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Abstract
Several approaches are currently employed to address the predictive simulation of human
motion, having in common their high computational demand. Muscle modeling seems to
be an essential ingredient to provide human likeness to the obtained movements, at least
for some activities, but it increases even more the computational load. This paper stud-
ies the efficiency and accuracy yielded by several alternatives of muscle modeling in the
forward-dynamics analysis of captured motions, as a method that encompasses the compu-
tationally intensive character of predictive simulation algorithms with a known resulting mo-
tion which simplifies the comparisons. Four muscle models, the number of muscles, muscle
torque generators, muscular synergies, and look-up tables for musculotendon lengths and
moment arms are considered and analyzed, seeking to provide criteria on how to include
the muscular component in human multibody models so that its effect on the resulting mo-
tion is captured while keeping a reasonable computational cost. Gait and vertical jump are
considered as examples of slow- and fast-dynamics motions. Results suggest that: (i) the
rigid-tendon model with activation dynamics offers a good balance between accuracy and
efficiency, especially for short-tendon muscles; (ii) including muscles in the model leads to
a decrease in efficiency which is highly dependent on the muscle model employed and the
number of muscles considered; (iii) muscle torque generators keep the efficiency of skeletal
models; (iv) muscular synergies offer almost no advantage for this problem; and (v) look-up
tables for configuration-dependent kinematic magnitudes have a non-negligible impact on
the efficiency, especially for simplified muscle models.

Keywords Muscle modeling · Muscle torque generator · Synergies · Gait · Vertical jump ·
Biomechanics · Efficiency

1 Introduction

Predictive simulation of human motion is a topic of great interest today [1, 2], as it opens the
way to applications with high economic and societal impact, as anticipation of surgery out-
come, orthotic-prosthetic design and customization, control of humanoid robots and virtual
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characters, preevaluation of training methods in sport and manual task procedures in labor
environments, etc. Robotics, biomechanics, multibody dynamics, and computer graphics are
some of the communities that are actively investigating in this field.

In some cases, the objective is to design a motion that minimizes or maximizes some
measure of performance while satisfying some constraints, what has been called trajectory
optimization. Optimal control is the most popular and established approach for this purpose
[3–10]. In other cases, the objective is to create controllers that govern the motion, either by
mimicking the behavior of the neural system [11–15] or by means of artificial intelligence
(AI) based algorithms [16, 17].

Predictive simulation algorithms can be stated in direct or inverse form, so that they
can require either the forward integration of the system differential equations or just the
solution of an algebraic set of equations. But, in any case, they are always iterative and
highly computationally intensive [1].

Although predictive simulation of human motion can be based on just skeletal models,
there is a general consensus that inclusion of the muscular component is relevant to capture
the features of real human movement in some activities, i.e., to obtain human-like motions,
and to get insight into other aspects, as tendon behavior or energy consumption [18, 19].
However, using musculoskeletal models further increases the computational load of the re-
sulting algorithms [2], so that a muscular modeling must be sought that is efficient enough
to keep the execution times within reasonable limits (specially for applications that are ex-
pected to work in real time, but not only) while being capable of capturing the key features
of human movement to provide human-like solutions.

Therefore, the study of efficiency and accuracy of different muscular modeling alter-
natives can help provide criteria on how to build the musculoskeletal models required by
algorithms for predictive simulation of human motion. The alternatives studied in this paper
are the following: (i) muscle models, including the full Hill model, the Hill model with rigid
tendon and activation dynamics, the Hill model with rigid tendon and without activation dy-
namics, and a nonphysiological model; (ii) the number of muscles; (iii) muscle torque gen-
erators (MTGs); (iv) muscular synergies; as well as (v) look-up tables for muscular lengths
and articular moment arms.

The literature gathers contributions that have addressed some of these alternatives. For
example, in [20], the full Hill model of the muscle, called the equilibrium musculotendon
model, was compared with two variants: the damped equilibrium musculotendon model,
which included a damper in parallel with the active contractile element and the passive
elastic element; and the rigid-tendon musculotendon model, which treated the tendon as
inextensible. Benchmarks with one single muscle were proposed for maximal and submaxi-
mal activations, and for muscles having long and short tendons, concluding that the damped
and rigid-tendon models were suitable for the long- and short-tendon cases, respectively,
providing more efficiency than the equilibrium model, with an acceptable error. The mod-
els were also used to replicate a couple of real experiments, yielding satisfactory results,
and were finally compared when being used in gait, confirming the improvement in effi-
ciency provided by the damped- and rigid-tendon models. The effect on the efficiency of
the number of muscles considered in the model was addressed in [18], where a simpli-
fied model with nine muscles per leg and a complex model with 43 muscles per leg were
compared within an optimal control algorithm for muscle dynamics computation in a pre-
scribed walking motion, showing that the simple model was almost two orders of magnitude
faster on average than its complex counterpart. MTGs were used in [9], implementing this
type of muscle modeling within optimal control algorithms that predicted the executions
of three sport tasks; although an explicit comparison of efficiency with the case of using
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conventional Hill-type muscles was not carried out, the obtained computation times were
clearly lower than those required by other authors for similar problems, in which the MTG
simplification had not been made. The efficiency and accuracy (measured with respect to
EMG recordings) obtained, for the muscle recruitment problem in gait, by several mus-
cle models and by a synergy-based approach, solved in all cases through inverse-dynamics
based optimization were compared in [21]; as it happened in [20], it was found that the
rigid-tendon muscle model offered a good compromise between efficiency and accuracy
but, on the other hand, it was also showed that the best results at both levels were ob-
tained with a nonphysiological muscle model; the use of muscular synergies neither im-
proved efficiency nor accuracy. Finally, [22] provided a method based on polynomials to
approximate musculotendon lengths and moment arms, and reported notable gains in ef-
ficiency when computing musculoskeletal kinematics with respect to previously proposed
methods.

