
ww.sciencedirect.com

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 7 ( 2 0 2 2 ) 2 0 7 5 5e2 0 7 7 0
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
A hybrid intelligent model to predict the hydrogen
concentration in the producer gas from a downdraft
gasifier
Roque Aguado a,*, Jos�e-Luis Casteleiro-Roca b, David Vera a,
Jos�e Luis Calvo-Rolle b

a Department of Electrical Engineering, University of Ja�en, E.P.S. Linares, Avda. de la Universidad s/n, 23700,

Linares, Ja�en, Spain
b CTC, Department of Industrial Engineering, CITIC, University of A Coru~na, E.U.P. Ferrol, Avda. 19 de Febrero s/n,

15405, Ferrol, A Coru~na, Spain
h i g h l i g h t s
� An experimental gasification plant was tested for hydrogen production on a distributed scale.

� The downdraft gasifier was fueled with residues from the olive oil industry.

� A dataset with 26,839 samples was experimentally collected via a portable syngas analyzer.

� From real measurements, the hydrogen concentration was predicted with intelligent techniques.

� The mean absolute prediction error for the hydrogen concentration was only 0.134 (vol%).
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This research work presents an artificial intelligence approach to predicting the hydrogen

concentration in the producer gas from biomass gasification. An experimental gasification

plant consisting of an air-blown downdraft fixed-bed gasifier fueled with exhausted olive

pomace pellets and a producer gas conditioning unit was used to collect the whole dataset.

During an extensive experimental campaign, the producer gas volumetric composition was

measured and recordedwith a portable syngas analyzer at a constant time step of 10 seconds.

The resulting dataset comprisesnearly 75hours of plant operation in total. Ahybrid intelligent

model was developed with the aim of performing fault detection in measuring the hydrogen

concentration in the producer gas and still provide reliable values in the event ofmalfunction.

The best performing hybrid model comprises six local internal submodels that combine arti-

ficial neural networks and support vectormachines for regression. The results are remarkably

satisfactory, with amean absolute prediction error of only 0.134% by volume. Accordingly, the

developedmodel could be used as a virtual sensor to support or even avoid the need for a real

sensor that is specific for measuring the hydrogen concentration in the producer gas.
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Introduction

The growing energy demands and environmental awareness

of the adverse effects of climate change have triggered an

increasing interest in distributed cogeneration technologies

from renewable energy sources such as bioenergy. Distributed

cogeneration can be defined as the simultaneous generation

of heat and electricity in a decentralized manner, namely,

geographically distributed over the area that is serviced and in

close vicinity to the end consumer. Nowadays, gasification

offers the best available solution in addressing CombinedHeat

and Power (CHP) generation from biomass resources on a

distributed scale at small and medium power ranges [1e4]. In

addition, biomass gasification constitutes a major potential

renewable source of hydrogen [5e10], an emerging alternative

form of energy storage that is expected to become essential

toward a sustainable energy future [11]. Gasification is a

thermochemical conversion process, whereby a carbonaceous

solid feedstock such as biomass is partially oxidized and

transformed into a gaseous fuel [12]. A gasifying agent is

required in order to transform the carbonaceous feedstock

into gaseous fuel through a series of chemical reactions

releasing heat (exothermic) and requiring heat (endothermic).

For biomass gasification on a distributed scale, air is preferred

over pure oxygen or steam as gasifying agent. Although gasi-

fication with pure oxygen or steam avoids nitrogen dilution,

leading to a gaseous productwith higher calorific value known

as synthesis gas or syngas, air separation units are not feasible

for small-scale applications, because of the excessively high

capital and operation costs offsetting any potential advantage

[13]. In the particular case of gasification with air as gasifying

agent, the gaseous fuel product is called producer gas and is

mainly composed of carbon monoxide (CO), hydrogen (H2),

carbon dioxide (CO2), nitrogen (N2), methane (CH4) and other

lightweight hydrocarbons (CnHm), which mainly include

acetylene (C2H2) and ethylene (C2H4), among others. In air-

blown gasification, the feedstock supplied to the gasifier is

partially oxidized in an autothermal process. This partial

oxidation of the feedstock produces enough heat to sustain

the high temperature atmosphere required for the endo-

thermic reduction reactions responsible for the producer gas

formation to occur [9]. The producer gas from gasification,

once cooled and cleaned, can be used as fuel in internal

combustion engines, micro gas turbines or fuel cells for elec-

tric and/or thermal power generation [14].

Motivated by the growing environmental concerns, biomass

gasification is attracting increasing interest to produce

hydrogen-rich gases for electricity generation in fuel cells or as

rawmaterial in the production of synthetic chemicals, gaseous

fuels such as hydrogen, methane or ammonia, and liquid fuels

such as methanol or gasolines [15e17]. Hydrogen can be pro-

duced in large-scale industrial plants or on a smaller scale in

local production facilities directly where the biomass resource

is available [17]. The main advantages of large-scale hydrogen

production are lower costs due to economies of scale and

location close to sources of electricity and water, whereas the

main disadvantage is transportation of hydrogen to the points

of consumption. Nowadays, the overwhelming majority of

hydrogen (>90%) is produced by means of steam reforming or
partial oxidation of fossil fuels such as natural gas at unbeat-

able costs if the CO2 emissions are not captured and seques-

tered. Alternatively, hydrogen can be entirely produced from

renewable energy sources, which constitutes the so-called

“green hydrogen”. However, nowadays only minor amounts

of green hydrogen are generated through emerging methods

such as water electrolysis or biomass gasification. In particular,

the cost of producing hydrogen frombiomass is less, by a factor

of two or more, than the cost of electrolytical hydrogen pro-

duction from water using wind or photovoltaic power sources

[18e21]. Moreover, among the available methods for hydrogen

production from biomass, gasification provides the lowest

production cost compared to other thermochemical, electro-

chemical or biochemical conversion technologies [21]. This

makes biomass gasification the most financially advantageous

process for hydrogen production from renewable energy sour-

ces. In terms of energy and exergy efficiency, biomass gasifi-

cation also has a clear advantage over most other green

hydrogen production methods [22].

