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Abstract: Characterizing the refrigerant side of heat pump water heaters (HPWHs) can be in-
trusive and expensive. On the other hand, direct external measurement techniques can be un-
feasible, particularly in commercial HPWHs for residential applications. Non-intrusive in-si-
tu characterization methods have already been successfully implemented in subcritical heat 
pumps, providing the refrigerant mass flowrate and the equipment energy performance, by 
using contact temperature sensors and electric power meters. Subcritical suction and discharge 
specific enthalpies necessary to apply the method can be obtained from the measured tem-
peratures and their corresponding saturation pressures. Nevertheless, this approach does not 
apply to the transcritical CO2 HPWHs. In the supercritical region, temperature and pressure are 
independent variables, and an iterative process regarding the compressor isentropic efficiency 
has to be considered. However, when isentropic efficiency data is not available, an additional 
procedure is required, using a validated gas cooler model to verify the physical reliability of the 
numerical solutions.
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1. INTRODUCTION
Switching heating systems from fossil fuels to low-carbon alternatives is paramount for 
reaching the European climate objectives for 2030 and carbon neutrality by 2050. Heat 
pumps assume a primary function to accomplish these targets, using energy from renewa-
ble sources (air, water, or geothermal), being (mostly) electrically supplied, energy-effi-
cient, and thus, contributing to a competitive, secure, and low-carbon economy [1]. Never-
theless, energy performance and low-carbon or renewable energy sources are not the only 
issues dictating their environmental impact. The heat pump technology is predominantly 
based on vapor- compression refrigeration systems, as in the air-conditioning and refri-
geration current technologies. The commonly used refrigerants may substantially contri-
bute to greenhouse gas emissions, particularly the fluorinated-based ones (F-gases) [2]. 
Atmospheric emissions during the F-gases production, leakages during operation, or even 
along the recovering, recycling, or destruction processes triggered the relaunch of some 
natural refrigerants, and among them CO2. Its environmental harmlessness, safety, low 
cost, high availability, and unique thermodynamic properties give this ultra-low global 
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warming potential (GWP) operating fluid a significant advantage over other refrigerants 
[3]. Owing to its low critical temperature (31.1 °C), CO2 is mainly used in transcritical va-
por-compression cycles, and one of the most widespread applications is the transcritical 
CO2 heat pump water heater (TCO2 HPWH) for residential applications, particularly in Ja-
pan, where it is known as ‘Eco Cute’ and rated according to the Japanese energy efficiency 
standards.

In Europe, the energy performance of electrically driven HPWHs is rated according to 
the EN16147 standard [4]. However, the energy-performance indicator is used for equip-
ment’s comparisons and does not characterize the actual behavior of the HPWHs under a 
wide range of environmental conditions. On the other hand, it is based on waterside me-
asurements and cannot provide any information for the refrigerant side, commonly obtai-
ned with intrusive and expensive equipment [5], unfeasible for in-situ measurements [6].

Non-intrusive methodologies applied in air-to-air heat pumps, based on the compressor 
energy conservation (CEC), demonstrated good accuracy [5,6], besides simplicity, reliabi-
lity, independence, and non-interference on the system’s operation, compared to indoor 
and outdoor air enthalpy-difference methods [6]. The CEC method allows an accurate es-
timation of the refrigerant mass flowrate and the equipment energy performance mere-
ly using (external) contact temperature sensors and electricity power meters [5,6]. The 
subcritical suction and discharge specific enthalpies necessary to apply the method are 
obtained from the measured temperatures and their corresponding saturation pressures. 
Nevertheless, this method does not apply to the TCO2 HPWHs. In the supercritical region, 
where both compressor discharge and gas cooler operating conditions fall, temperature 
and pressure are variables independent from each other, and an additional parameter or 
condition has to be considered – in this case, the compressor’s isentropic efficiency. One 
should mention that no in-situ nor non-intrusive methods on the refrigerant-side charac-
terization for TCO2 cycles were found in the literature. This work explores the role of the 
compressor isentropic efficiency on non-intrusive refrigerant side characterization of TCO2 

HPWHs. The base thermodynamic analysis is presented and includes three versions re-
garding the compressor isentropic efficiency condition: constant, depending on the pres-
sure ratio through an already known polynomial correlation, or unknown. For the last, an 
additional methodology is proposed and discussed, based on a validated model for the 
gas cooler energy balance. It allows obtaining the discharge pressure and determine the 
compressor isentropic efficiency, thus, enabling non-intrusive HPWHs refrigerant side cha-
racterization.

