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Drug discovery aims at finding new compounds with specific chemical properties for the treatment of
diseases. In the last years, the approach used in this search presents an important component in com-
puter science with the skyrocketing of machine learning techniques due to its democratization. With
the objectives set by the Precision Medicine initiative and the new challenges generated, it is necessary
to establish robust, standard and reproducible computational methodologies to achieve the objectives
set. Currently, predictive models based on Machine Learning have gained great importance in the step
prior to preclinical studies. This stage manages to drastically reduce costs and research times in the dis-
covery of new drugs. This review article focuses on how these new methodologies are being used in
recent years of research. Analyzing the state of the art in this field will give us an idea of where chemin-
formatics will be developed in the short term, the limitations it presents and the positive results it has
achieved. This review will focus mainly on the methods used to model the molecular data, as well as
the biological problems addressed and the Machine Learning algorithms used for drug discovery in recent
years.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

According to the Precision Medicine Initiative, precision medi-
cine is ‘‘an emerging approach for disease treatment and preven-
tion that takes into account individual variability in genes,
environment and lifestyle for each person” [1]. This new approach
allows physicians and researchers to increase accuracy in predict-
ing disease treatment and prevention strategies that will work for
particular groups of people. This approach contrasts with the ‘‘one-
size-fits-all” approach, more widely used until relatively recently,
in which the strategies mentioned above are developed with the
average person in mind, regardless of differences between
individuals.

The opportunity for the creation of new treatments offered
by precision medicine generates at the same time great difficul-
ties in the development of new methodologies. For this reason,
in recent years a large amount of biomedical data has been
generated, coming from very diverse sources: from small indi-
vidual laboratories to large international initiatives. These data,
known mostly as omic data (genomic, proteomic, metabolomic,
pharmacogenomic, etc.), are an inexhaustible source of informa-
tion for the scientific community, which allows stratifying
patients, obtaining specific diagnoses or generating new treat-
ments [2].

Diagnostic tests are frequently performed in some disease
areas, as they allow immediate identification of the most effective
treatment for a specific patient through a specific molecular anal-
ysis. With this, the practice of trial and error medicine, which is
often frustrating and considerably more expensive, is often
4539
avoided. In addition, drugs created from these molecular charac-
teristics usually improve treatment results and reduce side effects.
One of the most common examples can be found in the treatment
of patients with breast cancer. A significant percentage of patients
with this type of tumor are characterized by overexpression of
human epidermal growth factor receptor 2 (HER2). For these
patients, treatment with the drug trastuzumab (Herceptin) in addi-
tion to chemotherapy treatment can reduce the risk of recurrence
to more than 50% [3].

On the other hand, there are also the so-called pharmacoge-
nomic tests that provide assistance in making decisions related
to the drug and the dose formulated for each patient. These deci-
sions are based on the genomic profiles of the patients, so that they
can metabolize certain drugs in different ways according to their
genetics, thus causing adverse reactions. These reactions are
related to variants in the genes that encode drug metabolizing
enzymes, such as cytochrome P450 (CYP450). Pharmacogenomic
testing can contribute to the safe and effective application of drugs
in many different areas of health, including heart disease, cancer
adjunctive therapy, psychiatry, HIV and other infectious diseases,
dermatology, etc.

The greatest complexity in drug discovery for certain molecular
targets and/or patient subgroups is found in the process itself and
in the strict regulations presented by the regulatory bodies. Cur-
rently, the discovery and development of new drugs is still a long
and extremely costly process. The average time period for the
development of a new drug is between 10 and 15 years of research
and testing. The large number of existing molecules with the
capacity to be tested as new drugs makes their study in wet lab



Fig. 1. Stages in the discovery of new drugs in the context of precision medicine.
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experiments practically impossible. However, in the last decade,
the evolution of the Information and Communication Technologies,
as well as the increase of the available computational capacity, has
4540
given way to new methodologies in silico for the screening of
extensive drug libraries. This step prior to preclinical studies
reduces the economic cost and increases the space for searching



Fig. 2. Machine Learning methodology commonly used for drug discovery.
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for new drugs. In this context, Machine Learning (ML) techniques
have gained a great prominence in the pharmaceutical industry,
offering the ability to accelerate and automate the analysis of the
large amount of data currently available.

The ML is a branch of Artificial Intelligence (AI) that aims to
develop and apply computer algorithms that learn from raw,
unprocessed data, in order to later perform a specific task. The
main tasks performed by the AI algorithms are classification,
regression, clustering or pattern recognition within a large data
set. There is a great variety of ML methods that have been used
in the pharmaceutical industry for the prediction of new molecular
characteristics, biological activities, interactions and adverse
effects of drugs. Some examples of these methods are Naive Bayes,
Support Vector Machines, Random Forest and, more recently, Deep
Neural Networks [4–10].

In order to study the state of the art in this field, this work has
been designed and developed. It gathers the most relevant publica-
4541
tions of the last five years in the use of ML techniques for early
drug discovery. Next, the works identified in this study are pre-
sented in different sections, analyzing with special interest the
descriptors used, the biological problem to be solved and the ML
algorithm used.

2. Standard machine learning methodology

The design of the experimental phase is a crucial step in the
field of Computational Intelligence and especially in ML. For this,
it is essential to first define the methodology to be implemented.
Fig. 1.

The application of an ML methodology must be transversal in
any field of research [11], even if all fields share certain steps in
the experimental design. Specifically, in the ML methodology
applied in drug discovery we can differentiate the following steps:
1) data collection; 2) generation of mathematical descriptors; 3)



Fig. 3. Representation of the information coded by the different molecular
descriptors according to their dimensions.
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search for the best subset of variables; 4) model training; 5) model
validation.

In Fig. 2, a diagram of the Machine Learning methodology com-
monly used for drug discovery can be observed Fig. 3.

The first step is to obtain the data set, which must have certain
characteristics. In addition to physical–chemical characteristics
Table 1
Top public repositories with chemistry used in Machine Learning model training. Table sh

Database No Compounds Usabillity

DrugBank 14 K Drug Discovery
PubChem 110 M Computational Chemistr
ChEMBL 2.1 M Drug Discovery
ZINC 750 M Virtual Screening
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that help absorption, specificity and low toxicity, it must also have
characteristics that allow it to be easily produced and handled in
the laboratory. This is because the pharmaceutical industry does
not employ large proteins or extremely complex molecules. The
main compounds it usually works on include small molecules
and peptides. In order to simplify the handling and analysis of
these compounds, the SMILES and FASTA formats are used to rep-
resent the sequence and structure of small molecules and peptides,
respectively.

Currently, there are numerous public repositories 1 that store a
large amount of useful data for the field of drug discovery, such as
DrugBank [12], PubChem [13], ChEMBL [14] or ZINC [15].

Fig. 2). The labelling of the different compounds is also impor-
tant (target in Fig. 2). Although there are some ML models that
do not need labelling, it is common in the field of drug discovery
to use supervised learning models. In this case, the labelling
defined by the researchers will be essential in the experimental
process.

With the generation of the mathematical descriptors, a set of
data is obtained which the ML model can process. This dataset is
divided into two subsets: one with a higher percentage of data,
dedicated to training the model (represented by the blue colour
in Fig. 2 smaller one dedicated to testing the model (represented
by the green colour in Fig. 2).

Within the training set, the search for the best subset of vari-
ables is carried out, with the right and necessary information. Nor-
mally, during the generation of mathematical descriptors, a large
number of numerical variables are presented. The main objective
of this process is to reduce as much as possible the useless or
redundant variables. To this end, there are different techniques
such as PCA, t-SNE, FS, Autoencoder, etc. FS techniques obtain a
subgroup of features belonging to the original set, which does
not modify the content of the variables. This provides a justifica-
tion that is understandable at a biological level and that is why a
large majority of researchers use these techniques in their experi-
mental designs [16].

Once the optimal subset of variables has been located, the
model is trained. First, the algorithms and their parameters must
be selected. These must be chosen carefully to ensure that they
are appropriate to the problem in question and the amount and
type of data available. Then, different runs of the experiment are
performed with the training data. Excessive training should be
avoided to ensure the validity of the model with unknown data.
The use of techniques such as cross-validation (CV) is common in
these cases. The CV allows measuring the degree of generalization
of the model during the training phase, evaluating its performance
and estimating the performance with unknown data. In each exe-
cution of the experiment, the original data set is divided again into
two subsets: the training set and the validation set. In the Fig. 2
you can see the development of the CV technique with 10 runs.
For each of these runs, the blue set corresponds to the training
set and the red set to the validation set.

The ultimate goal of the CV process is to select the best combina-
tion of parameters for each technique. From these parameters the
performance of each model is measured. The best model is the one
that achieves the highest performance value with the lowest total
cost.
ows number of availables compounds in each repository and its usability.

Link Reference

https://go.drugbank.com/ [12]
y https://pubchem.ncbi.nlm.nih.gov/ [13]

https://www.ebi.ac.uk/chembl/ [14]
https://zinc.docking.org/ [15]
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Finally, the test set extracted from the original set is recovered
(represented by the green colour in the Fig. 2 and a final validation
process of the best model resulting from the CV process is carried
out. If the validation results are statistically significant [17], it can
be said that a new predictive drug model has been created.

Machine learning techniques have been used inmany fields, and
the number of published papers has increased especially in recent
years. However, few of the machine learning publications related
todrugdevelopment are foundonopen accesswebsites. To facilitate
this understanding, works such as [18,19] provide an overview of
machine learning techniques and the current state of applications
for drug discovery in both academic and industrial settings.
3. The importance of input data in Machine Learning
predictions

A critical step in the training of the model depends on the rep-
resentation of the molecules by descriptors that are capable of cap-
turing their properties and structural characteristics. Hundreds of
molecular descriptors have been reported in the literature ranging
from simple properties of the molecules to elaborate three-
dimensional and complex molecular fingerprint formulations,
stored in vectors of hundreds and/or thousands of elements.
3.1. Quantitative structure–activity relationship

Under the premises ‘‘the structure of a molecule defines its bio-
logical activity” and ‘‘structurally similar molecules have a similar
biological activity”, the models of quantitative relationship
between structure and activity (QSAR), which numerically relate
the chemical structures of the molecules with their biological
activity, allow, through mathematical systems, to predict the
physicochemical and biological fate properties that a new com-
pound will have from the knowledge of its chemical structure
and from existing experimental studies.

