
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2022) 23:225–252
https://doi.org/10.1007/s10710-022-09427-x

1 3

Evolving cellular automata schemes for protein folding
modeling using the Rosetta atomic representation

Daniel Varela1,2 · José Santos3 

Received: 10 June 2021 / Revised: 24 November 2021 / Accepted: 31 December 2021 /
Published online: 16 January 2022
© The Author(s) 2022

Abstract
Protein folding is the dynamic process by which a protein folds into its final native
structure. This is different to the traditional problem of the prediction of the final
protein structure, since it requires a modeling of how protein components interact
over time to obtain the final folded structure. In this study we test whether a model
of the folding process can be obtained exclusively through machine learning. To this
end, protein folding is considered as an emergent process and the cellular automata
tool is used to model the folding process. A neural cellular automaton is defined,
using a connectionist model that acts as a cellular automaton through the protein
chain to define the dynamic folding. Differential evolution is used to automatically
obtain the optimized neural cellular automata that provide protein folding. We tested
the methods with the Rosetta coarse-grained atomic model of protein representation,
using different proteins to analyze the modeling of folding and the structure refine-
ment that the modeling can provide, showing the potential advantages that such
methods offer, but also difficulties that arise.

Keywords  Protein folding · Neural cellular automata · Differential evolution

Area Editor: James A. Foster

 *	 José Santos
	 jose.santos@udc.es

	 Daniel Varela
	 daniel.varela@biochemistry.lu.se

1	 Department of Biochemistry and Structural Biology, University of Lund, Lund, Sweden
2	 Department of Computer Science and Information Technologies, University of A Coruña,

A Coruña, Spain
3	 CITIC (Centre for Information and Communications Technology Research), Department

of Computer Science and Information Technologies, University of A Coruña, A Coruña, Spain

http://orcid.org/0000-0002-4212-1367
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-022-09427-x&domain=pdf

226	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

1  Introduction

A protein reaches its native and functional structure through the dynamic physical
process of protein folding, which is the result of physical and chemical interac-
tions over time between the protein amino acids. However, existing research into
the use of computational approaches for protein structure has focused on predict-
ing the final folded structure, this because the final native structure is related to
the function of the protein.

Computational Protein Structure Prediction (PSP) is necessary to reduce
the increasing “sequence/structure gap” between the number of proteins with a
known sequence (order of millions [40]) and the number of proteins whose struc-
ture is already resolved (more than 177,000 in 2021 [26]). Protein structures pub-
licly available in the Protein Data Bank (PDB) [26] are the result of laborious,
expensive and time-consuming methods such as X-ray crystallography (in which
protein samples have to be crystalized) and Nuclear Magnetic Resonance (NMR)
(in which protein samples are in solution) [16]. Even with the rapid increase in
structures resolved with the latest cryo-electron microscopy technique (protein
samples are frozen using liquid nitrogen) [3], to reduce the gap, the computa-
tional prediction of the protein structure is required. With computational predic-
tion, there are methods that rely on known resolved proteins, such as prediction
based on the homology between the sequences of the target protein and those
of proteins with a known structure, and threading methods that seek to fit a tar-
get sequence into a library of resolved structures [38]. At the other end of the
range of PSP computational approaches, the “ab initio” prediction is the most
challenging, since it relies only on the protein’s primary structure (its amino acid
sequence). This ab initio prediction relies on the thermodynamic hypothesis that
states that the protein structure with the lowest Gibbs free energy corresponds to
the native structure, and that the native conformation is determined solely using
the information of the amino acid sequence (Anfinsen’s dogma) [1].

Given a protein representation model and an energy model associated with
protein conformations, the ab initio approach becomes a means of identifying
the conformation that minimizes energy. Hence, there has been intense research
on the use of search methods for the ab initio PSP, especially with the use of
metaheuristics from the field of natural computation, and in particular evolution-
ary algorithms, with simplified lattice models of protein representation [19, 31,
39, 42, 46] (mentioning just a few) as well as with off-lattice atomic models [9,
24]. The prediction of the final native structure enables the practical applica-
tion of drug search (which only requires the final folded structure). However, the
objective of the present study is not PSP itself. We also need to know how pro-
teins fold dynamically. From a biological point of view, knowledge of how pro-
teins fold is necessary to understand, for example, protein misfolding that can be
involved in serious diseases. On the other hand, we want to know if it is possible,
from a machine learning perspective, to obtain a folding model without resorting
to a priori decisions of the designer, that is, by learning exclusively from avail-
able data, which indeed is the motivation of the present study. Such a folding

227

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

model could be used, for instance, for the refinement of protein conformations
(e.g., conformations predicted with PSP methods), hence obtaining structures
closer to the real native structure.

Levinthal’s paradox [18] states that is not possible for a protein to reach its native
structure by means of a random search of the enormous number of possible struc-
tures. Nevertheless, proteins can spontaneously fold into their native conformations
on short timescales (these generally of the order of milliseconds or seconds). In fact,
as Kmiecik et al. [13] claim, the number of possible conformations is drastically
reduced due to preferences of secondary structure and other geometric characteris-
tics of the amino acid chains, facilitating relatively fast folding to folded structures.

In protein folding modeling, the traditional approach is the use of molecular
dynamics simulations [25], which attempt to capture the main atom interactions in
order to define a force field and thus to derive the moves of atoms based on New-
ton’s equations. The problem with these approaches is that those force field poten-
tials are non-exact. As Englander and Mayne [6] note, “The forces that direct protein
folding are delicately balanced, inter-locking, and not describable in exact terms”.
Consequently, errors are progressively propagated in the high-time consuming simu-
lations of very short moves. Furthermore, and as also observed by Kmiecik et al.
[13], even using a supercomputer dedicated to simulations of atomic interactions in
molecular dynamics, it is only possible to simulate the folding process with short
proteins. For example, a typical simulation of a system size of about 105-106 atoms
for a simulation of several nanoseconds will likely require 106-107 time steps and
will take several days of computing time in a workstation/cluster [25].

Apart from molecular dynamics simulations, there are few studies that have
experimented with modeling the temporal folding process, rather than looking
directly for the final folded conformation. For example, Krasnogor et al. [14], using
a simple lattice scheme of protein representation, explored the use of tools such as
Lindenmayer systems and Cellular Automata (CA)1 to see whether these models
could provide the transitions to obtain a native folded structure. However, in this
initial study with CA there was no connection between the amino acid nature of the
primary structure and the CA rules, and thus their study [14] only focused on testing
the possibility of using (evolved) CA rules to provide final folded structures.

Calabretta et al. [2] modeled the temporal process evolving matrices of folding
potentials between amino acids, where each element of the matrix determines the
force of repulsion or attraction between amino acids at a given distance (100 Å).
When the matrix is evolved, the fitness function considers the difference (in the
rotation angles in the backbone chain) of the final folded structure relative to the
actual native structure. The authors only tested the method using a short fragment
(13 amino acids) of the protein crambin, which generates an alpha-helix as in the
native structure.

Danks et al. [4] presented a Lindenmayer system to provide the folding. The
L-system establishes an association between amino acid states and Secondary Struc-
ture Elements (SSEs) of the chain. The (stochastic) rules of the L-system alter the

1  The acronym CA will be used for both Cellular Automata and Cellular Automaton

228	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

state of an amino acid depending on its own amino acid type and on neighboring
amino acid types (on both sides of the protein chain). Using typical torsion angles
of the backbone chain in the seven secondary structure elements considered, it is
possible to rebuild the structure of a protein in each application of the L-system
rules. Using four proteins, corresponding to each major structural class, the authors
showed that a preference for local structure can emerge for some amino acids in the
protein chain.

Unlike molecular dynamics simulations, in the present study we will consider
how to obtain a model of the folding process automatically using machine learning,
a model that can also be easily adapted to different conformational representations
of proteins. For example, our previous work on the line of protein folding modeling
focused on the use of lattice models of protein representation, such as the HP model
[32–34] and the Face-Centered Cubic (FCC) lattice model [43]. In these studies
[32–34, 43] the CA models overcome the problem previously discussed in Kras-
nogor et al.’s study [14], as there is now a connection between the CA scheme and
the specific amino acids of the primary structure to which the CA rules are applied.
The modeling of folding performed in lattice models can be extended to atomic
models, where new possibilities and difficulties appear, which is the main objective
addressed in the present paper.

