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Abstract: Characterizing the refrigerant side of heat pump water heaters (HPWHs) can be in-
trusive and expensive. On the other hand, direct external measurement techniques can be un-
feasible, particularly in commercial HPWHs for residential applications. Non-intrusive in-si-
tu characterization methods have already been successfully implemented in subcritical heat 
pumps, providing the refrigerant mass flowrate and the equipment energy performance, by 
using contact temperature sensors and electric power meters. Subcritical suction and discharge 
specific enthalpies necessary to apply the method can be obtained from the measured tem-
peratures and their corresponding saturation pressures. Nevertheless, this approach does not 
apply to the transcritical CO2 HPWHs. In the supercritical region, temperature and pressure are 
independent variables, and an iterative process regarding the compressor isentropic efficiency 
has to be considered. However, when isentropic efficiency data is not available, an additional 
procedure is required, using a validated gas cooler model to verify the physical reliability of the 
numerical solutions.
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1. INTRODUCTION
Switching heating systems from fossil fuels to low-carbon alternatives is paramount for 
reaching the European climate objectives for 2030 and carbon neutrality by 2050. Heat 
pumps assume a primary function to accomplish these targets, using energy from renewa-
ble	sources	(air,	water,	or	geothermal),	being	(mostly)	electrically	supplied,	energy-effi-
cient, and thus, contributing to a competitive, secure, and low-carbon economy [1]. Never-
theless, energy performance and low-carbon or renewable energy sources are not the only 
issues dictating their environmental impact. The heat pump technology is predominantly 
based on vapor- compression refrigeration systems, as in the air-conditioning and refri-
geration current technologies. The commonly used refrigerants may substantially contri-
bute	to	greenhouse	gas	emissions,	particularly	the	fluorinated-based	ones	(F-gases)	[2].	
Atmospheric emissions during the F-gases production, leakages during operation, or even 
along the recovering, recycling, or destruction processes triggered the relaunch of some 
natural refrigerants, and among them CO2. Its environmental harmlessness, safety, low 
cost, high availability, and unique thermodynamic properties give this ultra-low global 
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warming	potential	(GWP)	operating	fluid	a	significant	advantage	over	other	refrigerants	
[3].	Owing	to	its	low	critical	temperature	(31.1	°C),	CO2 is mainly used in transcritical va-
por-compression cycles, and one of the most widespread applications is the transcritical 
CO2 heat pump water heater (TCO2 HPWH) for residential applications, particularly in Ja-
pan, where it is known	as	‘Eco	Cute’	and	rated	according	to	the	Japanese	energy	efficiency	
standards.

In Europe, the energy performance of electrically driven HPWHs is rated according to 
the EN16147 standard [4]. However, the energy-performance indicator is used for equip-
ment’s comparisons and does not characterize the actual behavior of the HPWHs under a 
wide range of environmental conditions. On the other hand, it is based on waterside me-
asurements and cannot provide any information for the refrigerant side, commonly obtai-
ned with intrusive and expensive equipment [5], unfeasible for in-situ measurements [6].

Non-intrusive methodologies applied in air-to-air heat pumps, based on the compressor 
energy conservation (CEC), demonstrated good accuracy [5,6], besides simplicity, reliabi-
lity, independence, and non-interference on the system’s operation, compared to indoor 
and	outdoor	air	enthalpy-difference	methods	[6].	The	CEC	method	allows	an	accurate	es-
timation	of	the	refrigerant	mass	flowrate	and	the	equipment	energy	performance	mere-
ly using (external) contact temperature sensors and electricity power meters [5,6]. The 
subcritical	 suction	and	discharge	specific	enthalpies	necessary	 to	apply	 the	method	are	
obtained from the measured temperatures and their corresponding saturation pressures. 
Nevertheless, this method does not apply to the TCO2 HPWHs. In the supercritical region, 
where both compressor discharge and gas cooler operating conditions fall, temperature 
and pressure are variables independent from each other, and an additional parameter or 
condition	has	to	be	considered	–	in	this	case,	the	compressor’s	isentropic	efficiency.	One	
should mention that no in-situ nor non-intrusive methods on the refrigerant-side charac-
terization for TCO2 cycles were found in the literature. This work explores the role of the 
compressor	isentropic	efficiency	on	non-intrusive	refrigerant	side	characterization of TCO2 

