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a b s t r a c t 

Deep Learning approaches have brought solutions, with impressive performance, to general classification 

problems where wealthy of annotated data are provided for training. In contrast, less progress has been 

made in continual learning of a set of non-stationary classes, mainly when applied to unsupervised prob- 

lems with streaming data. 

Here, we propose a novel incremental learning approach which combines a deep features encoder with 

an Open-Set Dynamic Ensembles of SVM, to tackle the problem of identifying individuals of interest (IoI) 

from streaming face data. From a simple weak classifier trained on a few video-frames, our method can 

use unsupervised operational data to enhance recognition. Our approach adapts to new patterns avoiding 

catastrophic forgetting and partially heals itself from miss-adaptation. Besides, to better comply with real 

world conditions, the system was designed to operate in an open-set setting. Results show a benefit of 

up to 15% F1-score increase respect to non-adaptive state-of-the-art methods. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

p

w

f

s

c

s

t

[

s

c

c

c

m

t

l

t

n

[

r

i

i

a

o

t

o

u

i

i

s

r

t

t

a

h

0

(

. Introduction 

Deep Learning approaches have brought solutions, with im- 

ressive performance, to general classification problems where a 

ealthy set of annotated data is provided for training. Given the 

act that in real-world applications specific data are many times 

carce, very costly to label, non-stationary (i.e. data distributions 

hanging over time), or streaming, new and classical learning 

trategies have been incorporated to the realm of Deep Learning, 

o deal with these challenges [1] . Thus, topics as transfer learning 

2] , reinforcement learning [3] , or incremental learning [4–7] , both 

upervised and unsupervised, have gained new momentum. 

Incremental learning is the ability of a classifier to evolve by 

ontinuously integrating information from new instances or new 

lasses, and without resorting to full retraining [1] . Currently, in- 

remental and online machine learning are receiving more and 

ore attention, especially in the context of learning from real- 

ime data streams [4,5] . In particular, rehearsal-free incremental 

earning techniques have also demonstrated their abilities to ex- 
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end the class-set of a classifier considering only labels from the 

ew classes, while avoiding the problem of catastrophic forgetting 

6,7] . Catastrophic forgetting is the tendency of an artificial neu- 

al network to completely and abruptly forget previously learned 

nformation upon learning new information [8] . Overcoming this 

ssue is of special interest when computational capacities do not 

llow full retraining, or confidentiality issues impede new access to 

ld samples during the process of extending the class set. In con- 

rast, less progress has been made in incremental learning of a set 

f non-stationary classes, mainly when applied to tasks involving 

nsupervised streaming data. 

A paradigmatic example of the application of incremental learn- 

ng, dealing with unsupervised, non-stationary and streaming data 

s the case of video-to-video face recognition (V2V-FR) in video 

urveillance [9] . Usually, video-frame are captured with a broad 

ange of individual pose, camera position, resolution, and illumina- 

ion, which often exceeds the diversity available in datasets used 

o train deep networks (generally focused on web extracted im- 

ges) [10] . Transfer learning to specific task domains in V2V-FR 

as proven to be challenging even for Deep Learning encoders 

11,12] since image quality factors are still decisive for performance 

13] . Besides, since the data are received continuously in a stream 

ashion, individual appearance could change when switching be- 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.patcog.2022.108885
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108885&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eric.lopez@udc.es
https://doi.org/10.1016/j.patcog.2022.108885
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. Lopez-Lopez, X.M. Pardo and C.V. Regueiro Pattern Recognition 131 (2022) 108885 

Fig. 1. Open-Set Dynamic Ensembles of SVM (OSDe-SVM) is able to incorporate new knowledge and correcting wrong updates by adding and removing classifiers in an 

unsupervised way. The system is designed to work under open-set recognition conditions. 
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ween different cameras, which could also operate in changing 

onditions over time [14] . While, in theory, all of these issues can 

e solved with further labelling, the task of having addressed every 

ossible variation in a training dataset is, in practical terms, infea- 

ible [4] . Then, a more efficient and scalable approach is needed 

6,7,15] . In this regard, what truly represents the application con- 

ext and the changes that appear over time is the actual data in- 

rementally extracted during the operation of the system, and so 

ithout labels . 

Another characteristic of real-world applications of V2V-FR re- 

ates to their intrinsic open-set nature [16,17] . Open-set recogni- 

ion refers to the classification problem aimed at identifying a spe- 

ific set of known classes over an undetermined number of un- 

nown ones [16] . This type of recognition exactly corresponds to 

ome of the most common scenarios in which FR is demanded. 

ake for example the case of an airport video-surveillance aimed 

o track some individuals of interest (IoI) who have not been col- 

aboratively enrolled in the system, e.g. those exhibiting suspicious 

ehaviours, among a larger number of unknown non-target identi- 

ies, that should be identified as unknown non-target identities. 

In this paper, we propose a novel incremental learning sys- 

em, the Open-Set Dynamic Ensembles of SVM (see Fig. 1 ). Using 

 deep feature encoder as a basis, the system is capable of us- 

ng operational data to enhance and improve the recognition of 

arget identities in an unsupervised way. Additionally, guided by 

eal-world necessities, the system is designed to operate in a com- 

letely open set setting. Rooted on the power of a Deep features 

ncoder, trained for the general face recognition problem, an incre- 

ental learning module, fed with stream data, simultaneously pre- 

ict and update classifiers, while dealing with catastrophic forget- 

ing issues. The incremental module is based on dynamic ensem- 

les of SVM classifiers, which from a single SVM built from a few 

abelled video-frames directly taken from the footage, can acquire 

nd adapt to additional information by adding/removing classi- 

ers to/from ensembles. It follows the self-training strategy [18] in 

hich predictions also play the role of pseudo-labels, which are 

sed to update and improve the classifiers. Based on the modular 

ature of ensembles, adaptations consists of either adding or re- 

oving classifiers. Contributions of this paper can be summarised 

s: 

• An approach to unsupervised incremental learning designed to 

operate online with stream data. During its operation, predic- 

tions also play the role of pseudo-labels. 
2 
• A strategy to deal with both catastrophic forgetting issues and 

the effect of mistaken pseudo-labels. 
• An approach to instance-incremental learning in the open-set, 

which could be extended to cope with the class-incremental 

problem. 
• A method for person re-identification based on face, which is 

not directly based on a reservoir of face images. 