QSAR models integrate computer and statistical techniques in
order to make a theoretical prediction of biological activity that
allows the theoretical design of possible future new drugs, avoid-
ing the trial and error process of organic synthesis. As it is a science
that exists only in a virtual environment, it allows dispensing with
certain resources such as equipment, instruments, materials and
laboratory staff. With a focus on the relationships between chem-
ical structure and biological activity, the design of candidates for
new drugs is much cheaper and faster. Modeling studies such as
QSAR is one of the most effective methods to perform compound
prediction when there is a lack of adequate experimental data
and facilities [20].

To carry out a QSAR study, three types of information are
needed [21]:

1. Molecular structure of different compounds with a common
mechanism of action

2. Biological activity data of each of the ligands included in the
study.

3. Physicochemical properties, which are described from a set of
numerical variables, obtained from the molecular structure vir-
tually generated by computational techniques.

In the prospective type, the results in the form of equation or QSAR
model allow predicting the biological activity of compounds not
yet synthesized that are generated virtually in a short time, but
must share structural characteristics of the ligands included in
the study not to leave the rules or chemical pattern or range of val-
ues of the descriptors. The other type, the retrospective analyzes
the already existing molecules (those of synthesis and bioassays)
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to understand their non-obvious interrelations between structures
and biological activities. The preparation of the input data is the
most crucial step since the result is obtained in an automated
way and only depends on the input.

The QSAR methodology is interdisciplinary, so it receives infor-
mation from Organic Chemistry and Pharmacology. The way in
which QSAR rewards this situation and that constitutes the objec-
tive of this methodology, is through the directed design of ligands
that do not yet exist, but through the generated equations have
shown a high probability of pharmacological success because as
it has been said, these equations allow a prediction of the biological
activity. When there is information collected from the literature or
from a laboratory, a statistical tool called multiple linear regression
is used, taking as a dependent variable the values of biological
activity of ligands and as independent variables, the calculated
descriptors.

The time of a molecular simulation carried out by means of
computational tools is much less than the time it would take for
the synthesis and bioassays of new compounds, which could be
months or even years. This advantage allows to take a series of
molecules and thanks to the speed of having the results, directly
feed the synthesis laboratory in the continuous process of the pro-
ject. Thus, QSAR predicts new structures never seen before and
proposes them to the organic chemists to be taken to the bioassays
whose results confirm or contradict the values predicted by the
QSAR model. In an optimal case, through this operational cycle,
better candidates are obtained than through pure trial and error.
This saves time, money, resources and avoids failure for those
who develop new drugs.

The advantages of QSAR are the low cost, since it does not use
laboratory instruments, nor chemical reagents, and in addition,
there is free software for the generation of the models that provide
interfaces that facilitate the handling and design. In addition, the
construction of the molecules and the calculation of descriptors
can be extremely fast. Among its disadvantages we can mention
the need for training in computational methodologies (different
operating systems and graphic interfaces, database management,
software development) and in this sense, the resolution of different
computational problems (compatibility, updates, records, data for-
mats) as well as the fact of having to have data on biological activ-
ity of the molecules coming from the same source, the change of
perspective in the way of working, etc.

3.2. Molecular descriptors

Molecular descriptors (MD) play a key role in many areas of
research. They can be defined as numerical representations of the
molecule that quantitatively describe its physicochemical informa-
tion. But not all the information contained in a molecule, but only a
part, can be extracted through experimental measurements. In
recent decades there has been an increasing focus on how to cap-
ture and convert, in a theoretical way, the information encoded in
the molecular structure into one or more numbers that are used to
establish quantitative relationships between structures and prop-
erties, biological activities and other experimental properties. In
this way, MDs have become a very useful tool to carry out the
search for similarities in molecular repositories, since they can find
molecules with similar physicochemical properties according to
their similarity to the values of the calculated descriptors.

From the beginning of its application, thousands of molecular
descriptors have been defined, which encode molecules in differ-
ent ways, being able to give a generic description of the whole
molecule (1D descriptors), whose calculation is simpler than those
descriptors that define properties calculated from two- and three-
dimensional (2D and 3D) structures, which define more specific
characteristics, but whose calculation is more complex.
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It has been argued that the number of atomic and molecular
descriptors developed to date constitute a sufficient arsenal for
the search for new drugs to develop. However, one of the causes
of the lack of adjustment in the models may be the very nature
of the sample or the inappropriate selection of the structural
descriptors. The later may be due to the selection procedure used,
or to the insufficient capacity to describe the phenomenon by the
models. All this is reason enough to continue the search for new
structural or atomic descriptors that can be used in QSAR-based
model studies.

The molecular descriptors can be divided into two main cate-
gories. Experimental measurements, such as log P, molar refractiv-
ity, dipole moment, polarisability and, in general, additive
physical–chemical properties and theoretical molecular descrip-
tors, which are derived from a symbolic representation of the
molecule and can be further classified according to the different
types of molecular representation. Theoretical ones, in turn, are
classified into:

1. Constitutional: reflect general properties of molecular nature
2. Topological: its calculation is done through graph theory
3. Geometric: are derived from empirical schemes and encode the

ability of the molecule to participate in different types of
interactions.

4. Electronics: refer to the electronic properties
5. Physicochemicals: define the behaviour of the molecule in the

face of external reactions

If we consider the dimensions of the molecular characteristics rep-
resented by the theoretical molecular descriptors, the following
categories are established.

3.2.1. 0D descriptors
Are the easiest to calculate and interpret. Included in this cate-

gory are all those molecular descriptors for whose calculation no
structural information of the molecule or connectivity between
atoms is needed and therefore they are independent of any confor-
mation problem and do not need optimization of the molecular
structure.

They usually show a very high degeneration, that is, they have
equal values for several molecules, such as isomers. Their informa-
tion content is low, but they can nevertheless play an important
role in the modelling of various physicochemical properties or par-
ticipate in more complex models. Examples of these descriptors
are the number of atoms, number of bonds of a certain type, molec-
ular weight, average atomic weight or sum of atomic properties
such as Van der Waals volumes.

3.2.2. 1D descriptors
All the molecular descriptors that allow calculating information

from fractions of a molecule can be included in this category. They
are usually represented as fingerprints, which are no more than
binary vectors in which 1 indicates the existence of a substructure
and 0 indicates its absence. This form of representation has a great
advantage and is that it allows calculations to be carried out very
quickly to find similarities between molecules. Like 0D, these
descriptors can be easily calculated, are naturally interpreted, do
not require optimization of the molecular structure and are inde-
pendent of any conformation problem. They usually show a med-
ium–high degeneration and are often very useful to model both
physicochemical and biological properties.

Within the 1D descriptors we talk about those based on the
count of chemical functional groups, such as the total number of
primary carbon atoms, number of cyanates, number of nitriles,
etc, and the so-called atom-centred fragments, which are based
on the count of different fragments of the molecule. Examples of
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the last-mentioned are hydrogen bonded to a heteroatom, hydro-
gen bonded to an alpha carbon and fluorine bonded to a primary
carbon.

3.2.3. 2D descriptors
They describe properties that can be calculated from two-

dimensional representations of molecules. They are obtained
through the graph theory, independent of the conformation of
the molecule. Their calculation is based on a graphic representa-
tion of the molecule and they present theoretical properties of
structure that are preserved by isomorphism, i.e. properties with
identical values for isomorphic graphs. The invariant part can be
a characteristic polynomial, a sequence of numbers or a single
numerical index obtained by applying algebraic operators to matri-
ces representing molecular structures and whose values are inde-
pendent of the numbering or labelling of the vertices.

They are generally derived from a molecular structure degraded
in hydrogen. They can be sensitive to one or more characteristic
structures of the molecule such as size, shape, symmetry, branch-
ing and cyclicity and can also encode chemical information about
the type of atom and the multiplicity of bonds. In fact, they are
generally divided into two categories:

1. Structural-Topology index:: encode only information about
the adjacency and distance of atoms in the molecular structure.

2. Topochemical index: quantify information on topology but
also on specific properties of atoms such as their chemical iden-
tity or state of hybridization.

3.2.4. 3D descriptors
The three-dimensional descriptors are related to the 3D repre-

sentation of the molecule and include the conformation of the
molecular structure, where the distances between bonds, bond
angles, dihedral angles, etc. are considered, being able then to
describe the stereochemical properties of the molecules. Its calcu-
lation is more complex than in the previous ones and may require
the analysis of many molecular conformations.

The most popular 3D descriptors include representations of
pharmacophore type molecules, defined as a set of steric and elec-
tronic features needed to ensure optimal supramolecular interac-
tions with a specific biological target and trigger or block its
biological response, where features such as hydrophobic centres
or hydrogen bond donors, which are known or believed to be
responsible for biological activity, are mapped into positions in a
molecule. The conformation-dependent distances between these
points are then calculated and recorded. Three-point pharma-
cophores are widely used, but more potent four-point pharma-
cophores have been introduced, which may require the analysis
of millions of possible pharmacophores for a test compound. Com-
plex 3D descriptors are calculated, for example, to identify active
conformations of a compound or to identify critical characteristics
for differences in activity in series of analogues. At the same time,
this type of calculation is needed to generate the ‘‘pharmacophore
shape” of a query molecule in order to search databases for com-
pounds with similar 3D characteristics. In addition, the use of phar-
macophore type descriptors is fundamental for the derivation of
3D-QSAR or 4D-QSAR models.

3.2.5. 4D descriptors
Also referred to as grid-based, these descriptors provide addi-

tional information by introducing a fourth dimension that allows
characterization of interactions between molecules, their confor-
mational states and the active sites of a biological receptor. The
central hypothesis is that consideration of ligand conformational
variation, influenced by factors such as solvent molecules and
non-covalent interactions within protein binding pockets, will



P. Carracedo-Reboredo, J. Liñares-Blanco, N. Rodríguez-Fernández et al. Computational and Structural Biotechnology Journal 19 (2021) 4538–4558
result in descriptors that characterize the molecular properties of
compounds more accurately and thus lead to more reliable QSAR
models.