HPWHs. The base thermodynamic analysis is presented and includes three versions re-
garding	the	compressor	isentropic	efficiency	condition:	constant,	depending	on	the	pres-
sure ratio through an already known polynomial correlation, or unknown. For the last, an 
additional methodology is proposed and discussed, based on a validated model for the 
gas cooler energy balance. It allows obtaining the discharge pressure and determine the 
compressor	isentropic	efficiency,	thus,	enabling	non-intrusive	HPWHs	refrigerant	side	cha-
racterization.

2. METHODOLOGY
Figure 1 exhibits the schematic representation of a TCO2 HPWH and the respective thermod-
ynamic cycle on the 𝑃 − ℎ and 𝑇 − 𝑠 diagrams. In the TCO2 HPWH scheme, it is also represen-
ted the measurement equipment: 10 non-intrusive (external) contact temperature sensors 
for	both	water	and	refrigerant	loops	(2	and	8,	respectively),	one	water	mass	flow	meter	(easi-
ly integrated in the water loop), and one electrical energy/power meter for the entire HPWH. 
The measurement outputs and variables considered in the following analysis are numbered 
according	 to	 the	measurement	devices	 represented	 in	 the	figure.	Note	 that	measurement	
point 4 is irrelevant for the supercritical gas cooling characterization, yet crucial for an even-
tual condensation, providing the saturation temperature, similarly to point 8 (or point 7) for 
the evaporation process.
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔, 

𝐶𝐶𝐶𝐶𝑃𝑃 = �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔⁄  (1) 

where the total electrical power input (with the compressor’s contribution, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

�̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔 = �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑔𝑔 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐶𝐶𝑂𝑂2 × ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
�̇�𝑚𝐶𝐶𝑂𝑂2 = �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, �̇�𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑝𝑝𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑓𝑓) or calculated (specific heat, 𝑐𝑐�̅�𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

Figure 1. TCO2 HPWH: scheme (left), and 𝑃 − ℎ (top left) and 𝑇 − 𝑠 (bottom right) diagrams

The	coefficient	of	performance	of	the	whole	TCO2 HPWH is given by the ratio of heat transfer 
rate in the gas cooler, 𝑄̇𝑔𝑎𝑠 𝑐, to the total electrical input, 𝑃 𝑒̇𝑙𝑒𝑐,
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 
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(1)

where the total electrical power input (with the compressor’s contribution, 𝑃 𝑒̇𝑙𝑒𝑐𝑐𝑜𝑚𝑝, pre-
vailing over the other active components, namely, evaporator fan, water pump and other 
equipment such as control units, etc.) is
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the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 
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losses to the surroundings (owing to the good thermal insulation commonly used in its ex-
ternal envelope), the energy balance for the gas cooler can be written, for either the water 
or the refrigerant side, as
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔, 

𝐶𝐶𝐶𝐶𝑃𝑃 = �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔⁄  (1) 

where the total electrical power input (with the compressor’s contribution, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

�̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔 = �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑔𝑔 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐶𝐶𝑂𝑂2 × ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
�̇�𝑚𝐶𝐶𝑂𝑂2 = �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, �̇�𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑝𝑝𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑓𝑓) or calculated (specific heat, 𝑐𝑐�̅�𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(3)

From	the	previous	system	of	equations,	the	refrigerant	mass	flowrate	is	given	by
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔, 

𝐶𝐶𝐶𝐶𝑃𝑃 = �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔⁄  (1) 

where the total electrical power input (with the compressor’s contribution, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

�̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔 = �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑔𝑔 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐶𝐶𝑂𝑂2 × ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
�̇�𝑚𝐶𝐶𝑂𝑂2 = �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, �̇�𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑝𝑝𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑓𝑓) or calculated (specific heat, 𝑐𝑐�̅�𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(4)

where	all	the	waterside	variables	can	be	measured	(mass	flowrate,	𝑚̇ 𝐻2𝑂, and temperature 
increase, ∆𝑇 𝐻2𝑂, 𝑔𝑎𝑠 𝑐 = 𝑇 𝑜𝑢𝑡 −  𝑇 𝑖𝑛)	or	calculated	(specific	heat,	𝑐𝐻̅ 2𝑂). By opposition, the speci-
fic	enthalpy	change	on	the refrigerant side (∆ℎ𝐶𝑂2, 𝑔𝑎𝑠 𝑐 = ℎ3 −  ℎ5) is unknown and depends on 
the CO2 conditions at the gas cooler inlet and outlet, respectively. It becomes clear that the 
only	way	to	obtain	the	refrigerant	mass	flowrate	(without	measuring	it)	 is	by	determining	
both	refrigerant	specific	enthalpies	ℎ3 and ℎ5.
Using	binary	functions	for	the	refrigerant	properties	(non-italic	bold),	the	specific	enthalpy	
results as a function of pressure (𝑃 ) and temperature (𝑇 ). Thus, for the gas cooler inlet and 
outlet, respectively,
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔, 

𝐶𝐶𝐶𝐶𝑃𝑃 = �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔⁄  (1) 

where the total electrical power input (with the compressor’s contribution, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

�̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔 = �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑔𝑔 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐶𝐶𝑂𝑂2 × ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
�̇�𝑚𝐶𝐶𝑂𝑂2 = �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, �̇�𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑝𝑝𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑓𝑓) or calculated (specific heat, 𝑐𝑐�̅�𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(5)
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔, 

𝐶𝐶𝐶𝐶𝑃𝑃 = �̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔⁄  (1) 

where the total electrical power input (with the compressor’s contribution, �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

�̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔 = �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑓𝑓𝑔𝑔𝑓𝑓 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 + �̇�𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑔𝑔 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
�̇�𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  �̇�𝑚𝐶𝐶𝑂𝑂2 × ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
�̇�𝑚𝐶𝐶𝑂𝑂2 = �̇�𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐�̅�𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, �̇�𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑐𝑐𝑝𝑝𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑓𝑓) or calculated (specific heat, 𝑐𝑐�̅�𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝑂𝑂2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(6)

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along 
its length. Therefore, having 𝑃 5 = 𝑃 3 also ℎ5 becomes dependent on 𝑃 3
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(7)
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Finally,	the	refrigerant	mass	flowrate,	Eq.	(4),	depends	on	only	one	unknown	variable,	𝑃 3, sin-
ce both refrigerant temperatures, 𝑇 3 and 𝑇 5,	and	the	respective	specific	enthalpies,	for	that	
pressure, can be obtained (besides the waterside variables above mentioned)
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(8)

From	the	compressor	isentropic	efficiency	definition,
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(9)

Again,	using	binary	functions	for	defining	ℎ3𝑠 ,	the	specific	enthalpy	at	the	compressor	dis-
charge / gas cooler inlet (point 3s) for the isentropic (ideal) compression and ℎ2,	the	specific	
enthalpy at the compressor suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and 
rearranging Eq. (9), it can be presented as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(10)

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the 
saturation pressure function (non-italic bold), results in the system of equations
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(11)

where 𝑇 8 is the evaporation temperature.
The	discharge	specific	entropy	and	temperature	corresponding	to	the	ideal	compression	can	
be written as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(12)
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(13)

or, through Eq. (11), respectively, as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(14)
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(15)

Applying Eqs. (11), (14), and (15) in Eq. (10),
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(16)

At	this	point,	three	conditions	can	be	considered	regarding	the	compressor	isentropic	effi-
ciency, each considered in the following sections.

2.1. Compressor isentropic efficiency known as a constant
Regarding the condition
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(17)

where 𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic 
functions, 𝐟(𝑥) and 𝐠(𝑥) , ∀ 𝑥 ∈ ℝ+, each depending only on 𝑃 3, since all other variables, 𝑇 2, 𝑇 3, 
and 𝑇 8, are known.
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

�̇�𝑚𝐶𝐶𝐶𝐶2 = �̇�𝑚𝐻𝐻2𝐶𝐶 × 𝑐𝑐�̅�𝐻2𝐶𝐶 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑖𝑖 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑖𝑖, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑖𝑖, 𝑇𝑇3𝑖𝑖) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑖𝑖 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑖𝑖 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠3𝑖𝑖) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑖𝑖, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑖𝑖 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑖𝑖 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(18)