The rest of the paper is organised as follows. First, in 

ection 2 we perform an extensive study of the existent literature 

elated to the problem. After that, we move to present the pro- 

osed approach in Section 3 and a set of experiments to study its 

ehaviour, in Section 4 and 5 . Finally, in Section 6 , we reflect on

he conclusions we can extract from the work. 

. Related Work 

Open-set Recognition. In open set recognition, training is per- 

ormed on a dataset with samples of some known classes, while 

amples of both known and unknown classes are presented for 

esting. Therefore, classifiers should appropriately deal with all of 

hem. Within this approach, closer to real-world applications, de- 

ision boundaries not only separate instances of different known 

lasses, but they separate the known from the unknown as well 

16] . A recent survey [19] distinguishes between discriminative and 

enerative approaches to open set recognition. Discriminative clas- 

ifiers are trained to discriminate between the known classes, and 

hen, given the most likely class label, to decide whether a test 

ample was in fact drawn from the distribution of known class 

amples or not [17] . Meanwhile, generative methods try to provide 

xplicit probability estimation over unknown categories, most of 

hem based on deep networks [20,21] . Plenty of methods in both 

ets of approaches, leverage Extreme Value Theory (EVT) to tackle 

he unknown [22] . EVT is a branch of statistics aimed to assess 

he probability of observing an event more extreme than any pre- 

iously observed. It has been widely used for outlier detection in 

pen-set recognition [23] . 

In face recognition, the most realistic scenario corresponds to 

n open-set setting (e.g. criminal watch-lists, restricted areas ac- 

ess control, smart-homes, etc.) [17] . In this domain, apart from 

VT based methods, solutions based on siamese networks have 

een proposed to address the open-set as they are metric learning 

ethods, and their similarity scores can be thresholded to perform 
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1 Implementation can be found on: https://gitlab.citius.usc.es/eric.lopez/ 

osde-svm . 
ecognition [24] . Although they do not fit the data stream context, 

hey could be used as a baseline for comparison purposes [25] . 

Incremental Learning. The main goal of incremental (a.k.a. 

ifelong, continuous or continual) learning is to learn from data 

s they are provided by real-world dynamic sources, usually at 

 low pace, including noisy samples and, in general, exhibiting 

on-stationarity. As data distributions change with time, compu- 

ational systems have to deal with the stability-plasticity dilemma . 

his dilemma consists of finding a balance between models’ plas- 

icity allowing them to adapt to changes (i.e. concept drift) [5] and 

tability to avoid that that new knowledge erases old one. 

In the context of deep approaches, incremental learning has 

een focused on learning new tasks/classes, more than on en- 

ancing the performance of classifiers (fixed number of classes) 

s new instances arrive [15,26] . Among common strategies are the 

xploitation of, at least, partial rehearsal (looping over old data) 

1,27] , dynamic changes in architectures (retraining after prun- 

ng/increasing the number of neurons, filters or layers), and regu- 

arisation (updating weights in order not to forget previous knowl- 

dge) [28] . Among the last are usually also included a wide range 

f knowledge distillation methods, in which a teacher network 

ransfers knowledge to a student network [29] . However, the draw- 

ack of distillation is that it generally needs to retain big past 

emories [6] . Notwithstanding the progress made in supervised 

ncremental learning in recent years, there is still a substantial gap 

etween the performance of batch offline learners on stationary 

ata and the performance of the incremental learners that deal 

ith non-stationary data [1,27] . 

Most of the work carried out to date regarding incremental 

earning is focused on batches. So, they need to wait for a batch of 

ata to accumulate before a new adaptation can take place. Only 

 bunch of approaches were really designed to tackle the problem 

f incremental learning from streaming data, which is considered a 

ore challenging task [30] . One of its critical difficulties is the in- 

easibility of complete manual labelling of streaming data in real- 

orld applications. A more realistic approach should only assume 

hat a few instances in data streams are labelled [31] . 

Most of the semi-supervised methods leverage unlabelled ex- 

mples by making some assumptions, using label propagation or 

enerating pseudo-labels during the learning process [32] . Some 

pproaches are based on keeping a set of dynamic clusters to sum- 

arise class distributions and model their evolution over time [31] . 

thers use a few labelled data to initialise a set of models, which 

re afterwards sequentially updated based on pseudo labelled data 

33–35] . In the specific case of video recognition, weak labels can 

e provided by the temporal tracking [36,37] , but also co-training 

r predictions of the own classifiers can provide pseudo-labels. 

Ensemble methods have been acknowledged as powerful tools 

o overcome catastrophic forgetting [1,38] , when dealing with data 

treams [33,39] . Moreover, ensemble algorithms can be integrated 

ith drift detection algorithms and incorporate dynamic updates, 

uch as selective removal or addition of classifiers [40] . In the 

emi-supervised scenario, it must be taken into account that any 

ind of weak labelling or pseudo labelling is prone to error. So, 

ynamic updates can be also useful for healing from the effect of 

islabelling. Unlike other incremental learning approaches (either 

lassic [41] or DL-based [4] ), ensembles provide a simple way to 

solate updates and, consequently, make changes reversible. And 

ot only that, since decisions are based on majorities, ensembles 

re robust to outliers. 

In [42] ensembles of deep networks have been proposed to en- 

ourage networks to cooperate and take advantage of their predic- 

ion diversity, in the context of few-shot classification. Besides, to 

eal with tasks where training data are inadequate, the training 

f a collection of incrementally fine-tuned CNN models and their 

ombination using an ensemble, was presented [43] . In [44] , the 
3 
uthors propose an ensemble learning framework based on mul- 

iple CNN classifiers. The CNN acts as a feature extractor for the 

osterior use of different ensemble frameworks to classify its con- 

ent. Recently, already in the context of incremental learning, an 

pproach based on ensembles, which is close to ours, was pro- 

osed for tackling the problem of mechanical fault diagnosis [45] . 