From the work published by Cramer et al. in 1988 [22], the use
of the field properties of the molecules was proposed field proper-
ties of molecules in three-dimensional space to develop and apply
QSARmodels. This method was called Comparative Molecular Field
Analysis (CoMFA) and its basic foundation consists of sampling the
steric (van derWaals) and electrostatic (Coulombic) fields around a
set of aligned molecules, in order to capture all the information
necessary to explain the final response exhibited by the molecules.
The sampling consists of calculating the interaction energies of the
molecules, by means of appropriate probes located in the three-
dimensional lattice arranged around the molecular structures.

A critical step in the CoMFA method is the proper alignment of
the molecules, which can be time-consuming and requires prior
knowledge of the precise molecular conformation. For this reason,
it is necessary to analyze the most active molecules in the dataset
and use them as a template. Additionally, when the dataset fea-
tures molecules with several conformational degrees of freedom,
the selection of the active conformation is often a significant hur-
dle in QSAR-3D modeling. Therefore, a prior systematic conforma-
tional search must be performed to define the most stable
conformer according to the generated Potential Energy Surface
(PES). Currently, there are different computational methods to
improve the performance of the CoSAR-3D alignment performance
of the CoMFA technique [23].

Most QSAR models use numerical descriptors derived from the
two- and/or three-dimensional structures of molecules.
Conformation-dependent characteristics of flexible molecules and
interactions with biological targets are not encoded by these
descriptors, leading to limited prediction. 2D/3D QSAR models
are successful for virtual screening, but often suffer in the opti-
mization stages. That’s why conformation-dependent 4D-QSAR
modeling was developed two decades ago, but these methods have
always suffered from the associated computational cost. Recently,
4D-QSAR has undergone a significant breakthrough due to rapid
advances in GPU-accelerated molecular dynamics simulations
and modern machine learning techniques [24].

During the last 15 years, new multidimensional descriptors
have been incorporated into QSAR modeling, termed 5D and 6D
descriptors. These are based on structural parameters associated
with the flexibility of the receptor binding site along with the
Fig. 4. The number of identified items that have use
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topology of the ligand. Specifically, the 5D descriptors are calcu-
lated frommultiple conformations, orientations, protonation states
and stereoisomers of the ligand under analysis. In the case of the
6D descriptors, it is necessary to take into account the solvation
scenarios of the complex, the ligands and the interacting environ-
ment[25].

3.2.6. How many descriptors are needed?
In broad terms, the number of descriptors to be used will

depend on the computational tools available and the number of
molecules included in the study. The most frequent error consists
of allowing the mathematical operation of the linear regression
model to add an over-dimensional numerical space to describe
each molecule independently without being able to establish a rule
with predictive and reliable power. This happens when the number
of descriptors exceeds the number of molecules. On the other hand,
the exhaustive search, can be applied to all but the simplest cases,
since the search space is not practical when there is a low number
of molecular descriptors. The reliability of the model can be
affected, not only by the presence of noise, but also by the correla-
tion of redundant descriptors and also by the presence of irrelevant
descriptors. Therefore, variable selection techniques are largely
used to remedy this situation and improve the accuracy and pre-
dictive power of classification or regression models [16].

In recent years, the scientific community has focused much
attention on techniques dedicated to variable selection, i.e. the
selection of molecular descriptors in QSAR. Since there are thou-
sands of descriptors available to describe a molecule and often
there is no a priori knowledge about which characteristics are most
responsible for a specific property, subsets of the most appropriate
descriptors are explored through different strategies. Today there
are many software tools for calculating molecular descriptors, each
with its advantages and disadvantages (ease of use, licences, num-
ber of descriptors, etc.).

3.3. Fingerprints

Fingerprints (FP) are a particular form of molecular descriptors
that allow quickly and easily the effective representation of the
molecular structure through a chain or vector of bits, with a fixed
length, which indicate the existence or absence of internal sub-
structures or functional groups. This form of molecular coding is
very efficient for storing, processing and comparing the data that
d the most common fingerprints is represented.
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is hosted in the strings that contain the molecular information.
However, fingerprints that are derived from chemical structures
ignore the biological context, thus leaving a gap between molecu-
lar structure and biological activity, so that small changes in the
former can produce substantial differences in bioactivity.

There is a wide variety of FP, from the simplest, which lists a
catalog of 2D substructures (e.g. MACCS), to more advanced ver-
sions that include 3D information on molecular conformation.
The following is a summary of the most commonly used ones. In
the Fig. 4 a summary of the descriptors found in the articles con-
sulted is shown. It indicates the number of times a descriptor
appears individually in a publication, as well as the number of
studies that have used several of them. It is common in this type
of study to compare several of them. The Fig. 4 shows how ExtFP
fingerprints are the most used in absolute terms. In second place
we find the MACCS. The main reasons for their extensive use are
their easy calculation and the positive results they have been
obtaining in the different problems. Bearing in mind that the sam-
ple of articles consulted is representative of the last five years of
research, we can see how these descriptors are still used today in
research, since their use has not been diminished by the appear-
ance of other more sophisticated analysis techniques.

3.3.1. Extended-Connectivity Fingerprints
Extended Connectivity Fingerprints (ECFP) are a class of topo-

logical fingerprints for molecular characterization [26,27]. Histori-
cally, topological fingerprints were developed for the search of
substructures and similarities, but these have been developed
specifically for structure–activity modeling [28–32].

ECFPs are circular fingerprints with a number of useful
qualities:

1. They can be calculated very quickly.
2. They are not predefined and can represent a large number of

different molecular characteristics (including stereochemical
information).

3. Its characteristics represent the presence of particular substruc-
tures, which allows an easier interpretation of the analysis
results.

4. They are designed to represent both the presence and absence
of functionality, as both are crucial for analyzing molecular
activity.

5. The ECFP algorithm can be adapted to generate different types
of circular fingerprints, optimized for different uses.

They are among the most popular similarity search tools in drug
discovery [33–38] and are used effectively in a wide variety of
applications. They can store information about the environments
surrounding each atom in a molecule and in addition to the search
for similarities, ECFPs are well suited to recognizing the presence
or absence of particular substructures, so they are often used in
the construction of QSAR and QSPR models.

3.3.2. MACCS keys
MACCS (Molecular ACCess System) Keys are another of the most

used structural keys [36,37,39,38]. Sometimes they are known as
MDL keys, which bear the name of the company that developed
them. While there are two sets of MACCS keys, one with 960 keys
and the other containing a subset of 166 keys [40–44], only the
shortest fragment definitions are available to the general public.
These 166 public keys are implemented in open source chemoin-
formatics software packages, including RDKit, CDK, etc.

3.3.3. Pubchem fingerprints
PubChem is a repository that houses a large amount of molecu-

lar information that can be consulted and downloaded for free. A
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substructure is a fragment of chemical structure for which Pub-
Chem generates a fingerprint, which is a list of bits [41,42,45]. Pub-
Chem Fingerprints are 881-bit long structural keys, which
PubChem uses to perform similarity search [44,46]. It is also used
for neighboring structures, which pre-calculate a list of similar
chemical structures for each compound. This pre-calculated list
can be accessed through the Compound Summary page.

3.3.4. Atom pairs
They are fingerprints based on topological routes, which repre-

sent all possible connectivity routes defined by a specific finger-
print through an input compound [36,39,37,41]. They mainly
focus on chemical connectivity information of synthetic com-
pounds. In turn, within this classification we can distinguish:

1. AtomPairs2DFingerprint (APFP): they are defined in terms of
the atomic environment and the shortest path separations
between all pairs of atoms in the topological representation of
a composite structure. It encodes 780 pairs of atoms at various
topological distances.

2. GraphOnlyFingerprint (GraphFP): is a specialized version of the
molecular fingerprint in the Chemical Development Kit (CDK),
which encodes the 1024 path of a fragment in the composite
structure and does not take into account the information of
the binding order.

3.3.5. CDK
The Chemical Development Kit (CDK) is a set of widely used

open source chemoinformatics tools (drug discovery, toxicology,
etc), which provides data structures to represent chemical con-
cepts, including 2D and 3D representation of chemical structures,
along with methods to manipulate these structures and perform
calculations on them. The library implements a wide variety of
algorithms ranging from the canonicalization of chemical structure
to molecular descriptor calculations and the perception of pharma-
cophores [36].

The CDK provides methods for common tasks in molecular
computing, including 2D and 3D representation of chemical struc-
tures, SMILES generation, ring searches, isomorphism verification,
structure diagram generation, etc. Implemented in Java, it is used
both for server-side computational services, possibly equipped
with a web interface, and for client-side applications [37].

3.3.6. Other types of fingerprints
In addition to the types of fingerprints described above, there

are many other types that, although not as widely used, do appear
in the literature very often, such as EstateFP [42,47,48] and
Klekota-Roth [39,41,36].

3.4. Graph-based machine learning algorithms

Most predictive models in chemoinformatics base their input
data on molecular descriptors calculated and coded in numerical
vectors, as described in the previous section. The use of these
descriptors generates high dimensionality matrices for the use of
classical ML algorithms such as Random Forest, SVM, ANN, NB,
etc. These algorithms are designed to process data structured in
matrices or vectors, but are not capable of using the total informa-
tion of molecules that are represented as a mathematical graph.

A molecular network is the representation of the structural for-
mula of a chemical compound in terms of graph theory. In terms of
the representation of a molecule each molecule is represented as a
graph (G). Each atom in the network is represented as a node in the
network. V is the set of atoms in the molecule, A corresponds to the
adjacent matrix that indicates the connectivity between atoms,
and the X matrix represents the atomic characteristics for each
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atom. Therefore, each graph is mathematically represented as G =
(V, A, X) [49,50].

