity should be based on the 
mode or the “most likely” value of each activity, which should be 
consistent with the schedule and resource availability (Acebes et al., 
2021). Notwithstanding, given that risks are identified and assessed by 
experts, there is a possibility of biases among different experts. As 
Vasvári (2015) puts it, subjectivity cannot be completely excluded from 
risk management. This inherent subjectivity affects the willingness to 
assume risks and, therefore, in the evaluation of risks. However, there 
are ways to avoid subjective bias. For example, quantitative data can be 
used whenever possible. If this is not possible, subjective judgements in 
verbal descriptions can be mitigated by adding quantitative descriptions 
(e.g., ranges) to the definition of categories (Duijm, 2015). 

3.2. Risk identification and assessment 

The Recommended Practice (AACE - American Association of Cost 
Engineering, 2011) recommends that a Risk Register is kept in such a 
way that risk information is updated. The first step is to identify the risk 
to be assessed. Then it is necessary to include those activities or work 

packages that are affected by a risk, which may affect the project as a 
whole. Finally, details of the occurrence probability and its impact on 
the cost and duration of the set of affected activities should be included. 

3.2.1. Risk identification 
For the identification process, risk-related information can be 

collected through workshops and interviews held with risk experts 
(AACE - American Association of Cost Engineering, 2011; Van et al., 
2019). Another way to identify risks, and to complement the informa-
tion in the register with a breakdown of affected costs, duration, quality, 
scope and activities or work packages (Seyedhoseini et al., 2009), is by 
referring to similar projects, lessons learned from other projects in the 
organisation, engineering estimates, applying expert judgements, mar-
ket studies, the information provided by suppliers and subcontractors, 
among others (AACE - American Association of Cost Engineering, 2011; 
Cagliano et al., 2015). 

To assist the risk identification process, we can use different general 
sources of risks, such as those arising from the studied uncertainty types 
(Hillson, 2014). In line with this, El-Sayegh (2008) assesses the impact of 
overall risks on construction projects. Similarly, the study of Sonmez 
et al. (2007) draws on the idea that the risks inherent to the project in 
question occur, as do other external environmental risks to the project 
organisation. 

Idrus et al. (2011) divide the risks of a construction project into in-
ternal and external risks by adjusting them to each particular case. 
Although they recognise overall risks, such as currency crises, developer 
bankruptcy and natural disasters (e.g., earthquakes and tsunamis), and 
these risks can affect all construction projects, these authors do not 
include them in their analysis because they are not usually very relevant 
for the bidding process. 

A classification of the overall risks in construction projects proposed 
by different authors is found in Table 1. 

Besides studying overall risks, there are specific risks for the con-
struction sector. Zhi (1995) highlights the need to incorporate a global 
macro level vision of the political and economic situation in the region 
where the project is undertaken. At the same time, he recommends 
including the uncertainty that derives from local and regional particu-
larities in the risk analysis (see Table 2). Han and Diekmann (2001) 
divide overall risks into five categories: political, economic, cultur-
al/legal, and technological/construction and other risks. Specifically, 
construction risks arise from entering the international construction 
market and given differences between the company’s place of origin and 
the location of the construction project. 

Bu-Qammaz et al. (2009) make a comparison of different countries to 

Fig. 1. Proposed model for the project cost contingency estimation.  
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create a category specifically for this purpose. Another important aspect 
in production processes is the logistical supply chain, which is why 
Gosling et al. (2013) identify five sources of uncertainty in supply 
chains. 

Whatever the method we use, we obtain a list of risks that can affect 
the project’s time and cost objectives. Risk identification allows us to 
associate each risk with the activities that it may impact (or even on the 
project as a whole). Finally, we can assess them. 

3.2.2. Risk assessment 
As part of our integrated project risk management process, we need 

to categorise the probability and severity of the risks identified in the 
previous step. The probability of risk is defined by a probability distri-
bution functions (PDF), which is responsible for modelling uncertainty. 
This PDF should reflect the occurrence probability percentage of such an 
event as realistically as possible (Baccarini and Love, 2014). We can 
similarly proceed with the impact of a risk. In this case, we differentiate 
whether the risk impacts the project cost or its duration. Severity is 
understood as the relevance of uncertainty (Gosling et al., 2013) and is 
estimated according to the project’s objectives that it impacts. During 
our integrated risk management process, the impact is also modelled (in 
cost and duration terms) with a PDF, the choice of which depends on the 
uncertainty type to be represented. 

Hillson (2014) distinguishes three uncertainty types that can be 
modelled and incorporated into MCS: aleatoric, stochastic and 
epistemic. There is another uncertainty type (ontological), but it lies 
beyond the limits of human knowledge and, thus, cannot be modelled 
(Alleman, Coonce and Price, 2018a). 

In this paper, we quantify the probability and impact of project risks 
based on the four uncertainty types proposed by Hillson (2014). They 
are then used as inputs for the quantitative risk analysis, which we 
employ to calculate cost contingencies, and they should be set by Project 
Managers. 

Aleatoric uncertainty arises from variability (Alleman, Coonce and 
Price, 2018b; Chapman and Ward, 2004). It is the uncertainty type that 
is due to the inherent variability of any natural phenomenon owing to 
multiple causes. The commonest way of modelling aleatoric uncertainty 
for the duration of activities is through probabilistic distribution func-
tions: Beta, Triangular, Normal and Uniform. Cost variability has been 
modelled with Beta, Triangular, Lognormal and Pearson-type functions 
(Ordóñez Arízaga, 2007). An analysis of the probabilistic distribution 
functions most frequently used in the process to incorporate the vari-
ability that derives from aleatoric uncertainty is presented in Table 3. 

