
Future Generation Computer Systems 134 (2022) 66–77

a

b

a
d
v
c
I
l
t
r
s
d

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An out-of-coremethod for GPU imagemapping on large 3D scenarios
of the real world
Juan M. Jurado a,∗, Emilio J. Padrón b, J. Roberto Jiménez a, Lidia Ortega a

Computer Graphics and Geomatics Group of Jaén, University of Jaén, Spain
CITIC Research & Computer Architecture Group, University of A Coruña, Spain

a r t i c l e i n f o

Article history:
Received 14 July 2021
Received in revised form 3 February 2022
Accepted 15 March 2022
Available online 24 March 2022

Keywords:
Parallel computing
GPGPU
Image mapping
3D model
Multi-source data fusion

a b s t r a c t

Image mapping on 3D huge scenarios of the real world is one of the most fundamental and
computational expensive processes for the integration of multi-source sensing data. Recent studies
focused on the observation and characterization of Earth have been enhanced by the proliferation
of Unmanned Aerial Vehicle (UAV) and sensors able to capture massive datasets with a high spatial
resolution. Despite the advances in manufacturing new cameras and versatile platforms, only a few
methods have been developed to characterize the study area by fusing heterogeneous data such as
thermal, multispectral or hyperspectral images with high-resolution 3D models. The main reason for
this lack of solutions is the challenge to integrate multi-scale datasets and high computational efforts
required for image mapping on dense and complex geometric models. In this paper, we propose
an efficient pipeline for multi-source image mapping on huge 3D scenarios. Our GPU-based solution
significantly reduces the run time and allows us to generate enriched 3D models on-site. The proposed
method is out-of-core and it uses available resources of the GPU’s machine to perform two main
tasks: (i) image mapping and (ii) occlusion testing. We deploy highly-optimized GPU-kernels for image
mapping and detection of self-hidden geometry in the 3D model, as well as a GPU-based parallelization
to manage the 3D model considering several spatial partitions according to the GPU capabilities. Our
method has been tested on 3D scenarios with different point cloud densities (66M, 271M, 542M) and
two sets of multispectral images collected by two drone flights. We focus on launching the proposed
method on three platforms: (i) System on a Chip (SoC), (ii) a user-grade laptop and (iii) a PC. The
results demonstrate the method’s capabilities in terms of performance and versatility to be computed
by commodity hardware. Thus, taking advantage of GPUs, this method opens the door for embedded
and edge computing devices for 3D image mapping on large-scale scenarios in near real-time.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, precision agriculture or environmental health di-
gnostics make widespread use of multi-sensors coupled with
rones or UAVs (Unmanned Aerial Vehicles). Some of these de-
ices are thermal sensors, RGB, multispectral or hyperspectral
ameras, as well as LiDAR (Light Detection and Ranging or Laser
maging Detection and Ranging) systems. At present, they all have
ightened their weight, improved their performances and lowered
heir cost. This allows us to monitor large areas of crops or forests
emotely, obtaining information in the visible and non-visible
pectral ranges. Large areas can be monitored on each flight,
epending on the flight altitude and battery life. In any case, a

∗ Corresponding author.
E-mail address: jjurado@ujaen.es (J.M. Jurado).
ttps://doi.org/10.1016/j.future.2022.03.022
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
day’s flying usually generates large amounts of information that
needs high computational requirements to be processed.

Applications of these technologies are very diverse. Thermal
sensing, for instance, is useful for detecting the impact of heat
waves and drought in crops or ecosystems [1]. However, not
always only one sensor is attached to the drone. There is a
tendency to use several combined sensors in the so-called UAS
(Unmanned Aerial Systems) to obtain diversified information [2].
As a consequence, huge amounts of heterogeneous data must be
managed.

An additional objective is to process all this heterogeneous
information under the same data model, including the 3D models.
In fact, RGB and LiDAR sensors allow us to generate 3D point
clouds, which characterize the geometric properties of soil and
vegetation. Therefore, an ideal capture and processing mechanism
would be able to automatically integrate both geometric and
spectral information in the same data model over time. Thus,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2022.03.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.03.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jjurado@ujaen.es
https://doi.org/10.1016/j.future.2022.03.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

t
p
r
3
r
I
t
e
p
t
t
r
p
s
s
p
u
o
w
a

c
t
s
a
s
t
T
m

t
s
p
e
a
p
d
s
e
t
t
s

a
c
u
s
w
I
r
t
r
m
m
t
o
p
a
d
t
a
s
d

t
p

-

his integrated system is, on the one hand, characterized by 3D
oint clouds representing the geometry of vegetation, soil and the
est of environmental elements. On the other hand, each of these
D points are mapped with semantic attributes from different
emote sensing devices such as multi- or hyper-spectral cameras.
n short, both point clouds and multi-source images are processed
ogether in order to map relevant image-based characteristics for
ach 3D point. Reviewing the scientific literature, we find that this
roblem is similar to that posed in the technique called projective
exture mapping [3–5]. Originally, the aim of that technique was
o have additional effects on the realistic image synthesis field of
esearch, to cast shadows or render translucent objects [6]. This
rocess poses a prevalent challenge in the current scenario, con-
idering the high number of high-resolution images and the huge
ize of point clouds, formed by several hundreds of millions of 3D
oints. This way of enriching a 3D model is disruptive and allows
s to reach a deep knowledge about natural environments. In
rder to achieve such an objective, multidisciplinary teams must
ork together and specific hardware with high computational
nd storage capabilities are required.
The problem at hand is complex, not only because of the

omputational time required. The main question is: which are
he pixels from many different 2D images that correspond with a
pecific 3D point? Sensors attached to drones obtain images with
dependency on the angle and position of the camera. Moreover,
ome areas are non-visible because they are self-hidden from
he zenith capture position, especially trunks and lower parts.
hus, the problem has two different aspects: (1) the pixels-point
atching and (2) the occlusion culling issue.
To summarize, we need to look for a mechanism (1) to process

he heterogeneous information coming from different UAV-based
ensors, (2) to match semantic and geometric data considering
roblems associated with occlusion and the viewpoints of cam-
ras. To address the problem, traditionally, raw datasets (images
nd 3D models) have been stored on hard disks to be post-
rocessed on powerful desktop computers. However, a more
ynamic approach would allow us to inspect and analyze the re-
ulting fusion of collected data on site, using portable equipment,
.g., a laptop. Even in the future it could take advantage of 5G
echnology to transmit to a local device the information during
he fly, or even perform this processing on ubiquitous processing
ystems processes attached to the UAS.
In any case, to deal with the challenge of processing huge

mounts of input data from different sources, general-purpose
omputing on graphics processing units (GPGPU) techniques are
sed to take advantage of parallel and distributed computing
trategies. GPGPU techniques can currently be applied to devices
ith very different sizes, memory and computational capacities.

n contrast to classical sequential methods, the computational
esources offered by GPU devices suppose a great opportunity
o accelerate image-based operations, 3D projections, geomet-
ic transformations and occlusion tests. However, there are still
any limitations that should be addressed. GPGPU algorithms
ust achieve a good balance distribution of compute-intensive

asks considering the available resources and consuming time
f data transfers between the CPU and GPU. In parallel, the
roliferation of IoT (Internet of Things) devices is transforming
lmost every industry. This involves the development of embed-
ed systems, System on Chips (SoC), that bring new capabilities
o the edge, accelerating product development and deployment
t scale. Therefore, new strategies are highly demanded to en-
ure not only efficient methods but also the processing of large
atasets.
In this scope, we propose an automatic and out-of-core pipeline

o map remote sensing images on huge 3D point clouds. The main

urpose is to combine, under the same data model, the geometric

67
information of point clouds with multispectral data. As a result,
enriched 3D models with additional environmental information
are generated.

In this paper we address this problem by computing different
dataset sizes and using several GPU devices emulating three
different scenarios: (1) desktop computer, (2) laptop and (3) SoC
platform that might be attached to any capture system. In terms
of GPGPU programming, we want to contribute with:

• An automatic approach to take full advantage of parallel
programming in GPU for image mapping on huge 3D mod-
els.

• The development of an out-of-core method which is not
dependent on the available GPU resources.

• The optimization by asynchronous transfers for a parallel
execution of mapping and occlusion tasks.

• The proposed solution for on-site data processing using
discrete GPUs and embedded systems.

Several datasets have been used to test the applicability and
the effectiveness of the proposed method. Our proposal is inte-
grated in the so-called GEU (Geospatial and Environmental tools
of University of Jaén) framework [7], which is briefly presented
in Section 3. In this platform we have integrated three different
GPU configurations to simulate different processing functional-
ities, addressing this way the possibility of performing on-site
computation. Current research in the field of remote sensing,
earth observation and big data processing can benefit from our
method. The generation of enriched 3D models from spectral and
high-resolution data by GPU enables new approaches to study,
analyze and assess the conservation and the evolution of our
environment.

The paper is organized as follows: Section 2 presents a brief
review of related works. Section 3 describes the framework GEU
on which this method is integrated. The problem statement,
input datasets and the proposed algorithm are included in Sec-
tion 4. The computational performance is tested in Section 5.
Section 6 presents a discussion about the results. Finally, Section 7
summarized the main conclusions derived from this work.

2. Related work

Data management in natural environments is an increasingly
interesting topic due to the emergence of disruptive acquisition
technologies. Large areas of forests or crops can be remotely
monitored using different capturing devices in order to estimate
the biometric values of plants, the harvest, as well as to detect
different plant diseases [8–10]. Some well-known techniques for
the generation of 3D data in real-world scenarios are: Radio
Detection And Ranging (RaDAR) [11], Light Detection and Ranging
(LiDAR) [12] or structure-from-motion (SfM) [13].