Recently the creation of chemoinformatic models, capable of
predicting specific functions, were based on the information
extracted from these molecular graphs. For this purpose, the algo-
rithms used were artificial neuron networks. Unlike more conven-
tional topologies such as the fully connected neural network (FNN)
or the convolutional neural network (CNN), which extract informa-
tion from vectors or numerical matrices, graph neural networks
(GNNs) are capable of extracting structural information from a
mathematical graph. In January 2009 when Scarselli et al. [51] pre-
sented The Graph Neural Network Model, and from that moment
these models were widely used in various applications. Among
them, chemoinformatics was the one that has grown significantly
in the last decade.

Subsequently, several works were published for the improve-
ment and applicability of these graph-based models. For example,
Duvenaud et al. [52] presented an architecture based on the gener-
alization of fingerprint computing so that it can be learned through
retropropagation. On the other hand, Bruna et al. [53] introduced
convolutional deep networks on spectral representations of graphs,
while Masci et al. [54] described the convolutional networks on
non-Euclidean collectors. Graphics-based machine learning algo-
rithms, in particular GNN, have recently begun to attract signifi-
cant attention in chemical science [55–57,51].

Graph convolutions are a deep learning architecture for learning
directly from undirected graphs. In 2016, researchers from Stan-
ford and Google Inc. developed what is known as Molecular Graph
Convolutions [58]. It was as a result of the application of convolu-
tional algorithms for graphs that computational research in drug
discovery has taken a step forward. In the last years many
researches have been published using this kind of algorithms or
variants for a certain function [49]. For example, at work [59] pro-
pose a robust and guided molecular representation based on Deep
Metric Learning, which automatically generates an optimal repre-
sentation for a given data set. In this way they try to solve the mod-
ifications generated in the properties of the molecules to changes
in its molecular structure. On the other hand, in [60] developed
new network definitions using the assigment of atom and bond
types in the force fields of molecular dynamics methods as node
and edge labels, respectively. Thus improving the accuracy of clas-
sification activities for chemicals. In addition, these algorithms can
be combined with others such as [61]. In this work they designed
new drugs based on GCN and learning by reinforcement. In this
case, they addressed the problem of generating new molecules
with desired interaction properties as a multi-target optimization
problem. They use trained GCN with linkage interaction data. The
combinations of these terms, including drug similarity and syn-
thetic accessibility, were optimized using a reinforcement learning
based on a graphical convolution policy approach. Moreover, in
[62] propose a comprehensive method to apply symmetry in the
graphical neural network, which extends the coverage of the pre-
diction property to the orbital symmetry for both normal and
excited states. This method is able to include the molecular sym-
metry in the predictive models linking the real space (R) and the
moment space (K). Finally, another example is the one performed
by [63], where they implemented graph-based deep learning mod-
els to predict flash points of organic molecules, which play an
important role in preventing flammability risks. After comparing
them with different techniques, they observed how the graph-
based models outperformed the others. On the other hand, in
[55] implemented another graph-convolutional neural network
for the prediction of chemical reactivity.

One of the weaknesses of these technologies is that most of the
times they are treated as black boxes, which present a very low
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interpretability of the results. To avoid this fact, in [64] develop a
new graphical neural network architecture for molecular represen-
tation that uses a graphical attention mechanism to learn from rel-
evant drug discovery data sets. The interpretability of the results
obtained by this new architecture stands out from this work.

4. Biological problems asses by Machine Learning in drug
discovery

A drug can be defined as a molecule that interacts with a func-
tional entity in the organism, called a therapeutic target or molec-
ular target, modifying its behaviour in some way. Known drugs act
on known targets, but the discovery of new ones that can modify
the course of a disease or improve the effectiveness of existing
treatments is one of the main objectives of research in the field
of chemistry and biology.

The development of a new drug can take up to 12 years and it is
estimated that its average cost, until it reaches the market, is
approximately one billion euros. The time and costs involved are
largely associated with the large number of molecules that fail at
one or more stages of their development, as it is estimated that
only 1 in 5,000 drugs finally reach the market.

The previous statistics show that the discovery and develop-
ment of new drugs is a very complex and expensive process. This
process has been carried out for a long time using exclusively
experimental methods. The technological advances of the last
few decades have promoted the birth of the term in silico, a term
that is now common in biology laboratories, and which designates
a type of experiment that is not done directly on a living organism
(these are called in vivo experiments) or in a test tube or other arti-
ficial environment outside the organism (experiments called
in vitro), but is carried out virtually through computer simulations
of biological processes.

The complexity of modern biology has made these computa-
tional tools essential for biological experimentation, as they allow
theoretical models to be coded with great precision and are cap-
able of processing large amounts of information, thus facilitating
and accelerating the process of developing new drugs.

The development of a new drug begins with the search phase,
through high-performance screening, for so-called hits, a term used
to describe those molecules or compounds that show biological
activity against a therapeutic target or molecular target, which is
the place in the body where the drug is intended to operate. This
phase is followed by the generation of leads, where the previously
selected molecules are validated and structurally refined to
increase their potency with respect to the target. In addition,
appropriate pharmacokinetic properties are expected, i.e. adequate
absorption, distribution, metabolism and elimination (ADME)
rates, as well as low toxicity and adverse effect rates. A bar chart
that quantifies the number of items identified in various biological
problems is shown in Fig. 5. These problems have been defined by
the researchers according to the set of articles consulted. It can be
seen that the vast majority of the articles belong to the group of
therapeutic targets. On the other hand, it can be seen that the
works related to cancer are of great interest, as well as those aimed
at predicting the adverse effects of certain drugs.

4.1. Administration, distribution, metabolism, elimination and toxicity

The concept of drug similarity, established from the analysis of
the physicochemical properties and structural characteristics of
existing or candidate compounds, has been widely used to filter
out compounds with undesirable properties in terms of adminis-
tration, distribution, metabolism, elimination and toxicity
(ADMET) [65]. The study of the ADME phases that a drug under-



Fig. 5. Counting of identified articles classified according to the biological problem
addressed. The sampling of selected articles was during the period from 2016–
2020.
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goes after being administered to an individual is another of the
fundamental tasks in the development of new compounds [66].
Alteration in a patient of any of these stages (for example, excre-
tion problems due to some type of renal failure, increased volume
of distribution in obese people, absorption problems due to gas-
trointestinal pathology or problems in the metabolism of the drug
due to deterioration of liver function) may influence the final
plasma concentration of the drug modifying the expected response
of the organism, thus requiring a decrease or increase in the dose of
the drug in each case.Therefore, it is essential in the early stages of
research to estimate the behaviour of the pharmacokinetic proper-
ties of a compound, and new tools have been developed to improve
and speed up this phase of development. This is the example of
Chemi-Net [67], for the prediction of ADME properties, which
increases the accuracy over another tool with the same purpose
already in existence.

The company Bayer Pharma has implemented a platform for
absorption, distribution, metabolism and excretion ADMET in silico
with the aim of generating models for a wide variety of useful
pharmacokinetic and physicochemical properties in the early
stages of drug discovery, but these tools are accessible to all scien-
tists within the company [68].

The octanol–water partition coefficient is a measure of the
hydrophobicity or lipid affinity of a substance dissolved in water.
Chemical compounds with high values of this coefficient usually
accumulate in the lipid portions of the organisms, thus producing
toxicity. On the contrary, the compounds with low coefficient tend
to be distributed in water or air, so they could be eliminated from
the organism without accumulating [69]. Furthermore, the ade-
quate estimation of the half-life of elimination of a drug would
have potential applications for the first pharmacokinetic evalua-
tions and thus provide guidance for designing drug candidates
with a favourable in vivo exposure profile [70], so improving this
estimation is another grain of sand in the development of the com-
plex process.

The metabolism is the main route of elimination from the body
for most of the 200 most marketed medicines. The study of the sta-
bility of NADPH-fortified liver microsomes is common in the
research of new drugs to predict clearance and thus be able to esti-
mate the maximum exposure to a drug for a given dose [35]. In
addition, the liver is the main organ involved in drug metabolism,
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and therefore liver injury caused by drugs has often hindered the
development of new drugs. Assessment of the risk of liver injury
to drug candidates is an effective strategy to reduce the risk that
a study will not go ahead with new drug discovery.

Toxicity is a major cause of the failure of drug research and
development. International data showed that in the period from
2006 to 2010, toxicity accounted for 22 and 54% of failures in drug
research and development, at the clinical and preclinical stages,
respectively. Adverse drug reactions (ADRs), which can increase
morbidity, occur more significantly in hospitalized patients and,
in addition to the clinical burden, also represent a significant eco-
nomic cost. For all these reasons, early stage virtual screening of
drug candidate molecules plays a key role in the pharmaceutical
industry to prevent ADR. It is therefore essential to study toxico-
logical properties as early as possible and to give priority to the
main compounds that pose the least threat at the stage of discov-
ery of hits, thus increasing the chances of success during clinical
development.

Computer-based predictions of toxicity and ADR can point drug
safety testing in the right direction and consequently shorten the
time required and save costs during drug development. Some
adverse reactions can be part of the natural pharmacological action
of a drug that cannot be avoided, but more often, they can be
unpredictable at the development stage. They may occur due to
the administration of one drug or the combined use of two or more
drugs. The aim of [71] is to identify treatments for dermatological
diseases (including psoriasis, atopic dermatitis, rosacea, acne vul-
garis, alopecia, melanoma, eczema, keratosis, and pruritus) that
may induce adverse reactions when taken in combination with
other topical or oral drugs (immunosuppressants, enzyme inhibi-
tors) prescribed to treat other pathologies (fungal/bacterial
infections).

To advance research into compounds against infectious agents,
these compounds must show a relative lack of toxicity in mam-
malian cells. In initial trials, the use of Vero cells to measure the
cytotoxicity that a drug can produce is common, thus allowing
the identification of non-cytotoxic components [28].

Prior to clinical application of a drug, it must go through two
stages of ADR detection, including pre-clinical, to study safety pro-
files and clinical safety trials of drugs [72]. The high number of
potential adverse effects that can occur with the consumption of
drugs alone or in combination, makes it difficult to detect many
of these adverse effects during early drug development, so tools
such as SDHINE [73] have been proposed to predict adverse drug
reactions. In [74], they are developing a new methodology for pre-
dicting drug side effects (’Feature Selection-based Multi-Label-K-
Nearest Neighbor method’), which can also help reveal the possible
causes of adverse effects. In general, computational tools have also
been developed to distinguish between carcinogenic and non-
carcinogenic compounds [37].