2. METHODOLOGY
Figure 1 exhibits the schematic representation of a TCO2 HPWH and the respective thermod-
ynamic cycle on the 𝑃 − ℎ and 𝑇 − 𝑠 diagrams. In the TCO2 HPWH scheme, it is also represen-
ted the measurement equipment: 10 non-intrusive (external) contact temperature sensors 
for both water and refrigerant loops (2 and 8, respectively), one water mass flow meter (easi-
ly integrated in the water loop), and one electrical energy/power meter for the entire HPWH. 
The measurement outputs and variables considered in the following analysis are numbered 
according to the measurement devices represented in the figure. Note that measurement 
point 4 is irrelevant for the supercritical gas cooling characterization, yet crucial for an even-
tual condensation, providing the saturation temperature, similarly to point 8 (or point 7) for 
the evaporation process.
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (1) 

where the total electrical power input (with the compressor’s contribution, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐶𝐶𝐶𝐶2 × ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, 𝑚̇𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) or calculated (specific heat, 𝑐𝑐𝐻̅𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

Figure 1. TCO2 HPWH: scheme (left), and 𝑃 − ℎ (top left) and 𝑇 − 𝑠 (bottom right) diagrams

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer 
rate in the gas cooler, 𝑄̇𝑔𝑎𝑠𝑐, to the total electrical input, 𝑃𝑒̇𝑙𝑒𝑐,
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 
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(1)

where the total electrical power input (with the compressor’s contribution, 𝑃𝑒̇𝑙𝑒𝑐𝑐𝑜𝑚𝑝, pre-
vailing over the other active components, namely, evaporator fan, water pump and other 
equipment such as control units, etc.) is
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 
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(2)

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat 
losses to the surroundings (owing to the good thermal insulation commonly used in its ex-
ternal envelope), the energy balance for the gas cooler can be written, for either the water 
or the refrigerant side, as
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (1) 

where the total electrical power input (with the compressor’s contribution, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐶𝐶𝐶𝐶2 × ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, 𝑚̇𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) or calculated (specific heat, 𝑐𝑐𝐻̅𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(3)

From the previous system of equations, the refrigerant mass flowrate is given by
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (1) 

where the total electrical power input (with the compressor’s contribution, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐶𝐶𝐶𝐶2 × ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, 𝑚̇𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) or calculated (specific heat, 𝑐𝑐𝐻̅𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(4)

where all the waterside variables can be measured (mass flowrate, 𝑚̇ 𝐻2𝑂, and temperature 
increase, ∆𝑇𝐻2𝑂, 𝑔𝑎𝑠𝑐 = 𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) or calculated (specific heat, 𝑐𝐻̅ 2𝑂). By opposition, the speci-
fic enthalpy change on the refrigerant side (∆ℎ𝐶𝑂2, 𝑔𝑎𝑠𝑐  = ℎ3 − ℎ5) is unknown and depends on 
the CO2 conditions at the gas cooler inlet and outlet, respectively. It becomes clear that the 
only way to obtain the refrigerant mass flowrate (without measuring it) is by determining 
both refrigerant specific enthalpies ℎ3 and ℎ5.
Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy 
results as a function of pressure (𝑃) and temperature (𝑇). Thus, for the gas cooler inlet and 
outlet, respectively,
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (1) 

where the total electrical power input (with the compressor’s contribution, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐶𝐶𝐶𝐶2 × ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, 𝑚̇𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) or calculated (specific heat, 𝑐𝑐𝐻̅𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(5)
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irrelevant for the supercritical gas cooling characterization, yet crucial for an eventual condensation, providing 
the saturation temperature, similarly to point 8 (or point 7) for the evaporation process. 

