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In this work we present a high-accurate discretization to solve the compressible Navier-
Stokes equations using an Arbitrary Lagrangian-Eulerian meshless method (SPH-MLS), 
which can be seen as a general formulation that includes some well-known meshfree 
methods as a particular case. The formulation is based on the use of Moving Least 
Squares (MLS) approximants as weight functions on a Galerkin formulation and to accurate 
discretize the convective and viscous fluxes. This formulation also verifies the discrete 
partition of unity and reproduces the zero-gradient condition for constant functions. 
Convective fluxes are discretized using Riemann solvers. In order to obtain high accuracy 
MLS is also used for the high-order reconstruction of the Riemann states.
The accuracy and performance of the proposed method is demonstrated by solving 
different steady and unsteady benchmark problems.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Traditionally, grid-based methods have been the most common approach to deal with aerodynamic flows. However, 
mesh generation is one of the current most significant bottlenecks in CFD applications, since it is usual that the mesh 
generation phase represents the dominant cost in terms of both, human intervention and time. Moreover, there are prob-
lems with moving boundaries that complicates the meshing and remeshing algorithm. Meshless methods are a potential 
choice to solve problems such as free surface flows, sloshing, floods and fluid-structure interaction, among others, where 
mesh-based methods are difficult to apply. In the context of CFD, the Smoothed Particle Hydrodynamics method (SPH) 
is the most widely used meshless method for flow simulations. Unfortunately, this method currently presents some key 
drawbacks, which have been a serious barrier to its widespread use [1]. The lack of accuracy, low convergence order and 
inaccurate definition of boundary conditions are the kinds of drawbacks that a new generation of meshless methods have 
to overcome.

Meshless and mesh-based discretizations are usually considered as two competitive strategies to solve partial differential 
equations. In fact, if we consider the Finite Volume Method (FVM) and Smoothed Particle Hydrodynamics (SPH) as repre-
sentative of these two approaches, both methodologies are far apart from each other. Vila [2] linked these methodologies 
by devising a weak version of a SPH method in an ALE framework where the interaction between particles is accounted 
by solving a Riemann problem. Junk [4] outlined that the FVM can be considered as a special case of meshless method 
satisfying the partition of unity property and posed the question if finite volume method really needs a topology for its 
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implementation. Schaller [5] analyzed three particle methods in decreasing similitude with the FVM and in terms of com-
putational cost. The particle method with more similitude with the FVM is the one based on Voronoi tessellation, followed 
by the FVPM [6] and the SPH-ALE proposed by Vila [2] and Ben Moussa [3]. So, this two apparent different approaches 
actually have many features in common [7] suggesting that some successful techniques used in FVM can be incorporated in 
SPH and viceversa.

Despite the fact that meshless and mesh-based methods have advantages and drawbacks derived from the different 
form to accomplish the discretization of the partial differential equations, there are some physical phenomena (like tur-
bulence) that are very computational demanding for both types of approaches. The research on the numerical simulation 
of turbulent flows has been mainly addressed by using mesh-based methods. Simulation of turbulence using meshfree 
methods has received less attention, and many studies deal with complex applications without providing details of their 
development, diffusion rates or details about the evolution of the energy spectrum. We refer the reader to [8–12] for some 
examples.

In [13] the authors presented a new meshless approach (SPH-MLS) based on a Galerkin discretization of a set of conser-
vation equations on an Arbitrary Lagrangian Eulerian approach, applied to the resolution of the Linearized Euler Equations. 
Instead of using kernel approximations, Moving Least Squares (MLS) [14,15] were used as weight functions for the Galerkin 
discretization. The numerical method proposed was high-order and very accurate, and it was shown that it was able to be 
applied in the context of Computational Aeroacoustics. It can be seen as a general formulation which includes some well-
known meshfree methods as a particular case, such as SPH-ALE [2,16–18] and Finite Point Method [19–21]. This formulation 
has several advantages over standard SPH methods. First, MLS functions form a partition of unity even in regions close to 
the boundaries. Moreover, shape function derivatives form a partition of nullity. These properties allow avoiding problems 
related with the initial position of particles which are found in other SPH methods [22] and also lead to a higher accuracy 
than kernel usual approximations. Moreover, the number of neighbors required by the proposed formulation is smaller than 
that required when the kernel approximation is used [13], so the numerical scheme is more compact. In addition, the ALE 
behavior of the method proposed in this work makes possible the natural accommodation of Particle Shifting Techniques 
(PST). PST defines a drift velocity that moves the computational points to positions that produce more regular distributions 
and thus more accurate results [23]. First attempts to use MLS under a meshless framework are the Diffuse Element Method 
[24] and the Element-Free Galerkin [25]. Dilts [26,27] proposed different procedures to introduce MLS approximations to 
derive discrete meshless methods applied to a system of equations expressed in Lagrangian form. We note that the novelty 
of the present work is the use of the MLS approximation technique in a weak form of the Navier Stokes equations in ALE 
form.

In this work, we present several modifications to the method proposed in [13] and also the extension of this method 
to the resolution of compressible viscous flows in both laminar and turbulent regimes. Thus, there are two main novelties 
in the formulation. First, we introduce a novel approach for the high-order reconstruction of the Riemann states. The usual 
Taylor polynomial reconstruction of the Riemann states is substituted by direct MLS approximations. This avoids the need 
of computing high-order derivatives for the Taylor reconstruction, but at the same time keeps the high-order accuracy of 
the reconstruction. The second novelty is related to the discretization of viscous terms. In the literature, there are different 
approaches to model the viscous part of the Navier-Stokes equations [28–31]. The traditional approach in SPH methods is 
based on the definition of a number of discrete operators for approximating second derivatives. In this work we follow a 
different approach and approximate the viscous flux term with a formulation similar to that used for mesh-based methods 
in unstructured grids. Our approach is based on the use of MLS approximations of the Riemann states at both sides of the 
integration point. This approach fits perfectly in the SPH-MLS approach, since the MLS reconstruction is already computed. 
This new discretization leads to a robust and very accurate meshless method, which is able to obtain results at least as 
accurate as grid-based methods of the same order of accuracy.