A relevant point is how to conduct the study, i.e., how to compare the efficiency and accu-
racy of the different alternatives mentioned above in a way that is meaningful and allows to
extract general conclusions for the use of such muscular modeling alternatives in algorithms
for the predictive simulation of human motion, without falling in the particularity of using a
specific algorithm, and while avoiding the high level of complexity and, in many cases, the
low robustness of the algorithms.

The approach adopted here was to test the abovementioned alternatives of muscular mod-
eling in the forward-dynamics analysis of captured real motions. A controller tracked the
joint trajectories while the measured foot-ground reactions were applied to the feet. This
approach, at skeletal level only, was described in [23]. Its extension to musculoskeletal level
is addressed in this paper. In this way, the iterative and computationally demanding nature of
predictive simulation algorithms is gathered, but their complexity is avoided. As it could be
expected that motion intensity affects the results, two activities were selected for the study:
gait, as representative of slow-dynamics motions, and vertical jump, as representative of
fast-dynamics motions.

The contributions of this paper are the following: (i) the systematic comparison of several
muscle modeling alternatives (four muscle models, the number of muscles, muscle torque
generators, muscular synergies and look-up tables for configuration-dependent kinematic
magnitudes) within a framework that, on the one hand, shows the computationally inten-
sive character of predictive simulation algorithms and, on the other hand, allows for a fair
comparison of efficiency and accuracy as the resulting motion is given; (ii) the proposed
approach for the forward-dynamics analysis of captured human motion, which does not
require the unified integration of the multibody and muscle dynamics equations; (iii) the
recommendations on muscular modeling extracted as conclusions of the work.

The remainder of the paper is organized as follows. Section 2 describes the approach that
was adopted to conduct the comparison of the different alternatives for muscular modeling,
the experiments carried out and the subjects that participated in them, and the human multi-
body model employed at skeletal and musculoskeletal levels. Section 3 is devoted to list and
explain the four muscle models that were compared and how the force-sharing problem was
addressed. Section 4 is focused on the MTGs, Sect. 5 deals with muscular synergies, and
Sect. 6 shows the interpolation methods considered for musculotendon lengths and moment
arms. Section 7 presents the obtained results and discusses them and, finally, Sect. 8 gathers
the conclusions of the work.
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Fig. 1 Cointegration method for
the forward-dynamics analysis of
captured motions. The
coordinates defining the motion
of the multibody system and their
derivatives are vectors q, q̇, q̈.
The Jacobian matrix containing
the moment arms is Jm , the
vector of joint torques is QCT C ,
the vectors gathering the upper
and lower limits of the muscular
forces are Fmin and Fmax , and
the vector of muscular forces
obtained after solving the
force-sharing problem is Fopt .
The vectors of muscular
excitations and activations are,
respectively, u and a.
Superscripts n and n + 1 denote
the time step. Subscript d denotes
the desired (captured) motion.
Functions inside shaded boxes
may be necessary or not
depending on the muscle model
adopted

2 Problem approach, subjects, experiments, and multibody models

As said in the introduction, the several alternatives of muscle modeling were tested in the
context of the forward-dynamics analysis of captured real motions, an approach that pos-
sesses the iterative and computationally demanding characteristics of the algorithms used
for predictive simulation, but considers a known resulting motion, thus making easier to
compare the different muscle modeling alternatives. The method is similar to the popular
Computed Muscle Control (CMC) method [24]. It is based on a cointegration scheme so
that, unlike CMC, the unified integration of the multibody and muscle dynamics equations
is not required, thus allowing the use of any multibody code for generating and integrating
the multibody dynamics equations, while the muscle dynamics can be simulated within a
different framework.

As it can be seen in Fig. 1, the multibody equations are integrated using an implicit
integrator, in a predictor–corrector scheme that combines the equations of motion and the
integrator equations to yield a nonlinear system of equations with the configuration-level
coordinates as primary variables, which is solved by a Newton–Raphson procedure. In this
case, the trapezoidal rule was chosen as integrator with a time-step size of 10 ms, and the
equations of motion of the multibody system were derived by means of a semirecursive
formulation in joint coordinates [25].

