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Abstract: Radon (Rn) is a biological threat to cells due to its radioactivity. It is capable of penetrating
the human body and damaging cellular DNA, causing mutations and interfering with cellular
dynamics. Human exposure to high concentrations of Rn should, therefore, be minimized. The
concentration of radon in a room depends on numerous factors, such as room temperature, humidity
level, existence of air currents, natural grounds of the buildings, building structure, etc. It is not
always possible to change these factors. In this paper we propose a corrective measure for reducing
indoor radon concentrations by introducing clean air into the room through forced ventilation. This
cannot be maintained continuously because it generates excessive noise (and costs). Therefore, a
system for predicting radon concentrations based on Machine Learning has been developed. Its
output activates the fan control system when certain thresholds are reached.

Keywords: radon; machine learning; monitoring; applied biosensing

1. Introduction

Radon (Rn) is a colorless, odorless and tasteless [1] chemical element with atomic
number 86 that was discovered at the end of the 19th century in Germany [2]. Since
then, it has been broadly studied, not because of its applications, as it has a short lifetime
(almost four days) [3], but because of its radiation. Rn is a biological threat to cells due to
its radioactivity. It degrades over time by losing atomic mass, producing radiation and
converts into another radioactive element. This cycle is repeated until a stable state is
reached, i.e., when radon converts into lead. Alpha particles, beta particles and gamma
rays are the types of radiation emitted. Extended exposure to these can be harmful, as this
radiation can penetrate the human body and damage cellular DNA, causing mutations and
interfering with cellular dynamics, which can lead to the onset of neoplasms.

Rn has been proved to be related to the onset of lung cancer in non-smokers (it is
estimated to cause between 3% and 14% of all lung cancers in a country, depending on
the national average radon level and smoking prevalence, according to World Health
Organization data). Radon has been declared the most frequent cause of lung cancer among
non-smokers by the United States Environmental Protection Agency (USEPA) [1] and the
International Agency for Research on Cancer (IARC) [4]. Spain—in general—and Galicia in
particular, has high natural radon concentrations [5] due to its geology, which is strongly
determined by granite, the main source of natural Rn emissions [6–8]. Consequently, it is
essential to deploy sensors to detect and quantify the amount of indoor Rn, even at small
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concentrations, at least in regions with high natural Rn generation. However, detecting Rn
values is just a part of the work because these values will eventually have to be corrected
whenever they exceed biologically safe levels to avoid any interaction of Rn with living
organisms. The concentration of Rn is measured in terms of its radioactivity, as Curies
(Ci) or Becquerels (Bq); both indicate the amount of radioactive material that decays every
second (1 Ci = 37 billion, Bq = 37 billion decays/second) [9].

Radon is present in soil, typically in granite rock, which under certain pressures,
humidity or temperatures, releases it into the atmosphere.

Actual radon levels in the open air are normally quite low (the average radon activity
in the air in the United States is 0.4 pCi/L or 14.8 Bq/m3), but they could vary depending
on location and soil geology. Actual levels are also affected by weather variables, such
as precipitations and sudden changes in temperature. Radon levels are often higher
indoors than outdoors, for example, in homes, schools and corporate buildings. The
changes are significant, ranging from 10 Bq/m3 to 10,000 Bq/m3, according to World Health
Organization (WHO) data. This organization recommends setting national reference levels
at 100 Bq/m3 (2.7 pCi/L), or if this value is not considered feasible due to the characteristics
of a certain country, at 300 Bq/m3 (as is the case in Spain, due to its mainly granite soil).
Finally, according to these thresholds, the European Union (EU) has defined a maximum
yearly exposure level of 300 Bq/m3 as a safe reference level [10].

The enormous interest in society for the control of this gas and its effects on the health
of individuals led to an increase in its control and, therefore, in the number of sensors
installed for detecting it.

Several studies are available in which radon gas was measured in soil [11–13] and in
groundwater [14–16] (sometimes related to earthquakes or volcanic activity [17,18]). Other
papers discuss the use of Artificial Neural Networks [19] or other Machine Learning (ML)
approaches, but mainly use previously stored data that are then analyzed offline or from a
more statistical point of view [20].

This paper aims to discuss a family of Machine Learning models that can predict
indoor radon levels knowing the current Rn levels so that indoor radon exposure can
be reduced using mechanical devices controlled in real time by intelligent predictions.
Section 2 lists the methods and materials used, as well as the data, and Section 3 will
present the results obtained. Finally, the models presented will be discussed in Section 2.

1.1. Radon Concentration Detection

There are several options for detecting radon concentrations, both in the short and
long term. All of them are usually reliable, but it is important to remember that radon
concentrations are affected by several elements including, but not limited to, temperature,
pressure and/or humidity.