 
Figure 1. TCO2 HPWH: scheme (left), and 𝑃𝑃 − ℎ (top left) and 𝑇𝑇 − 𝑠𝑠 (bottom right) diagrams 

The coefficient of performance of the whole TCO2 HPWH is given by the ratio of heat transfer rate in the gas 
cooler, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, to the total electrical input, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⁄  (1) 

where the total electrical power input (with the compressor’s contribution, 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, prevailing over the other 
active components, namely, evaporator fan, water pump and other equipment such as control units, etc.) is 

𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑃̇𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

Neglecting the heat conduction along the tubes’ walls and both convective and radiant heat losses to the 
surroundings (owing to the good thermal insulation commonly used in its external envelope), the energy 
balance for the gas cooler can be written, for either the water or the refrigerant side, as 

{
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑚̇𝑚𝐶𝐶𝐶𝐶2 × ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔               (3) 

From the previous system of equations, the refrigerant mass flowrate is given by 
𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × ∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔⁄  (4) 

where all the waterside variables can be measured (mass flowrate, 𝑚̇𝑚𝐻𝐻2𝑂𝑂, and temperature increase, 
∆𝑇𝑇𝐻𝐻2𝑂𝑂, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) or calculated (specific heat, 𝑐𝑐𝐻̅𝐻2𝑂𝑂). By opposition, the specific enthalpy change on 
the refrigerant side (∆ℎ𝐶𝐶𝐶𝐶2, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ℎ3 − ℎ5) is unknown and depends on the CO2 conditions at the gas cooler 
inlet and outlet, respectively. It becomes clear that the only way to obtain the refrigerant mass flowrate (without 
measuring it) is by determining both refrigerant specific enthalpies ℎ3 and ℎ5. 

Using binary functions for the refrigerant properties (non-italic bold), the specific enthalpy results as a function 
of pressure (𝑃𝑃) and temperature (𝑇𝑇). Thus, for the gas cooler inlet and outlet, respectively, 

ℎ3 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) (5) 

ℎ5 = 𝐡𝐡(𝑃𝑃5, 𝑇𝑇5) (6) 

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along its length. 
Therefore, having 𝑃𝑃5 = 𝑃𝑃3 also ℎ5 becomes dependent on 𝑃𝑃3 

(6)

Disregarding the pressure drop in the gas cooler, pressure can be considered constant along 
its length. Therefore, having 𝑃5 = 𝑃3 also ℎ5 becomes dependent on 𝑃3
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(7)
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Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃3, sin-
ce both refrigerant temperatures, 𝑇3 and 𝑇5, and the respective specific enthalpies, for that 
pressure, can be obtained (besides the waterside variables above mentioned)

 
 
 
 
 
 
 
 
 
 
 
 

CYTEF 2022 − XI Congreso Ibérico | IX Congreso Iberoamericano de Ciencias y Técnicas del Frío 
Cartagena, España, 17-19 abril, 2022 

4 

PAPER ID 150 

 

ID 150 

ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(8)

From the compressor isentropic efficiency definition,
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(9)

Again, using binary functions for defining ℎ3𝑠, the specific enthalpy at the compressor dis-
charge / gas cooler inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific 
enthalpy at the compressor suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and 
rearranging Eq. (9), it can be presented as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(10)

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the 
saturation pressure function (non-italic bold), results in the system of equations
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(11)

where 𝑇8 is the evaporation temperature.
The discharge specific entropy and temperature corresponding to the ideal compression can 
be written as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(12)
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(13)

or, through Eq. (11), respectively, as
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(14)
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(15)

Applying Eqs. (11), (14), and (15) in Eq. (10),

 
 
 
 
 
 
 
 
 
 
 
 

CYTEF 2022 − XI Congreso Ibérico | IX Congreso Iberoamericano de Ciencias y Técnicas del Frío 
Cartagena, España, 17-19 abril, 2022 

4 

PAPER ID 150 

 

ID 150 

ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(16)

At this point, three conditions can be considered regarding the compressor isentropic effi-
ciency, each considered in the following sections.

