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A B S T R A C T   

Mussel farming is one of the most important aquaculture industries. The main risk to mussel farming is harmful 
algal blooms (HABs), which pose a risk to human consumption. In Galicia, the Spanish main producer of 
cultivated mussels, the opening and closing of the production areas is controlled by a monitoring program. In 
addition to the closures resulting from the presence of toxicity exceeding the legal threshold, in the absence of a 
confirmatory sampling and the existence of risk factors, precautionary closures may be applied. These decisions 
are made by experts without the support or formalisation of the experience on which they are based. Therefore, 
this work proposes a predictive model capable of supporting the application of precautionary closures. Achieving 
sensitivity, accuracy and kappa index values of 97.34%, 91.83% and 0.75 respectively, the kNN algorithm has 
provided the best results. This allows the creation of a system capable of helping in complex situations where 
forecast errors are more common.   

1. Introduction 

Global mussel production has steadily increased to 2.2 million tonnes 
in 2018, more than double the amount produced ten years ago (FAO, 2 
February 2022). Nearly 94% of global mussel production comes from 
aquaculture (Avdelas et al., 2021). Young mussels are harvested from 
the sea and may be grown on suspended ropes; these ropes, which are 
covered with mussel seed held in place with nylon nets, are suspended 
either from rafts, or wooden frames, or from longlines with floating 
plastic buoys. A substantial portion of EU production is farmed on sus
pended ropes, a technique that can be extended further offshore and 
which, although very sensitive to plankton blooms, is the only one that 
could allow further increases in production. 

One of the main risks of mussel farming is Harmful Algal Blooms 
(HABs). HABs are episodes of high concentrations of algae, including 
some cyanobacteria and microalgae that are potentially toxic for human 
consumption. This is because there is a risk of poisoning by consuming 
filter-feeding bivalve molluscs such as mussels that feed on these algae, 
accumulating the toxins in their meat. To monitor these episodes, there 
are programs set up in mussel production areas. For the early detection 
of high toxicity events, these monitoring programmes have fixed sam
pling points strategically located in the production areas. These high 

toxicity events can lead to a temporary suspension of mussel harvesting 
and marketing. The most common toxin-producing species are those of 
Diarrhoeic Shellfish Poisoning (DSP) type. The most abundant of which 
is the dinoflagellate Dinophysis acuminata) (Vilas et al., 2008). 

The opening and closing of the production areas is based on the 
analysis of the toxicity of the mollusc meat, as established by European 
legislation (UE6, 2019). Within the monitoring programme, sampling 
planning uses expert knowledge based on information on endogenous 
and exogenous factors influencing the proliferation of potentially toxic 
phytoplankton species. The most compromising point of this process is 
the absence of sampling during non-working days or when inclement 
weather does not allow it to be carried out. This leads to situations where 
it is impossible to collect the data to support an effective closure. If there 
are indications of a potential increase in toxicity levels, the competent 
authority is legally entitled to proceed with ’precautionary closures’ of 
bivalve mollusc production areas. 

Precautionary closures may become effective after a subsequent 
analysis verifying the presence of toxins, otherwise, the closure will be 
lifted. The application or non-application of these measures creates two 
possible problem scenarios. In the first scenario the precautionary 
closure is applied even though toxicity values above the legal threshold 
are not reached. This scenario could lead to economic losses for 
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producers because they are prohibited from working while the area 
remains closed. In the second scenario no indications of a high toxicity 
event are detected, but a subsequent analysis shows the presence of 
toxins. The latter is a much more dangerous situation than the previous 
one because, during this period of extraction activity, there is a potential 
risk of introducing contaminated shellfish into the market, with the 
consequent risk to public health. Today, the implementation of pre
cautionary closures is based on the experience of monitoring experts. 

The existence of a predictive model could help them make the right 
decisions in complex situations. 

Harmful algal blooms are not only a potential risk to public health, 
they are also a major problem for the production sector. Work such as 
that of Di Jin and Porter Hoagland (Jin and Hoagland, 2008) has shown 
that the development of predictive systems can lead to significant im
provements in management strategy and profits for the farming sector. 
So far, numerous studies have attempted such predictions around the 

Fig. 1. Schematic representation of the machine learning-based system for predicting harmful algal bloom closures and aiding decision making in mussel farming. 
This graphic has been designed with resources from Flaticon.com. 

Fig. 2. Map of the production areas of cultivated molluscs in the Vigo estuary. Source: http://193.144.46.136/EstadoZonas/Default.aspx?tmapa = 0.  
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world, notably off the coasts of South Korea (Lee and Lee, 2018), Hong 
Kong (Yu et al., 2021) and the Persian Gulf (Gholami et al., 2019), in 
general, these works have focused their efforts on predicting biomarkers 
such as the concentration of toxic phytoplankton in the water or 
chlorophyll-a (Deng et al., 2021; Liu et al., 2009).There are studies for 
the specific case of the Spanish coast (Velo-Suárez and Gutiérrez- 
Estrada, 2007) and specifically for the Galician coast (Vilas et al., 2014; 
Aguilar Calderon, 2017; Molares et al., 2020). For the creation of this 
type of predictive models, the use of different classical techniques has 
been compared with ML techniques to try to find the co-figuration that 
best suits this problem (Cruz et al., 2021; Liu et al., 2009). It was 
determined that ML techniques outperform classical methods.The suc
cess of applying machine learning techniques to harmful algal blooms 
lies in the selection of the relevant data and the pre-processing of the 
data. The proliferation of harmful algal blooms is influenced by many 

factors, the most important of which are: temperature, water flow, up
welling, light, nutrients and salinity. 

