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Abstract—With advances in technology Hardware Trojan (HT)
attacks on printed circuit boards (PCB) are becoming more so-
phisticated and the need for more effective HT detection methods
is becoming crucial. Automated visual inspection (AVI) is one
of the most promising solutions in detecting malicious implants
on a PCB. It is non-destructive, effective in testing PCBs on
an industrial scale, demands minimum human involvement, and
can potentially identify malicious inclusions and modifications on
PCBs at all stages of production and thereafter. In recent years,
machine learning algorithms have been successfully applied,
significantly improving the effectiveness of AVI methodologies.
In this paper, an AVI methodology is proposed for detecting
HTs on a PCB, using input data from a low-cost digital optical
camera. It is based on a combination of conventional computer
vision techniques and a dual tower Siamese Neural Network
(SNN), modelled in a three stage pipeline. Further, a dataset
of PCB images has been developed in a controlled environment
of a photographic tent. The results show that the methodology
has an average 95.6% classification accuracy for PCBs with HT
inclusions with surface area between 4 mm2 and 280 mm2.

Index Terms—PCB Inspection, Hardware Trojan Detection,
Deep Learning, Automated Visual Inspection, Siamese Neural
Network, Computer Vision

I. INTRODUCTION

Several printed circuit board (PCB) assurance techniques
have already been suggested and evaluated over the past
years. These include in-circuit testing, functional testing, Joint
Test Action Group (JTAG) boundary scanning and bare-board
testing. Each of these assurance methods have advantages and
limitations, i.e. situations where they can be less effective
[1]. With advances in technology Trojan attacks become more
sophisticated and so there is a growing demand for more
effective Trojan detection methods. Ideally, the most effective
solution would require minimal human involvement, be non-
destructive and be able to detect as many types of malicious
modifications, inclusions and defects on a PCB as possible. For
example, a run time PCB monitoring technique proposed in [2]
is based on power consumption with no human intervention.
Power analysis methods, however, are inherently limited by
the resolution of the sensors they use to probe, meaning ultra
low power Trojans can evade detection.

Automated visual inspection (AVI) has the potential to
satisfy all these expectations. It requires minimum human
involvement and can quickly test a large number of PCBs.

Unlike the above mentioned PCB assurance methods which
can be used either when a board is fully populated or un-
populated, AVI can potentially identify malicious inclusions,
modifications and defects on PCBs at all stages of production
and even after sale. It has many advantages over manual visual
inspection which is slower, more expensive, less effective and
subject to human error [3], [4].

Automated visual inspection can be implemented in three
steps, image acquisition, image analysis and authentication [1].
Image acquisition can be done using several imaging modali-
ties [5], which can be categorised into three groups - surface,
subsurface and volumetric. Depending on the requirements,
multi-modal imaging approach may also be applied to detect,
for example, malicious modifications between PCB layers or
active components disguised as passive.

Collected images then need to be analysed for possible
defects or malicious inclusions and modifications. Image anal-
ysis involves processing, feature extraction and classification
stages. First the acquired images are processed to improve the
quality, for example, by removing noise, altering illumination
and enhancing contrast. The next stage is feature extraction
when key characteristics such as shape, color and texture of the
pursued objects are captured. This is followed by classification
and grouping of similar style components such as metal traces,
vias, integrated circuits (IC), capacitors, transistors or resistors
[6]. With advances in deep learning methods, feature extraction
and classification can be performed simultaneously using deep
learning algorithms [1]. Text recognition is also used in classi-
fication for identification of markings such as serial numbers,
which can be used, for example, for detection of counterfeit
components by comparing the component’s serial number with
the manufacturer’s original equipment serial number.

The final stage of automated visual inspection (AVI) is
authentication where data is stored as a Computer Aided
Design (CAD) file for comparing images of a fabricated PCB
with the image of a golden PCB model [6].

Although AVI has been the most commonly used method
for PCB assurance since 1960s [7] it had several limitations
such as limited-area inspection, hard-coded specifications, and
significant amount of subject matter expert involvement [8],
[9]. Advances in deep learning in recent years, in particular
image recognition, localization and segmentation, have been



successfully applied to AVI to overcome these limitations.
Several AVI methods have been suggested, including canonical
image processing method for detection, classification and
localisation of several specific types of defects on a PCB [10],
convolutional neural network for detecting six types of defects
[11], automated detection for component placement by directly
comparing golden and test PCBs [12], [13] and text detection
on the PCB for verification purposes [14], [15].