The structure of this paper is as follows: firstly the governing equations are presented. Next, the proposed numerical 
method is introduced, including the novel discretization of viscous terms. Some numerical examples are presented to show 
the accuracy and robustness of the proposed formulation. Finally, conclusions are drawn.

2. Governing equations

We define a transport operator Lw (U ) with a velocity field w that operates on a vector of variables U giving

Lw(U ) ≡ ∂

∂t
U + ∇ · (w ⊗ U ) (1)

The conservative form of the Navier-Stokes equations can be compactly expressed using the transport operator Lw as

Lw(U ) + ∇ · (F H − F E) = S (2)

where the fluxes are split into a hyperbolic-like part, F H = (F x
H , F y

H , F z
H ), and an elliptic-like part, F E = (F x

E , F y
E , F z

E ). The 
right hand side contains the vector of source terms S .
2
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In 3D the vector of conservative variables reads as

U =

⎛⎜⎜⎜⎝
ρ

ρux

ρu y

ρuz

ρE

⎞⎟⎟⎟⎠ , (3)

where ρ is the density, u = (ux, u y, uz)T is the velocity vector, and E is the total energy.
The hyperbolic-like fluxes, also known as convective fluxes read in 3D as

F x
H =

⎛⎜⎜⎜⎝
ρ(ux − wx)

ρux(ux − wx) + p
ρu y(ux − wx)

ρuz(ux − wx)

ρE(ux − wx) + pux

⎞⎟⎟⎟⎠ , F y
H =

⎛⎜⎜⎜⎝
ρ(u y − w y)

ρux(u y − w y)

ρu y(u y − w y) + p
ρuz(u y − w y)

ρE(u y − w y) + pu y

⎞⎟⎟⎟⎠ ,

F z
H =

⎛⎜⎜⎜⎝
ρ(uz − wz)

ρux(uz − wz)

ρu y(uz − wz)

ρuz(uz − wz) + p
ρE(uz − wz) + puz

⎞⎟⎟⎟⎠
(4)

where p is the pressure. The elliptic or viscous fluxes read

F x
E =

⎛⎜⎜⎜⎝
0

τ xx

τ xy

τ xz

τ x · u − qx

⎞⎟⎟⎟⎠ , F y
E =

⎛⎜⎜⎜⎝
0

τ yx

τ yy

τ yz

τ y · u − qy

⎞⎟⎟⎟⎠ , F z
E =

⎛⎜⎜⎜⎝
0

τ zx

τ zy

τ zz

τ z · u − qz

⎞⎟⎟⎟⎠ , (5)

where τ x = (τ xx, τ xy, τ xz), τ y = (τ yx, τ yy, τ yz) and τ z = (τ zx, τ zy, τ zz) represent the viscous stresses and q = (qx, qy, qz)T

is the heat flux vector.
The viscous stress tensor is defined as

τ = μ(∇(u) + ∇(u)T ) − 2

3
μ∇ · (u)I

where μ is the dynamic viscosity. These equations are completed with an equation of state (EOS), which in this work is the 
ideal gas EOS, defined as

p = (γ − 1)

(
ρE − 1

2
ρ |u|2

)
, (6)

where γ = 7
5 .

Once the governing equations have been presented we can remark some details. The hyperbolic flux F H is not only 
dependent on the vector of conservative variables U but also on the transport velocity field w , stated mathematically 
as F H = F H (U , w). The elliptic flux F E is a diffusive flux that does not depend on w velocity and it takes the form 
F E = F E (U , ∇(u)). Note that the case w = 0 corresponds to the usual Eulerian approach. By setting the transport field 
equal to the fluid velocity field w = u leads to a pure Lagrangian approach. But apart from these two extreme cases, where 
the transport velocity is zero or equal to the fluid velocity in the whole domain, there are other possible scenarios. The 
transport velocity is a field variable that is independent of the flow solution and can be prescribed at different points of 
the domain according to different criteria. The transport velocity can be prescribed to move particles avoiding some pitfalls 
of pure Lagrangian methods by using some Particle Shifting Technique [23]. Particles in the vicinity of a free surface can be 
moved in a Lagrangian fashion meanwhile particles in the vicinity of a wall can adopt an Eulerian framework to ease the 
implementation of boundary conditions. Note that the present framework allows both Eulerian and Lagrangian frames for 
each particle, since it is an Arbitrary Lagrangian-Eulerian (ALE) approach.

3. Numerical discretization

In this section the numerical discretization of the system of equations (2) is presented. The first step in the discretization 
process is the reduction of the continuum domain into a cloud of points. Fig. 1 shows a discretized geometry corresponding 
to a continuous domain � with boundary ∂�.

The points also serve as the location of the computational nodes or computational particles. Node is the preferred option 
to refer to computational points in Eulerian description meanwhile particle is the preferred one in Lagrangian description. 
3
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Fig. 1. Computational domain � and kernel support Di and D j of particle i and j. Shape functions associated to particle i and j are represented by 
isocontour curves.

Fig. 2. Shape functions associated to particle i and j are represented by isocontour curves.

In ALE methods the computational points can be fixed nodes, particles that move with the fluid velocity or some points 
that move with a different prescribed transport velocity w . Instead of using different names we use the term particle in 
broad sense to refer to any computational point. We denote by n the total numbers of particles.