2.1. Compressor isentropic efficiency known as a constant
Regarding the condition
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(17)

where 𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic 
functions, 𝐟(𝑥) and 𝐠(𝑥), ∀ 𝑥 ∈ ℝ+, each depending only on 𝑃3, since all other variables, 𝑇2, 𝑇3, 
and 𝑇8, are known.
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ℎ5 = 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5) (7) 

Finally, the refrigerant mass flowrate, Eq. (4), depends on only one unknown variable, 𝑃𝑃3, since both 
refrigerant temperatures, 𝑇𝑇3 and 𝑇𝑇5, and the respective specific enthalpies, for that pressure, can be obtained 
(besides the waterside variables above mentioned) 

𝑚̇𝑚𝐶𝐶𝐶𝐶2 = 𝑚̇𝑚𝐻𝐻2𝑂𝑂 × 𝑐𝑐𝐻̅𝐻2𝑂𝑂 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) [𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) − 𝐡𝐡(𝑃𝑃3, 𝑇𝑇5)]⁄  (8) 

From the compressor isentropic efficiency definition, 
𝜂𝜂𝑖𝑖𝑖𝑖 = (ℎ3𝑠𝑠 − ℎ2) (ℎ3 − ℎ2)⁄  (9) 

Again, using binary functions for defining ℎ3𝑠𝑠, the specific enthalpy at the compressor discharge / gas cooler 
inlet (point 3s) for the isentropic (ideal) compression and ℎ2, the specific enthalpy at the compressor 
suction / SLHX outlet (point 2) similar to Eqs. (5) and (6), and rearranging Eq. (9), it can be presented as 

𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2) + [𝐡𝐡(𝑃𝑃3𝑠𝑠, 𝑇𝑇3𝑠𝑠) − 𝐡𝐡(𝑃𝑃2, 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (10) 

Considering the non-pressure drop assumption, in both high and low-pressure sides, and the saturation pressure 
function (non-italic bold), results in the system of equations 

{𝑃𝑃3𝑠𝑠 = 𝑃𝑃3         
𝑃𝑃2 = 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8) (11) 

where 𝑇𝑇8 is the evaporation temperature. 

The discharge specific entropy and temperature corresponding to the ideal compression can be written as 
𝑠𝑠3𝑠𝑠 = 𝑠𝑠2 = 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2) (12) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠3𝑠𝑠) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝑠𝑠2) = 𝐓𝐓(𝑃𝑃3𝑠𝑠, 𝐬𝐬(𝑃𝑃2, 𝑇𝑇2)) (13) 

or, through Eq. (11), respectively, as 
𝑠𝑠3𝑠𝑠 = 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) (14) 

𝑇𝑇3𝑠𝑠 = 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)) (15) 

Applying Eqs. (11), (14), and (15) in Eq. (10), 
𝐡𝐡(𝑃𝑃3, 𝑇𝑇3) = 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2) + [𝐡𝐡 (𝑃𝑃3, 𝐓𝐓(𝑃𝑃3, 𝐬𝐬(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2))) − 𝐡𝐡(𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8), 𝑇𝑇2)] 𝜂𝜂𝑖𝑖𝑖𝑖⁄  (16) 

At this point, three conditions can be considered regarding the compressor isentropic efficiency, each 
considered in the following sections. 

2.1. Compressor isentropic efficiency known as a constant 

Regarding the condition 
𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 (17) 

where 𝐶𝐶0 is a known and constant value, Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) 
and 𝐠𝐠(𝑥𝑥), ∀ 𝑥𝑥 ∈ ℝ+, each depending only on 𝑃𝑃3, since all other variables, 𝑇𝑇2, 𝑇𝑇3, and 𝑇𝑇8, are known. 

𝐟𝐟(𝑃𝑃3) = 𝐠𝐠(𝑃𝑃3) (18) 

The equality of the two functions represented in Eq. (18) can be solved through an iterative process, providing 
𝑃𝑃3. Knowing 𝑃𝑃3 value that satisfies, Eq. (16), it is possible to obtain the specific enthalpy at the gas cooler inlet 
and outlet through Eqs.(5) and (7), respectively. Furthermore, it is possible to determine the refrigerant mass 
flow rate from the gas cooler energy balance equation written as in Eq. (8). 