Of all the current designs for gasification reactors, down-

draft fixed-bed gasifiers are arguably the most appropriate for

CHP or hydrogen production on a distributed scale, as a result

of their relative simplicity of construction, low investment cost,

reliability at operation, suitability for a large number of biomass

feedstocks and ability to generate a producer gas with a

reasonably high carbon conversion efficiency [4,12]. In a

downdraft gasifier, the solid feedstock moves downward

together with air, undergoing various thermochemical re-

actions while proceeding through four different zones: drying,

pyrolysis, combustion and reduction. Downdraft gasifiers

generate a producer gas with moderate energy density (Lower

Heating Value (LHV) ¼ 4e7 MJ/Nm3) and a low tar content

(<3 g/Nm3) [12]. Accordingly, unlike other types of gasifiers, a

simpler and less robust gas conditioning unit with lower energy

consumption is required due to the lower concentration of tars

in the producer gas [12].

Among the potential renewable feedstocks for downdraft

gasifiers, olive residues and, in particular, exhausted olive

pomace, stand out in olive oil producing regions as a result of

their wide availability and low cost [13,23e27]. Exhausted olive

pomace is the main by-product of crude olive pomace oil

extraction from wet olive pomace. Wet olive pomace is a

waste stream from the two-phase extraction process of virgin

olive oil that is produced atmassive rates in olive oil mills [27].

In order to extract the remaining olive oil contained in the wet

pomace, an energy-intensive drying process is required [28].

The dried pomace is eventually subjected to a solid-liquid

extraction process of the crude pomace oil with an organic

solvent such as hexane, leaving exhausted olive pomace as

by-product. In Spain, a wide availability of this by-product

from the crude olive pomace oil extraction process as feed-

stock to the gasification plant can be guaranteed at a cost

ranging from 10 to 25 V/t [29]. In particular, Andalusia is the

most representative region within Spain, accounting for

roughly 75% of the national olive oil production [30,31], and an

average yearly production of exhausted olive pomace ranging

between 1.20 and 1.45 million metric tons [32].

Biomass gasification is a complex process with multiple

chemical species and reactions occurring simultaneously.

Over the last few decades, numerous mathematical and
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computational models have been proposed to better explain

and understand biomass gasification processes [33]. Gasifica-

tion models are typically categorized into four main groups:

thermodynamic equilibrium models, kinetic models, compu-

tational fluid dynamics models and artificial neural network

models [12,34]. Artificial intelligence models constitute a

relatively recent approach in biomass gasification processes

for accurately predicting system outputs by learning from

large amounts of experimental data [33].

Artificial Intelligence (AI) techniques have proved to

outperform traditional models in terms of prediction perfor-

mance. While most of the research activity has been devoted

to fluidized bed gasifiers [35e37], a very scarce number of

works addressing the application of AI techniques to pre-

dicting the producer gas composition from downdraft gas-

ifiers is available in the scientific literature [38e42]. Baruah

et al. [40] developed a model based on Artificial Neural Net-

works (ANNs) in order to predict the composition of the pro-

ducer gas from fixed-bed downdraft gasifiers using

experimental data from diverse biomass feedstocks. Other

research works used ANN techniques [43], regression tech-

niques [44], in addition to binary and multi-class classifiers

[41] to predict the composition (H2, CO2, CO, CH4) and heating

value of the producer gas from a fixed-bed downdraft gasifier

fed with pinecone particles and wood pellets. Mikulandri�c

et al. [38,39] also used ANN modeling approaches to predict

process parameters in fixed-bed gasifiers with reasonable

speed and accuracy. More recently, Ozbas et al. [42] created

various regressionmodelswith the aim of predicting the value

of the hydrogen concentration in the producer gas and syn-

thesis gas from a steel fixed-bed updraft gasifier fueled with

olive pits, based on other parameters, such as time, temper-

ature, heating value and concentrations of carbon monoxide,

carbon dioxide, methane and oxygen. Different algorithms

were used, such as Linear Regression (LR), k-Nearest Neigh-

bors (k-NN) Regression, Support Vector Machines for Regres-

sion (SVMR) and Decision Tree Regression (DTR) algorithms,

with variable performance results.

In this research work, a hybrid intelligent model was devel-

oped from experimental data in order to predict the hydrogen

concentration in the producer gas from a downdraft gasifier

fueledwith exhausted olive pomace pellets. Unlike the usual AI

algorithms, a hybrid intelligent approach based on a combina-

tion of these techniques has demonstrated to improve the pre-

diction performance. For example, hybrid intelligent models

have already been used to predict the energy demand with the

aim of optimizing generation strategies and use of resources

[45]. Another hybridmodel was developed to predict the output

temperature of a solar thermal collector [46]. This hybridmodel

technique allows a combination of different heterogeneous al-

gorithms, which complement each other to achieve the best

prediction, while adapting to the characteristics of the dataset

[47].Hybridmodelshavealsobeenusedtoaccuratelypredict the

change in the flow rate of hydrogen supplied to a Proton-

Exchange Membrane Fuel Cell (PEMFC) in order to reach the

desired working point [48,49].

The main aim of the present work is to demonstrate that

hybrid intelligent models are valid to reliably determine the

operational parameters of a downdraft gasifier. The
remainder of this article is structured as follows. Section Case

study introduces the case study, describes the gasification

plant and instrumentation, as well as the experimental pro-

cedure. The model approach and the procedure used to

develop the hybrid intelligent model are described in Section

Model approach, in addition to the algorithms involved, the

data processing procedure and the performance metrics.

Subsequently, the configuration and results of the best per-

forming model are discussed in Section Results. Conclusions

and future works are finally exposed in Section Conclusions

and future works.
Case study

The present work describes a novel intelligent model that is

able to predict the hydrogen concentration in the producer gas

from an experimental gasification plant. The experimental

methodology is divided into two subsections. Initially, the

experimental gasification plant is presented and described

thoroughly, including the biomass feedstock to the gasifier

and the instrumentation for measuring the producer gas

composition and heating value. Thereafter, the experimental

procedure for plant operation and data collection is conve-

niently reported.