Definitely, the reduction of the size and weight of remote
sensing systems bring up the possibility to be coupled on UAVs
[14–16]. This brings the opportunity for the monitoring of large
extensions and difficult-to-access natural areas. Accordingly, multi
source remote sensing devices may be used together to increase
the knowledge of dynamic environments. These diverse capture
techniques have in common the huge amount of data recorded,
usually given as images or point clouds. This also generates the
search for new methodologies to process this data and apply the
results to the different areas of interest.

The limitations of 2D zenital images are better overcome by
obtaining a three-dimensional representation [17,18]. Genarally,
the subsequent treatment of images is usually oriented to gen-
erate 3D models of the surveyed areas [19,20]. In the las few
years, a wide variety of methods have been proposed for the

detection of individual crops and trees by taking advatanges



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

o
p
o
g
m
o
s

i
d
c
e
s
m
m
m
a
i
m
I
t
a
t
c
r
I
e
t
t
[

t
i
s
i
f
T
r
e
(
o
n
o
t
t
k
p

c
o
p
p
o
p
(
c
t
o
i
t
s
T
s
t
g
t

f using 3D geometric data [21,22]. The resulting millions 3D
oints are processed to reduce rendering times by calculating
ccluded surfaces in scanned or synthetic scenarios [23,24]. The
eometric modeling of observed entities allow us to study the
orphological structure of trees, as well as the volume measure
f the vegetation cover according to the shape of reconstructed
urfaces [25].
In any case, a natural environment is not only characterized by

ts geometric representation. On the other hand, different sensing
evices are able to provide high-resolution spectral information
apable of parameterizing, and therefore, characterizing the veg-
tation of these spaces. Thus, using a combination of imaging
ensors, we generate multi-resolution datasets that should be
erged and jointly analyzed [26] in order to reveal hidden and
eaningful features of natural environments. In this field, the
ost commonly used UAV-based sensors are focused on the
cquisition of multispectral-, hyperspectral-, and thermal- imag-
ng. For instance, the first of these devices provides an accurate
easurement of reflectance in a few number of narrow-bands.

n the near-infrared (NIR), vegetation can be recognized because
his band is less sensitive to chlorophyll. By contrast, the green
nd red bands are very useful to study the reflected light by the
ree canopy in the visible range. Finally, the red-edge (REG) band
aptures the reflectance between the Red and NIR and plays a key
ole to detect a key contrast from the visible to infrared light.
n a similar manner, a thermal camera is able to solve many
cological questions regarding the ecosystem metabolism and
he impact of heat waves and drought [1,27]. Likewise, similar
echniques have been applied for the detection of plant diseases
2,27].

According to the UAV’s capabilities for masive data acquisition
hrough the use of different sensors, one of the main challenge
s to develop a heterogneous data integration model, in which
ignificant variables of surveyed entities can be correlated. The
ntegration of spatial and spectral information into the same
ramework allows a more detailed analysis of crops or forests.
he use of this framework prevents the comparison of partial
esults, which have been generated from different data sources,
specially when they come from data with different dimensions
2D/3D), resolution or reference systems. Recent work are focused
n multi-source data fusion or image mapping in order to provide
ew tools for data inspection and analysis [28,29]. The foundation
f this task involves the search of those pixels, corresponding
o multiple images, that have captured a specific 3D point of
he point cloud. Each of these images provides an additional
nowledge about this point, only if the area represented by the
oint is directly visible from the camera position.
Image mapping process on dense 3D models requires a high

omputational effort. This issue arises when multiple 2D images
btained from these sensors, which are taken from different
oints of view, must be appended to the 3D point cloud as com-
lementary data. This fusion of spectral and structural features
f real-world objects (artificial or natural entities) is in fact the
roblem of mapping pixels from input images to points with
X, Y, Z) coordinates. The result is a 3D information system that
an be automatically enriched with spectral or thermal informa-
ion. Moreover, this system can be fed with the information from
ther sources and over time to provide multi-temporal monitor-
ng. Nevertheless, not all points are visible for all images. The
ree canopy can be observed from many images, but those in the
ides or even in the lower parts, are only depicted by the sides.
herefore, for each image, all pixels are mapped on a specific
ubset of 3D points, those ones that are directly visible from
hat viewpoint. Many others will be self-hidden by the rest of
eometry [30–32]. Again, there is a huge number of combinations

hat must be processed to determine visibility.

68
As stated above, the processes to deal with such amounts of
remote sensing information are computationally very expensive.
One way of reducing this computational cost is to apply any par-
allelization approach [33–35]. Image mapping can take advantage
of the computing capabilities of cloud computing [36] or current
graphics cards to manage amounts of images [35,37,38], perform
image analysis by quaternion moments [39] or 3D point clouds.

Among all the GPGPU technologies, CUDA (Compute Unified
Device Architecture) is one of the most widely used parallel
computing platform developed by NVIDIA that includes a suite of
tools. This provides the programmer with an abstraction layer to
take advantage of the GPU’s parallel computing capabilities. Com-
pared to other alternatives such as OpenACC or OpenCL, CUDA is
one of the most widely used API’s for GPGPU programming. In
general, CUDA achieves a significant performance increase com-
pared to these other solutions [40–42]. For instance for extracting
features from high resolution imaging [43,44], for fractal mapping
[45] or for mapping multispectral aerial images on orthomosaics
[46]. For the calculation of visibility, CUDA has also been used in
image processing or considering the scene geometry [47]. Also,
in the field of natural environments and crops interesting results
were found out [33]. In parallel to the rapid development of
discrete GPUs that provide more and more cores to accelerate
high computing tasks, other platforms based on embedded sys-
tems also take advantage of GPU for real-time data processing.
Recent researches have used System on a Chip (SOC), which can
be coupled to robotic systems, for multi-camera visual SLAM
[48] and UAV-based 3D modeling [49] and accelerating image
fusion algorithms using CUDA on embedded industrial platforms
[50]. Besides efficient GPU development, when the volume of
data exceeds the storage capacity we have to resort to out-of-
core solutions. However, although there is a vast literature in
the computer graphics field about out-of-core problems, to our
knowledge, there are no proposals to map remote sensing images
on dense 3D point clouds. In general, we found two key issues
among out-of-core proposals, on the one hand, developing effi-
cient algorithms, as we have already mentioned, and on the other
hand, minimizing the traffic of data between storage devices.
To accomplish these goals, most of the solutions use precom-
puted data structures usually in combination with an appropriate
caching scheme. The most common spatial data structure is the
octree. Richter et al. [42] generated an octree for change detection
in 3D point clouds. [51] used it to load photons in a daylight
modeling scenario. [52] proposed a point-based global illumina-
tion. [53] presented an algorithm for constructing a sparse voxel
octree from extremely large triangle meshes. According to other
data structures, Sarton et al. [54] defined a pyramidal mipmap
and a page table for an interactive visualization of large volume
data.

Other approaches used hierarchical linear bounding volume
hierarchies in a path tracer [55]. [56] took advantage of the
min-heap data structure to allocate rendering resources beyond
the memory capacity. Instead of data structures, other solutions
proposed compression schemes [57,58]. [59] presented a library
that enables out-of-core implementations on cloud environments
of data-parallel kernels for accelerators. In our proposal, the
characterized point cloud serves as a valid 3D model for the
identification of plant diseases, determination of plant growth,
etc. Hence, it is necessary that the characterization process uses
the data with maximum accuracy in terms of geometric and
spectral resolutions. Consequently, hierarchical data representa-
tions or compression schemes are not useful in our case study.
Our solution focuses on an adequate arrangement of data and
a caching scheme to minimize data transfer as well as on the
development of efficient techniques for mapping remote sensing

images on 3D point clouds. Thus, we aim at providing a pipeline



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

p
a

f
i
s
e
a
o
c
t

3

p
d
e
a
a
c
i
o
d
6
[

b
c
T
t
m
p
o
o
t
t
t
f
t
h

Fig. 1. Overview of the proposed solution considering four main aspects: (1) firstly, remote sensing data collected by drones, (2) secondly, efficient GPU data
rocessing on different platforms, (3) the generation of enriched 3D models with spectral, thermal or other sensing attributes, (4) the on-site visualization and
nalysis of resulting data.
or the generation of enriched 3D models from multi-sensorial
mages on-site. To demonstrate the applicability of the proposed
olution we have considered both (1) discrete GPUs and (2)
mbedded systems. On the one hand, a consumer-grade laptop
nd a PC were used for testing the proposed algorithm. On the
ther hand, SoC GPUs, which can be mounted on drones, were
onsidered to allow us to generate enriched 3D models during
he acquisition process.

. Overview of GEU

GEU framework [19] is a disruptive solution to generate and
rocess 3D models which can be characterized by multi-source
ata. Thus, real-world scenarios are highly detailed by the geom-
try and semantic features mainly extracted from high-resolution
nd spectral aerial images. Consequently, GEU involves many
pplications in many research domains in order to analyze the
onservation of natural environments, to simulate real and phys-
cal phenomenons and to classify different materials or target
bjects. The use of GEU enhances the development of a multi-
isciplinary research related with (1) precision agriculture [25,60,
1,61,62], (2) computer graphics [63–65] and (3) computer vision
19,66–69].

GEU takes as input large scale datasets in order to characterize
oth urban and natural scenarios of the real world. Thus, point
louds can be enriched from sensing data captured by drones.
he geometry of real-world environments is characterized by
he temperature or spectral reflectance in order to describe the
ain features of observed objects. A graphical overview of the
roposed solution is shown in Fig. 1. Regarding the challenges
f this method, most dense 3D models are often subsampled in
rder to enable the operations of image mapping and occlusion
ests. Moreover, high hardware requirements are needed in order
o process sensing and massive data. This work aims to overcome
his problem by the development of an out-of-core method that
ocuses on the use of GPU to ensure an efficient performance of
ime-consuming tasks related with heterogeneous data fusion on
uge point clouds.
69
Table 1
Description of datasets used in this study.