2.2. Compressor isentropic efficiency given by a polynomial correlation 
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the pressure ratio, 

(18)

The equality of the two functions represented in Eq. (18) can be solved through an itera-
tive process, providing 𝑃3. Knowing 𝑃3 value that satisfies, Eq. (16), it is possible to obtain 
the specific enthalpy at the gas cooler inlet and outlet through Eqs.(5) and (7), respectively. 
Furthermore, it is possible to determine the refrigerant mass flow rate from the gas cooler 
energy balance equation written as in Eq. (8).
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2.2. Compressor isentropic efficiency given by a polynomial correlation
Many polynomial correlations for the compressor’s isentropic efficiency, as functions of the 
pressure ratio, can be found in the open literature. The most common are fourth-order (𝑛 = 
4) and linear (𝑛 =  1) correlations [7–9]. However, the polynomial order depends on the com-
pressor type, information provided by the compressor’s manufacturer, or on the regression 
analysis performed by the researchers. Nevertheless, the isentropic efficiency can be repre-
sented as
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can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, 𝑚̇𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑖𝑖), and the refrigerant mass flowrate and its inlet 
temperature and pressure (𝑚̇𝑚𝐶𝐶𝐶𝐶2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜂𝜂𝑖𝑖𝑖𝑖 < 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

   
Figure 2. Definition of the search range for 𝜂𝜂𝑖𝑖𝑖𝑖 
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Each 𝐶𝑖 with 𝑖 ∈ {0, 1, … , 𝑛} is a known and constant empirical value, and 𝑟 is the pressure ratio, 
which combined with Eq. (11) results as
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can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, 𝑚̇𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑖𝑖), and the refrigerant mass flowrate and its inlet 
temperature and pressure (𝑚̇𝑚𝐶𝐶𝐶𝐶2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 
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Figure 2. Definition of the search range for 𝜂𝜂𝑖𝑖𝑖𝑖 
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Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟(𝑥) 
and 𝐠(𝑥), each of them depending only on 𝑃3. The process for obtaining 𝑃3 in this case is iden-
tical to that when the isentropic efficiency is given by a constant, as described in Section 2.1.

2.3. Unknown compressor isentropic efficiency
Compressor efficiency indicators and performance maps are commonly sensitive proprietary 
information, therefore, are often inaccessible. For this case, an iterative procedure is needed 
using a validated numerical model for the gas cooler energy balance. Many dimensional pa-
rameters and numerical and/or experimental data are available for that in the open literature. 
The information varies according to the system purpose (water heating, air conditioning, or re-
frigeration) and the gas cooler configuration, namely single tube- [10] and multi tubes-in-tube 
(straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numeri-
cal model is commonly based on the finite volume method, using the logarithmic mean tempe-
rature difference approach [3]. The usual outputs of the gas cooler model are the heat transfer 
rate and the outlet temperatures for the water and CO2 (𝑄̇𝑔𝑎𝑠𝑐, 𝑇𝑜𝑢𝑡, and 𝑇5, respectively); on the 
other hand, the main inputs are both water mass flowrate and inlet temperature (respectively, 
𝑚̇ 𝐻2𝑂 and 𝑇𝑖𝑛), and the refrigerant mass flowrate and its inlet temperature and pressure (𝑚̇ 𝐶𝑂2 
, 𝑇3, and 𝑃3, respectively) [3,10–12,14]. Almost all these variables can be obtained, except 𝑃3 
and 𝑚̇ 𝐶𝑂2(which depends on the only unknown variable 𝑃3, as previously seen).
The non-measured input variables of the gas cooler model (𝑃3 and 𝑚̇ 𝐶𝑂2) are obtained throu-
gh the process described in Section 2.1, attributing, in each iteration, a value for 𝐶0 in Eq. 
(17). The process will “sweep” a predefined isentropic efficiency range, providing data sets 
for the numerical simulation of the gas cooler model. A targeted definition of this range, 
decreasing the search field, can substantially improve the procedure efficiency by reducing 
the required computational time. It is proposed, as the lower limit, the compressor isentropic 
efficiency leading to the minimum pinch-point temperature difference between CO2 and wa-
ter temperature profiles, 𝜂𝑖𝑠𝑚𝑖𝑛, as represented on the left-hand side of Figure 2. The higher 
limit, 𝜂𝑖𝑠𝑚𝑎𝑥, can be defined, at the most, as the unattainable isentropic (ideal) compression, 
depicted in Figure 2 (right-hand side).
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can be found in the open literature. The most common are fourth-order (𝑛𝑛 = 4) and linear (𝑛𝑛 = 1) correlations 
[7–9]. However, the polynomial order depends on the compressor type, information provided by the 
compressor’s manufacturer, or on the regression analysis performed by the researchers. Nevertheless, the 
isentropic efficiency can be represented as 

𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐶𝐶0 + ⋯ + 𝐶𝐶𝑖𝑖 × 𝑟𝑟𝑖𝑖 + ⋯ + 𝐶𝐶𝑛𝑛 × 𝑟𝑟𝑛𝑛 (19) 

Each 𝐶𝐶𝑖𝑖 with 𝑖𝑖 ∈ {0, 1, … , 𝑛𝑛} is a known and constant empirical value, and 𝑟𝑟 is the pressure ratio, which 
combined with Eq. (11) results as 

𝑟𝑟 = 𝑃𝑃3 𝑃𝑃2⁄ = 𝑃𝑃3 𝐏𝐏𝐬𝐬𝐬𝐬𝐬𝐬(𝑇𝑇8)⁄  (20) 

Once more, also in this case Eq. (16) can be written as the equality of two generic functions, 𝐟𝐟(𝑥𝑥) and 𝐠𝐠(𝑥𝑥), 
each of them depending only on 𝑃𝑃3. The process for obtaining 𝑃𝑃3 in this case is identical to that when the 
isentropic efficiency is given by a constant, as described in Section 2.1. 

2.3. Unknown compressor isentropic efficiency 

Compressor efficiency indicators and performance maps are commonly sensitive proprietary information, 
therefore, are often inaccessible. For this case, an iterative procedure is needed using a validated numerical 
model for the gas cooler energy balance. Many dimensional parameters and numerical and/or experimental 
data are available for that in the open literature. The information varies according to the system purpose (water 
heating, air conditioning, or refrigeration) and the gas cooler configuration, namely single tube- [10] and multi 
tubes-in-tube (straight [11] or twisted [12]), microchannel [13], brazed plate [14] or finned-tube [15]. For the 
TCO2 HWHP, the most used configuration is the single tube-in-tube gas cooler; and the numerical model is 
commonly based on the finite volume method, using the logarithmic mean temperature difference approach 
[3]. The usual outputs of the gas cooler model are the heat transfer rate and the outlet temperatures for the 
water and CO2 (𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, respectively); on the other hand, the main inputs are both water mass 
flowrate and inlet temperature (respectively, 𝑚̇𝑚𝐻𝐻2𝑂𝑂 and 𝑇𝑇𝑖𝑖𝑖𝑖), and the refrigerant mass flowrate and its inlet 
temperature and pressure (𝑚̇𝑚𝐶𝐶𝐶𝐶2, 𝑇𝑇3, and 𝑃𝑃3, respectively) [3,10–12,14]. Almost all these variables can be 
obtained, except 𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2(which depends on the only unknown variable 𝑃𝑃3, as previously seen). 

The non-measured input variables of the gas cooler model (𝑃𝑃3 and 𝑚̇𝑚𝐶𝐶𝐶𝐶2) are obtained through the process 
described in Section 2.1, attributing, in each iteration, a value for 𝐶𝐶0 in Eq. (17). The process will “sweep” a 
predefined isentropic efficiency range, providing data sets for the numerical simulation of the gas cooler model. 
A targeted definition of this range, decreasing the search field, can substantially improve the procedure 
efficiency by reducing the required computational time. It is proposed, as the lower limit, the compressor 
isentropic efficiency leading to the minimum pinch-point temperature difference between CO2 and water 
temperature profiles, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, as represented on the left-hand side of Figure 2. The higher limit, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, can be 
defined, at the most, as the unattainable isentropic (ideal) compression, depicted in Figure 2 (right-hand side). 
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Figure 2. Definition of the search range for 𝜂𝑖𝑠
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However, enlarging the search range increases the computational time. For this reason, 𝜂𝑖𝑠𝑚𝑎𝑥 
should be defined as the maximum known technical isentropic efficiency for the specific 
compressor type under consideration, or, without having this information, it should be consi-
dered the maximum technical limit known at the date (around 0.9). The step between succes-
sive isentropic efficiencies trials can be adapted, or even refined, according to preliminary, or 
previous, results from wide-stepped iterations.
Finally, the validated gas cooler model is used to verify the physical reliability of the numeri-
cal solutions provided by the first procedure (defined in Section 2.1). As the second iteration 
process converges (i.e., the isentropic efficiency trial, 𝜂𝑖𝑠𝑡𝑟𝑖𝑎𝑙, gets closer to the “real” value, 
𝜂𝑖𝑠𝑟𝑒𝑎𝑙), the numerical results from the gas cooler model will approximate the experimental 
ones, as exhibited in Figure 3. The procedure will finish when the three numerical outputs, 
𝑄̇𝑔𝑎𝑠𝑐, 𝑇𝑜𝑢𝑡, and 𝑇5, are simultaneously within the respective and predefined acceptance tole-
rance. From the results, it is possible to define a correlation for the isentropic efficiency, with 
the form of Eq. (19), based on the tested pressure ratios.
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However, enlarging the search range increases the computational time. For this reason, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 should be 
defined as the maximum known technical isentropic efficiency for the specific compressor type under 
consideration, or, without having this information, it should be considered the maximum technical limit known 
at the date (around 0.9). The step between successive isentropic efficiencies trials can be adapted, or even 
refined, according to preliminary, or previous, results from wide-stepped iterations. 