Plant description and instrumentation

As shown in Fig. 1, the experimental gasification plant con-

sists of a downdraft fixed-bed gasifier with an open top and a

producer gas conditioning unit. The downdraft gasifier (1) was

manufactured of stainless steel with an internal refractory

ceramic lining. As the reactor has an open top, the gasification

process occurs at near ambient pressure. The producer gas is

discharged from the gasifier at temperatures around 400 �C
from an outlet duct for exiting gas [26]. The hot producer gas

cannot be readily used in electric power generation units or

downstream gas upgrading units, as it contains traces of tar,

fly ash, moisture and other inorganic impurities that can

cause severe corrosion problems to all mechanical equip-

ment. Consequently, the producer gas from gasification must

be cooled down and cleaned up to particular limits set by the

manufacturer of the downstream equipment. To this end, the

gasification plant incorporates a producer gas conditioning

unit with the following components: a cyclone (2) that sepa-

rates most of the particles entrained in the producer gas; a

Venturi scrubber (3) that sharply reduces the temperature of

the producer gas and removes the tars formed in the gasifi-

cation process by spraying a pressurized water jet; coarse fil-

ters (4), fine filters (5) and a safety filter (6) that ensure a

thorough removal of most organic and inorganic contami-

nants from the producer gas, so that it can be eventually used

as fuel for CHP generation units or downstream upgrading

processes [26]. Beforehand, the flare valve (10) is fully opened

in order to safely burn the producer gas in a test flare stack (11)

located next to the gas control valve (7) and the gas sampling

point (9). A blower (8) is used to provide the necessary suction

to induce airflow through the gasifier and drive the resulting

producer gas through the gas conditioning unit. Finally, a
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Fig. 1 e Layout of the experimental gasification plant. (1) Downdraft gasifier; (2) cyclone; (3) Venturi scrubber; (4) coarse

particle filter; (5) fine particle filters; (6) bag filter; (7) control valve; (8) blower; (9) producer gas sampling point; (10) flare valve;

(11) flare stack; (12) discharge valve.

Table 1 e Proximate and ultimate analyses of the
exhausted olive pomace pellets.

Proximate analysis, wt. % Minimum Average Maximum

Moisture, as received 4.80 9.88 13.80

Ash, dry basis 5.40 7.20 9.20

Volatile matter, dry basis 70.24 73.53 76.67

Fixed carbon, dry basis 16.43 19.27 22.36

Ultimate analysis,

wt. % dry basis

Minimum Average Maximum

Carbon 47.49 51.02 55.44

Hydrogen 5.26 5.88 6.50

Nitrogen 0.40 0.95 2.20

Sulfur 0.07 0.14 0.24

Chlorine 0.12 0.26 0.40

Oxygen 31.04 34.55 38.86
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discharge valve (12) controls the flow rate of producer gas for

downstream applications.

The physicochemical properties of the feedstock influence

the performance of the gasification process. In this work,

exhausted olive pomace pellets were used as feedstock to the

gasification plant due to their high availability and low cost.

The exhausted olive pomace pellets used as feedstock in this

workwere provided by a local biomass trading company in the

Spanish municipality of Linares, Andalusia. The physico-

chemical properties of the exhausted olive pomace pellets are

diverse, as a result of their highly heterogeneous nature. For

illustrative purposes, the proximate and ultimate analyses of

this biomass feedstock are provided in Table 1. A picture of a

sample is shown in Fig. 2, where one can appreciate the cy-

lindrical shape of the exhausted olive pomace pellets, with

lengths ranging from 10mm to 35mm and diameters of about

10 mm. Exhausted olive pomacemust be pelletized prior to be

used as feedstock in downdraft gasifiers, because fine parti-

cles in downdraft fixed-bed gasifiers (<3 mm) are conducive

to the formation of ash clinkers and also disturb the optimal

flow of fuel and air along the gasifier bed, leading to excessive

pressure drops, abnormally low temperatures in the reduction

zone and unstable operation [50].

In order to monitor and record the producer gas composi-

tion and heating value, a portable syngas analyzer (Gasboard

3100P, Hubei Cubic-Ruiyi Instrument Co., Ltd., China) was

used [51]. The gasification plant is equipped with an in-line

gas sampling point located at the blower outlet, where the

portable syngas analyzer is connected after passing through a

portable gas conditioning unit consisting of two water bub-

blers, an activated carbon filter and a precision filter. In order

to prevent damages to the sensors of the syngas analyzer, the

producer gas must be free from particles (< 1 mm) and tar

traces, and its moisture content (relative humidity) must
range between 5 and 95% non-condensing. These relatively

strict requirements highlight the importance of the upstream

gas conditioning unit.

The portable syngas analyzer was used for simultaneous

measurement of the volume concentrations of up to 6

different gases in the producer gas, namely CO, CO2, H2, O2,

CH4 and CnHm, while the N2 balance and heating values were

calculated automatically. The volume concentration of N2 is

estimated on the assumption that no other gaseous compo-

nents are present in the producer gas. In practice, however,

fractional amounts of other inert gases, mostly argon, are also

present. The lower heating value (LHV) and higher heating

value (HHV) are continuously determined from the volume

concentrations (mole fractions) of the fuel gases in the pro-

ducer gas (CO, H2, CH4 and CnHm), as given by Eqs. (1) and (2),

respectively [51].

https://doi.org/10.1016/j.ijhydene.2022.04.174
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Fig. 2 e Exhausted olive pomace pellets used as feedstock

to the downdraft gasifier.
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LHV ðMJ=Nm3Þ ¼ 12:620COþ 10:777H2 þ 35:818CH4

þ 91:180CnHm (1)

HHV ðMJ=Nm3Þ ¼ 12:620COþ 12:788H2 þ 39:840CH4

þ 99:220CnHm (2)

The operating principle of the portable syngas analyzer is

based on three types of technologies to determine the con-

centrations of the different gaseous constituents in the pro-

ducer gas [17,51]:

� Nondispersive Infrared (NDIR) sensor, to measure the

concentrations of CO, CO2, CH4 and CnHm (optional).

� Thermal Conductivity Detector (TCD), to measure the

concentration of H2.

� Electron Capture Detector (ECD), to measure the concen-

tration of electron-absorbing components in the producer

gas, namely, O2.