Each particle is labeled with an index i and we define its current position by means of its vector position xi with respect 
to a fixed coordinate system. We denote by Di the spherical support domain and by Ni the shape function associated to 
particle i. We use lowercase ni for the number of particles inside the support domain of i particle. Note that each shape 
function Ni has a spherical compact support (a circle for 2D) but, in general, the shape function is not a centered radial 
function. Fig. 2 depicts two neighboring particles in a two-dimensional domain. The bottom of the figure corresponds to a 
plan view meanwhile the top view shows the profile of the shape functions in a normal plane passing through the line that 
connects both particles. Note that we show the continuous version of the shape functions Ni (x) and N j(x) although only 
the values in the locations of particles are required (Ni(x j) and N j(xi)).

Contrary to traditional SPH methods, where each particle is assigned with a constant mass value, in the proposed method 
the mass and volume for each particle are variables that evolve with time.

The complete procedure to obtain the discretization can be found in [13] for a general system of conservation laws. 
Here, we start with the following semidiscrete form valid for any interior particle i whose support does not intersect ∂�

(see Fig. 1), where we group the hyperbolic and elliptic fluxes in a total flux represented by F in order to remark the 
general form of a balance law.
4
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d(V i U i)

dt
+

ni∑
j=1

[
1

2

(
F j +F i

) −F i

](−V j ∇Nij + V i ∇N ji
) = V i S i (7)

The first term in the left side of the equation is the temporal derivative of the quantity carried by a general particle i. 
For a fixed particle with w i = 0 the term d(V i U i)

dt is equivalent to ∂(V i U i)
∂t . For a particle with w i = ui the temporal derivative 

d(V i U i)
dt represents a material derivative which is usually represented as D(V i U i)

Dt . The second term is a sum over all neighbors 
of particle i and accounts for the hyperbolic and elliptic fluxes of particle i. We note that the usual kernel approximation 
has been substituted by a discretization based in MLS approximations.

In equation (7), we define Nij = N(r j − ri, hi) and N ji = N(ri − r j, h j). Note that these terms are required to obtain 
a anti-symmetric discretization of the effective area of the particle. By comparison with finite volume methods, the term (−V j ∇Nij + V i ∇N ji

)
plays the same role as the geometric interaction area between cells i and j.

The notation Ni = N(r − ri, hi) stands for the MLS shape function evaluated at point r and centered at the position of 
particle i (ri ). MLS shape functions also depend on a weighted function (see [32]), and the smoothing length hi which is 
a measure of the compact support of the kernel function. The smoothing length associated to the particle i is variable for 
each particle and is computed as

hi = σ V i
1
d (8)

where d is the space dimensions number, V i is the effective volume of the particle i and σ is a constant parameter. 
The number of neighbors is variable and it depends on the value of σ . In this work, we use σ = 1.5 in the numerical 
applications. Note that this value differs from the one typically used in SPH-kernel approaches (σ = 2). This implies that 
the number of particles involved in the approximation is reduced, which reduces the computational cost and also increases 
the accuracy of the method.

For the discretization of the Navier-Stokes equations we split the F flux into the convective and the diffusive parts 
F = F H − F E and we define the flux at the midpoint between two particles i and j as F i j = 1

2

(
F j + F i

)
. Then, we can 

write

d(V i U i)

dt
+

ni∑
j=1

[
F H

ij − F H
i −

(
F E

i j − F E
i

)] (−V j ∇Nij + V i ∇N ji
) = V i S i (9)

Following [13] we introduce the numerical flux for the convective terms as an approximation of the flux at the midpoint 
between particles G i j ≈ F H

ij , and we obtain the final discretized form

d(V i U i)

dt
+

ni∑
j=1

[
G i j − F H

i −
(

F E
i j − F E

i

)] (−V j ∇Nij + V i ∇N ji
) = V i S i (10)

Moving Least Squares approximations are used also to provide high accurate discretization of the convective and diffusive 
fluxes. We provide a brief exposition to introduce the nomenclature and remark some important points.

3.1. Moving Least Squares approximation

Moving Least Squares is an approximation technique widely used in meshless methods with different purposes. In stan-
dard SPH methodology MLS is used as an auxiliarly tool for boundary treatment [33], field refreshing to remedy the noisy 
pressure field [34], reordering SPH methods or simply as an approximation technique in the post-processing stage. In SPH-
ALE methods [16,17] MLS technique is used to increase the accuracy of convective fluxes.

In this work, MLS approximations play a more important role, since the usual kernel approximation is totally replaced 
by the MLS approximation.

First, we give a brief overview of the Moving Least Squares (MLS) technique for introducing the notations. We refer 
the reader to [14] for a complete description of the technique and to [35] for their application in the context of meshless 
methods.

The MLS approximation of a function u at point r = (x, y, z)T is approximated in the neighborhood around a particle i
by a set of ni values, u j , and it is defined as

û(r) =
ni∑

j=1

N j(r)u j (11)

where the associated shape functions, gathered in vector N = (N1, N2, ..., Nni ) ∈Rni , are computed by

N T (r) = pT (r)M−1(r)P (r)W ML S(r) (12)
5
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Fig. 3. Schematic representation of MLS approximations. The blue solid line represents the MLS reconstruction associated to particle i, built from information 
of its neighboring particles. The blue dashed line represents the weight function. The same is plotted in red for another particle j. Di and D j are the 
supports of particles i and j. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where pT (r) = (1, x, y, z, x2, y2, z2, xy, xz, yz...) ∈Rm is a m-dimensional basis functions vector, P (r) is a m × ni matrix 
where the basis functions are evaluated at each point of the stencil of the particle i (namely P = [pT (r j)]i) and M(r) is 
the m × m moment matrix given by

M(r) = P (r)W ML S(r)P T (r). (13)

Diagonal matrix W ML S(r) is derived from the kernel function evaluated at r j − ri for the ni neighboring particles [36].
Note that the general MLS technique allows that r can take any value in the domain � resulting in a continuous 

approximation. Therefore, the approximation of the variables or its derivatives can be obtained at any point of the domain. 
In Fig. 3 a schematic representation of the MLS reconstruction is shown.

In the following sections we address the discretization of the convective and diffusive fluxes.

