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Abstract
Protein folding is the dynamic process by which a protein folds into its final native 
structure. This is different to the traditional problem of the prediction of the final 
protein structure, since it requires a modeling of how protein components interact 
over time to obtain the final folded structure. In this study we test whether a model 
of the folding process can be obtained exclusively through machine learning. To this 
end, protein folding is considered as an emergent process and the cellular automata 
tool is used to model the folding process. A neural cellular automaton is defined, 
using a connectionist model that acts as a cellular automaton through the protein 
chain to define the dynamic folding. Differential evolution is used to automatically 
obtain the optimized neural cellular automata that provide protein folding. We tested 
the methods with the Rosetta coarse-grained atomic model of protein representation, 
using different proteins to analyze the modeling of folding and the structure refine-
ment that the modeling can provide, showing the potential advantages that such 
methods offer, but also difficulties that arise.
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1  Introduction

A protein reaches its native and functional structure through the dynamic physical 
process of protein folding, which is the result of physical and chemical interac-
tions over time between the protein amino acids. However, existing research into 
the use of computational approaches for protein structure has focused on predict-
ing the final folded structure, this because the final native structure is related to 
the function of the protein.

Computational Protein Structure Prediction (PSP) is necessary to reduce 
the increasing “sequence/structure gap” between the number of proteins with a 
known sequence (order of millions [40]) and the number of proteins whose struc-
ture is already resolved (more than 177,000 in 2021 [26]). Protein structures pub-
licly available in the Protein Data Bank (PDB) [26] are the result of laborious, 
expensive and time-consuming methods such as X-ray crystallography (in which 
protein samples have to be crystalized) and Nuclear Magnetic Resonance (NMR) 
(in which protein samples are in solution) [16]. Even with the rapid increase in 
structures resolved with the latest cryo-electron microscopy technique (protein 
samples are frozen using liquid nitrogen) [3], to reduce the gap, the computa-
tional prediction of the protein structure is required. With computational predic-
tion, there are methods that rely on known resolved proteins, such as prediction 
based on the homology between the sequences of the target protein and those 
of proteins with a known structure, and threading methods that seek to fit a tar-
get sequence into a library of resolved structures [38]. At the other end of the 
range of PSP computational approaches, the “ab initio” prediction is the most 
challenging, since it relies only on the protein’s primary structure (its amino acid 
sequence). This ab initio prediction relies on the thermodynamic hypothesis that 
states that the protein structure with the lowest Gibbs free energy corresponds to 
the native structure, and that the native conformation is determined solely using 
the information of the amino acid sequence (Anfinsen’s dogma) [1].

Given a protein representation model and an energy model associated with 
protein conformations, the ab  initio approach becomes a means of identifying 
the conformation that minimizes energy. Hence, there has been intense research 
on the use of search methods for the ab  initio PSP, especially with the use of 
metaheuristics from the field of natural computation, and in particular evolution-
ary algorithms, with simplified lattice models of protein representation [19, 31, 
39, 42, 46] (mentioning just a few) as well as with off-lattice atomic models [9, 
24]. The prediction of the final native structure enables the practical applica-
tion of drug search (which only requires the final folded structure). However, the 
objective of the present study is not PSP itself. We also need to know how pro-
teins fold dynamically. From a biological point of view, knowledge of how pro-
teins fold is necessary to understand, for example, protein misfolding that can be 
involved in serious diseases. On the other hand, we want to know if it is possible, 
from a machine learning perspective, to obtain a folding model without resorting 
to a priori decisions of the designer, that is, by learning exclusively from avail-
able data, which indeed is the motivation of the present study. Such a folding 
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model could be used, for instance, for the refinement of protein conformations 
(e.g., conformations predicted with PSP methods), hence obtaining structures 
closer to the real native structure.

Levinthal’s paradox [18] states that is not possible for a protein to reach its native 
structure by means of a random search of the enormous number of possible struc-
tures. Nevertheless, proteins can spontaneously fold into their native conformations 
on short timescales (these generally of the order of milliseconds or seconds). In fact, 
as Kmiecik et  al. [13] claim, the number of possible conformations is drastically 
reduced due to preferences of secondary structure and other geometric characteris-
tics of the amino acid chains, facilitating relatively fast folding to folded structures.

In protein folding modeling, the traditional approach is the use of molecular 
dynamics simulations [25], which attempt to capture the main atom interactions in 
order to define a force field and thus to derive the moves of atoms based on New-
ton’s equations. The problem with these approaches is that those force field poten-
tials are non-exact. As Englander and Mayne [6] note, “The forces that direct protein 
folding are delicately balanced, inter-locking, and not describable in exact terms”. 
Consequently, errors are progressively propagated in the high-time consuming simu-
lations of very short moves. Furthermore, and as also observed by Kmiecik et  al. 
[13], even using a supercomputer dedicated to simulations of atomic interactions in 
molecular dynamics, it is only possible to simulate the folding process with short 
proteins. For example, a typical simulation of a system size of about 105-106 atoms 
for a simulation of several nanoseconds will likely require 106-107 time steps and 
will take several days of computing time in a workstation/cluster [25].

Apart from molecular dynamics simulations, there are few studies that have 
experimented with modeling the temporal folding process, rather than looking 
directly for the final folded conformation. For example, Krasnogor et al. [14], using 
a simple lattice scheme of protein representation, explored the use of tools such as 
Lindenmayer systems and Cellular Automata (CA)1 to see whether these models 
could provide the transitions to obtain a native folded structure. However, in this 
initial study with CA there was no connection between the amino acid nature of the 
primary structure and the CA rules, and thus their study [14] only focused on testing 
the possibility of using (evolved) CA rules to provide final folded structures.

Calabretta et al. [2] modeled the temporal process evolving matrices of folding 
potentials between amino acids, where each element of the matrix determines the 
force of repulsion or attraction between amino acids at a given distance (100 Å). 
When the matrix is evolved, the fitness function considers the difference (in the 
rotation angles in the backbone chain) of the final folded structure relative to the 
actual native structure. The authors only tested the method using a short fragment 
(13 amino acids) of the protein crambin, which generates an alpha-helix as in the 
native structure.

Danks et  al. [4] presented a Lindenmayer system to provide the folding. The 
L-system establishes an association between amino acid states and Secondary Struc-
ture Elements (SSEs) of the chain. The (stochastic) rules of the L-system alter the 

1  The acronym CA will be used for both Cellular Automata and Cellular Automaton



228	 Genetic Programming and Evolvable Machines (2022) 23:225–252

1 3

state of an amino acid depending on its own amino acid type and on neighboring 
amino acid types (on both sides of the protein chain). Using typical torsion angles 
of the backbone chain in the seven secondary structure elements considered, it is 
possible to rebuild the structure of a protein in each application of the L-system 
rules. Using four proteins, corresponding to each major structural class, the authors 
showed that a preference for local structure can emerge for some amino acids in the 
protein chain.

