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Abstract 

Background:  Polygenic risk scores (PRS) have been widely applied in research studies, showing how population 
groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying 
PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an 
individual level.

Case presentation:  We performed a systematic curation of PRS sources from established data repositories, selecting 
15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune 
diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individu-
als. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes 
Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of 
the individuals analysed here.

Conclusions:  Our results highlight the need for further standardisation in the way PRS are developed and shared, the 
importance of individual risk assessment rather than the assumption of inherited averages, and the challenges cur-
rently posed when translating PRS into risk metrics.
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Background
Although genetics plays a substantial role in the develop-
ment of common diseases, to date, optimising its con-
tribution to disease prevention in individuals remains a 
challenge [1]. PRS are an emerging tool in genetics, the 
potential of which has been picked up by health systems, 
including in UK’s National Health Service [2], as a tool for 
improving the health of their populations. For some com-
mon diseases, such as Coronary Artery Disease, Type 2 

Diabetes or Breast Cancer, PRS have been shown to help 
capture a sizable genetic contribution as part of the aeti-
ology of high-risk individuals [3]. However, it remains to 
be demonstrated how PRS can be a useful tool for disease 
prevention at the level of the individual in many complex 
conditions [4].

There have already been attempts to implement PRS 
in a preventative healthcare setting. For instance, the 
MedSeq project [5] provided a benchmark study for 
application of cardiovascular disease PRS in a cohort 
of 100 individual whole genomes. A number of direct-
to-consumer companies are also providing PRS in a 
preventative context, including testing of traits such 
as Breast Cancer and Type 2 Diabetes. Nonetheless, 
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for many of these PRS tests, only a relatively small pro-
portion of known variants are being tested (e.g., tens 
or dozens), compared to the total number included in 
some PRS, which for Type 2 Diabetes, for instance, is 
in the order of 7 million Single Nucleotide Polymor-
phisms (SNPs) [3]. The current provision of PRS for dis-
ease risk prevention is thus not yet at the same level as 
in PRS research, where there is a plethora of new PRS 
incorporated into centralised repositories. Repositories 
such as Cancer-PRSweb [6] displays 69 PRS for cancer 
alone, while the Polygenic Score Catalog [7] reports 751 
(last accessed on 24 March 2021).

Here we propose a novel implementation for reuse 
and deployment of PRS collected from public reposi-
tories and supported by scientific literature. Due to the 
heterogeneity and overlap of available PRS, we perform 
a systematic curation of existing data sources following 
a set of purposely generated criteria for their selection. 
We include PRS from a wide range of common dis-
eases related to cancer, cardiovascular, metabolic and 
autoimmune diseases. We apply selected PRS as proof-
of-principle implementation to a family of four of Ibe-
rian Spanish origin, who underwent whole genome 
sequencing. We note that a population effect must 
be kept in mind when applying PRS to populations of 
differing ancestry. In a recent study comparing PRS 
trained with UK Biobank samples and applied to other 
European populations, highest performance of PRS was 
found for their corresponding population dataset, with 
performance drops if different European populations 
were tested [8]. While we use the dataset of a family as 
our test case so as to be able to compare results of sev-
eral related family members, we believe our methodol-
ogy could be applied to a single individual.

Since we sequence the whole genome of each fam-
ily member, we do not impute alleles for any variant. 
Instead we extract the exact allele from processed 
sequencing data. By using 1000 Genomes Project 
(1000G) individual variant data [9] as PRS background 
distributions, we are able to assess the genetic risk of 
each family member by comparing the individual’s 
score against the scores of the 1000G cohort.

From a total 43 PRS initially selected as candidates, 
we apply 15, encompassing a total of 37,025,730 tested 
SNPs for each family member. For each individual PRS, 
risk percentiles are calculated using the PRS of par-
ticipants within three 1000G cohorts: Iberian Spanish 
(IBS; n = 107), European (EUR; n = 503), and all 1000G 
individuals (ALL; n = 2,504). Over 98 billion allele 
effect calculations were performed in order to obtain 
the PRS for each of the participants used in this study. 
This allows us to identify if an individual is at the higher 

risk end tail of the PRS 1000G background distribution 
and estimate their relative risk for developing a disease.

Sequencing and data processing
Saliva samples were collected using Oragene OG-600 and 
sent for DNA extraction and sequencing. The DNA sam-
ples were randomly fragmented by Covaris technology 
and fragments of 350 bps were obtained. Fragment DNA 
ends were repaired and an ‘A’ base added at the 3’ end of 
each strand. Adapters were then ligated to both strands 
of the end repaired/dA tailed DNA fragment. Amplifica-
tion by ligation-mediated PCR was performed and then 
single strand separation and cyclisation. DNA nanoballs 
were created and loaded into the patterned nanoarrays 
and pair-end reads read through on the BGISEQ-500 
platform for each library to maximise the chances of a 
target of 30 × coverage. Software for base calling with 
default parameters and the sequence data of each indi-
vidual were generated as paired-end reads, identified as 
‘raw data’ and provided as fastq format.

Once fastq files were obtained, we used the Sentieon 
DNASeq pipeline [10] for all four samples. Sentieon is 
a toolkit analogous to GATK [11] but built on a highly 
optimised backend. It takes raw fastq files and maps them 
to the human reference genome using BWA-MEM [12]. 
As all the PRS we were analysing used GRCh37, so we 
mapped to that reference. For variant calling, Sentieon 
uses the recommended best practices for variant analy-
sis with GATK, with local realignment around indels 
and base recalibration using GATK and duplicate reads 
removed by Picard tools. Poor calls were removed as part 
of the Sentieon DNASeq pipeline.

Family dataset
We selected this particular family dataset because it has 
been well studied in the past [13–16], which affords us a 
deep knowledge of the family’s phenotypes and disease 
history. Figure 1 shows the family pedigree. In it we have 
individuals PT00007A (Father), PT00008A (Mother) and 
two children (PT00009A and PT00002A; Daughter and 
Son). From here onwards, and for simplicity, we refer to 
family members as (Father, Mother, Daughter, Son).