Once inside a certain iteration, in the predictor block the coordinates at position level for
the next time point are extrapolated from the current positions, velocities, and accelerations,
by means of the constant-acceleration kinematic formula. Then, the joint torques required to
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Fig. 2 The selected movements
and the subjects who performed
them: (left) gait; (right) vertical
jump

track the captured joint trajectories are calculated by the Computed Torque Control (CTC)
method [23], the Jacobian, i.e., the matrix containing the muscular moment arms with re-
spect to the joints, is evaluated, and the force limits for each muscle are set depending on
the muscle model adopted (these limits are calculated only once per time step, right after the
predictor). With all these elements, the force-sharing problem is addressed by optimization,
as explained in Sect. 3, giving as result the muscular forces that allow building the vector of
applied forces of the multibody system. It must be noted that, if the muscular forces are ca-
pable of fulfilling the torque constraints in the force-sharing problem, the resulting vector of
applied forces of the multibody system will be identical to that previously calculated by the
CTC method. Otherwise, one or more components of the vector among those corresponding
to degrees of freedom driven by muscles will be different. This should not happen, as the
movements were executed in practice and, hence, they were indeed feasible. However, the
problem modeling could lead to such situations.

Finally, the linearized dynamic equations provided by the Newton–Raphson procedure
are solved in the corrector block, the coordinates are updated, and a new iteration is carried
out or not depending on the achieved convergence. Then, if a physiological model of the
muscle has been adopted that includes a differential equation for contraction dynamics, a
root solver is executed to find both the excitations that originated the obtained muscular
forces and the activations at the new time step.

All the analyses were run on an Intel Core i7 6700K @ 4.00 GHz, 16 GB RAM, SSD
250 GB, with operating system Windows 10 Pro 20H2. The single-threaded program was
written in C++ and compiled with MSVC 2019 in release configuration with the /O2 /Ob2
/MD flags. Eigen was used as the linear algebra package. To measure efficiency, the run-time
was chosen, defined as the time required to run the program. Other programs were turned
off during the executions. Each analysis was executed five times and the average value was
obtained after checking that deviations were negligible.

As said in the introduction, two movements were studied, gait and vertical jump. Sev-
eral subjects performed each movement several times. The study was reviewed by the in-
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stitutional review board and the ethics approval was obtained. All subjects gave written
informed consent for their participation. The movements were captured in a motion analysis
lab (Fig. 2) equipped with 12 optical infrared cameras (Natural Point, OptiTrack FLEX 3,
sampling at 100 Hz) that acquired the position of 37 reflective markers attached to the sub-
ject, two force plates (AMTI, AccuGait, sampling at 100 Hz), and nine surface EMG sensors
that recorded the signals from nine muscles (tibialis anterior, vastus medialis, vastus later-
alis, gastrocnemius medialis, gastrocnemius lateralis, semitendinosus, biceps femoris, glu-
teus maximus, and gluteus medius) of the right leg of the subject at 1 kHz (BTS, FREEEMG,
Quincy, MA, USA).

In the case of gait, ten subjects (seven males, three females, age 42 ± 16 years, height
173 ± 16 cm, body mass 73 ± 26 kg) were recruited for the study. The subjects walked
at their self-selected speed (1.1 ± 0.2 m/s) along a walkway where the two force plates
were embedded. In the case of vertical jump, seven subjects (three males, four females, age
34 ± 11 years, height 166 ± 12 cm, body mass 64 ± 17 kg) were recruited for the study.
The subjects started from rest with one foot on each force plate, and were asked to jump
vertically to clearly detach their feet from the ground, landing again with one foot on each
force plate.

The captures were processed. First, an extended Kalman filter (EKF) was used to filter
the marker trajectories and reconstruct the motion with a process noise variance of 1 m/s2

and a cutoff frequency of 20 Hz [26]. Afterwards, inverse dynamics was applied by means
of a velocity transformation method [27] implemented in the in-house developed MBSLIM
library [28] programmed in FORTRAN, to get the joint torques as described in [29], and
static optimization was carried out to obtain muscular forces [30]. The EMG signals were
rectified, filtered by singular spectrum analysis (SSA) with a window length of 250 samples
[31] (equivalent to the common forward and reverse low-pass 5th order Butterworth filter
with a cut-off frequency of 6 Hz), and, then, normalized with respect to their maximal val-
ues. Then, the most consistent capture for each movement was selected for the study, based
on a consistency index that was defined from contributions at kinematic level (minimum dis-
persion in geometric constraints satisfaction along the motion), at dynamic level (minimum
residual in the base body), and at muscular level (best match with EMG signals [21]). More
detail about this consistency index is provided in Appendix.

For gait, the selected capture was from a healthy adult female (Fig. 2(a)), age 30 years,
height 165 cm, and body mass 50 kg, who walked at her self-selected speed of 0.92 m/s
during 1.23 s. For vertical jump, the selected capture, of 1.90 s, was from a healthy adult
female (Fig. 2(b)), age 29 years, height 157 cm, body mass 47 kg, who reached a height of
20 cm in her jump.