Table 2 outlines the technologies used by the portable

syngas analyzer for measuring each component of the pro-

ducer gas. The calibration process is specific for each gas

component and only required in the event that the gas mea-

surement error exceeds technical specifications [52].

As the portable syngas analyzer systematically calculates

the N2 concentration by difference [17], determination of the

producer gas composition is based on the three
Table 2 e Measurement specifications for each component of t

Component Method Range

CO NDIR 0e30%

CO2 NDIR 0e25%

CH4 NDIR 0e10%

CnHm NDIR 0e5%

H2 TCD 0e30%

O2 ECD 0e25%
aforementioned technologies (NDIR, TCD and ECD). In

particular, the portable syngas analyzer relies heavily on the

NDIR spectroscopic sensor for determining the concentrations

of CO, CO2, CH4 and CnHm in the producer gas with long term

stability, high accuracy and low power consumption [53].

NDIR spectrometers are capable of measuring the light in-

tensity absorbed by the carbon-containing constituents of the

producer gas. These instruments consist of three basic com-

ponents: an infrared light source, an optical tube containing

the producer gas and an infrared detector with a specific

wavelength filter [53].

The working principle of a typical NDIR spectroscopic

sensor is based on the BeereLambert law [53]. It is well

established that most polyatomic molecular gases have a

particular absorption wavelength in the infrared region. The

molecules of CO, CO2, CH4 and CnHm in the producer gas

consist of heterogeneous atoms and thus, have absorption

spectra in the infrared wavelength region. When a beam of

light with the typical absorption wavelength of a given gas is

passed through the gas whose concentration is to be

measured, its intensity decreases. The gas concentration de-

termines the degree of intensity attenuation. The relationship

between both parameters is governed by the BeereLambert

law [54].

I ¼ I0e
�ecl (3)

The absorption intensity (i) of each polyatomic molecular

gas can be expressed as:

i ¼ I0 � I ¼ I0
�
1� e�ecl

�
(4)

where:

� I0: initial light intensity.

� I: light intensity after passing through the gaseous

medium.

� e: absorption coefficient.

� c: gas concentration.

� l: thickness of the gaseous absorption medium.

The concentrations of H2, O2 and N2 cannot be determined

with the NDIR sensor, as these molecules do not exhibit ab-

sorption spectra in the infrared wavelength region. Thus,

specific technologies such as TCD and ECD sensors are used

for measuring the volume concentrations of H2 and O2,

respectively. Meanwhile, the concentration of N2 is automat-

ically estimated by difference, assuming that no other gaseous

components are present in the producer gas, apart from those

measured.
he producer gas [51].

Resolution Precision

0.01% � 2% Full scale

0.01% � 2% Full scale

0.01% � 2% Full scale

0.01% � 2% Full scale

0.01% � 3% Full scale

0.01% � 3% Full scale
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Fig. 3 e Simplified data-flow diagram showing the inputs

and outputs of the hybrid intelligent model.
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Experimental procedure

The operating procedure of the experimental gasification

plant for the purpose of the present work is briefly described

below.

1. Prior to operation, the gasification plant is carefully

checked in order to ensure that the pipeline and all the

vessels arewell sealed against air leakages, as the producer

gas conditioning unit operates marginally below ambient

pressure [52].

2. The gasifier is loaded with exhausted pomace pellets

through the hopper, while the coarse and fine filtering

media are filled with dry char and graded sawdust,

respectively.

3. The air blower is switched on in order to induce suction of

air into the gasifier and generate a continuous flow of

producer gas from the gasifier toward the flare stack.

4. Initially, the gasifier requires an external heat input [26].

For this reason, the feedstock is ignited across the entire

cross section with a hand torch or blow torch. As a result,

the producer gas starts to form and evacuate through the

flare stack. A hopper vibration mechanism driven by an

electrical motor is activated at regular periods of time in

order to ensure a continuous downward movement of the

feedstock in the gasifier, and thus avoiding bridging and

channeling phenomena through the gasifier bed.

5. Immediately after ignition, the portable syngas analyzer

starts recording the producer gas composition and calcu-

lated heating value with a selected time step.

6. Approximately 30e60 min after the gasifier ignition, the

gasification plant reaches steady state conditions and the

producergascompositionandheatingvaluetendtostabilize.

7. The producer gas is typically flared with a hand torch for a

preliminary quality check. The flare must either be color-

less or light blue if ignited at night, as long as the producer

gas is sufficiently clean and tar-free. Since the producer gas

composition and heating value are accurately measured

and monitored with the in-line syngas analyzer, the main

purpose of the flare ignition is to fully oxidize air pollutants

such as carbon monoxide and methane to form safer and

environmentally friendlier complete combustion products

such as carbon dioxide and water vapor.

The operating procedure described above was systemati-

cally repeated and data for different runs were collected in an

extensive experimental campaign. The portable syngas

analyzer recorded the volumetric composition and estimated

heating value of the producer gas with a constant time step of

10 s. The resulting dataset comprises almost 75 h of plant

operation in total, under different operational conditions.
Model approach

A schematic data-flow diagram for the approach followed in

this research work to develop the hybrid intelligent model is

shown in Fig. 3. This model aims at effectively predicting the

concentration of a specific component (H2) in the producer gas
from the gasification plant. The inputs to the model are the

volume concentrations of the remaining major gaseous con-

stituents in the producer gas, but only those measured with

the NDIR and ECD sensors, namely CO, CO2, CH4, CnHm and O2.

As the N2 concentration is determined by difference, it was

not included as input to the model.

The aim of this research work is not only to trustworthily

predict the hydrogen concentration in the producer gas from a

downdraft gasifier, but also to validate the procedure to create

a hybrid intelligent model capable of predicting other vari-

ables in the gasification plant. The hydrogen concentration

was selected as target variable mainly because it requires

using a specific TCD sensor, and thus, it is possible to use the

developed model for fault detection and still provide reliable

results in the event of malfunction or failures in measure-

ment. Moreover, if the number of variables to be measured

increases, the model becomes more complex and produces

more than one output (one per predicted variable).

A hybrid intelligent approach was selected, as hybrid

models usually provide a better performance than that of a

global model. As illustrated in Fig. 4, hybrid intelligent models

comprise several internal submodels that are only usedwith a

portion of the whole dataset. These local models are trained

with only a cluster of the dataset. Thewhole dataset is divided

with a clustering algorithm and then, regression models are

trained for each cluster (local models).