Many drug candidates can cause blockage of potassium chan-
nels, a potentially fatal phenomenon as it can produce a long QT
syndrome, leading to death from ventricular fibrillation. In their
work [67] they provide a web-based tool for predicting cardiotox-
icity of potassium channel-related chemicals hERG [75], which can
be used in the high-performance virtual detection stage for drug
candidates.

Computational attempts have also been made to evaluate toxi-
city profiles of compounds included in drugs used in the treatment
of HIV and Malaria [76].

4.2. Antimicrobials

Infectious diseases are caused by pathogenic microorganisms
such as bacteria, viruses, parasites or fungi. These diseases can be
transmitted, directly or indirectly, from one person to another.
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Few new classes of antibiotics have emerged in recent decades
and this pace of discovery it is unable to keep up with the increas-
ing prevalence of resistance. However the large amount of data
available promotes the use of machine learning techniques in dis-
covery projects (for example, building regression, classification
models and virtual classification or selection of compounds). The
authors of [77] review some Machine Learning applications focus-
ing on the development of new antibiotics, the prediction of resis-
tance and its mechanisms.

Antibiotics are the treatment of choice for bacterial diseases,
but the increase and abuse of antibiotics has led to the emergence
of bacterial resistance to many of today’s antibiotics, hence the
need to generate new compounds that can combat multi-
resistant organisms. Thus, much research is being done on Halicin
[78], which is a molecule with bactericidal capacity that has shown
great promise in attacking bacteria that are difficult to treat with
current antibiotics. Its structure is different from that of conven-
tional antibiotics and shows bactericidal capacity against a wide
phylogenetic spectrum that includes Mycobacterium Tuberculosis
(bacteria for which more efficient treatments are still being sought
[31]), and enterobacteria, clostridium difficilae and acinetobacter
baumanii. But resistance is not exclusive to bacteria, and resistance
to current treatments for malaria, produced by the protozoan par-
asite plasmodium falciparum, is a concern, affecting more than 200
million people worldwide. While the treatment of choice includes
combinations of drugs [79], studies are already underway to iden-
tify new combinations that may circumvent current resistance
mechanisms [80].

Viruses can cause common infectious diseases such as the com-
mon cold and influenza, for which there is currently no specific
treatment (it is the immune system that eliminates it from the
body) or preventive treatment (vaccines). But the viruses also
cause serious diseases such as AIDS, Ebola (which is the cause of
a large number of studies [81] because of the 2016 epidemic), or
COVID-19 (on whose curative or preventive treatment most cur-
rent global efforts are focused). In addition, co-infection with cer-
tain viruses is common in certain populations, such as co-
infection with human immunodeficiency virus type 1 and hepatitis
C virus (HIV/HCV). In this case treatment of coinfection is a chal-
lenge due to the special considerations to be taken into account
to ensure liver safety and avoid drug interactions. Therefore, drugs
that are effective against multiple pathogens and with less toxicity
that can provide a therapeutic strategy in certain co-infections are
sought [38].

An effective therapeutic strategy is urgently needed to treat the
rapidly growing COVID-19 in patients from all over the world. As
there is no proven effective drug to treat COVID-19 patients, it is
fundamental to develop efficient strategies that allow the reuse
of drugs or the design of new drugs against SARS-CoV-2.

In [82] the main strategies are summarized that are being used
through the use of artificial intelligence and machine learning
techniques.

The 3Clike protease of the coronavirus, associated with the syn-
drome severe acute respiratory tract (or 3CLpro), is a potential tar-
get as anti-SARS agents, due to its critical role in viral replication
and transcription. Due to the high structural closeness between
the enzymes in the old strain SARS CoV and the new SARS CoV-2,
it would be expected that compounds that inhibit the former
enzyme would show similar interactions with the latter. In numer-
ous studies [83,84], QSAR models have been developed to search
for compounds that act as SARS-CoV-3CLpro enzyme inhibitors
and a study of the structural characteristics of those molecules that
control its inhibition of 3CLpro (pIC50).

Central nervous system (CNS) infections are a major cause of
morbidity and mortality. The passage of fluids and solutes into
the CNS is closely regulated through the blood–brain barrier
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(BBB). The penetration of any drug into the cerebrospinal fluid
(CSF) depends on molecular size, lipophilicity, binding to plasma
proteins and their affinity for transporters. In the search for drugs
indicated for CNS infections, it is essential to predict their capacity
to cross this barrier [85], being able to discard from the beginning
those that do not do so in minimal concentrations.

4.3. Target drug interaction

Determining the goal to be reached is the most important, and
most error-prone, in the development of a therapeutic treatment
for a disease, where failures are potentially costly given the long
time frames and expenses of drug development. Compound-
protein interaction (CPI) analysis has become a crucial prerequisite
for new drug discovery [86–90]. In vitro experiments are com-
monly used to identify CPIs, but it is not feasible to perform this
task through experimental approaches alone, and advances in
machine learning in predicting CPIs have made great contributions
to drug discovery. To improve the task of predicting ligand–protein
interactions, tools such as Multi-channel PINN [26]. In addition, the
study of these interactions is essential for obtaining traces of novel
drugs and predicting their side effects from approved drugs and
candidates [40].

On the other hand, the identification of the viability of the tar-
get proteins is another of the preliminary steps of drug discovery
[91–93]. Determining a protein’s ability to bind drugs in order to
modulate its function, called drug capacity, requires a non-trivial
amount of time and resources. This task is aided by new functions
developed in eFindSite [94], which is independent software avail-
able free of charge, that uses supervised machine learning to pre-
dict the pharmacological ability of a given protein.

The crystallised ligands in the Protein Data Bank (PDB) can be
treated as inverse forms of the active sites of the corresponding
proteins. The similarity of shape between a molecule and the
ligands of PDBs indicates the possibility of the molecule binding
to certain targets [95]. Membrane proteins are involved in many
essential biomolecule mechanisms as a key factor in enabling the
transport of small molecules and signals on both sides of the cell
membrane. Therefore, accurate identification of membrane
ligand–protein binding sites will significantly improve drug dis-
covery. To this end, MPLs-Pred [96] has been developed as a freely
available tool for general users. The prediction of interactions from
Multi Kernel methods makes it possible to identify possible drug-
target interaction pairs [97].

Cone snails are poisonous sea snails that inject their prey with a
lethal cocktail of conotoxins, small, secreted, cysteine-rich pep-
tides. Given the diversity and often high affinity for their molecular
targets, which consist of ion channels, receptors or transporters,
many conotoxins have become valuable pharmacological probes.
However, homology-based search techniques, by definition, can
only detect new toxins that are homologous to previously reported
conotoxins. To overcome these obstacles ConusPipe is an auto-
matic learning tool that uses chemical characters of conotoxins
to predict whether a certain transcript in a Conus transcriptome,
which has no otherwise detectable homologues in current refer-
ence databases, is a putative conotoxin. This provides a new com-
putational pathway for the discovery of new families of toxins [98].

4.4. Antitumorals

Cancer is a major public health problem throughout the world
and it is therefore imperative that new drugs are developed for
its treatment. The main goal of cancer research is to discover the
most effective method of treatment for each cancer patient, since
not everyone responds equally to a specific treatment due to exter-
nal factors, such as the use of tobacco products and unhealthy
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diets, and internal factors, such as heterogeneity of cancer cells and
immune conditions. As the number of cancer patients worldwide
increases each year, being able to correctly predict a cancer’s
response or non-response to a specific drug would be invaluable.

The word cancer refers to the uncontrolled proliferation of
abnormal cells, which when they outgrow normal cells, make it
difficult for the body to function the way it should. Although the
word cancer is used in a general way, the term encompasses a
range of diseases with very different pathogenesis, evolution and
treatment.

In general, many therapeutic targets have been studied and
identified that may be amenable to treatment. Computational
techniques have been widely used to predict the activity of many
compounds on these targets, so for example it is known that G-
protein-coupled receptors (GPCRs) play a key role in many cell-
signalling mechanisms whose alteration may be involved in the
pathogenesis of cancer [99]. Protein 4, which contains bromod-
omain (BRD4), has emerged as a promising therapeutic target for
many diseases, including cancer, heart failure and inflammatory
processes. Nitroxoline is an antibiotic that showed potential over
BRD4 with inhibitory activity against leukaemia cell lines, and
has been shown to be effective against leukaemia cell lines [100].
Indolamine 2,3-dioxygenase (IDO), an immune checkpoint, is a
promising target for cancer immunotherapy. Three IDO inhibitors
with potent activity have been identified by machine learning
methods [34], but have not yet been approved for clinical use.
Attempts have also been made to predict the response to the same
drug of different types of tumours [101], including breast cancer,
triple-negative breast cancer and multiple myeloma. Computa-
tional methods have also been used to study histone deacetylases
(HDAC), which are an important class of enzyme targets for cancer
therapy, and inhibitory compounds of these have been sought
through computational techniques [102].

The phosphoinositide 3-kinase protein (PI3K) plays a key role in
an intracellular signalling pathway responsible for many processes
in response to extracellular signals, such as regulation of the cell
cycle, cell survival, cell growth, angiogenesis, etc. Vascular tumours
in children often show mutations in this molecule, so it has
become a promising drug target for cancer chemotherapy. PI3K
inhibitors have gained importance as a viable cancer treatment
strategy as they control most features of cancer, including cell
cycle, survival, metabolism, motility and genomic instability.
Structure-based virtual screening has been performed to identify
PI3K inhibitors [103]. Another membrane glycoprotein studied as
a target, and for which inhibition simulations have been carried
out, is P-gp membrane laglucoprotein [104]. Different tumour cell
lines have also been used to study antibodies as a possible treat-
ment [105] quantifying levels of proliferation and apoptosis to pre-
dict their functioning.