The multibody model (Fig. 3) was composed of 18 anatomical segments (two hindfeet,
two forefeet, two shanks, two thighs, pelvis, torso, neck, head, two arms, two forearms,
and two hands) connected by 17 spherical joints, leading to 57 degrees of freedom. Us-
ing spherical joints showed to be a good compromise between more simplified models for
some joints (as revolute joints for the knees) and more detailed models for those joints (as
surface–surface contacts for the knees), in the sense that it allowed a good fit of the captured
kinematic data.

Six degrees of freedom were considered as actuated by muscles at each leg: the three
rotations of the hip, the flexion/extension of the knee, and the dorsi/plantarflexion and the
inversion/eversion of the ankle. Muscles were modeled as one or more straight-line seg-
ments with via points. These points corresponded to the attachments of muscle and ten-
don to bone and were defined as the origin (i.e., proximal attachment) and insertion (i.e.,
distal attachment). Muscle properties and local coordinates for these points were obtained
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Fig. 3 Multibody model: (left)
skeletal level: bodies and joints;
(right) musculoskeletal level,
standard distribution composed
of 43 muscles at each leg

from OpenSim (model Gait2392) [32] and scaled to each subject from the generic reference
OpenSim model, as commented in [30]. Two muscular distributions were defined: the stan-
dard one, composed of 43 muscles at each leg (listed in Table 2); and the simplified one,
composed of eight muscles at each leg (glutei, hip flexors, hamstring, rectus femoris, vastii,
gastrocnemius, soleus, tibialis anterior) [11].

3 Muscle models

This section is devoted to explain the way in which the force-sharing problem was addressed
and to list and describe the four muscle models being compared.

3.1 Force-sharing problem

Looking again at Fig. 1, it can be seen that, once the joint torques required to track the
captured joint trajectories, QCT C , are calculated, it is necessary to solve the force-sharing
problem for those degrees of freedom that are considered to be driven by muscles, i.e., those
indicated in Sect. 2. The classical solution here is to pose an optimization problem with a
cost function which aims to mimic the muscular recruitment strategy followed by the Central
Nervous System (CNS), and with upper and lower bounds for the muscular forces. In this
work, the optimization problem was set in the form:

minimize
m∑

i=1

(
Fi

Fi,max

)2

subject to JT F = QCT C

Fi,min < Fi < Fi,max; i = 1, . . . ,m

(1)

where Fi stands for each muscle force, and m is the number of modeled muscles. The limits
for each muscle force, Fi,min and Fi,max, depend on the muscular model selected, and will be
provided in the next subsections.
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Fig. 4 The Hill muscle model.
The muscle is formed by the
contractile element (CE) and the
passive parallel element (PE).
The tendon is the serial element
(SE)

3.2 The full Hill muscle model

The Hill muscle model [33] assumes that the muscle fibers are straight, parallel, of equal
length, coplanar, massless, frictionless, with fixed height, and attached to the tendon form-
ing a pennation angle [20]. The Hill muscle model consists of three elements (Fig. 4): (i)
a contractile element (CE) that models the active part of the muscle and generates a force
that is a function of muscle activation, muscle length, and muscle velocity; (ii) a nonlinear
passive element (PE) in parallel with the contractile element that models the passive behav-
ior and elasticity of the muscle fiber; and (iii) a nonlinear passive element in series with the
former two (SE) that models the tendon elasticity.

The force equilibrium equation is

F = FSE = (FCE + FPE) cosα, (2)

where F is the musculotendon force, FCE , FPE , and FSE are the forces produced by the
contractile, passive parallel, and passive serial element, respectively, and α is the pennation
angle. These forces can be further detailed as

FCE = aF0fl(lm)fv(vm); FPE = F0fp(lm); FSE = F0ft (lt ), (3)

where a is the muscle activation, F0 is the maximum isometric force, fl and fv are dimen-
sionless force–length and force–velocity relationships, respectively, fp and ft are dimen-
sionless force–length relationship of the passive parallel and passive serial element, respec-
tively, lm and lt are the lengths of muscle and tendon, respectively, and vm is the velocity of
muscle contraction.

Muscle activation, a, is a function of neural excitation, u, and can be modeled as a first
order differential equation representing activation dynamics. Although different formula-
tions can be found in the literature [18, 20], in this work the differential equation provided
in [30] was substituted by its closed-form solution for the sake of efficiency:

a (t + �t) = u(t) + [a (t) − u(t)] e− �t
Ta , u > a

a (t + �t) = u(t) + [a (t) − u(t)] e
− �t

Td , u ≤ a

(4)

where τa and τd are the activation and deactivation time constants, set to 15 and 50 ms,
respectively.