3.2. Convective flux discretization

In this work we have computed the convective flux, G i j , using the Rusanov numerical flux [37].

G i j = 1

2
(F +

i j + F −
i j ) − 1

2
S∗

i j�U i j · n, (14)

where S∗
i j is the maximum eigenvalue of the Jacobian matrix

S∗
i j = max ((u − w) · n + ci j, (u − w) · n − ci j, (u − w) · n). (15)

In (15), ci j is the local speed of sound at the integration point and F −
i j and F +

i j denote the flux approximations of F on the 
left and right sides of the integration point (the two different Riemann states), and ni j is the normal vector. The jump of 
the conservative vector is defined as �U i j = Û

+
i j − Û

−
i j .

In order to achieve a high-order reconstruction of the Riemann states, the usual approach is to use a Taylor polynomial. 
Instead, we propose here the use of MLS approximations. Note that the MLS shape functions required for the reconstruction 
are already computed since they are used in the discretization of the governing equations, as indicated in equation (10). 
Thus, the cost of the evaluation of the reconstructed Riemann states is highly reduced, compared with the use of a Tay-
lor polynomial (which requires an additional computation of high-order derivatives). Thus the reconstructed variables are 
computed as

Û
−
i j =

ni∑
k=1

N(ri j − ri,hi)U k, Û
+
i j =

n j∑
k=1

N(ri j − r j,h j)U k (16)

3.3. Diffusive flux discretization

In this work, we use a novel formulation for the discretization of the diffusive fluxes, which is also based on the use of 
MLS approximations. MLS shape functions allows us to obtain high-accurate reconstructions of the variables on each stencil. 
Thus, it is possible to obtain two high-order approximations of the diffusive fluxes at the integration point using the two 
different states, and then compute the diffusive fluxes directly at each integration point (which is located at the midpoint 
6
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Fig. 4. Schematic representation of the high-order Riemann states reconstruction at the integration point located in the midpoint between particles i and j.

between particles i and j), as the arithmetic mean of the diffusive fluxes of each Riemann state. (See Fig. 4.) A different 
approach is to center the MLS approximation on each integration point and perform a reconstruction for every integration 
as it was already proposed in the context of Finite Volume methods [36,38]. However, this approach will lead to higher 
computational cost due the large number of integration points and the need for computing the reconstructions on each 
time step. Thus, in this work, the diffusive fluxes are computed as

F E
i j = 1

2
(F E+

i j + F E−
i j ). (17)

4. Numerical results

This section presents the numerical results for several benchmark problems aimed at assessing the accuracy and effi-
ciency of the proposed method for both steady and unsteady problems. All the numerical examples have been computed 
using a third-order TVD Runge–Kutta scheme for time integration [39]. This time integration method has been already used 
in SPH [16].

4.1. Accuracy and convergence test

In this section we test the accuracy and the order of convergence of the proposed reconstruction. First, we have con-
sidered the 1D domain � = [0, 4], which is discretized with a set of uniform and random particles. The random particles 
are obtained adding a perturbation to the position of the uniform distribution. This perturbation is randomly distributed 
between [− V

2 , V
2 ]. where V is the volume associated to each particle of the initial uniform set. Each particle is initialized 

with the field function u(x) as

u(x) = sin (2πx) (18)

First, we analyze the accuracy of the MLS reconstruction of the variable at each integration point (midpoint between parti-
cles). The reconstruction of the variable and its derivatives are computed as

u(xij) ≈ û(xij) =
n j∑

k=1

N(ri j − ri,hi)uk (19)

∂u(xij)

∂x
≈ ∂ û(xij)

∂x
=

n j∑
k=1

∂N(ri j − ri,hi)

∂x
uk (20)

∂2u(xij)

∂x2
≈ ∂2û(xij)

∂x2
=

n j∑
k=1

∂2N(ri j − ri,hi)

∂x2
uk (21)

For each distribution of particles, the LN
2 norms of the errors are computed, and the obtained results are presented in Fig. 5.

The expected orders of accuracy are recovered for the approximation of the variable and its derivatives. Note that the 
choice of σ = 2.0 leads to a larger error than that of σ = 1.5 for all the discretizations.

Next, we analyze the convergence and the error committed by the MLS reconstruction centered at each particle (Fig. 6). 
The centered reconstruction is used in the computation of the weights and the evaluation of the diffusive flux on each 
particle. The reconstruction is computed as
7
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Fig. 5. Accuracy and convergence 1D test: LN
2 norm of the committed error at the approximation of the variables and its derivatives at integrations points 

(midpoint between neighboring particles) for each discretization. Figure a) shows the obtained results with the parameter σ = 1.5 and Figure b) those 
obtained for σ = 2.0.

∂u(xI )

∂x
≈ ∂ û(xI )

∂x
=

n j∑
k=1

∂N(ri − ri,hi)

∂x
uk (22)

∂2u(xI )

∂x2
≈ ∂2û(xI )

∂x2
=

n j∑
k=1

∂2N(ri − ri,hi)

∂x2
uk (23)

∂3u(xI )

∂x3
≈ ∂3û(xI )

∂x3
=

n j∑
k=1

∂3N(ri − ri,hi)

∂x3
uk (24)

The expected order of accuracy is achieved in all cases. Note that when a structured distribution of particles is used, 
the order of the reconstruction increases in the odd derivatives. This is due to the cancellation of errors when a symmetric 
discretization is used.

Next, we have tested the effect of the parameter σ . This parameter regulates the size of the support. We have discretized 
the computational domain � = [0, 4] with 128 particles, with both, uniform and random distributions. Then, we have 
computed the LN

2 norms of the error for values of σ ∈ [1, 3]. The LN
2 norms of the error for the reconstruction and its 

derivatives at the integration point and the derivatives at the particle position are represented in Fig. 7.
8
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Fig. 6. Accuracy and convergence 1D test: LN
2 norm of the committed error at the approximation of the derivatives at the particles position for each 

discretization. Figure a) shows the obtained results with the parameter σ = 1.5 and Figure b) those obtained for σ = 2.0.