Event uncertainty, or stochastic uncertainty, is based on the occur-
rence of events with known consequences (Hillson, 2020). These are 
events for which we know, or can be assured with certain precision, the 
probability or impact associated with the event occurring. In other 
words, we have no doubts about the likelihood or impact that it would 
have on our project, and it would happen if that risk occurring. The most 
frequent way to deal with this uncertainty type is by studying the most 

Table 1 
Classification of the overall risks associated with a construction project.  

Author Major Risks Risk 
Factors  

El-Sayegh (2008) Internal Risks Owners Contractors  
Designers Subcontractors  
Suppliers  

External Risks Political Economic  
Social & 
Cultural 

Natural  

Others  
Sonmez et al. 

(2007) 
Project Risk 
Factors 

General Contractor  

Contract Financial  
Design Site  
Partnership  

Country Risk 
Factors 

Financial Laws & Regulations  

Political Administration  
Market 
Potential 

Resources 

Idrus et al. 
(2011) 

Internal Risks Safety Labour Dispute  
Equipment 
Failure 

Unavailability or Resources  

Defective 
Materials 

Mismanagement  

Quality of 
Work  

External Risks Different 
Site 
Conditions 

Change in Government 
Policy  

Weather 
Conditions 

Changes in Economic 
Conditions  

Social 
Impact 

Delayed Payment  

Third-Party 
Delays   

Table 2 
Classification of specific risks for the construction sector.  

Author Overall Risks  Construction Risks  

Zhi (1995) Nation/Region 
Company 

Construction Industry 
Project 

Market Fluctuations 
Law and Regulations 

Contract System 
Standards and codes 

Han and Diekmann 
(2001) 

Political Risks 
Cultural/Legal 
Technical/ 
Construction 

Economic Risks 
Other Risks 
Difference in geography 

Different standards 
Material availability 
Subcontractor availability 
Domestic Requirements 

Different measurement system 
Labour issue (i.e. skill or strike) 

Bu-Qammaz et al. 
(2009) 

Country 
Project Team 
Intercountry 

Construction 
Contractual 
Design 

Managerial Complexity 
Subcontractor unavailability 
Adverse Physical Conditions 

Technical and Technological 
Complexities 
Resources unavailability 
Shortage of Client Financial 
Resources 

Mahendra et al. (2013) Technical Risks 
Construction Risks 
Physical Risks 
Organisational Risks 

Financial Risks 
Socio-Political Risks 
Environmental Risks 
Labour productivity 

Labour disputes 
Site conditions 
Equipment failures 

Design changes 
Too high-quality standard 
New technology 

Lee et al. (2017) Political Risks 
Economic Risks 
Social/Cultural Risks 
Construction Risks 

Other Risks 
Building type 
Construction type 
Contract type for payment 

Construction complexity 
Construction duration 
Force majeure 
PM competency 

PM competency 
Owner’s changes 
Owner’s changes 

Hosny et al. (2018) External Risks 
Design Risks 
Management Risks 
Construction Risks 

Subcontractors Risks 
Equipment Risks 
Political and Governmental 
Risks 
Economical Risks 

Owner-generated Risks 
Lack of quality management (planning, assurance, 
control) 
Labour mistakes, rework and idle times 
Labour shortage 

Labour conflicts and disputes 
Safety issues 
Labour cost fluctuation 
Surveying and site handling mistakes  
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statistically probable future scenarios by positioning simulation as good 
alternative in the possible contingency estimation (Hillson and Simon, 
2012). 

In the same way, as aleatoric uncertainty can be modelled, stochastic 
uncertainty is also defined by a distribution function. As stochastic un-
certainty is associated with risk events (i.e. events with a certain prob-
ability of occurring and, if they do occur, they would impact the project), 
the most appropriate PDF to model this risk type is the Bernoulli dis-
tribution because it allows a risk event that may or may not occur to be 
modelled (Vose, 2008). In line with this, Kwon and Kang (2019) apply 
MCS to this distribution function type, and they assign a certain prob-
ability occurrence percentage of the identified risks. 

Epistemic uncertainty arises from a lack of knowledge and information 
about a system or its environment (Alleman et al., 2018b; Damnjanovic 
and Reinschmidt, 2020). In aleatoric and stochastic uncertainties, 
probability and impact can be modelled using distribution functions, but 
as epistemic uncertainty arises from lack of knowledge, we cannot 
provide an exact value for probability and/or an impact but must use a 
range of values. Each range specified for probability and impact is 
project-specific because it depends on the context in which the project is 
undertaken. Subsequently, each defined interval is associated with a 
semantic definition (scale). This scale is used to identify the probability 
and impact of risks. So we can use tables with defined scales to help us to 
evaluate not only the impact on any of the project objectives (in the most 
general case), but also duration and cost (in the particular case of our 
study). The number of levels to be defined on the scale, and the width of 
the probability and impact intervals, are defined by Project Managers to 
reflect each organisation’s risk appetite (Project Management Institute, 

2017). Fig. 2 depicts an example by specifying five proposed levels: 
‘Very Low’, ‘Low’, ‘Medium’, ‘High’ and ‘Very High’, including the sixth 
level (‘Nil’) as a zero risk. With the categorisation provided by this type 
of tables, we can assess the probability and impact of the risks arising 
from epistemic uncertainty on the different project dimensions. In the 
specific case of our study, which seeks to estimate contingency reserves, 
we focus on the information about duration and cost provided by this 
type of tables. This information will allow the identification of the range 
of values that corresponds to the semantic value (scale) that it corre-
sponds to. 