The rate of change of the tendon force with respect to time is given by

Ḟ = ktvt , (5)
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with kt being the variable tendon stiffness and vt the tendon elongation velocity.
A combination of (2), (3), and (5) leads to the first order differential equation representing

contraction dynamics [34]

Ḟ (t) = f (a(t),F (t), l(t), v(t)) = kt

[
v − vmax

cosα
f −1

v

(
F

cosα
− F0fp (lm)

aF0fl (lm)

)]
, (6)

where l and v are the musculotendon length and velocity, respectively (Fig. 4), vmax is the
maximum muscle contraction velocity, and f −1

v is the inverse of function fv . The details
about all the terms involved in contraction dynamics can be found in [34].

To define the minimum and maximum physiologically feasible musculotendon force at
a certain time point, (6) is integrated during the current time step for minimum (u = 0) and
maximum (u = 1) muscle excitations, yielding Fmin and Fmax (see Fig. 1), respectively. The
trapezoidal rule was used as integrator with a time-step size of 1 ms. For the initial time,
it is assumed that muscle velocity is null, vm = 0, so that Fmin and Fmax correspond to the
minimum and maximum values of activation, a = amin and a = 1, respectively.

As said in Sect. 2 and illustrated in Fig. 1, if a physiological model of the muscle is
adopted, as it is the case when using the described full Hill model, a root solver must be
executed at each time step to find both the excitations that originated the obtained muscular
forces and the activations at the new time step. The equations to be used within the root
solver are (4), algebraic, and (6), differential. The iterative Newton’s method was employed,
their required derivatives being computed numerically by forward differences.

The integration of (6) presents some numerical problems. First, function f −1
v has numer-

ical singularities. Second, the muscle can reach unrealistically short lengths. To avoid these
problems, the same countermeasures described in [20] were implemented. The minimum
value of activation was set to amin = 0.001. In addition, a slight change was applied in the
curvature of function f −1

v when fv approaches its maximum value, as described in [33],
to streamline convergence. Furthermore, the use of an implicit integration scheme helps to
overcome these problems [20].

3.3 The rigid-tendon model with activation dynamics

The rigid-tendon model adds to the Hill model the assumption that the tendon stiffness is so
high that the tendon length variation can be neglected. This assumption greatly simplifies the
model complexity, because it transforms contraction dynamics into an algebraic relationship
which needs no integration, namely

F = [aF0fl (lm)fv (vm) + FPE (lm)] cosα. (7)

In this case, the limits for the muscle force are directly obtained as

Fmin = [aminF0fl (lm)fv (vm) + FPE (lm)] cosα

Fmax = [amaxF0fl (lm)fv (vm) + FPE (lm)] cosα
(8)

where the values of minimum and maximum activations, amin and amax, are obtained from
(4) for u = 0 and u = 1, respectively.

An additional consequence of the rigid-tendon assumption is that the execution of the
root solver at the end of the time step (see Fig. 1) is not required.
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3.4 The rigid-tendon model without activation dynamics

Another simplification explored in this work is not considering the delay between neural
excitation and muscle activation, thus eliminating the need of using (4), since a(t) = u(t).

In this case, the muscle force is also given by (7), and its limits are directly obtained as

Fmin = [FPE (lm)] cosα

Fmax = [F0fl (lm)fv (vm) + FPE (lm)] cosα.
(9)

And, of course, the execution of the root solver at the end of the time step is not required
either.

3.5 A nonphysiological model

This option means not using a muscle model at all: the muscle forces in the force-sharing
optimization are just limited to be in the range between zero and the maximum isometric
force, but no further physiological limitations are imposed:

Fmin = 0,

Fmax = F0.
(10)

Once again, there is no need of executing the root solver at the end of the time step.

4 Muscle torque generators

Muscle torque generators (MTGs) are functions intended to represent musculoskeletal
torque at joint level. The goal is to reduce the model complexity and computational bur-
den while keeping some level of biofidelity.

MTGs are typically adjusted for a particular case or movement, and different kinds of
functions have been explored in the literature [9]. In this work, the functions proposed in
[35] were used for the degrees of freedom driven by muscles, indicated at the end of Sect. 2.
For each degree of freedom, the MTG has a different expression for each direction of torque
exertion (agonist–antagonist). The maximum torque provided by the MTG is

Tmax

(
θ, θ̇

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 cos (C2 (θ − C3))

(
2C4C5 + θ̇ (C5 − 3C4)

2C4C5 + θ̇ (2C5 − 4C4)

)
, θ̇ ≥ 0

C1 cos (C2 (θ − C3))

(
2C4C5 − θ̇ (C5 − 3C4)

2C4C5 − θ̇ (2C5 − 4C4)

)(
1 − C6θ̇

)
, θ̇ < 0

(11)
where θ and θ̇ are the angle and angle velocity of the corresponding degree of freedom,
and Ci , i = 1, . . . ,6 are parameters that must be calibrated for each subject and degree of
freedom. The torque provided by the MTG under a certain activation a, with a ranging
between 0 and 1, is

T
(
θ, θ̇

) = aTmax

(
θ, θ̇

) + Tpas (θ) . (12)