A higher water temperature favours algae proliferation, as well as 
thermocline stratification favours their concentration (Davis et al., 
2009). Excessive water flow and circulation disperses algae concentra
tions, reducing the occurrence of blooms (Li et al., 2013). The light is 
necessary for phytoplankton to photosynthesise (Paerl and Paul, 2012). 
Dissolved nutrients in the water create a favourable environment for 
algal growth (Paerl and Paul, 2012). The salinity plays an important role 
in the formation of phytoplankton communities (Gasinaite et al., 2005). 

The best results were obtained using the combined CNN and LSTM 
spatio-temporal classification technique to classify and discriminate 
between HAB and non-HAB events produced in Florida coastal waters by 
the algae Karenia brevis (Hill et al., 2020). But it is difficult to have such a 
large volume of data on a regular basis, and even impossible for many 

Fig. 3. Map of oceanographic stations located in the Vigo estuary. Source: http://www.intecmar.gal/Ctd/Default.aspx.  

Table 1 
Table of variables (2004–2018).  

Source Variable Number of locations Features generated Frequency 

INTECMAR Temperature 7 14 Weekly 
Salinity 7 7 Weekly 
Oxygen 7 7 Weekly 

Chlorophyll-a concentration 7 7 Weekly 
Dinophysis acuminata cells abundance 7 7 Weekly 

Dissolved ammonium 7 7 Weekly 
Dissolved phosphate 7 7 Weekly 

Dissolved nitrate 7 7 Weekly 
Dissolved nitrite 7 7 Weekly 

State of production areas 1 1 Daily 
METEOGALICIA Solar irradiation 1 1 Daily 

Sunshine hours 1 1 Daily 
Insolation 1 1 Daily 

IEO Upwelling index 1 1 Daily 
- Seasonality 1 1 Daily  
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regions. Therefore, we have studied the effect of sample size (Guallar 
et al., 2016) and modelling with feature reduction (Rahman and Shah
riar, 2013). 

As mentioned above, chlorophyll-a concentration is one of the most 
recurrent biomarkers of potentially toxic phytoplankton proliferation 
(Rahman and Shahriar, 2013). Chlorophyll-a is related to the concen
tration of phytoplankton containing this pigment, but not only biotoxin- 
producing phytoplankton contain it. Therefore, this biomarker may be 
in error when algal blooms are of non-harmful algae. On the other hand, 
if the objective is to close mussel production areas as a result of 
exceeding the legal threshold for the presence of biotoxins (Molares 
et al., 2020), this could lead to a significant improvement in the accu
racy of the prediction. 

For this reason, the objective of this study is the creation of a pre
dictive model of high toxicity events in mussel production areas. 
Consequently, the classification of mussel production areas will focus on 
whether the presence of lipophilic toxin in mussel flesh exceeds the legal 

threshold or not. To do this, a comparison of solutions will be carried 
out, applying different machine learning techniques to predict the state 
of production areas affected by DSP-type toxins. Taking into account 
previous studies carried out in the field (Cruz et al., 2021), a total of 6 
classification techniques were selected: Artificial Neural Network 
(ANN), Support Vector Machines (SVMs), k-Nearest Neighbour (kNN), 
XGBoost, Random Forest and Naïve Bayes. This model can be used by 
government agencies with responsibilities in the control of shellfish 
production areas and its use can be of benefit to the mussel industry and 
the consumer. A workflow of the proposed system can be seen in Fig. 1. 

The structure of this paper is defined as follows: It starts with a 
section on advances in the field of HAB prediction, and in particular in 
the use of ML techniques for this purpose. In Section 2 the techniques 
used as well as the configuration of the techniques used are presented. 
The results of these models can be found in Section 3 and will be 
interpreted in Section 4. Finally, in Sections 5 and 6 the conclusions 
obtained and the lines of future work are presented. 

Table 2 
Descriptive analysis of input features.  

Table 3 
Distribution of the status of production areas. Non-null sample values refer to samples in which there are no missing values.   