All the suggested approaches designed for PCB defect
detection do not distinguish between irregularities that are
due to manufacturing defects and Hardware Trojan (HT)
inclusions, which are malicious modifications e.g. for com-
promising sensitive information. In the Big Hack [16], for
example, an extra component implanted on a PCB was an
HT which was visually disguised as a legitimate component,
albeit being marginally larger in size. The HT was designed
to provide administrative access to the network for an outside
attacker. Development of AVI approaches for monitoring the
location, size, and appearance of PCB components, focusing
in particular on HT detection, is very important [6]. This
paper addresses that problem by proposing a novel optical
AVI algorithm for HT detection on a PCB.

II. PREVIOUS WORK

In recent years AVI has been applied using several methods
including image matching, feature extraction, and deep learn-
ing. Each of these approaches demonstrated effective perfor-
mances in various defect detection tasks such as component,
trace and via defect detection, and component classification.

Image matching methods have been mostly applied for
detecting missing, displaced or replaced components [13],
[17]–[19]. In particular, by using background subtraction 90%
accuracy is achieved in [18] on detecting missing capacitors
and resistors. By matching wavelet-transformed images, com-
ponent inspection in electronic assembly lines is suggested
in [19] with 86% accuracy. Feature extraction has also been
adopted to classify component defects [12]. While image
matching checks the whole PCB, feature extraction only in-
spects regions where illegitimate components are anticipated.

Feature extraction and deep learning methods have proven
to be efficient for component classification [20], [21]. In
[22] an automatic surface mount device classification method
extracted color and edge information from color images of
PCB parts. A neural network was used to classify chip-
type packages and 97.6% average classification accuracy was
achieved after adding additional edge information. Using a
convolution neural network, authors in [23] and [24] also
proposed a component classification method. Based on com-
ponent images obtained from a PCB the method suggested
in [23] separated components from their backgrounds and
classified them, achieving 90.8% accuracy. By training IC
images collected online, IC components were identified with
92.3% accuracy in [24].

Previous works have looked into AVI for quality assurance,
however HTs pose a separate challenge. The novelty in this
work is that the algorithm has been optimised and trained

specifically for implanted HT component detection on a PCB.
The proposed HT detection methodology has been trained and
tested with three groups of HTs, categorised based on their
surface area. The results show that it is possible to reach
effective detection accuracy of 95.1% for HTs as small as
4 mm2. In case of HTs with surface area larger than 280 mm2

the detection accuracy is around 96.1%, while the average
performance across all HT groups is 95.6%. These results can
be further improved if higher resolution images are used.

The rest of the paper is organised as follows: the proposed
methodology is presented in Section III. Section IV describes
the experimental setup used for carrying out the research, with
the results discussed in Section VI. Finally, the results of the
paper are summarised in Section VII.

III. PROPOSED METHODOLOGY

The goal of this work is to develop a low-cost and fast
PCB visual inspection tool. This is achieved by avoiding
expensive and slow imaging modalities such as X-rays or
high end microscopes. Instead, the approach adopted in the
current paper is to detect HT contaminated PCBs by using a
simple digital optical camera. This fundamental characteristic
of the proposed method allows to develop an AVI tool with
marginal time and resource overheads, inspecting all PCBs
passing through a conveyor belt setup on production lines.

The proposed methodology pipeline is comprised of the
following key stages

• Image alignment homography
• Application of Gaussian blurring
• Background image subtraction
• Suspicious region identification
• Cropping suspicious regions as image pairs
• Siamese Neural Network similarity estimation
• Confirmed dissimilar region marking on PCB
• Labelling the PCB on HT presence status.