Nb. of Images/ Nb. of 3D points (M)

Flights F1: 180 F2: 1350
Datasets D1: 66 D2: 270 D3: 542 D4:1084

4. Materials and methods

4.1. Description of datasets

In this study, a large-scale forest area of ∼10 hectares (ha)
was covered. Two different unmanned aerial systems (UAS) were
used for the data collection process. On the one hand, the DJI
Matrice 210 quadcopter was the flight platform used to carry the
multispectral sensor. This device is formed by four lenses and
it provides us four different images, for each one the reflected
light intensity in a certain band of the electromagnetic spectrum
is captured. These are green (530 nm to 570 nm), red (640 nm to
680 nm), near infrared (770 nm to 810 nm) and red-edge (730 nm
to 740 nm). In this study, two sets of images were collected at
different flight heights. The first one (F1) was planned at 120 m
and 180 images were acquired. The second one (F2) was deployed
at 40 m and 1350 images were collected.

On the other hand, the Phantom 4 RTK was the flight platform
used for the capture of high-resolution RGB images. This drone
is equipped with a digital camera (∼20 MP), so that multiple
overlapped images were collected in order to generate the 3D
model. After applying photogrammetric and filtering techniques
[25], four datasets were generated with a different point cloud
density. In summary, Table 1 shows the 3D models and sets
of images used for testing our GPU-based method varying the
geometric complexity (number of millions of points) and the
number of spectral images to be mapped on the point clouds.
In order to understand the dimensionality of the problem, the
specific notation and formulation required to carry out each step
is presented in Section 4.2.



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

m
p
m
c
t
c
r
t

P

o

a
o

Fig. 2. A spatial correlation is defined to set the point clouds and all cameras
in the same reference system. Thus, a view frustum is defined for each camera
and a set of 3D points are selected to be mapped.

4.2. Problem statement and notation

Image mapping on dense point clouds presents one of the
ost prevalent problems to characterize 3D models. The com-
lexity and high size of real-world scenarios pose a challenge for
ulti-source data fusion. Significant features of observed objects
an be measured using different sensors but the integration of
his heterogeneous data with the 3D geometry requires a high
omputational effort. The process to map every pixel on its cor-
esponding 3D surface considering self-occlusion and visibility in
he image from the camera viewpoint is not a trivial task.

Formally, the input dataset D is composed by a 3D point cloud
of size N, P={p0, p1, . . . , pn−1}. It is also formed by M images

or captures, C={c0, c1, . . . , cm−1}, each of them with a resolution
f R pixels, so that each ci in C contains the set of pixels ci =

{pxi,0, pxi,1, . . . , pxi,R−1}. Only a subset of the points in P is visible
for each image, since most points of P are not within the view-
frustum of the camera, or these are directly occluded by other
closer surfaces to the viewpoint of the camera. Consequently, a
selection of those points which are inside of the view-frustum
are candidates to be considered for each image (Fig. 2). Next, a
second test is necessary to detect self-hidden geometry. It means
that a 3D point may be occluded by a part of the geometry
of the same model from the camera viewpoint. In this study,
multispectral images are used but the procedure is the same
for any source or type of images. This mapping will enrich the
three-dimensional nature of huge point clouds with significant
information related to the reflectance of sunlight at microscale in
a huge real-world scenario. In any case, each point pj in P can be
ssociated with an undefined set of pixels coming from a subset
f images in C. Therefore, finding which point, p ∈ P , is visible

from a given camera, ci, where i ∈ [0, M-1] and a given pixel
pxi,k where k∈ [0, R-1], is a computational complex task. This
operation is iterated for all pixels and cameras, besides solving
the self-hidden problems. A naive solution is proposed by Jurado
et al. [19] and it is presented in Algorithm 1. This exhaustive
method requires O(NMR) to map each point on the images, where
N represents the number of points, M the number of cameras
and R. the image size. Moreover, a further occlusion detection
must be performed to select visible points, with an additional
O(MR*T), where R* is the number of pixels which contain one
projected point at least and T is the average number of points
per pixel. This process, based on a sequential execution on the
CPU, cannot be computed on the fly for mapping several thousand
images on large-scale models formed by hundreds of millions of
3D points.
70
The problem at hand can be considered as embarrassingly
parallel as it requires applying the same script to multiple data,
images and 3D points. The type of operations required for the
algorithm are pure matrix algebra, just what graphics card hard-
ware is designed for. Observe that the graphics processors for the
so-called GPGPU computing, are SIMD architectures. Therefore,
graphics cards expose primarily data parallelism, with thousands
of simultaneous threads performing these tasks in parallel on
independent data. Likewise, according to the huge amount of
sensing data and dense 3D models to be processed, our approach
is based on an efficient out-of-core method. In this way, our
solution has no dependence on memory (VRAM) requirements
allowing us to launch the proposed method using commodity
hardware.



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

4

f
s
(
e
n
d
t
p
a
b
e
o
S

4

n
T
b
r
u

t
a
t

t

[

w
c[
m

p
C
3
d
n
m
p
(
i
c
i
t
m

.3. GPU kernels

The proposed solution aims to accelerate the procedure for
usion UAV-based imagery with dense point clouds of real-world
cenarios. For this purpose, two main tasks have to be developed:
i) image mapping and (ii) occlusion. Our out-of-core method
nables the processing of high-resolution 3D models and a large
umber of images, even for both user-grade GPUs and embed-
ed systems with a lower GPU memory capacity. The size of
he 3D model is divided into n partitions to be independently
rocessed on the GPU. Two CUDA kernels perform the mapping
nd occlusion operations for every point of its corresponding
lock. As many GPU threads as points in the block are spawned,
ach thread computes the mapping and the occlusion for just
ne 3D point. These operations are described in more detail in
ections 4.3.1 and 4.3.2.

.3.1. Image mapping
This stage is carried out in the first part of the main CUDA ker-

el and the aim is to get the image coordinates for each 3D point.
o ensure a correct mapping of aerial images on the 3D model,
oth cameras and the point cloud must be located in the same
eference system. In this study, input data were co-registered
sing the ICP algorithm [70] as a step of the preprocessing phase.
According to the image deformation due to fish-eye lenses of

he multispectral sensor, a polynomial distortion (ρ) and a fisheye
ffine matrix are calculated to transform every 3D point (X, Y, Z)
o the corresponding image coordinates (xdyd) To this end, Eqs. (1)
and (2) are used as follows:

ρ = θ + p2θ2
+ p3θ3

+ p4θ4 (1)

where: θ =
2
π

arctan
(√

X2+Y2

Z

)
; θϵ [0, 1] and p2, p3 and p4 are

he coefficients of polynomial fisheye, provided by the sensor.

xdyd] = [CDEF ] [xhyh] +
[
cxcy

]
(2)

here C, D, E and F are the parameters of the affine deformation,
x and cy are the principal point in pixel coordinates and [xhyh] =

ρX
√

X2+Y2

ρY
√

X2+Y2

]
.

According to this formulation, Algorithm 2 is carried out to
ap every 3D point on captured images.
The output data of the mapping method are three values:

oint-camera distance, point id and the pixel coordinates. Each
UDA thread is responsible for calculating the projection of every
D point. The id of every thread is assigned considering the
imensions of the CUDA block (32, 64 and 128). Then, the poly-
omial fisheye vector (ρ) and the coefficients of the fisheye affine
atrix (C,D,E,F) are used to calculate the projection for each 3D
oint to the distorted image plane, as indicated in Eqs. (1) and
2). Finally, if the projected point is inside the image range, the
d of the pixel is calculated considering its corresponding pixel
oordinates on the image, the id of the thread is considered as the
d of the projected 3D point and the distance from the position of
he camera to the point is also calculated. Thus, every 3D point is
apped on the image plane by obtaining the pixel position (xdyd).

A graphical example of this computation, but only considering the
mapping of one block on one image, is presented in Fig. 3.

4.3.2. Occlusion
The image resolution captured by spectral sensors is signif-

icantly lower than the 3D point cloud, which was modeled by
using overlapped RGB images. Consequently, multiple 3D points
are mapped on the same pixel (Fig. 3). In addition, points which
are behind others should be discarded considering the occlusion
for each image. To overcome this problem, occluded points are
71
Fig. 3. The scheme of image mapping on the 3D point cloud. Yellow pixels
contain one projected point at least. If multiple points are mapped on the same
pixel, these are ordered by the distance between the 3D point and the camera
positions.

managed by using a depth buffer for each pixel, as shown by
Algorithm 3. The distance from the 3D point to the camera
position was previously calculated by the mapping method, so
a comparison with the closest point in the block projected to
the same pixel so far is enough to discard the current point or
update the depth buffer. Thus, an array of size the resolution of
the camera image is kept during the processing of a pair dataset
block-image. This depth buffer is updated by an atomicMin()
operation, to protect each array value from concurrent accesses.
Finally, once the block has been fully processed, a snapshot (2D
matrix) of the occlusion test is saved for each image. This array
of snapshots is used later to check the occlusion for the following
blocks of the point cloud.

4.4. Out-of-core method in GPU

GEU exploits the described mapping & occlusion kernel (Algo-
rithms 2 and 3) mainly in a post hoc scenario, once one or more
drone flights are completed; either in-situ, working in the field
with a laptop, or in the office, using a potentially more powerful
system such as a workstation. In both use cases, it is necessary to
execute the kernels for every image on the whole dataset to have
accurate occlusion results. Hence, an out-of-core approach that
allows the processing of arbitrarily large point clouds is needed.
In Section 4.4.1 we describe an efficient out-of-core method for
handling point clouds in CUDA on a discrete GPU independently
of their size and the amount of VRAM available on the platform.