Unlike molecular dynamics simulations, in the present study we will consider 
how to obtain a model of the folding process automatically using machine learning, 
a model that can also be easily adapted to different conformational representations 
of proteins. For example, our previous work on the line of protein folding modeling 
focused on the use of lattice models of protein representation, such as the HP model 
[32–34] and the Face-Centered Cubic (FCC) lattice model [43]. In these studies 
[32–34, 43] the CA models overcome the problem previously discussed in Kras-
nogor et al.’s study [14], as there is now a connection between the CA scheme and 
the specific amino acids of the primary structure to which the CA rules are applied. 
The modeling of folding performed in lattice models can be extended to atomic 
models, where new possibilities and difficulties appear, which is the main objective 
addressed in the present paper.

Moreover, protein folding is considered here as an emergent process, the result 
of the emergent consequence of the interactions of protein components over time. 
Therefore, the process can be modeled with traditional tools used in Artificial Life 
to model the emergent property, classical tools such as cellular automata [11]. Con-
sequently, we used the traditional CA scheme to model changes in the dihedral 
angles of the atomic protein conformation, applying an optimized cellular automa-
ton sequentially and iteratively through several time iterations to decide the changes 
in the dihedral angles of the amino acid sequence. The coarse-grained protein repre-
sentation model of the Rosetta system [29, 30] (one of the most successful software 
packages in PSP) was used in the CA-based folding modeling. However, instead of 
traditional CA rules that specify the next state of a grid element based on its previ-
ous state and the state of the neighboring elements, a simple Artificial Neural Net-
work (ANN) was used to implement the rule set, which is why we refer to these 
ANNs as “neural cellular automata”. These neural-CA are optimized by an Evo-
lutionary Algorithm (EA) (Differential Evolution - DE [27]) in order to obtain the 
final folded structure. Preliminary results with the atomic model are given in [41], 
while the present study describes in more detail the extension of the methods to 
the atomic model, as well as discussing results with different proteins. Specifically, 
we will describe, for the first time, the protein structure refinement that optimized 
ANNs can provide, also considering different options to evolve the neural-CA mod-
els. An analysis of the results to provide folding with different starting conforma-
tions is also included. All these novel aspects allow us to show the possibilities and 
problems that appear in the folding modeling when the Rosetta atomic scheme is 
used.

The remainder of the article is structured as follows. Section 2 details the meth-
ods used for the folding modeling, with a brief introduction to the main Rosetta 
concepts used in its ab  initio PSP protocol, such as its protein energy and protein 
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representation models. These Rosetta concepts are used in our folding modeling. 
Section 2 also details the neural-CA modeling of the folding process, as well as the 
evolutionary algorithm (DE) used to automatically obtain the models based on neu-
ral-CA that provide the folding. Section 3 describes the experiments and results per-
formed with different proteins in this modeling, detailing the main aspects related to 
energy transitions and conformational refinement in the modeling. Finally, Section 4 
provides a discussion of the main conclusions that can be drawn from the experi-
ments and the methods employed.

2 � Methods

This section summarizes the methods used to model the folding process. All the 
software of the defined methods can be downloaded from [37].

2.1 � Basic aspects of Rosetta

Two protein representations are used by the Rosetta system: coarse-grained and all-
atom. The coarse-grained models group atoms into beads and assign an energy func-
tion between the beads in order to reproduce some properties of the protein structure 
[23]. In Rosetta, its low-resolution coarse-grained representation only considers the 
main backbone atoms (with their dihedral angles), whereas the side chains are repre-
sented by a pseudo-atom located at their center of mass (Fig.  1). Therefore, protein 
conformations are defined in the space of dihedral angles, with three degrees of free-
dom ( � , � and � ) in each amino acid of the protein chain. Rotation Chi angles for 
side chains are also considered in the all-atom representation. Other degrees of free-
dom are set to fixed, “ideal” values (e.g., all bond lengths and angles are fixed) [13].

For protein structure prediction, the Rosetta ab  initio protocol [29, 30], with 
the low-resolution protein representation, employs a search technique in which 
a Monte Carlo procedure decides if the dihedral angles of small protein frag-
ments can replace the original ones [12, 29]. A protein fragment is a group of 
consecutive amino acids of a resolved protein. Those fragments are drawn from 

Fig. 1   Rosetta’s low-level coarse-grained protein representation. This only considers the main backbone 
atoms, while pseudo-atoms represent the lateral residues. The three dihedral angles between the main 
amino acid atoms, � (between atoms of the peptide bond), � and � , encode each protein conformation
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experimentally determined structures (a non-redundant set of proteins). The frag-
ments are selected taking into account their sequence similarity with respect to 
the window of consecutive residues in the target protein into which the fragments 
will be inserted. This position for fragment insertion into the target is randomly 
chosen. Rosetta uses fragment regions 9 and 3 residues long. These fragments are 
extracted for each position on the target, a process that is prior to the ab initio run 
and that generates a library of fragments (particular for each target protein). Typi-
cally, the fragment libraries used in Rosetta contain about 200 fragments for each 
amino acid position of the protein.

The decision as to whether the dihedral angles of a selected fragment replace 
those of the target protein is based on the Metropolis criterion [20]. This criterion 
always accepts changes that improve energy (lower values), while occasionally 
it accepts dihedral angle changes that worsen energy (energy increase), with the 
probability of accepting the fragment depending on the energy increase relative 
to the previous state in the target protein. This probability is given by exp(−�E

kT
) , 

where k is the Boltzmann constant and T a temperature parameter (the fixed value 
T = 2 is used, but with the possibility of temperature re-heating). This procedure 
helps the search for protein conformations with the fragment substitution tech-
nique to escape local minima.

Regarding the energy model, Rosetta uses knowledge-based and physics energy 
terms [17]. Knowledge-based potentials imply empirical terms obtained from a 
statistical analysis of the structures already resolved in PDB [26]. The interest-
ing property is that these knowledge-based terms require less computational time. 
Physics-based energy terms [10] are based on bond lengths and angles, torsion 
angles, electrostatic and van der Waals interactions.

In Rosetta, a protein conformation has an associated energy, defined as a lin-
ear weighted combination of such energy components that model the molecular 
forces acting between the amino acid atoms of that conformation. These scoring 
terms are, in most cases, knowledge-based.

In the Rosetta energy model, steric overlap between the atoms of the backbone 
and the side-chain is penalized, while van der Waals interactions are modeled 
with a Lennard-Jones potential [29]. Other Rosetta’s energy terms correspond 

Table 1   Coarse-grained 
Rosetta’s energy terms env Residue environment (solvation)

Pair Residue pair interactions (electrostatics, disulfides)
ss_pair Strand pairing (hydrogen bonding)
Sheet Strand arrangement into sheets
hs_pair Helix-strand packing
rsigma Strand pairing based on distance/register
rg Radius of gyration (van der Waals attraction; solvation)
cenpack Packing density
cbeta C� density (solvation; correction for excluded volume 

effect introduced by simulation)
vdw Steric repulsion
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to electrostatics effects and solvation, hydrogen bonding, repulsion and scores 
related to secondary structure (e.g., helix-strand packing and strand pairing).