When we analysed the variant output of all samples, we 
benchmarked against Fabric Genomics Clinical Grade 
Scoring Rules (http://​help.​fabri​cgeno​mics.​com/​hc/​en-​us/​
artic​les/​20643​3937-​Appen​dix-4-​Clini​cal-​Grade-​Scori​ng-​
Rules; accessed 7/January/2020), where Clinical Grade 
is a measure of a variant file’s overall quality and fitness 
for clinical interpretation (Table  1). Coverage in values 
with a star indicates that the median coverage of cod-
ing variants exceeds 40. Genotype quality with a starred 

http://help.fabricgenomics.com/hc/en-us/articles/206433937-Appendix-4-Clinical-Grade-Scoring-Rules
http://help.fabricgenomics.com/hc/en-us/articles/206433937-Appendix-4-Clinical-Grade-Scoring-Rules
http://help.fabricgenomics.com/hc/en-us/articles/206433937-Appendix-4-Clinical-Grade-Scoring-Rules


Page 3 of 18Corpas et al. BMC Medical Genomics          (2022) 15:207 	

value: more than 95% of the coding variants have a qual-
ity above 40. Starred homozygous / heterozygous ratio: 
the ratio for the coding variants is between 0.5 and 0.61. 
Starred transition / transversion ratio: The ratio for the 
coding variants is between 2.71 and 3.08. We performed 
a further analysis of quality of variants by counting those 
that pass the default standard filters of quality for inter-
pretation given our analysis software.

Ethical framework
All participants underwent a consent process and signed 
a consent form accepting the terms and conditions of this 
work as well as the potential consequences of perform-
ing this analysis. We drew on the Personal Genome Pro-
ject UK [17] as our approach to informed consent. The 
consent process we developed included the following 
elements: (a) participants underwent extensive train-
ing on the risks of genetic analysis including the risks of 

publishing personal genetic data; (b) participants com-
pleted an exam to demonstrate their comprehension of 
the risks and protocols associated with participating in 
genetic analysis which may be published and (c) partici-
pants were judged truly capable of giving informed con-
sent. Consent forms were signed by all family members. 
This ethical framework has been independently assessed 
and approved by the Ethics Committee of Universidad 
Internacional de La Rioja (code PI:029/2020).

Curation of PRS
Underlying PRS data have been made available by the 
scientific community through the Polygenic Score Cata-
log [7] and Cancer-PRSweb [6]. Both resources provide 
centralised access to many PRS as well as data needed 
for their application, including SNP coordinates, effect 
alleles and their effect weights. We performed a cura-
tion process to identify PRS for application to our family 
use case of four. A dataset of 37,025,730 PRS SNPs was 
generated encompassing 15 common diseases (we call 
these common diseases ‘phenotypes’ from now onwards), 
together with risk alleles and weighted contributions for 
each SNP. Table 2 shows the two sets of criteria we fol-
lowed to select PRS for our implementation model. The 
first set of criteria is based on study design and perfor-
mance (Table  2a: Design Selection Criteria) and second 
on the requirements needed for their bioinformatics 
implementation (Table 2b: Bioinformatics Selection Cri-
teria). In terms of design criteria, we chose PRS whose 
characteristics matched the following properties: (i) 
Underlying GWAS: the Genome Wide Association Study 
(GWAS) underlying the PRS could be traced to a rec-
ognisable consortium, and the phenotype in the GWAS 
was consistent with the phenotype in the resulting PRS. 
(ii) The PRS was trained in a second study using previ-
ously published PRS creation methods (e.g., LDpred [18] 
or clumping and thresholding [19]). (iii) The PRS was 
validated in a large independent cohort (we developed a 
preference for the UK Biobank for consistency reasons) 

Fig. 1  Family pedigree showing the relationship, gender (square: 
male, circle: female), and sample used for whole genome sequencing 
(saliva)

Table 1  Statistics for clinical grade measures of the quality of the variant file

Star-marked values (*) indicates the quality is of clinical standards and no-star values that it is below clinical standards (see Fabric Genomics Clinical Grade Scoring 
Rules [http://​help.​fabri​cgeno​mics.​com/​hc/​en-​us/​artic​les/​20643​3937-​Appen​dix-4-​Clini​cal-​Grade-​Scori​ng-​Rules]). The total number of variants for all saliva samples and 
the total number of coding variants for each family member are also shown

Sample ID Coverage Genotype 
quality

Homozygous/
heterozygous ratio

Transition/
transversion ratio

Total number of 
variants

Total number of 
coding variants

PT00007A (Father) 25 95.9* 0.51* 2.81* 46,50,536 27,504

PT00008A (Mother) 24 95.7* 0.51* 2.79* 46,95,886 27,329

PT00009A (Daughter) 29 97.8* 0.48 2.79* 48,12,818 27,400

PT00002A (Son) 43.0* 94.3 0.51* 2.81* 49,56,742 27,286

http://help.fabricgenomics.com/hc/en-us/articles/206433937-Appendix-4-Clinical-Grade-Scoring-Rules
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[20]. (iv) Its area under the curve (AUC) or similar per-
formance metric is above the 0.60 threshold except for 
Ischaemic stroke whose PRS performance (C-index 0.59) 
is comparable. (v) In case of more than one PRS being 
available for the same phenotype, we made a judgement 
of the study as a whole. (vi) The PRS should ideally have 
published risk metrics such as odds ratios, hazard ratios 
or fold increase.

Once we had filtered out PRS that did not fulfil the 
above design criteria, the remaining phenotypes under-
went an extra filtering process according to a set of bioin-
formatics standards (Table 2b), required for us to run our 
pipelines successfully. These bioinformatics filtering cri-
teria involved processing of the PRS raw data to establish 
that they fulfilled the following conditions: (i) Presence of 
at least 95% of SNPs in the 1000G Phase III distribution. 
(ii) Presence of risk alleles in either the reference or the 
alternative allele of the 1000G matching variant anno-
tation. For this we check whether each SNP risk allele 
has an exact match to the reference or alternative allele 
in that coordinate position, discarding and labelling the 
SNP as ‘missing’ if otherwise (this enabled us to identify 
any reverse strand or similar bioinformatic inconsisten-
cies) (iii) availability of effect weights and (iv) availability 
of coordinates in hg19. We used hg19 coordinates due to 
PRS source data being made available using this genome 
assembly. Any SNP that did not meet the above criteria 
was discarded but the phenotype was still used as long as 
it retains at least 95% of its source PRS SNPs.

How we calculate PRS for an individual
Our first step in calculating a PRS for a family member 
was to create background distributions so as to be able to 
put the score of a family member into context, and thus 
understand his or her relative risk. This is because source 
publications do not offer a translation of a raw PRS score 
directly into a risk measurement. Rather, they stratify dif-
ferent sections of a studied group into risk buckets (for 

example the top 5% of a distribution may be ascribed a 
particular odds ratio (OR)). Hence, when applying a PRS 
to an individual, it is necessary to know where that indi-
vidual sits relative to others.

A PRS was calculated for each individual as the sum 
of the effect weights for all the risk alleles observed in 
the individual for a particular phenotype, divided by 
the total number of risk alleles reported for that phe-
notype. We calculated PRS following this method for 
each of the individuals in the final (Phase III) dataset 
of the 1000 Genomes Project (1000G), containing data 
for 2,504 participants. This required us to calculate the 
PRS of all 2,504 individuals in the 1000G project across 
all selected phenotypes.