Note that the committed error in the reconstruction decreases as the value of σ decreases. However, when random 
particle distributions are used, the minimum value of σ that is able to obtain results is σ = 1.37. Below that value, there 
are reconstructions in the domain that does not have enough points to use the MLS reconstruction.

For each value of σ , we have calculated the number of neighbors for each particle for uniform distributions and the 
mean value and maximum and minimum values for random distributions. The obtained results are represented in Fig. 8. 
For uniform distributions of particles, the typical value used in SPH (σ = 2) leads to 9 neighbors for each particle, that 
is, 8 Riemann Problems to be solved each time step. On the other hand, if σ = 1.5 is chosen, the number of neighbors is 
reduced to 7, which implies a computation of 6 Riemann Problems. In the case of random distributions, the mean number 
of neighbors is 7.875 for σ = 2 and 6.094 for σ = 1.5. This difference increases in 2D and 3d. For example, on a 2D uniform 
distribution of particles a value of σ = 1.5 leads to 25 neighbors per particle and σ = 2.0 leads to 49 neighbors per particle. 
In a 3D case a σ = 1.5 leads to 123 neighbors per particle and σ = 2.0 leads to 257 neighbors per particle.

From the previous results, we recommend the use of σ = 1.5 as a compromise between accuracy and robustness.
Next, we have extended the problem to 2D. We have considered the domain � = [0, 4] ×[0, 4], which is discretized with 

a set of uniform and random particles of 1024, 4096, 16384 and 65536. The field function, u(x, y), analyzed in this test 
case is defined as

u(x, y) = sin (2πx) sin (2π y) (25)
9
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Fig. 7. Accuracy and convergence 1D test: Parametric study of the smoothing length in terms of σ . Figure a) shows the obtained results at the integration 
point and in Figure b) the reconstruction is centered at the particle position.

For each particle distribution, denoted as N , we have computed the MLS reconstruction of the field function u(x, y) at each 
integration point. Then the LN

2 norms of the errors of the reconstruction variable, the gradient modulus and the Laplacian 
of the variable at the integration point are computed and represented in Fig. 9 for σ = 1.5 and σ = 2.0.

Next, the derivatives of the field function are computed at each particle. The LN
2 norms of the errors of derivatives are 

computed and plotted in Fig. 10 for σ = 1.5 and σ = 2.0.
The expected order of accuracy is achieved in all cases.

4.2. Isentropic vortex convection

In the second test case, the numerical discretization of the Euler equations is tested. This test case corresponds to the 
convection of a vortex and it is widely used as benchmark case since it has analytical solution [32,40–42], that reads

ux(x, y, t)

a∞
= ux∞

a∞
− K

2πa∞
ŷeα(1−r2)/2

u y(x, y, t) = u y∞ + K
x̂eα(1−r2)/2
a∞ a∞ 2πa∞
10
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Fig. 8. Accuracy and convergence 1D test: Parametric study of the effect of the smoothing length parameter (σ ) in the number of neighbors for uniform 
and random particles distributions.

T (x, y, t)

T∞
= 1 − K 2(γ − 1)

8απ2a2∞
eα(1−r2)

ρ(x, y, t)

ρ∞
=

(
T (x, y, t)

T∞

) 1
γ −1

p(x, y, t)

p∞
=

(
T (x, y, t)

T∞

) γ
γ −1

where x̂ = x − x0 − ux∞t , ŷ = y − y0 − u y∞t and r = √
x̂2 + ŷ2. The computational domain is a square � = [0, 10] × [0, 10]

with periodic boundary conditions. The chosen parameters are α = 1, ρ∞ = 1, p∞ = 1, (x0, y0) = (5, 5) and K = 5. For all 
the simulations the final time is t = 5.

Two configurations are analyzed in this test case: In the first configuration we set to null the convected velocity as 
(ux∞, u y∞) = (0, 0), with this set of parameters the vortex rotates always around a fixed position (x, y) = (5, 5). In the 
second configuration we set the convected velocity as (ux∞, u y∞) = (2, 0), with this set of parameters the vortex starts at 
position (x, y) = (5, 5) and at t = 5, due the periodic boundary conditions the vortex reaches again position (x, y) = (5, 5).

For both configurations, we compute the test case with a set of uniform particles of 162, 322, 642 and 1282 until the final 
time is achieved, where we compute the LN

2 norm of the error for the density field. The obtained results for the Eulerian 
and Lagrangian configurations are presented in Fig. 11.

The obtained results when an Eulerian configuration is chosen obtains orders of convergence higher than second. The 
theoretical formal order of the method is second at most [13]. This superconvergence is probably due to the high-order 
reconstruction of the variables, which guides the overall convergence of the scheme with these resolutions. Moreover, the 
formal order decreases in the last particle resolution in the convected vortex. On the other hand, when the Lagrangian 
configuration is used the formal order is drastically reduced to first order at most. Similar behaviors has been also observed 
in [43] for a different test case.

4.3. 2D viscous Taylor Green vortex

The next test case is the 2D Taylor Green Vortex. This test case is an exact time-dependent solution to the incompressible 
Navier-Stokes equations in 2D [44] and it is widely used to validate SPH methods [45,47]. The flow decays in time at a rate 
which is controlled by the viscosity. The analytical solution for the velocity and pressure fields corresponding to this flow 
in the domain � = [0, 2π ] × [0, 2π ] is

ux(x, y) = e
−8π2t

Re cos (y) sin (x) (26)

u y(x, y) = −e
−8π2t

Re cos (x) sin (y)

p(x, y) = e
−16π2t

Re

(cos (2x) + cos (2y))

4

11
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Fig. 9. Accuracy and convergence 2D test: LN
2 norm of the committed error at the approximation of the variables and its derivatives at integrations points 

(midpoint between neighboring particles) for each discretization. N . Figure a) shows the obtained results with the parameter σ = 1.5 and Figure b) those 
obtained for σ = 2.0.