Moreover, protein folding is considered here as an emergent process, the result
of the emergent consequence of the interactions of protein components over time.
Therefore, the process can be modeled with traditional tools used in Artificial Life
to model the emergent property, classical tools such as cellular automata [11]. Con-
sequently, we used the traditional CA scheme to model changes in the dihedral
angles of the atomic protein conformation, applying an optimized cellular automa-
ton sequentially and iteratively through several time iterations to decide the changes
in the dihedral angles of the amino acid sequence. The coarse-grained protein repre-
sentation model of the Rosetta system [29, 30] (one of the most successful software
packages in PSP) was used in the CA-based folding modeling. However, instead of
traditional CA rules that specify the next state of a grid element based on its previ-
ous state and the state of the neighboring elements, a simple Artificial Neural Net-
work (ANN) was used to implement the rule set, which is why we refer to these
ANNs as “neural cellular automata”. These neural-CA are optimized by an Evo-
lutionary Algorithm (EA) (Differential Evolution - DE [27]) in order to obtain the
final folded structure. Preliminary results with the atomic model are given in [41],
while the present study describes in more detail the extension of the methods to
the atomic model, as well as discussing results with different proteins. Specifically,
we will describe, for the first time, the protein structure refinement that optimized
ANNs can provide, also considering different options to evolve the neural-CA mod-
els. An analysis of the results to provide folding with different starting conforma-
tions is also included. All these novel aspects allow us to show the possibilities and
problems that appear in the folding modeling when the Rosetta atomic scheme is
used.

The remainder of the article is structured as follows. Section 2 details the meth-
ods used for the folding modeling, with a brief introduction to the main Rosetta
concepts used in its ab initio PSP protocol, such as its protein energy and protein

229

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

representation models. These Rosetta concepts are used in our folding modeling.
Section 2 also details the neural-CA modeling of the folding process, as well as the
evolutionary algorithm (DE) used to automatically obtain the models based on neu-
ral-CA that provide the folding. Section 3 describes the experiments and results per-
formed with different proteins in this modeling, detailing the main aspects related to
energy transitions and conformational refinement in the modeling. Finally, Section 4
provides a discussion of the main conclusions that can be drawn from the experi-
ments and the methods employed.

2 � Methods

This section summarizes the methods used to model the folding process. All the
software of the defined methods can be downloaded from [37].

2.1 � Basic aspects of Rosetta

Two protein representations are used by the Rosetta system: coarse-grained and all-
atom. The coarse-grained models group atoms into beads and assign an energy func-
tion between the beads in order to reproduce some properties of the protein structure
[23]. In Rosetta, its low-resolution coarse-grained representation only considers the
main backbone atoms (with their dihedral angles), whereas the side chains are repre-
sented by a pseudo-atom located at their center of mass (Fig. 1). Therefore, protein
conformations are defined in the space of dihedral angles, with three degrees of free-
dom ( � , � and � ) in each amino acid of the protein chain. Rotation Chi angles for
side chains are also considered in the all-atom representation. Other degrees of free-
dom are set to fixed, “ideal” values (e.g., all bond lengths and angles are fixed) [13].

For protein structure prediction, the Rosetta ab initio protocol [29, 30], with
the low-resolution protein representation, employs a search technique in which
a Monte Carlo procedure decides if the dihedral angles of small protein frag-
ments can replace the original ones [12, 29]. A protein fragment is a group of
consecutive amino acids of a resolved protein. Those fragments are drawn from

Fig. 1   Rosetta’s low-level coarse-grained protein representation. This only considers the main backbone
atoms, while pseudo-atoms represent the lateral residues. The three dihedral angles between the main
amino acid atoms, � (between atoms of the peptide bond), � and � , encode each protein conformation

230	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

experimentally determined structures (a non-redundant set of proteins). The frag-
ments are selected taking into account their sequence similarity with respect to
the window of consecutive residues in the target protein into which the fragments
will be inserted. This position for fragment insertion into the target is randomly
chosen. Rosetta uses fragment regions 9 and 3 residues long. These fragments are
extracted for each position on the target, a process that is prior to the ab initio run
and that generates a library of fragments (particular for each target protein). Typi-
cally, the fragment libraries used in Rosetta contain about 200 fragments for each
amino acid position of the protein.

The decision as to whether the dihedral angles of a selected fragment replace
those of the target protein is based on the Metropolis criterion [20]. This criterion
always accepts changes that improve energy (lower values), while occasionally
it accepts dihedral angle changes that worsen energy (energy increase), with the
probability of accepting the fragment depending on the energy increase relative
to the previous state in the target protein. This probability is given by exp(−�E

kT
) ,

where k is the Boltzmann constant and T a temperature parameter (the fixed value
T = 2 is used, but with the possibility of temperature re-heating). This procedure
helps the search for protein conformations with the fragment substitution tech-
nique to escape local minima.

Regarding the energy model, Rosetta uses knowledge-based and physics energy
terms [17]. Knowledge-based potentials imply empirical terms obtained from a
statistical analysis of the structures already resolved in PDB [26]. The interest-
ing property is that these knowledge-based terms require less computational time.
Physics-based energy terms [10] are based on bond lengths and angles, torsion
angles, electrostatic and van der Waals interactions.

In Rosetta, a protein conformation has an associated energy, defined as a lin-
ear weighted combination of such energy components that model the molecular
forces acting between the amino acid atoms of that conformation. These scoring
terms are, in most cases, knowledge-based.

In the Rosetta energy model, steric overlap between the atoms of the backbone
and the side-chain is penalized, while van der Waals interactions are modeled
with a Lennard-Jones potential [29]. Other Rosetta’s energy terms correspond

Table 1   Coarse-grained
Rosetta’s energy terms env Residue environment (solvation)

Pair Residue pair interactions (electrostatics, disulfides)
ss_pair Strand pairing (hydrogen bonding)
Sheet Strand arrangement into sheets
hs_pair Helix-strand packing
rsigma Strand pairing based on distance/register
rg Radius of gyration (van der Waals attraction; solvation)
cenpack Packing density
cbeta C� density (solvation; correction for excluded volume

effect introduced by simulation)
vdw Steric repulsion

231

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

to electrostatics effects and solvation, hydrogen bonding, repulsion and scores
related to secondary structure (e.g., helix-strand packing and strand pairing).

Table 1 shows a very brief definition of each energy term, while the detailed
definition of the energy terms can be found, for example, in [29], and the weight
sets for the individual energy terms for the definition of every Rosetta score are
detailed in [30]. The Rosetta score function called score3 is the one that inte-
grates all the energy components. Nevertheless, the weight set is changed accord-
ing to the stage of the Rosetta ab initio protocol (Table 2).

A problem that must be taken into consideration is that, as is well-known,
Rosetta’s knowledge-based energy model is inaccurate since the native conforma-
tion is not necessarily located in the minimum of energy. For example, Shmygel-
ska and Levitt [36] show deficiencies in the energy function corresponding to the
low-resolution protein representation of Rosetta, since the structures with lower
energy do not have to correspond with the most native-like.

In search of protein conformations with minimal energy, the Metropolis Monte
Carlo procedure is run many times. For this purpose, the ab initio protocol is
divided into four stages (as detailed in Table 2). Rosetta uses the protein coarse-
grained representation and its fragment insertion technique (with the Metropolis
criterion [20]) throughout these four stages, to generate new structural conforma-
tions. Table 2 includes a brief summary of each stage with the most important
details.

Moreover, the number of fragment insertions attempts at each stage can be
changed with the parameter increase_cycles, which multiplies to the default values
of insertion cycles in the four stages of the ab initio procedure. Since the Metropolis
Monte Carlo process is stochastic, the 4-stage ab initio protocol is run thousands
of times. The final conformations (“decoys”) in this ab initio protocol (a clustering
process can be applied to decipher the most representative decoy set), can be refined
in a second “Ab initio relax” procedure that uses the full Rosetta’s atomic model,

Table 2   Stages of Rosetta ab initio protocol

Stage 1 Starting from a fully extended conformation, this stage inserts 9-mer fragments until all the
backbone dihedral angles are modified at least once and considering a maximum of 2,000
cycles (fragment insertion attempts). During this stage, the energy function (called score0)
only takes into account the steric-clash term to avoid overlap between backbone atoms and
the centroids of lateral residues.