The equality of the two functions represented in Eq. (18) can be solved through an itera-
tive process, providing 𝑃 3. Knowing 𝑃 3 value	that	satisfies,	Eq.	(16),	 it	 is	possible	to	obtain	
the	specific	enthalpy	at	the	gas	cooler	inlet	and	outlet	through	Eqs.(5)	and	(7),	respectively.	
Furthermore,	it	is	possible	to	determine	the	refrigerant	mass	flow	rate	from	the	gas	cooler	
energy balance equation written as in Eq. (8).
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2.2. Compressor isentropic efficiency given by a polynomial correlation
Many	polynomial	correlations	for	the	compressor’s	isentropic	efficiency,	as	functions	of	the	
pressure ratio, can be found in the open literature. The most common are fourth-order (𝑛 =
4) and linear (𝑛 = 1) correlations [7–9]. However, the polynomial order depends on the com-
pressor type, information provided by the compressor’s manufacturer, or on the regression 
analysis	performed	by	the	researchers.	Nevertheless,	the	isentropic	efficiency	can	be	repre-
sented as
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can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (�̇�𝑄𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, �̇�𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑛𝑛), and the refrigerant mass flowrate and its inlet 
temperature and pressure (�̇�𝑚𝐶𝐶𝑂𝑂2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 < 𝜂𝜂𝑖𝑖𝑖𝑖 < 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚 

   
Figure 2. Definition of the search range for 𝜂𝜂𝑖𝑖𝑖𝑖 

CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O

s [J/kg.K]

2
1

3

5

7

6

T 
[º

C
] 4

8

Out

In

CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O
CO2

H2O

s [J/kg.K]

2
1

3

5

7

6

T 
[º

C
] 4

8

Out

In

s [J/(kg.K)]

T 
[°

C
]

2

1

3

5

7

6

4

8

CO2

H2O

In

Out

(19)

Each 𝐶𝑖 with 𝑖 ∈ {0, 1, … , 𝑛} is a known and constant empirical value, and 𝑟 is the pressure ratio, 
which combined with Eq. (11) results as
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can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (�̇�𝑄𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, �̇�𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑛𝑛), and the refrigerant mass flowrate and its inlet 
temperature and pressure (�̇�𝑚𝐶𝐶𝑂𝑂2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 < 𝜂𝜂𝑖𝑖𝑖𝑖 < 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚 

   
Figure 2. Definition of the search range for 𝜂𝜂𝑖𝑖𝑖𝑖 
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Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟(𝑥) 
and 𝐠(𝑥) , each of them depending only on 𝑃 3. The process for obtaining 𝑃 3 in this case is iden-
tical	to	that	when	the	isentropic	efficiency	is	given	by	a	constant,	as	described	in	Section	2.1.

2.3. Unknown compressor isentropic efficiency
Compressor	efficiency	indicators	and	performance	maps	are	commonly	sensitive	proprietary	
information, therefore, are often inaccessible. For this case, an iterative procedure is needed 
using a validated numerical model for the gas cooler energy balance. Many dimensional pa-
rameters and numerical and/or experimental data are available for that in the open literature. 
The information varies according to the system purpose (water heating, air conditioning, or re-
frigeration)	and	the	gas	cooler	configuration,	namely	single	tube-	[10]	and	multi	tubes-in-tube	
(straight	[11]	or	twisted	[12]),	microchannel	[13],	brazed	plate	[14]	or	finned-tube	[15].	For	the	
TCO2 HWHP,	the	most	used	configuration	is	the	single	tube-in-tube	gas	cooler;	and	the	numeri-
cal model is commonly	based	on	the	finite	volume	method,	using	the	logarithmic	mean	tempe-
rature	difference	approach	[3].	The	usual	outputs	of	the	gas	cooler	model	are	the	heat	transfer	
rate and the outlet temperatures for the water and CO2 (�̇�𝑔𝑎𝑠 𝑐, 𝑇 𝑜𝑢𝑡, and 𝑇 5, respectively); on the 
other hand, the main inputs are both water mass flowrate	and	inlet	temperature	(respectively,	
�̇� 𝐻2𝑂 and 𝑇 𝑖𝑛),	and	the	refrigerant	mass	flowrate	and	its	inlet	temperature	and	pressure	(�̇� 𝐶𝑂2 
, 𝑇 3, and 𝑃 3, respectively) [3,10–12,14]. Almost all these variables can be obtained, except 𝑃 3 
and �̇� 𝐶𝑂2(which depends on the only unknown variable 𝑃 3, as previously seen).
The non-measured input variables of the gas cooler model (𝑃 3 and 𝑚̇ 𝐶𝑂2) are obtained throu-
gh the process described in Section 2.1, attributing, in each iteration, a value for 𝐶0 in Eq. 
(17).	The	process	will	“sweep”	a	predefined	isentropic	efficiency	range,	providing	data	sets	
for	 the	numerical	 simulation	of	 the	gas	cooler	model.	A	 targeted	definition	of	 this	 range,	
decreasing	the	search	field,	can	substantially	improve	the	procedure	efficiency	by	reducing	
the required computational time. It is proposed, as the lower limit, the compressor isentropic 
efficiency	leading	to	the	minimum	pinch-point	temperature	difference	between	CO2 and wa-
ter temperature	profiles,	𝜂𝑖𝑠 𝑚𝑖𝑛, as represented on the left-hand side of Figure 2. The higher 
limit, 𝜂𝑖𝑠 𝑚𝑎𝑥,	can	be	defined,	at	the	most,	as	the	unattainable	isentropic	(ideal)	compression,	
depicted in Figure 2 (right-hand side).