An alternative scenario is described in Section 4.4.2, moving
from a post hoc to an online processing for an edge computing
approach. In this solution, the mapping & occlusion kernel in
Algorithms 2 and 3 is now executed by a SoC equipped in the
drone to obtain the real-time mapping for each image on the fly,
every time a new shot is taken by the camera.

4.4.1. Discrete GPUs
This method makes a partition on the dataset according to
the usable GPU memory and transparently processes the different



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

b
t

t
m
g
t
c
a
m
s

t
r
C
w
t
C
c
F
t
l
a
z
p
b
i
m
b
t
(
i

Fig. 4. Workflow of the proposed out-of-core method for both operations: 3D mapping and occlusion tasks.
locks for every image, obtaining the mapping of all images on
he point cloud at the end of the whole process.

One of the main challenges in a GPGPU algorithm is to hide
he CPU<->GPU transfers by overlapping computation and com-
unication as much as possible. Moreover, it is also essential to
et an effective overlap of CPU and GPU computation, minimizing
he bubbles produced when one of them is stalled waiting for a
omputation from the other. Finally, another basic rule is to use
s few transferences as possible, exploiting every data previously
oved to GPU before loading new data, so avoiding to send the
ame data multiple times.
In our approach, multiple CUDA streams exploit asynchronous

ransfer operations and kernel executions to achieve an efficient
esult. Hence, while points in a block are being processed in a
UDA kernel, the next block is being transferred to GPU. Like-
ise, while a camera is being processed in the current kernel,
he results from the previous camera are being transferred to
PU, where those data are merged with previous results for that
amera concurrently with the GPU computation of the next one.
ig. 4 shows the workflow of the proposed method. According to
he available memory in the GPU, this is divided into two parts: (i)
ock memory and (ii) dynamic memory. In the first one, temporal
nd constant variables, as well as the position vector p = (x, y,
) and rotation matrix for each image, are stored for the entire
rogram execution. The second section of memory is occupied
y pairs of blocks of the 3D point cloud. The size for each block
s automatically adjusted considering the half of the available
emory after storing data in the lock memory. Firstly, the first
lock is transferred from CPU to GPU (Stream A). Secondly, while
he first block is processed by the mapping and occlusion kernels
performing the computation on the points of that block for every
mage), the second block is transferred to the GPU (Stream B).
Finally, when the memory space for a block is released, the next
block is transferred to the GPU asynchronously. While a dataset
block is in the GPU memory, all the cameras are processed for
that block by the same CUDA stream that previously loaded that
block in GPU. Once each image is computed for that block, it
is transferred to the CPU by a different stream, to overlap this
communication with the computation of the following image
(Stream C is in charge of GPU->CPU transfers for data computed
by Stream A, and Stream D for data computed by Stream B). This
workflow is presented in Algorithm 4.
72
4.4.2. GPU-based embedded systems
Systems on a Chip (SoCs) include on an embedded system

several components: CPU, GPU, memory, power management,
high-speed interface, and more. This hardware solution brings
to develop novel applications for energy-efficient autonomous
machines by reducing the size, weight and energy consumption.
In terms of performance capabilities and power supply require-
ments, it delivers an adequate balance offering CUDA cores for
NVIDIA platforms, a high-speed I/O and around 100–200 TOPS
for multiple concurrent interfaces. The power consumption of
these devices is around 15 W whereas a desktop PC consumes
180–200 W on average, i.e., an order of magnitude lower. These
devices open the door for embedded and edge computing ap-
proaches that demand increased performance but are constrained
by size, weight, and power budgets.

According to the use case of this study, these systems be-
come ideal to be equipped in a drone and take advantage of its
computational capabilities during a flight. Fig. 5 illustrates the
system we propose. The drone is equipped with a smart module
that includes the embedded system (SoC), an external hard disk
and a power battery. This allows processing the collected images
during the drone flight and transmitting the results to the client
machine.

In comparison to platforms with discrete GPUs, despite its
hardware limitations, these embedded systems have the advan-
tage of ubiquitous processing of the captured information. On



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

o

t
a
O
i
c
p
i
o
D
s
i
o

b
o

Table 2
Description of hardware platforms and compilers used to test the proposed method.

Platform P1
SoC: Jetson Xavier NX

Platform P2
Laptop

Platform P3

Workstation A Workstation B

GPU 384-core Nvidia Volta
Compute Capab. 7.2
SoC RAM: 8 GB

GeForce GTX 1050
Compute Capab. 6.1
VRAM: 4 GB

Tesla K20 m
Compute Capab. 3.5
VRAM: 5 GB

GeForce RTX 2080Ti
Compute Capab. 7.5
VRAM: 11 GB

CPU Nvidia Carmel ARM v8.2
6 cores
SoC RAM: 8 GiB

Intel i7-7700HQ 2.8 GHz
4 cores (8 SMT)
RAM: 32 GB

Intel Xeon E5-2660
2.2 GHz 8 cores (16
SMT)
RAM: 64 GB

AMD Ryzen Threadripper
1950X 16 cores (32
SMT)
RAM: 64 GB

CUDA & Driver CUDA 11.0.194 in
Jetpack 4.6

11.5 & 495.46 11.0.194 & 460.56 11.2 & 460.32.03

C/C++ Compiler GNU 7.5.0 GNU 11.2.1 GNU 8.3.0 GNU 8.4.0
.

Fig. 5. A graphical representation of the proposed solution using our method
n a SoC platform.

he one hand, it avoids the generation of large volumes of data
fter the capture process, synthesizing the relevant information.
n the other hand, throughout the data collection process, an
nformation model is ready to be analyzed. The computational
apabilities of SoCs allow us to deploy the proposed out-of-core
ipeline. Initially, the geometric 3D model, as a point cloud,
s stored on the external hard disk of the smart module. This
ne is loaded on the SoC at the beginning of the drone flight.
uring the drone flight, each image is automatically sent to the
mart module, in which the SoC executes the kernels described
n Section 4.3. Algorithm 5 aims to perform the mapping and
cclusion tasks for a specific image on the SoC.

Regarding usual point cloud densification and memory capa-
ilities of current SoCs, our method assumes that the one block
f the point cloud for a set of images can be fully stored on
73
Table 3
Execution time for mapping one image on the 3D model using the Platform P1
Datasets Time (ms) per image on average

D1 (66M) 60
D2 (271M) 237
D3 (542M) 474
D4 (1084M, Pk = 271M) 237

the SoC memory. Firstly, according to the drone position, one
block of the point cloud is transferred from an external disk to
the SoC memory. This one is maintained in memory whereas the
drone is located into its bounding box and all collected images are
processed. Secondly, after the capture of one image, this is sent to
the SoC and computed there. Finally, the resulting matrix which
stores the correlation between 3D points and pixels is stored on
the external disk, and then, the results can be sent to the client
machine. The evaluation of this last step is out of the scope of this
study. Therefore, image processing is performed in accordance
with the in-flight image capture process. Likewise, the results
obtained can be evaluated and decisions can be made during the
data capture session, thus reducing the number of flights and,
consequently, lowering time and costs.

5. Experimental results and performance evaluation

In order to evaluate the impact of the presented work, several
3D scenarios of the real world were tested, considering differ-
ent spatial resolutions. The execution time, the cover area and
the size of the input dataset are analyzed to demonstrate the
effectiveness of the proposed solution.

Four different platforms were used as a testbed for our method,
covering different NVIDIA GPU microarchitectures and compute
capabilities. Table 2 summarizes their main features. An NVIDIA
Jetson Xavier NX (Platform P1) was used to cover the edge
computing scenario described in Section 4.4.2, whereas three
different discrete NVIDIA GPUs (Platforms P2, P3-A and P3-B)
were employed to test the main post hoc approach, depicted in
Section 4.4.1.

Tables 3 and 4 depict the experimental results obtained for the
two scenarios described in Section 4. Namely, the total execution
time is shown, just discarding the file loading time from disk.
Three runs were launched for each setup, and the best times were
included in the table. Results for 128 threads per CUDA block are
shown in all cases. 32, 64 and 256 threads per block were also
tested, with similar execution times in most cases, only slightly
better for 128 threads/block.