Stage 2 Stage2 employs 9-mer fragment insertions over 2,000 cycles, but uses a more complex score
function, score1, which adds specific pair interactions and hydrophobic burial terms, along
with scores of secondary structure.

Stage 3 The third Rosetta stage runs 10 iterations of 2,000 cycles of fragment (9-mer) insertion
attempts. Rosetta combines in this stage two score functions, score2 and score5. These
functions focus on secondary structure terms and compactness. A convergence check deter-
mines the structural similarity of the current conformation with respect to a reference one
regularly updated. If there is not enough structural variation after 100 fragment insertions
are accepted, stage 3 ends.

Stage 4 The final Rosetta stage employs 3-mer fragment insertions over 12,000 cycles, split into 3
iterations of 4,000 cycles for each one. In this stage, score3 (which considers all energy
components) is used.

232	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

process that performs the reconstruction of the protein side chain with an all-atom
energy minimization.

2.2 � Neural cellular automata

Since protein folding is considered an emergent process, a cellular automaton
scheme is used to model the process. The idea is that the CA scheme provides the
conformation changes of the protein over time to obtain a final folded structure
corresponding to the native structure. As in classical CA, where the CA rules are
applied to define the next state of each element in a grid-like environment and over
time iterations, now the CA scheme that provides the folding will be applied over
several time iterations to all the elements of the protein chain (dihedral angles of
amino acids). The difference is that the CA scheme is now implemented with a feed-
forward ANN and, therefore, we define it as a neural-CA model. This ANN must
provide changes that correspond to continuous values of the dihedral angles of the
protein’s coarse-grained representation [30]. The second difference is that the neural
cellular automaton model will receive the input information from the conformational
energy space, rather than the spatial surroundings of the element (neighbor states) to
which the classical CA rule set model is applied. The next subsection explains how
this ANN model is obtained by means of an evolutionary algorithm.

The neural-CA process can be summarized as follows: With the coarse-grained
representation model, the neural cellular automaton is applied sequentially to the
dihedral angles of all the amino acids. However, the neural-CA can only change the
angles � and � , since the third dihedral angle of the amino acid ( � ) remains fixed
( 180◦ ), because this angle of the peptide bond cannot rotate. The input informa-
tion for the ANN is obtained by taking into account the consequences of perturba-
tions at the dihedral angles ( � or � ) at which the ANN is applied. The same ANN
defines both dihedral angle changes. This process is repeated iteratively from the
first dihedral angle of the initial amino acid to the final dihedral angle of the final
amino acid; that is, repeating the same sequential process along the protein chain
and through different temporal iterations while the protein progressively folds into a
final structure.

2.2.1 � Artificial neural network inputs and output

The neural cellular automaton scheme is applied sequentially to determine the
changes of � and � , as illustrated in Fig. 2. The ANN determines the angle changes
with information extracted from the energy landscape, which is more natural as pro-
teins navigate through the complex energy landscape to fold to the native structure
[45]. Moreover, this is more useful than using spatial information, as the energy
landscape encapsulates the details of the spatial protein conformation into a more
compact representation. This information on the energy landscape is obtained when
different perturbations are considered in the angle at which the ANN is applied.
The angle perturbations are defined considering a MAC (Maximum Angle Change)
value. With this partial information of the energy landscape, the ANN output defines

233

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

the corresponding dihedral angle change (increase or decrease of its value, also con-
strained to the range [ −MAC,MAC]).

The ANN inputs are defined as follows:

1.	 The neural cellular automaton is applied, in the amino acid i of the protein chain,
to one of its dihedral angles ( � or � ) (Fig. 2). In this dihedral angle, four distur-
bances are considered: MAC, MAC/2, −MAC∕2 and −MAC . The conformational
energy difference (positive, negative, or zero) is calculated by considering the
protein conformations before and after each angle perturbation. These four energy
increases ( �E1, �E2, � E3 and � E4 in Fig. 2) are inputs to the ANN.

2.	 The partial view of the conformational energy space above can be enhanced with
more information on the consequences of an angle change for subsequent changes
in the next angles. It must be taken into account that the energy landscape is
dynamic through the folding process since, once an angle change is performed,
the subsequent energy landscape corresponds to a different protein conforma-
tion. With this idea in mind, for the highest perturbations ( −MAC and MAC) in
the dihedral angle to which the ANN is applied, several “greedy” changes are
considered in the next N ( � or � ) dihedral angles. A greedy change here means
that those posterior angle changes are chosen between two possibilities, −MAC∕2
and MAC/2, selecting the one that provides the resulting conformation with the
lowest energy. These possible values in the angle changes are used, in that these
correspond to the average values (positive and negative) that the ANN can pro-
vide.

Fig. 2   Neural cellular automaton that provides the iterative folding. The ANN determines the changes of
angles � and � . The ANN inputs are defined considering 4 perturbations in the dihedral angle to which
the neural network model is to be applied, taking into account the difference between the energies of the
protein conformations before and after the angular perturbations. Two additional ANN inputs correspond
to the difference in conformational energy if greedy changes are applied in the next angles and after the
largest angle perturbations

234	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

	  That is, at the current angle to which the neural network is applied, one of the
largest perturbations ( −MAC and MAC) is considered. After this, N greedy moves
are considered in the next angles. The difference in conformational energy is cal-
culated again taking into account the final and initial (without any disturbance)
conformations of the protein.

	  The two additional inputs ( � E Greedy1 and � E Greedy2 in Fig. 2) correspond
with these energy differences. In this way, the ANN has more information regard-
ing the energy landscape to determine the most appropriate angle change, since
it has a partial view of the “future” consequences of the change in the angle at
which the neural network is applied, that is, the ANN has a limited view of what
the subsequent energy landscape would look like. When the ANN is applied in
the posterior dihedral angles, obviously the ANN can decide a different change to
the greedy one, again taking into account the information of the posterior energy
landscape in next angles.

Figure 2 illustrates the general process. When the neural cellular automaton is
applied to an angle ( � in the example in Fig. 2), it receives the six inputs with those
noted energy differences. The ANN output determines the most appropriate angle
change with that partial information extracted from the energy landscape. The hid-
den and output nodes use the standard sigmoid transfer function, decoding the out-
put value in the range [ −MAC,MAC]. The number of nodes in the hidden layer is set
so that the association between energy increases and appropriate angle changes can
be learned while avoiding overfitting.

Note that the update of the angles is therefore sequential. This is so because, with
a parallel update, the interpretation of the inputs to the network would no longer be
as explained, taking into account the consequences of the perturbations in the angle
at which the ANN is applied (which requires the rest of the protein conformation
to be intact). This modeling constraint is contrary to the actual parallel folding pro-
cess, but facilitates the ANN processing with correct input information to decide the
appropriate angle changes.

2.3 � Evolutionary algorithm (Differential Evolution) and fitness function

The neural-CA model that defines the folding is obtained automatically by an evo-
lutionary algorithm: Differential Evolution [27]. DE is a population-based search
method, where the genetic population encodes possible solutions to the problem, in
this case ANNs that are employed as cellular automata to provide the folding pro-
cess of a protein chain. It should be noted that the objective of the this study is not
the comparison of different evolutionary algorithms for the application, since our
objective focuses on the modeling of the folding process. DE was selected since it is
a robust method and with proven advantages over other EAs methods [5, 8] and also
yields better results in PSP compared to other EAs [31].

DE maintains a population of vectors that encode solutions to a problem. An
alternative candidate is chosen for each solution, and the one with the best fitness
is passed on to the next generation. The key aspect of DE is the generation of the

235

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

candidate or trial solutions, since these are defined from the difference of two vec-
tors of the population. The DE algorithm is especially suitable for optimization
problems in which the solutions are coded with real values (such as the current
problem). Algorithm 2.1 pseudo-code specifies the main steps of the standard DE
algorithm.

A limited number of parameters is required for the DE implementation. In addi-
tion to the population size, two parameters (F and CR) are used to generate the
“trial” or “candidate” vectors (y) for each “target” vector x of the population. F is the
weight factor (typically in [0, 2]), which is used to define the “mutant” or “donor”
vector ( x1 + F(x2 − x3) ). This is generated from the difference between two vec-
tors (randomly selected) in the current population, the difference added to the “base
vector” x1 (also randomly selected). The next step involves a crossover operation
between the target vector and the mutant vector to define the trial vector. Each com-
ponent of the trial vector (y) is generated considering a crossover probability (CR)
in the “binomial” crossover, taking into account that a least one vector element in y
comes from the mutant vector thanks to the index R (Algorithm 2.1).