As for the idea of modelling the epistemic uncertainty of risks as 
statistical distribution functions, some authors report three semantic 
categories, while others use five. Table 4 shows the number of intervals 
employed by several authors to define probability and impact scales. 
Table 4 also indicates the assessment method followed to assess risks, as 
well as the probabilistic distribution functions used to define and model 
each semantic category. In this paper, we apply uniform distribution 
functions to model epistemic uncertainty, as proposed by Eldosouky 
et al. (2014). However, other authors choose the triangular function as a 
model to represent epistemic uncertainty when they incorporate it into a 
simulation model (Hulett, 2012). 

3.3. Monte Carlo Simulation and results 

We hold information about the project, which comprises the number 
of activities, their sequencing and the planned values of duration and 

Table 3 
Probability distribution functions used by several authors to model aleatoric 
uncertainty.  

Author Probability Distribution Functions in 
Monte Carlo Simulation 

AACE - American Association of Cost 
Engineering (2011) 

Triangular 

Clark (2001) 
Lorance and Wendling (2001) 
Para-González et al. (2018) 
Mohamed et al. (2020) Triangular & Uniform 
Eldosouky et al. (2014) 
Traynor and Mahmoodian (2019) Triangular, Uniform & Lognormal 
Colin and Vanhoucke (2016) Lognormal 
Trietsch et al. (2012) 
Acebes et al. (2021); Acebes et al. 

(2022) 
Acebes et al. (2014, 2015, 2020) Normal 
Barraza and Bueno (2007) Normal (Most Likely, 10% Most Likely) 
Hammad et al. (2016) Normal (Mean value, 10% Mean value)  

Fig. 2. Example of defining scales for probability and impact. Source: The Project Management Institute (Project Management Institute, 2017).  

Table 4 
Epistemic uncertainty: probability distribution functions (PDF) and number of 
intervals.  

Author Number of 
Intervals 

Method PDF 

Han and Diekmann (2001) 5 Go/No-Go 
Decision Model 

Triangular 

El-Sayegh (2008) 5 Statistical 
Correlation 

– 

AACE - American Association of 
Cost Engineering (2011) 

– MCS Triangular 

Idrus et al. (2011) 5 Fuzzy Expert 
System 

– 

Eldosouky et al. (2014) – MCS Uniform 
Allahi et al. (2017) 3 MCS Triangular 
EL-Matbaegy et al. (2017) 5 Statistical 

Correlation 
– 

Hosny et al. (2018) 5 Probability & 
Impact Matrix 

– 

Moreno-Cabezali and 
Fernandez-Crehuet (2020) 

5 Fuzzy Logic- 
Based Model 

–  
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cost of each activity (see Section 3.1 Project Analysis). We also have the 
risks associated with each activity included in the Risk Register. We 
estimate the occurrence probability of each identified risk, its impact on 
the project’s objectives in duration and cost terms, and if the risk would 
occur. To this end, PDFs are assigned to represent the uncertainty 
associated with each risk (see Section 3.2 Risk Identification and 
Assessment). Finally, we associate each identified risk with its corre-
sponding affected activities and introduce the result as input into our 
MCS algorithm. Therefore, the final objective is to perform a quantita-
tive analysis based on the MCS. This analysis allows us to subsequently 
obtain the PDF of the total project cost. We also collect the data corre-
sponding to the different percentiles associated with the PDF of the total 
project cost. 

We decided to use the Matlab programming software application, 
which allows us to perform NCS by including the different analysed 
uncertainty types (aleatoric, stochastic, and epistemic). In addition, the 
algorithm enables projects to be simulated with many activities to be 
dynamically carried out, but without spending too much time pro-
gramming the project model to be simulated. 

MCS produces a graphical representation of the PDF of the total 
project cost. We can also obtain the statistical data corresponding to this 
graph. The MATLAB application provides us with the top percentiles of 
MCS and the cumulative distribution plots for cost duration. The ob-
tained graphs are analysed using the results table for each percentile. 

Finally, the results obtained by considering the most likely future 
scenarios are compared to those planned for the project implementation 
in which risks would not occur. This step helps to understand the rele-
vance of external risk in projects and how important it is to practice 
integrated risk management. These most likely future scenarios are 
given by the estimated cost values for each selected percentile. The main 
objective is to define an appropriate percentile for cost contingencies 
and to compare it to the contingencies that would be obtained by 
applying the traditional method, which consists of reserving a certain 
percentage of the total planned cost. This conventional method focuses 
on general projects and ignores any particularities that stem from the 
project’s context. This work aims to include these particularities when 
selecting a budgetary reserve to address the risks that are generated 
throughout the project life cycle. 

4. Case study. The “Aulario IndUVa” construction project 

In this section, by applying integrated risk management we intend to 
show how we can set a margin for contingencies in both cost and 
schedule terms, which is more appropriate to the reality of such a 
building. To do so, we consider all the risks analysed by the project 
management team and consider the different risk aversion levels that the 
organisation may have. Finally, we compare these results to the initial 
decision made by the developer. 

4.1. Project analysis 

The “Aulario IndUVa” is a building at the University of Valladolid 
(Spain), where classes are held in the School of Industrial Engineering 
(Fig. 3). While the building was being built, contingency margins were 
set at 10% of the total project cost. 