The hybrid intelligent model represents a virtual sensor

that can be used in different situations, such as when a vari-

able lacking a real sensor is to be determined or to perform

fault detection in a real sensor. In this work, the hybrid model

was developed for the purpose of performing fault detection

in a specific sensor of the portable syngas analyzer, namely,

the TCD sensor that measures the hydrogen concentration in

the producer gas. Thereby, if the real sensor produces unre-

liable or none values, the virtual sensor developed in this

research work could ensure provision of valid measurements

all the time.

Procedure to create the hybrid intelligent model

The procedure followed in this research work to develop the

hybrid model is schematically represented in Fig. 5. It consists

of four consecutive steps, which are outlined below.
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Fig. 4 e Internal configuration of the hybrid intelligent

model.
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1. The first step is the clustering phase, in which the dataset

is divided several times to create the different clusters that

compose the hybrid model. As the clustering algorithm

used in this work does not detect the optimal number of

clusters, several sets of clusters were created.

2. After the clustering phase, several regression algorithms

were trained in each cluster. Moreover, when the regres-

sion algorithm had different internal configurations, the

different configurations were considered as different local

models.

3. In the third step, the best regression algorithm for each

cluster was identified. In this phase, k-Fold Cross Valida-

tion was used to calculate the performance of each

regression algorithm. The local models were trained again

with the best algorithm for each cluster using, at this time,

all the data available for each cluster.

4. Finally, the hybrid configuration must be chosen. As

mentioned above, since several sets of clusters were

created, this phase checks the different hybrid configura-

tions with different datasets, which were initially isolated
Fig. 5 e Flowchart to create the
from the rest of the training procedure. It is particularly

important that this dataset should contain data fromall the

clusters to allow testing of all the possible configurations.
Artificial intelligence algorithms

In this section, all the different algorithms used in this

research work are described.

k-means
The clustering algorithm that was used to divide the dataset is

the k-Means algorithm. This is one of the most well-known

and widely used unsupervised algorithms for creating clus-

ters. The dataset and the number of clusters (k) must be

specified as inputs, while the outputs are the centroids and

the clusters of data [55e57].

Each centroid is calculated as the center of each cluster.

Centroids are the unique criterion necessary to assign new

data to a cluster. This algorithm typically uses the euclidean

distance to assign the samples to each cluster, and when the

clusters are created, new samples are assigned to the cluster

defined by the closest centroid [58].

The procedure to train the algorithm can be summarized in

the next steps [59,60]:

� First, the centroids are randomly chosen from the dataset;

k samples are defined as centroids.

1. All the samples are assigned to the cluster defined by its

closest centroid.

2. New centroids are calculated as the centers of each new

cluster.

� The training procedure involves repeating the two previous

steps until the centroids remain virtually unchanged be-

tween two consecutive iterations.
hybrid intelligent model.

https://doi.org/10.1016/j.ijhydene.2022.04.174
https://doi.org/10.1016/j.ijhydene.2022.04.174


i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 7 ( 2 0 2 2 ) 2 0 7 5 5e2 0 7 7 020762
Artificial neural networks
A commonly used artificial intelligence algorithm to perform

regression is the Artificial Neural Network (ANN). This algo-

rithm is created with the association of several artificial

neurons, that are the simplest units. Each neuron has several

inputs and an activation function, that is chosen depending

on the configuration and the use of the algorithm (regression

or classification). ANNs provide good results when the inputs

to the model are not in the range of the training set [61,62].

Neurons are organized into three types of layers: the input

layer, the hidden layer and the output layer. All neurons in the

same layer have the same inputs and outputs. Each neuron

adds all the weighted inputs, including a bias, and then, the

activation function is calculated as a result of this addition.

The number of neurons in the input and output layers,

respectively, depends on the inputs and outputs of the model.

However, the number of hidden layers and the number of

neurons per hidden layer relies on the particular configuration

used for each model [63e65].

In this research work, the configuration used for the ANN

model was a Multi-Layer Perceptron (MLP), which is a feed-

forward neural network with only one hidden layer. The

activation function of the internal neurons was set as the tan-

sigmoid, while the output layer neuron was defined by means

of a linear function. Since the model has a single output,

namely, the hydrogen concentration; the output layer has

only one neuron. Severalmodels with different neurons in the

hidden layer were trained.

Support vector machines for regression
Support Vector Machines for Regression (SVMR) is an artificial

intelligence algorithmmainly used in classification that forms

an optimal hyperplane to separate data belonging to different

classes. In order to use this algorithm for regression, a trans-

formation of the data is performed to represent them in a new

high-dimensional space. Then, a linear regression is trained in

this new multi-dimensional space.

In this work, a modification of the original algorithm was

used, which includes an auto adjust function to calculate the

weight vector (g) and the kernel width (s). This modification is

known as Least Square-Support Vector Regression (LS-SVR)

[66,67].

Polynomial regression
The last algorithm used in this research work is the Poly-

nomial Regression. This algorithm uses simple functions to
Table 3 e Quartile distribution and average values of the datas

Parameter Unit Minimum First quartile

H2 vol% 0.00 15.52

CO vol% 0.00 10.35

CO2 vol% 0.00 11.08

CH4 vol% 0.00 2.09

CnHm vol% 0.00 0.13

O2 vol% 0.15 0.70

N2
a vol% 47.96 52.19

LHVb MJ/Nm3 0.00 4.46

a N2 concentration is determined by difference.
b LHV is estimated through a linear correlation, as indicated in Eq. (1).
calculate the output of the model. These basic functions

depend on the order of each particular algorithm and the

number of inputs [68e71]. As examples, Eqs. (5) and (6) show

the functions of a Polynomial Regression model with two in-

puts, x1 and x2, for the first and second order, respectively.

FðxÞ ¼ b0 þ b1x1 þ b2x2 (5)

FðxÞ ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ b4x
2
1 þ b5x

2
2 (6)

Data processing

The dataset used in this research work was collected with a

constant sampling time step of 10 s between consecutive

samples and contains a total of 26,839 samples with 8 vari-

ables each. The data include the volumetric composition (H2,

CO, CO2, CH4, CnHm, O2, N2) and the LHV of the producer gas.