Algorithm 2.1: Differential Evolution(Population)

for each Individual ∈ Population
do

{
Individual ← InitializeRandomPositions()

repeat
for each Individual x ∈ Population

do






x1, x2, x3 ← GetRandomIndividual(Population)
// x1, x2, x3 must be distinct from each other and x
R ← GetRandom(1, n)// n is the dimensionality of the problem
for each i ∈ 1 : n
// Compute individual’s potentially new position y = [y1, ..., yn] (trial vector)

do






ri ← GetRandom(0, 1) // uniformly in open range (0,1)
if ((i = R) || (ri < CR)) // CR - crossover probability

yi = x1i + F (x2i − x3i) // F - weight factor
else yi = xi

if (f(y) ≤ f(x)) x = y // if y has better or equal fitness, replace x with y
until TerminationCriterion()
return (GetLowestFitness(Population)) // return the best candidate solution

In the selection process, the target vector (x) and the trial vector (y) are compared
(in terms of fitness) to select the one that survives, keeping the population size con-
stant in the next generation. In this way, the algorithm has built-in elitism, since the
best solution found is improved or maintained over generations.

Different DE schemes have been defined with the combination of mutation vari-
ants and crossover operators. Standard schemes include DE/rand/1/bin (1 specifies
the number of differences used to define the donor vector whereas bin specifies the
crossover type), which selects the base vector x1 randomly when defining the mutant
vector, and the scheme DE/best/1/bin, which chooses the best solution in the cur-
rent population for the base vector. The key aspect of this algorithm is the adaptive
nature of the exploration level used in the search for better solutions, given by the
vector differences when generating the mutant vectors. At the beginning of the DE
process, the differences tend to be large, progressively narrowing over the following

236	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

generations as the population concentrates on the best-found areas of the fitness
landscape.

2.3.1 � Neural‑CA encoding and fitness

DE is used to optimize an ANN (which acts as a cellular automaton) that progres-
sively provides, for the folding process, the dihedral angle changes that it decides
on each situation. A simple feed-forward ANN (Fig. 2), with fixed topology, is used
to implement the neural cellular automaton. Therefore, the DE population corre-
sponds to possible ANNs, and each population vector encodes an ANN weight set.
The ANN weights are encoded in the range [-1,1] and can be decoded in a differ-
ent range so that the nodes can be saturated with the received input information, as
detailed in the experiments.

Each solution of the population (encoded ANN) is applied sequentially to the
dihedral angles of a protein, from the first angle � in the initial amino acid to the
angle � of the final amino acid (Fig. 2). As discussed above, this procedure is
repeated through several steps, defining a “step” as the sequential application of the
encoded ANN to all angles � and � of the protein. A maximum number of steps is
employed and, in addition, a control is considered at the end of each step: if the final
folded conformation is worse compared to the final structure from the previous step
(in terms of energy), then the iterative process ends, returning the final folded pro-
tein structure (and its fitness) from that previous step.

Therefore, with each encoded ANN, the folding process provided by the ANN
ends with a final protein structure and the energy (Rosetta score3 [30]) of this folded
conformation defines the fitness of the encoded ANN. This iterative process can
start with an initially unfolded chain, in which all angles � and � have the same
value ( 175◦ ) (the dihedral angle � is fixed at ( 180◦ ), or it can also begin from a par-
tially folded structure (as in the experiments described below).

It should be noted that the energy scores used for the fitness definition in the EA
optimization and for the ANN inputs with the calculation of differences in confor-
mational energy (before and after angle perturbations) can be different. Neverthe-
less, the experiments detailed in the next section use the same score for both. Rosetta
score3 was selected in both cases, as it corresponds to the full energy function of the
coarse-grained representation, which includes all the individual energy terms [30].

One aspect to consider is the reason for using an evolutionary algorithm to obtain
the optimized ANN, rather than training it with standard ANN training algorithms
for feed-forward ANNs (with less computational time required). The reason is that
a “training set” is necessary for the ANN’s supervised learning. This means that
the appropriate targets (desired outputs, i.e., appropriate angle changes) for many
different combinations of possible ANN inputs (energy increases after angle per-
turbations) must be set beforehand. The great advantage of using an evolutionary
algorithm is that the designer only establishes the fitness taking into account the
final folding obtained by each encoded ANN, that is, without any other requirement
for the intermediate states, which makes the use of simulated evolution much more
appropriate.

237

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

Finally, it is worth noting the similarity of this fitness assignment (to each
encoded neural cellular automaton) with respect to morphological processes usually
employed in evolutionary computation and Artificial Life applications, when a com-
pact genotype defines the development of a final complex phenotype, for example a
complex morphology in a simulated robot [15]. Here the genotype is the encoded
ANN (applied as a classical cellular automaton to the protein chain), whereas the
final complex phenotype is the final folded conformation after application of the
ANN to the dihedral angles of the whole protein chain and in different temporal
steps.

3 � Results

3.1 � Experimental setup

DE [27] was used for the optimization of a neural cellular automaton when this
defines the folding process of a protein. DE population size was set at 60, using
standard values for the weight factor ( F = 0.9 ) and for the crossover probability
( CR = 0.9 ) [27]. Moreover, scheme DE/rand/1/bin was employed, since this pro-
vides low selective pressure. DE was run over 100 generations to optimize the neu-
ral-CA. These parameters were selected experimentally to provide the best results in
the proteins considered and without premature convergence.

The ANN solutions of the population are coded with weights at the interval
[−1, 1] . The final ANN weights are established by multiplying the encoded weight
value by a constant ( MAX_VALUE=3), which allows us to obtain values in the
entire range of the standard sigmoid transfer function of the neural network nodes,
that is, it allows the nodes to be saturated with the input information received.

Regarding the ANN processing, the angle perturbations were generated with
a value of 10◦ for the parameter MAC, experimentally selected to provide smooth
angle changes. When calculating the ANN inputs, Rosetta score3 was the only
energy function considered. Moreover, N = 2 was used (Sect. 2.2). This means
that, for the calculation of the ANN inputs � E Greedy1 and � E Greedy2 (Fig. 2),
greedy changes are considered at the next two dihedral angles � and � , as explained
in Sect. 2.2, above. Finally, the maximum number of steps was fixed at 20, which
means that the ANN is applied to all angles � and � (from the beginning to the end
of the protein chain) for a maximum of 20 times.

PDB proteins PDB:5WOD ( � protein, 2 helixes, 38 amino acids), PDB:1E0M ( �
protein, 3 beta strands, 37 amino acids) and PDB:1D5Q ( � − � protein, 1 helix, 2
beta strands, 27 amino acids) were used in the experiments. These proteins were
resolved with NMR, and therefore have lower resolution with respect to proteins
resolved with X-ray crystallography. In the latter case, the deposited structures prob-
ably better reflect the final folded structure [16]. That is, we are assuming that the
PDB structures of these NMR-resolved proteins correspond to the final folding,
although these may correspond to transitional structures. However, these PDB struc-
tures are only considered as a reference to calculate the distances of the folded struc-
tures (by means of the optimized ANN) with respect to them.

238	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

The neural-CA models were evolved, for each protein, considering as fitness (for
each of the encoded ANN models) the Rosetta energy (score3) of the final confor-
mation after the neural-CA application to one or more initial conformations. If sev-
eral initial conformations are considered, the ANN is applied independently to those
conformations. Therefore, the ANN fitness is the average of the final energies of the
final conformations when the ANN is applied to each initial conformation. Three
experiments/options were carried out in this regard:

1.	 The ANN was evolved considering only an initial conformation that is fully
unfolded.

2.	 The ANN was evolved considering three starting conformations that are partially
folded. These initial conformations are selected with the application of the Rosetta
ab initio protocol to the unfolded conformation three times, saving the structures
at the end of Stage 2 (Table 2 in Sect. 2.1).