Several devices can be used [21,22], but three approaches or methodologies can be
discussed depending on the type of sampling used for measurement: instantaneous,
continuous measurement and integrated methods.

1.2. Radon Mitigation

However, radon detection is only the first step of the process. Radon concentrations
must be measured but, if they exceed certain levels, the second step—radon mitigation—
should be started to reduce them to safe levels by means of air renewal in the room or
laboratory affected.

There are also different mitigation alternatives [23–25]. These measures need to be
taken in enclosed spaces, as these are the most likely places for radon to accumulate. The
most common ways of reducing these concentrations are listed below:

• Increasing subfloor ventilation.
• Installing a radon sump system in the basement or under a solid floor to collect the

radon and subsequently expel it into the atmosphere.
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• Avoiding the passage of radon from the basement into living spaces (e.g., by means of
sealing floors and/or walls).

• Improving the ventilation of the building (with fans or crossed ventilation).

This reduction in the radon concentration can be accomplished by opening a window
or a door in the room to let the fresh air in to renew the current one (or at least to reduce the
concentration by diluting particles in a larger amount of air). In larger spaces, some sort of
mechanical aid would be necessary (i.e., air flow systems) to move the required amount
of air in the room in a suitable amount of time (typically one hour or less) and replace the
contaminated air with clean, fresh air.

Other alternatives for reducing radon levels are available, but they are usually more
costly to implement or are aimed at new construction buildings. They include sub-slab
depressurization (or active sub-slab suction) systems that pull radon directly beneath the
home’s foundation and soil to then expel it harmlessly above the roof, where it dissipates
very quickly. The quantity and position of the suction pipes required are determined by
the ease with which air may flow in the crushed rock or soil beneath the slab, as well as
the concentration of the radon. Only one suction point is frequently required. It is the
most common and usually the most reliable radon mitigation system; other approaches use
pipes that are inserted into a drain tile and expel the soil gases outside. In this case, covers
are placed on the sump basket. Another option, usually used in crawl spaces, consists of
using submembranes, a plastic sheet to cover the floor that extends up onto the wall and
seals the building. Here, a pipe penetrates under plastic sheeting, pulls out the radon and
expels it outside. Other approaches use sealing cracks and other openings in the building’s
foundation when they are visible.

The system proposed in this article employs an air fan to introduce fresh air into the
room. The fan is turned on automatically for the intelligent system to keep the radon con-
centrations within safe values. By making use of a regression model, it seeks to anticipate
when the maximum values will be reached in order to turn on the air flow control system
and bring those values below a safe threshold. Once the intelligent model establishes
that the predictions are below the threshold under the current conditions, the controller
turns off the fan. This enables the people that occupy said spaces to avoid increases in
radon concentrations.

Passive systems of mitigation can reduce indoor radon levels by more than 50%. When
radon ventilation fans are used too, radon levels can be reduced even further.

2. Materials and Methods

The first step consisted of acquiring data on radon concentrations. Data were collected
using an external sensor [9,26], which also offers an easy and intuitive model for trying
to predict the level of Rn using a simple slope. The system was designed to continuously
sample radon levels in real time. These measurement values must be averaged over time
(typically 10 min to one hour), then extrapolated for a longer period and finally compared
with the system’s threshold (regulatory limits are legally established for spaces where
people are exposed for extended periods of time). According to device characteristics,
new data were provided every 10 min as an aggregate of the collisions within that time
interval. This interval allowed us to use whole data from device measurements to get a
bigger training set and allowed us the detection of tendency changes as soon as possible.
The first observation was made on 25 September 2019, at 9:50 a.m., UTC+2, and the system
was trained with the raw data until 3 March 2021, at 4:54 p.m. We have registered seven
attributes: the timestamp the data are saved on, radon levels (Bq/m3), temperature (◦C),
relative humidity (%), pressure in millibars (mbar), total volatile organic compounds (tvoc)
and state (whether the ventilation is switched on or off).

The equipment used was a sensor based on a pulsed ion chamber, the RD200M [26].
This sensor is broadly used to perform radon measurements [27–30]. The main characteris-
tics of the sensor for the radon concentration measurements are:

• Sensitivity: 0.81 cph/Bq/m3
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• Precision: ±10% at 370 Bq/m3

• Measurement range: 7.4 to 3.700 Bq/m3

• Accuracy: <±10% (min. error <± 18.5 mBq/m3)
• Reproducibility: <±10% at 370 mBq/m3

• Data interval: 10 min update (60 min moving average)

Figure 1 shows the course of radon over time (N.B.: radon values are usually over
the threshold) while Figure 2 depicts the remaining variables (except for the ventilation
state, which requires a separate analysis). Most of the experimental values comply with the
legislation and are coherent with the specific use of the building and its geographic location.
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Figure 2. Course of the remaining variables over time.