Table 3 shows the average time Platform P1 needs to compute
the mapping of the point cloud on an image every time a new
shot is taken by a camera in the drone. Datasets D1, D2 and
D3 can be completely loaded in Jetson’s memory, whereas for



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

D
s
l
c

n
o
e
p

e
s
f
(
(
t
t
b

t
t
o
n
i
c
c

c
s
l
t

6

p

Table 4
Platforms P2 (laptop) and P3 (workstations A & B). All times in seconds.
Flights Datasets Platform P2 Platform P3-A Platform P3-B

F1
180 images

D1 (66M) 15.30 1 11.03 1 0.64 1
D2 (271M) 62.29 1 44.82 1 1.87 1
D3 (542M) 125.04 4 88.14 3 3.71 1
D4 (1084M) 536.82 7 174.84 6 6.85 3

F2
1350 images

D1 (66M) 379.93 1 80.55 1 4.46 1
D2 (271M) 1570.96 1 327.99 1 12.67 1
D3 (542M) 2945.30 4 654.35 3 25.27 1
D4 (1084M) 5817.19 7 1306.65 6 49.99 3

Time Partitions Time Partitions Time Partitions
Fig. 6. Overlapping of transference and computation: detail from the nVIDIA Visual Profiler on discrete GPUs.
t
b
o
i
a
s

o
d
t
d
w
i
c
d
o
s
t
t
f
n
2
i
e
w
a
h
w
p
u
i
a
i
t
t
m

4 the system needs to work with a block of ∼271M of points
panning the camera field-of-view, reserving space to overlap the
oading process of the next block in memory from disk with the
omputation of the images for the current block.
Table 4 presents the experimental results for the post hoc sce-

ario, with platforms P2, P3-A and P3-B computing the mapping
n the point cloud for every image in the two used flights. For
ach platform and dataset, the execution time and the number of
artitions needed are shown.
Fig. 6 depicts a time diagram from the GPU perspective of the

xecution of the 271M points dataset, with only 5 images for the
ake of clarity. This diagram, obtained with the NVIDIA Visual Pro-
iler, shows the effective overlapping of CPU->GPU transferences
blocks of the point cloud loaded in VRAM), GPU computation
kernels processing each block for each image) and GPU->CPU
ransferences (snapshots obtained for each block-image compu-
ation that are transferred to CPU to be merged with previous
locks) by means of four CUDA Streams.
The lower part of the figure shows the timeline for each of

hese four Streams: Stream A and Stream B are in charge of both
he execution of the CUDA kernels and the CPU->GPU transfers,
verlapping each other to avoid waiting for the transferences: a
ew block is uploaded to GPU by Stream B while the previous one
s being processed by Stream A, and vice versa. Streams C and D
ommunicate the results for each block-image to the CPU, again
oncurrently with GPU processing in Stream A or Stream B.
According to the resulting execution time for the most effi-

ient platform just 50 s are required to process the large-scale
cenario. Taking advantage of this method, researchers can ana-
yze on-site the surveyed scenario in a 3D environment in which
he geometry and multi-source data are represented.

. Discussion

From the experiment results under different problem sizes and
latforms, it can be seen that our out-of-core approach enables
74
he generation of enriched 3D geometry from multi-source data
y an efficient GPU-based parallelization. Memory limitations are
vercome considering the spatial subdivision of the 3D model
nto blocks. Thus, the point cloud is mapped on captured images
nd then, an efficient occlusion test is performed to discard
elf-occluded points.
The experimental results demonstrate the good adaptation of

ur solution to the GPU as shown in Tables 3 and 4. Table 3
epicts the embedded system equipped in drones is adapted
o the needs of the capture process and enables processing the
atasets, image by image, while they are being acquired. Like-
ise, as can be observed in the experimental results presented

n Table 4, the achieved performance is close to linear in most
ases, i.e. the execution time linearly scales with the increment in
ata (points and images). A few exceptions present an overhead
f the expected performance in the more memory demanding
etups for platform P2. On one hand, dataset D4 is exactly twice
he size of dataset D3, but platform P2 needs more than 4x
he time in order to process D3 considering 180 images from
light F1. On the other hand, flight F2 has about 7 times the
umber of images in flight F1, but platform P2 needs about
5x the time to process the several datasets for F2. Therefore,
t scales when increasing the number of points, but with an
xtra offset. This anomaly, exclusive of platform P2, is related
ith the RAM requirements of our out-of-core approach and the
mount of RAM available in platform P2: 32 GB (P3-A and P3-B
ave 64 GB of RAM). The dataset D4 has 1084 million of points,
hich means about 13 GB (1084 M. Points × 12B per/point) of
inned memory allocated in RAM, as non-pageable memory is
sed for the dataset to overlap computation and communication
n CUDA. The 1350 images in flight F2 need an allocation of
bout 12 GB of RAM (8 B/pixel × 960 × 1280 pix/image × 1350
mages). Even though the system is able to effectively manage
his demanding scenario, the performance is clearly worse due to
he virtual memory management with an important amount of
emory pages pinned.



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

a
f
b
a
o
r
m
d
s
l
r
m
c
c
a
c

i
p
(
c
6
C
w
t
p
r
m
w

o
h
i
g
c
i
s
m
i
r
f
o
c
s
3
s
p
l
o
p
e

Table 5
CPU baseline in GEU (fastest CPU, all times in seconds) where F1 is the first flight (180 images) and F2 is the second
flight (1350 images).
P3-B - AMD Ryzen Threadripper 1950X 16 cores (32 SMT)

Sequential OpenMP
32 thrs

Out-of-core
CUDA

F1

D1 (66M) 363.9 19.3 0.64
D2 (271M) 1492.8 76.4 1.87
D3 (542M) 2973.6 152.0 3.71
D4 (1084M) 5950.0 303.6 6.85

F2

D1 (66M) 2667.1 142.3 4.46
D2 (271M) 10829.7 562.2 12.67
D3 (542M) 21665.7 1122.9 25.27
D4 (1084M) 43309.8 2233.6 49.99
As shown in Fig. 6, two blocks are simultaneously being man-
ged to overlap transfer and computing operations. While the
irst block is under processing in the GPU, the second block is
eing transferred from the CPU to the GPU. This latency hiding
llows us to boost the performance of the method significantly
n those platforms with low memory capacity. According to the
esults, we can conclude that the proposed out-of-core method
akes it possible to deal with arbitrary large datasets indepen-
ently of the hardware platform. Thus, the experimental results
how that huge datasets can be processed while maintaining a
ow GPU memory footprint, partitioning the point cloud with a
eally small penalty: the overhead introduced is relatively low in
ost cases, and the out-of-core processing is even faster in some
ases when only 2 blocks are enough to address the memory
onstraints. This is possible due to the good overlapping achieved
mong the different tasks that can run concurrently: GPU and CPU
omputation and CPU<->GPU transferences.
Our results demonstrate a significant improvement consider-

ng current solutions in GEU that only support CPU-based com-
uting. Table 5 shows the time required by the fastest platform
P3-B) to process the eight datasets on CPU sequentially (left
olumn) and with an OpenMP parallel implementation exploiting
4 CPU threads (middle column). Comparing the results in the
PU with those obtained with our proposal (GPU) (left column),
e observe that the problem is better suited to the GPU archi-
ecture and achieves more than 30 times better results than the
arallel CPU solution. In this way, on-site analysis can be car-
ied out by following our GPU-based solution and also enabling
ultitemporal characterization of large-scale scenarios of the real
orld.
In this context, novel applications are currently being devel-

ped to tackle the challenges of processing huge datasets by a
igh throughput computing [71–73]. Undoubtedly, the character-
zation of real-world scenarios implies the generation of a dense
eometry to represent both dynamic and static objects and to
apture other features also. Most of them are obtained from aerial
mages that provide meaningful information about the class or
tate of the observed entities. The processing and integration of
ulti-source data in a 3D collaborative environment by commod-

ty hardware, using the GPU, is one of the main goals of this
esearch. In comparison to previous work, our method provided
ast results in short times allowing us to review them on-site. To
ur knowledge, existing methods are only focused on a sequential
omputation of mapping and operation tasks [25]. Therefore,
everal hours are required to integrate multi-source data with
D models. Moreover, high-computational requirements must be
atisfied with an expensive workstation to load in memory and
rocess huge datasets. Our method overcomes the mentioned
imitations by following an out-of-the box method. Independently
f the size of 3D point cloud and set of images, our solution works
roperly so that even enabling remote computing by applying
xisting solutions such as rCUDA [74]. Thus, the observation of
75
real-world scenarios is offered to researchers in a 3D virtual
environment in a short time, less than one minute for the largest
dataset and optimal platform. This opens new possibilities to
explore huge scenarios that can be monitored under a centimetric
accuracy and also share the results between researchers in a
collaborative environment.

7. Conclusion and future work

According to existing literature, there are not any methods
to allow the efficient generation of enriched 3D models using
remote sensing imagery. In parallel to current advances in Earth
observation and the proliferation of IoT systems, we have pro-
posed a software solution to integrate multisensorial data and
dense 3D models, which are extracted from the real world, pro-
viding near real-time results. In fact, future generation computer
systems may take advatanges according to the capabilities of the
pipeline proposed in this study. Thus, enabling the characteriza-
tion of 3D geometry with drone data opens new opportunities
to understand and analyze our environment. Be aware of the
huge size of collected datasets, the proposed out-of-core method
is based on GPU capabilities of heterogeneous platforms, from
workstations and portable devices to embedded systems.

The proposed solution is part of the framework GEU focused
on supporting research related to precision agriculture, forestry
and Earth observation. The proposed advances involve the en-
hancement of the study and analysis of real-world scenarios by
exploiting the GPU computing. In terms of the overall perfor-
mance for image mapping and occlusion tasks, considering high
dense 3D models, our method presents a good balance between
problem size and complexity.

Through an exhaustive evaluation, considering different plat-
forms and datasets, we have validated the results for getting an
optimal spatial subdivision of the 3D model and optimal overlap
of time-consuming tasks. Accordingly, the proposed GPU-based
solution improves the naive version by getting an execution time
on the workstation of 0.64 s for a medium-scale scenario (66 M
points, 180 images) and less than 50 s for the largest dataset
(1084 M points, 1350 images). These figures represent a speed-up
of more than 560 times in comparison to the CPU solution and are
at least 30x faster than the parallel CPU alternative. As a result, it
has been demonstrated that the problem is perfectly suited for a
GPU parallelization. In fact, regarding the execution times of our
method on the SoC, for each image, an acceleration by 30 times
is also achieved with respect to the CPU sequential solution.

As future work, we will exploit our method focusing on edge
computing approaches on SoCs that integrate a GPU for data
filtering, fusion and processing. This method brings the chance
for the development of future generation systems that can be
mounted on drones to allow us the 3D monitoring of environ-
mental scenarios by integrating multi-source data in real-time.