3.	 The ANN was evolved considering both the initial unfolded conformation and
the three partially folded conformations.

3.2 � Energy evolution in the folding process

In the first experiment, the neural cellular automaton is evolved using options ii and
iii. As indicated, in option ii, the ANN is evolved considering three partially folded
conformations (Rosetta ab initio Stage 2), whereas option iii adds the fully unfolded
conformation to the set of starting conformations considered to calculate the fitness
of each encoded ANN.

After the evolutionary optimization of the neural cellular automaton for each pro-
tein,2 the dihedral angles ( � and � ) of the amino acids were modified sequentially
by the ANN application and beginning with a particular initial structure. Figure 3
includes the evolution of the different individual energy terms used by the Rosetta
energy model through the folding process provided by the evolved and optimized
ANNs. The subfigures on the left correspond to an ANN optimized with option iii
and applied to the initial unfolded conformation. The subfigures on the right corre-
spond to an optimized ANN with option ii, which is applied to a partially folded ini-
tial conformation (result of Rosetta ab initio Stage 2). The values of the energy terms
are measured when the ANN has been applied to the two angles �-� in each amino
acid. The graph also includes, as a reference, the values of the different energy terms
of the native structure (values to the right of labels in the subfigures in Fig. 3).

Starting with the unfolded conformation (Fig. 3, left), most of the energy terms
tend to advance progressively to lower values, as can clearly be seen by the terms

2  Typical computing times are 5.97 hours when the ANN is evolved with option i, 22.73 hours when the
ANN is evolved with option ii and 28.30 hours with option iii (protein PDB:1D5Q as target, the code
was not parallelized). The experiments were run in the Supercomputing Center of Galicia (www.cesga.
es), with Intel Xeon E5-2680 v3 processors at 2.50GHz and 1GB of RAM. Once the ANN is evolved,
its application to the protein dihedral angles with a maximum of 20 steps requires an average time of 20
seconds (protein PDB:1D5Q as target).

239

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

wdw (which considers only steric repulsion) and rg (which includes van der Waals
forces and rewards compact structures), indicating that the protein is folding into a
compact structure avoiding collisions. If the starting structure is a partially folded
structure (Fig. 3, right), most of the terms show a slower progression with small
perturbations, even with slight increases in the overall progression in the term wdw.

Regarding the specific terms related to secondary structure, (statistical) energy
terms like sheet can only have a limited number of discrete values (e.g., in the term

Fig. 3   Progression of individual Rosetta energy terms through the folding process, with proteins
PDB:1E0M (upper figures), PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom figures).
An optimized ANN with option iii is applied to the initial unfolded conformation (left) and an optimized
ANN with option ii is applied to a partially folded conformation (right). The x-axis corresponds to the
ANN application at the angles � and � and over the temporal steps. The values to the right of the labels
(in parentheses) correspond to the energy term values of the PDB native conformation

240	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

Fi
g.

 4
  

Fi
na

l
co

nf
or

m
at

io
ns

 w
ith

 p
ro

te
in

 P
D

B
:5

W
O

D
 a

fte
r

ap
pl

ic
at

io
n

of
 t

he
 o

pt
im

iz
ed

 A
N

N
 t

o
th

e
un

fo
ld

ed
 c

on
fo

rm
at

io
n,

 w
he

n
th

e
A

N
N

 w
as

 e
vo

lv
ed

 w
ith

 o
pt

io
n

i (
rig

ht
),

op
tio

n
ii

(c
en

te
r)

 a
nd

 o
pt

io
n

iii

(le
ft)

. T
he

 n
at

iv
e

str
uc

tu
re

 is
 sh

ow
n

in
 g

re
en

 (C
ol

or
 fi

gu
re

 o
nl

in
e)

241

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

sheet, it depends on the number of protein sheets). It is difficult for these terms to
be activated. The reason for this is that the dihedral angles must have very precise
values to activate the term (e.g., very close to the angles corresponding to a sheet),
which explains the constant value or the sudden appearance of different discrete val-
ues. For example, with � protein PDB:1E0M, if the protein starts with the unfolded
conformation, the optimized ANN is not able to correctly establish the perfect val-
ues to activate the energy terms related to strands: sheet, which favors the group-
ing in sheets of individual beta strands; rsigma, which scores the pairs of strands
according to the distance between them and the register of the two strands; and
ss_pair (hydrogen bonding between beta strands) [29]. Therefore, these present a
constant value (like zero in the case of rsigma and ss_pair). However, starting from
a partially folded conformation, the terms are activated, since the secondary struc-
tures (with the corresponding dihedral angles) are better established. This can be
seen with protein PDB:1E0M and option ii in the subfigure on the right, where these
terms present perturbations during the folding process. With � protein PDB:5WOD,
these terms logically have a zero value, while the other energy terms drive the ANN
folding process to low-energy conformational areas. Finally, with � − � protein
PDB:1D5Q, the term hs_pair (helix-strand packing) presents oscillations with a
final value close to the value of the PDB native structure and in both cases (options
ii and iii).

Figure 4 shows an example of the final folded conformations with protein
PDB:5WOD, applying the evolved ANN with the three options to the unfolded con-
formation, which shows a better adjustment of the final folded structure to the PDB
native conformation with options i and iii (as discussed below) but without setting
the angles precise enough to determine the helixes.

Fig. 5   Progression of the energy (score3) through the folding process with proteins PDB:1E0M,
PDB:5WOD and PDB:1D5Q (starting with the unfolded conformation) with the best ANN evolved with
option iii. The x-axis corresponds to the sequential changes of the angles � and � through the temporal
steps. The values on the right correspond with the score3 values of the PDB native structure

242	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

The dihedral angles could be better refined by adding a new term to the score3
energy, which would measure the correspondence between the predicted SSE (e.g.,
using the predictor PSIPRED [28]) and the resulting SSE from the current angles of
the structure being folded, as was done in [22, 41]. This term would add a reinforce-
ment value to favor solutions that have predicted secondary structures that match the
folding structure, that is, to benefit well-formed secondary structures [22]. However,
this possibility was not considered initially, as it would require the experimental tun-
ing of the weights associated with the score3 energy terms and the new reinforce-
ment term of SSE correspondence.

Figure 5 shows the evolution of score3 in the protein conformations obtained
through the folding process, starting with the unfolded conformation, when the
best ANN optimized with option iii is used. Note that Rosetta energy score3 was
also used as fitness to optimize the corresponding neural-CA for each protein. The
score3 energy is plotted after the sequential application of the ANN to both angles
( � and � ) of the amino acids. The number of angle moves is different in the three

Fig. 6   Energy (score3, axis y) vs. RMSD (from the native structure, axis x, in Ȧ), of the final folded con-
formations (yellow) after application of the optimized ANN to 1,000 initial conformations with protein
PDB:1E0M (upper figures), protein PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom
figures). These starting structures correspond to 1,000 Rosetta solutions at the end of Stage 2 (blue). The
point in red corresponds to the final folded conformation when the ANN is applied to the initial unfolded
conformation. Left: ANN evolved considering only the initial unfolded conformation (option i); Center:
ANN evolved considering three initial partially folded conformations (option ii); Right: ANN evolved
considering the unfolded conformation and three initial partially folded conformations (option iii) (Color
figure online)

243

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

proteins due to their different number of amino acids (and consequently, the number
of angles to move in the maximum of 20 steps of the ANN application). Starting
with the unfolded conformation, Figure 5 shows how the structure folds progres-
sively towards lower energy regions. Moreover, Figure 5 shows that the evolved
ANN does not consider a purely greedy strategy, which would always select angle
changes that decrease the score3 energy. On the contrary, there are fluctuations in
energy, with some changes increasing energy that are compensated for in follow-
ing angle changes in order to progress to areas of low energy. That is, the ANN can
provide the progression of the structure, through the funnel-like and rugged protein
energy landscape [46], towards the required low-energy areas.

3.3 � Folding process starting with different initial conformations

The following experiment checks how the folding process defined by the optimized
ANN can also provide a refinement of an initial structure. For this, 1,000 initial
partially folded conformations were employed, these provided by running Rosetta
ab initio protocol 1,000 times and selecting the structures at the end of Stage 2
(standard parameters in the Rosetta protocol [30]).