CangasF CangasG CangasH CangasC CangasD CangasE RedondelaA RedondelaB RedondelaC RedondelaD RedondelaE VigoA 

Samples 783 783 783 783 783 783 783 783 783 783 783 783 
Openings 52%

(405)
54%
(420)

59%
(459)

71%
(559)

71%
(555)

84%
(657)

90%
(704)

95%
(745)

96%
(749)

94%
(737)

90%
(703)

76%
(597)

Closures 48%
(378)

46%
(363)

41%
(324)

29%
(224)

29%
(228)

16%
(126)

10%
(79)

5%
(38)

4%
(34)

6%
(46)

10%
(80)

24%
(186)

Non-null samples 175 175 175 175 175 175 175 175 175 175 175 175 
Non-null openings 45%

(78)
46%
(81)

54%
(95)

65%
(113)

66%
(115)

80%
(140)

82%
(143)

90%
(158)

93%
(162)

89%
(155)

86%
(151)

68%
(119)

Non-null closures 55%
(97)

54%
(94)

46%
(80)

35%
(62)

34%
(60)

20%
(35)

18%
(32)

10%
(17)

7%
(13)

11%
(20)

14%
(24)

32%
(56)
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2. Materials and Methods 

2.1. Dataset and its construction 

The production status (open/closed) of the crop areas has been used 
as the target variable.This status of crop areas is assigned according to 

whether or not the presence of toxin in the mussel tissue exceeds the 
legal threshold. If the threshold is exceeded, extraction activities in that 
crop area will cease (closure of the crop area) or, if not, extraction ac
tivity will be allowed (opening of the crop area). It was decided to focus 
the study on predicting the state of the cultivation areas each Monday. 
This is because no toxin presence analysis is carried out on the previous 
days (Saturday and Sunday), which is one of the most compromised 
points of the existing monitoring system. Twelve out of thirteen mussel 
production areas of the Vigo estuary (Galician coast, Spain) have been 
selected: Cangas F, Cangas G, Cangas H, Cangas C, Cangas D, Cangas E, 
Vigo A, Redondela A, Redondela B, Redondela C, Redondela D and 
Redondela E (see Fig. 2)excluding from this study the production area of 
Baiona A because it is a polygon that remains unsampled for long pe
riods of time. As the areas are managed independently, and as input 
variables, we have used a set of environmental and oceanographic data 
of different nature, recorded by different institutions between 2004 and 
2018. The network of sampling points for phytoplankton monitoring 
coincides, to a large extent, with the stations set up to determine 
oceanographic conditions, Fig. 2. Weekly, an oceanographic vessel takes 
samples from points V1, V2, V3, V4, V5, V6 and V7, located in the Vigo 
estuary. Their distribution can be seen in the Fig. 3). In each sampling 
point, integrated samples of water between 0 and 15 metres deep to 
count phytoplankton cells and determine nutrients dissolved in water, 
were taken. Simultaneously, a multiparametric probe measures the 
physico-chemical parameters of the water column. The different vari
ables collected in these oceanographic stations, as well as other constant 
variables for the whole estuary obtained thanks to METEOGALICIA 
(met, 2021) and the IEO (IEO, April 27, 2021), are shown in the Table 1. 
All oceanographic stations have been taken into account in order to 
know which ones offer the data most related to the occurrence and 
concentration of HAB, as this depends directly on the functioning of 
factors such as the morphological configuration of the estuary itself or 
sea currents. By analysing the data collected, it is determined that the 
sampling frequency of the data collected is mainly weekly, so this metric 
will be used as a reference for the creation of the models. 

The pre-processing of the input data was as follows: 

• The weekly information on chlorophyll-a is collected in three sam
ples divided by depth bands: mean chlorophyll-a between 0 and 5 
metres, between 5 and 10 metres and between 10 and 15 metres. 
Since the presence of toxicity in mussel from any part of the culture 
rope means the total closure of the production area, the maximum 
value between the three depths was chosen. 

Fig. 4. Distribution of closure episodes caused by HAB in mussel production areas in the Vigo Estuary (2016). Source: http://www.intecmar.gal/Informacion/ 
biotoxinas/Evolucion/DiagramaBateas.aspx. 

Table 4 
Summary table of the models parameter values used in the grid search.  

General Settings  

Validation strategy 10-fold cross-validation 
Data normalisation Yes 
Artificial Neural Networks  
Number of input neurons Number of influencing factors 
Output neurons 1 
Number of hidden layers 1 and 2 
Number of neurons in a one hidden layer 

network 
2, 8 and 14 

Number of neurons in a two hidden 
layers network 

[10,10] and [10,20] 

Activation function output layer Sigmoid 
Hidden layers activation function Relu 
Optimizer Adam 
Learning rate 0,001 
Loss function Binary crossentropy 
Batch size 5 
Number of epochs 10 
Class weighting Yes 
Support Vector Machines  
Kernel type Lineal, Gaussian and Polynomial 
C value 1 
Gamma value (gaussian kernel) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 
Grade (polynomial kernel) 2 
XGBoost  
Gbtree  
Max depth 6 
Learning rate 0,3 
Dart  
Sample type uniform 
Normalise type forest 
Gblinear  
Updater coord_descent 
k-Nearest Neighbor  
k value 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 
Random Forest  
Number of trees 100, 500, 1000, 1500 and 2000 
Naïve Bayes  
Algorithm Gaussian, Multinomial, Complement 

and Bernoulli  
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Fig. 5. Summary table with the occurrence of the features after the feature selection processes. Where each point represents the likelihood of a variable being selected as an input feature for a particular production area.  
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• The count of Dynophysis acuminata is a single, weekly value, so in
formation from all available stations was used.  