For Lagrangian particle methods this is a very challenging problem, since errors in the updating of the position of 
particles may lead the numerical scheme to reach a wrong solution. This fact will break the stationary closed trajectories 
which are obtained for the analytical solution. In this test case, the Reynolds number is set to 100. The computational 
domain � is discretized with 2500 particles disposed in a Cartesian distribution and periodic boundary conditions are 
imposed in all the boundaries. The initial configuration of particles and the initial velocity field are represented in Fig. 12 a). 
In this problem, a Lagrangian configuration is adopted and particle shifting is used as described in [23]. It is important to 
note that with the proposed methodology it is not required the use of procedures such as the particle packing method [22]
to obtain a suitable initial distribution of the particles, which is required in SPH methods based on kernel approximations 
[22,29].

In Fig. 12, we plot the velocity magnitude at t = 0, t = 1 and t = 2. It is observed that the symmetry of the solution is 
kept, and the stationary closed trajectories are conserved.

In Fig. 13 the decay of the maximum velocity and the kinetic energy compared with the theoretical decay and with 
the results obtained with the δ+-SPH method [46,47] are presented. The results obtained by the proposed method show a 
perfect match with the theoretical curve. Note also that both, the Eulerian and the Lagrangian configurations, obtains similar 
results.
12
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Fig. 10. Accuracy and convergence 2D test: LN
2 norm of the committed error of the derivatives at the particles position for each particle discretization N . 

Figure a) shows the obtained results with the parameter σ = 1.5 and Figure b) those obtained for σ = 2.0.

4.4. Steady Re = 40 flow around a 2D cylinder

In this test case, we consider the flow around a circular cylinder as a validation case of the proposed method for viscous 
flows with curved walls. The setup of this test case is as follows: The radius of the cylinder is R = 0.5, the Reynolds number 
is Re = 40 and the free-stream Mach number is M∞ = 0.1.

The computational domain is discretized with a total number of 10800 particles and 120 particles around the cylinder. 
Fig. 14 shows a close view of the particle distribution around the cylinder. Free-stream variables are fixed at the outer 
boundary and we impose the no-slip and adiabatic boundary conditions at the cylinder solid wall. We solve the problem 
in an Eulerian configuration until the steady state is obtained. In Fig. 15 the velocity field and the streamlines are plotted 
near the cylinder. It is observed that the solution obtained using the proposed numerical method is able to obtain good 
symmetry of the vortices created downstream the cylinder.

In Fig. 16 the pressure coefficient distribution C p around the cylinder is plotted at the steady state. The solution is 
compared with a reference solution obtained on a 3rd-order finite volume scheme using a grid with the same spatial 
resolution than the present particle discretization [32]. It is observed that the proposed approach results are in excellent 
agreement with the reference solution.
13
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Fig. 11. Isentropic vortex convection: LN
2 norm of the committed error in the density field for both Lagrangian and Eulerian configurations for different 

particle resolutions, N . Figure a) shows the obtained results for the convected vortex and Figure b) shows the results for the stationary vortex.

The drag coefficient C D and the front and back pressure coefficients (C p(0) and C p(π)) are compared in Table 1 with 
reference values from the literature. It is observed that the proposed approach obtains results comparable to those obtained 
in the literature. In particular, they are in excellent agreement with the ones obtained with a 3rd-order finite volume scheme 
using a grid with the same spatial resolution [32].

4.5. Unsteady flow around a 2D cylinder Re = 100 and Re = 185

In this test case, we address the simulation of a non-steady viscous flow past a two-dimensional cylinder. The domain 
and the particle distribution is the same than the used in the previous case. An Eulerian configuration is chosen. Now, two 
different Reynolds number are addressed, namely Re = 100 and Re = 185. This configuration leads to a flow with a periodic 
pattern of swirling vortices originated at cylinder wall.

Figs. 17 and 18 show the temporal evolution of the drag and lift coefficients and the vorticity field respectively for the 
two different Reynolds numbers addressed. It is clearly observed the periodic pattern of vortices appearing downstream the 
cylinder.
14
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Fig. 12. 2D Taylor Green flow for Re = 100. Figures a), b) and c) represent velocity magnitude at t = 0, t = 1 and t = 2.

Table 2 compares the drag and lift coefficients and the Strouhal number obtained using the proposed method with the 
results obtained by several authors. It is observed that the results obtained are comparable to those obtained using other 
methods.

4.6. Decay of compressible isotropic turbulence

In this numerical example, we extend the proposed formulation to 3D to analyze the decay of compressible isotropic 
turbulence. This test case is commonly used to verify the ability of the numerical method to simulate turbulent flow. Many 
authors have used this numerical test to develop new subgrid scale models and to analyze numerical methods [62–66].

4.6.1. Setup of the problem
A periodic 2π × 2π × 2π cube is considered for the computational domain and it is discretized using an homogeneous 

distribution of particles. Periodic boundary conditions are considered for all the boundaries and an Eulerian configuration 
is chosen. As it is usual in this problem, the flow is defined by the turbulent Mach number (Mt ) and Taylor’s micro-scale 
Reynolds number (Reλ)

Mt =
√〈

u′
iu

′
i

〉
〈c〉 (27)

Reλ = 〈ρ〉 u′
rmsλ

μ
(28)

where the notation 〈〉 refers to mean value and primes denote fluctuating variables. The root mean square of the velocity 
(urms) is defined as

urms =
√〈

u′
iu

′
i

〉
(29)
3

15



Fig. 13. 2D Taylor Green flow for Re = 100. a) Time evolution of the maximum velocity magnitude over time compared with the exact solution and the 
δ+-SPH results from [46] and b) time evolution of the kinetic energy compared with the analytical solution and the δ+-SPH results from [47].