Table 1 shows a very brief definition of each energy term, while the detailed 
definition of the energy terms can be found, for example, in [29], and the weight 
sets for the individual energy terms for the definition of every Rosetta score are 
detailed in [30]. The Rosetta score function called score3 is the one that inte-
grates all the energy components. Nevertheless, the weight set is changed accord-
ing to the stage of the Rosetta ab initio protocol (Table 2).

A problem that must be taken into consideration is that, as is well-known, 
Rosetta’s knowledge-based energy model is inaccurate since the native conforma-
tion is not necessarily located in the minimum of energy. For example, Shmygel-
ska and Levitt [36] show deficiencies in the energy function corresponding to the 
low-resolution protein representation of Rosetta, since the structures with lower 
energy do not have to correspond with the most native-like.

In search of protein conformations with minimal energy, the Metropolis Monte 
Carlo procedure is run many times. For this purpose, the ab  initio protocol is 
divided into four stages (as detailed in Table 2). Rosetta uses the protein coarse-
grained representation and its fragment insertion technique (with the Metropolis 
criterion [20]) throughout these four stages, to generate new structural conforma-
tions. Table  2 includes a brief summary of each stage with the most important 
details.

Moreover, the number of fragment insertions attempts at each stage can be 
changed with the parameter increase_cycles, which multiplies to the default values 
of insertion cycles in the four stages of the ab initio procedure. Since the Metropolis 
Monte Carlo process is stochastic, the 4-stage ab  initio protocol is run thousands 
of times. The final conformations (“decoys”) in this ab initio protocol (a clustering 
process can be applied to decipher the most representative decoy set), can be refined 
in a second “Ab initio relax” procedure that uses the full Rosetta’s atomic model, 

Table 2   Stages of Rosetta ab initio protocol

Stage 1 Starting from a fully extended conformation, this stage inserts 9-mer fragments until all the 
backbone dihedral angles are modified at least once and considering a maximum of 2,000 
cycles (fragment insertion attempts). During this stage, the energy function (called score0) 
only takes into account the steric-clash term to avoid overlap between backbone atoms and 
the centroids of lateral residues.

Stage 2 Stage2 employs 9-mer fragment insertions over 2,000 cycles, but uses a more complex score 
function, score1, which adds specific pair interactions and hydrophobic burial terms, along 
with scores of secondary structure.

Stage 3 The third Rosetta stage runs 10 iterations of 2,000 cycles of fragment (9-mer) insertion 
attempts. Rosetta combines in this stage two score functions, score2 and score5. These 
functions focus on secondary structure terms and compactness. A convergence check deter-
mines the structural similarity of the current conformation with respect to a reference one 
regularly updated. If there is not enough structural variation after 100 fragment insertions 
are accepted, stage 3 ends.

Stage 4 The final Rosetta stage employs 3-mer fragment insertions over 12,000 cycles, split into 3 
iterations of 4,000 cycles for each one. In this stage, score3 (which considers all energy 
components) is used.
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process that performs the reconstruction of the protein side chain with an all-atom 
energy minimization.

2.2 � Neural cellular automata

Since protein folding is considered an emergent process, a cellular automaton 
scheme is used to model the process. The idea is that the CA scheme provides the 
conformation changes of the protein over time to obtain a final folded structure 
corresponding to the native structure. As in classical CA, where the CA rules are 
applied to define the next state of each element in a grid-like environment and over 
time iterations, now the CA scheme that provides the folding will be applied over 
several time iterations to all the elements of the protein chain (dihedral angles of 
amino acids). The difference is that the CA scheme is now implemented with a feed-
forward ANN and, therefore, we define it as a neural-CA model. This ANN must 
provide changes that correspond to continuous values of the dihedral angles of the 
protein’s coarse-grained representation [30]. The second difference is that the neural 
cellular automaton model will receive the input information from the conformational 
energy space, rather than the spatial surroundings of the element (neighbor states) to 
which the classical CA rule set model is applied. The next subsection explains how 
this ANN model is obtained by means of an evolutionary algorithm.

The neural-CA process can be summarized as follows: With the coarse-grained 
representation model, the neural cellular automaton is applied sequentially to the 
dihedral angles of all the amino acids. However, the neural-CA can only change the 
angles � and � , since the third dihedral angle of the amino acid ( � ) remains fixed 
( 180◦ ), because this angle of the peptide bond cannot rotate. The input informa-
tion for the ANN is obtained by taking into account the consequences of perturba-
tions at the dihedral angles ( � or � ) at which the ANN is applied. The same ANN 
defines both dihedral angle changes. This process is repeated iteratively from the 
first dihedral angle of the initial amino acid to the final dihedral angle of the final 
amino acid; that is, repeating the same sequential process along the protein chain 
and through different temporal iterations while the protein progressively folds into a 
final structure.

2.2.1 � Artificial neural network inputs and output

The neural cellular automaton scheme is applied sequentially to determine the 
changes of � and � , as illustrated in Fig. 2. The ANN determines the angle changes 
with information extracted from the energy landscape, which is more natural as pro-
teins navigate through the complex energy landscape to fold to the native structure 
[45]. Moreover, this is more useful than using spatial information, as the energy 
landscape encapsulates the details of the spatial protein conformation into a more 
compact representation. This information on the energy landscape is obtained when 
different perturbations are considered in the angle at which the ANN is applied. 
The angle perturbations are defined considering a MAC  (Maximum Angle Change) 
value. With this partial information of the energy landscape, the ANN output defines 
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the corresponding dihedral angle change (increase or decrease of its value, also con-
strained to the range [ −MAC,MAC]).

The ANN inputs are defined as follows: 

1.	 The neural cellular automaton is applied, in the amino acid i of the protein chain, 
to one of its dihedral angles ( � or � ) (Fig. 2). In this dihedral angle, four distur-
bances are considered: MAC, MAC/2, −MAC∕2 and −MAC . The conformational 
energy difference (positive, negative, or zero) is calculated by considering the 
protein conformations before and after each angle perturbation. These four energy 
increases ( �E1, �E2, � E3 and � E4 in Fig. 2) are inputs to the ANN.

2.	 The partial view of the conformational energy space above can be enhanced with 
more information on the consequences of an angle change for subsequent changes 
in the next angles. It must be taken into account that the energy landscape is 
dynamic through the folding process since, once an angle change is performed, 
the subsequent energy landscape corresponds to a different protein conforma-
tion. With this idea in mind, for the highest perturbations ( −MAC and MAC) in 
the dihedral angle to which the ANN is applied, several “greedy” changes are 
considered in the next N ( � or � ) dihedral angles. A greedy change here means 
that those posterior angle changes are chosen between two possibilities, −MAC∕2 
and MAC/2, selecting the one that provides the resulting conformation with the 
lowest energy. These possible values in the angle changes are used, in that these 
correspond to the average values (positive and negative) that the ANN can pro-
vide.

Fig. 2   Neural cellular automaton that provides the iterative folding. The ANN determines the changes of 
angles � and � . The ANN inputs are defined considering 4 perturbations in the dihedral angle to which 
the neural network model is to be applied, taking into account the difference between the energies of the 
protein conformations before and after the angular perturbations. Two additional ANN inputs correspond 
to the difference in conformational energy if greedy changes are applied in the next angles and after the 
largest angle perturbations
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	   That is, at the current angle to which the neural network is applied, one of the 
largest perturbations ( −MAC and MAC) is considered. After this, N greedy moves 
are considered in the next angles. The difference in conformational energy is cal-
culated again taking into account the final and initial (without any disturbance) 
conformations of the protein.