 
 
 
 
 
 
 
 
 
 
 
 

CYTEF 2022 − XI Congreso Ibérico | IX Congreso Iberoamericano de Ciencias y Técnicas del Frío 
Cartagena, España, 17-19 abril, 2022 

5 

PAPER ID 150 

 

ID 150 

can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (�̇�𝑄𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, �̇�𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑛𝑛), and the refrigerant mass flowrate and its inlet 
temperature and pressure (�̇�𝑚𝐶𝐶𝑂𝑂2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and �̇�𝑚𝐶𝐶𝑂𝑂2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑔𝑔𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 
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Figure 2. Definition of the search range for 𝜂𝜂𝑖𝑖𝑖𝑖 
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Figure	2.	Definition	of	the	search	range	for	𝜂𝑖𝑠 
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However, enlarging the search range increases the computational time. For this reason, 𝜂𝑖𝑠 𝑚𝑎𝑥
should	be	defined	as	 the	maximum	known	 technical	 isentropic	efficiency	 for	 the	 specific	
compressor type under consideration, or, without having this information, it should be consi-
dered the maximum technical limit known at the date (around 0.9). The step between succes-
sive	isentropic	efficiencies	trials	can	be	adapted,	or	even	refined,	according	to	preliminary,	or	
previous, results from wide-stepped iterations.
Finally, the validated gas cooler model is used to verify the physical reliability of the numeri-
cal	solutions	provided	by	the	first	procedure	(defined	in	Section	2.1).	As	the	second	iteration	
process converges (i.e.,	the	isentropic	efficiency	trial,	𝜂𝑖𝑠 𝑡𝑟 𝑖𝑎𝑙, gets closer to the “real” value, 
𝜂𝑖𝑠 𝑟 𝑒𝑎𝑙), the numerical results from the gas cooler model will approximate the experimental 
ones,	as	exhibited	in	Figure	3.	The	procedure	will	finish	when	the	three	numerical	outputs,	
𝑄̇𝑔𝑎𝑠 𝑐, 𝑇 𝑜𝑢𝑡, and 𝑇 5,	are	simultaneously	within	the	respective	and	predefined	acceptance	tole-
rance.	From	the	results,	it	is	possible	to	define	a	correlation	for	the	isentropic	efficiency,	with	
the form of Eq. (19), based on the tested pressure ratios.
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However, enlarging the search range increases the computational time. For this reason, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 should be 
defined as the maximum known technical isentropic efficiency for the specific compressor type under 
consideration, or, without having this information, it should be considered the maximum technical limit known 
at the date (around 0.9). The step between successive isentropic efficiencies trials can be adapted, or even 
refined, according to preliminary, or previous, results from wide-stepped iterations. 