Having generated raw scores for each of these 1000G 
individuals, we built distributions of raw scores according 
to different population groups within the 1000G cohort. We 
chose the subset of Iberians Spanish (IBS, n = 107), as all 
family members are of Spanish origin, the Europeans (EUR, 
n = 503), reflecting the ethnic background of the valida-
tion data sets for the PRS we selected, and the entire 1000G 
cohort (ALL, n = 2,504). ALL contains African, Admixed 
American, East Asian, South Asian and Europeans.

We then applied the same methodology for calculat-
ing a raw PRS score to the whole genome data of each 
of the four family members, and having determined the 
raw score for each family member for each phenotype, 
we placed that score inside the distribution of each 
population group already generated from the 1000G 
individuals (IBS, EUR and ALL).

Placing the individual in context this way allowed us 
to derive percentiles reflecting a family member’s posi-
tion in a given population for a given phenotype. We 
could then readily compare these percentiles between 
individuals for each phenotype. We did this across the 
three different population groups in order to control 
for the impact of the ethnicity of the background popu-
lation on the resulting percentile.

Table 2  Criteria we used to select Polygenic Risk Scores (PRS) for our study. GWAS: Genome Wide Association Study; AUC: Area Under 
the Curve; 1000G: 1000 Genomes Project; hg19: Human Genome 19 reference assembly

AUC provides an estimate of the probability a randomly selected case has predicted value more extreme than that of a randomly chosen control (https://​doi.​org/​10.​
1038/​s41398-​020-​00865-8)

2a. PRS design selection criteria 2b. Bioinformatic selection criteria

i. Traceable to a discovery GWAS from a recognised consortium i. At least 95% SNPs present in 1000G 
Phase III distribution

ii. Trained in a second study using previously published PRS creation methods ii. Pass matching allele filter

iii. Validation in a large independent cohort; preferably UKB iii. Have effect weights

iv. AUC or similar performance metric above 0.55 iv. Coordinates in hg19

v. If several PRS of same phenotype: judgement of study as a whole

vi. Have risk metrics if possible: odds ratios, hazard ratios, fold increase

https://doi.org/10.1038/s41398-020-00865-8
https://doi.org/10.1038/s41398-020-00865-8
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Scores from both 1000G participants and family 
members are thus calculated independently, produc-
ing a distribution of scores from which the percentile a 
family member occupies is generated.

PRS percentile inheritance patterns
We were interested to understand patterns of inherit-
ance among family individuals for PRS percentiles. We 
set out to analyse how a high or low PRS percentile was 
explained in terms of risk being passed on from parents 
to children. This is a useful quality control and a way of 
adding credence to results, since it would be unusual for 
the same phenotype low risk observed in both parents 
engender high risk in offspring. In order to compare PRS 
percentiles between family individuals, we compare val-
ues relative to the 1000G EUR population distribution. 
We choose the EUR distribution percentile values for the 
remaining analyses because all selected PRS have as their 
validation dataset a European population such as those 
contained in the UK Biobank or FINRISK [21].

For the purposes of this analysis only, we have defined 
high risk as the individual falling above the 80th per-
centile of a given background distribution, as this is the 
threshold from which both Khera et  al. [3] and Mars 
et  al. [22] begin to quantify elevated risk. However, we 
acknowledge that the definition of a high-risk percentile 
is somewhat subjective, and we expand on this further 
below.

Translation of percentiles into risk metrics
For each family member we ascribe a relative risk. We 
note that when translating PRS percentiles into genetic 
risk metrics, each phenotype must be interpreted dif-
ferently, as the risk metrics (e.g., odds ratios or hazard 
ratios), and risk thresholds vary from study to study. If a 
family member’s percentile is within a reported thresh-
old of the PRS percentile source publication, we attribute 
a risk metric to that family member. We also pay atten-
tion to the Area Under the Curve (AUC) or other perfor-
mance metrics described by each PRS source study.

Impact of population background distributions on risk 
percentiles
We considered the effect of background populations in 
risk calculation. There is a known risk that PRS predict 
less well in populations where the underlying GWAS 
and validation cohorts differ from the ancestry of the 
individual [23], as SNPs have different allele frequencies 
depending on ancestry. Therefore, an individual may be 
assigned different percentiles depending on background 
populations. This is important, given that odds ratios or 
hazard ratios are reported relative to intervals in PRS 
percentiles. If the choice of background population 

significantly changes an individual’s percentile PRS 
(i.e., > 20 percentile), their resulting odds or hazard ratio 
will then be different, affecting how we interpret risk. In 
order to determine whether or not the choice of back-
ground population made a difference to the results, we 
checked whether there are any noticeable differences in 
individual phenotype PRS percentiles depending on the 
choice of background distribution for each family mem-
ber. For this, we compare whether tested individual per-
centiles for a phenotype change PRS quintiles depending 
on their background distribution. This choice of quintiles 
for binning risk distributions is a popular thresholding 
among the studies we curated [5, 22].

Case presentation
Our first set of criteria for selection of PRS considered 
the characteristics of the source study design, including 
recognisable GWAS consortia, performance metrics, 
presence of risk boundaries and independent cohort 
validation. We did not curate every single phenotype 
available, only those we judged promising candidates. 
Table 3 includes all phenotypes we researched after ini-
tial shortlisting. From an initial list of 43, we discarded 25 
because a) there was not a clear consistency between the 
phenotype of the PRS and the phenotype in the underly-
ing GWAS (for example All Cause Mortality, where the 
PRS is a composite of many separate GWAS); b) there 
was an alternative better performing candidate for the 
same phenotype (e.g., Coronary Artery Disease, Breast 
Cancer or Prostate Cancer); c) their performance metrics 
were below our acceptable threshold or were not avail-
able (e.g., Pancreatic Cancer, Multiple Myeloma, Uter-
ine Cancer, Bladder Cancer, Squamous Cell Carcinoma, 
Epithelial Ovary Cancer, Lung Cancer, Non-Hodgkin’s 
Lymphoma, Cancer of other Lymphoid, Histiocytic Tis-
sue, Cancer of Kidney, HDL Cholesterol, LDL Choles-
terol, Triglycerides, Body Mass Index); d) their validation 
population was not the UK Biobank. We began with the 
PGS Catalog, and then complemented our selected set of 
PRS with Cancer-PRSweb phenotypes. From the Cancer-
PRSweb we only considered their top 20 UK Biobank val-
idated PRS, comparing them with phenotypes in the PGS 
Catalog where we found overlap. We tended to favour 
selection of standardised PRS such as those offered by 
the larger studies or the Cancer-PRSweb, as its blocks of 
performance metrics, risk boundaries, percentile thresh-
olds and validation cohort metadata are well suited for 
benchmarking.