The project consists of 14 main activities. For simplification reasons, 
59 project activities are summarised as 14 main activities (or work 
packages). Information about final activities is omitted, and the main 
activities are presented instead of aggregate data. The planned project 
start date is December 2, 2016. The estimated completion date is June 1, 
2018. The planned total project duration is 383 working days, which is 
the unit of measurement of this project. In Fig. 4 we represent the pro-
ject’s Gantt chart, including project activities and their sequencing 
throughout the execution period. 

The project cost is defined by the sum of the costs of project activ-
ities. Table 5 shows the estimated duration for each task. It includes the 

fixed cost, related to the material cost used in each activity; the variable 
cost, related to the labour cost and, therefore, depending on activities’ 
duration; the total cost, which is the sum of both. 

Table 5 shows that the total planned project cost amounts to 
€3,935,888.65. The project promoter establishes margins for contin-
gencies of 10% of the total cost, which is equivalent to €393,588.86. 

4.2. Risk identification and assessment 

4.2.1. Risk identification 
We used different risk identification techniques, such as interviews, 

experts’ judgement of subject matters, risk registers and others. Five 
people constitute the Experts Committee for this project: the Project 
Manager, the Construction Manager, and the Construction Supervisors, 
who are responsible for structures, installations and equipment. As a 
result, we obtained information on the risks that may impact project 
objectives. The identified project risks are listed in Table 6. They are 
related to their particular identification (IDr), and the reason for their 
possible occurrence is briefly explained (Remarks). Furthermore, the 
involved risk type is added: threat (T) or opportunity (O), as are the 
activities that might be affected by the risk if it occurs. Finally, the 
identifier of the activity (IDact) that may be affected by the risk is 
included. This code coincides with that shown on the list of activities in 
Table 5. 

Table 6 shows which project activities would be affected by the 
identified risks associated with stochastic or epistemic uncertainties if 
they were to occur. It is important to note that there may be activities for 
which the Experts Committee has not found any risk (associated with 
stochastic or epistemic uncertainties) that could directly affect these 
activities. In our case, none of the identified risks directly affects ac-
tivities 9 (Roofing) or 12 (Urbanisation), which is why these activities do 
not appear in Table 6. 

There is also the possibility of some identified risks not having a 
direct impact on a specific activity, but on all of them as a whole (i.e., 
impact on the entire project). This is the case of the risks identified as 8 
(Accident) and 11 (Change in the price of raw materials). 

To analyse project cost contingencies, not only the risks that may 
impact the project cost objectives, but also those that may influence the 
duration of activities, are identified because the latter have an indirect 
impact on the total project cost. 

Beyond the risks associated with stochastic and epistemic un-
certainties (i.e., the risks included in Table 6), all the project activities 
have been considered to have aleatoric uncertainty (i.e., uncertainty due 

Fig. 3. Profile view “Aulario IndUVa”.  
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to the random nature in the duration of activities), which we discuss in 
the next section. 

4.2.2. Risk assessment 
To carry out this work, we study the different uncertainty types used 

to model each risk. We first define the criteria that, in turn, define the 
various uncertainty types and, subsequently, we associate each identi-
fied risk with the uncertainty type that can best model its behaviour. The 
Experts Committee specifies the characteristic parameters of each dis-
tribution function assigned to each identified risk for both their proba-
bility of, and impact on, duration and/or cost. 

We incorporate aleatoric uncertainty into the duration of the ac-
tivities modelled according to a lognormal distribution function (see 
Table 3), as proposed by Colin and Vanhoucke (2016), Traynor and 
Mahmoodian (2019) and Trietsch et al. (2012). The lognormal distri-
butions that we use to model activities’ aleatoric uncertainty are defined 
by the estimated duration of each activity and its variance. Variance 
corresponds to a random number bound within the interval [0.1, 0.3]. 
This variability range was suggested by Ballesteros-Pérez et al. (2019) 
after analysing a database of 101 construction projects. This work 
identified that most of the variability of activity durations fell within the 
range with a value of 0.10 for activities with low variability, 0.20 for 
medium variability and 0.3 for activities with high variability. Thus, 
according to the above-cited authors, the amount of introduced uncer-
tainty comes close to the error made when estimating the duration of 
tasks in construction projects. 

The activity cost comprises a fixed cost and a variable cost, where the 
latter depends on activity duration. Therefore, the aleatoric uncertainty 
in the activity cost stems from activity duration variability. 

Aleatoric uncertainty can also be used to model some known risks 
characterised by their variability. In this case, we do not know the exact 
probability value, but we can define some PDF type to model its 
behaviour (triangular, normal, beta, other). The occurrence probability 
of the risk is determined by the distribution function assigned to that 
activity. In the same way, and independently, it is possible to model the 
activity’s impact with a distribution function (cost impact and schedule 
impact). If this is the case, this occurs to a greater or lesser extent 
depending on the model previously defined for that impact. 

Risks associated with stochastic uncertainty have a known occur-
rence probability. This occurrence probability will be treated with a 
Bernoulli distribution function (Kwon and Kang, 2019). According to 
Allahi et al. (2017), this is the most frequent way to introduce stochastic 
uncertainty into risk analyses. Analogous (and independent) to the 
probability modelling, the impact (in duration and cost terms) will be 
modelled using a distribution function. The distribution function that 
models the impact will be defined by the project’s Experts Committee. 
As shown in Table 9, the distribution function that models the impact 
may be triangular, uniform, or even deterministic value if the effect on 
the activity’s duration or cost is a constant value. 