Although there are propositions of end-to-end deep learning 

pproaches for incremental semi-supervised learning [32,35] , their 

nherent characteristics make them yet unsuitable to operate on- 

ine with streaming data. Therefore, for this specific context, we 

ropose to combine the good characteristics of a deep feature en- 

oder, which transfers knowledge from the source domain, with an 

nsemble method able to provide adaptation to the target domain. 

. Proposed Method: Deep Embeddings + Open-Set Dynamic 

nsembles of SVM (OSDe-SVM) 

In this work we present the Open-Set Dynamic Ensemble of SVM 

OSDe-SVM) 1 for the problem of V2V-FR in the open-set context 

 Fig. 1 ). This method takes advantage of transfer learning from 

arge labelled datasets, to get discriminant feature embeddings 

hat feed an instance-incremental learning module. The complete 

ethod is able to achieve online adaptation to the task domain 

rom unlabelled streaming data. To do so, OSDe-SVM relies on the 

elf-training strategy and the modular nature of ensembles to add 

nd remove classifiers in a totally autonomous way. 

OSDe-SVM uses features taken after the last pair of convolu- 

ional and batch normalisation layers of the ResNet100-ArcFace 

RN100-AF) network trained on MS1MV2 dataset [46] . This is one 

f the top-performing CNN in the face recognition state-of-the-art. 

rcFace is a loss-function specifically designed to enhance the dis- 

riminative power of face recognition models. In this sense, the 

eepest networks, like ResNet-100, are the ones that take the most 

dvantage of it [46] . The encoding transforms a 112x112 face crops 

nto a 512-D feature embedding. 

The general structure of OSDe-SVM is depicted in Fig. 2 . Each 

ndividual of interest (IoI), k , has an associated ensemble, e k , com- 

osed of a set of SVM classifiers, h k 
i 
. This ensemble is updated 

henever the system is queried. The update mechanism consists 

f adding classifiers based on the Ensembles Decision Functions, 

ection 3.1 , following the self-training paradigm ( Section 3.2 ). Be- 

ides, OSDe-SVM can remove classifiers when the maximum num- 

er of classifiers is reached (Limitation Module, Section 3.3 ) or 

hen a possible mistake is detected (Self-healing, Section 3.4 ). 

ach SVM classifier is trained with a small number of positive sam- 

les (face crops of the first 5 frames containing each IoI) against a 

ool of initially labelled training samples (specifically a total of 100 

rames) randomly drawn from other IoIs. 

.1. Ensemble Decision Functions 

OSDe-SVM builds, and keeps updated, ensembles aimed at the 

e-identification of each IoI within the area of a camera network 

 Fig. 2 ). Ensemble’s decisions are made in a two-step process. 

irstly, the Sequence Scoring Function assigns a certain score to the 

uery sequence. Secondly, the Recognition Decision Function uses 

hese scores to assign an identity label (either as one of the IoI 

r as an unknown). 

.1.1. Sequence Scoring Function 

When making decisions, it is convenient that each ensemble 

ives a unique score to each incoming sequence. Nevertheless, both 

https://gitlab.citius.usc.es/eric.lopez/osde-svm
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Fig. 2. The pipeline of OSDe-SVM. After being processed by a deep feature extractor, the sequence’s frames pass through the Ensemble Decision Function (EDF). This function 

assigns an identity label (either one of the IoI or unknown ) based on the scores given by the ensembles at the moment. If recognised as one of the IoI, OSDe-SVM will add 

an additional classifier to the associated ensemble. Additionally, the limitation module controls ensembles to not exceed maximum size and the self-healing module helps 

to correct possible wrong updates a posteriori . 
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sequences and ensembles) are composed elements. Being n F the 

umber of sequence’s frames and M 
k the number classifiers of en- 

emble k , we would have a total of n F × M 
k different responses. We

all the Sequence Scoring Function (SSF) to the process of combining 

ll of these different responses into a unique score. This process 

onsists of two levels: 

• At frame level , we combine the responses of the ensemble’s 

classifiers to give a unique score to each frame. The function 

used here is the median of the individual ensemble’s SVM 

scores. If we then make decisions by establishing a threshold 

on the median score, in practice, we will be performing a ma- 

jority voting based on the binary responses (using this same 

threshold) of the ensemble’s classifiers. 
• At sequence level , we take advantage of the temporal coherence 

assumption to assign a unique identity to the whole input se- 

quence. This assumption allows us to combine all the frame’s 

scores into a unique one. The function used here is the median. 

.1.2. Recognition Decision Function based on Extreme Value Theory 

Once every ensemble delivers its prediction score about an in- 

ut query, the next step is to combine all the predictions to de- 

ide the underlying identity. The identity assignment based on the 

est score is the usual procedure in a closed-set scenario [46,47] . 

hat is because input sequences always belong to a known IoI. In 

n open-set scenario, assigning identities becomes trickier because 

on-match responses , corresponding to unknown identities, are also 

xpected [17] . To tackle these scenarios, OSDe-SVM was endowed 

ith a Recognition Decision Function (RDF) based on Extreme Value 

heory (EVT). 

EVT is a statistical theory aimed at estimating the probability 

f observing events more extreme than any previously observed. 

n practice, it has been widely used for reliability applications, as 
4 
ell as outlier detection [48] . In the frame of open-set recogni- 

ion, EVT has been successfully applied on numerous occasions 

see Section 2 ). 

Here, we follow an approach similar to [48] . As any input se- 

uence belongs to a unique identity, the ensembles associated with 

ther identities should deliver non-match outputs. According to the 

isher-Tippet-Gnedenko Theorem of EVT [22] , the distribution of 

hese non-match scores is modelled by some particular functions. 

In this case, for left bounded positive samples, the distribution 

f the extreme values G (z) , is given by the Weibull distribution. 

or OSDe-SVM the greater similarity, the smaller the SSF ( x ) score 

i.e. x < 0 for similar input sequences). So, we need to perform a 

ariable change ( ̂ x = m − x , being m the median of the non-match

cores) to satisfy the previous conditions and be able to fit the n- 

op scores to a Weibull distribution as described in [48] . Then, to 

iscriminate between unknown and known identities, the best en- 

emble response (the best score) can be checked whether it comes 

rom the Weibull Extreme Value distribution ( Fig. 3 ) or not. 