We had to reconcile conflicting criteria in the cases 
of Breast Cancer and Prostate Cancer PRS selection, 
and here we did deploy our judgement. For Breast 
Cancer, we selected the PRS from Khera et  al. [3], 
although it has a lower performance than Mars et  al. 
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Table 3  Initial list of PRS. Phenotypes are grouped according to the type of disease they relate to (e.g., all-cause, autoimmune, cancer, 
cardiovascular and metabolic), the source Genome Wide Association Study (GWAS) Consortium, performance metrics (AUC or an 
alternative if possible), number of total SNPs, the cohort used for their validation (UKB: UK Biobank), reported risk metric and the reason 
for filtering them out if unselected

Phenotype 
Group

Phenotype Source (ID/
PheWAS)

GWAS 
Source

Performance 
(AUC or else)

# SNPs Validation Risk 
Boundaries

Status Reason for 
filtering out

All cause All cause 
mortality 
(female)

PGS Catalog 
(PGS000318)

[24] N/A 4,122 UKB Hazard Ratio Selected Not traceable 
to a single dis-
covery GWAS

All cause 
mortality 
(male)

PGS Catalog 
(PGS000319)

[24] N/A 4,092 UKB Hazard Ratio Selected Not traceable 
to a single dis-
covery GWAS

Autoimmune Inflamma-
tory bowel 
disease

PGS Catalog 
(PGS000017)

[3] 0.63 69,07,112 UKB Odds Ratio Selected

Lupus PGS Catalog 
(PGS000328)

[25] 0.78 57 UKB Odds Ratio Selected

Cancer Breast cancer PGS Catalog 
(PGS000015)

[3] 0.68 5,218 UKB Odds Ratio Selected

PGS Catalog 
(PGS000332)

[22] C-index: 0.74 63,90,808 FINRISK Hazard Ratio Unselected Validation 
cohort not UKB

Cancer-
PRSweb 
(174.1)

[26] 0.65 11,20,410 UKB Odds Ratio Unselected Lower perfor-
mance

Prostate 
cancer

PGS Catalog 
(PGS000333)

[22] C-index: 0.86 66,06,785 FINRISK Hazard Ratio Selected

Cancer-
PRSweb (185)

[27] 0.71 11,20,596 UKB Odds Ratio Unselected Lower perfor-
mance

Glaucoma PGS Catalog 
(PGS000137)

[28] 0.76 2,673 UKB Odds Ratio Selected

Testicular 
cancer

Cancer-
PRSweb 
(187.2)

[29–36] 0.70 43 UKB Odds Ratio Selected

Chronic 
lymph leu-
kaemia

Cancer-
PRSweb 
(204.12)

[37–44] 0.67 27 UKB Odds Ratio Selected

Thyroid 
cancer

Cancer-
PRSweb (193)

[44–47] 0.63 5 UKB Odds Ratio Selected

Glioma Cancer-
PRSweb 
(191.1)

[48–53] 0.62 19 UKB Odds Ratio Selected

Melanoma Cancer-
PRSweb 
(172.1)

[54–60] 0.62 27 UKB Odds Ratio Selected

Colorectal 
cancer

Cancer-
PRSweb (153)

[61] 0.62 87 UKB Odds Ratio Selected

Basal cell 
carcinoma

Cancer-
PRSweb 
(172.21)

[62–68] 0.62 24 UKB Odds Ratio Selected

Pancreatic 
cancer

Cancer-
PRSweb (157)

[69–73] 0.58 10 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Multiple 
myeloma

Cancer-
PRSweb 
(204.4)

[74–79] 0.58 21 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Uterine 
cancer

Cancer-
PRSweb (182)

[80–82] 0.58 20 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Bladder 
cancer

Cancer-
PRSweb 
(189.2)

[83–89] 0.57 15 UKB Odds Ratio Unselected AUC < 0.60 
threshold
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Table 3  (continued)

Phenotype 
Group

Phenotype Source (ID/
PheWAS)

GWAS 
Source

Performance 
(AUC or else)

# SNPs Validation Risk 
Boundaries

Status Reason for 
filtering out

Squamous 
cell carci-
noma

Cancer-
PRSweb 
(172.22)

[90] 0.57 9 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Epithelial 
ovarian 
cancer

Cancer-
PRSweb 
(184.11)

[91–95] 0.53 21 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Lung cancer Cancer-
PRSweb 
(165.1)

[96–99] 0.55 19 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Non-
Hodgkin’s 
lymphoma

Cancer-
PRSweb 
(202.2)

[100–104] 0.55 10 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Cancer 
of other 
lymphoid, 
histiocytic 
tissue

Cancer-
PRSweb (202)

[100, 101, 
103, 104]

0.49 5 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Cancer of kid-
ney, except 
pelvis

Cancer-
PRSweb 
(189.11)

[105, 106] 0.52 12 UKB Odds Ratio Unselected AUC < 0.60 
threshold

Cardiovas-
cular

Atrial fibrilla-
tion

PGS Catalog 
(PGS000016)

[3] 0.77 67,30,541 UKB Odds Ratio Selected

PGS Catalog 
(PGS000331)

[22] C-index: 0.75 61,83,494 FINRISK Hazard Ratio Unselected Lower perfor-
mance; Not 
UKB

Coronary 
Artery Dis-
ease

PGS Catalog 
(PGS000013)

[3] 0.81 66,30,150 UKB Odds Ratio Selected

PGS Catalog 
(PGS000018)

[107] 0.79 17,45,179 UKB Hazard Ratio Unselected Lower perfor-
mance

PGS Catalog 
(PGS000296)

[108] 0.80 66,30,150 UKB Odds Ratio Unselected Lower perfor-
mance

PGS Catalog 
(PGS000329)

[22] C-index: 0.83 64,23,165 FINRISK Hazard Ratio Unselected Validation 
cohort not UKB

Ischaemic 
stroke

PGS Catalog 
(PGS000039)

[109] C-index: 0.59 32,25,583 UKB Hazard Ratio Selected

Venous 
thromboem-
bolism

PGS Catalog 
(PGS000043)

[110] N/A 297 UKB Odds Ratio Unselected Performance 
metric unavail-
able

HDL choles-
terol

PGS Catalog 
(PGS000064)

[111] N/A 120 Various 
biobanks

N/A Unselected Performance 
metric unavail-
able

LDL choles-
terol

PGS Catalog 
(PGS000065)

[111] N/A 103 Various 
biobanks

N/A Unselected Performance 
metric unavail-
able

Triglycerides PGS Catalog 
(PGS000066)

[111] N/A 101 Various 
biobanks

N/A Unselected Performance 
metric unavail-
able

Metabolic Type 2 dia-
betes

PGS Catalog 
(PGS000014)

[3] 0.72 69,17,436 UKB Odds Ratio Selected

PGS Catalog 
(PGS000330)