The passive torque, Tpas, due to muscular tissue, tendons, and ligaments was not considered,
since passive torques act in the limits of motion ranges, which are not reached in the two
movements studied.
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To calibrate the parameters Ci , i = 1, . . . ,6 of the MTGs that appear in (11), the rigid-
tendon Hill model without activation dynamics was used for the muscles of the standard
distribution listed in Table 2. For each degree of freedom, maximum activation was given to
the muscles acting in one direction, while null activation was given to the muscles acting in
the opposite direction, and the torque provided by the muscles under such conditions was
calculated. This was repeated in the opposite motion direction of the degree of freedom.
And the two calculations were repeated for the whole range of angular values of the degree
of freedom and, for each angular value, for the whole range of feasible angular velocities.
When calibrating the MTG for one degree of freedom, the remaining degrees of freedom
were supposed to be fixed in their angular values, which correspond to the nominal standing
position. A limitation of this approach is that it cannot take into account the combined effect
of the position and velocity of several degrees of freedom at the same time, which leads to
the inaccurate consideration of muscles that cross more than one joint.

Once the table containing the values of maximum torque for each degree of freedom as
function of the angular position and velocity was built, the six parameters of each MTG were
obtained by optimization, with the cost function being the root mean square (RMS) error and
with the error calculated as the difference between the maximum torques provided by (11)
and the torques from the table. Optimization was carried out in two steps: first, five global
optimizations were run using the genetic algorithm ga from Matlab and, then, the solution
with minimum value of the cost function was selected as initial guess for the gradient-based
algorithm fmincon from Matlab.

It must be noted that, when using MTGs, there is no need of calculating some terms in the
forward-dynamics algorithm of Fig. 1, as the Jacobian matrix containing the moment arms,
the limits of muscular forces, and even the optimization devoted to solving the force-sharing
problem. Instead, once the joint torques required to track the captured joint trajectories,
QCT C , are obtained, each element of vector QCT C corresponding to a degree of freedom
driven by muscles is equaled to the MTG torque given by (12), so that the MTG activation
can be worked out from that equation.

5 Muscular synergies

Muscular synergies reduce the problem dimensionality and, hence, they could be expected
to increase the efficiency of the forward-dynamics algorithm depicted in Fig. 1. In this work,
the synergies were extracted, for each movement studied, from the activations obtained by
static optimization from the corresponding motion capture with the standard muscle distri-
bution, as done in [30]. Calling ns the number of synergies adopted, the activations can be
expressed as

a(t) = Ws(t), (13)

where a(m × 1) is the vector of muscular activations, W(m × ns) is the matrix of synergy
vectors (or weights), and s(ns × 1) is the vector of synergy controls. Each synergy control
is a B-spline defined by p = (f − 1)/5 + 1 nodal points, with f being the number of
frames (time steps) of the motion capture. Therefore, to obtain the synergy controls and
the synergy vectors, an optimization is carried out with ns × (p + m) design variables, a set
of linear equality constraints to enforce that the sum of weights for each synergy is 1, lower
bounds to impose that synergy controls and vectors are nonnegative, and a cost function that
takes into account: (i) the deviation between the joint torques provided by muscles and from
inverse dynamics; (ii) the values of the activations; and (iii) a penalization term to ensure that
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activations stay between 0 and 1. Optimization was carried out in two steps: first, five global
optimizations were run using the genetic algorithm ga from Matlab and, then, the solution
with minimum value of the cost function was selected as initial guess for the gradient-based
algorithm fmincon from Matlab. The problem was solved for 2 to 6 synergies.

The changes required to adapt the forward-dynamics algorithm of Fig. 1 to the use of
synergies are described in what follows, pointing out first that the rigid-tendon model with-
out activation dynamics was considered here, since the synergies had been obtained from a
static optimization.

As seen in Sect. 3, the muscle force can be expressed in terms of the activation as

F = (FCE + FPE) cosα = aF0fl(l)fv(v) cosα + FPE(l) cosα. (14)

Grouping terms and moving to vectorial form gives

F = Da + F∗
PE, (15)

where D = diag (aiF0ifl(li )fv(vi) cosαi), i = 1, . . . ,m is a diagonal matrix and the terms
of the column vector F∗

PE have the form F ∗
PEi = FPEi cosαi , i = 1, . . . ,m. Introducing now

(13) into (15) leads to

F = DWs + F∗
PE, (16)

which provides the muscular forces as functions of the synergy controls.
In the optimization for the force-sharing problem, the cost function given in (1) can be

written in matrix form as

C =
m∑

i=1

(
Fi

Fi,max

)2

= 1

2
FTHF, with H = diag

(
2

F 2
i,max

)
, i = 1, . . . ,m. (17)

Substitution of (16) in (17) yields

C = 1

2
FTHF = 1

2
sTEs + b, (18)

with E = WTDTHDW and b = 1
2 F∗T

PEHF∗
PE . Since the optimization for the force-sharing

problem is conducted, at each iteration within a certain time step, for given positions and
velocities of the system, the value of b is constant and, hence, it can be eliminated from the
cost function.