It includes conventional computer vision techniques such as
image alignment through homography, blurring filter and back-
ground subtraction. To align two images pixel coordinates of
one of them should be multiplied by the homography matrix:x′
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where H is the estimated homography matrix, and (x′, y′) are
the updated coordinate estimates of the pixel previously in
location (x, y). Following image alignment phase a blurring
filter kernel is applied to both images. This is done to smooth
out minor misalignments on the edges of objects (e.g. wires,
chips). In this work the kernel grid has been populated with a
two-dimensional Gaussian distribution function G(x, y), a.k.a.
Gaussian blur filter:
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Fig. 1: Image subtraction and pixel value binary thresholding.

where σx = σy = σ is the standard deviation on both
axes. Finally, image background subtraction and thresholding
operations are demonstrated in Fig. 1. These are applied
on whole PCB images, after which the resulting individual
contours are regarded as suspicious regions and cropped out
as separate images for later processing.

The proposed methodology also includes deep learning
architectures such as convolutional neural network and feed-
forward fully connected neural network. These are merged
into a specific architecture called Siamese Neural Network
(SNN) [25], [26]. The SNN has a particular type of neural
network architecture (Fig. 2) where some weights are shared
between two towers of convolutional neural networks. Each
tower produces an embedding vector of its respective input
image. Given a dataset of pairs of inputs, the network is trained
to maximize the distance between the embeddings of the inputs
coming from different classes, while minimizing the distance
between embeddings coming from inputs of the same class.
This process is referred to as supervised similarity learning.
The particular choice of using SNN as the base algorithm
comes naturally given the underlying problem being solved,
i.e. comparing two images to detect differences.

In order to obtain a good quality dataset and minimise
the ambient optical impact, the PCBs have been placed in
a photographic tent with a built-in diffused light source (Fig.
3a). This way, when capturing the photographs, all PCBs have
similar initial environmental conditions, independent from
many external factors such as daylight, shifting shadows,
color variations due to reflections from the surroundings [27].
On one hand it could be argued that outside of the labora-
tory’s controlled environment the ambient lighting conditions
could vary. On the other hand, it can also be assumed that
implementing a photographic tent-like structure in a factory
production line can be achieved with little extra effort. The
motivation for using a photographic tent to begin with is to
boost the algorithm performance by removing unnecessary
complications (e.g. changing light source color or angle of
incidence). This is a low-effort but high-impact improvement
of the input data. Further, while producing the images the
camera has been mounted on a static stand and a remote
controlled shutter has been used to produce stable images.

Fig. 2: Siamese Neural Network architecture overview.

IV. EXPERIMENTAL SETUP

Capturing photographs: To build the PCB image dataset
a 52cm× 52cm× 52cm FOSITAN photographic tent with an
opening on the top and a built-in intensity-adjustable white
LED light has been used. The intensity of the light source at
the surface level of the PCB has been kept at 5380 Lux, with
the measurements being taken by an AP-8801C digital light
meter (Fig. 3b). Further, to minimise artifacts in the image, for
example due to reflective surfaces on the PCB, several layers
of light diffusing cloth sheets have been applied between the
light source and the PCB, which is a standard practice for
controlling image quality. Using this environment 101 images
of a PCB have been captured of which 1 has been used as the
golden model PCB and the other 100 were later used as source
images for creating a much larger dataset of HT infected PCBs.
Regarding the digital camera used to produce the images, a
12 Mp camera with a 1 cm sensor size and 1.4 µm pixel pitch
has been utilised. The camera has a 26 mm equivalent focal
length and f/1.8 aperture lens. The objective of this research
is to develop a high quality automated visual inspection (AVI)
algorithm which can work with moderate quality input images
acquired through low cost digital optical camera modules.

Preprocessing photographs: Before two images can be
compared with each other to detect differences, they have
to be aligned. This is a crucial step in the proposed AVI
pipeline. During image alignment process one image is warped
to match the second. This effect is achieved by multiplying
every coordinate in the image by the homography matrix H
as shown in (1). It is important to note that homography can
only be applied to objects on a 2D plane such as a PCB. In

(a) (b)

Fig. 3: (a) Photographic tent used for creating image dataset,
(b) digital light meter used for light intensity control.
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TABLE I: Groups of Hardware Trojans.

Group name Small Medium Large

Surface area in mm2 4 to 9 15 to 50 280+

Surface area in pixels2 700 to 1500 2500 to 9000 50000+

this research OpenCV library has been used to compute the
homography matrix and perform image alignment [28].