• Nutrient data are collected on a weekly basis and there is only a 
single piece of data per station, so the count from each oceano
graphic station was used. 

• Environmental values, such as temperature and oxygen, were aver
aged to unify the information into a single measurement since the 
data are originally irregular measurements at depths between 0 and 
25 metres. Only values up to 12 metres were used for averaging, as 
this is the length of the mussel ropes. In addition, with the temper
ature and salinity values, a differential was made between the mean 
of the first 6 metres and that of the following 6 metres, in order to be 
able to detect the presence of stratifications, both thermoclines and 
haloclines.  

• The sun data, such as hours of incidence, insolation and irradiation, 
come from the Meteogalicia weather station, so the data are daily 
and common for the whole estuary. In order to simplify the input 
parameters, the weekly average of each of the parameters was 
calculated.  

• The upwelling index data are calculated on a daily basis over four 
time periods: 00:00 h, 06:00 h, 12:00 h and 18:00 h. In order to 
simplify the data, the weekly average value was used, thus esti
mating the predominant value throughout the week.  

• To simplify the seasonality into a single value, the date of sampling 
was transformed, using only the number of the week of the year.  

• The specific value of toxins in mussel flesh is a value for which no 
regular records are covering the whole casuistry in a robust way. 
Instead, it was concluded that it was possible to classify the status of 
production areas according to whether the growing area was closed 

or not. These closures are applied in case the level of toxicity in the 
mussel flesh exceeds the legal threshold. This information could be 
obtained by analysing INTECMAR’s historical record of closures 
(INTECMAR, 2 February 2022). 

The processing of the 15 years’ data resulted in an input dataset of 
783 samples. Each of the samples consists of 76 input features. For a 
more detailed analysis of the input parameters, see Table 2. 

This dataset had incomplete samples with missing data for some of 
the features, so it was necessary to eliminate those rows with such in
consistencies in their data. These samples with missing values were 
referred to as null samples. After this filtering, a resulting dataset of 175 
samples was left. The distribution in the labelling of the samples can be 
seen in the Table 3. As can be seen in this table, toxicity episodes are 
more common in the crop areas located in the outer part of the estuary, 
while their frequency decreases towards the inner parts of the estuary. 
Fig. 4 shows the behaviour of the HABs that occurred in 2016. An input 
dataset was created for each of the twelve crop zones; these matrices 
share 75 of the 76 input features, with the exception of the Friday 
opening or closing status of the zone to be estimated. 

2.2. Machine Learning Models 

Based on previous literature, a total of 6 machine learning techniques 
have been considered: Artificial Neural Networks, Support Vector Ma
chines, XGBoost, k-Nearest Neighbor, Random Forest and Naïve Bayes. 
These techniques will be tested in order to check which method is the 
most suitable for the approach proposed in this study. These well-known 
techniques will be briefly presented below. 

Fig. 6. Combination of recall, accuracy and kappa in the different production zones for each algorithm. The average values for each metric across all folds are shown. 
In each case, the best performing configurations are represented. 

A. Molares-Ulloa et al.                                                                                                                                                                                                                        



ComputersandElectronicsinAgriculture197(2022)106956

8

Fig. 7. Combination of recall, accuracy and kappa in the production zones for each algorithm. The average values for each metric across all folds are shown. In each case, the best performing configurations are 
represented. 1/2. 
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Fig. 8. Combination of recall, accuracy and kappa in the production zones for each algorithm. The average values for each metric across all folds are shown. In each case, the best performing configurations are 
represented. 2/2. 
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2.2.1. Artificial Neural Networks 
Artificial neural networks (ANNs) are massively parallel inter

connected networks of simple (usually adaptive) elements and hierar
chical organisation. Artificial neural networks are part of a data analysis 
technique that, compared to their more rigid and complicated alterna
tives, offers greater flexibility in processing large volumes of multivar
iate, non-linear data (White et al., 1992). 

2.2.2. Vector Support Machines 
The classification-regression method Support Vector Machines 

(SVM) was first proposed by Cortes and Vapnik in 1995 (Cortes and 
Vapnik, 1995), within the field of computer science. The machine 
conceptually implements the idea that input vectors are mapped non- 
linearly into a very high-dimensional feature space. A linear decision 
surface is constructed in this feature space. The special properties of the 
decision surface guarantee a high generalisation ability of the learning 
machine. 

2.2.3. XGBoost 
XGBoost or Extreme Gradient Boosting is an extensible, state-of-the- 

art application of gradient boosting machines and has been shown to 
overcome the limits of the computational power of Boosted tree algo
rithms. Boosting is an ensemble technique in which new models are 
added to correct errors in existing models. Models are added recursively 
until no noticeable improvement is found. Gradient boosting is an al
gorithm in which new models are created to predict the residuals of 
previous models and then added together to produce a final prediction. 
It uses a gradient descent algorithm to minimise losses when adding new 
models (Friedman, 2001). 