To model epistemic uncertainty, we firstly define the probability 
and impact range required for this particular project (Tables 7 and 8 
below). Subsequently, we assign each identified risk with an estimated 

Fig. 4. The project’s Gantt chart.  

Table 5 
Project duration and cost to build “Aulario IndUVa".  

IDact Activities Duration Variable Cost Fixed Cost Total Cost 

1 Land preparation 50 €52,976.76 €48,821.90 €101,798.66 
2 Foundations 25 €10,463.36 €53,764.17 €64,227.53 
3 Structure 112 €138,017.78 €849,450.16 €987,467.94 
4 Façades and partitions 152 €73,301.94 €782,100.02 € 855,401.96 
5 Carpentry, glazing and solar panels 111 €10,211.80 €194,070.02 €204,281.82 
6 Aid 80 €30,872.00 €1,020.00 €31,892.00 
7 Installations 328 €59,344.20 €1,010,772.68 €1,070,116.88 
8 Insulation 5 €12,832.99 €91,087.44 €103,920.43 
9 Roofing 30 €14,193.38 €68,984.83 €83,178.21 
10 Cladding and wall cladding 165 €48,665.85 €120.00 € 353,069.95 
11 Sanitary fittings, signage and equipment 25 €204.84 €9,005.40 €9,210.24 
12 Urbanisation 85 €3,932.67 €13,895.00 €17,827.67 
13 Waste management 369 €1,900.00 € 25,783.27 €27,683.27 
14 Health and safety 383 €4,894.28 €20,917.81 € 25,812.09  

Project 383 €461,811.84 €3,474,076.81 €3,935,888.65  
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probability and impact range (in cost and/or duration terms). This risk 
type is characterised by not precisely knowing the occurrence proba-
bility or the magnitude of the possible impact. Thanks to the experience 
gained from previous projects, the project’s Experts Committee assesses 
each risk by identifying it with a qualitative term: ‘Very Low’, ‘Low’, 
‘Medium’, ‘High’ and ‘Very High’. 

These semantic categories have previously been numerically defined 
by identifying each section with a specific value. Once segments are 
numerically defined, classes can be modelled by employing distribution 
functions. We know that, according to estimates, the risk occurrence 
level lies within a range of probabilities. But since we do not know which 
of the values within that range best fits the probability of risk occur-
rence, we employ a uniform probability function to model epistemic 
uncertainty (i.e., we assume that the probability of occurrence of a risk 
lies within an equiprobable range of values; Bae et al., 2004). Probabi-
listic representations of uncertainty have been successfully employed 

Table 6 
Risks identified in the project.  

IDr Risk Remarks Type ActID Activity 
affected 

1 Labour 
availability 

Subcontractors may 
have other staffing 
needs and their 
involvement in the 
project can be 
affected 

T/O 3 Structure 
4 Façades and 

partitions 
5 Carpentry, 

glazing, and 
solar panels 

8 Insulation 
2 Materials and 

equipment 
availability 

There may be 
delays in certain 
strategic supplies to 
secure the project, 
such as restrictions 
to import goods or 
blocking 
international trade. 

T 5 Carpentry, 
glazing, and 
solar panels 

7 Installations 
10 Cladding and 

wall cladding 
11 Sanitary 

fittings, 
signage, and 
equipment 

3 Legalising 
facilities 

Local authorities 
may take a long 
time to legalise 
facilities due to red 
tape 

T 10 Cladding and 
wall cladding 

4 Archaeological 
remains 

The discovery of 
archaeological 
remains can stop 
work until it is 
determined 
whether they are of 
historic-cultural 
relevance 

T 1 Land 
preparation 

2 Foundations 

5 Water at the 
phreatic level 

The existence of 
water pockets at the 
soil phreatic level 
can stop work until 
they are eliminated, 
and work is allowed 
to continue with 
foundations. 

T 1 Land 
preparation 

2 Foundations 

6 Inclement 
weather 

Severe frost, 
snowfall and floods 
can stop the project 
in its early 
foundation stages 
by preventing 
machinery and 
operators from 
working 

T/O 2 Foundations 

7 Rocks in subsoil The appearance of 
rocks in subsoil can 
stop work until they 
have been removed 

T 1 Land 
preparation 

2 Foundations 

8 Accident A work accident can 
immediately stop 
work for an 
indefinite time until 
the reasons for it are 
clear and the 
additional safety 
measures necessary 
to restart activity 
are established. 

T  Entire project 

9 Lack of 
documentation 

Lack of the 
mandatory and 
necessary 
documentation to 
do any construction 
work can prevent 
work from being 
carried out as 
normal. Such 
documentation 
includes registering 
self-employed and 

T 5 Carpentry, 
glazing, and 
solar panels 

11 Sanitary 
fittings, 
signage, and 
equipment 

14 Health and 
safety  

Table 6 (continued ) 

IDr Risk Remarks Type ActID Activity 
affected 

paid workers in the 
Social Security, or 
special work 
permits 

10 Unexpectedly 
finding asbestos 

The unexpected and 
undocumented 
appearance of 
asbestos on plants 
or asbestos stopping 
work until it is 
correctly removed 
given its severe 
danger to public 
health 

T 1 Land 
preparation 

11 Change in the 
price of raw 
materials 

The price of raw 
materials is subject 
to constant 
variations on 
international 
markets, which can 
sometimes mean 
having to review 
the prices agreed 
with subcontractors 

T  Entire project 

12 Changes in 
regulations 

Changes in the legal 
system can offer an 
opportunity insofar 
as it generates the 
urgency to comply 
with current 
legislation and to 
avoid having to 
adapt to new 
proposed changes. 