	   The two additional inputs ( � E Greedy1 and � E Greedy2 in Fig. 2) correspond 
with these energy differences. In this way, the ANN has more information regard-
ing the energy landscape to determine the most appropriate angle change, since 
it has a partial view of the “future” consequences of the change in the angle at 
which the neural network is applied, that is, the ANN has a limited view of what 
the subsequent energy landscape would look like. When the ANN is applied in 
the posterior dihedral angles, obviously the ANN can decide a different change to 
the greedy one, again taking into account the information of the posterior energy 
landscape in next angles.

Figure  2 illustrates the general process. When the neural cellular automaton is 
applied to an angle ( � in the example in Fig. 2), it receives the six inputs with those 
noted energy differences. The ANN output determines the most appropriate angle 
change with that partial information extracted from the energy landscape. The hid-
den and output nodes use the standard sigmoid transfer function, decoding the out-
put value in the range [ −MAC,MAC]. The number of nodes in the hidden layer is set 
so that the association between energy increases and appropriate angle changes can 
be learned while avoiding overfitting.

Note that the update of the angles is therefore sequential. This is so because, with 
a parallel update, the interpretation of the inputs to the network would no longer be 
as explained, taking into account the consequences of the perturbations in the angle 
at which the ANN is applied (which requires the rest of the protein conformation 
to be intact). This modeling constraint is contrary to the actual parallel folding pro-
cess, but facilitates the ANN processing with correct input information to decide the 
appropriate angle changes.

2.3 � Evolutionary algorithm (Differential Evolution) and fitness function

The neural-CA model that defines the folding is obtained automatically by an evo-
lutionary algorithm: Differential Evolution [27]. DE is a population-based search 
method, where the genetic population encodes possible solutions to the problem, in 
this case ANNs that are employed as cellular automata to provide the folding pro-
cess of a protein chain. It should be noted that the objective of the this study is not 
the comparison of different evolutionary algorithms for the application, since our 
objective focuses on the modeling of the folding process. DE was selected since it is 
a robust method and with proven advantages over other EAs methods [5, 8] and also 
yields better results in PSP compared to other EAs [31].

DE maintains a population of vectors that encode solutions to a problem. An 
alternative candidate is chosen for each solution, and the one with the best fitness 
is passed on to the next generation. The key aspect of DE is the generation of the 
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candidate or trial solutions, since these are defined from the difference of two vec-
tors of the population. The DE algorithm is especially suitable for optimization 
problems in which the solutions are coded with real values (such as the current 
problem). Algorithm 2.1 pseudo-code specifies the main steps of the standard DE 
algorithm.

A limited number of parameters is required for the DE implementation. In addi-
tion to the population size, two parameters (F and CR) are used to generate the 
“trial” or “candidate” vectors (y) for each “target” vector x of the population. F is the 
weight factor (typically in [0, 2]), which is used to define the “mutant” or “donor” 
vector ( x1 + F(x2 − x3) ). This is generated from the difference between two vec-
tors (randomly selected) in the current population, the difference added to the “base 
vector” x1 (also randomly selected). The next step involves a crossover operation 
between the target vector and the mutant vector to define the trial vector. Each com-
ponent of the trial vector (y) is generated considering a crossover probability (CR) 
in the “binomial” crossover, taking into account that a least one vector element in y 
comes from the mutant vector thanks to the index R (Algorithm 2.1). 

Algorithm 2.1: Differential Evolution(Population)

for each Individual ∈ Population
do

{
Individual ← InitializeRandomPositions()

repeat
for each Individual x ∈ Population

do






x1, x2, x3 ← GetRandomIndividual(Population)
// x1, x2, x3 must be distinct from each other and x
R ← GetRandom(1, n)// n is the dimensionality of the problem
for each i ∈ 1 : n
// Compute individual’s potentially new position y = [y1, ..., yn] (trial vector)

do






ri ← GetRandom(0, 1) // uniformly in open range (0,1)
if ((i = R) || (ri < CR)) // CR - crossover probability

yi = x1i + F (x2i − x3i ) // F - weight factor
else yi = xi

if (f(y) ≤ f(x)) x = y // if y has better or equal fitness, replace x with y
until TerminationCriterion()
return (GetLowestFitness(Population)) // return the best candidate solution

In the selection process, the target vector (x) and the trial vector (y) are compared 
(in terms of fitness) to select the one that survives, keeping the population size con-
stant in the next generation. In this way, the algorithm has built-in elitism, since the 
best solution found is improved or maintained over generations.

Different DE schemes have been defined with the combination of mutation vari-
ants and crossover operators. Standard schemes include DE/rand/1/bin (1 specifies 
the number of differences used to define the donor vector whereas bin specifies the 
crossover type), which selects the base vector x1 randomly when defining the mutant 
vector, and the scheme DE/best/1/bin, which chooses the best solution in the cur-
rent population for the base vector. The key aspect of this algorithm is the adaptive 
nature of the exploration level used in the search for better solutions, given by the 
vector differences when generating the mutant vectors. At the beginning of the DE 
process, the differences tend to be large, progressively narrowing over the following 
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generations as the population concentrates on the best-found areas of the fitness 
landscape.

2.3.1 � Neural‑CA encoding and fitness

DE is used to optimize an ANN (which acts as a cellular automaton) that progres-
sively provides, for the folding process, the dihedral angle changes that it decides 
on each situation. A simple feed-forward ANN (Fig. 2), with fixed topology, is used 
to implement the neural cellular automaton. Therefore, the DE population corre-
sponds to possible ANNs, and each population vector encodes an ANN weight set. 
The ANN weights are encoded in the range [-1,1] and can be decoded in a differ-
ent range so that the nodes can be saturated with the received input information, as 
detailed in the experiments.

Each solution of the population (encoded ANN) is applied sequentially to the 
dihedral angles of a protein, from the first angle � in the initial amino acid to the 
angle � of the final amino acid (Fig.  2). As discussed above, this procedure is 
repeated through several steps, defining a “step” as the sequential application of the 
encoded ANN to all angles � and � of the protein. A maximum number of steps is 
employed and, in addition, a control is considered at the end of each step: if the final 
folded conformation is worse compared to the final structure from the previous step 
(in terms of energy), then the iterative process ends, returning the final folded pro-
tein structure (and its fitness) from that previous step.

Therefore, with each encoded ANN, the folding process provided by the ANN 
ends with a final protein structure and the energy (Rosetta score3 [30]) of this folded 
conformation defines the fitness of the encoded ANN. This iterative process can 
start with an initially unfolded chain, in which all angles � and � have the same 
value ( 175◦ ) (the dihedral angle � is fixed at ( 180◦ ), or it can also begin from a par-
tially folded structure (as in the experiments described below).