The complete decision process is depicted in Algorithm 1 . More 

mportantly, there we also show a way of distinguishing the known 

rom the unknown by thresholding the Weibull distribution ( T W 
), 

nstead of the actual scores which can be uncalibrated. Since the 

tted function is different depending on the input sequence, we 

re implicitly personalising the threshold to each input sequence, 

s is depicted in Fig. 3 . 

.2. Update Module: Incremental learning based on Self-Updating 

OSDe-SVM was conceived to operate in the context of a short- 

ge of labelled data. Only the first classifier of each ensemble is 

rained with a very short labelled sequence extracted from the in- 

ut. The first five frames have proven to be the bare minimum for 
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Fig. 3. Examples of Extreme Values (EV) distributions and application of RDF. A Weibull function is fitted to the EV distribution to see whether the candidate belongs or not 

to this distribution. First row illustrates examples of known identities and second row does the same with the unknown ones. 

Algorithm 1 Recognition Decision Function (RDF) based on EVT. 

1: S is the input sequence, T W 
is the threshold in the Weibull 

function 

2: E = 

{
e 0 , e 1 , . . . , e N−1 

}
set of ensembles associated to known 

identities 

3: R = ∅ set of scores given by each ensemble to a candidate 

4: for e i in E do 

5: R ← SSF (e i , S) 

6: end for 

7: c = min (R ) ; m = median (R \ { c } ) 
8: V = { ( m − x ) | x ∈ (R \ { c } ) ∧ (x < m ) } 
9: Fit V to a Weibull function, W 

10: if then W (m − c) < T W 

11: ID = arg(c) 

12: else 

13: ID = unknown 

14: end if 
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ur method. From that point on, incremental learning is exclusively 

ased on pseudo-labels ( Fig. 1 ). 

After an ensemble is initialised, our method decides whether a 

ew classifier must be added to enhance future performance, each 

ime a sample of the same identity is identified. OSDe-SVM follows 

 self-updating strategy based on pseudo-labels provided by EDF to 

nput sequences. Whenever an identity, k , is identified in an input 

equence, a new SVM is created using as (pseudo-labelled) positive 

amples, P k 
j 
, the 5 hardest frames of the sequence, namely those 

hich got the lowest scores returned by the SSF (see Fig. 2 ). This

ay, diversity within each ensemble is encouraged. 

.3. Limitation Module 

In a self-updating context where each ensemble is initialised 

ith only one classifier trained with a few labelled frames, fur- 

her updates can only occur when close samples of the same iden- 

ity query the system. If they are almost identical, there is nothing 

o be learnt. However, if they are very different, there is a danger 

f not being identified. So, the model can only learn from sam- 

les on the borderline, i.e. samples that can still be recognised by 

he ensemble of the corresponding identity, but which also include 

ome level of novelty in their features. However, ensembles’ size 
5

hould not grow indefinitely whenever the EDF recognised their 

arget identities in input sequences. As ensembles’ performance re- 

ies on diversity, we have chosen a solution inspired in [49] , to de-

ide which classifiers are to be removed once the maximum size 

s reached. 

Classifies are compared against each other to obtain a measure- 

ent of their relative relevance, the diversity score D (·) . Given an 
nsemble, e k , composed by M k SVM classifiers, 

{ 

h k 
0 
, h k 

1 
, ..., h k 

M k −1 

} 

, 

 (h k 
i 
) , is computed from the binary response of each of the clas-

ifiers of the ensemble over a certain set of video frame features 

x 0 , x 1 , ..., x Q−1 

}
: 

 (h k i ) = 

M k −1 ∑ 

j =0 ; j � = i 
d 
(
h k i , h 

k 
j 

)
(1) 

 

(
h k i , h 

k 
j 

)
= − 1 

Q 

Q−1 ∑ 

q =0 

sgn 
(
h k i (x q ) 

)
· sgn (h k j (x q )) , (2) 

here h k 
i 

(
x q 

)
is the response of the SVM classifier h k 

i 
to the frame 

eature x q , and sgn (·) is the sign function. 
Whenever an ensemble e k reaches the maximum size, the clas- 

ifier h k ∗ with the lowest diversity will be removed. 

.4. Self-healing: Correcting Wrong Updates 

Since the whole adaptation process performs without super- 

ision , wrong updates, provoked by errors in pseudo-labelling, 

hould be expected. This behaviour may affect re-identification 

erformance, mainly in the long term. The self-healing procedure 

s designed to mitigate this problem. 

Self-healing relies on the fact that the ensembles build their 

ecisions based on majorities. Therefore, if an ensemble reaches a 

elatively high accuracy in the first classifications, it should be dif- 

cult for wrong classifiers to take over very soon. This fact opens 

he possibility of detecting wrong updates before it becomes ir- 

eversible. We expect that, with a limited amount of wrong up- 

ates, ensembles are still able to recognise their target identity. 

onsequently, the future detection of the target identity can build a 

tronger majority capable of detecting the previous wrong update. 

To implement these ideas, along with each SVM classifier, h k 
i 
, 

e store the positive samples used to create it, P k 
i 
, which, in prac-
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Fig. 4. The pipeline of OSDe-SVM when self-healing is performed. The frames used to create each of the ensemble’s classifiers are passed again through the Ensemble 

Decision Function to check if they are still recognised with the same identity. If not, this classifier is removed. 
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ice, can be considered a sequence. Therefore, we can pass every 

et (for all k and i ) again through the EDF for a re-evaluation. If

he system assigns the same identity as before, the classifier is 

aintained. Otherwise, the classifier is removed ( Figs. 4 ). The self- 

ealing module triggers after a certain period which is adjustable 

see Fig. 1 ). 

. Experimental Preliminars 

.1. Database Selection 

To test any V2V-FR system, we must rely on video datasets to 

erform our experiments, and they are not too abundant [50] . In 

his sense, frames’ quality (especially in terms of resolution), which 

an vary substantially depending on the context, can have a sub- 

tantial impact on the performance of recognition methods [13] . 

his fact is even more important when we aim to work in video- 

urveillance scenarios. 