2.2.4. k-Nearest Neighbour 
The k-Nearest Neighbor (kNN) classifier is an unsupervised machine 

learning technique for classifying unlabeled observations by assigning 
them to the class of the most similar labelled examples. The features of 
the observations are collected for both training and test dataset. The 
most commonly used metric in the calculations is the Euclidean dis
tance. Another concept is the parameter k, which decides how many 
neighbours will be chosen for the kNN algorithm. The appropriate 
choice of k has a significant impact on the diagnostic performance of the 
kNN algorithm (Lantz, 2015). 

2.2.5. Random Forest 
Random Forest is an ensemble method, which builds many decision 

trees that will be used to rank a new instance based on the majority vote. 
Each node of the decision tree uses a subset of features randomly 
selected from the original set of features. In addition, each tree uses a 
different bootstrap data sample, in the same way as bagging. Bagging 
methods are almost always more accurate than single classifiers. On the 
other hand, boosting methods can be more accurate than bagging 
methods but are very sensitive to noise. Random Forest is more robust to 
noise than boosting methods; performs as well as boosting and some
times better; and does not overfit (Segal, 2004). 

2.2.6. Naïve Bayes 
Today, the Naïve Bayes classifier is used in many applications due to 

its simple but powerful principle of (Lewis, 1998) accuracy. Bayes’ 
theorem finds the probability of an event occurring given the probability 
that another event has already occurred. However, this classifier does 
not take into account the number of occurrences, which is a potentially 

Table 5 
Summary table of the first approach with the models defined as the best in each of the production zones.  

Approach 1      
Recall Accuracy Kappa 

Production 
zone 

Corelation filter 
cuartile 

Random Forest filter 
cuartile 

Algorithm Number of 
neighbors 

μ σ μ σ μ σ 

Cangas F - 50 kNN 2 100,00% 0,00% 91,38% 6,37% 0,79 0,14 
Cangas G 25 25 kNN 4 99,17% 2,50% 88,50% 7,23% 0,75 0,13 
Cangas H 75 75 kNN 2 99,50% 1,50% 91,98% 3,56% 0,83 0,08 
Cangas C 50 75 kNN 2 97,61% 2,97% 89,23% 3,64% 0,76 0,09 
Cangas D - - kNN 2 96,39% 7,86% 89,23% 6,79% 0,76 0,14 
Cangas E - - kNN 2 100,00% 0,00% 92,61% 5,02% 0,80 0,12 
Vigo A 50 75 kNN 2 96,32% 3,83% 88,70% 4,01% 0,73 0,09 

Redondela A - - kNN 2 100,00% 0,00% 93,93% 3,76% 0,83 0,11 
Redondela B - - kNN 2 90,83% 20,56% 90,83% 6,90% 0,64 0,27 
Redondela C 50 75 kNN 2 92,50% 16,01% 96,42% 1,92% 0,69 0,13 
Redondela D 50 75 kNN 2 93,67% 12,69% 93,69% 3,62% 0,65 0,19 
Redondela E 50 75 kNN 2 98,33% 5,00% 93,63% 5,15% 0,82 0,15 

Average  97,03% 6,08% 91,68% 4,83% 0,76 0,14  

Table 6 
Summary table of the second approach with the models defined as the best in each of the production zones.  

Approach 2      
Recall Accuracy Kappa 

Production 
zone 

Corelation filter 
cuartile 

Random Forest filter 
cuartile 

Algorithm Number of 
neighbors 

μ σ μ σ μ σ 

Cangas F - - kNN 2 100,00% 0,00% 88,10% 7,52% 0,75 0,15 
Cangas G 25 - kNN 2 99,09% 2,73% 87,73% 11,46% 0,74 0,21 
Cangas H 50 75 kNN 2 99,50% 1,50% 92,35% 3,54% 0,84 0,08 
Cangas C 50 75 kNN 2 97,61% 2,97% 89,98% 3,92% 0,77 0,09 
Cangas D 75 75 kNN 2 96,39% 2,58% 87,35% 3,91% 0,73 0,08 
Cangas E - - kNN 2 100,00% 0,00% 92,58% 5,09% 0,80 0,14 
Vigo A - 25 kNN 2 95,42% 10,28% 87,71% 6,93% 0,71 0,15 

Redondela A - - kNN 2 100,00% 0,00% 94,48% 3,36% 0,84 0,11 
Redondela B - 50 kNN 2 95,42% 10,28% 95,59% 3,20% 0,64 0,24 
Redondela C 50 75 kNN 2 92,50% 16,01% 96,60% 1,64% 0,69 0,12 
Redondela D 50 25 kNN 2 94,67% 11,08% 95,39% 2,57% 0,73 0,14 
Redondela E - - kNN 2 97,50% 7,50% 94,03% 4,43% 0,80 0,16 

Average  97,34% 5,41% 91,83% 4,80% 0,75 0,14  
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useful source of additional information. They are called “naïve” because 
the algorithm assumes that all terms occur independently of each other. 