It should be noted that the energy scores used for the fitness definition in the EA 
optimization and for the ANN inputs with the calculation of differences in confor-
mational energy (before and after angle perturbations) can be different. Neverthe-
less, the experiments detailed in the next section use the same score for both. Rosetta 
score3 was selected in both cases, as it corresponds to the full energy function of the 
coarse-grained representation, which includes all the individual energy terms [30].

One aspect to consider is the reason for using an evolutionary algorithm to obtain 
the optimized ANN, rather than training it with standard ANN training algorithms 
for feed-forward ANNs (with less computational time required). The reason is that 
a “training set” is necessary for the ANN’s supervised learning. This means that 
the appropriate targets (desired outputs, i.e., appropriate angle changes) for many 
different combinations of possible ANN inputs (energy increases after angle per-
turbations) must be set beforehand. The great advantage of using an evolutionary 
algorithm is that the designer only establishes the fitness taking into account the 
final folding obtained by each encoded ANN, that is, without any other requirement 
for the intermediate states, which makes the use of simulated evolution much more 
appropriate.
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Finally, it is worth noting the similarity of this fitness assignment (to each 
encoded neural cellular automaton) with respect to morphological processes usually 
employed in evolutionary computation and Artificial Life applications, when a com-
pact genotype defines the development of a final complex phenotype, for example a 
complex morphology in a simulated robot [15]. Here the genotype is the encoded 
ANN (applied as a classical cellular automaton to the protein chain), whereas the 
final complex phenotype is the final folded conformation after application of the 
ANN to the dihedral angles of the whole protein chain and in different temporal 
steps.

3 � Results

3.1 � Experimental setup

DE [27] was used for the optimization of a neural cellular automaton when this 
defines the folding process of a protein. DE population size was set at 60, using 
standard values for the weight factor ( F = 0.9 ) and for the crossover probability 
( CR = 0.9 ) [27]. Moreover, scheme DE/rand/1/bin was employed, since this pro-
vides low selective pressure. DE was run over 100 generations to optimize the neu-
ral-CA. These parameters were selected experimentally to provide the best results in 
the proteins considered and without premature convergence.

The ANN solutions of the population are coded with weights at the interval 
[−1, 1] . The final ANN weights are established by multiplying the encoded weight 
value by a constant ( MAX_VALUE=3), which allows us to obtain values in the 
entire range of the standard sigmoid transfer function of the neural network nodes, 
that is, it allows the nodes to be saturated with the input information received.

Regarding the ANN processing, the angle perturbations were generated with 
a value of 10◦ for the parameter MAC, experimentally selected to provide smooth 
angle changes. When calculating the ANN inputs, Rosetta score3 was the only 
energy function considered. Moreover, N = 2 was used (Sect.  2.2). This means 
that, for the calculation of the ANN inputs � E Greedy1 and � E Greedy2 (Fig. 2), 
greedy changes are considered at the next two dihedral angles � and � , as explained 
in Sect. 2.2, above. Finally, the maximum number of steps was fixed at 20, which 
means that the ANN is applied to all angles � and � (from the beginning to the end 
of the protein chain) for a maximum of 20 times.

PDB proteins PDB:5WOD ( � protein, 2 helixes, 38 amino acids), PDB:1E0M ( � 
protein, 3 beta strands, 37 amino acids) and PDB:1D5Q ( � − � protein, 1 helix, 2 
beta strands, 27 amino acids) were used in the experiments. These proteins were 
resolved with NMR, and therefore have lower resolution with respect to proteins 
resolved with X-ray crystallography. In the latter case, the deposited structures prob-
ably better reflect the final folded structure [16]. That is, we are assuming that the 
PDB structures of these NMR-resolved proteins correspond to the final folding, 
although these may correspond to transitional structures. However, these PDB struc-
tures are only considered as a reference to calculate the distances of the folded struc-
tures (by means of the optimized ANN) with respect to them.
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The neural-CA models were evolved, for each protein, considering as fitness (for 
each of the encoded ANN models) the Rosetta energy (score3) of the final confor-
mation after the neural-CA application to one or more initial conformations. If sev-
eral initial conformations are considered, the ANN is applied independently to those 
conformations. Therefore, the ANN fitness is the average of the final energies of the 
final conformations when the ANN is applied to each initial conformation. Three 
experiments/options were carried out in this regard: 

1.	 The ANN was evolved considering only an initial conformation that is fully 
unfolded.

2.	 The ANN was evolved considering three starting conformations that are partially 
folded. These initial conformations are selected with the application of the Rosetta 
ab initio protocol to the unfolded conformation three times, saving the structures 
at the end of Stage 2 (Table 2 in Sect. 2.1).

3.	 The ANN was evolved considering both the initial unfolded conformation and 
the three partially folded conformations.

3.2 � Energy evolution in the folding process

In the first experiment, the neural cellular automaton is evolved using options ii and 
iii. As indicated, in option ii, the ANN is evolved considering three partially folded 
conformations (Rosetta ab initio Stage 2), whereas option iii adds the fully unfolded 
conformation to the set of starting conformations considered to calculate the fitness 
of each encoded ANN.

After the evolutionary optimization of the neural cellular automaton for each pro-
tein,2 the dihedral angles ( � and � ) of the amino acids were modified sequentially 
by the ANN application and beginning with a particular initial structure. Figure 3 
includes the evolution of the different individual energy terms used by the Rosetta 
energy model through the folding process provided by the evolved and optimized 
ANNs. The subfigures on the left correspond to an ANN optimized with option iii 
and applied to the initial unfolded conformation. The subfigures on the right corre-
spond to an optimized ANN with option ii, which is applied to a partially folded ini-
tial conformation (result of Rosetta ab initio Stage 2). The values of the energy terms 
are measured when the ANN has been applied to the two angles �-� in each amino 
acid. The graph also includes, as a reference, the values of the different energy terms 
of the native structure (values to the right of labels in the subfigures in Fig. 3).

Starting with the unfolded conformation (Fig. 3, left), most of the energy terms 
tend to advance progressively to lower values, as can clearly be seen by the terms 

2  Typical computing times are 5.97 hours when the ANN is evolved with option i, 22.73 hours when the 
ANN is evolved with option ii and 28.30 hours with option iii (protein PDB:1D5Q as target, the code 
was not parallelized). The experiments were run in the Supercomputing Center of Galicia (www.cesga.
es), with Intel Xeon E5-2680 v3 processors at 2.50GHz and 1GB of RAM. Once the ANN is evolved, 
its application to the protein dihedral angles with a maximum of 20 steps requires an average time of 20 
seconds (protein PDB:1D5Q as target).
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wdw (which considers only steric repulsion) and rg (which includes van der Waals 
forces and rewards compact structures), indicating that the protein is folding into a 
compact structure avoiding collisions. If the starting structure is a partially folded 
structure (Fig.  3, right), most of the terms show a slower progression with small 
perturbations, even with slight increases in the overall progression in the term wdw.