[22] C-index: 0.76 64,37,380 FINRISK Hazard Ratio Unselected Validation 
cohort not UKB

Body mass 
index

PGS Catalog 
(PGS000027)

[3] R2: 0.09 21,00,302 UKB Odds Ratio Selected Low perfor-
mance

Testoster-
one levels 
(female)

PGS Catalog 
(PGS000323)

[112] R2: 0.18 7,168 UKB N/A Selected

Testosterone 
Levels (male)

PGS Catalog 
(PGS000322)

[112] R2: 0.31 8,235 UKB N/A Selected



Page 8 of 18Corpas et al. BMC Medical Genomics          (2022) 15:207 

[22]. This was because overall the PRS for Khera et al. 
are high performing, and are all validated in the UK 
Biobank. For consistency therefore we retained the 
Breast Cancer phenotype from the Khera et  al. study. 
For Prostate Cancer, despite being validated in the 
FINRISK consortium, we decided that the C-index of 
0.86 in the Mars et al. study was sufficiently differenti-
ated against that of Cancer-PRSweb (AUC of 0.71) that 
the Mars et al. PRS merited selection.

Concerning AUCs, we allowed any covariates that 
the source GWAS studies allowed. We recognise that 

this means that an AUC in one PRS is not exactly com-
parable to an AUC for another, as their design is not 
identical. Furthermore, we do not make a distinction 
between the type of method applied to calculation 
of the PRS (e.g., LDPred, Pruning and thresholding, 
etc.), accepting any method as long as it has been peer 
reviewed. Finally, we also note that some phenotypes 
are discrete while others are not, further affecting the 
choice of PRS calculation method.

Having made an initial selection of phenotypes 
whose study design met our eligibility criteria, we 

Table 4  Our set of bioinformatic filtering criteria applied to the remaining phenotypes

Phenotype 
Group

Phenotype 
(PheWAS 
Code)

Source (ID/
PheWAS)

GWAS 
Consortium

# SNPs Missing SNPs % Missing 
SNPs

Validation Status Reason for 
filtering 
out

Autoimmune Inflammatory 
Bowel Disease

PGS Catalog 
(PGS000017)

[3] 69,07,112 – UKB Selected

Lupus PGS Catalog 
(PGS000328)

[25] 57 32 56.14% UKB Unselected Missing 
SNPs > 5%

Cancer Breast Cancer PGS Catalog 
(PGS000015)

[3] 5,218 – UKB Selected

Prostate 
Cancer

PGS Catalog 
(PGS000333)

[22] 66,06,785 832 0.01% FINRISK Selected

Glaucoma PGS Catalog 
(PGS000137)

[28] 2,673 16 0.60% UKB Selected

Testicular 
Cancer

Cancer-
PRSweb 
(187.2)

[29–36] 43 – UKB Selected

Chronic 
Lymph Leu-
kaemia

Cancer-
PRSweb 
(204.12)

[37–43] 27 – UKB Selected

Thyroid cancer Cancer-
PRSweb (193)

[44–47] 5 – UKB Selected

Glioma Cancer-
PRSweb 
(191.1)

[48–53] 19 – UKB Selected

Melanoma Cancer-
PRSweb 
(172.1)

[54–60] 27 1 3.70% UKB Selected

Colorectal 
Cancer

Cancer-
PRSweb (153)

[61] 87 1 1.15% UKB Selected

Basal Cell 
Carcinoma

Cancer-
PRSweb 
(172.21)

[62–68] 24 1 4.17% UKB Selected

Cardiovascular Atrial Fibrilla-
tion

PGS Catalog 
(PGS000016)

[3] 67,30,541 – UKB Selected

Coronary 
Artery Disease

PGS Catalog 
(PGS000013)

[3] 66,30,150 – UKB Selected

Ischaemic 
Stroke

PGS Catalog 
(PGS000039)

[109] 32,25,583 11,103 0.34% UKB Selected

Metabolic Type 2 Dia-
betes

PGS Catalog 
(PGS000014)

[3] 69,17,436 – UKB Selected

Testosterone 
Levels (female)

PGS Catalog 
(PGS000323)

[112] 7,168 – UKB Unselected Missing 
SNPs > 5%

Testosterone 
Levels (male)

PGS Catalog 
(PGS000322)

[112] 8,235 – UKB Unselected Missing 
SNPs > 5%
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applied Table  2b’s bioinformatic filtering criteria 
scheme (Table  4). These bioinformatic requirements 
derived from the need to reliably replicate a PRS per-
centile as originally envisaged by the source publi-
cation. Because we use the 1000 Genomes (1000G) 
Project Phase III participants as our background PRS 
distributions, we required a high overlap (> 95%) of all 
PRS effect alleles and their weights between the SNPs 
identified by the study in question and the 1000G 
project.

A total of 15 phenotypes passed all our selection 
criteria for PRS implementation and testing. These 
phenotypes involved conditions related to cancer, car-
diovascular, metabolic and autoimmune diseases. 8 
of these phenotypes summed less than 10,000 (8,123) 
SNPs in total, whereas 6 phenotypes composed the vast 
majority of tested SNPs (37,017,607; 99.98%). We note 
that 11,954 SNPs were missing from our PRS calcula-
tion because they were not present as 1000G variants 
or their risk allele did not match the 1000G reference 
or alternative allele. However, the missing number of 
SNPs was never greater than 5% of the total for any 
of our selected phenotypes. The vast majority of PRS 
missed significantly fewer than 5% of the SNPs, and in 
fact more often than not, no SNPs were missed (9 out 
of 15 phenotypes missed none). The phenotype that 
proportionally misses the greatest number of SNPs is 
Basal Cell Carcinoma (missing 1 out of 24 SNPs; 4.17%), 
whereas Ischaemic Stroke missed the greatest absolute 
number: 11,103 SNPs (0.34%). We also note that all of 
the applied PRS were validated in the UK Biobank, with 

the exception of Prostate Cancer, which was validated 
on the FINRISK population.

Patterns of risk inheritance among family members
Weiner et  al. [113] suggest that over a large group, the 
PRS of offspring is the average of the parents’ PRS and 
indeed we find that some averaging has taken place 
(Table 5). As an example, averaging plays a role in dimin-
ishing risk percentile in Daughter’s risk of Breast Cancer. 
Here, Daughter inherits a close to average parental per-
centile risk, diminishing her risk percentile for this con-
dition when compared to her mother. We also observe 
some PRS where the offspring diverge from the average 
parental risk. For instance, we find that for Coronary 
Artery Disease, both children inherit a high percen-
tile which carries over from Mother and has not been 
mitigated by Father. This departure from the averag-
ing effect of PRS in offspring as observed in Coronary 
Artery Disease does not preclude, however, the overall 
pattern of averaging as suggested by Weiner et al. [113], 
and could be considered departures from the mean in a 
distribution.