Figure 6 shows the results of the refinement of these 1,000 initial structures
after application of the evolved ANN for each protein. Three cases were consid-
ered applying three optimized ANNs, which were evolved with the three options
explained above (Sect. 3.1). Figure 6 shows the energy value (score3) of each con-
formation on axis y. The distance from each conformation to the native structure is
measured by the Root Mean Square Deviation (RMSD) (in Ȧ), which is shown on
axis x. The RMSD is measured considering the positions of the C-alpha atoms of
both structures (candidate conformation and native structure). This standard graph
provides the information necessary to assess the distribution of distances (RMSD)
of the optimized protein conformations, along with the optimization (in energy
terms) obtained in those final solutions.

Rosetta ab initio protocol is stochastic, providing the 1,000 partially folded con-
formations shown (in blue) in Fig. 6. Note the deceptiveness of the Rosetta energy
model, in the sense that the best energy conformations do not necessarily have to
correspond to those closest to the native one. This problem of deceptiveness is well-
known. For example, Shmygelska and Levitt [36] point out some of the deficiencies
of the Rosetta energy model, which presents false local minima and general flatness
in the energy landscape in the area close to the native states.

When option i is used (Fig. 6, left), the application of the evolved ANN pro-
vides a general improvement in the energy of the initial conformations in proteins
PDB:5WOD and PDB:1D5Q. For protein PDB:1E0M, the ANN even worsens the
energy in some initial conformations. It must be taken into account that the ANN
was trained/optimized to provide the folding process starting only with the unfolded
conformation (option i). In this case, the ANN has to learn to apply large angle
changes (in the limited and allowed range) in order to fold the initial unfolded con-
formation, where large structural changes are needed to provide non-zero energy
changes (inputs to the ANN), so that the ANN can decide the appropriate angle

244	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

change in each situation. Nevertheless, the ANN was not optimized to provide
smoother angle changes for more detailed refinement and, consequently, some par-
tially folded initial conformations could be unrefined.

On the contrary, with option ii (Fig. 6, center), the ANN does not need to learn
how to fold the protein when it is initially unfolded. Therefore, it can be evolved to
provide better refinement of the initial partially folded structures. In this case, there
is a general improvement in the energy of the initial conformations and in all pro-
teins. However, note that the refinement of the initial unfolded conformation (red
point in subfigures) is worse compared to the previous option in proteins PDB:1E0M
and PDB:1D5Q, especially in RMSD terms with protein PDB:1E0M.

Finally, option iii (Fig. 6, right) provides a tradeoff between the previous options,
since the ANN is evolved to provide the folding process starting with both the
unfolded and partially folded conformations. There is, again, a general improvement
in the energy of the final solutions and, at the same time, this alternative provides,
for the initial unfolded conformation, a final solution close to that obtained with
option i.

There is one final consideration to highlight. The improvement in energy in the
initial conformations has a different behavior in terms of RMSD in the three pro-
teins. With protein PDB:1D5Q, the improvement in energy tends to correspond

Fig. 7   Snapshots of folded structures with proteins PDB:5WOD (upper figures) and PDB:1D5Q (bottom
figures). Left: Initial starting conformation (pink) at the end of Rosetta Stage 2. Right: Final optimized
conformation (blue) after the ANN refinement. The native structure is shown in green (Color figure
online)

245

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

with solutions closer to the native structure. With protein PDB:1E0M, the energy
improvement provided by the modeled folding process does not worsen the RMSD
distribution of the final folded structures. However, with protein PDB:5WOD, the
RMSD distributions are narrower, and the initial Rosetta conformations closest to
the native structure are further away after the ANN application to them. This is a
consequence of the energy landscape deceptiveness for this protein, where there is
an area corresponding to local minima (around 5-10 Ȧ in RMSD terms) that attracts
the changing structures during the folding process.

Figure 7 shows an example of the refinement provided by the folding process
with proteins PDB:5WOD and PDB:1D5Q, using the best evolved ANN with option
iii. Figure 7 includes snapshots of an initial conformation at the end of Rosetta Stage
2 (left part), superimposed on the native structure. The initial structures selected are
those that provide the best RMSD value in the final refined structure. With protein
PDB:1D5Q, the initial structure has a score3 value of 65.01 and an RMSD value
of 4.77 Ȧ. The optimized result, after the folding provided by the ANN, is shown
on the right. This final folded and refined structure has a score3 value of 17.59 and

Fig. 8   Energy (score3, axis y) vs. RMSD (from the native structure, axis x, in Ȧ), of the final folded con-
formations (yellow) after application of the optimized ANN to 1000 initial conformations with protein
PDB:1E0M (upper figures), protein PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom
figures). These starting structures correspond to 1000 Rosetta solutions at the end of Stage 4 (blue). The
point in red corresponds to the final folded conformation when the ANN is applied to the initial unfolded
conformation. Left: ANN evolved considering only the initial unfolded conformation (option i); Center:
ANN evolved considering three initial partially folded conformations (option ii_v2); Right: ANN evolved
considering the unfolded conformation and three initial partially folded conformations (option iii_v2)
(Color figure online)

246	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

also a lower RMSD value of 2.44 Ȧ with respect to the initial structure, showing the
improvement provided by the ANN process, although without obtaining the correct
angles to determine the sheets in both cases. Similarly, with protein PDB:5WOD,
its initial structure has a score3 value of 45.01 and an RMSD value of 3.18 Ȧ. The
refined structure has a score3 value of 30.25 and also a lower RMSD value of 1.77
Ȧ with respect to the initial structure (although, for this protein, the RMSD of many
refined conformations is worse with respect to their starting conformations, due to
the energy landscape deceptiveness, as discussed above).

Finally, to verify the detailed refinement capability provided by the optimized
ANNs, the previous experiment was repeated with the same options, except that
the initial partially folded conformations correspond to 1000 folded structures at
the end of Rosetta Stage 4 (this final stage with fewer fragment insertion attempts
than Rosetta ab initio, since parameter increase_cycles was set to 0.01 at that stage,
Sect. 2.1). Three additional folded structures at the end of Rosetta Stage 4 were used
to evolve/optimize the ANN. Thus, we called options ii and iii as their second ver-
sion (ii_v2 and iii_v2), to emphasize that these are just a variant as only the 3 par-
tially folded structures (used to evolve the ANN) are exchanged for others that have
been more refined with Rosetta. Figure 8 includes the results with the neural-CA
optimized with option i and these new options (ii_v2 and iii_v2).

First, the 1,000 Rosetta solutions at the end of Stage 4 are logically better opti-
mized in energy terms with respect to the previous case with partially folded struc-
tures at the end of Stage 2. This can be clearly seen by comparing the initial Rosetta
solutions between Figs. 6 and 8 and in all proteins. Nevertheless, the ANN can
refine such conformations again towards areas of lower energy, and pointing out the
same considerations as in the previous case: 1) when evolving the ANN with option
i (only considering the unfolded structure), the folding process cannot appropriately
refine the partially folded structures in protein PDB:1E0M; 2) the option that uses as
starting conformations, for the optimization of the ANN, partially folded structures
and the unfolded one (option iii_v2) presents the best tradeoff to provide the folding

Fig. 9   Snapshots of folded structures with protein PDB:1E0M. Left: Initial starting conformation (pink)
at the end of Rosetta Stage 4. Right: Final optimized conformation (blue) after the ANN refinement. The
native structure is shown in green (Color figure online)

247

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

and refinement of different starting conformations; 3) finally, the previous comment
regarding the deceptiveness of the energy landscape with protein PDB:5WOD can
be reiterated here, since the area of best energy drives the folding structure further
away from the native structure.

Figure 9 includes a final example of this refinement provided by the ANN process
with protein PDB:1E0M. Figure 9 includes snapshots of an initial conformation at
the end of Rosetta Stage 4 (left part), superimposed on the native structure. The
initial structure has a score3 value of −7.96 and an RMSD value of 2.16 Ȧ. The best
ANN, trained with option ii_v2, was used for the refinement of the initial structure.
The final folded and refined structure (right part) has a score3 value of −12.52 and
a nearly equal RMSD value of 2.29 Ȧ with respect to the initial structure. Similar
results are obtained with option iii_v2, which shows the improvement provided by
the ANN process, although it is somewhat minor with respect to the previous case,
since the starting structures are now better refined.