We have included experiments in three different video datasets. 

n the one hand, CMU FiA [51] and COX Face Database [9] , 

re datasets specifically designed for video-surveillance scenarios. 

owever, their frame quality is radically different, as is the demand 

or adaptation. 

On the other hand, we have also performed experiments on 

ouTube Faces Database [52] to test how the proposed method 

erforms in other FR video contexts. 

.1.1. CMU Face in Action (FiA) database 

The CMU FiA database contains 20-second videos of more than 

00 different individuals simulating a passport checking scenario 

n both indoor and outdoor environments [51] . Data was ac- 

uired by six synchronised cameras from 3 different angles, 2 focal 

engths per angle, in 3 different sessions (3-months span between 

ach pair of sessions). FiA video-frames present a considerable high 

uality, specifically in terms of resolution, since they were captured 
6 
n a relatively controlled scenario. This dataset has been used to 

ssess other adaptive methods, like the one in [33] . 

In our experiments, we have used the videos provided by the 

maller focal length of the frontal camera, both indoor and out- 

oor, and only considered the 70 identities present in all sessions. 

iven the high quality of frames, the initial performance of our 

ethod reached values of +92% in F1-score, which widely sur- 

asses the ones observed in [33] . In this sense, with these perfor- 

ance rates, it is difficult for any unsupervised adaptation method 

o increase them. Even more, if we take into account that OSDe- 

VM mainly provides improvements in recall (as we will see in the 

ollowing sections), which here reach almost perfect values from 

he beginning. 

To challenge our method by emulating more realistic condi- 

ions, we decided to down-sample the video-frames before enter- 

ng the feature encoder. In Fig. 5 performance results for 5 differ- 

nt downscaling ratios are shown for the case of 35 IoI in a uni- 

erse of 70 identities. Without having the possibility of averaging 

erformance under different universes, we decided to randomly 

raw 20 different sets of 35 IoI for average and deviation computa- 

ions. We measure OSDe-SVM performance before and after adap- 

ation. Results in Fig. 5 show the performance degradation as the 

esolution decrease, which OSDe-SVM alleviates with its unsuper- 

ised adaptation. It must be taken into account that a 1/16 down- 

cale gives face crops of size 7x7 (for an original size of 112x112); 

uch low resolutions make identification almost unfeasible. 

.1.2. COX Face Database 

COX Face database [9] was specifically designed for the context 

f video-surveillance. There are a total of 10 0 0 different identities 

n the dataset. The creators of the database asked to each of in- 

ividual to follow an S-path while they capture video from 3 dif- 

erent viewpoints ( cam1 , cam2 and cam3 ). Samples can be seen 

n Fig. 6 . Despite being taken in an interior setting, the resulting 

ideo frames present important variations in terms of both illumi- 

ation and pose and especially low resolution. Samples provided 
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Fig. 5. Performance versus image resolution, scales 1, 1/2, 1/4, 1/8 and 1/16 (that is, 112x112, 56x56, 28x28, 14x14, and 7x7 pixel image sizes) for CMU FiA database. 

Fig. 6. Some samples of the main datasets used during the experiments. 
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y the database are the output of a commercial face tracker with 

 partially removed background. Nevertheless, to fine-tune this 

ackground removal and for alignment purposes, faces are passed 

hrough a face detection module for the proper performance of 

he feature encoder module [53] . This database will be the one in 

hich the core parts of OSDe-SVM are tested. 

.1.3. YouTube Faces Dataset 

YouTube Faces database [52] is a widely used database for the 

ontext of video face recognition. While not being designed for the 

ase for the specific case of video-surveillance, it will provide in- 

ights into how well OSDe-SVM generalise to other video contexts. 

his database contains 3 425 videos of 1 595 different people. Each 

dentity contains from 1 to 6 different sequences. Since we wanted 

o have room to perform adaptation during operation, we will only 

eep the identities containing ≥3 videos. This gives us a total of 

33 different identities. Samples can be seen in Fig. 6 . 

.1.4. Dataset adjustments for the experiments 

Given the specific context of our application, it was neces- 

ary to perform some adjustments to adapt the data provided by 

atabases to how we operate. First, to increase the number of se- 

uences per identity (and so the possibilities to update), we split 

ach of the available videos to have an initial mini-sequence of 5 

rames and 9 additional sub-sequences. All this process keeps in- 

act the temporal order. Second, we organised the data into differ- 

nt sets depending on their role in the experiments. These differ- 

nt sets are: 

• The initially labelled training sequences are labelled video- 

frames of target identities used to create the first classifier of 

each ensemble (the sets positive samples, P k 
i 
). They consist of 

the first 5 frames from the first available database video. 
• The operational sequences simulate input sequences which 

would be received in the operational phase. They consist of the 

first eight sub-sequences of the available sequences. 
7 
• The testing sequences are used to assess performance. They 

correspond to the last sub-sequence of 9 sub-sequences of each 

of the available individuals. 

Hereafter, each sequence will be noted by S k t , where t refers to 

emporal order and k refers to the identity. Following this nota- 

ion, t = 0 corresponds to the 5-frame sequences of the initially 

abelled training sequences used in the initialisation, t = 1 , 2 , . . . , 8

orrespond to the streaming of sequences ( operational sequences ), 

nd t = 9 corresponds to a sequence for performance assessment 

 testing sequences ). 

.2. Experimental Setup 

We designed the experimental setup to simulate the stream 

ata scenario of V2V-FR. First, initial models of the IoIs are created, 

hich consist of one-classifier ensembles. This classifier is created 

sing samples from the initially labelled training sequences ( S k 
0 
): 5 

rames of the actual identity as a positive set and a 100 frames 

rom other IoI as a negative set (randomly drawn without restric- 

ions for each classifier from other subject’s samples pool). The 

ize of the negative set is maintained for future classifier additions 

o have the same balance in each of the ensemble’s classifiers. 

fter this initialisation process, the system is repeatedly queried 

ith unlabelled sequences. These sequences have a variable num- 

er of frames (from 20 to 60). Since we are working in an open- 

et scenario, these input sequences can belong to one of the IoI 

r not. 