The initial conditions are defined following a given initial three-dimensional kinetic energy spectrum as

E3D ∼ k4exp

[
−2

(
k

k0

)2
]

(30)

where k is the magnitude of the wave number vector, and k0 = 4 is the wavenumber at the peak of the spectrum.
In this case, the initial velocity fluctuations are parametrized by the turbulent Mach number and also by the fraction 

of energy in the dilatational part of the velocity, χ = 0.2 [67]. The initial turbulent Mach number is taken as Mt,0 = 0.4
L. Ramírez, A. Eirís, I. Couceiro et al. Journal of Computational Physics 464 (2022) 111172
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Fig. 14. Steady Re = 40 flow around a 2D cylinder. Particle distribution around the cylinder.

Fig. 15. Steady Re = 40 flow around a 2D cylinder. Velocity field and streamlines around the cylinder.

Fig. 16. Steady Re = 40 flow around a 2D cylinder. Comparison of the pressure coefficient (C p ) distribution around the cylinder obtained using the proposed 
method and a 3rd-order finite volume with the same spatial resolution [32].
17
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Table 1
Steady Re = 40 flow around a 2D cylinder. Comparison of the drag coefficient C D , front and back pressure co-
efficients (C p(0) and C p(π)) obtained using the SPH-MLS scheme and other computations using grid methods 
[32,48], lattice Boltzmann methods [49,50] and SPH methods [51].

Method C D C p(0) C p(π)

Present Method 1.570 −0.505 1.195
Ramirez et al. [32] 1.568 −0.512 1.180
Chassaing et al. [48] 1.565 −0.516 1.205
Niu et al. [49] 1.574 −0.555 1.147
He and Doolen [50] 1.499 −0.487 1.133
Marrone et al. [51] 1.6 − −

Fig. 17. Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Temporal evolution of the drag and lift coefficients, a) Re = 100 and b) Re = 185.

Fig. 18. Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Vorticity field, a) Re = 100 and b) Re = 185.

and the initial Taylor’s microscale Reynolds number is chosen as Reλ,0 = 2157, which corresponds with a Reynolds number 
Re = 536.9. The setup presented here corresponds to the case 6 of [64].

With this configuration, the initial density and temperature fields are given by(
ρ ′

rms

)2
/ 〈ρ〉2 = 0.032 (31)(

T ′
rms

)2
/ 〈T 〉2 = 0.005

The evolution of the flow with this initial conditions leads to a nonlinear subsonic regime [68] and weak shocklets 
develop spontaneously from the turbulent motion. Three different particle discretizations are used in this test case: 323, 
643 and 1283 particles.
18
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Table 2
Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Comparison of mean drag coefficient ¯C D , mean and 
rms lift coefficients (CL and CL,rms) obtained using the SPH-MLS scheme and other computations using grid-based 
[52,53,57,58], immersed boundary [54–56,60], ALE [61] and SPH methods [51,59].

Method Re = 100 Re = 185

C D CL St C D CL,rms St

Present Method 1.3587 ±0.3325 0.1653 1.3398 0.4447 0.1937
Liu et al. [52] 1.350 ±0.339 0.165 − − −
Rajani et al. [53] 1.3353 − 0.1569 − − −
Marrone et al. [51] 1.36 ±0.24 0.168 − − −
Ng et al. [54] 1.368 ±0.360 − − − −
Constant et al. [55] 1.37 − 0.165 1.379 0.427 0.198
Vanella and Balaras [56] − − − 1.377 0.461 −
Guilmineau and Queutey [57] − − − 1.287 0.443 0.195
Lu and Dalton [58] − − − 1.31 0.422 0.195
Liu et al. [59] − − − 1.372 0.427 −
Sun et al. [47] − − − 1.363 − 0.196
Liu et al. [60] − − − 1.289 0.451 0.197

We run this test case using a time step of �t = 0.05 with the 323 particle distribution. This corresponds to 250 time-
steps per eddy turnover time τ , that is τ = 12.5 for this configuration. For the 643 and 1283 particle distributions we keep 
the CFL constant. In Fig. 19 we show the results obtained with the present approach in terms of the time evolution of 
the kinetic energy and the mean square density fluctuations. The results are compared with a reference solution computed 
with a sixth-order compact finite difference scheme, with explicit filtering using a tenth-order Padé filter [69]. This solution 
follows closely the results of a DNS.

The decay of kinetic energy is plotted in Fig. 19 a). The coarser discretization shows excessive dissipation. However, it can 
be seen that as the number of particles is increased, the results converge to the reference solution, and the results obtained 
for 1283 particles are in excellent agreement with those of the reference solution. The results obtained for the density 
fluctuations follow the same trend, as shown in Fig. 19 b). Fig. 20 a) shows that the proposed scheme is able to reproduce 
the thermodynamic variables of the flow. This is a remarkable result, since some methods are not able to simultaneously 
predict the correct scaling and decay rates of thermodynamic variables [70].

The instantaneous three-dimensional energy spectra (E(k) = ρ((ux)2 + (u y)2 + (uz)2)) at t/τ = 0.3 is plotted in Fig. 20
b). The results reproduce correctly the reference spectrum, although some overdissipation is found in the highest scales for 
the coarser grid. It is also observed that the proposed scheme is able to reproduce the two different slopes appearing in 
the energy spectrum, which agrees with the Eddy-Damped Quasi-Normal Markovian Theory (EDQNM) [71]. As the number 
of particles is increased, the spectrum converges to the reference. It is important to note that no piling-up of energy is 
detected.

In Fig. 21 the Q-criterion iso-surface with a value of 0.25 is compared at t = 10 for the different particle resolutions. It 
can be noted the effect of the particle resolution.