Figure 1 shows that the recommended level (about 300 Bq/m3) is sometimes exceeded;
in fact, the mean level is 369 Bq/m3 and the median is 262 Bq/m3. Furthermore, this
graph contains an important number of outliers, which can be confirmed in Figure 3. These
outliers mainly originate from human mistakes (accidentally disconnecting the control
system) and the lack of accurate predictions made by the first prediction model (basically
using a slope [9]). Once the final model is selected based on the learning/training step, we
will focus on checking the generalization (prediction) ability it can offer. The training was
done using the largest “cleanest” signal we found in summer last year, which had around
12,000 samples with almost no outliers.
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Figure 3. Radon violin plot for outlier detection.

The radon concentrations predicted by the intelligent system will be used as input
controls for fan control. Nowadays, a simple control function is employed (as shown
in Figure 3): when the prediction for the next 10 min exceeds the fixed threshold (now
established at 300 Bq/m3Pl), the controller sends a power-on signal to the ventilation system.
Otherwise, when the prediction for radon concentrations goes below this threshold, the
controller switches off the ventilation.

Figure 4 summarizes the whole system, highlighting the modules directly related to
the control of the ventilation system: the database where the measurements are stored, the
container that runs the intelligent model that communicates with the control system of the
device by sending alerts and finally the fan itself. Currently, the control device is a simple
relay that compares the predicted random value with a threshold (300 Bq/m3) to turn on
the ventilation when the prediction is higher and turn it off when it is lower.
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Figure 4. General scheme and ventilation system.

As mentioned above, special attention to the ventilation status is required, as it has
a direct correlation with the reduction in the amount of Rn within the room [31], as can
be seen in Figure 5. This correlation has a −0.107 Point-biserial coefficient (used since
continuous and binary data are present) with an associated 0 p-value, so we can assume
that clearly, the ventilation has a positive effect on the radon control
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R language [32] was used for plotting (ggplot2) [33]. Python [34] was applied to build
Recurrent Neural Networks (LSTM in this case) using the Tensorflow framework [35]. Both
source code and data can be accessed via Github (https://github.com/valcarce01/Radon-
prediction, accessed on 1 June 2022).

3. Results

The tested RNN models will be discussed in this section. With the aim of comparing
the models, a “baseline model” was previously developed. This is a naïve model that
predicts the following level of Rn from the current one. This leads to a root mean squared
error (RMSE) of 28 Bq/m3 on the selected subsample described in the next subsection.

RNN

The RMSE for each model is shown in Table 1; the bold figure represents the best
result obtained.

Table 1. RMSE for each model built with each combination of covariates (all of them include the
radon level) and for each number of previous samples used.

Covariates/Window Size # 1 5 10 15 25

- 26.57 22.19 16.45 17.21 19.33
state 27.28 18.09 17.23 14.96 16.61

humidity 26.38 18.24 23.11 19.12 20.7
pressure 25.23 24.01 24.57 17.58 17.8

tvoc 23.71 17.00 17.34 17.73 18.42
state and humidity 24.38 19.89 19.42 16.45 18.22
state and pressure 28.15 19.48 17.5 19.95 17.01

state and tvoc 22.93 19.95 16.09 16.13 18.35
humidity and pressure 31.08 21.13 18.66 16.81 25.05

humidity and tvoc 37.52 21.30 19.84 15.77 23.16
pressure and tvoc 28.98 34.78 18.35 16.53 19.36

state, humidity and pressure 29.04 24.90 18.25 16.12 20.55
state, humidity and tvoc 24.47 22.59 19.35 16.87 20.1
state, pressure and tvoc 24.88 23.14 18.96 17.95 22.59

humidity, pressure and tvoc 33.77 21.68 17.65 20.23 31.87

For the recurrent neural networks (RNN), after several preliminary tests, we found that
the best recurrent architecture was based on a set of Long Short Time Memory (LSTM) [20]
cells, followed by two dense layers with 16 hidden units and the non-linear Rectified Linear
Unit (ReLU) activation function and finally, another dense layer with linear activation
(the regressor).

https://github.com/valcarce01/Radon-prediction
https://github.com/valcarce01/Radon-prediction
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With the goal of connecting the LSTM cells with the first of the dense layers, we
encourage the LSTM to predict radon concentrations at each time point, even though the
only timestamp that really forecasts the value we are interested in was the last cell. By doing
this we introduced new non-linearities (with the dense layers) that involve improvements
in both the metrics.

To select the combination of covariates and the window size (the number of samples
used as input) that provide the best outcome, we fitted all 75 possibilities (five different
window sizes with all the combinations of the covariates). The longer the window size, the
more complex the relationship between data can become; we, therefore, gave the LSTM
architecture small freedom to increase the number of parameters of the network by selecting
the number of hidden LSTM cells as twice the window size. The RMSE in test forecasting
for each one of the 75 models is shown in Table 1, where the bold represents the best
result obtained.