Molecules can be identified as anti-cancer agents through two
widely used drug discovery methods [106]: target-based drug dis-
covery (TDD, target-first, direct chemical biology) and phenotype-
based drug discovery (PDD, function-first, reverse chemical
biology).

Kinases are one of the largest families considered to be attrac-
tive pharmacological targets for neoplastic diseases due to their
fundamental role in signal transduction and regulation of most cel-
lular activities [107]. As a result, kinase inhibitors have gained
great importance in cancer drug discovery over the last two dec-
ades, because despite considerable academic and industry effort,
current chemical knowledge of kinase inhibitors is limited and
therefore tools such as Kinformation [108] have been developed,
which is based on machine learning methods to automate the clas-
sification of kinase structures and this approach is expected to
improve protein kinase modelling in both active and inactive
conformations.
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Neoplastic growth and cell differentiation are fundamental
characteristics of tumour development. It is well established that
communication between tumour cells and normal cells, through
channels containing connective tissue including gap bonds, tun-
neled nanotubes and hemochannels, regulates tumour differentia-
tion and proliferation, aggressiveness and resistance to treatment.
It has been proposed that new computational approaches [109] to
the identification and characterisation of these communication
systems, and their associated signalling, could provide new targets
for preventing or reducing the consequences of cancer.

It has been postulated that new drug combinations can improve
personalized cancer therapy. Using various types of genomic infor-
mation on cancer cell lines, drug targets and pharmacological
information, it is possible to predict drug combination synergy
by regressing the level of synergy between two drugs and a cell
line, as well as classifying whether synergy or antagonism exists
between them [110].

For the current diagnosis of many cancers, nuclear morphome-
tric measurements are used to make an accurate prognosis in the
last stage, but early diagnosis remains a great challenge. Recent
evidence highlights the importance of alterations in the mechani-
cal properties of individual cells and their nuclei as critical drivers
for the emergence of cancer. Detecting subtle changes in nuclear
morphometry at single cell resolution by combining fluorescence
imaging and deep learning [111] allows discrimination between
normal cells and breast cancer cell lines, thus opening new ave-
nues for early disease diagnosis and drug discovery.

4.5. Neurology

Chemotherapy-induced peripheral neuropathy (CIPN) is a com-
mon adverse side effect of cancer chemotherapy, which can cause
extreme pain and even disable the patient. Lack of knowledge
about the mechanisms of multifactorial toxicity of certain com-
pounds has prevented the identification of new treatment strate-
gies, but computational models of drug neurotoxicity [112] are
used early in drug development to detect high-risk compounds
and select safer candidate drugs.

Many CNS disorders, both neurodegenerative processes and
trauma, require multiple strategies to address neuroprotection,
repair and regeneration of cells. The knowledge accumulated in
neurodegenerative processes and neuroprotective treatments can
be used, through computational techniques such as Machine
Learning, to identify combinations of drugs that can be reused as
potential neuroprotective agents [113]. Another branch of neurol-
ogy that generates great scientific interest is the study of neurode-
generative diseases, such as Alzheimer’s disease, the main cause of
dementia and pathology that currently has no cure. Several studies
have reported that the expression of ROCK2, but not of ROCK1, has
increased significantly in the human nervous tissue of patients
with neurodegenerative disorders, so that the suppression of the
expression of ROCK2 is considered a pharmacological target for
the treatment of this disease [48]. In the same sense, 5-HT1A is a
brain receptor used as a biomarker for degenerative disorders.
Work has been carried out to predict compounds that will bind
to this receptor [114]. In general, based on an equal number of
drugs approved or withdrawn for the treatment of CNS patholo-
gies, possible discriminative fragments have been studied that
allow the search for other similar compounds for the treatment
of CNS pathologies [115].

4.6. Other works

Type 2 diabetes mellitus is the most common endocrine pathol-
ogy in the world, causing many complications in many organ sys-
tems that can lead to a shortening of life and a considerable
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reduction in the quality of life of patients suffering from it. For this
reason, the pharmaceutical industry has made many efforts in the
search for efficient treatments that can cure this disease or, failing
that, minimize the lesions produced in target organs by excess
blood glucose. One of the branches of research focuses on the inhi-
bition of sodium-dependent glucose co-transporters (SGLT1 and
SGLT2), through which glucose is absorbed. Dual inhibitors have
been developed, but the search continues for compounds aimed
at reducing the absorption of glucose by SGLT1 [33]. Another
branch of research within endocrinology focuses on the phys-
iopathology and treatment of obesity. It is known that nuclear
receptors PPARs (Peroxisome Proliferator Activated Receptors)
are transcription factors that are activated by the binding of speci-
fic ligands and regulate the expression of genes involved in lipid
and glucose metabolism. These receptors have been proposed as
therapeutic targets for metabolic diseases, and ISE (Iterative
Stochastic Elimination) [116] has been developed, a tool that
allows distinguishing agonist compounds from PPARs.

When the C1 complement component is over-activated, its reg-
ulation can be altered producing tissue damage that activates the
complement system again, thus producing a circle of activations
that perpetuates itself and produces ever greater damage. Treat-
ments to inhibit C1 are expensive, so the search for cheaper inhibi-
tors continues [117].

As mentioned, the development of new drugs is a complex and
resource-intensive process. Therefore, the search for new clinical
indications for existing drugs has become an alternative to acceler-
ate and reduce the costs of the process. Thus, the term drug repo-
sitioning refers to the process of developing a compound for use in
a pathology other than its current indication, taking advantage of
the benefits of the abundance, variety and easy access to pharma-
ceutical products and biomedical data [118]. A promising approach
to drug repositioning is to take advantage of machine learning
algorithms to learn patterns in available drug-related biological
data and link them to specific diseases to be treated [119,120].
For example, indications for compounds against malaria, tubercu-
losis, and large cell carcinoma are already being reused for predict-
ing protein interactions by calculating the accuracy by comparing
similarity of interactions of approved drugs for other indications
[121].

The WHO proposed a classification that assigns codes to com-
pounds according to their therapeutic, pharmacological and chem-
ical characteristics, as well as the sites of in vivo activity. The ability
to predict the ATC codes of compounds can assist in the creation of
high quality chemical libraries for compound detection and drug
repositioning [30].
5. Trending in ML algorithms used in drug design

5.1. Naive Bayes

Generally speaking Machine Learning algorithms try to find the
best hypothesis from a given data of interest. In particular for a
classification problem the class for an unknown data sample. Baye-
sian classifiers assign the most likely class of each sample, accord-
ing to the description given by the vector values of its variables. In
its simplest version, the algorithm assumes that the variables are
independent, that is, it facilitates the application of Bayes’ Theo-
rem [122]. Although this assumption is unrealistic (not all vari-
ables are equally important), the family of classifiers that arises
from the previous premise, known as NB (Naïve Bayes) obtain out-
standing results, even though in some cases there are strong
dependencies in their set of attributes. This algorithm describes a
simple way to apply Bayes’ theorem to classification problems,
and it is a simple, fast model that is capable of working with noisy
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data. It is able to learn from small data sets, which is an advantage
although it does not suffer if the data volume is very high in terms
of number of samples. It is not the ideal algorithm for high dimen-
sionality problems with a high number of attributes since it uses
frequency tables to extract knowledge from the data and treats
each variable as categorical and, in case of working with numerical
variables, it must perform some kind of transformation.

5.1.1. Naive Bayes in drug discovery
This model has been used in drug discovery for the prediction of

possible drug targets. Specifically, in [123] they developed a Baye-
sian model that integrates different data sources such as known
side effects, or gene expression data, achieving a model with 90%
accuracy on more than 2,000 molecules and also developing the
experimental validation of the screening process. In [38] they pre-
dict molecules that are multi target with AUC 80% for treatment of
VIH/HCV from data obtained from ChEMBL and generating for each
of them two types of descriptors (MACCS and ECFP6) and validat-
ing the results by docking techniques. From 5125 known interac-
tions with four different subtypes of proteins (enzymes, ion
channels, GPCRs and nuclear receptors) obtained from KEGG and
DrugBank and random interactions from STITCH in [40] they gen-
erated a model for the prediction of ligand-target interactions with
an accuracy of 95%. In [30] they generate drug prediction models
according to the ATM (Anatomical Therapeutic Chemical) system
of the WHO using from STITCH and ChEMBL the data set used
and calculating three different types of molecular descriptors
(based on structure, interaction between compounds and interac-
tions with similar targets) with an accuracy of 65%. In [31] they fol-
lowed an experimental design based on machine learning and
molecular docking for the prediction of possible inhibitors of
Mttopo I, target protein for tuberculosis with AUC values of 74%
and performing the in vitro validation of their computational
results.

Furthermore, from the generation of different molecular
descriptors of a set of compounds that damaged the liver in [39],
they predict possible liver damage by traditional Chinese medicine
with an accuracy of 72%. In [34] from 50 ChEMBL compounds, pre-
diction models were generated with an AUC of 80% for inhibitors
for IDO, calculating QSAR descriptors and validating the results
by means of molecular docking techniques.

This type of model has also been used in [28] to predict the tox-
icity of chemical elements obtained from previous publications in
Pubmed with an AUC higher than 80% and validating the best pre-
dictions in the laboratory. Or in [103] to predict PI3K inhibitors
from 3D QSAR descriptors obtained from ChEMBL and BindigDB
with AUC values of 97% and also with in vitro validation phase
and by means of computational docking techniques.

5.2. Support vector machines

Vapnik introduced Support Vector Machines (SVM) in the late
seventies [124]. They are one of the most widely used techniques
because of their good performance and their ability to be general-
ized in high-dimensional domains, especially in bioinformatics
[125–127]. In machine learning, sets of points in a given space
are used to learn a way to deal with new observations. Kernel-
based methods use those points to learn how similar the new
observations are and to make a decision. Kernels code and measure
the similarity between objects [128–130].