4.7. 3D Taylor Green vortex

The 3D Taylor-Green vortex (TGV) test case is commonly used to test the accuracy and performance of numerical meth-
ods on the direct numerical simulation of a three-dimensional periodic and transitional flow. The computational domain is 
the cube defined as [0, 2π ] × [0, 2π ] × [0, 2π ] with periodic boundary conditions.

Two different test cases are analyzed here. The inviscid TGV and a viscous TGV with a Reynolds number Re = 1600. 
These test cases are solved using three different particle distributions with 323, 643, and 1283 particles, until a final time 
of t = 10 under an Eulerian configuration.

4.7.1. TGV: inviscid test case
The initial condition of the inviscid TGV is defined as

ux(x, y, z,0) = sin(x) cos(y) cos(z)

u y(x, y, z,0) = − cos(x) sin(y) cos(z)

uz(x, y, z,0) = 0 (32)

ρ(x, y, z,0) = 1

p(x, y, z,0) = 100 + 1 [(cos(2x) + cos(2y))(2 + cos(2z)) − 2]

16
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Fig. 19. Decay of homogeneous isotropic turbulence. Time evolution of kinetic energy (top) and mean square density fluctuations (bottom). The reference 
solution was computed following [69].

In this test case, the ratio of specific heat is γ = 5/3. The inviscid case is equivalent to an infinite Reynolds number. 
Ideally, in this test case, there is no decay of the kinetic energy. However, since the numerical method introduces some 
dissipation, all the dissipation comes from the numerical scheme. When the flow scales are smaller enough, the solution 
becomes under resolved, and dissipation (and also dispersion) errors are introduced by the numerical scheme. The numerical 
dissipation introduced by the numerical scheme starts a decay process which ideally should follow the (-5/3) decay Kol-
mogorov’s law. The evolution of the kinetic energy and enstrophy obtained by the proposed scheme are plotted in Fig. 22 a), 
and compared with the results obtained by the classical finite difference WENO5 scheme [72,73], with a reference solution 
obtained by [74] with a very fine grid (81923) and the semi-analytic results of [75].

It can be seen that the proposed meshless method converges to the Reference solution as the number of particles 
is increased. Moreover, it obtains more accurate results than the WENO5 scheme. An important result is that the slope 
of the kinetic energy decay is similar to that of the reference solution. The enstrophy levels are also larger than those 
obtained by the WENO5 scheme, indicating the presence of more energetic vortices in the solution obtained by the SPH-
MLS scheme.

4.7.2. TGV: viscous case with Re = 1600
Finally, we present the results for the viscous TGV. The initial condition for this test case is a slight variation of that of 

the inviscid case to match the case description provided in [76].
20



Fig. 20. Decay of homogeneous isotropic turbulence. Time evolution of normalized temperature fluctuations (top) and instantaneous three-dimensional 
energy spectra at t/τ = 0.3 (bottom). The reference solution was computed following [69].

ux(x, y, z,0) = sin(x) cos(y) cos(z)

u y(x, y, z,0) = − cos(x) sin(y) cos(z)

uz(x, y, z,0) = 0 (33)

p(x, y, z,0) = 1

γ M2
0

+ 1

16
[(cos(2x) + cos(2y))(2 + cos(2z)) − 2]

ρ(x, y, z,0) = γ M2
0 p(x, y, z,0)

A uniform dimensionless temperature field of unity has been assumed along with the perfect gas relation. The reference 
Mach number is chosen as M0 = 0.1 to minimize compressibility effects. A constant Prandtl number of Pr = 0.71, γ = 1.4
and a Reynolds number of Re = 1600 are used. With this setup, the flow evolves and smaller scales progressively appear, 
until the flow transitions to turbulence and decays in a similar way to decaying homogeneous turbulence.

The evolution of the kinetic energy and enstrophy obtained by the proposed scheme are plotted in Fig. 23, and compared 
with the results obtained by the WENO5 scheme [72] and the DNS solution presented in [76].
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Fig. 21. Decay of homogeneous isotropic turbulence. Iso-surfaces of Q-Criterion = 0.25 at t = 10, where a) is obtained with 323 particles, b) with 643

particles and c) with 1283 particles.

Fig. 22. 3D inviscid Taylor Green: Time evolution of the kinetic energy a) and the enstrophy b).
22



L. Ramírez, A. Eirís, I. Couceiro et al. Journal of Computational Physics 464 (2022) 111172
Fig. 23. 3D viscous Taylor Green: Time evolution of the kinetic energy a) and the enstrophy b).

As in the previous case, the solution converges to the DNS solution as the particle distribution is increased, and it 
obtains consistently more accurate results than the WENO5 scheme for both, the decay of kinetic energy and the enstrophy 
evolution. In Fig. 24 shows the time evolution of the Q-Criterion from t = 0 to t = 10 with the finer particle resolution. It 
can be noted the flow transition from laminar with vortex-tubes into small-scale turbulence.

5. Conclusions

In this work we have proposed a high-accurate meshless discretization to solve the compressible Navier-Stokes equations. 
The standard kernel approximation is completely substituted by MLS approximations. In addition, the MLS approximations 
are also used to obtain a high-order reconstruction of the Riemann states instead of Taylor polynomials. The proposed 
method presents several advantages compared with standard kernel approximations. It ensures the verification of the par-
tition of unity even in regions close to the boundaries. Moreover, shape function derivatives form a partition of nullity, 
which avoids problems related with the initial configuration of particles. The use of MLS functions in the reconstruction 
as well the integration weights leads to meshless schemes with greater accuracy and smaller stencils than traditional SPH 
discretization with kernel approximations. We have shown that the proposed method is able to obtain comparable results 
to those obtained with grid-based methods in different regimes of viscous flow problems.
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Fig. 24. 3D viscous Taylor Green: Iso-surfaces of Q-Criterion with a value of 0.5: a) at t = 0, b) at t = 2.5, c) at t = 5, d) at t = 7.5 and e) at t = 10 with 
1283 particles.
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