Finally, the validated gas cooler model is used to verify the physical reliability of the numerical solutions 
provided by the first procedure (defined in Section 2.1). As the second iteration process converges (i.e., the 
isentropic efficiency trial,  𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡, gets closer to the “real” value, 𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡), the numerical results from the gas 
cooler model will approximate the experimental ones, as exhibited in Figure 3. The procedure will finish when 
the three numerical outputs, �̇�𝑄𝑔𝑔𝑚𝑚𝑖𝑖𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡, and 𝑇𝑇5, are simultaneously within the respective and predefined 
acceptance tolerance. From the results, it is possible to define a correlation for the isentropic efficiency, with 
the form of Eq. (19), based on the tested pressure ratios. 

𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 
status 

Heating capacity 
�̇�𝑄𝑔𝑔𝑚𝑚𝑖𝑖𝑔𝑔 [kW] 

Outlet CO2 temperature 
𝑇𝑇5 [°C] 

Outlet H2O temperature 
𝑇𝑇𝑜𝑜𝑜𝑜𝑡𝑡 [°C] 

far from 
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close to 
𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑟𝑟𝑚𝑚𝑡𝑡 

   
Figure 3. Example of the gas cooler model outputs for different 𝜂𝜂𝑖𝑖𝑖𝑖 trials and working conditions 

3. CONCLUSIONS 

The thermodynamic basis for a novel non-intrusive refrigerant side characterization of transcritical CO2 
HPWHs is presented, evidencing the role of the compressor isentropic efficiency in the process. The 
complexity of the proposed methodology depends on the knowledge about the compressor isentropic 
efficiency. When the compressor data is available, namely its isentropic efficiency, a simple iterative process 
is sufficient to obtain the discharge pressure since it is the only unknown required to close the equations system. 
However, when the compressor isentropic efficiency is unknown, another iterative process is required, 
searching over a range of possible candidates for the compressor isentropic efficiency, and a validated 
numerical model for the gas cooler energy balance is used to verify the physical reliability of the numerical 
solutions. The proposed method can be similarly extended to TCO2 air conditioners and refrigeration systems, 
regardless of the type of gas cooler, widely contributing and filling the gap in non-intrusive and inexpensive 

Figure	3.	Example	of	the	gas	cooler	model	outputs	for	different	𝜂𝑖𝑠 trials and working conditions

3. CONCLUSIONS
The thermodynamic basis for a novel non-intrusive refrigerant side characterization of 
transcritical CO2 HPWHs is presented, evidencing the role of the compressor isentropic 
efficiency	in	the	process.	The	complexity	of	the	proposed	methodology	depends	on	the	
knowledge	about	the	compressor	isentropic	efficiency.	When	the	compressor	data	is	avai-
lable,	namely	its	isentropic	efficiency,	a	simple	iterative	process	is	sufficient	to	obtain	the	
discharge pressure since it is the only unknown required to close the equations system. 
However,	when	 the	compressor	 isentropic	efficiency	 is	unknown,	another	 iterative	pro-
cess is required, searching over a range of possible candidates for the compressor isentro-
pic	efficiency,	and	a	validated	numerical	model	for	the	gas	cooler	energy	balance	is	used	
to verify the physical reliability of the numerical solutions. The proposed method can be 
similarly extended to TCO2 air conditioners and refrigeration systems, regardless of the 
type	of	gas	cooler,	widely	contributing	and	filling	the	gap	in	non-intrusive	and	inexpensi-
ve refrigerant side characterization of ultra-low GWP vapor compression systems based 
on the TCO2 cycle.



46  |  EQUIPOS FRIGORÍFICOS Y DE BOMBA DE CALOR

ACKNOWLEDGEMENTS
The present study was developed in the scope of the Smart Green Homes Project [POCI-01-
0247-FEDER- 007678], a co-promotion between Bosch Termotecnologia S.A. and the Univer-
sity	of	Aveiro.	It	is	financed	by	Portugal	2020	under	the	Competitiveness	and	Internationali-
zation OP, and by the European Regional Development Fund (ERDF). This work was funded by 
the grant SFRH/BD/148378/2019 and the projects UIDB/00481/2020 and UIDP/00481/2020 
– FCT-Fundação para a Ciência e Tecnologia; and CENTRO-01- 0145-FEDER-022083 – Cen-
tro2020, under the PORTUGAL 2020 Partnership Agreement, through the ERDF.