In order to perform homography, first the same points of
the object (e.g. PCB) in both images need to located. The
minimum required number of such point pairs to be able
to perform homography is four. Increasing the number of
such pairs will result in a more robust homography estimation
and, hence, improved alignment of images. To acquire such
point pairs in an automated manner, first several key-points
on both images need to be located. Then these key-points
should be matched into pairs. For example, it can be achieved
with brute force matching by searching for the minimum
euclidean distance between every couple of descriptor vectors
belonging to a particular pair of key-points. Points referred to
as key-points are typically distinctive corners, edges or sharp
curves of the objects (e.g. PCB) present in the image. They
are defined by (x, y) coordinates, size and orientation. Their
respective descriptors, on the other hand, are unique markers of
the key-points, independent from the orientation of the object
in the image. The descriptors are vectors calculated internally
by OpenCV [28] and help in search for matching key-point
pairs from two different images of the same item.

At a later stage, another algorithm called Random Sample
Consensus (RANSAC) is used to discard the key-point pairs
with a high likelihood of being outliers. Such points can have
a significant negative impact on the quality of the homography
matrix. RANSAC is an iterative algorithm which validates a
mathematical model built using a dataset with outliers [29].
The algorithm assumes that the dataset is a combination of
both inliers and outliers. Inliers can be identified by a model
with a special set of parameter values, whereas outliers do not
fit the model in any condition. The iteration process repeats a
fixed number of times and each time produces either a model
which is rejected due to very few points being part of the
consensus set, or produces a refined model together with a
corresponding updated consensus set. The refined model is
accepted only if the size of the updated consensus set is larger
then that of the previous model.

Inserting Hardware Trojans: Three groups of HTs have
been used in this research. They have been binned into groups
of small, medium and large, based on their surface area (Table
I). The HTs have been added with the help of Flip library on
GitHub [30] developed by LinkedAI. The library is used for
synthetic data generation on new 2D images from a batch
of objects and backgrounds. In the scope of this research the
background image is an HT free PCB Under Inspection (PUI),
while the objects are the HTs. The idea is to take a random
background image and a random object and place the object
in a random location with a random integer multiple of 90°
rotations. On top of that, the Flip library provides many of the

conventional image augmentation functionalities, e.g. resize
or colour shift the objects. Using Flip library and the 100
source images captured earlier as backgrounds, 7500 images
of PCBs with inserted HT devices have been generated, i.e.
2500 images per HT group.

V. HARDWARE TROJAN DETECTION PIPELINE

The proposed HT detection pipeline consists of three main
stages shown in Fig. 4. In the first stage the images of the
golden model (GM) and a PCB under inspection (PUI) are
compared to identify the suspicious regions on the PUI, where
an HT could be present, but in this stage there is no definitive
prediction whether that is the case. Instead, the information
about these regions is passed forward to the next stage of the
pipeline as a list of bounding boxes. In the second stage of
the pipeline the algorithm uses the bounding boxes to crop
out these sections as a set of smaller images. This step is
repeated for both the GM and the PUI to create pairs of
images. The resulting small image pairs are later normalised
to 28×28 pixels and converted to grayscale. The second stage
of the pipeline is illustrated in more detail in Fig. 5. Next, the
normalised image pairs of the suspicious regions are passed
on to the final third stage of the pipeline - the Siamese Neural
Network (SNN). Normalizing the image sizes is necessary for
the SNN since it can only work with a specific shape, while
converting images to grayscale greatly reduces the number of
parameters in the neural network. The SNN parses all image
pairs, outputting a similarity score for every image pair.

In this work, the Keras framework [31] has been used
for implementing the Siamese Neural Network (SNN). The
network is trained to differentiate between the HT contam-
inated and HT clean image pairs. In case of the HT clean
image pair class the two cropped images from GM and
PUI should be very similar. The reason why such regions
have been suggested by the previous stage of the pipeline is
that although the image alignment algorithms have a good
performance, they are not perfect and in some cases a slight
misalignment gets interpreted as difference. This is where
the SNN excels at differentiating between a misalignment
and actual HT presence. Finally a threshold is applied to the
similarity scores followed by a logic AND function to check
if at least one HT is present on the PUI.