Table 3 presents the quartile distribution and average values

of the dataset used to the develop the hybrid intelligent

model, in addition to the N2 concentration and the LHV. The

median LHV of the producer gas was 4.62 MJ/Nm3, while the

maximum LHV reached 5.52 MJ/Nm3. As evidenced by the

minimum and maximum values of the volume percentages

reported in Table 3, a number of samples from the start-up

phase of the gasification plant are included, where pure air

and lean producer gas compositions were recorded.

Particularly worthy of note is that hydrogen was, for most

of the time, the main fuel gas in the producer gas volumetric

composition, with an average H2/COmolar ratio just over 1.35.

Only during the start-up phase of the gasification plant was

the volume concentration of carbon monoxide markedly

higher than that of hydrogen. Fig. 6 shows a histogram of the

H2/CO molar ratio, with most of the samples (~85%) having a

H2/CO ratio between 0.8 and 1.8. In fact, the producer gas or

synthesis gas from biomass gasification is typically charac-

terized by an average H2/COmolar ratio in the range of 0.8e1.5

[72]. As observed in Fig. 6, the hydrogen concentration in the

producer gas from gasification of exhausted olive pomace

pellets was on average relatively high. Hydrogen could be

separated from the producer gas in a downstream purification

process for use as a carbon-free energy carrier or used as

feedstock for renewable synthetic fuel production. However,

for most chemical syntheses of carbon-based hydrogen-car-

rying fuels (e.g., the methanol synthesis, the Fischer-Tropsch

synthesis or the methanation reaction for production of syn-

thetic natural gas), a H2/COmolar ratio of at least 2 is required
et.

Median Third quartile Maximum Average

16.69 17.73 20.81 15.3030

11.89 14.33 28.28 12.3126

13.29 14.32 16.89 11.9922

2.72 3.38 4.47 2.5960

0.16 0.21 0.36 0.1675

0.87 1.04 20.68 2.0800

53.55 54.83 81.82 55.5475

4.62 4.71 5.52 4.2806
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Fig. 6 e Histogram of the H2/CO molar ratio in the producer gas.
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[73]. Thus, for downstream use of the producer gas as syn-

thesis gas, in addition to separating inerts such as nitrogen

and argon, this ratio should be adjusted in a separate catalytic

reactor before the synthesis reactor, where some carbon

monoxide would be converted to hydrogen by means of the

forward water-gas shift reaction. As the downstream pro-

cessing substantially increases the investment and operation

costs, the cogenerative production of electricity and heat

currently appears to be themost suitable and readily available

application for the producer gas.

A subset of the whole dataset containing 5% of the data

was isolated at the beginning of the modeling process to

perform a validation test with the final hybrid model.

Accordingly, the validation dataset includes 1342 randomly

chosen samples. The rest of the dataset was normalized in

order to create the hybrid intelligent model. Moreover, once

the dataset was divided in clusters, another test dataset with

5% of the data from each cluster was created for the purpose

of determining the best hybrid configuration.

In Fig. 7, the Pearson linear correlation coefficients be-

tween all pairs of normalized input variables are conveniently

displayed in a matrix of plots. Histograms of each variable

appear along the matrix diagonal, while scatter plots of vari-

able pairs appear in the off diagonal. The slopes of the least-

squares reference lines in the scatter plots are equal to the

correlation coefficients displayed in the upper right corner. It

is noteworthy that the concentration of carbonmonoxide (CO)

is inversely correlated with the concentrations of most other

gaseous components in the producer gas. A particularly high

positive correlation between the concentrations of carbon

dioxide (CO2) and hydrocarbons (CH4 and CnHm) is observed.

This behavior can be predominantly attributed to the forward

water-gas shift reaction in combination with themethanation

reaction, both of which proceed in the gas phase and are
moderately exothermic. The forward water-gas shift reaction

yields CO2 and H2 from CO and H2O, while the methanation

reaction is the reverse process of the steam methane

reforming reaction.

Performance metrics

In order to evaluate the performance of each regressionmodel

created in the clusters, k-Fold Cross Validation with 10 folds

was used in each local model. The cross validation procedure

splits the training data 10 times (10 folds), and then uses 9 of

these groups to train and the last one to test the model. This

procedure was repeated 10 times until all the groups created

for the purpose of cross validations were used in the tests. At

this point, all the samples in a cluster are used to test the

model, and it is possible to evaluate the performance of each

local model.

In this work, four error metrics were used; namely, the

Mean Squared Error (MSE), the Mean Absolute Error (MAE), the

Mean Percentage Absolute Error (MAPE) and the Normalized

Mean Squared Error (NMSE). Eqs. (7)e(10) indicate how each

error is calculated. A comprehensive review on prediction

errors is provided in Ref. [74].

MSE ¼ 1
n

Xn

i¼1

�byi � yi

�2
(7)

MAE ¼ 1
n

Xn

i¼1
jbyi � yij (8)

MAPE ¼ 1
n

Xn

i¼1

jbyi � yij
jyij (9)

NMSE ¼ MSE
s2

(10)
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Fig. 7 e Pearson correlation matrix between all pairs of input variables to the hybrid intelligent model.
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The above equations require the following statistical

parameters:

� n: total number of samples in each cluster.

� byi: predicted value.

� yi: measured value.

� s: variance of the error distribution.
Results

The results from this research work are divided into four

different subsections. The first part addresses the clustering

phase results. Subsequently, the regression phase results and

the hybrid configuration selection are discussed. Finally, the

hybrid model is tested with a specific dataset. The initial

dataset, as discussed above, was divided in order to create

three different datasets:

1. Initially, the validation dataset was isolated from the

beginning of the modeling process.
2. The second dataset was used to choose the hybrid config-

uration. In order to create this dataset and to ensure that

samples from all the clusters were included, this test

dataset was created with 5% of each cluster data.

3. The last dataset was used to create the models in the

clusters. The regression models were developed with this

dataset.
Clustering phase results

As mentioned above, the k-Means algorithm was used to

divide the dataset in several clusters. This algorithm has is-

sues with local minima during training depending on the

initial centroids. To avoid these drawbacks, the k-Means al-

gorithm was used 20 times to create the same number of

clusters; each time with random initial centroids.