Experiments are organised in adaptation steps , after which per- 

ormance is measured. An adaptation step corresponds to either 

he initialisation, a complete iteration over the k available iden- 

ities with the same t , or a process of self-healing (See Fig 7 ). Ad-

itionally, we fully iterate over t = { 1 , 2 , ..., 8 } a total of 3 times 

 iterations ), always preserving the temporal order. This way, we 

an increase the number of possible updates and study the sys- 

em’s behaviour with redundant data of both IoI and unknowns . 

elf-healing was performed at adaptation steps multiples of 5 , and 
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Fig. 7. Adaptation steps performed during the experiments. INI stands for initialisation, UP for update and SH for self-healing. The last step corresponds to the beginning of 

the second iteration. Each sub-sequence contains about 20 to 60 frames. 
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he maximum number of classifiers per ensemble, M, was fixed 

o 10 . This gives us a total of 31 adaptation steps per experiment. 

lgorithm 2 outlines the whole procedure. 

lgorithm 2 Experimental procedure and testing protocol. 

1: S k t is the sequence t of the identity k , L is the number of itera-

tions 

2: f number of different sub-sequences per identity 

3: N = number of IoI, N U = number identities in the universe 

4: for each split do 

5: for k = 0 to N − 1 do 

6: Initialise ensemble k using S k 
0 

7: end for 

8: Perform testing using the set of S 
k = { 0 , 1 , ... ,N−1 } 
f 

9: for lap = 0 to L − 1 do 

0: for t = 1 to f − 1 do 

11: for k = 0 to N U − 1 do 

2: Perform adaptation using S k t . 

3: end for 

14: Perform testing using the set of S 
k = { 0 , 1 , ... ,N−1 } 
f 

5: end for 

6: end for 

17: end for 

Both the size of the identity universe and the number of IoIs 

ary with the experiment. For universe sizes smaller than 10 0 0, 

he experiment is repeated for different splits of identities (fol- 

owing Algorithm 3 ) to compute an average performance. A partial 

lgorithm 3 Algorithm to create the splits. 

1: N U is the number of identities in each experiment universe 

2: N D is the number of identities in the dataset 

3: i = 0 

4: while i + N U < N D do 

5: splits ← Samples with ID ∈ 

[
i 
2 , 

i 
2 + N U 

]
6: i + = N U 

7: end while 

verlapping between splits was considered to get a more compre- 

ensive sampling. For the case of 10 0 0 identities, we repeat the 

xperiment 5 times to address the variations provoked by the ran- 

om set of negatives. For example, in the case of a universe with 

00 identities, we would have a total of 19 different splits. As for 

etrics, we measure precision, recall and F1-measure, using a T W 

xed to 0.01. 

. Experiments and Results 

The experimental part of the paper is organised as follows. First, 

e study the dependence of performance against the size of the 

niverse, while maintaining the ratio with respect to the num- 

er of IoI constant ( Section 5.1 ). After that, we perform a com-

rehensive analysis of the temporal evolution of one of the pre- 

ious configurations ( Section 5.2.1 ). Then, we compare the per- 

ormance of our approach against state-of-the-art face recognition 
8 
ethods ( Section 5.3 ). Finally, the effect of openness is assessed 

 Section 5.4 ). 

.1. Performance vs. Universe Size 

This experiment shows the performance behaviour of OSDe- 

VM under different universe sizes ( N U ) while keeping the pro- 

ortion of IoI to N U 1:2. Results are shown in Tables 1 and 2 .

e measure initial (non-adaptation) and final (after adaptation) 

erformance of OSDe-SVM, using the previously described exper- 

mental set-up ( Section 4.2 ). It is important to remark that non- 

daptation means that ensembles do not incorporate new SVMs 

part from the initial one. Thus, performance is quite similar to 

he one provided by the original network [46] . 

From the experimental results on both datasets, the benefits 

rovided by the adaptive nature of the OSDe-SVM are patent. F1- 

cores increase in all but one case (the case of having 10 IoI in 

 Universe of 20 for YTF), mainly due to the impact on recall (9- 

0% improvement). OSDe-SVM helps to enhance and enrich the ex- 

stent face models, being able to recognise what previously were 

nrecognisable. This improvement is even more remarkable ac- 

ounting for the challenging experimental conditions. First, only 5 

ow-quality frames are provided with true labels to create the ini- 

ial models. After that, no additional labelling is provided. Second, 

e use the same identities (both known and unknown ) to perform 

he queries in each adaptation step. Therefore, confusions between 

dentities could reinforce the impostor and eventually provoke a 

omplete identity theft. 

Although overall the behaviour observed is stable, the highest 

mprovement in performance corresponds to larger universes. This 

ehaviour can be explained by how we use the EVT. The quality 

f the Weibull fit in RDF ( Section 3.1.2 ) increases as the number of

amples to fit do so. For instance, since just half of the data is used

n this process (those greater than the median, L8 in Algorithm 1 ), 

hen the IoI is 10 the Weibull fit is done with only 5 points. 

Finally, while OSDe-SVM presents benefits in both datasets, COX 

s the one which presents the best result. This can be attributed to 

act that their sequences are more contiguous. 

.2. Comprehensive study of the 50 IoI in a universe of 100 

This experiment was aimed at performing a detailed study of 

ne of the previous cases (50 IoI in a universe of 100) to fully 

nderstand OSDe-SVM behaviour. First, we will study its detailed 

emporal evolution in Section 5.2.1 . After that, we complement 

his study by exploring the behaviour of two fundamental parts 

f OSDe-SVM: self-healing ( Section 3.4 ) and the decision threshold 

 W 
( Section 5.2.3 ). 

.2.1. Temporal evolution 

The results of the temporal evolution are shown in Fig. 8 . The 

rst thing we can extract from the experiments ( Fig. 8 a) is that

he performance improvement is higher in the first steps. This is 

omething which could be expected as adding individual classi- 

ers has a higher impact when the size of the ensemble is lower. 
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Table 1 

Performance over different universe sizes ( N U ), while preserving the ratio with the number ( N) of IoI. Val- 

ues are expressed as μ(σ ) , where μ stands for mean and σ for standard deviation. Test performed on COX 

Face Database. 