2.3. Performance mesuares 

For the analysis of the trained models and their subsequent com
parison, 6 statistics were taken into account that were considered rele
vant when assessing the results (average accuracy, average sensitivity, 
average kappa coefficient, minimum accuracy, minimum sensitivity and 
minimum kappa coefficient). In the confusion matrix used to calculate 
the statistics, closures were defined as positive and openings as negative. 
Thus, True Positives (TP) correspond to those closures correctly classi
fied as closures, True Negatives (TN) identify openings classified as such, 
False Positives (FP) represent those openings wrongly classified as clo
sures and, finally, False Negatives (FN) are those closures that have been 
classified as openings. 

Calculated according to Eq. (1) accuracy estimates how correctly a 
binary classification test identifies or excludes a condition. As this is a 
binary classification paper, this parameter is considered relevant. 

TP + TN
TP + FP + FN + TN

(1)  

Not performing a closure when the toxin is present in the mussel poses a 
higher risk, prioritising the human factor over the economic one. 
Sensitivity (Eq. (2)) prioritises avoiding misclassifying closures as 
openings. Sensitivity was therefore the benchmark statistic in this study. 

TP
TP + FN

(2)  

Cohen’s kappa coefficient, calculated according to Eq. (3), is a statistical 
measure that adjusts for the effect of chance on the proportion of 
observed agreement between two experts. In this equation, Pr(a) rep
resents the relative observed agreement between the observers, while 
Pr(e) is the hypothetical probability of agreement by chance. In this 
study, the model outputs were compared with the labelling performed 
by the experts to analyse the effect of chance on the models. 

K =
Pr(a) − Pr(e)

1 − Pr(e)
(3)  

The criteria taken into account when selecting the best models were the 
values explained above (accuracy, sensitivity and kappa coefficient), as 
well as the number of features used to make the prediction. A smaller 
number of input variables would make it easier to make predictions, 
even on days when certain data are missing. Sensitivity is the most 
important factor to be taken into account due to the absolute priority of 
minimising false negatives (as they pose a risk to public health). 

2.4. Experimentation setup 

By using the strategy of K-folds strategy, specifically 10-fold, yields 
10 values of each statistic. The K-fold cross-validation procedure 
randomly divides a dataset into k disjoint blocks of approximately equal 
size, and each block is in turn used to test the model induced from the 
other k −1 blocks by a classification algorithm. The performance of the 
classification algorithm is evaluated by the average of the k-precisions 
resulting from the cross-validation of k-blocks. This method avoids 
choosing models with good averages but which perform poorly on 
certain training blocks, thus ensuring the robustness of the models. The 
minimum values of the statistics explained above are also taken into 
account. 

Significance analysis was deemed necessary to ensure the robustness 
of the classification. First, a normality analysis was performed, to ensure 
that a parametric test can be performed (Sheskin, 2003). When the 
sample size is at most 50, normality can be tested with the Shapiro–Wilk 
test test. The Anderson–Darling statistic measures how well the data 

follow a specific distribution. For a particular data set and distribution, 
the better the distribution fits the data, the lower this statistic will be. 
Both the Shapiro–Wilk test and the Anderson–Darling test showed that 
the sensitivity data for all areas are normal. ANOVA analysis allows 
multiple means to be compared by studying variances. This was fol
lowed by pairwise comparison, in the specific case of this project, with 
the Tukey–Kramer test. The significance was estimated according to 
Copenhaver-Holland (Copenhaver and Holland, 1988). 

For this study two sets of features were used: one with all 76 input 
features and another one where the most redundant features were 
filtered out. In order to do this, a correlation analysis was carried out 
between the features, and those with a correlation of more than 90% 
between them were eliminated. This was an empirical approach in 
which preliminary tests were carried out to eliminate only those vari
ables that really had a very close relationship and leave it to a more 
purely objective process such as a ranking system to use or assign 
importance to each. Through this process, influential factors have been 
sought in less common variables. In this second approach, the 76 input 
features were reduced to 50. 

Then, in each approach, starting from the raw data, a feature selec
tion process was conducted. This has several advantages. Firstly, we 
make our model easier to interpret. Secondly, we can reduce the vari
ance of the model and thus the overfitting. Finally, we can reduce the 
computational cost (and time) of training a model. To carry out the 
feature selection process, the features were ordered using a ranking 
process. Two ranking techniques were used for this process:  

• Applying a filtering method such as correlation with the variable to 
be forecast. Using the statistical value to rank order the features, 
three sets of tests were proposed: one with 25% of the best ranking 
features, one with 50% and the last one with 75%.  

• Use of an embedded method such as the Random Forest algorithm. 
The tree-based strategies used by Random Forest are naturally 
ranked according to how they improve node purity. This means a 
decrease in impurity over all trees (called Gini impurity). Nodes with 
the highest decrease in impurity occur at the beginning of the trees, 
while notes with the lowest decrease in impurity occur at the end of 
the trees. Thus, by pruning the trees below a particular node, we can 
create a subset of the most important features. After applying this 
ranking, three sets of tests were proposed: one with 25% of the best 
ranking features, one with 50% and the last one with 75%. 