Translation of percentiles into risk metrics
When consulting source publications to ascertain the risk 
of developing a disease phenotype given a particular per-
centile, we found that risks and their thresholds are dif-
ferently described depending on the publication.

Khera et  al. [3] for phenotypes Breast Cancer, Atrial 
Fibrillation, Coronary Artery Disease, Type 2 Diabetes 

Table 5  Phenotype PRS percentiles for each family individual

Bold font highlights percentiles below 20 and above 80. Italicised bold font indicates percentiles in the top and bottom 5th risk percentile. Phenotypes in the table 
have been ordered to highlight patterns

Phenotype PT00007A (Father) PT00008A (Mother) PT00009A (Daughter) PT00002A (Son)

Colorectal Cancer 97.42 79.92 97.22 91.05
Coronary artery disease 29.62 96.62 89.86 81.91
Testicular cancer 42.35 90.66 95.83 38.37

Glaucoma 88.67 42.35 65.01 65.21

Type 2 diabetes 60.44 71.37 68.79 45.33

Prostate cancer 50.50 80.91 92.45 21.67

Thyroid cancer 49.30 50.50 32.41 90.66
Breast cancer 17.30 85.69 53.28 64.61

Ischaemic stroke 26.24 82.90 64.02 38.17

Inflammatory bowel disease 43.54 70.78 46.72 46.72

Chronic lymph leukaemia 16.50 45.53 41.15 44.14

Basal cell carcinoma 55.86 7.55 10.54 14.12
Glioma 4.57 42.35 18.69 5.96
Melanoma 14.51 9.74 22.86 23.26

Atrial fibrillation 16.50 15.51 8.55 7.16
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and Inflammatory Bowel Disease offer odds ratios for 
patients in the top 20%, 10%, 5%, 1% and 0.5% of the dis-
tribution of risk versus the remaining part of the distribu-
tion (80%, 90%, 95%, 99%, 99.5%) as the reference group. 
95% confidence intervals and P-values are also provided.

All Cancer-PRSweb phenotypes offer odds ratios for 
the top 25%, 10%, 5%, 2% and 1% of the PRS distribution 
versus the rest, together with 95% confidence intervals 
and P-values.

The source study led by Craig et al. [28], from which we 
take the Glaucoma phenotype, provides odds ratios for 
the top 50%, 20%, 10%, 5%, 2% and 1% versus the rest of 
the distribution. This study offers odds ratios for Father, 
whose risk percentile is 88.675, but also for individu-
als above 50%, i.e., Daughter and Son’s, whose percentile 
risks are 65.01 and 65.21, respectively.

From Mars et  al. [22] we selected their Prostate Can-
cer PRS, extracting odds ratios and 95% confidence inter-
vals per standard deviation increase, using the FINRISK 
(n = 21,813) population as the validation dataset. (We did 
not use other phenotypes from this publication as they 
are already covered by Khera et al. [3] and we decided to 
choose PRS from the latter).

Abraham et  al. [109], which studies Ischaemic Stroke, 
does not provide odds ratios. Instead, they offer a hazard 

ratio per standard deviation by age 75, using the UKB as 
the validation dataset.

For each extracted odds/hazard ratio, each source pub-
lication must be considered independently when report-
ing for an individual. In most cases, the PRS percentile 
of the individual lies within a reported interval from the 
source thresholds, but there are exceptions.

Percentile thresholds vary from ≥ 50% to ≥ 99.5%, 
depending on the source publication. We note all lower 
end confidence intervals as being > 1 and P-values much 
lower than the significance threshold of 0.05 (risks very 
likely not to have occurred by chance). Table 6 summa-
rises source publication extracted risks based on PRS 
percentiles for each family member.

Effect of background population in percentile calculation
It has been previously reported that PRS distributions are 
affected by population stratification [114]. In order to test 
whether for our selection of PRS distributions the choice 
of background population for percentile calculations are 
significantly different, we conducted the analysis of phe-
notype percentiles individually. We checked whether 
there are any significant differences at the level of indi-
vidual phenotypes when comparing the effect of back-
ground PRS distributions. Table 7 highlights phenotypes 

Table 6  Risk ratios (Odds Ratio (OR) or Hazards Ratio (HR)) extracted from PRS sources

ORs and confidence intervals are dependent on the individual’s position in the background population and are translated into risk metrics based on boundaries of 
bins provided in the relevant study, rather than being a standalone assessment of the individual’s risk. Blank cells correspond to phenotypes where an individual’s EUR 
background population percentile is below reported thresholds in PRS sources. We highlight in bold risk ratios (OR or HR) we can express and also include those that 
cannot be expressed by the individual (default font; e.g., Testicular Cancer and Prostate Cancer PRS in females). OR or HR appear with their 95% confidence intervals 
(in parenthesis) and, in a separate column, the percentile thresholds from which risk ratios were extracted

Phenotype Father Risk (95% CI) Mother Risk (95% 
CI)

Daughter Risk (95% 
CI)

Son Risk (95% CI) Risk Type Thresholds

Basal cell carcinoma

Breast cancer 2.07 (1.97–2.19) OR Top 20% vs Rest

Chronic lymph leu-
kaemia

Colorectal cancer 2.69 (2.34–3.08) 2.69 (2.34–3.08) 2.69 (2.34–3.08) 2.69 (2.34–3.08) OR Top 25% vs Rest

Glaucoma 3.61 (3.11–4.20) 2.94 (2.60–3.34) 2.94 (2.60–3.34) OR Top 20% vs Rest Top 
50% vs Rest

Glioma

Melanoma

Testicular Cancer 3.69 (2.2–6.18) 3.69 (2.2–6.18) OR Top 10% vs Rest

Thyroid Cancer 3.48 (2.16–5.62) OR Top 10% vs Rest

Prostate Cancer 2.29 (1.75–3.00) 2.29 (1.75–3.00) OR  > 1SD

Ischaemic stroke 1.26 (1.22–1.31) HR  > 1SD

Atrial fibrillation

Coronary artery 
disease

3.34 (3.12–3.58) 2.55 (2.43–2.67) 2.55 (2.43–2.67) OR Top 20% vs Rest Top 
5% vs Rest

Type 2 diabetes

Inflammatory bowel 
disease
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for family members (Father, Mother, Daughter, Son) in 
the top (red) and bottom (green) PRS quintiles using 
three background 1000G distributions (IBS, EUR and 
ALL). Italicised red/green are shown for phenotype PRS 
in the top 5th or bottom 5th percentile, respectively. We 
observe that the pattern of red/green, although gener-
ally conserved across the three background distributions 
and between family members, also show differences. Dif-
ferences within the same individual reflect how the PRS 
percentile changes when comparing it against a different 
1000G population group. For example, we see differences 
in Basal Cell Carcinoma, Ischaemic Stroke and Type 2 
Diabetes. Primarily, these differences follow two patterns: 
(a) lower percentiles for IBS/EUR than ALL; e.g., Basal 
Cell Carcinoma; (b) higher percentiles in IBS/EUR and 
lower for ALL; e.g., Ischaemic Stroke and Type 2 Diabe-
tes, with all family individuals having much higher per-
centiles in the IBS and EUR background distribution than 
ALL.