REFERENCES

[1] European Commission. Directive (EU) 2018/2001 of the European Parliament and of the Council on 
the promotion of the use of energy from renewable sources. 2018.

[2] European Commission. Regulation (EU) No 517/2014 of the European Parliament and of the Council 
of	 16	April	 2014	on	fluorinated	 greenhouse	 gases	 and	 repealing	Regulation	 (EC)	No	842/2006.	
2014.

[3] Lamas FB, Costa VAF. Finite Volume Model for a Transcritical CO2 Tube-in-Tube Gas Cooler. In: 
Universidade do Minho, editor. Proc. Congr. Numer. Methods Eng., Guimarães: 2019, p. 350–68.

[4] CEN. EN 16147:2017 Heat pumps with electrically driven compressors - Testing, performance rating 
and requirements for marking of domestic hot water units. 2017.

[5] Tran CT, Noël D, Rivière P, Arzano C, Marchio D. In-situ method for air-to-air heat pump seasonal 
performance determination including steady-state and dynamic operations. Int J Refrig 
2021;127:239– 49. doi:10.1016/j.ijrefrig.2021.03.001.

[6] Yang	 Z,	 Ding	 L,	 Xiao	 H,	 Zhang	 G,	 Wang	 B,	 Shi	 W.	 All-condition	 measuring	 methods	 for	 field	
performance of room air conditioner. Appl Therm Eng 2020;180:115887. doi:10.1016/j.
applthermaleng.2020.115887.

[7] Lin KH, Kuo CS, Hsieh W Der, Wang CC. Modeling and simulation of the transcritical CO2 heat pump 
system. Int J Refrig 2013;36:2048–64. doi:10.1016/j.ijrefrig.2013.08.008.

[8] Minetto S, Cecchinato L, Brignoli R, Marinetti S, Rossetti A. Water-side reversible CO2 heat pump for 
residential application. Int J Refrig 2016;63:237–50. doi:10.1016/j.ijrefrig.2015.12.015.

[9] Yamaguchi S, Kato D, Saito K, Kawai S. Development and validation of static simulation model for CO2 
heat pump. Int J Heat Mass Transf 2011;54:1896–906. doi:10.1016/j.ijheatmasstransfer.2011.01.013.

[10] Song X, Zhang L, Lu D, Shi J, Chen J. Improvement of heat transfer performance and unmatched 
characteristics of a water-cooled carbon dioxide gas cooler. Appl Therm Eng 2021;197:117326. 
doi:10.1016/j.applthermaleng.2021.117326.

[11] Sánchez	D,	Cabello	R,	Llopis	R,	Torrella	E.	Development	and	validation	of	a	finite	element	model	for	
water - CO2 coaxial gas-coolers. Appl Energy 2012;93:637–47. doi:10.1016/j.apenergy.2011.12.100.

[12] Yang Y, Li M, Wang K, Ma Y. Study of multi-twisted-tube gas cooler for CO2 heat pump water heaters. 
Appl Therm Eng 2016;102:204–12. doi:10.1016/j.applthermaleng.2016.03.123.

[13] Huang L, Tao L, Wang C, Yang L. Theoretical and experimental research on using quasi saturation 
isentropic	 compression	 discharge	 temperature	 to	 control	 refrigerant	 mass	 flow	 rate.	 Heat	 Mass	
Transf	Und	Stoffuebertragung	2019;55:489–500.	doi:10.1007/s00231-018-2437-9.

[14] Zendehboudi A, Ye Z, Hafner A, Andresen T, Skaugen G. Heat transfer and pressure drop of 
supercritical CO2 in brazed plate heat exchangers of the tri-partite gas cooler. Int J Heat Mass Transf 
2021;178:121641. doi:10.1016/j.ijheatmasstransfer.2021.121641.

[15] Marcinichen	 JB,	 Thome	 JR,	 Pereira	 RH.	Working	 fluid	 charge	 reduction.	 Part	 II:	 Supercritical	 CO2	
gas cooler designed for light commercial appliances. Int J Refrig 2016;65:273–86. doi:10.1016/j.
ijrefrig.2015.12.018.