4 � Discussion and conclusions

In this study, protein folding was considered as an emergent process, and therefore
one that can be modeled with classical tools for the study of emergent behavior, such
as cellular automata. Nevertheless, instead of using classical CA implemented with
rule sets, feed-forward neural networks were used to implement the CA (neural-CA).
Thus, the cellular automaton model incorporates the ANN generalization property,
and the ANN can be thought of as a black box that encodes the classical CA rule set.
Another difference is that the information used by neural-CA is obtained from the
energy landscape, rather than from the spatial neighborhood of a grid site element
to which the classical CA rule set is applied. The general process can also be con-
sidered similar to the processes of developing complex phenotypes from compact
genotypes. This parallelism comes from the fact that the final folded structure can be
seen as the final phenotype defined by the ANN genotype that guides the develop-
ment (folding process) of the final phenotype.

Using the low-level representation model of Rosetta, an evolved neural cellular
automaton sequentially modifies two of the amino acid dihedral angles ( � and � ),
from the beginning to the end of the protein chain and, as in classical CA, this pro-
cess is iterated over time. Validation is performed by testing whether the proposed
methods can provide the final conformations starting with the unfolded (or partially
folded) conformation, since there is no experimental information (resolved confor-
mations) corresponding to an ordered sequence of temporal states of a protein. The
experiments reported with evolved neural-CA for short proteins showed that opti-
mized neural cellular automata can model the protein folding process using only
information from the energy landscape, notwithstanding the defects of the Rosetta
energy function with its low-resolution representation. Therefore, contrary to the
molecular dynamics alternative [7], which uses a priori modeling of the physico-
chemical interactions of the protein elements, machine learning methods have made
it possible to automatically obtain a model for the folding process, this from the

248	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

available data of resolved proteins. Consequently, our aim was not to compete with
PSP methods, but rather to test machine learning and how it might provide an auto-
matic model of the folding process.

Moreover, the modeling of the folding process with evolved neural-CA can serve
to refine or improve an initial structural model, as was done with the initial partially
folded structures here. This aspect of refinement is considered a new development
and constitutes progress since CASP11 (Critical Assessment of Structure Predic-
tion) in terms of the state of the art in structure modeling [21]. When the ANN is
optimized to provide the folding of the initial unfolded conformation and also par-
tially folded structures, the results show the appropriate tradeoff to obtain a com-
pact low-energy fold for that fully unfolded conformation, as well as a refinement
of other partially folded structures. This refinement can be especially important for
unresolved proteins, where the CA models can provide refined structures that mini-
mize conformational energy (e.g., as mentioned in the Introduction, from initial con-
formations predicted with PSP methods). In this use of neural-CA for refinement, it
is worth noting the difference with respect to PSP protocols based on protein frag-
ments (such as Rosetta ab initio), since information from resolved proteins (or in
the form of small fragments) is not used. Because only the primary sequence infor-
mation and the energy landscape are considered, the folding model follows a pure
ab initio procedure.

In addition, the results show that, if the energy landscape is deceptive, the
refinement (in energy terms) that the optimized ANN is able to provide might
also, at the same time, move the initial structure away from the native conforma-
tion (in RMSD terms). When the aim is only the prediction of the final folded
structure (PSP), the strategy to tackle the deceptiveness of the energy model is to
try to provide conformational models (decoys) that minimize energy but which,
at the same time, present a diversified structural distribution. The use of nich-
ing methods in evolutionary computation is a straightforward means of address-
ing the problem [44], since these niching methods enforce the distribution of
the population (in this case of PSP, possible protein conformations) in different
areas or niches of the energy landscape corresponding to different energy minima
(and possibly to structural variants close to the native structure). However, this
is not the objective in the present study, since the ANN only uses information
from the (imperfect) Rosetta energy landscape to fold the structures towards low-
energy areas. The ANN process is deterministic, but if some stochasticity were
to be considered, the ANN process could be considered as another ab initio PSP
strategy, with the possibility of forcing such diversified structural variants in the
resulting protein decoys.

Some potential extensions of the current study might be undertaken as future
work in this modeling with the Rosetta model. First, it should be noted that the
energy changes that are used as inputs to the neural-CA take into account the effect
of the angle perturbations in the complete chain (Fig. 2). This implies that it is dif-
ficult that an evolved neural cellular automaton determines an angle change that
decreases energy in the local neighborhood if the effect on the whole chain is nega-
tive (increase in energy), although it would be possible that following changes might
repair the problems (e.g., clashes) that cause the increase in energy in areas some

249

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

distance away from the angle where the ANN was applied. This limitation arises
from the constraints of Rosetta with its energy model, since it is not possible to cal-
culate energy increases (after a perturbation) in the local environment of an amino
acid (the energy score can only be considered with the complete protein chain). As
the effect of the perturbations caused to calculate the energy increases (inputs to
the ANN) are considered with the complete protein chain, consequently the evolved
ANN does not consider changes that, for example, produce conflicts in areas away
from the angle that is modified. This is the main limitation of working with the
(knowledge-based) Rosetta energy model, so the folding provided by the evolved
ANN must act very conservatively, restricting the possibilities of determining other
folding pathways.

If the energy changes were considered by defining a neighborhood (e.g., a sphere)
around the angle to which the artificial neural network is applied (similarly to clas-
sical CA), this problem could be overcome with more possibilities in the definition
of folding pathways and, consequently, with more flexibility in folding pathways for
large proteins. The chosen proteins correspond to different topologies and are suf-
ficient to observe the behavior of the evolved CA when modeling the interactions of
the different and common elements of the secondary structure. Therefore, the cur-
rent study demonstrates the possibility of modeling the folding process with the pro-
posed approach, but with the main restriction of modeling with short proteins. Thus,
the proteins considered in the experiments are not exhaustive, and further testing is
needed. For this, it will be necessary to extend the methods to energy models with-
out the aforementioned restriction, which will allow the same modeling with longer
proteins.

Furthermore, since neural-CA were evolved for a particular protein, generaliz-
ability could be tested when these evolved neural-CA are applied to different pro-
teins. That is, a neural cellular automaton was evolved to provide the folding process
for a single protein, but the same ANN can be evolved/optimized to provide the fold-
ing process for a set of different proteins (training set), while validating the ANN
processing with a different set of proteins not used in the optimization process (vali-
dation or test set). This would require energy normalization for different proteins.
However, it is worth noting the importance of this property of optimized neural-CA,
as an optimized ANN could be considered as a “folding operator” that can provide
the folding process of any protein and independently of its length.

Finally, an interesting idea is that our modeling of the dynamic folding process
can provide transitions of a protein between different structures at equilibrium, e.g.,
transitions between healthy and pathogenic variants of proteins involved in diseases.
In previous approaches, for example Sapin et al. [35], an evolutionary algorithm was
used to evolve path representations of structural transitions in proteins. Contrary to
this approach of finding a particular transition path between each pair of protein var-
iants at equilibrium, our modeling of the folding process can provide these structural
transitions in a more direct way, if the neural-CA model is evolved to provide such
transitions through the energy landscape.

Therefore, the ideas developed in this study are not intended to compete with PSP,
but rather to integrate the ideas used in Artificial Life in the development of final
complex phenotypes and in the modeling of emergent processes for the modeling of

250	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

the folding process of proteins. The ideas presented serve to lay the foundations for a
suitable methodology when using machine learning to automatically obtain a model
of the folding process, one that would be valid for any protein.

Acknowledgements  This study was funded by the Xunta de Galicia and the European Union (European
Regional Development Fund - Galicia 2014-2020 Program), with grants CITIC (ED431G 2019/01), GPC
ED431B 2019/03 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder
funds), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00).