We also observe similar percentiles when comparing 
across distributions. We note as examples Colorectal 
Cancer, Coronary Artery Disease and Testicular Cancer, 
where a family member’s PRS percentile is similar across 
the different background distributions.

Whether the percentile PRS is consistent among dif-
ferent populations does not depend on the source study. 
For instance, looking at results of PRS from Khera et al. 
[3], Type 2 Diabetes gives inconsistent results (i.e., quin-
tiles differing by > 20 percentile points) across popula-
tion groups, while Coronary Artery Disease gives greater 
consistency. Similarly, we find consistent percentiles in 
Cancer-PRSweb phenotypes (Testicular Cancer) and 
inconsistent ones (Basal Cell Carcinoma).

Discussion
Approaches combining the information from large num-
bers of genomic variants into PRS promise substantial 
improvement of risk prediction for common diseases and 
cancer [115]. Implementation of PRS at scale in health 
services, however, remains a challenge, particularly the 
translation of PRS into actionable benefits for individu-
als. Governments in various countries, including in the 
UK [2], have the ambition to use PRS in healthcare set-
tings, which implies that existing PRS studies do need 
to be translated into actionable tools for use at the indi-
vidual level. Such translation requires standardisation so 
that implementation can be scaled to large numbers of 
people. In this paper we developed a proof-of-principle 
implementation of publicly available PRS information, 
following a systematic curation, deployment and trans-
lation of PRS into personalised risk assessments, using 
a family of four as a test case. A selection of 15 com-
mon diseases and cancers (phenotypes) resulted from 

our curation process, encompassing 37 million SNPs. 
We applied PRS to 1000 Genomes Project (1000G) par-
ticipants, using the effect weights of over 96 billion risk 
alleles to construct a background distribution of 15 PRS 
from which to infer risk percentiles for each of our four 
family members.

Our curated set of PRS from 15 diverse conditions 
span autoimmune, cancer, cardiovascular and metabolic 
diseases. In what follows we discuss our PRS curation, 
risk percentile generation and interpretation of disease 
risk assessments as well as opportunities and limitations 
that such a PRS implementation provides for disease 
prevention.

PRS deployment requires considerable curation
Among the many hundreds of PRS we found in online 
repositories, we note varying study designs, PRS perfor-
mances, validation cohorts and risk metrics. For instance, 
Coronary Artery Disease (Polygenic Score Catalogue ID: 
PGS000013) is based on a model adjusting for covariates 
such as age, sex, ancestry Principal Component 1–4, gen-
otyping chip. However, another PRS for Coronary Artery 
Disease such as ID: PGS000018, used different covariates, 
which make them more difficult to compare. While this 
makes it challenging to deploy existing PRS data into a 
coherent framework for testing of individuals, it also 
reflects the diverse study designs and analysis methods 
of the original studies. We developed a set of curation 
criteria, allowing us to shortlist candidate PRS. Our own 
judgement was needed in order to evaluate their final 
inclusion in our analysis. This meant that our selection 
criteria were not always strictly followed, reducing the 
potential for standardisation and scalability.

Percentile PRS calculation lies at the core of risk inference
The concept of putting the individual into the context of 
a wider population has allowed us to posit a template for 
turning PRS developed at the population level into a tool 
which can be applied to individuals. We believe in this 
approach, largely because the risk metric which results 
is one of relative risk, consistent with the methodology 
underpinning the PRS validation process.

By calculating the PRS for each individual within the 
1000G, and then placing the family members within the 
context of that distribution, a robust method of translat-
ing population level PRS into relevant individually related 
scores was arrived at. This is further supported by using 
whole genome sequencing, and thus avoiding the need 
for imputation of alleles at any given PRS SNP, which 
we expect to provide more accurate results. Moreover, 
from a total of 37 million SNPs in 15 phenotypes, 99.98% 
passed our bioinformatics curation criteria, which 
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allowed us to reliably implement the published PRS 
in both our tested individuals and background 1000G 
populations.

In addition, background populations were independent 
from the cohorts used for training and validation of the 
PRS. This allowed us to independently test the effect of 
the choice of background population (IBS, EUR and ALL) 
for percentile calculation.

Importance of considering risk inheritance patterns 
individually
Part of the objective of this study is to offer a method for 
applying PRS which have been trained on large cohorts to 
individuals. We do see the impact of averaging mitigating 
the individual parents’ risk in the offspring, however this 
does not apply to all phenotypes. For example, for Coro-
nary Artery Disease high risk percentiles were observed 
in both Daughter and Son, despite a low risk percentile 
in Father.

This result highlights the importance of not assum-
ing expected population-level averages when it comes to 
analysing individuals and families.

Role of background population in percentile calculation
When we look at the individual phenotypes, the quintile 
analysis revealed that the results for some phenotypes are 
consistent between ALL and EUR or IBS (e.g. Coronary 
Artery disease and Colorectal Cancer) and wholly differ-
ent in other phenotypes (e.g. Type 2 diabetes and Basal 
Cell Carcinoma).

We note that studies with multiple PRS (e.g. Khera 
et  al. (2018), Cancer-PRSweb, etc.) contain phenotypes 
differing by > 20 percentile points for the same individ-
ual across population groups, suggesting that the results 
we are seeing are not due to study design.

In order to explain this consistency between ALL and IBS 
or EUR for some phenotypes and inconsistency for others, 
we can hypothesise that for ‘consistent’ quintile PRS per-
centiles, the frequencies of variants of their PRS SNPs are 
conserved across the different populations. This may mean 
that such PRS are more portable than others across dif-
ferent ancestry groups, however we stress that this would 
require further work. Such work might seek to validate the 
more ‘consistent’ PRS in non-European population groups. 
In turn, this validation would require access to (and the 
existence of) large scale biobank data in such populations, 
which remains a challenge.

Translation of percentiles into risk metrics
Our method for translating PRS percentiles into risk 
metrics relied on their availability in source publications. 
In order for us to reuse source publication risk met-
rics they had to be associated to PRS percentile interval 

thresholds. We found risk metrics to be variably reported, 
with some studies reporting odds ratios, others hazard 
ratios and others still no risk metric at all. Furthermore, 
some studies reported risk over the 80th PRS percentile 
threshold while others over the 75th or even the top 50th 
percentile. Still others reported risk of one group relative 
to a reference group (for instance Mars et al. [22]), rather 
than relative to the rest (for instance Khera et al. [3]).