The constraints of the joint torques in the degrees of freedom driven by muscles imposed
in the optimization for the force-sharing problem (1) can also be transformed by introducing
(16), namely

JTF = QCT C ⇒ JT
(
DWs + F∗

PE

) = QCT C ⇒ GTs = Q∗
CT C, (19)

where GT = JTDW and Q∗
CT C = QCT C − JTF∗

PE .
Therefore, the optimization for the force-sharing problem shown in (1) can be stated,

having now as design variables the synergy controls, as follows:

minimize
1

2
sTEs

subject to GTs = Q∗
CT C

0 < si < 1; i = 1, . . . , ns

(20)



Comparison of several muscle modeling alternatives for computationally. . . 427

6 Interpolation of configuration-dependent muscular magnitudes

Solving muscle dynamics involves a high computational cost. A way to reduce this cost
is by precomputing some kinematic magnitudes that are configuration-dependent and tab-
ulate them. For example, muscular moment arms require an expensive calculation and
are configuration-dependent. Other magnitudes suitable for precomputation are muscular
lengths, which could also represent a time consuming calculation if complex wrapping mod-
els were used [36]. Evaluation of muscular velocities can also be speeded up by tabulating
the derivatives of muscular lengths with respect to joint degrees of freedom, which are also
needed for the calculation of moment arms.

To generate the tables, the degrees of freedom driven by muscles were given a set of
values within their ranges of motion, and the mentioned magnitudes were precomputed.
The major drawback of this approach is the dimensionality problem, as the size of the table
grows exponentially with the number of degrees of freedom affecting the magnitude, and
this becomes especially critical for muscles that cross more than one joint.

In this work, moment arms, lengths and length derivatives with respect to degrees of
freedom were tabulated for the 43 muscles of each leg conforming the standard distribution,
with several table resolutions. Linear interpolation was applied.

7 Results and discussion

Once all the alternatives have been described, the obtained results are to be shown and
discussed for the two exercises considered, i.e., gait and vertical jump.

7.1 Muscle models

The standard distribution of 43 muscles in the right leg is selected to show the accuracy
offered by the four muscle models considered in this study. The full Hill model (H1) is
taken as reference, and the discrepancies with respect to the reference of the muscular exci-
tations, activations and normalized forces obtained when using the rigid-tendon model with
activation dynamics (H2), the rigid-tendon model without activation dynamics (H3) and the
nonphysiological model (NP) provide the corresponding errors. The error in each magni-
tude is calculated as the root mean square (RMS) of the difference between its value with
the corresponding muscle model and the value with the full Hill model for all the time steps
of the exercise, nt ,

eu
i =

√√√√
∑nt

j=1

(
uij − u

ref

ij

)2

nt

; ea
i =

√√√√
∑nt

j=1

(
aij − a

ref

ij

)2

nt

; eF
i =

√√√√√
∑nt

j=1

(
Fij −F

ref
ij

Fmax,i

)2

nt

i = 1, . . . ,m, (21)

where eu
i , ea

i , and eF
i are the RMS errors (RMSE) for the excitation, activation, and normal-

ized force, respectively, of muscle i, with m being the number of muscles, m = 43 for the
standard distribution in the right leg, and the ref superscript indicates the values for the full
Hill model, taken as reference. The value Fmax,i , used to normalize the force of each muscle,
is the maximum force value generated by the corresponding muscle (full Hill model) along
the motion considered.
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Table 1 Comparison of accuracy in aggregated muscular excitations, activations, and normalized forces for
the four muscle models considered: the full Hill model (H1) taken as reference, the rigid-tendon model with
activation dynamics (H2), the rigid-tendon model without activation dynamics (H3), and a nonphysiological
model (NP). The distinction between long-tendon and short-tendon muscles is also provided

GAIT VERTICAL JUMP

H2 H3 NP H2 H3 NP

eu 0.069 0.089 – 0.049 0.076 –

ea 0.051 0.070 – 0.031 0.061 –

eF 0.269 0.341 0.333 0.189 0.240 0.223

eF (long) 0.328 0.416 0.404 0.238 0.282 0.255

eF (short) 0.147 0.186 0.187 0.089 0.152 0.156

Table 1 shows the aggregated RMSE of excitations, activations and normalized forces
for the 43 muscles of the standard distribution in the right leg, obtained as

eu =
∑43

i=1 eu
i

43
; ea =

∑43
i=1 ea

i

43
; eF =

∑43
i=1 eF

i

43
(22)

for the two movements considered in the study, namely gait and vertical jump. Note that
excitations and activations are magnitudes between 0 and 1. The table has no entries for
the RMSE of excitations and activations in the case of the nonphysiological model (NP) of
muscle as only forces are considered in this case. Additionally, the table shows separately
the aggregated RMSE of normalized muscular forces due to muscles with long tendon and
short tendon. Long- and short-tendon muscles are here defined as those whose tendon slack
length is longer and shorter, respectively, than the optimum muscle fiber length [20].