J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77

C

o
d
P
S
t
p
I
I

D

c
t

A

p
M
d
f

R

RediT authorship contribution statement

Juan M. Jurado: Ideas, Development or design of methodol-
gy, Programming, Specifically performing the experiments, or
ata/evidence collection, Writing – review & editing. Emilio J.
adrón: Development or design of methodology, Programming,
pecifically performing the experiments, or data/evidence collec-
ion, Writing – review & editing, Testing of existing code com-
onents, Computing resources, Supervision. J. Roberto Jiménez:
deas, Writing – review & editing, Supervision. Lidia Ortega:
deas, Writing – review & editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work has been partially supported through the research
rojects TIN2017-84968-R, PID2019-104184RB-I00 funded by
CIN/AEI/10.13039/501100011033 and ERDF funds ‘‘A way of
oing Europe’’, as well as by ED431C 2021/30, ED431F 2021/11
unded by Xunta de Galicia and 1381202 by Junta de Andalucía.

eferences

[1] C. Still, R. Powell, D. Aubrecht, Y. Kim, B. Helliker, D. Roberts, A.D.
Richardson, M. Goulden, Thermal imaging in plant and ecosystem ecology:
applications and challenges, Ecosphere 10 (2019) e02768, http://dx.doi.org/
10.1002/ecs2.2768.

[2] R. Calderón, J.A. Navas-Cortés, P.J. Zarco-Tejada, Early detection and quan-
tification of verticillium wilt in olive using hyperspectral and thermal
imagery over large areas, Remote Sens. 7 (2015) 5584–5610, http://dx.
doi.org/10.3390/rs70505584.

[3] P. Debevec, Y. Yu, G. Borshukov, Efficient view-dependent image-based
rendering with projective texture-mapping, in: Eurographics Workshop on
Rendering Techniques, Springer, 1998, pp. 105–116.

[4] C. Everitt, Interactive order-independent transparency. White Pap. NVIDIA
2, 7, 2001.

[5] P.S. Heckbert, Survey of texture mapping, IEEE Comput. Graph. Appl. 6
(1986) 56–67, http://dx.doi.org/10.1109/MCG.1986.276672.

[6] C. Dachsbacher, M. Stamminger, Translucent shadow maps, Render. Tech.
2003 (2003) 197–201.

[7] J.M. Jurado, Spectral characterization and semantic segmentation of
complex 3D models in natural environments, 2020.

[8] R. Ali, A.K. Pal, S. Kumari, M. Karuppiah, M. Conti, A secure user authen-
tication and key-agreement scheme using wireless sensor networks for
agriculture monitoring, Future Gener. Comput. Syst. 84 (2018) 200–215,
http://dx.doi.org/10.1016/j.future.2017.06.018.

[9] F.B.J.R. Dallaqua, Á.L. Fazenda, F.A. Faria, ForestEyes project: Conception,
enhancements, and challenges, Future Gener. Comput. Syst. 124 (2021)
422–435, http://dx.doi.org/10.1016/j.future.2021.06.002.

[10] H. Zhao, C. Yang, W. Guo, L. Zhang, D. Zhang, Correction: Automatic
estimation of crop disease severity levels based on vegetation index
normalization, Remote Sens. 12 (12) (2020) 1, http://dx.doi.org/10.3390/
rs12223761.

[11] Z. Feng, Y. Chen, T. Hakala, J. Hyyppä, Range calibration of airborne
profiling radar used in forest inventory, in: 2016 IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings,
IEEE International Geoscience and Remote Sensing Symposium Proceed-
ings, IEEE, United States, 2016, pp. 6672–6675, http://dx.doi.org/10.1109/
IGARSS.2016.7730742.

[12] Y. Su, Q. Guo, B. Xue, T. Hu, O. Alvarez, S. Tao, J. Fang, Spatial distribution of
forest aboveground biomass in China: Estimation through combination of
spaceborne lidar, optical imagery, and forest inventory data, Remote Sens.
Environ. 173 (2016) 187–199, http://dx.doi.org/10.1016/j.rse.2015.12.002.

[13] J. Rahlf, J. Breidenbach, S. Solberg, E. Næsset, R. Astrup, Digital aerial
photogrammetry can efficiently support large-area forest inventories in
Norway, For. Int. J. For. Res. 90 (2017) 710–718, http://dx.doi.org/10.1093/
forestry/cpx027.

[14] Y. Hu, Y. Yao, Q. Ren, X. Zhou, 3D multi-UAV cooperative velocity-aware
motion planning, Future Gener. Comput. Syst. 102 (2020) 762–774, http:
//dx.doi.org/10.1016/j.future.2019.09.030.
76
[15] S. Samiappan, L. Casagrande, G.M. MacHado, G. Turnage, L. Hathcock,
R. Moorhead, J. Ball, Texture classification of very high resolution UAS
imagery using a graphics processing unit, in: International Geoscience and
Remote Sensing Symposium, IGARSS, 2018, pp. 6476–6479, http://dx.doi.
org/10.1109/IGARSS.2018.8519298.

[16] C. Torresan, A. Berton, F. Carotenuto, S.F.D. Gennaro, B. Gioli, A. Matese,
F. Miglietta, C. Vagnoli, A. Zaldei, L. Wallace, Forestry applications of
UAVs in Europe: a review, Int. J. Remote Sens. 38 (2017) 2427–2447,
http://dx.doi.org/10.1080/01431161.2016.1252477.

[17] R.A. Díaz-Varela, R. De la Rosa, L. León, P.J. Zarco-Tejada, High-resolution
airborne UAV imagery to assess olive tree crown parameters using 3D
photo reconstruction: Application in breeding trials, Remote Sens. 7 (2015)
4213–4232, http://dx.doi.org/10.3390/rs70404213.

[18] A. Miranda-Fuentes, J. Llorens, J.L. Gamarra-Diezma, J.A. Gil-Ribes, E. Gil,
Towards an optimized method of olive tree crown volume measurement,
Sensors 15 (2015) 3671–3687, http://dx.doi.org/10.3390/s150203671.

[19] Juan M. Jurado, J.L. Cárdenas, C.J. Ogayar, L. Ortega, F.R. Feito, Semantic
segmentation of natural materials on a point cloud using spatial and
multispectral features, Sensors 20 (2244) (2020).

[20] D. Zhang, J. Shao, X. Li, H.T. Shen, Remote sensing image super-resolution
via mixed high-order attention network, IEEE Trans. Geosci. Remote Sens.
(2020) 1–14, http://dx.doi.org/10.1109/TGRS.2020.3009918.

[21] Juan M. Jurado, L. Pádua, F.R. Feito, J.J. Sousa, Automatic grapevine trunk
detection on UAV-based point cloud, Remote Sens. 12 (3043) (2020).

[22] J.M. Jurado, M.I. Ramos, C. Enríquez, F.R. Feito, The impact of canopy
reflectance on the 3D structure of individual trees in a mediterranean
forest, Remote Sens. 12 (2020) http://dx.doi.org/10.3390/rs12091430.

[23] L.Q. Campagnolo, W. Celes, Interactive directional ambient occlusion and
shadow computations for volume ray casting, Comput. Graph. 84 (2019)
66–76, http://dx.doi.org/10.1016/j.cag.2019.08.009.

[24] P. Shanmugam, O. Arikan, Hardware accelerated ambient occlusion tech-
niques on GPUs, in: Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games, I3D ’07, Association for Computing Machinery,
New York, NY, USA, 2007, pp. 73–80, http://dx.doi.org/10.1145/1230100.
1230113.

[25] J.M. Jurado, L. Ortega, J.J. Cubillas, F.R. Feito, Multispectral mapping on
3D models and multi-temporal monitoring for individual characterization
of olive trees, Remote Sens. 12 (1106) (2020) http://dx.doi.org/10.3390/
rs12071106.

[26] M. Imani, Adaptive signal representation and multi-scale decomposition
for panchromatic and multispectral image fusion, Future Gener. Comput.
Syst. 99 (2019) 410–424, http://dx.doi.org/10.1016/j.future.2019.05.004.

[27] G. Sepulcre-Cantó, P.J. Zarco-Tejada, J.C. Jiménez-Muñoz, J.A. Sobrino, E.
de Miguel, F.J. Villalobos, Detection of water stress in an olive orchard with
thermal remote sensing imagery, Agric. for. Meteorol. 136 (2006) 31–44,
http://dx.doi.org/10.1016/j.agrformet.2006.01.008.

[28] M. Alonzo, B. Bookhagen, D.A. Roberts, Urban tree species mapping using
hyperspectral and lidar data fusion, Remote Sens. Environ. 148 (2014)
70–83, http://dx.doi.org/10.1016/j.rse.2014.03.018.

[29] O. Nevalainen, E. Honkavaara, S. Tuominen, N. Viljanen, T. Hakala, X. Yu,
J. Hyyppä, H. Saari, I. Pölönen, N.N. Imai, A.M.G. Tommaselli, Individual
tree detection and classification with UAV-based photogrammetric point
clouds and hyperspectral imaging, Remote Sens. 9 (2017) http://dx.doi.org/
10.3390/rs9030185.

[30] A. Cavagna, S. Melillo, L. Parisi, F. Ricci-Tersenghi, SpaRTA tracking across
occlusions via partitioning of 3D clouds of points, IEEE Trans. Pattern Anal.
Mach. Intell. 43 (2021) 1394–1403, http://dx.doi.org/10.1109/TPAMI.2019.
2946796.

[31] V.A. Debelov, I. Sevastianov, Light mesh: soft shadows as interpolation
of visibility, Future Gener. Comput. Syst. 20 (2004) 1299–1315, http:
//dx.doi.org/10.1016/j.future.2004.05.027.

[32] J. Xu, J. Shan, G. Wang, Hierarchical modeling of street trees using
mobile laser scanning, Remote Sens. 12 (2020) http://dx.doi.org/10.3390/
rs12142321.