The base implementation works with two-class problems in
which the data are separated by a hyperplane although there are
implementations for regression or survival problems. Being n the
dimension of the data, a hyperplane is an affine subspace of dimen-
sion n-1 that divides the space in two halves that corresponds to
the entries of the two classes [130]. In the classification task, the
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goal of the SVM is to find the hyperplane that separates the posi-
tive examples from the negative ones. This hyperplane separates
the positive examples from the negative ones, oriented in such a
way that the distance between the border and the nearest data
of each class is maximum; the nearest points are used to define
the margins, known as support vectors [131]. You can see the con-
cept of optimal hyperplanar.

Machine learning techniques, kernel-based methods and SVM
more specifically, have proven to be exceptionally efficient in high
dimensionality classification problems [132,133] due to their abil-
ity to generalize into such spaces, as in the case of texture analysis.

Most complex datasets are not linearly separable, so SVM intro-
duces the concept of kernel. A kernel function is a function that
maps the input space to a higher dimension, where the data can
be linearly separable. However, the inclusion of these kernels
requires a new level of parameterization, where the kernel func-
tion and its parameters must be carefully selected.

In the case where the data is not linearly separable, one of the
techniques used is the kernel trick. The idea is very simple and is
based on what was mentioned in the previous two sections. The
support vector machines look for the hyper plane that best sepa-
rates the data, maximizing the generalization capacity of the
model. If the data is not linearly separable, in an attempt to make
it so, the initial input space can be mapped to a more dimensional
space [134] (this is called the feature space). In this new space
must be defined the scalar product, Hilbert’s space.

There are many kernels that can fulfill Mercer’s theorem [135].
A simple classification was proposed by Smola in her Doctoral The-
sis, separating them into local and global kernels [136]. For local
kernels only those data that are close to each other have an influ-
ence on the kernel values, while in global kernels all points, how-
ever distant from each other, have an influence on the kernel
values. An example of a global kernel might be the polynomial
and local kernel, the radial-based function kernel. Both will be pre-
sented below.

By far the most commonly used kernels are the linear kernel,
the q-degree polynomial kernel, the radial base function kernel,
the radial-basis function kernel (RBF), and the sigmoid function
kernel.

5.2.1. Support Vector Machines in drug discovery
One of the most widely used models in bioinformatics is the

SVM because of its ability to deal with complex, non-linear, high-
dimensional and noisy problems. They have been used in [137]
with an accuracy value of 83.9% to classify drugs based on their
categorization in KEGG. A new framework for the prediction of
complex drug-target interaction networks from interaction matri-
ces with F1 values of 80% has been proposed in [93]. It is also pos-
sible to predict the stability in human liver microsomes by
calculating different molecular descriptors and chemical indices
from 25 ChEMBL datasets with values close to 70% in validation
[35].

An interesting new approach to predict the effect of a drug on a
tumor line by obtaining information about the genes involved in
the response of the drug in different tumors is the one followed
in [101] from expression data (GEO). Specifically, they used three
different types of tumors and by means of transfer learning they
extracted information previously from different metadata of each
tumor line with AUC values of 70%. Another clinical application
in [112] is to generate predictive models of peripheral neuropathy
after chemotherapy from QSAR and QSTR descriptors for the toxi-
city of 95 compounds approved by the FDA with an MCC of 80%. Or
in the search for anti-malarial drugs with accurary of 90% in [80]
and performing a final phase of experimental validation.

Using CORINA, it is possible to generate molecular descriptors
to describe compounds and use this information to classify drugs
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of the nervous system and the degree of toxicity of the molecules,
specifically in [115] 760 descriptors were used and those that con-
tained more information were selected through a feature selection
approach with an accuracy of 89%. SVMs were also used following
a feature selection scheme on 3D QSAR descriptors in [138] for
HDAC1 inhibitor prediction. In wrapper feature selection models
combined with a metaheuristic as a genetic algorithm to predict
from 2D QSAR the compounds (used 499) that inhibit the P-gp
membrane protein (cancer) in [104] obtained good results vali-
dated later by molecular docking techniques.

An example of an advanced use of SVMs is Multiple Kernel
Learning (MKL) where different linear combinations of SVMs with
different parameters or kernels are generated to try to solve the
same problem. This also allows to integrate different heteroge-
neous data sets available but at a cost of increasing the computa-
tional cost. In [97] they demonstrate how an MKL model is able
to predict drug-target interactions with AUC values of 90% by inte-
grating different available datasets of 1332 known interactions (in-
teraction matrix, side effect, pathology or sequence).

However, in complex problems and used in conjunction with a
metaheuristic such as a genetic algorithm can occur, with small
datasets (136 drugs) the overtraining of the model with inadequate
results in validation (PubChem) as in [117] for the prediction of C1
inhibitor candidates.

5.3. Tree-based models

Given the relative success of tree-based models in different
fields because of the good results they usually achieve, there are
many different implementations of tree-based models. One
approach that stands out from the rest is that which makes use
of decision trees. Specifically, a decision tree is a hierarchical struc-
ture composed of nodes and branches that join them. Although
there are implementations for different types of problems such
as regression, survival or outliers detection, the approach used
for classification problems stands out. Within the hierarchical
structure of a decision tree, root nodes, internal nodes or terminal
nodes can be identified. The root node is usually represented at the
top of the tree with no branches reaching it and with one or more
branches starting from it. With respect to internal nodes, they have
one branch that reaches them and two or more that start from
them to the next level of the hierarchy. Finally, the terminal nodes
do not have branches that start from them, as they are at the last
level of the hierarchy.

Of the different algorithms that use decision trees, Random For-
est stands out above all others [139]. It is a meta-algorithm that
uses a set of decision trees (ensemble) to build a solution to the
problem that it intends to solve through bagging and boosting
approaches. The mode of operation assumes that RF grows the tree
and the decision trees solve the problem individually, with each
one contributing a vote in the resolution of the problem. As each
tree may be exploring a different part of the solution space, RF
must ultimately determine the overall solution to the problem
and does so by considering the majority of votes.

As it is designed as a bagging approach what RF does is to sep-
arate the data set that is being analysed in 1/3 for validation and
2/3 for training in such a way that each individual decision tree
is able to determine internally the generalisation error that it is
making, this is known as out of bag error and the authors have
demonstrated that it is equivalent to the error that the algorithm
would make if it is used with cross validation. Finally, as each deci-
sion tree is being trained with different examples and attributes it
is possible, from the OOB, to calculate an importance value of each
of the attributes, being able to discard the rest and reducing the
dimensionality of the problem. That is why this algorithm is partic-
ularly useful for very high dimensionality and noise problems.
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5.3.1. Random Forest in drug discovery
This is one of the most widely used algorithms in ML, regardless

of the type of problem to be solved and, although it is not possible
to identify a model as the best for any type of problem, RF is
undoubtedly one of the best in terms of performance, speed and
generalizability.

Using 211,888 compound-protein interactions from BindingDB
in a mRMR (max relevance and min redundancy) dimensionality
reduction scheme in [43] they were able to predict compound-
protein interactions with an accuracy greater than 90% from the
descriptors generated with Open Babel and the enrichment scores
of each protein from GO and KEGG.

It is also possible to predict the interaction between a com-
pound and a pathway from cMap data (it has 7056 microarray pro-
files of 5 cell lines, treated with 1309 different compounds). To do
this, in [45] they calculated the molecular descriptors with RDKit
and proposed a new tree-based model that uses the Relief algo-
rithm for feature extraction and Graph-Based Semi-supervised
Learning as a classifier with AUC results exceeding 90%. Moreover,
it is possible to predict the interaction of a given drug with mole-
cules in the plasma membrane of GPCR cells using PseAAC QSAR
descriptors from 1860 GPCR-drug pairs with an accuracy of 87%
as in [32]. In [105], prediction models were generated to test differ-
ent antibodies on tumour cell lines quantifying proliferation and
apoptosis levels from RF-selected variables to check those that best
describe the phenotype induced by each antibody-dose.

It is also possible to calculate descriptors that are not molecular
but proteochemometrics by pipeline pilot (512 descriptors) to pre-
dict possible inhibitors for SGLT1 in type II diabetes with a MCC
value of 48% as in [33].

Moreover, the robustness of the model and its high perfor-
mance in prediction tasks has made it possible to use it in the
search for synergies with several drugs in different cell lines. In
[110] they predict synergies between two drugs and a cell line
using genomic information, drug targets and pharmacological
information with a total of 583 drug combinations for 31 types
of tumour cell lines. Based on gene expression and mutation data
in cancer-related pathways, they identified tree-based models as
the best predictors of synergy score. Even converting the problem
into a ranking one they maintained F1 values of 95.4%. It is worth
mentioning a joint effort of multiple researchers that emerges as a
DREAM challenge in which from 11,576 experiments reported by
AstraZeneca of 910 drug combinations on 85 molecularly charac-
terised cancer cell lines (expression, copy number variation,
methylation, mutations) [140], 160 international teams try to pre-
dict the best synergies between drug pairs and biomarkers for
which different approaches were used: SVM, MKL, RF, decision
trees or ANN. The winning team of the different prediction events
used an RF.

5.4. Artificial Neural Networks

To be able to talk about ANN, we must first talk about the arti-
ficial neuron, which will be a functional element of the network
which receives information from other elements and somehow
processes them to end up providing an output that can be pro-
cessed by other elements. As in nature, the artificial neurons
can communicate with each other and the connections of the
neurons are represented by weights that are no more than a value
that tries to express the synaptic force of that connection
between two neurons. When evaluating an artificial neuron or
processing element the first thing to consider is the net value that
represents the set of all the forces that they receive. Once the net
value has been calculated, a trigger function is applied to deter-
mine the output of processing element. Based on the concept of
an artificial neuron, several neurons can be interconnected to
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form a network where the outputs of one neuron can be the input
of another neuron. It is necessary to understand that ANN needs
to have input nodes which are the ones that obtain information
from the outside; these neurons are said to be the input layer
of the network. The network also needs output nodes, which
are in the hidden layer, which transfer the ANN result. The rest
of the nodes are known as hidden nodes that transmit informa-
tion between neurons in the network and are grouped in one or
several hidden layers.