A total of 9 hybrid configurations were created with

growing numbers of clusters, ranging from 2 to 10. Accord-

ingly, 10 different configurations were evaluated: the global

model and 9 hybrid models. Table 4 indicates the number of

https://doi.org/10.1016/j.ijhydene.2022.04.174
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Table 4 e Number of samples for each cluster.

Global Hyb. 2 Hyb. 3 Hyb. 4 Hyb. 5 Hyb. 6 Hyb. 7 Hyb. 8 Hyb. 9 Hyb. 10

C-1 24,222 4618 2681 2217 1802 341 341 345 344 344

C-2 19,604 7808 2667 2666 1794 1458 1180 1165 1153

C-3 13,733 9261 4514 2337 2340 1180 1176 1178

C-4 10,076 6431 4515 2926 1433 1181 1179

C-5 8808 6429 4278 2928 1417 1378

C-6 8808 5468 4231 2571 1847

C-7 7413 5509 4581 2584

C-8 7417 5596 3887

C-9 6189 4944

C-10 5729
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samples included in each cluster, where each column repre-

sents a different configuration. The global configuration with

one cluster is at the left, while the hybrid configurations are

abbreviated as Hyb., with a number of clusters varying from 2

to 10.

Regression phase results

The results from the modeling phase are reported in Tables 5

and 6. These tables show the best achieved values for the MSE

and MAE in all the local models. These error values were ob-

tained using k-Fold Cross Validation with k ¼ 10. This cross

validation technique divides the clusters data in k groups, and

uses k� 1 groups to train amodel, the performance of which is

eventually tested against the last group. The validation pro-

cedure was repeated k times until all the groups were used as

test data. At the end of this process, the error was calculated

using all the data available in each cluster. This validation

procedure ensures more realistic error values than those of a

hold-out validation.

The training procedure using k-Fold Cross Validation was

used for all the regression algorithms described previously.

The three algorithmswere testedwith the next configurations:

� The MLPs were configured with only one hidden layer and

with a tan-sigmoid activation function in all the neurons,

except in the output layer, which uses a linear activation

function. These regressionmodels were adjusted using the

Levenberg-Marquardt algorithm and were tested with

different number of neurons in the hidden layer (from 1 to

15). These models were designated as “ANN*” in results

tables, where “*” represents the number of neurons in the
Table 5 e MSE values for each best local model ( £ 10¡3).

Global Hyb. 2 Hyb. 3 Hyb. 4 Hyb. 5

C-1 0.3263 0.4715 0.3940 0.6547 0.4963

C-2 0.2109 0.5591 0.4646 0.3349

C-3 0.1439 0.1155 0.1327

C-4 0.4664 0.5132

C-5 0.0804

C-6

C-7

C-8

C-9

C-10
hidden layer, and each of these models were tested as in-

dividual models (as different algorithms).

� The LS-SVR models were trained using an auto-tune

function to adjust the internal parameters. With this

function, only one model is created for each cluster data,

designated in tables as “LS-SVR”.

� The last regression algorithm is the Polynomial Regression

algorithm, which was tested in the first and second order of

the polynomial model. This algorithm would have been

referred to in the tables as “Poly*”, where “*” indicates the

orderof thepolynomialmodel,but itdoesnotappear therein,

because only the best performing algorithms are shown.

Table 7 shows the optimal regression algorithms for each

local model. It is noteworthy that the tables included in this

work are a summary of all the results. In order to select the

best performing algorithms, 18 models were tested for each

cluster: 15 artificial neural networks, 1 support vector regres-

sion and 2 polynomial regressions.

Once the best regression algorithm was selected for each

local model, it was necessary to train the models once again.

As k-Fold Cross Validation was used, 10 models were trained

with the best performing algorithm; but none of themwith all

the cluster data in the training phase. Then, newmodels were

trained with all the cluster data using the best performing

regression algorithm, whichwas identified as the onewith the

lowest MSE.

Best hybrid configuration selection

In order to establish the final internal hybrid configuration,

the second dataset described at the beginning of the results
Hyb. 6 Hyb. 7 Hyb. 8 Hyb. 9 Hyb. 10

0.1119 0.0953 0.1135 0.1024 0.0684

0.5123 0.5096 0.1765 0.4519 0.4883

0.4444 0.4357 0.4320 0.3657 0.4372

0.1177 0.7369 0.4878 0.2105 0.2310

0.4043 0.1319 0.7734 0.7786 0.7952

0.0662 0.1738 0.1182 0.0462 0.0373

0.0505 0.1893 0.1007 0.5504

0.0521 0.2733 0.0178

0.0634 0.2363

0.0451

https://doi.org/10.1016/j.ijhydene.2022.04.174
https://doi.org/10.1016/j.ijhydene.2022.04.174


Table 6 e MAE values for each best local model.

Global Hyb. 2 Hyb. 3 Hyb. 4 Hyb. 5 Hyb. 6 Hyb. 7 Hyb. 8 Hyb. 9 Hyb. 10

C-1 0.0109 0.0129 0.0086 0.0170 0.0139 0.0059 0.0052 0.0061 0.0049 0.0041

C-2 0.0059 0.0156 0.0098 0.0097 0.0142 0.0142 0.0068 0.0135 0.0146

C-3 0.0040 0.0041 0.0073 0.0105 0.0101 0.0116 0.0094 0.0102

C-4 0.0113 0.0129 0.0070 0.0192 0.0140 0.0066 0.0074

C-5 0.0036 0.0110 0.0074 0.0194 0.0190 0.0182

C-6 0.0039 0.0078 0.0070 0.0036 0.0031

C-7 0.0032 0.0081 0.0057 0.0167

C-8 0.0034 0.0091 0.0027

C-9 0.0035 0.0086

C-10 0.0031

Table 7 e Best regression algorithm for each local model.