[33] L. Li, J. Gu, A. Song, H. Zheng, J. Cao, D. Zhu, Parallelization on model of
ecological environment remote sensing evaluation based on GPU, Nongye
Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 48 (2017) 135–141, http://dx.
doi.org/10.6041/j.issn.1000-1298.2017.05.016.

[34] B. Zhao, M. Liu, J. Wu, X. Liu, M. Liu, L. Wu, Parallel computing for
obtaining regional scale rice growth conditions based on WOFOST and
satellite images, IEEE Access 8 (2020) 223675–223685, http://dx.doi.org/
10.1109/ACCESS.2020.3043003.

[35] X. Zuo, T. Qi, B. Qiao, Z. Deng, Q. Ge, Fast parallel extraction method
of normalized vegetation index, in: 15th International Conference on
Computer Science and Education, ICCSE 2020, 2020, pp. 433–437, http:
//dx.doi.org/10.1109/ICCSE49874.2020.9201851.

[36] J. Yan, Y. Ma, L. Wang, K.-K.R. Choo, W. Jie, A cloud-based remote sensing
data production system, Future Gener. Comput. Syst. 86 (2018) 1154–1166,
http://dx.doi.org/10.1016/j.future.2017.02.044.

http://dx.doi.org/10.1002/ecs2.2768
http://dx.doi.org/10.1002/ecs2.2768
http://dx.doi.org/10.1002/ecs2.2768
http://dx.doi.org/10.3390/rs70505584
http://dx.doi.org/10.3390/rs70505584
http://dx.doi.org/10.3390/rs70505584
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb3
http://dx.doi.org/10.1109/MCG.1986.276672
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb7
http://dx.doi.org/10.1016/j.future.2017.06.018
http://dx.doi.org/10.1016/j.future.2021.06.002
http://dx.doi.org/10.3390/rs12223761
http://dx.doi.org/10.3390/rs12223761
http://dx.doi.org/10.3390/rs12223761
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1109/IGARSS.2016.7730742
http://dx.doi.org/10.1016/j.rse.2015.12.002
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1093/forestry/cpx027
http://dx.doi.org/10.1016/j.future.2019.09.030
http://dx.doi.org/10.1016/j.future.2019.09.030
http://dx.doi.org/10.1016/j.future.2019.09.030
http://dx.doi.org/10.1109/IGARSS.2018.8519298
http://dx.doi.org/10.1109/IGARSS.2018.8519298
http://dx.doi.org/10.1109/IGARSS.2018.8519298
http://dx.doi.org/10.1080/01431161.2016.1252477
http://dx.doi.org/10.3390/rs70404213
http://dx.doi.org/10.3390/s150203671
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb19
http://dx.doi.org/10.1109/TGRS.2020.3009918
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb21
http://dx.doi.org/10.3390/rs12091430
http://dx.doi.org/10.1016/j.cag.2019.08.009
http://dx.doi.org/10.1145/1230100.1230113
http://dx.doi.org/10.1145/1230100.1230113
http://dx.doi.org/10.1145/1230100.1230113
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.3390/rs12071106
http://dx.doi.org/10.1016/j.future.2019.05.004
http://dx.doi.org/10.1016/j.agrformet.2006.01.008
http://dx.doi.org/10.1016/j.rse.2014.03.018
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.1109/TPAMI.2019.2946796
http://dx.doi.org/10.1109/TPAMI.2019.2946796
http://dx.doi.org/10.1109/TPAMI.2019.2946796
http://dx.doi.org/10.1016/j.future.2004.05.027
http://dx.doi.org/10.1016/j.future.2004.05.027
http://dx.doi.org/10.1016/j.future.2004.05.027
http://dx.doi.org/10.3390/rs12142321
http://dx.doi.org/10.3390/rs12142321
http://dx.doi.org/10.3390/rs12142321
http://dx.doi.org/10.6041/j.issn.1000-1298.2017.05.016
http://dx.doi.org/10.6041/j.issn.1000-1298.2017.05.016
http://dx.doi.org/10.6041/j.issn.1000-1298.2017.05.016
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1109/ACCESS.2020.3043003
http://dx.doi.org/10.1109/ICCSE49874.2020.9201851
http://dx.doi.org/10.1109/ICCSE49874.2020.9201851
http://dx.doi.org/10.1109/ICCSE49874.2020.9201851
http://dx.doi.org/10.1016/j.future.2017.02.044


J.M. Jurado, E.J. Padrón, J.R. Jiménez et al. Future Generation Computer Systems 134 (2022) 66–77
[37] D.C. de Andrade, L.G. Trabasso, An OpenCL framework for high performance
extraction of image features, J. Parallel Distrib. Comput. 109 (2017) 75–88,
http://dx.doi.org/10.1016/j.jpdc.2017.05.011.

[38] A. Casella, I.D. Falco, A.D. Cioppa, U. Scafuri, E. Tarantino, Exploiting multi-
core and GPU hardware to speed up the registration of range images by
means of Differential Evolution, J. Parallel Distrib. Comput. 133 (2019)
307–318, http://dx.doi.org/10.1016/j.jpdc.2018.07.002.

[39] A. Salah, K. Li, K.M. Hosny, M.M. Darwish, Q. Tian, Accelerated CPU–
GPUs implementations for quaternion polar harmonic transform of color
images, Future Gener. Comput. Syst. 107 (2020) 368–382, http://dx.doi.org/
10.1016/j.future.2020.01.051.

[40] J. Kim, T.T. Dao, J. Jung, J. Joo, J. Lee, Bridging OpenCL and CUDA:
a comparative analysis and translation, in: SC’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE, 2015, pp. 1–12.

[41] S. Memeti, L. Li, S. Pllana, J. Kołodziej, C. Kessler, Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA: programming productivity, performance,
and energy consumption, in: Proceedings of the 2017 Workshop on
Adaptive Resource Management and Scheduling for Cloud Computing,
2017, pp. 1–6.

[42] R. Richter, J.E. Kyprianidis, J. Döllner, Out-of-core GPU-based change
detection in massive 3D point clouds, Trans. GIS 17 (2013) 724–741.

[43] S.A.E. Al, Real-time parallel image processing applications on multicore
CPUs with OpenMP and GPGPU with CUDA, J. Supercomput. 225 (2018)
5–2275.

[44] Y. Yuan, X. Yang, W. Wu, H. Li, Y. Liu, K. Liu, A fast single-image super-
resolution method implemented with CUDA, J. Real-Time Image Process.
16 (2019) http://dx.doi.org/10.1007/s11554-018-0774-z.

[45] C.A. Navarro, F.A. Quezada, N. Hitschfeld, R. Vega, B. Bustos, Efficient GPU
thread mapping on embedded 2D fractals, Future Gener. Comput. Syst. 113
(2020) 158–169, http://dx.doi.org/10.1016/j.future.2020.07.006.

[46] I. Sa, M. Popović, R. Khanna, Z. Chen, P. Lottes, F. Liebisch, J. Nieto, C.
Stachniss, A. Walter, R. Siegwart, WeedMap: A large-scale semantic weed
mapping framework using aerial multispectral imaging and deep neural
network for precision farming, Remote Sens. 10 (2018) http://dx.doi.org/
10.3390/rs10091423.

[47] W. Li, W. Randolph Franklin, S.V.G. de Magalhães, M.V.A. Andrade, GPU-
accelerated multiple observer siting, Photogramm. Eng. Remote Sens. 83
(2017) 439–446, http://dx.doi.org/10.14358/PERS.83.6.439.

[48] J. Li, G. Deng, W. Zhang, C. Zhang, F. Wang, Y. Liu, Realization of
CUDA-based real-time multi-camera visual SLAM in embedded systems,
J. Real-Time Image Process. 17 (2020) 713–727, http://dx.doi.org/10.1007/
s11554-019-00924-4.

[49] B. Ruf, J. Mohrs, M. Weinmann, S. Hinz, J. Beyerer, ReS2tAC—UAV-Borne
real-time SGM stereo optimized for embedded ARM and CUDA devices,
Sensors 21 (3938) (2021) http://dx.doi.org/10.3390/s21113938.

[50] A. Kaczmarczyk, W. Zatorska, Accelerating image fusion algorithms using
CUDA on embedded industrial platforms dedicated to UAV and UGV, in:
R. Szewczyk, C. Zieliński, M. Kaliczyńska (Eds.), Automation 2019, in:
Advances in Intelligent Systems and Computing, Springer International
Publishing, Cham, 2020, pp. 697–706, http://dx.doi.org/10.1007/978-3-
030-13273-6_65.

[51] R. Schregle, L.O. Grobe, S. Wittkopf, An out-of-core photon mapping ap-
proach to daylight coefficients, J. Build. Perform. Simul. 9 (2016) 620–632,
http://dx.doi.org/10.1080/19401493.2016.1177116.

[52] J. Kontkanen, E. Tabellion, R.S. Overbeck, Coherent out-of-core point-based
global illumination, Comput. Graph. Forum 30 (2011) 1353–1360, http:
//dx.doi.org/10.1111/j.1467-8659.2011.01995.x.

[53] J. Baert, A. Lagae, P. Dutr, Out-of-core construction of sparse voxel octrees,
in: Proceedings of the 5th High-Performance Graphics Conference, HPG
’13, Association for Computing Machinery, Anaheim, California, 2013, pp.
27–32, http://dx.doi.org/10.1145/2492045.2492048.

[54] J. Sarton, N. Courilleau, Y. Rémion, L. Lucas, Interactive visualization and
on-demand processing of large volume data: A fully GPU-based out-of-core
approach, IEEE Trans. Vis. Comput. Graphics 26 (2020) 3008–3021.