We translated genetic risk regardless of thresholds 
wherever available, but it was not possible to follow a 
uniform set of rules with which to report risk. For future 
developments, a standard set of thresholds and risk met-
rics with which to report genetic risk would be highly 
desirable for at scale implementation. This would allow 
for direct comparison between different PRS, creating 
a common basis for a discussion about disease risk for 
complex genetic disorders.

Additionally, when considering healthcare interven-
tions, similar phenotype odds ratios with different AUC 
performances may lead to different levels of confidence. 
To illustrate this point, we can compare two different, 
high quality approaches, in Khera et  al. [3] and Abra-
ham et al. [109]. The Coronary Artery Disease PRS AUC 
in Khera et al. has an AUC of 0.81, suggesting that it is 
able to stratify individuals into different risk bins with a 
good level of accuracy. With such a robust PRS, certain 
preventative healthcare interventions for an individual 
in a high-risk bin might be justified by the PRS alone 
(for instance lifestyle adjustments). By contrast, Abra-
ham et al.’s Ischaemic Stroke PRS [109] has a C-index of 
0.58. With a significantly less robust PRS such as this, it 
is harder to justify intervening based on the PRS alone, 
even if the individual in question shows up in a high-risk 
part of the distribution, as there is less confidence that 
the risk is correctly attributed to that individual. How-
ever, that does not mean that such a PRS is without use. 
As Abraham et al. [109] point out, the Ischaemic Stroke 
PRS with a C-index of 0.58 is still comparable to other 
common predictors of Ischaemic Stroke, for instance, 
family history of stroke (C-index of 0.56) Systolic Blood 
Pressure (C-index of 0.57) or BMI (C-index of 0.57). 
Therefore, while this PRS is not robust enough to be used 
on a standalone basis, it nonetheless adds value to the 
overall assessment of risk of Ischaemic Stroke, and when 
combined with other risk factors including hypertension, 
raises the C-index to 0.635.

Limitations of this implementation
First and foremost, our analysis is limited by the size of 
our use case, the family of four. As a result, we seek only 
to offer a proof of concept, and some insights which we 
believe are generalisable to implementations at a larger 
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scale. A greater number of subjects would be needed in 
order to validate the specific results presented here.

The second important limitation is population con-
straints. Our percentile risk calculation has only been 
performed for an Iberian family. A subsequent analy-
sis could consider individuals from different ances-
try backgrounds against different population cohorts. 
Further, our results may have been affected by the way 
that the 1000G population groups are constructed. The 
same Iberian Spanish participants of the 1000G are 
included in the European subset population, and in 
turn, all Europeans are included in the total population 
of the 1000G (ALL). We also note that the Iberian pop-
ulation is of small size (n = 107) in the 1000G, reducing 
the statistical significance of results using that popu-
lation as background distribution. We are also con-
scious that all PRS used here were themselves derived 
from and validated in Northern European populations 
(White British or Finnish), which may also contribute 
inaccuracy to our risk analysis in the IBS subpopu-
lation. Privé et  al. [116] suggests portability of such 
scores to Southern European populations might reduce 
prediction performance to 86% of that observed in the 
source population.

There are also a number of limitations imposed by 
bioinformatics constraints. We require the overwhelm-
ing majority of PRS SNPs to be present in the 1000G 
population, which may rule out some high quality PRS. 
Furthermore, we were only able to select PRS whose 
number of SNPs not present in the 1000G dataset was 
smaller than 5% of the total. Missing SNPs in the PRS 
calculation will have a greater impact for phenotypes 
where the PRS had few SNPs (e.g., Basal Cell Carci-
noma is the phenotype that proportionally misses the 
greatest proportion of SNPs, 1 out of 23; 4.35%), in 
contrast to those that included all SNPs genome wide 
(e.g., Type 2 Diabetes ~ 7 million SNPs). We neverthe-
less believe that the expected impact is not significant, 
since for the great majority of PRS we have used, con-
siderably less than 5% of the SNPs were missed or none 
at all (see Table 4, ‘% Missing SNPs’). Another weakness 
of our current methodology is that we have excluded 
PRS that contained SNPs in the X and Y chromosomes, 
resulting in more missing SNPs in certain phenotypes, 
and so causing us to exclude them (e.g., Testosterone 
Levels). Finally, if the minor allele frequency (MAF) of 
the source PRS is different from that of the tested indi-
viduals, the PRS may have different performance. Given 
that there is no MAF information for IBS in public 
data resources, this has limited our ability to filter by 
MAF discordance between the tested and source PRS. 
However, as shown by [8] other populations within the 

European continent tested with UK Biobank PRS data 
still conserve AUC performance within meaningful 
levels.

Further work
Further work could include the application of this meth-
odology to a greater number of individuals, which would 
allow the validation of results obtained here, at small scale. 
When considering phenotype selection, it would be useful 
to compare different PRS for the same phenotype by show-
ing how concordant PRS values are across different 1000G 
populations. Finally, as suggested above, we would propose 
further research into understanding the potential of those 
PRS whose average percentiles in tested individuals do not 
significantly differ across background populations as this 
could be an indication that they are more portable across 
different ancestries.

Conclusion
We have presented a comprehensive set of 15 curated PRS 
encompassing autoimmune, metabolic, cancer and cardio-
vascular diseases. We offer a proof-of-principle approach 
for an implementation of individualised PRS analysis, with 
a test case of a family of four using background distribu-
tions from 1000G. These 1000G populations allow us to 
calculate PRS and extrapolate them into relative risk for 
individuals using as input whole genome variant data. Cal-
culated risk percentiles from PRS allow us to infer relative 
risks for any of the diseases analysed here. We show how 
current lack of standards for risk reporting challenges our 
ability to implement PRS more straightforwardly. It is also 
noted that different disease risks cannot be uniformly inter-
preted as their differences in study design, performances 
and risk reporting are not standardised. We further explore 
the effect of background population on an individual PRS 
percentile by comparing how different 1000G populations 
affect resulting PRS percentile calculations. All in all, this 
work offers insight into how PRS can be translated into 
relative risks for individuals, and therefore showcases their 
potential for their deployment in a preventative healthcare 
setting.

Appendix
Principal Component Analysis (PCA) of Family Quartet 
in the context of 1000G. We used R packages (gdsfmt and 
SNPRelate [117] for PCA. We used in total ~ 22  K SNPs 
after linkage pruning. All the 1000G individuals appear in 
blue, while the family quartet in red. The left cluster cor-
responds to 1000G Asian individuals, the bottom-centre 
cluster to Europeans and the top right to Africans. The 
family quartet appears clearly in the European cluster.
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