O 14 Health and 
safety 

13 Foundation 
measurement 
problems 

Measurements of 
building 
foundations may 
not conform to 
reality because of 
variations in 
conditions or the 
project’s 
environment 

T 2 Foundations  

Table 7 
Probability levels for the analysed project.  

Level Probability 

Very Low (VL) 0–5% 
Low (L) 5–12% 
Medium (M) 12–20% 
High (H) 20–35% 
Very High (VH) 35–100%  
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with uniform distributions to characterise uncertainty when knowledge 
is scarce or does not exist (Helton et al., 2006; Vanhoucke, 2018). 

For this particular case study, the project’s Experts Committee set the 
range of values corresponding to each semantic probability value as 
indicated in Table 7. As discussed above, we assigned a uniform PDF to 
each semantic level of probability in the risks associated with epistemic 
uncertainties. A uniform PDF is characterised by two parameters: the 
minimum possible value and the maximum possible value. At each 
probability level, the minimum (maximum) value of the uniform PDF 
corresponding to that level will be the lowest (highest) level within that 
range. 

For example, if the Experts Committee considers that there is a high 
probability of a risk occurring (level H in Table 7), then we will model 
the probability of that risk occurring as a uniform random variable with 
a minimum value of 0.2 and a maximum value of 0.35. 

In the same way, it is necessary to define the different intervals 
(scales) related to the impact on project objectives in terms of both 
duration (measured in days) and costs (expressed as €). Table 8 shows 
the definition of impact on this project for epistemic risks. 

As each project is unique, with its different scope and objectives, it is 
important to note that the specific subdivision into levels in probability 
terms (Table 7), and into impact on costs and durations (Table 8), is 
defined specifically for each particular project. Consequently, it is 
possible for the Experts Committee to decide to use different tables in 
distinct projects to quantify both probability and impact. 

After identifying all the risks that affect the project and establishing 
instructions for assessing all these risks, all this information is integrated 
into Table 9. With the information on the risks identified in Table 9 and 
by assigning each risk with its corresponding activity (according to 
Table 6), we carry out MCS and obtain the simulation results for sub-
sequent analyses. 

The above information will be used as input to MCS. To ensure ac-
curacy in the simulation results, it is important that certain basic as-
sumptions are met. The PDFs that model the behaviour of the input 
variables should come as close as possible to the expected behaviour of 
the identified risks depending on the type of uncertainty (aleatoric, 
stochastic or epistemic) that generates those risks. Furthermore, it is 
assumed that the parameters characterising these random variables 
(minimum, maximum, average, most likely, etc.) provided by the Ex-
perts Committee are accurate. As subjectivity cannot be completely 
excluded from risk management, it may affect the willingness to assume 
risks and, therefore, the evaluation of risks. Consequently, it is important 
to mitigate subjective judgements as discussed above to ensure accurate 
results. 

4.3. Monte Carlo simulation and results 

To carry out the MCS, we use all the risks identified in the project and 
listed in Table 9 as the input variables. We also model each project ac-
tivity with aleatoric uncertainty by assigning a lognormal probability 
distribution function (PDF). We allocate a distribution function to the 
occurrence probability of each risk in the Risk Register. We also specify a 
distribution function to the possible impact on the project cost, and a 
different one for the impact on project duration. As a result of the 
simulation, we obtain the principal statistical data of the output distri-
bution functions for the total project cost (Table 10). 

Table 8 
Impact scales in duration and costs terms for the analysed project.  

Level Impact on Duration Impact on Cost (€) 

Very Low (VL) 0–5 days 0-3k 
Low (L) 5–20 days 3-10k 
Medium (M) 20–40 days 10-25k 
High (H) 40–65 days 25-60k 
Very High (VH) >65 days >60k  
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We can see that the average cost of the simulated projects is higher 
than the project’s planned cost. Variance indicates the dispersion of the 
cost values of simulations concerning the mean value. To carry out a 
more in-depth study of the data obtained from simulation, we include in 
Table 11 the data that belongs to the most significant percentiles of the 
project’s cost. 

The most striking results indicate that, with a 50% probability (P50), 
the project costs €4,080,502. This cost represents an increase of 
€144,614 over the planned value. What is more surprising are the data 
corresponding to the percentile of the cost planned value. Thus, the 
percentile to which the budgeted cost (€3,935,888) corresponds is 
P0.76. Fewer than 1% of the simulated projects (simulation includes the 
risks identified in the Risk Register) cost less than the budgeted cost. The 
percentile corresponding to the project’s cost, to which we allocate 10% 
of the budget as the cost contingency margin (3,935,888 + 10% =
4,329,477), results in a percentile of 97.31%. This means that if we 
allocate a 10% contingency margin to the base budget, 97.31% of the 
simulated projects cost less than that amount. 

Fig. 5 contains the graphical information provided by the application 
as a result of the MCS. In the same graph, this figure incorporates the 
probability distribution function together with the cumulative distri-
bution function about the total project cost. 

5. Discussion 

Unlike other quantitative risk analysis methods proposed in the 
literature that only consider aleatoric uncertainty, in this paper we 
propose a method that not only considers aleatoric uncertainty, but also 
the epistemic and stochastic uncertainties associated with each risk 
identified in the project. In Subsection 5.1, we analyse by means of MCS 
the effect of incorporating the stochastic and epistemic uncertainties on 
the project’s duration and total cost. In Section 5.2, we employ this in-
formation to determine a contingency reserve that better fits the pro-
ject’s reality because it distinguishes the types of uncertainty associated 
with the risks that affect the project, and it also considers the Project 
Manager’s risk aversion. 