Motivational example: To explain the proposed method-
ology, a simplified case study can be considered, where 1000
PUIs are available, 100 out of which have an HT on board.
The first stage of the proposed pipeline (Fig. 4) is optimised
to mark all 100 HTs in suspicious regions, even though in
the process the algorithm may also wrongly suggest many
misidentified suspicious regions. For example, the algorithm
may miss 1 HT, correctly mark 99 HT regions and further
suggest 401 misidentified regions which do not contain an HT.
These 500 suspicious region coordinates are cropped from the
GM and the respective PUIs, normalised (Fig. 5) and passed
to the SNN in the last stage of the pipeline (Fig. 4). The
SNN individually compares all 500 image pairs to assess their
similarity. For example, the SNN may have 95% accuracy,
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Fig. 4: The proposed Hardware Trojan detection pipeline, where: (a) Image alignment with homography, (b) Gaussian blurring
kernel, (c) Background image subtraction, (d) Binary thresholding, (e) Suspicious region identification, (f) Cropping suspicious
regions as image pairs from GM and PUI, (g) Labelling the PUI on HT presence status.

Fig. 5: Cropping and normalisation of suspicious regions.

detecting 94 out of 99 HTs. In such scenario 99 out of 100
HTs are detected by the first stage (99% detectability) and
94 out of those 99 HTs are detected in the final stage (95%
accuracy) resulting in an overall effective 94% accuracy.

VI. EXPERIMENTAL RESULTS

Since the proposed methodology is organised in a multistage
structure (Fig. 6), it is possible to retrieve meaningful outputs
from the intermediate stages. In fact, this is a crucial step in
the overall optimisation process. In this paper the methodology
has been optimised for two independent consecutive results.

Image thresholding: The stage of suspicious region
identification through image thresholding has undergone a
constrained optimisation problem, whereby the HT detection
rate, i.e. detectability, has been maximised, such that the
ratio of misidentified suspicious regions to the total number
of predicted suspicious regions does not exceed 95%. Here
detectability is defined by the ratio of all HTs which were
included in at least one of the suggested suspicious regions.
The suspicious region is defined as misidentified if it does
not overlap with an HT or if the intersection over union
(IOU) is below 10%. In other words, this algorithm has been
optimised to find as many HT containing regions as possible,
while keeping the rate of wrongly suggested suspicious regions
in a reasonable range. This constraint on the optimisation
has been introduced to avoid the trivial case of having the
algorithm mark all of the PCB surface as suspicious. The
optimisation was accomplished by calibrating the pixel value
cutoff threshold for image binary thresholding (Fig. 7) using
the 1 GM and 7500 PUI images with their ground truth masks
of HT locations. The results for HT detectability, alongside
with the respective rate of misidentified proposed suspicious
regions, are presented in Table II, subject to varying cutoff
thresholds. The cells satisfying the constraint of keeping the

TABLE II: Hardware Trojan detectability in top-left blue and
rate of misidentified suspicious regions in bottom-right red.

rate of misidentified suspicious regions below 95% have been
highlighted with a light green background. The reason why
the algorithm can afford to output so many misidentified
suspicious regions is that the SNN in the last stage of the
pipeline (Fig. 6) can discard them with high accuracy. The goal
here is to mark as many HT containing regions as possible.

Siamese Neural Network: A Siamese Neural Network
with around 872 × 103 trainable parameters has been trained
to discern between the images of the same patches on two
PCBs harbouring an HT component, while being able to
recognise similar patches which are only slightly misaligned or
misshaped (Fig. 8). The root cause of having such misaligned
patches is the estimation of the homography matrix H in (1).
The reason for having misshaped patterns could be, among
other things, variations in the PCB production process as well
as defects such as misaligned elements.

Information about the datasets used to train, validate and
test the SNN model and their respective resulting prediction
accuracies are shown in Table III. The datasets are comprised
of pairs of images, where each pair represents one of the suspi-
cious regions. Inside every pair the first image is cropped from
the suspicious region on the PCBs under inspection, while the
second is the matching region on the golden model PCB. These
images are of the exact same regions on both PCBs, cropped

TABLE III: Siamese Neural Network prediction accuracy.