Regarding the specific terms related to secondary structure, (statistical) energy 
terms like sheet can only have a limited number of discrete values (e.g., in the term 

Fig. 3   Progression of individual Rosetta energy terms through the folding process, with proteins 
PDB:1E0M (upper figures), PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom figures). 
An optimized ANN with option iii is applied to the initial unfolded conformation (left) and an optimized 
ANN with option ii is applied to a partially folded conformation (right). The x-axis corresponds to the 
ANN application at the angles � and � and over the temporal steps. The values to the right of the labels 
(in parentheses) correspond to the energy term values of the PDB native conformation
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sheet, it depends on the number of protein sheets). It is difficult for these terms to 
be activated. The reason for this is that the dihedral angles must have very precise 
values to activate the term (e.g., very close to the angles corresponding to a sheet), 
which explains the constant value or the sudden appearance of different discrete val-
ues. For example, with � protein PDB:1E0M, if the protein starts with the unfolded 
conformation, the optimized ANN is not able to correctly establish the perfect val-
ues to activate the energy terms related to strands: sheet, which favors the group-
ing in sheets of individual beta strands; rsigma, which scores the pairs of strands 
according to the distance between them and the register of the two strands; and 
ss_pair (hydrogen bonding between beta strands) [29]. Therefore, these present a 
constant value (like zero in the case of rsigma and ss_pair). However, starting from 
a partially folded conformation, the terms are activated, since the secondary struc-
tures (with the corresponding dihedral angles) are better established. This can be 
seen with protein PDB:1E0M and option ii in the subfigure on the right, where these 
terms present perturbations during the folding process. With � protein PDB:5WOD, 
these terms logically have a zero value, while the other energy terms drive the ANN 
folding process to low-energy conformational areas. Finally, with � − � protein 
PDB:1D5Q, the term hs_pair (helix-strand packing) presents oscillations with a 
final value close to the value of the PDB native structure and in both cases (options 
ii and iii).

Figure   4 shows an example of the final folded conformations with protein 
PDB:5WOD, applying the evolved ANN with the three options to the unfolded con-
formation, which shows a better adjustment of the final folded structure to the PDB 
native conformation with options i and iii (as discussed below) but without setting 
the angles precise enough to determine the helixes.

Fig. 5   Progression of the energy (score3) through the folding process with proteins PDB:1E0M, 
PDB:5WOD and PDB:1D5Q (starting with the unfolded conformation) with the best ANN evolved with 
option iii. The x-axis corresponds to the sequential changes of the angles � and � through the temporal 
steps. The values on the right correspond with the score3 values of the PDB native structure
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The dihedral angles could be better refined by adding a new term to the score3 
energy, which would measure the correspondence between the predicted SSE (e.g., 
using the predictor PSIPRED [28]) and the resulting SSE from the current angles of 
the structure being folded, as was done in [22, 41]. This term would add a reinforce-
ment value to favor solutions that have predicted secondary structures that match the 
folding structure, that is, to benefit well-formed secondary structures [22]. However, 
this possibility was not considered initially, as it would require the experimental tun-
ing of the weights associated with the score3 energy terms and the new reinforce-
ment term of SSE correspondence.

Figure  5 shows the evolution of score3 in the protein conformations obtained 
through the folding process, starting with the unfolded conformation, when the 
best ANN optimized with option iii is used. Note that Rosetta energy score3 was 
also used as fitness to optimize the corresponding neural-CA for each protein. The 
score3 energy is plotted after the sequential application of the ANN to both angles 
( � and � ) of the amino acids. The number of angle moves is different in the three 

Fig. 6   Energy (score3, axis y) vs. RMSD (from the native structure, axis x, in Ȧ), of the final folded con-
formations (yellow) after application of the optimized ANN to 1,000 initial conformations with protein 
PDB:1E0M (upper figures), protein PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom 
figures). These starting structures correspond to 1,000 Rosetta solutions at the end of Stage 2 (blue). The 
point in red corresponds to the final folded conformation when the ANN is applied to the initial unfolded 
conformation. Left: ANN evolved considering only the initial unfolded conformation (option i); Center: 
ANN evolved considering three initial partially folded conformations (option ii); Right: ANN evolved 
considering the unfolded conformation and three initial partially folded conformations (option iii) (Color 
figure online)
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proteins due to their different number of amino acids (and consequently, the number 
of angles to move in the maximum of 20 steps of the ANN application). Starting 
with the unfolded conformation, Figure  5 shows how the structure folds progres-
sively towards lower energy regions. Moreover, Figure  5 shows that the evolved 
ANN does not consider a purely greedy strategy, which would always select angle 
changes that decrease the score3 energy. On the contrary, there are fluctuations in 
energy, with some changes increasing energy that are compensated for in follow-
ing angle changes in order to progress to areas of low energy. That is, the ANN can 
provide the progression of the structure, through the funnel-like and rugged protein 
energy landscape [46], towards the required low-energy areas.

3.3 � Folding process starting with different initial conformations

The following experiment checks how the folding process defined by the optimized 
ANN can also provide a refinement of an initial structure. For this, 1,000 initial 
partially folded conformations were employed, these provided by running Rosetta 
ab  initio protocol 1,000 times and selecting the structures at the end of Stage 2 
(standard parameters in the Rosetta protocol [30]).

Figure  6 shows the results of the refinement of these 1,000 initial structures 
after application of the evolved ANN for each protein. Three cases were consid-
ered applying three optimized ANNs, which were evolved with the three options 
explained above (Sect. 3.1). Figure 6 shows the energy value (score3) of each con-
formation on axis y. The distance from each conformation to the native structure is 
measured by the Root Mean Square Deviation (RMSD) (in Ȧ), which is shown on 
axis x. The RMSD is measured considering the positions of the C-alpha atoms of 
both structures (candidate conformation and native structure). This standard graph 
provides the information necessary to assess the distribution of distances (RMSD) 
of the optimized protein conformations, along with the optimization (in energy 
terms) obtained in those final solutions.

Rosetta ab initio protocol is stochastic, providing the 1,000 partially folded con-
formations shown (in blue) in Fig. 6. Note the deceptiveness of the Rosetta energy 
model, in the sense that the best energy conformations do not necessarily have to 
correspond to those closest to the native one. This problem of deceptiveness is well-
known. For example, Shmygelska and Levitt [36] point out some of the deficiencies 
of the Rosetta energy model, which presents false local minima and general flatness 
in the energy landscape in the area close to the native states.

When option i is used (Fig.  6, left), the application of the evolved ANN pro-
vides a general improvement in the energy of the initial conformations in proteins 
PDB:5WOD and PDB:1D5Q. For protein PDB:1E0M, the ANN even worsens the 
energy in some initial conformations. It must be taken into account that the ANN 
was trained/optimized to provide the folding process starting only with the unfolded 
conformation (option i). In this case, the ANN has to learn to apply large angle 
changes (in the limited and allowed range) in order to fold the initial unfolded con-
formation, where large structural changes are needed to provide non-zero energy 
changes (inputs to the ANN), so that the ANN can decide the appropriate angle 
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change in each situation. Nevertheless, the ANN was not optimized to provide 
smoother angle changes for more detailed refinement and, consequently, some par-
tially folded initial conformations could be unrefined.