Global Hyb. 2 Hyb. 3 Hyb. 4 Hyb. 5 Hyb. 6 Hyb. 7 Hyb. 8 Hyb. 9 Hyb. 10

C-1 LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR ANN7 LS-SVR ANN7 LS-SVR LS-SVR

C-2 LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR

C-3 LS-SVR LS-SVR ANN15 LS-SVR LS-SVR LS-SVR LS-SVR LS-SVR

C-4 LS-SVR LS-SVR ANN15 ANN5 LS-SVR LS-SVR LS-SVR

C-5 LS-SVR LS-SVR ANN14 ANN15 ANN13 ANN15

C-6 LS-SVR LS-SVR ANN15 LS-SVR LS-SVR

C-7 LS-SVR LS-SVR LS-SVR ANN14

C-8 LS-SVR LS-SVR LS-SVR

C-9 LS-SVR LS-SVR

C-10 LS-SVR
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section was used. These data were used as inputs for all the

possible whole models (the global model and the nine hybrid

models), and the performance parameters were calculated for

all the configurations. Table 8 outlines the MSE for all the

hybrid models, where it is possible to appreciate that the best

hybrid configuration has 6 local internal submodels.

Test results

Table 9 summarizes the results of the final test, which, as

reported above, was performed on a dataset containing 1342

samples that was isolated at the beginning of the model cre-

ation procedure. Table 9 includes the error metrics with real

values and with normalized values, both of which are

reasonably good. The MSE for prediction of the hydrogen

concentration in the producer gas is approximately 0.086,

which corresponds to an estimation error of about 0.134% by

volume, as the MAE units are the actual units of the variables.

As an example, Fig. 8 presents a scatter plot of several in-

dependent log measurements of the hydrogen concentration

that were used in this test. The upper subplot shows the

measured values (purple circles) and the predicted values

(green crosses) using the hybrid intelligent model. The lower

subplot indicates the absolute error (blue circles) of each

prediction, which was consistently below 2% by volume.

In a related work, Ozbas et al. [42] developed four detailed

regression models based on supervised algorithms (LR, k-NN,
Table 8 e MSE values for each hybrid configuration ( £ 10¡4).

Global Hyb. 2 Hyb. 3 Hyb. 4 Hyb. 5

3.0496 1.4504 1.2210 1.1608 1.3909
SVMR and DTR) to predict the hydrogen concentration in the

synthesis gas from pyrolysis/gasification of olive pits in a lab-

scale updraft gasifier. Operational parameters such as time,

temperature, heating value and concentrations of carbon

monoxide, carbon dioxide, methane and oxygen were

considered as input data. In all four different models, the

MAE values were below 1% by volume, which is an indication

that the estimates of hydrogen concentration were very close

to the actual values. In particular, the best performing algo-

rithm was LR, with a MAE equal to 0.007%, in contrast to

SVMR, which exhibited a MAE of 0.762%. In another work,

George et al. [36] used a feed-forward, multi-layered artificial

neural network (ANN) to predict the producer gas composi-

tion from air gasification of different biomass feedstocks

(coffee husk, coconut shell, groundnut shell, sugarcane

bagasse and sawdust) in a fluidized bed gasifier. The devel-

oped ANN model, which was trained by means of the

Levenberg-Marquardt back-propagation algorithm, consisted

of seven input variables, four output variables and one hid-

den layer with fifteen neurons. The performance metrics of

the ANN model were within the satisfactory limit, with a MSE

of 0.71%. Notwithstanding the foregoing, it should be noted

that the performance metrics of these works are not strictly

comparable to those of the present work, since the input

variables and data to each model are different, in addition to

the gasifier type and the physicochemical properties of the

feedstock.
Hyb. 6 Hyb. 7 Hyb. 8 Hyb. 9 Hyb. 10

0.9481 1.6131 1.6305 1.1987 1.5477
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Fig. 8 e Scatter plots of the hydrogen concentration prediction test. Upper subplot: measured data (purple circles) and

predicted data (green crosses). Lower subplot: absolute error (blue circles). (For interpretation of the references to color in

this figure legend, the reader is referred to the Web version of this article.)

Table 9 e Performance metrics for the best hybrid
configuration.

MSE MAE NMSE

Hybrid configuration with 6

local models

0.0863 0.1343 0.043

(with normalized values) 2.0027 , 10�4 0.0065
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Conclusions and future works

This research work presents a hybrid intelligent model to

predict the hydrogen concentration in the producer gas from

an experimental gasification plant consisting of a downdraft

gasifier fueled with exhausted olive pomace pellets and a gas

conditioning unit. Very satisfactory results were obtained,

with average prediction errors of only 0.134%, as it can be

observed above in the hydrogen concentration prediction test.

Accordingly, the developed model can be used for fault

detection in measuring the hydrogen concentration in the

producer gas with a real TCD sensor and still provide reliable

values in the event of malfunction, or also as a virtual sensor

to support or even avoid the need for such sensor in the

experimental installation.

The developed hybrid intelligent model comprises six local

internal submodels that combine Artificial Neural Networks

and Support Vector Machines for regression. It is noteworthy

that, although all the local models may have a similar

configuration, they are all different, as they were trained with

different datasets.
As future works, it is worth mentioning the possibility of

developing new intelligent models to predict the remaining

gaseous components of the producer gas. In addition, more

complex models could be developed by taking into account

other inputs, such as temperature, pressure or flow rates.

Thereby, the number of sensors installed in the experimental

facility could be reduced and fault detection could be per-

formed in any of them. Other future research works could be

conducted in an attempt to create detailed artificial intelli-

gence models of all the units that comprise the experimental

gasification plant. These last models could be used, among

other applications, for predictive maintenance of each unit or

for plant performance optimization.
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Nomenclature

AI Artificial Intelligence

ANN Artificial Neural Network

CHP Combined Heat and Power

DTR Decision Tree Regression

ECD Electron Capture Detector

HHV Higher Heating Value

k-NN k-Nearest Neighbors

LHV Lower Heating Value

LR Linear Regression

LS-SVR Least Square-Support Vector Regression

MAE Mean Absolute Error

MAPE Mean Percentage Absolute Error

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NDIR Nondispersive Infrared

NMSE Normalized Mean Squared Error

PEMFC Proton-Exchange Membrane Fuel Cell

SVMR Support Vector Machines for Regression

TCD Thermal Conductivity Detector
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