Finally, the validated gas cooler model is used to verify the physical reliability of the numerical solutions 
provided by the first procedure (defined in Section 2.1). As the second iteration process converges (i.e., the 
isentropic efficiency trial,  𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, gets closer to the “real” value, 𝜂𝜂𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), the numerical results from the gas 
cooler model will approximate the experimental ones, as exhibited in Figure 3. The procedure will finish when 
the three numerical outputs, 𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑇𝑇5, are simultaneously within the respective and predefined 
acceptance tolerance. From the results, it is possible to define a correlation for the isentropic efficiency, with 
the form of Eq. (19), based on the tested pressure ratios. 

𝜂𝜂𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
status 

Heating capacity 
𝑄̇𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 [kW] 

Outlet CO2 temperature 
𝑇𝑇5 [°C] 

Outlet H2O temperature 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 [°C] 

far from 
𝜂𝜂𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

   

close to 
𝜂𝜂𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

   
Figure 3. Example of the gas cooler model outputs for different 𝜂𝜂𝑖𝑖𝑖𝑖 trials and working conditions 

3. CONCLUSIONS 

The thermodynamic basis for a novel non-intrusive refrigerant side characterization of transcritical CO2 
HPWHs is presented, evidencing the role of the compressor isentropic efficiency in the process. The 
complexity of the proposed methodology depends on the knowledge about the compressor isentropic 
efficiency. When the compressor data is available, namely its isentropic efficiency, a simple iterative process 
is sufficient to obtain the discharge pressure since it is the only unknown required to close the equations system. 
However, when the compressor isentropic efficiency is unknown, another iterative process is required, 
searching over a range of possible candidates for the compressor isentropic efficiency, and a validated 
numerical model for the gas cooler energy balance is used to verify the physical reliability of the numerical 
solutions. The proposed method can be similarly extended to TCO2 air conditioners and refrigeration systems, 
regardless of the type of gas cooler, widely contributing and filling the gap in non-intrusive and inexpensive 

Figure 3. Example of the gas cooler model outputs for different 𝜂𝑖𝑠 trials and working conditions

3. CONCLUSIONS
The thermodynamic basis for a novel non-intrusive refrigerant side characterization of 
transcritical CO2 HPWHs is presented, evidencing the role of the compressor isentropic 
efficiency in the process. The complexity of the proposed methodology depends on the 
knowledge about the compressor isentropic efficiency. When the compressor data is avai-
lable, namely its isentropic efficiency, a simple iterative process is sufficient to obtain the 
discharge pressure since it is the only unknown required to close the equations system. 
However, when the compressor isentropic efficiency is unknown, another iterative pro-
cess is required, searching over a range of possible candidates for the compressor isentro-
pic efficiency, and a validated numerical model for the gas cooler energy balance is used 
to verify the physical reliability of the numerical solutions. The proposed method can be 
similarly extended to TCO2 air conditioners and refrigeration systems, regardless of the 
type of gas cooler, widely contributing and filling the gap in non-intrusive and inexpensi-
ve refrigerant side characterization of ultra-low GWP vapor compression systems based 
on the TCO2 cycle.
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