Dataset name Train Validation Test

Dataset size 18000 6000 6000

Prediction accuracy (small HT) 98.8% 96.5% 95.5%

Prediction accuracy (medium HT) 98.4% 97.6% 95.9%

Prediction accuracy (large HT) 98.7% 98.5% 96.1%
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Fig. 6: Training process of the proposed methodology, where: (a) Choose one as the golden model (GM), (b) Align the
remaining images to the GM, (c) Insert HTs on every PCB under inspection (PUI), (d) Gaussian blurring kernel, (e) Subtract
GM from every PUI, (f) Binary thresholding, (g) Suspicious region identification, (h) Cropping suspicious regions as image
pairs from their respective pre-blurred PUI and GM images, (i) Train Siamese Neural Network.

(a) Source img. (b) thr. = 150 (c) thr. = 100

Fig. 7: Given a grayscale source image (a), computed binary
thresholding images with high (b) and low (c) threshold values.

TABLE IV: Effective prediction accuracy.

HT size group Small Medium Large All

Image thresholding (at 35) 99.6% 99.7% 100% 99.8%

Siamese Neural Network 95.5% 95.9% 96.1% 95.8%

Effective accuracy 95.1% 95.6% 96.1% 95.6%

out based on coordinates from a single bounding box and later
normalised as shown in Fig. 5. In total about 30K such image
pairs have been collected and split into training, validation
and testing datasets with a 60% − 20% − 20% ratio. The
performance of SNN has been analysed per HT group (Table
III). The classification accuracies on testing dataset range from
95.5% to 96.1%, as expected, performing best on large HTs.

Effective accuracy: Since the proposed methodology
has two consecutive, distinct and independent outputs with
their respective accuracy scores, the effective accuracy of the
methodology as a whole is the multiplication of the two. In
other words, HT detection accuracy of the SNN applies only
to the HTs which had previously been detected by the previous
stage of the pipeline. For example, in case of medium size HTs
the suspicious region identification with image thresholding
stage resulted in HT detectability rate of 99.7% and the
SNN had classification accuracy of 95.9%. The resulting
effective accuracy of the methodology for medium size HTs
is (99.7%× 95.9%) = 95.6%. The effective accuracies for all
groups of HTs are presented in Table IV. As expected, the
algorithm performance improves up to 96.1% as the HTs get
larger, with the overall HT implanted PCB detection accuracy
being around 95.6%.

(a)
Golden model

PCB

(b)
PCB under
inspection

(c)
Golden model

PCB

(d)
PCB under
inspection

Fig. 8: Cropped suspicious regions. Image pair (a) and (b) are
only misaligned, pair (c) and (d) harbour a Trojan component.

VII. CONCLUSION

This paper proposes a methodology for detecting Hardware
Trojan (HT) components on a printed circuit board (PCB)
through automated visual inspection. It is assumed that an
image of a trusted golden model (GM) of the PCB is available
with which comparisons are made. The proposed technique
provides an accurate and fast tool to detect HT inclusions
on PCBs using a low-cost imaging modality - optical digital
camera. To keep the operating conditions stable and avoid
the negative impacts from variations in ambient lighting, a
photographic tent (Fig. 3a) with internal diffused light source
has been used to develop a PCB image dataset containing
7500 plus 1 images including the golden model. The proposed
methodology is a pipeline of three sub-stages (Fig. 4). Initially,
the first stage proposes suspicious regions on the PCB Under
Inspection (PUI), where a potential HT could be located. In the
second stage, these regions are cropped out as pairs of images
from both the GM and PUI. In total 30000 such pairs of images
are preprocessed (Fig. 5) preparing them for the final stage. In
the final stage, a Siamese Neural Network (SNN) takes each
of these 30000 image pairs as two separate inputs and outputs
a similarity estimation. The results show that the proposed
automated visual inspection pipeline, combining conventional
computer vision techniques and deep learning, can detect HT
devices with surface area from 4 mm2 to 280 mm2 implanted
on a PCB with an effective accuracy of 95.6% (Table IV).
Detection of ultra-small HT components with surface area
under 4 mm2 will be addressed in our future work.
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