Different experiments have been defined based on the application of 
one, both or none of the ranking methods mentioned above. To ensure 
the reliability of the results, the tests were carried out with a cross- 
validation strategy of 10-fold. In order to determine the configuration 
of the best performing models, a grid search was performed and the 
parameter values of the models used in the training were adjusted as 
shown in the Table 4. 

3. Results 

During the feature selection process, the combined Pearson Corre
lation and Random Forest techniques were applied. Thanks to this, it 
was possible to extract the importance that these methods give to the 
features for the classification process. Fig. 5 shows a summary of the 
behaviour of these methods throughout the production zones, reflecting 
the percentage of persistence of each variable after the selection pro
cesses. It can be seen that the state of the production zone in the week 
before the prediction day is the most important characteristic, followed 
by the concentration of D. accuminata and the concentration of dissolved 
nutrients such as nitrate and nitrite. For each of the production zones, a 
more detailed overview of the feature selection process can be found in 
Tables 7–18. These tables show how the data collected at each ocean
ographic station have a different effect on nearby areas. This is due to 
how marine currents affect the estuary and how certain stations gain 
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importance over others concerning each production area. 
By applying each of the 6 machine learning techniques to the 12 

production zones independently, it has been possible to observe the 
comparative solutions offered by each of these methodologies. In Fig. 6 
the values of sensitivity, accuracy and kappa obtained by the best 
models trained with each algorithm and for each production zone can be 
seen. Algorithms such as kNN or NB obtain more stable results for all the 
zones, while algorithms such as SVM, RF and XG, although they show 
certain stability in the values of accuracy, show great variability in the 
sensitivity values depending on the production zone. The ANN algo
rithm is presented as the algorithm with the greatest variability in its 
results. 

For a detailed analysis of how the algorithms behave in each of the 
production zones, please refer to the Figs. 7 and 8. In these graphs it can 
be seen that the models perform better in the production areas of Cangas 
F, Cangas G, Cangas H and Redondela A. While the areas where the 
models have more difficulties in making predictions are: Redondela B, 
Redondela C and Redondela D. 

The models defined as the best in each of the production zones 
during the first approach are shown on Table 5 and those of the second 
approach on Table 6. These tables show the sensitivity, accuracy and 
kappa values. When applying the ten-folds strategy, it is necessary to 
show the results as the tuple of mean value and standard deviation of the 
values obtained in each fold. 

4. Discussion 

The study of the predictor variables for ML models in the prediction 
of HAB episodes has been one of the most critical points raised in the 
literature. To date, there is still no consensus on which are the most 
influential features, varying considerably depending on the geograph
ical region where it is applied and the ML techniques studied. 
Chlorophyll-a concentration is one of the most relevant features (Deng 
et al., 2021; Yu et al., 2021), as it is directly related to phytoplankton 
abundance, but in this study, it has been clearly surpassed by the con
centration of D. accuminata. This is due to the fact that this marker is 
more accurate when estimating the lipophilic toxin, this dinoflagellate 
being one of its main producers. It is also necessary to highlight the 
importance of nutrients such as nitrate and nitrite (Yu et al., 2021) and 
environmental factors such as temperature and salinity (Yñiguez and 
Ottong, 2020). 

The results offered by the kNN machine learning algorithm have 
been the best for the problem analysed in this work, which is the crea
tion of a predictive model of high toxicity events in mussel production 
areas (reaching mean sensitivity, mean accuracy and mean kappa index 
values of 97.34%, 91.83% and 0.75 respectively). Its best values of 
sensitivity, accuracy and kappa have been higher than those obtained 
with Random forest, ANN, SVM, Naïve Bayes and XGBoost techniques 
(see Fig. 6). It should be noted that the average kappa value obtained 
(0.75) has a substantial degree of agreement according to the scale of 
values proposed by Landis and Koch (Landis and Koch, 1977). 

In the Fig. 5, it can be seen how the SVM, ANN, Random Forest and 
XGBoost algorithms are more susceptible than kNN and Naïve Bayes to 
the frequency and duration of mussel harvesting prohibition periods in 
the production areas. This relationship can be seen in the decrease of the 
sensitivity values in the areas where these periods are less common 
(Redondela B, Redondela C and Redondela D), while the values of ac
curacy remain stable. It is necessary to highlight how the performance of 
the ANNs tends to offer high values of accuracy and low values of 
sensitivity for the areas where the state of prohibition of extraction is 
less common, while in the areas where the number of days of prohibition 
increases (Cangas F and Cangas G), the model offers an improvement in 
the values of sensitivity to the detriment of accuracy. 

These results reflect the imbalance present in the input data which, 
in areas such as Redondela C, reach a difference of 7% of positives 
compared to 93% of negatives. Therefore, areas such as Cangas F, 

Cangas G and Cangas H, which have a distribution of closures of around 
60–40%, always obtain better results than areas where FAN is less 
frequent and where there are fewer cases for the analysis of this study, 
such as Redondela B, Redondela C and Redondela D, which have a ratio 
of closures of around 10%. 