As expected, the state is the most useful covariate for predicting future concentrations
of Rn. It is worth remembering that this is just a first step towards selecting the baseline
model to be exploited afterward.

Considering the above results, the prediction of radon concentrations can be success-
fully achieved using only the previous concentrations and the state variable. So, we used
15 previous observations to develop models with different hidden units in the LSTM layer
and different feed forward (ff) network configurations. Results are presented in Table 2.
Although most of them do not improve the results shown in Table 1, they belong to the
best 1% percentile of the RMSEs of all the different models.

Table 2. RMSE for each model built with each combination of the number of feed forward hidden
units (in rows) and the number of hidden units in the LSTM layer.

4 8 16 32 64

1 × 16 neuron dense layer 15.21 15.05 16.08 14.90 14.95
2 × 16 neuron dense layer 15.45 15.21 15.92 14.93 16.15
1 × 32 neuron dense layer 14.69 14.75 15.05 15.93 15.44
2 × 32 neuron dense layer 15.63 16.10 16.67 16.46 17.38

With this in mind, an LSTM model with four units in each cell (which represents the
dimensionality of the output introduced by the layer) and a dense layer with 32 neuron
units was attempted (see Figure 6, where the dimensionality introduced by the hidden
cells is omitted). Figure 7 shows a general reconstruction of the test signal we chose, and
Figure 8 provides a closer look at where errors can be seen.
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4. Discussion

As can be deduced from the models presented above, we are capable of forecasting
only at one timestamp (10 min), and this has been a data-driven decision. In Figure 9, we
see that the reduction in the level of Rn observed in the samples when ventilation was active
for 10, 20 or 30 min is significant and that some conclusions can be drawn: if ventilation was
active for 30 min, we cannot say that less Rn is obtained than when ventilation was active
for 20 min (despite the lowest values being lower than in the 20 min gap, the highest ones
surpass the 20 min ones too). Indeed, with an additional 30 min, the deviation is induced
in the model and so fitting it is much harder. However, with a 10-min prediction, we can
reduce the level on 75 % of the occasions, which is a nice trade-off in terms of accuracy
(very low deviation compared with the other two windows selected) and the electric power
required to reduce Rn to the desired levels. This graphic was created from all the data that
we have (~1 year), and the conclusion is that the longer the horizon not only has bigger
outliers, but also the box plot shows that the 50% of the data (inside the box) has a larger
dispersion, so it will be harder to predict an exact value.

Finally, as discussed earlier, the data subsample considered so far was from summer
2020. However, we would like a stable model capable of predicting the values further. To
check if the model has the generalization ability, the signal from winter 2021 was considered.
It was found that its overall behavior was very similar to that discussed earlier (Figure 10),
resulting in an RMSE well below 20, which is even a bit better than that for summer.
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Finally, it should be noted that one of the benefits of LSTM is that it is possible to train
the models with data from different time points, with no sequence between them. This
means that it would be possible to train the model with all the subsamples of “clean” data
we have and so, potentially, the difference between the RMSEs from summer and winter
would be minimized or eliminated.

The final step consisted of linking the predictor system to the mechanical ventilation
system so that it was responsible for managing the engine startup and shutdown. Due to
the current configuration of the control module, this should occur whenever the model
prediction goes above or below 300 Bq/m3, respectively.

As can be seen, the system is able to maintain radon values within an acceptable range,
as shown in Figure 11. This figure represents a small interval from the whole week where
the device was making the forecast with very similar results.
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Therefore, in our view, the results presented here demonstrate that it is possible to
deploy a system to control the levels of Rn indoors by using a mechanical ventilation
system controlled by a Machine Learning model.

5. Conclusions

The work presented is part of a larger project to monitor radon levels in different
rooms. In this study, the feasibility of developing an intelligent system that autonomously
switches on and off the fan that is responsible for keeping a room ventilated has been tested.
This can be achieved with a simple model. In fact, of all the measurements taken, it is
enough to use the time series of radon measurements to make correct predictions, with
the other measurements of humidity, etc., providing very little useful information. This
simplicity is also helped by the fact that all measurements are performed in the same room,
which makes the signal concentrations very repetitive over time. Work is already underway
to obtain data from different rooms/locations to solve this problem.

It is not possible to obtain better results precisely because of this simplicity, introduced
by the type of controller used. More tests need to be performed with controllers that allow
more interaction, different on/off thresholds or that allow the control of the operation in
terms of increments/decrements of measurements between consecutive intervals, etc.

Due to the characteristics of the current installation, it has not been possible to test the
system under interference conditions either. In future versions, attention should be paid to
the help provided by multisensor systems or e-noses [36,37] in this field.
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