[55] M. Zeidan, T. Nazmy, M. Aref, GPU-based out-of-core HLBVH construction,
in: Eurographics Symp. Render. - Exp. Ideas Implement, 2015, p. 10,
http://dx.doi.org/10.2312/SRE.20151165.

[56] K. Meenrattanakorn, C. Chantrapornchai, Expanding video memory through
texture migration for out-of-core shading, in: 2018 22nd Interna-
tional Computer Science and Engineering Conference (ICSEC). Presented
At the 2018 22nd International Computer Science and Engineering
Conference, ICSEC, 2018, pp. 1–4, http://dx.doi.org/10.1109/ICSEC.2018.
8712680.

[57] J. Elseberg, D. Borrmann, A. Nüchter, One billion points in the cloud –
an octree for efficient processing of 3D laser scans, ISPRS J. Photogramm.
Remote Sens. Terr. 3D Model. 76 (2013) 76–88, http://dx.doi.org/10.1016/
j.isprsjprs.2012.10.004.
77
[58] J. Shen, Y. Wu, M. Okita, F. Ino, Accelerating GPU-based out-of-core
stencil computation with on-the-fly compression, 2021, arXiv:2109.05410
Cs.

[59] H. Khaleghzadeh, Z. Zhong, R.R. Manumachu, A. Lastovetsky, Out-of-
core implementation for accelerator kernels on heterogeneous clouds, J.
Supercomput. 74 (2018) 551–568, http://dx.doi.org/10.1007/s11227-017-
2141-4.

[60] J.M. Jurado, L.M. Ortega, F.R. Feito, 3D mapping approach to analyze the
evolution of vegetation using multispectral imagery, in: CEIG, 2018, pp.
129–132.

[61] S. Khanal, J. Fulton, S. Shearer, An overview of current and potential
applications of thermal remote sensing in precision agriculture, Comput.
Electron. Agric. 139 (2017) 22–32, http://dx.doi.org/10.1016/j.compag.2017.
05.001.

[62] L. Pádua, J. Vanko, J. Hruška, T. Adão, J.J. Sousa, E. Peres, R. Morais, UAS,
sensors, and data processing in agroforestry: a review towards practical
applications, Int. J. Remote Sens. 38 (2017) 2349–2391, http://dx.doi.org/
10.1080/01431161.2017.1297548.

[63] M. Apel, From 3d geomodelling systems towards 3d geoscience infor-
mation systems: Data model, query functionality, and data management,
Comput. Geosci. 32 (2006) 222–229, http://dx.doi.org/10.1016/j.cageo.2005.
06.016.

[64] J. Guo, Z. Cheng, S. Xu, X. Zhang, Realistic procedural plant modeling guided
by 3D point cloud, in: ACM SIGGRAPH 2017 Posters, 2017, pp. 1–2.

[65] M. Makowski, T. Hädrich, J. Scheffczyk, D.L. Michels, S. Pirk, W. Pałubicki,
Synthetic silviculture: multi-scale modeling of plant ecosystems, ACM
Trans. Graph. 38 (2019) 131:1–131:14, http://dx.doi.org/10.1145/3306346.
3323039.

[66] R. Feng, Q. Du, X. Li, H. Shen, Robust registration for remote sensing images
by combining and localizing feature- and area-based methods, ISPRS J.
Photogramm. Remote Sens. 151 (2019) 15–26, http://dx.doi.org/10.1016/j.
isprsjprs.2019.03.002.

[67] L. Landrieu, M. Simonovsky, Large-scale point cloud semantic segmenta-
tion with superpoint graphs, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4558–4567.

[68] A.L. Ruiz, J.M.J. Rodríguez, C.J.O. Anguita, F.R.F. Higueruela, Multispectral
registration, undistortion and tree detection for precision agriculture, 2019.

[69] J. Zhang, X. Zhao, Z. Chen, Z. Lu, A review of deep learning-based semantic
segmentation for point cloud, IEEE Access 7 (2019) 179118–179133.

[70] X. Wang, X. Zhu, S. Ying, C. Shen, An accelerated and robust partial regis-
tration algorithm for point clouds, IEEE Access 8 (2020) 156504–156518,
http://dx.doi.org/10.1109/ACCESS.2020.3019209.

[71] G. Heidsieck, D.de. Oliveira, E. Pacitti, C. Pradal, F. Tardieu, P. Valduriez,
Cache-aware scheduling of scientific workflows in a multisite cloud, Future
Gener. Comput. Syst. 122 (2021) 172–186, http://dx.doi.org/10.1016/j.
future.2021.03.012.

[72] Y. Kirsal, Y.Kirsal. Ever, G.E. Mapp, M. Raza, 3D analytical modelling and
iterative solution for high performance computing clusters, IEEE Trans.
Cloud Comput. (2021) 1, http://dx.doi.org/10.1109/TCC.2021.3055119.

[73] J.C. Romero, A. Navarro, A. Vilches, A. Rodríguez, F. Corbera, R. Asenjo,
Efficient heterogeneous matrix profile on a CPU + high performance FPGA
with integrated HBM, Future Gener. Comput. Syst. 125 (2021) 10–23,
http://dx.doi.org/10.1016/j.future.2021.06.025.

[74] F. Silla, S. Iserte, C. Reaño, J. Prades, On the benefits of the remote GPU
virtualization mechanism: The rCUDA case, Concurr. Comput. Pract. Exp.
29 (2017) e4072, http://dx.doi.org/10.1002/cpe.4072.

Juan M. Jurado received the Ph.D. degree in computer
science from University of Jaén, Jaén, Spain, in 2020. He
is currently a professor of the Department of Computer
Science at the University of Jaén. In 2017, he received
the award of the best master’s thesis of the University
of Jaén. His research area focuses on the generation
and processing of 3D models, as well as the fusion of
geometric, spatial and spectral variables of real-world
environments. The results of his research derive in
significant advances in fields such as Remote Sensing,
Computer Vision and Computer Graphics through the

development of novel methods for the integration of multi-source data, the
unsupervised classification of real scenarios and the modeling of the material
appearance.

http://dx.doi.org/10.1016/j.jpdc.2017.05.011
http://dx.doi.org/10.1016/j.jpdc.2018.07.002
http://dx.doi.org/10.1016/j.future.2020.01.051
http://dx.doi.org/10.1016/j.future.2020.01.051
http://dx.doi.org/10.1016/j.future.2020.01.051
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb43
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb43
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb43
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb43
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb43
http://dx.doi.org/10.1007/s11554-018-0774-z
http://dx.doi.org/10.1016/j.future.2020.07.006
http://dx.doi.org/10.3390/rs10091423
http://dx.doi.org/10.3390/rs10091423
http://dx.doi.org/10.3390/rs10091423
http://dx.doi.org/10.14358/PERS.83.6.439
http://dx.doi.org/10.1007/s11554-019-00924-4
http://dx.doi.org/10.1007/s11554-019-00924-4
http://dx.doi.org/10.1007/s11554-019-00924-4
http://dx.doi.org/10.3390/s21113938
http://dx.doi.org/10.1007/978-3-030-13273-6_65
http://dx.doi.org/10.1007/978-3-030-13273-6_65
http://dx.doi.org/10.1007/978-3-030-13273-6_65
http://dx.doi.org/10.1080/19401493.2016.1177116
http://dx.doi.org/10.1111/j.1467-8659.2011.01995.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01995.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01995.x
http://dx.doi.org/10.1145/2492045.2492048
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb54
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb54
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb54
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb54
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb54
http://dx.doi.org/10.2312/SRE.20151165
http://dx.doi.org/10.1109/ICSEC.2018.8712680
http://dx.doi.org/10.1109/ICSEC.2018.8712680
http://dx.doi.org/10.1109/ICSEC.2018.8712680
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://arxiv.org/abs/2109.05410
http://dx.doi.org/10.1007/s11227-017-2141-4
http://dx.doi.org/10.1007/s11227-017-2141-4
http://dx.doi.org/10.1007/s11227-017-2141-4
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb60
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb60
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb60
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb60
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb60
http://dx.doi.org/10.1016/j.compag.2017.05.001
http://dx.doi.org/10.1016/j.compag.2017.05.001
http://dx.doi.org/10.1016/j.compag.2017.05.001
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1016/j.cageo.2005.06.016
http://dx.doi.org/10.1016/j.cageo.2005.06.016
http://dx.doi.org/10.1016/j.cageo.2005.06.016
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb64
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb64
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb64
http://dx.doi.org/10.1145/3306346.3323039
http://dx.doi.org/10.1145/3306346.3323039
http://dx.doi.org/10.1145/3306346.3323039
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.002
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.002
http://dx.doi.org/10.1016/j.isprsjprs.2019.03.002
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb67
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb67
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb67
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb67
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb67
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb68
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb68
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb68
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb69
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb69
http://refhub.elsevier.com/S0167-739X(22)00097-8/sb69
http://dx.doi.org/10.1109/ACCESS.2020.3019209
http://dx.doi.org/10.1016/j.future.2021.03.012
http://dx.doi.org/10.1016/j.future.2021.03.012
http://dx.doi.org/10.1016/j.future.2021.03.012
http://dx.doi.org/10.1109/TCC.2021.3055119
http://dx.doi.org/10.1016/j.future.2021.06.025
http://dx.doi.org/10.1002/cpe.4072

	An out-of-core method for GPU image mapping on large 3D scenarios of the real world
	Introduction
	Related work
	Overview of GEU
	Materials and methods
	Description of datasets
	Problem statement and notation
	GPU kernels
	Image mapping
	Occlusion

	Out-of-core method in GPU
	Discrete GPUs
	GPU-based embedded systems


	Experimental results and performance evaluation
	Discussion
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