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 C. Anfinsen, Principles that govern the folding of proteins. Science 181(96), 223–230 (1973)
	 2.	 R. Calabretta, S. Nolfi, D. Parisi, An artificial life model for predicting the tertiary structure of

unknown proteins that emulates the folding process, in Proceedings Third European Conference on
Advances in Artificial Life - LNCS Vol 929, (1995), pp. 862–875

	 3.	 E. Callaway, The protein-imaging technique taking over structural biology. Nature 578, 201 (2020)
	 4.	 G. Danks, S. Stepney, L. Caves, Protein folding with stochastic L-systems, in Artificial Life XI: Pro-

ceedings of 11th International Conference on the Simulation and Synthesis of Living Systems (MIT
Press, 2008), pp. 150–157

	 5.	 S. Das, P. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol.
Comput. 15(1), 4–31 (2011)

	 6.	 S. Englander, L. Mayne, The nature of protein folding pathways. Proc. Natl. Acad. Sci. 111(45),
15873–15880 (2014)

	 7.	 M. Feig, V. Mirjalili, Protein structure refinement via molecular-dynamics simulations: what works
and what does not? Proteins Suppl 1, 282–292 (2016)

	 8.	 V. Feoktistov, Differential evolution: In search of solutions (Springer, Berlin, 2006)
	 9.	 M. Garza-Fabre, S. Kandathil, J. Handl, J. Knowles, S. Lovell, Generating, maintaining, and exploit-

ing diversity in a memetic algorithm for protein structure prediction. Evol. Comput. 24(4), 577–607
(2016)

	10.	 A. Hagler, S. Lifson, Energy functions for peptides and proteins, II: the amide hydrogen bond and
calculation of amide crystal properties. J. Am. Chem. Soc. 96, 5319–5327 (1974)

	11.	 A. Ilachinski, Cellular automata. A discrete universe (World Scientific, Singapore, 2001)
	12.	 K. Kaufmann, G. Lemmon, S. DeLuca, J. Sheehan, J. Meiler, Practically useful: what the Rosetta

protein modeling suite can do for you. Biochemistry 49, 2987–2998 (2010)
	13.	 S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. Dawid, A. Kolinski, Coarse-grained protein

models and their applications. Chem. Rev. 116, 7898–7936 (2016)
	14.	 N. Krasnogor, G. Terrazas, D. Pelta, G. Ochoa, A critical view of the evolutionary design of self-

assembling systems. Proceedings of the 2005 Conference on Artificial Evolution, LNCS 3871, 179–
188 (2006)

	15.	 S. Kriegman, N. Cheney, J. Bongard, How morphological development can guide evolution. Sci.
Rep. 8, 13934 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

251

1 3

Genetic Programming and Evolvable Machines (2022) 23:225–252	

	16.	 V. Krishnan, B. Rupp, Macromolecular structure determination: comparison of X-ray crystallog-
raphy and NMR spectroscopy (Wliley, Hoboken, 2012). https://​doi.​org/​10.​1002/​97804​70015​902.​
a0002​716.​pub2

	17.	 J. Lee, S. Wu, Y. Zhang, Ab initio protein structure prediction, in From Protein Structure to Func-
tion with Bioinformatics (Springer, London, 2009), pp. 3–25

	18.	 C. Levinthal, Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)
	19.	 A. Márquez-Chamorro, G. Asencio-Cortés, C. Santiesteban-Toca, J. Aguilar-Ruiz, Soft computing

methods for the prediction of protein tertiary structures: a survey. Appl. Soft Comput. 35, 398–410
(2015)

	20.	 N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by
fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

	21.	 J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Critical assessment of methods
of protein structure prediction: progress and new directions in round XI. Proteins: Struct., Funct.,
Bioinform. 84(1), 4–14 (2016)

	22.	 P. Narloch, M. Dorn, A knowledge based differential evolution algorithm for protein structure pre-
diction, in Proceedings International Conference on the Applications of Evolutionary Computation,
pp. 343–359 (2019)

	23.	 F. Noé, G. De-Fabritiis, C. Clementi, Machine learning for protein folding and dynamics. Current
Opin. Struct. Biol. 60, 77–84 (2020)

	24.	 B. Olson, K. De-Jong, A. Shehu, Off-lattice protein structure prediction with homologous crossover,
in Proceedings Conference on Genetic and Evolutionary Computation - GECCO 2013 (2013) pp.
287–294

	25.	 S. Patodia, A. Bagaria, D. Chopra, Molecular dynamics simulation of proteins: a brief overview. J.
Phys. Chem. Biophys. 4(6), 166 (2014)

	26.	 Protein Data Bank. http://​www.​wwpdb.​org
	27.	 K. Price, R. Storn, J. Lampinen, Differential evolution. A practical approach to global optimization

(Springer, Berlin, 2005)
	28.	 PSIPRED protein sequence analysis workbench. http://​bioinf.​cs.​ucl.​ac.​uk/​psipr​ed/
	29.	 C. Rohl, C. Strauss, K. Misura, D. Baker, Protein structure prediction using Rosetta. Methods Enzy-

mol. 383, 66–93 (2004)
	30.	 Rosetta system. http://​www.​roset​tacom​mons.​org
	31.	 J. Santos, M. Diéguez, Differential evolution for protein structure prediction using the HP model.

Lecture Notes Comput. Sci. 6686, 323–323 (2011)
	32.	 J. Santos, P. Villot, M. Diéguez, Cellular automata for modeling protein folding using the HP model,

in Proceedings IEEE Congress on Evolutionary Computation - IEEE-CEC 2013 pp. 1586–1593
(2013)

	33.	 J. Santos, P. Villot, M. Diéguez, Protein folding with cellular automata in the 3D HP model, in
ACM Proceedings International Workshop on Evolutionary Computation in Bioinformatics - BIO
2013 - Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1595–1602 (2013)

	34.	 J. Santos, P. Villot, M. Diéguez, Emergent protein folding modeled with evolved neural cellular
automata using the 3D HP model. J. Comput. Biol. 21(11), 823–845 (2014)

	35.	 E. Sapin, A. Shehu, K. De Jong, An evolutionary algorithm to model structural excursions of a pro-
tein, in Proceedings of the ACM Workshop Evolutionary Computation in Computational Biology,
GECCO-Genetic and Evolutionary Computation Conference (2017), pp. 1669–1673

	36.	 A. Shmygelska, M. Levitt, Generalized ensemble methods for de novo structure prediction. PNAS
106(5), 1415–1420 (2009)

	37.	 Software to model the protein folding process with Rosetta. https://​github.​com/​danie​lvare​la/​Prote​
inFol​dCA

	38.	 A. Tramontano, Protein structure prediction. Concepts and applications (Wiley, Hoboken, 2006)
	39.	 R. Unger, The genetic algorithm approach to protein structure prediction. Struct. Bond. 110, 153–

175 (2004)
	40.	 Universal protein resource (uniprot). https://​www.​unipr​ot.​org
	41.	 D. Varela, J. Santos, Protein folding modeling with neural cellular automata using Rosetta, in

GECCO 2016 ACM Proceedings Companion, Workshop Evolutionary Computation in Computa-
tional Structural Biology pp. 1307–1312 (2016)

	42.	 D. Varela, J. Santos, A hybrid evolutionary algorithm for protein structure prediction using the
Face-Centered Cubic lattice model, in Proceedings International Conference on Neural Information
Processing - ICONIP 2017, Lecture Notes in Computer Science 10634 pp. 628–638 (2017)

https://doi.org/10.1002/9780470015902.a0002716.pub2
https://doi.org/10.1002/9780470015902.a0002716.pub2
http://www.wwpdb.org
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.rosettacommons.org
https://github.com/danielvarela/ProteinFoldCA
https://github.com/danielvarela/ProteinFoldCA
https://www.uniprot.org

252	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

	43.	 D. Varela, J. Santos, Automatically obtaining a cellular automaton scheme for modeling protein
folding using the FCC model. Nat. Comput. 18, 275–284 (2019)

	44.	 D. Varela, J. Santos, Protein structure prediction in an atomic model with differential evolu-
tion integrated with the crowding niching method. Nat. Comput. (2020). https://​doi.​org/​10.​1007/​
s11047-​020-​09801-7

	45.	 P. Wolynes, J. Onuchic, D. Thirumalai, Navigating the folding routes. Science 267, 1619–1620
(1995)

	46.	 X. Zhao, Advances on protein folding simulations based on the lattice HP models with natural com-
puting. Appl. Soft Comput. 8, 1029–1040 (2008)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s11047-020-09801-7
https://doi.org/10.1007/s11047-020-09801-7

	Evolving cellular automata schemes for protein folding modeling using the Rosetta atomic representation
	Abstract
	1 Introduction
	2 Methods
	2.1 Basic aspects of Rosetta
	2.2 Neural cellular automata
	2.2.1 Artificial neural network inputs and output

	2.3 Evolutionary algorithm (Differential Evolution) and fitness function
	2.3.1 Neural-CA encoding and fitness

	3 Results
	3.1 Experimental setup
	3.2 Energy evolution in the folding process
	3.3 Folding process starting with different initial conformations

	4 Discussion and conclusions
	Acknowledgements
	References