Precision Recall F1 

N N U Initial Final Initial Final Initial Final 

10 20 75 (12) 71 (12) 79 (17) 88 (11) 76 (14) 78.5 (9.7) 

20 40 86.9 (8.2) 85.1 (6.3) 74 (15) 91.1 (6.7) 79 (11) 87.8 (5.4) 

30 60 88.5 (6.4) 89.7 (5.5) 72 (10) 94.3 (3.7) 78.8 (7.8) 91.8 (3.7) 

50 100 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2) 

100 200 92.6 (3.0) 92.6 (2.1) 68 (10) 95.1 (1.9) 77.8 (7.8) 93.79 (0.97) 

200 400 92.0 (1.8) 93.5 (1.6) 66.5 (8.5) 95.7 (1.0) 76.8 (5.6) 94.6 (1.1) 

300 600 90.3 (1.3) 91.9 (1.3) 63.8 (4.8) 95.6 (1.0) 74.6 (2.9) 93.8 (1.1) 

500 1000 84.6 (1.4) 89.33 (0.76) 63.3 (1.7) 95.33 (0.59) 72.4 (1.1) 92.23 (0.64) 

Table 2 

Performance over different universe sizes ( N U ), while preserving the ratio with the number ( N) of IoI. 

Values are expressed as μ(σ ) , where μ stands for mean and σ for standard deviation. Test performed on 

YouTube Faces dataset. 

Precision Recall F1 

N N U Initial Final Initial Final Initial Final 

10 20 79 (10) 73.3 (9.5) 86 (11) 89.4 (9.4) 81.9 (8.2) 80.2 (8.1) 

20 40 89.4 (5.8) 87.0 (6.2) 86.0 (8.2) 91.2 (6.4) 87.3 (5.0) 88.8 (4.9) 

30 60 91.8 (4.4) 90.5 (5.1) 84.6 (7.5) 91.8 (5.7) 87.8 (4.5) 91.0 (4.4) 

50 100 93.6 (2.9) 91.7 (3.7) 84.1 (5.4) 90.3 (4.0) 88.5 (3.2) 90.9 (3.2) 

100 200 93.7 (1.5) 91.9 (1.7) 84.3 (6.1) 90.8 (2.8) 88.6 (3.4) 91.3 (1.8) 

200 400 92.3 (1.6) 93.81 (0.48) 84.1 (2.7) 91.5 (1.2) 87.94 (0.71) 92.62 (0.88) 

Fig. 8. Evolution of OSDe-SVM for the case of 50 IoI over an universe of 100 identities. Test performed on COX Face Database. 

B

p

t

s  

t

(

a

t

s

S

5

o

p

h

q

n

A

e

w

t

5

o

i

t

w

T

N

w

esides, this behaviour shows the system’s robustness against re- 

eated unknown queries. 

These figures also allow observing in a more detailed manner 

he remarkable recall improvement provided by OSDe-SVM. Preci- 

ion is also improved but to a lesser extent. Besides, Fig. 8 b shows

he evolution of the average ensemble size for each of the splits 

 Algorithm 3 ). We can see the effect of self-healing (every 5 steps) 

nd the limitation module. First, drops in size correspond to the 

riggering of the self-healing process. Second, the size of each en- 

emble, M 
k , is effectively restricted by the limitation module to 10 

VM classifiers. 

.2.2. The effects of self-healing 

Here we wanted to see the effects on the performance of using 

r not the self-healing module. Therefore, we have repeated the 

revious experiment for 50 IoI in a universe of 100 with the self- 

ealing module disabled. The results are in Table 3 . 
9 
Self-healing provides limited performance increases. Conse- 

uently, the results do not achieve enough significance. Precision is 

ot degraded as much with this module activated (+1% difference). 

ll of this suggests that the module may be helping to partially 

liminate wrong classifiers from the ensemble. This improvement, 

hile being small, opens an interesting research line to further op- 

imise ensemble errors self-correction in the future. 

.2.3. Dependence on T W 

OSDe-SVM makes its decisions by establishing a threshold ( T W 
) 

n the Weibull distribution fitted to the ensemble’s scores of an 

ncoming sequence (see Section 3.1.2 ). This approach allows the 

hreshold to better generalise to each specific context. Even more, 

hen data scarcity forces us to fix its value a priori . 

In this section, though, we wanted to explore the influence of 

 W 
in OSDe-SVM performance, to better understand its behaviour. 

ote that such an exploration could not be performed in a real- 

orld application. We are going to measure initial and final perfor- 
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Table 3 

Comparison of OSDe-SVM with and without the self-healing module. Test performed on COX 

Face Database. Performance is expressed as μ(σ ) , where μ stands for mean and σ for stan- 

dard deviation. The number of tests used to compute these values are the ones explained in 

Section 4.2 . 

Precision Recall F1 

Conf. Initial Final Initial Final Initial Final 

With SH 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2) 

Without SH 91.2 (4.0) 90.8 (3.7) 70 (11) 94.5 (3.5) 79.0 (7.8) 92.6 (2.9) 

Table 4 

Initial and final performances for different values of the decision threshold ( T W ) over the 

Weibull distribution. Test performed on COX Face Database. 

Precision Recall F1 

T W Initial Final Initial Final Initial Final 

0.100 69.5 (5.2) 70.9 (4.7) 91.4 (5.8) 97.3 (2.3) 78.8 (4.8) 81.9 (3.4) 

0.010 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2) 

0.001 97.0 (3.6) 95.7 (3.2) 48 (12) 83.2 (5.7) 63 (11) 88.9 (4.1) 

Table 5 

Comparison against state-of-the-art face recognition models: FaceNet [25] and 

RN100-AF (ArcFace) [46] , (for the case of 50 IoI in an universe of 100) using their 

proposed metrics for classification and a simple threshold (TH) to determine the 

unknown. We represent standard deviation within brackets. Test performed on COX 

Face Database. 