5. Conclusions 

Although the work carried out to date has obtained good results in 
predicting biomarkers of FAN, the control of the state of the production 
areas is conditioned by other external factors, which means that the 
definition of the problem changes. Some work has used real-time pre
diction of shellfish and fish mortality events as HAB markers (Yñiguez 
and Ottong, 2020). But real-time prediction does not provide reaction 
time to these events. However, in this study we have achieved 3-day 
predictions while maintaining good results. For this we have used the 
presence of a toxin level above the risk threshold as a HAB marker. In the 
Galician coast, some previous works seek to solve this problem (Molares 
et al., 2020), achieving sensitivity and accuracy values of 67.4% and 
83% in the production area of “Vigo A” by applying the ANN technique, 
while in the present work a significant improvement in the results has 
been achieved. 

The approach of the study has shown that it is possible to estimate 
the status of production areas affected by marine biotoxin events using 
machine learning techniques. For this purpose, an extensive historical 
record of variables related to the occurrence of episodes of high toxicity 
in mussels has been used. The estimates obtained with the models 
studied have achieved high values of sensitivity and accuracy, so that 
the expectations initially set out in this study have been met. It has been 
found that the machine learning algorithm that offers the best results for 
the resolution of this specific problem in all the production areas of the 
estuary is the kNN technique. Its best sensitivity and accuracy values 
have been superior to those obtained with the techniques of Random 
forest, ANN, SVM, Naïve Bayes and XGBoost. 

The models developed during the study can be used to assess the 
robustness of the decisions taken by experts when managing the opening 
or closure of production areas in the absence of recent sampling. This 
dual assessment mechanism can help experts in complex situations 
where forecast errors are more likely. 

6. Future Works 

In this work, 6 different machine learning algorithms were studied to 
solve the problem. It is proposed to compare the results obtained with 
other alternative algorithms that can approach the problem from 
another perspective, such as hybrid machine learning algorithms 
(Behera et al., 2016). 

The study has focused only on the Vigo estuary, as it is one of the 
most important Galician estuaries for the production of mussels, and 
because of its geomorphological characteristics that give it a behaviour 
in the distribution and evolution of algal blooms of great scientific in
terest. However, the study is continuing with the aim of supporting the 
rest of the Galician estuaries with mussel production. 

In this study, variables identified as relevant in the state of the art 
have been selected. However, other new variables (e.g. wind, currents, 
other toxic phytoplankton species, etc.) could be considered as input 
parameters in the training of machine learning algorithms. 

One of the limiting factors in conducting this study has been the 
amount of missing data from the time series used as data sets. It is 
therefore considered that the creation of a system capable of obtaining 
or generating (synthetic data (Chen et al., 2021)) such data could lead to 
a significant improvement in the results obtained. 
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Appendix A 

Tables 7–18 

Table 7 
Table with the input features associated with each test block in the Cangas F zone. The check marks when the feature was used.  
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Table 8 
Table with the input features associated with each test block in the Cangas G zone. The check marks when the feature was 
used.  
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Table 9 
Table with the input features associated with each test block in the Cangas H zone. The check marks when the feature 
was used.  
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Table 10 
Table with the input features associated with each test block in the Cangas C zone. The check marks when the feature was used.  
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Table 11 
Table with the input features associated with each test block in the Cangas D zone. The check marks when the feature was 
used.  
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Table 12 
Table with the input features associated with each test block in the Cangas E zone. The check marks when the feature 
was used.  
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Table 13 
Table with the input features associated with each test block in the Redondela A zone. The check marks when the 
feature was used.  
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Table 14 
Table with the input features associated with each test block in the Redondela B zone. The check marks when the feature 
was used.  

A. Molares-Ulloa et al.                                                                                                                                                                                                                        



Computers and Electronics in Agriculture 197 (2022) 106956

21

Table 15 
Table with the input features associated with each test block in the Redondela C zone. The check marks when the feature was used.  

A. Molares-Ulloa et al.                                                                                                                                                                                                                        



Computers and Electronics in Agriculture 197 (2022) 106956

22

Table 16 
Table with the input features associated with each test block in the Redondela D zone. The check marks when the 
feature was used.  
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Table 17 
Table with the input features associated with each test block in the Redondela E zone. The check marks when the feature 
was used.  
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Blázquez, B., Rodríguez, J.L., Pazó, J., Otero, J.J., Ángel Guerra, Lens, S., Rocha, F., 
Rodríguez, M.X.V., Blanco, A.P., 2008. La ría de vigo: una aproximación integral al 
ecosistema marino de la ría de vigo, URL: http://hdl.handle.net/10261/170032. 

Vilas, L.G., Spyrakos, E., Palenzuela, J.M.T., Pazos, Y., 2014. Support vector machine- 
based method for predicting pseudo-nitzschia spp. blooms in coastal waters (galician 
rias, nw spain). Prog. Oceanogr. 124. https://doi.org/10.1016/j. 
pocean.2014.03.003. 

White, H., et al., 1992. Artificial neural networks. Blackwell Cambridge, Mass.  
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