On the contrary, with option ii (Fig. 6, center), the ANN does not need to learn 
how to fold the protein when it is initially unfolded. Therefore, it can be evolved to 
provide better refinement of the initial partially folded structures. In this case, there 
is a general improvement in the energy of the initial conformations and in all pro-
teins. However, note that the refinement of the initial unfolded conformation (red 
point in subfigures) is worse compared to the previous option in proteins PDB:1E0M 
and PDB:1D5Q, especially in RMSD terms with protein PDB:1E0M.

Finally, option iii (Fig. 6, right) provides a tradeoff between the previous options, 
since the ANN is evolved to provide the folding process starting with both the 
unfolded and partially folded conformations. There is, again, a general improvement 
in the energy of the final solutions and, at the same time, this alternative provides, 
for the initial unfolded conformation, a final solution close to that obtained with 
option i.

There is one final consideration to highlight. The improvement in energy in the 
initial conformations has a different behavior in terms of RMSD in the three pro-
teins. With protein PDB:1D5Q, the improvement in energy tends to correspond 

Fig. 7   Snapshots of folded structures with proteins PDB:5WOD (upper figures) and PDB:1D5Q (bottom 
figures). Left: Initial starting conformation (pink) at the end of Rosetta Stage 2. Right: Final optimized 
conformation (blue) after the ANN refinement. The native structure is shown in green (Color figure 
online)
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with solutions closer to the native structure. With protein PDB:1E0M, the energy 
improvement provided by the modeled folding process does not worsen the RMSD 
distribution of the final folded structures. However, with protein PDB:5WOD, the 
RMSD distributions are narrower, and the initial Rosetta conformations closest to 
the native structure are further away after the ANN application to them. This is a 
consequence of the energy landscape deceptiveness for this protein, where there is 
an area corresponding to local minima (around 5-10 Ȧ in RMSD terms) that attracts 
the changing structures during the folding process.

Figure  7 shows an example of the refinement provided by the folding process 
with proteins PDB:5WOD and PDB:1D5Q, using the best evolved ANN with option 
iii. Figure 7 includes snapshots of an initial conformation at the end of Rosetta Stage 
2 (left part), superimposed on the native structure. The initial structures selected are 
those that provide the best RMSD value in the final refined structure. With protein 
PDB:1D5Q, the initial structure has a score3 value of 65.01 and an RMSD value 
of 4.77 Ȧ. The optimized result, after the folding provided by the ANN, is shown 
on the right. This final folded and refined structure has a score3 value of 17.59 and 

Fig. 8   Energy (score3, axis y) vs. RMSD (from the native structure, axis x, in Ȧ), of the final folded con-
formations (yellow) after application of the optimized ANN to 1000 initial conformations with protein 
PDB:1E0M (upper figures), protein PDB:5WOD (figures in the middle row) and PDB:1D5Q (bottom 
figures). These starting structures correspond to 1000 Rosetta solutions at the end of Stage 4 (blue). The 
point in red corresponds to the final folded conformation when the ANN is applied to the initial unfolded 
conformation. Left: ANN evolved considering only the initial unfolded conformation (option i); Center: 
ANN evolved considering three initial partially folded conformations (option ii_v2); Right: ANN evolved 
considering the unfolded conformation and three initial partially folded conformations (option iii_v2) 
(Color figure online)
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also a lower RMSD value of 2.44 Ȧ with respect to the initial structure, showing the 
improvement provided by the ANN process, although without obtaining the correct 
angles to determine the sheets in both cases. Similarly, with protein PDB:5WOD, 
its initial structure has a score3 value of 45.01 and an RMSD value of 3.18 Ȧ. The 
refined structure has a score3 value of 30.25 and also a lower RMSD value of 1.77 
Ȧ with respect to the initial structure (although, for this protein, the RMSD of many 
refined conformations is worse with respect to their starting conformations, due to 
the energy landscape deceptiveness, as discussed above).

Finally, to verify the detailed refinement capability provided by the optimized 
ANNs, the previous experiment was repeated with the same options, except that 
the initial partially folded conformations correspond to 1000 folded structures at 
the end of Rosetta Stage 4 (this final stage with fewer fragment insertion attempts 
than Rosetta ab initio, since parameter increase_cycles was set to 0.01 at that stage, 
Sect. 2.1). Three additional folded structures at the end of Rosetta Stage 4 were used 
to evolve/optimize the ANN. Thus, we called options ii and iii as their second ver-
sion (ii_v2 and iii_v2), to emphasize that these are just a variant as only the 3 par-
tially folded structures (used to evolve the ANN) are exchanged for others that have 
been more refined with Rosetta. Figure 8 includes the results with the neural-CA 
optimized with option i and these new options (ii_v2 and iii_v2).

First, the 1,000 Rosetta solutions at the end of Stage 4 are logically better opti-
mized in energy terms with respect to the previous case with partially folded struc-
tures at the end of Stage 2. This can be clearly seen by comparing the initial Rosetta 
solutions between Figs.  6 and  8 and in all proteins. Nevertheless, the ANN can 
refine such conformations again towards areas of lower energy, and pointing out the 
same considerations as in the previous case: 1) when evolving the ANN with option 
i (only considering the unfolded structure), the folding process cannot appropriately 
refine the partially folded structures in protein PDB:1E0M; 2) the option that uses as 
starting conformations, for the optimization of the ANN, partially folded structures 
and the unfolded one (option iii_v2) presents the best tradeoff to provide the folding 

Fig. 9   Snapshots of folded structures with protein PDB:1E0M. Left: Initial starting conformation (pink) 
at the end of Rosetta Stage 4. Right: Final optimized conformation (blue) after the ANN refinement. The 
native structure is shown in green (Color figure online)
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and refinement of different starting conformations; 3) finally, the previous comment 
regarding the deceptiveness of the energy landscape with protein PDB:5WOD can 
be reiterated here, since the area of best energy drives the folding structure further 
away from the native structure.

Figure 9 includes a final example of this refinement provided by the ANN process 
with protein PDB:1E0M. Figure 9 includes snapshots of an initial conformation at 
the end of Rosetta Stage 4 (left part), superimposed on the native structure. The 
initial structure has a score3 value of −7.96 and an RMSD value of 2.16 Ȧ. The best 
ANN, trained with option ii_v2, was used for the refinement of the initial structure. 
The final folded and refined structure (right part) has a score3 value of −12.52 and 
a nearly equal RMSD value of 2.29 Ȧ with respect to the initial structure. Similar 
results are obtained with option iii_v2, which shows the improvement provided by 
the ANN process, although it is somewhat minor with respect to the previous case, 
since the starting structures are now better refined.

4 � Discussion and conclusions

In this study, protein folding was considered as an emergent process, and therefore 
one that can be modeled with classical tools for the study of emergent behavior, such 
as cellular automata. Nevertheless, instead of using classical CA implemented with 
rule sets, feed-forward neural networks were used to implement the CA (neural-CA). 
Thus, the cellular automaton model incorporates the ANN generalization property, 
and the ANN can be thought of as a black box that encodes the classical CA rule set. 
Another difference is that the information used by neural-CA is obtained from the 
energy landscape, rather than from the spatial neighborhood of a grid site element 
to which the classical CA rule set is applied. The general process can also be con-
sidered similar to the processes of developing complex phenotypes from compact 
genotypes. This parallelism comes from the fact that the final folded structure can be 
seen as the final phenotype defined by the ANN genotype that guides the develop-
ment (folding process) of the final phenotype.