Many researchers have defined specific network parameters
such as its topology, the activation functions that modify the net-
work output, in order to obtain different types of ANNs. It is impor-
tant to mention that what is important about an ANN is not only
the topology of the interconnection of the neurons and their acti-
vation functions, but a fundamental part is the relevance of each
of the network connections. These values are obtained in a training
phase, which depending on the type of network can be supervised,
unsupervised and by reinforcement. It should be borne in mind
that training a network is a time-consuming process. Obtaining
the output of an ANN involves evaluating all the neurons that make
up the network, and in training the process is iterative. For this rea-
son, ANNs usually have a small number of neurons, which means
that all the knowledge is in the tangle of connections without
being able to know what action each part performs, which is
why an ANN is considered to be a black box; the inputs to the net-
work and the outputs it produces are known, but not what hap-
pens inside it.

However, there is a particular case of a neural network, Deep
Learning. It usually has a very large number of layers of neurons
connected to each other; although this does not really define deep
learning. The concept behind Deep Learning is how information is
processed, information is processed in a hierarchical way. In other
words, in DL each layer of neurons tries to obtain a more meaning-
ful representation of the data. The first layers extract a low level of
characteristics, but as one goes deeper into the network, simple
functions are combined to be able to represent more complex
relationships.

The rise of ANN and DL models generally speaking arises from
the computational explosion resulting from the widespread use
of GPUs. This qualitative and quantitative leap meant a reduction
of months/years in the training of complex models with thousands
of internal layers in the hierarchy to minutes or seconds. Moreover,
it meant moving from toy models to models that actually more clo-
sely resemble the biological hierarchical structure of the real
human brain in terms of the number of neurons and layers. Unfor-
tunately it is still necessary to wait to see equivalent models in
number of connections (where the knowledge really lies) and the
biological model.

However, despite the tremendous increase in the use of this
type of technique, some of the shortcomings associated with the
model remain unsolved: they are black boxes that issue an output
from an input but do not explain how they reached that conclu-
sion, they require very large volumes of data (partially solved with
transfer learning and the possibility of reusing models trained for
similar problems) and the choice of some of the existing model
hierarchies for a new different problem is not easy.

5.4.1. ANN in drug discovery
One of the first articles to use ANN for drug prediction is [141],

trained ANN and tree-based algorithms from CMC (Comprehensive
Medicinal Chemistry) and ACD (Available Chemicals directory)
data, for drugs and non-drugs, respectively. For each of the com-
pounds they used 1D descriptors that contained information about
the whole molecule (molecular weight, number of hydrogen
bonds, etc.) and 2D descriptors that contained information about
the presence or absence of functional groups within the molecule.
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The best results were obtained with an ANN and both types of
descriptors with an accuracy of 89%.

From 1003 chemicals from the Carinogenic Potency Database in
[37], they predict the early carcinogenesis of compounds proposed
to be drugs for which they calculate six different types of descrip-
tors with a deep learning model and an accuracy of 86%. In the
same way, it is possible to start an experimental phase in the lab-
oratory to generate a set (2130 compounds) of possible new drugs
of interest in cardiotoxicity and calculate with DRAGON 3456
descriptors of each of them and include the analysis in a feature
selection scheme to end up with an AUC of 76%. A deep learning
model with molecular descriptors of the compounds obtained from
PubChem and Pfam proteins with an AUC above 95% was used
from positive compound-protein interactions obtained from
STITCH, taking randomly generated pairs as negative interactions.

Furthermore, as previously mentioned, it is possible to generate
deep learning prediction models (Multi-channel PINN) using trans-
fer learning to predict protein-linked interactions with three differ-
ent types of descriptors and an AUC greater than 90% in Tox21 [26].

It is possible to work with information at different biological
levels, for example in [87] they use deep learning to predict
whether drug-protein binding is possible using transcriptomical
data with 95% accuracy. In general, most of the works reviewed
focus on the prediction of the function of a given drug, but it is still
possible to advance in the field with regard to the prediction of
interaction between ligand and protein with CNN, improving the
results obtained with Vina, state-of-the-art software for Docking
experiments from SMILES and FASTA. The rise of CNNs in image
analysis has also enabled work in which, from different tumour cell
lines, immunohistochemical images were generated for each of
them and classification models were generated for normal and
Fig. 6. Timeline of Machine Learning main events in drug discovery field. The figure repre
plot was drawn to show the paper counts along the time. Each algorithm is represented
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tumour lines. This approach [111] would therefore be useful in
drug discovery. There are also works such as [58] in which this
type of models are used to search for new molecules with the pos-
sibility of functioning as antiobiotics that have not yet reached the
state of the art in generating descriptors based on graphs but
which may represent an advance.

In general the most complex part of this ML model is obtaining
datasets of sufficient size and finding the best hyperparameters for
drug analysis [29]. It is even necessary to validate approaches such
as dropout to establish whether they improve predictive perfor-
mance in QSAR analyses studying drug-protein interaction as in
[44]. As previously mentioned, the rise of these techniques means
that they are applied to new domains and their performance needs
to be carefully studied and the model adapted accordingly. Fur-
thermore, in the field of drug discovery, machine learning systems
are used to overcome the limitations of conventional drug discov-
ery methods. It has even allowed the testing of drugs that were
designed for a specific purpose for other purposes [78], techniques
known as repositioning, of which we saw some examples devel-
oped with RF. Structure-based drug design has benefited from
machine learning because it is much faster and more cost effective
than traditional design [142].
6. Timeline of Machine Learning algorithms in drug discovery

It was in 1964 when Hansch et al. [143] proposed the Hansch
equation. It was a linear regression model using physicochemical
descriptors (such as the hydrophobicity parameter, the electronic
parameter and the steric parameter), used to describe the 2D struc-
ture–activity relationship. Thus, using a predictive algorithm such
sents the main events of Machine Learning in drug discovery field. In addition, a line
by a color line. The y-axis represents the number of papers published in PubMed.
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as linear regression and molecular descriptors of the sequences,
the field of study of QSAR began.

It was not until 1998, when Ajay et al. [141] introduced the con-
cept of Drug-likeness. They built a model capable of predicting
with high performance whether a molecule was a drug or not. They
did this from 1D and 2D molecular descriptors. This paper was
pioneering for the field of drug discovery based on ML algorithms.

There has been few published work based on ML in the field of
drug discovery prior to the year 2000. The main reason has been
the availability of data. With the advance of biotechnological and
computational techniques, more and more molecule data have
been generated and made available to the general public. In addi-
tion, large initiatives have developed public repositories where
information on a large number of molecules is available in a stan-
dardized manner. It was in 2004 when the first version of two
databases that will be of great importance for this field was
released: PubChem and ZINC. Subsequently, in 2006 and 2008
DrugBank and ChEMBL were published, respectively. It was this
fact, the availability of this large number of public databases,
which allowed the development and training of new Machine
Learning models to help in the screening of new drugs. To show
this increase, Fig. 6 shows a history of the number of articles pub-
lished in PubMed in this field. The search was stratified according
to the different algorithms reviewed in this article. Specifically, a
Boolean search was performed in PubMed with the following
terms: algorithm name (’Artificial Neural Networks’, ’Support Vec-
tor Machines’, ’Naive Bayes’ or ’Random Forest’) & ’Drug Discovery’
term & 1964–2021 period. The results obtained from the four
searches were downloaded and plotted together for comparison,
as shown in the lineplot in Fig. 6.

As can be seen in the Fig. 6, from 2004–2008 there was a
huge growth in the use of ML algorithms. Specifically, SVM has
been by far the most widely used algorithm in recent years. A
turning point in the use of neural networks was also observed
from 2008 onwards. It was in this year that the Tensorflow
library was released. From this moment on, the application of
ANNs and especially the use of Deep Learning models boosted
the number of publications in this field, until it became one of
the most widely used algorithms. The wide variety of existing
ANN topologies caused this growth. For example, The Graph
Neural Network Model [51], published in 2009, opened up a
new field of application in drug discovery. Until then, the vast
majority of models used data from QSAR models. Thanks to
these models, the inputs to the networks could be molecular
graphs, for example, which also generated a large number of sci-
entific publications. Subsequently, Molecular Graph Convolutions
[58], another model that included the features of convolutional
networks for the analysis of molecular graphs, was published
in 2016. It was these models that were used in the work of
Stokes et al. [78]. That work, published in 2020 in the journal
Cell, demonstrated the capability of deep learning models in this
field. They trained a deep learning model capable of predicting
antibacterial activity. Subsequently, they made predictions on
multiple chemical libraries, discovering a molecule, halicin, with
antibacterial activity. This discovery was tested in wet lab, rein-
forcing the hypothesis established in the in silico experiments.

7. Conclusions

The latest advances in the design of new algorithms in the field
of Artificial Intelligence have offered the opportunity to solve prob-
lems in different disciplines. In cheminformatics, and more specif-
ically in drug discovery, the use of these models has greatly
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benefited the pharmaceutical industry. Previously, the only tool
was the use of descriptors generated from the structure of small
molecules or peptides. More recently, artificial neuron networks
were adapted to model directly the molecules represented by
graphs. Today, molecular descriptors are still widely used in the
industry, but the rise of graph-based models is obtaining results
that surpass the more conventional models in certain contexts.
This fact is important because, although it is a developing branch
of knowledge, it has very promising opportunities in the future,
mainly due to its adaptability to the problems and molecular struc-
tures to be treated. On the other hand, as for the biological prob-
lems in which cheminformatics, and more specifically machine
learning algorithms, have put their focus, it has been in the predic-
tion of strong interactions for the search of new therapeutic tar-
gets. This observation is perfectly adapted in the context of
precision medicine and to the requirements that this initiative
presents.

Finally, and with the aim of highlighting this point, a joint effort
must be made in the search for and use of standardized frame-
works. This point is crucial for the rapid translation of academic
results to the industry. Without a standardization of the processes
and methodologies used, the results obtained cannot be extended
to real clinical tasks. Therefore, the application of machine learning
techniques must entail a robust design of the experiments for their
replicability by different researchers. Throughout this review, this
problem has been detected in the different articles reviewed.
Therefore, in order to draw definitive conclusions, this aspect must
be deeply influenced. However, the possibilities and advantages
offered by ML techniques are immense within the context of pre-
cision medicine and drug discovery.
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