Method Precision Recall F1-measure 

FaceNet + Euclidean+TH 38.7 (7.4) 71.3 (9.4) 49.0 (8.7) 

RN100-AF + Cosine+TH 77.3 (9.9) 86 (11) 80.7 (6.5) 

RN100-AF + OSDe-SVM, Initial 91.2 (4.7) 70 (13) 77.8 (7.8) 

RN100-AF + OSDe-SVM, After Adapt. 91.9 (3.8) 94.2 (4.1) 93.0 (3.2) 
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score. 
ance for the case of 50 IoIs in a universe of 100, for 3 different

alues of T W 
. 

Results in Table 4 show that overall the properties of OSDe- 

VM are maintained over each value, keeping its ability to improve 

erformance without supervision. Therefore, varying T W 
only move 

he point of the precision-recall curve in which OSDe-SVM oper- 

tes. 

.3. Comparison against state-of-the-art face recognition models. 

Here, we compare the performance of OSDeSVM against two 

ther well-known methods for face recognition ( Table 5 ). In these 

wo methods, the focus was on obtaining the most widely sepa- 

ated classes in feature space, to make the classification as easy 
Fig. 9. Performance openness dependence with fixed IoI (

10 
s possible. On the one hand, FaceNet [25] feature embedding is 

esigned to distinguish faces by computing the euclidean distance 

etween two features (99.6% accuracy on LFW). On the other hand, 

rcFace [46] embeddings are designed to distinguish features by 

sing cosine similarity. All of this makes them suitable for appli- 

ation in any face related task (either verification, identification or 

eneral recognition) or, as in our case, to use as a basis for the 

evelopment of an adaptive method. 

Both euclidean distance and cosine similarity are used to com- 

are two single features. Since here we work with the features 

f all the frames in each query sequence, the centre of this clus- 

er of features is computed as proposed in the original paper 

46] , to obtain a unique feature per sequence. Besides, the thresh- 

lds were tuned offline to get the best F1-scores, which are used 

s baselines. This would be impossible to do in stream learning 

onditions. 

Results on Table 5 allow us to gain insights into the issues 

ddressed in this paper. First, the performance of FaceNet shows 

he difficult endeavour of transitioning to real-world problems 

low-quality, open-set considerations, etc.). Second, our initialisa- 

ion OSDe-SVM with RN100-AF embeddings preserves most of the 

iscrimination power of the original decision function (cosine sim- 

larity). Finally, the enhanced performance provided by OSDe-SVM 

s put into perspective against other state-of-art static face recog- 

ition models. This improvement translates into a 15% higher F1- 
50), and universe ∈ {50, 100, 200, 400, 600, 1000}. 
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.4. Performance vs. Openness 

The goal of this experiment is to study how the behaviour of 

SDe-SVM changes with the openness ratio, O , that is the ratio 

f known to unknown identities [16] . This measure goes from 0% 

penness (closed-set recognition) to, theoretically, 100%: 

 = 1 −
√ 

2 · N training 

N target + N testing 

, (3) 

here N training is the number of identities used on training (in our 

ase, N), N target is the number of identities to recognise (in our 

ase, N as well) and N testing are the number of identities used on 

esting (in our case, N U ). Thus, Eq. 3 simplifies to: 

 = 1 −
√ 

2 · N 

N + N U 

. (4) 

To have a wide range of openness values, we selected a rela- 

ively low number of IoI (50) and then vary the size of the uni- 

erse from 50 identities (0% openness , i.e. closed-set) to 10 0 0 iden-

ities ( ≈70%). Experimental results are shown in Fig. 9 , where per- 

ormance is represented in terms of precision, recall and F1-scores. 

The performance graphs show a clear decay of F1 performance 

s openness increases, because of the loss of precision. It must 

e noted that openness affects both the unsupervised adaptation 

nd the testing process. An increase in openness provokes a decay 

n precision, which also entails making more mistakes during the 

elf-adaptation. Accordingly, the drop in precision leads to a decay 

n recall after the adaptation process. Against all odds, the system 

roves its robustness until almost 60% of openness . 

. Conclusions 

In this work, we propose a novel system, the OSDe-SVM as an 

nstance-incremental learning approach to the problem of open-set 

ace recognition in video surveillance. This system aims to operate 

n real-world non-stationary environments where the availability 

f labelled data is quite limited. 

OSDe-SVM design uses the power of deep face representa- 

ions as a basis. Once initialised (using 5 labelled frames per IoI), 

he proposed method creates and updates an ensemble of SVM 

lassifiers using samples directly taken from the input sequence 

hich effectively deals with catastrophic forgetting. These up- 

ates are performed following the self-training paradigm in which 

SDe-SVM predictions are used as pseudo-labels to incorporate 

ew knowledge without additional supervision. In this regard, we 

chieve update reversibility by encapsulating each update into an 

ndividual SVM classifier. By the use of EVT, OSDe-SVM can make 

ecisions in open-set conditions. 

Experiments were mainly performed on COX Face Database, to 

ur knowledge the most challenging video-surveillance database 

vailable. Guided by real-world necessities, the set-up simulates 

pen set recognition conditions. Results show up to a 15% F1- 

easure (achieving up to a ≈ 94% F1-measure, depending on the 

mount of IoI to recognise) increase respect to the closest static 

tate-of-the-art (ResNet100+AF) face recognition model. Further- 

ore, the proposed system’s performance is tested under different 

egrees of openness , proving to be reliable up to +60% openness (50 

oI in a universe of 10 0 0 identities), where unknown identities ap- 

ear many more times than IoI. Additionally, CMU FiA and YouTube 

ace databases are also successfully used to test the generalisation 

apabilities of the proposed OSDe-SVM. 

In future work, apart from translating OSDe-SVM to other re- 

ated machine learning applications, an interesting line of re- 

earch would be to extend the proposed system to the unsuper- 

ised class-incremental problem. Following the same self-training 
11
aradigm, unknown responses could be used to incorporate addi- 

ional IoI into the recognition system. And, since classifiers are in- 

ependently created, these additions would not have any adverse 

ffect on previous knowledge. 
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