Using the low-level representation model of Rosetta, an evolved neural cellular 
automaton sequentially modifies two of the amino acid dihedral angles ( � and � ), 
from the beginning to the end of the protein chain and, as in classical CA, this pro-
cess is iterated over time. Validation is performed by testing whether the proposed 
methods can provide the final conformations starting with the unfolded (or partially 
folded) conformation, since there is no experimental information (resolved confor-
mations) corresponding to an ordered sequence of temporal states of a protein. The 
experiments reported with evolved neural-CA for short proteins showed that opti-
mized neural cellular automata can model the protein folding process using only 
information from the energy landscape, notwithstanding the defects of the Rosetta 
energy function with its low-resolution representation. Therefore, contrary to the 
molecular dynamics alternative [7], which uses a priori modeling of the physico-
chemical interactions of the protein elements, machine learning methods have made 
it possible to automatically obtain a model for the folding process, this from the 
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available data of resolved proteins. Consequently, our aim was not to compete with 
PSP methods, but rather to test machine learning and how it might provide an auto-
matic model of the folding process.

Moreover, the modeling of the folding process with evolved neural-CA can serve 
to refine or improve an initial structural model, as was done with the initial partially 
folded structures here. This aspect of refinement is considered a new development 
and constitutes progress since CASP11 (Critical Assessment of Structure Predic-
tion) in terms of the state of the art in structure modeling [21]. When the ANN is 
optimized to provide the folding of the initial unfolded conformation and also par-
tially folded structures, the results show the appropriate tradeoff to obtain a com-
pact low-energy fold for that fully unfolded conformation, as well as a refinement 
of other partially folded structures. This refinement can be especially important for 
unresolved proteins, where the CA models can provide refined structures that mini-
mize conformational energy (e.g., as mentioned in the Introduction, from initial con-
formations predicted with PSP methods). In this use of neural-CA for refinement, it 
is worth noting the difference with respect to PSP protocols based on protein frag-
ments (such as Rosetta ab  initio), since information from resolved proteins (or in 
the form of small fragments) is not used. Because only the primary sequence infor-
mation and the energy landscape are considered, the folding model follows a pure 
ab initio procedure.

In addition, the results show that, if the energy landscape is deceptive, the 
refinement (in energy terms) that the optimized ANN is able to provide might 
also, at the same time, move the initial structure away from the native conforma-
tion (in RMSD terms). When the aim is only the prediction of the final folded 
structure (PSP), the strategy to tackle the deceptiveness of the energy model is to 
try to provide conformational models (decoys) that minimize energy but which, 
at the same time, present a diversified structural distribution. The use of nich-
ing methods in evolutionary computation is a straightforward means of address-
ing the problem [44], since these niching methods enforce the distribution of 
the population (in this case of PSP, possible protein conformations) in different 
areas or niches of the energy landscape corresponding to different energy minima 
(and possibly to structural variants close to the native structure). However, this 
is not the objective in the present study, since the ANN only uses information 
from the (imperfect) Rosetta energy landscape to fold the structures towards low-
energy areas. The ANN process is deterministic, but if some stochasticity were 
to be considered, the ANN process could be considered as another ab initio PSP 
strategy, with the possibility of forcing such diversified structural variants in the 
resulting protein decoys.

Some potential extensions of the current study might be undertaken as future 
work in this modeling with the Rosetta model. First, it should be noted that the 
energy changes that are used as inputs to the neural-CA take into account the effect 
of the angle perturbations in the complete chain (Fig. 2). This implies that it is dif-
ficult that an evolved neural cellular automaton determines an angle change that 
decreases energy in the local neighborhood if the effect on the whole chain is nega-
tive (increase in energy), although it would be possible that following changes might 
repair the problems (e.g., clashes) that cause the increase in energy in areas some 
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distance away from the angle where the ANN was applied. This limitation arises 
from the constraints of Rosetta with its energy model, since it is not possible to cal-
culate energy increases (after a perturbation) in the local environment of an amino 
acid (the energy score can only be considered with the complete protein chain). As 
the effect of the perturbations caused to calculate the energy increases (inputs to 
the ANN) are considered with the complete protein chain, consequently the evolved 
ANN does not consider changes that, for example, produce conflicts in areas away 
from the angle that is modified. This is the main limitation of working with the 
(knowledge-based) Rosetta energy model, so the folding provided by the evolved 
ANN must act very conservatively, restricting the possibilities of determining other 
folding pathways.

If the energy changes were considered by defining a neighborhood (e.g., a sphere) 
around the angle to which the artificial neural network is applied (similarly to clas-
sical CA), this problem could be overcome with more possibilities in the definition 
of folding pathways and, consequently, with more flexibility in folding pathways for 
large proteins. The chosen proteins correspond to different topologies and are suf-
ficient to observe the behavior of the evolved CA when modeling the interactions of 
the different and common elements of the secondary structure. Therefore, the cur-
rent study demonstrates the possibility of modeling the folding process with the pro-
posed approach, but with the main restriction of modeling with short proteins. Thus, 
the proteins considered in the experiments are not exhaustive, and further testing is 
needed. For this, it will be necessary to extend the methods to energy models with-
out the aforementioned restriction, which will allow the same modeling with longer 
proteins.

Furthermore, since neural-CA were evolved for a particular protein, generaliz-
ability could be tested when these evolved neural-CA are applied to different pro-
teins. That is, a neural cellular automaton was evolved to provide the folding process 
for a single protein, but the same ANN can be evolved/optimized to provide the fold-
ing process for a set of different proteins (training set), while validating the ANN 
processing with a different set of proteins not used in the optimization process (vali-
dation or test set). This would require energy normalization for different proteins. 
However, it is worth noting the importance of this property of optimized neural-CA, 
as an optimized ANN could be considered as a “folding operator” that can provide 
the folding process of any protein and independently of its length.

Finally, an interesting idea is that our modeling of the dynamic folding process 
can provide transitions of a protein between different structures at equilibrium, e.g., 
transitions between healthy and pathogenic variants of proteins involved in diseases. 
In previous approaches, for example Sapin et al. [35], an evolutionary algorithm was 
used to evolve path representations of structural transitions in proteins. Contrary to 
this approach of finding a particular transition path between each pair of protein var-
iants at equilibrium, our modeling of the folding process can provide these structural 
transitions in a more direct way, if the neural-CA model is evolved to provide such 
transitions through the energy landscape.

Therefore, the ideas developed in this study are not intended to compete with PSP, 
but rather to integrate the ideas used in Artificial Life in the development of final 
complex phenotypes and in the modeling of emergent processes for the modeling of 
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the folding process of proteins. The ideas presented serve to lay the foundations for a 
suitable methodology when using machine learning to automatically obtain a model 
of the folding process, one that would be valid for any protein.
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