5.1. Simulation results 

An analysis of the total cost graph (Fig. 5) shows a deviation of the 
curve towards higher cost values. The histogram that corresponds to the 
probability distribution function clearly shows the impact of dis-
tinguishing the different types of uncertainty associated with the iden-
tified risks on the total project cost. Not only does the curve no longer 
take the traditional “Gaussian bell” shape, but it also shows that a sig-
nificant number of simulation runs have a strong impact on the project 
cost. Consequently, the histogram shows a much higher total cost than 
the most probable value (mode) and, of course, the planned one. 

We can also obtain the representation of the final state of each 
simulated project in a time-cost space (Fig. 6). Each point in the time- 
cost space represents the end-state situation (time-cost) for every 
simulation run. This graph incorporates, in turn, the probability distri-
bution functions of time-cost on each corresponding axis (x-axis: project 
duration; y-axis: project cost). 

The above graph evidences the effects of considering the different 
types of uncertainty that affect the identified project risks. This fact 
causes the duration and (or) the cost of the simulated project to be 

longer/higher than that planned and is, therefore, far removed from the 
“normal” point cloud (that generated only by the aleatoric uncertainty 
of activities). These simulation runs, whose duration is longer, and cost 
is higher than expected because they are affected by the impact of some 
identified risks, lead to a deformed cost distribution function curve. We 
can also observe that the duration distribution function, located on the 
abscissa axis, presents greater dispersion, and the curve lengthens to-
wards higher duration values with its most probable value. This repre-
sentation is due to the positive impact (longer project duration) caused 
by the risks identified in the project. 

Fig. 7 represents the final situation (time/cost) of the simulation runs 
in two different scenarios: Fig. 7 a) with only the aleatoric uncertainty in 
project activities; Fig. 7 b), with aleatoric uncertainty and other uncer-
tainty types (i.e., epistemic and stochastic uncertainties) associated with 
the identified project risks that can impact the project. 

We observe that the dispersion of the final scenario in the total 
project cost for a) (aleatoric uncertainty only) is very narrow compared 
to the dispersion in duration. This behaviour is because the dispersion of 
the cost values of the simulated projects is caused by variations in the 
variable project costs (which, in turn, depend on the duration of activ-
ities). In this project, most of the activity costs are made up of fixed costs 

Table 10 
Principal statistical data of the output distribution functions of 
the total project cost.  

Magnitude Cost (€) 

Planned value 3,935,888 
Mean value simulation 4,093,200 
Variance simulation 8,960,700,000  

Table 11 
Percentiles of the simulated project’s cost.  

Percentile Cost 

5.0 3,967,100.31 
10.0 3,986,083.95 
15.0 4,001,911.21 
20.0 4,017,208.88 
25.0 4,030,954.65 
30.0 4,042,922.23 
35.0 4,053,471.67 
40.0 4,062,953.26 
45.0 4,071,841.81 
50.0 4,080,502.64 
55.0 4,089,128.61 
60.0 4,098,090.04 
65.0 4,107,650.53 
70.0 4,118,122.44 
75.0 4,129,774.65 
80.0 4,146,100.99 
85.0 4,173,065.32 
90.0 4,228,488.39 
95.0 4,298,427.14 
100.0 4,596,002.43  

Fig. 5. Probability distribution function and cumulative distribution of the 
total project cost. 
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(material costs, equipment, machinery, etc.). The slight importance of 
variable costs on the total project results in very little final cost variance. 
In contrast, in Fig. 7 b) we consider the nature of the uncertainty that 
affects the project risks (i.e., we incorporate epistemic and stochastic 
uncertainties). The dispersion of the simulation results is remarkable, 
especially for project costs. This dispersion is seen not only for those 
simulation runs with shorter total durations, but also for those with a 
stronger impact on duration. In the latter, the increased total cost is 
much higher than expected. This cost increase is the consequence of 
introducing all the types of uncertainty associated with the duration and 
cost-identified risks into the simulation. 

Therefore, we demonstrate that it is not sufficient to include only the 
aleatoric uncertainty of activities to perform quantitative risk analysis 

based on MCS, as it has traditionally been addressed. Now we see that it 
is essential to distinguish the different types of uncertainties associated 
to the risks identified in the project, to adequately model these un-
certainties prior to incorporating this information into MCS. 

5.2. Cost contingency estimation 

We now use the MCS results obtained in the previous section 
(Table 11) to determine whether a cost contingency reserve is appro-
priate for the risks identified in the project by considering the different 
types of uncertainty associated with them and the Project Manager’s risk 
aversion. With this information, we allocate a cost contingency reserve 
calculated as the difference between a percentile according to the 

Fig. 6. Scatter plot of the simulated projects.  

Fig. 7. Final scenarios of the simulated projects. a) Aleatoric uncertainty. b) Aleatoric, epistemic and stochastic uncertainties.  
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Project Manager’s risk aversion (Table 11) and the planned project cost 
(€3,935,888). 

In Table 12, we depict several cost contingency reserves based on the 
simulation results, and also on the Project Manager’s risk aversion. We 
firstly show the value of the planned project cost and the cost contin-
gency estimate used in the construction project under study (i.e., by 
allocating 10% of the total planned cost as the contingency reserve). 
Next, we depict several cost percentiles that result from the simulation 
(taken from Table 11). Then for all these percentiles, we show the cost 
contingency margin calculated as the difference between the corre-
sponding percentile and the planned cost value of the project. 

The rationale behind the proposed method is that, depending on the 
Project Manager’s risk aversion, different reference percentiles can be 
chosen, which results in distinct contingency reserve values. Thus, the 
greater the risk aversion, the higher the percentile that should be cho-
sen, and the wider the resulting contingency margin. 

For example, if a P70 percentile is chosen (because of a relatively low 
risk aversion), the result offered by the simulation corresponds to a cost 
of €4,118,122.44. Consequently, the contingency margin for that 
percentile will be €182,234.44. If the Project Manager chooses a P80 
percentile for the project because of a higher risk aversion, the corre-
sponding project contingency reserve will be €210,212.99 according to 
the simulation. 

Table 12 only includes the P70, P80 and P90 percentiles by way of 
example of applying the method proposed in this paper. However, the 
method provides the cost contingency reserve that corresponds to any 
percentile that we request (i.e., following the Project Manager’s risk 
aversion). Construction projects fall in a very rigid economic sector with 
a poor risk appetite. Therefore, in most cases, the P80 percentile is 
selected to estimate the project cost contingencies. In organisations from 
sectors with more innovation capacity, economic agents tend to have a 
bigger risk appetite (Baloi and Price, 2003). An organisation’s maturity 
is not the only predictor of risk appetite. There are other attributes that 
should be considered when assigning a certain maturity level to an 
organisation (application, processes, organisational risk culture, expe-
rience, ability to identify risks, ability to analyse risks, and others) (Zou 
et al., 2010). However, the business needs to demonstrate a high degree 
of maturity if a complex risk analysis is to be performed. 

The cost contingency reserves obtained by our approach come closer 
to reality because it considers the costs that arise from simulating those 
risks modelled according to the actual nature of the (i.e., aleatoric, 
epistemic or stochastic) uncertainties that generate them. Consequently, 
these contingency reserves should be more reliable than the estimations 
made at random or out of “habit” (e.g., a certain percentage of the total 
planned budget: 10% of the total budget in the construction project 
under study). 

6. Conclusions 

This paper presents a novel method to allocate cost contingencies in 
projects. It does so by performing an integrated analysis of the project’s 
cost and duration risks by incorporating all the identified uncertainty 
types. We should not forget that variability in the duration of activities 
lead to variability in the costs of these activities and, therefore, in the 
project. This model can be summarised in three steps: the first step is the 
project analysis in which the activities that integrate the project are 
studied, and the project’s network diagram is represented. In the second 
stage, the project risks are identified. All the uncertainties that may 
impact the cost or duration objectives of any activity should be included 
in the Risk Register. After a literature review, we classify uncertainties 
into three types: stochastic, aleatoric and epistemic. We cannot forget 
another uncertainty type (ontological), whose only response is to 
reserve a margin of contingencies for these unknown risks. 

Having completed the Risk Register for our project, we move on to 
the last phase of our method. We use the Risk Register and project 
sequencing data to perform MCS. As a result of the simulation, we obtain 

the statistics and graphs for total project cost. These results are analysed 
and, the allocation of project cost contingencies is determined. To make 
this decision, Project Managers must consider the organisation’s degree 
of risk aversion. The greater the risk aversion, the higher the percentile 
of the cost function to be chosen to set contingencies. 

This method was tested on an actual project that consists of a lecture 
hall construction for the University of Valladolid (Spain). The results 
obtained with simulation allowed us to compare the allocation of the 
contingencies that should be reserved if integrated risk analysis is car-
ried out, compared to the traditional method, which consists of allo-
cating 10% of the total planned budget. 

The main conclusion drawn from this work is that it is possible to 
accurately estimate cost contingencies by MCS. This quantitative Risk 
Management technique enables all the identified sources of uncertainty 
to be incorporated into the simulation. From the analysis of the obtained 
results, we conclude that the impact of risks significantly modifies 
project planning. The difference between the values planned for the 
project’s cost, and the results obtained from carrying out simulation, 
means that it is necessary to apply the integrated risk management 
process. 

About the comparison made to the traditional method of allocating 
10% of the total project budget as cost contingencies, we conclude that 
the methodology we propose is more specific for quantifying the reserve 
needed to avoid economically compromising a project’s viability. This is 
because reserves are adjusted to each project’s reality and particular 
context. If simulation provides scenarios with much lower contingencies 
than that provided by the traditional percentage method, we can allo-
cate the difference to other more profitable investment items. On the 
contrary, if simulation provides scenarios in which costs are higher than 
those estimated by the percentage method, we have to set aside more 
economic resources to ensure the project’s feasibility. In other words, we 
can anticipate future scenarios that are more negative than those plan-
ned, which allows us to act accordingly and to increase the probability of 
the project being a success. 

As a future line of research, we think that getting a contingency 
margin relative to the project schedule is also possible. Following the 
proposed method, it will be possible to suggest an estimated project 
completion time after incorporating the identified risks of the project. 
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Table 12 
Calculating the project’s cost contingencies.  

Magnitude Cost (€) Contingency Margin (€) 

Planned Project Cost 3,935,888  

Actual project “Aulario IndUVa” (10%) 393,588.8 
… … … 
P70 4,118,122.44 182,234.44 
P80 4,146,100.99 210,212.99 
P90 4,228,488.39 292,600.39 
… … …  
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