Table 2 details the discrepancies among the four models for the 43 muscles, but focus-
ing only on the normalized muscular forces, for the sake of simplicity. Long-tendon muscles
have been written in italics to distinguish them from short-tendon muscles. And Table 3 gath-
ers the run-times required to run the forward-dynamics analysis for each muscular modeling
alternative.

It can be seen that the rigid-tendon model with activation dynamics (H2) shows a good
balance between efficiency (Table 3) and accuracy (Table 1). Models H3 and NP provide
marginal improvements in efficiency with significant reductions in accuracy. Going into
more detail, it can be observed that the rigid-tendon model is more suitable for short-tendon
muscles, as already pointed out in [20]. In fact, there are some muscles which show very
high errors in Table 2, all of them having very high ratios of tendon length with respect to
muscle length. Therefore, it could even be considered the option of applying the full Hill
model to long-tendon muscles and the rigid-tendon model to short-tendon muscles. There
is no problem in combining the two modeling options in the same simulation. It can also be
observed that the rigid-tendon model without activation dynamics (H3) is not superior to the
nonphysiological model (NP). Therefore, using the model H3 is not useful.

To provide a better interpretation of the values in the previous tables, Fig. 5 shows the
histories of muscle forces obtained with the four models in the case of two muscles for
each movement considered in the study. The right rectus femoris is a case of long-tendon
muscle. The errors in normalized force provided by Table 2 for this muscle are 0.096 (H2),
0.146 (H3), and 0.141 (NP) for gait, and 0.030 (H2), 0.142 (H3), and 0.140 (NP) for vertical
jump. No significant differences are found in the errors of H3 and NP for the two activities.
However, the error of H2 is much lower for the more dynamic motion of vertical jump.
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Table 2 Comparison of accuracy in muscular forces for the four muscle models considered: the full Hill
model (H1), taken as reference, the rigid-tendon model with activation dynamics (H2), the rigid-tendon model
without activation dynamics (H3), and a nonphysiological model (NP). The entries of the table are the RMSE
of normalized muscle forces, denoted before as eF

i
, i = 1, . . . ,43. Long-tendon muscles are in italics. Error

values that are larger than twice the average error value for the corresponding muscle model (H2, H3, NP)
and muscle type (long- or short-tendon) have been highlighted in bold

Muscles GAIT VERTICAL JUMP
H2 H3 NP H2 H3 NP

R. Gluteus Medius Anterior 0.059 0.138 0.124 0.062 0.154 0.148
R. Gluteus Medius Middle 0.095 0.159 0.166 0.056 0.119 0.125
R. Gluteus Medius Posterior 0.132 0.205 0.171 0.066 0.125 0.133
R. Gluteus Minimus Anterior 0.197 0.143 0.177 0.123 0.149 0.155
R. Gluteus Minimus Middle 0.133 0.191 0.129 0.068 0.095 0.099
R. Gluteus Minimus Posterior 0.118 0.228 0.186 0.070 0.094 0.096
R. Gluteus Max. Ant. (sup.) 0.211 0.368 0.430 0.041 0.076 0.095
R. Gluteus Maximus Middle 0.094 0.105 0.105 0.033 0.089 0.094
R. Gluteus Max. Post. (inf.) 0.086 0.182 0.177 0.084 0.175 0.224
R. Adductor Longus 0.038 0.137 0.137 0.078 0.205 0.205
R. Adductor Brevis 0.119 0.170 0.175 0.118 0.175 0.172
R. Adductor Magnus Superior 0.116 0.167 0.177 0.079 0.210 0.212
R. Adductor Magnus Middle 0.079 0.183 0.182 0.079 0.205 0.218
R. Adductor Magnus Inferior 0.139 0.179 0.177 0.358 0.502 0.470
R. Tensor Fasciae Latae 2.347 2.396 1.315 0.492 0.410 0.096
R. Pectineus 0.091 0.129 0.129 0.141 0.205 0.205
R. Iliacus 0.252 0.260 0.218 0.072 0.175 0.178
R. Psoas 0.232 0.270 0.249 0.109 0.227 0.228
R. Quadratus femoris 0.089 0.176 0.166 0.060 0.143 0.144
R. Gemellus 0.145 0.172 0.167 0.096 0.144 0.145
R. Piriformis 2.872 3.974 4.522 0.056 0.088 0.132
R. Semitendinosus 0.047 0.165 0.215 0.058 0.189 0.199
R. Semimembranosus 0.109 0.205 0.204 0.075 0.189 0.195
R. Biceps Femoris Long Head 0.095 0.226 0.240 1.053 1.011 0.939
R. Biceps Femoris Short Head 0.173 0.218 0.250 0.079 0.177 0.176
R. Sartorius 0.277 0.228 0.283 0.113 0.132 0.155
R. Gracilis 0.034 0.102 0.166 0.106 0.202 0.204
R. Rectus Femoris 0.096 0.146 0.141 0.030 0.142 0.140
R. Vastus Medialis 0.042 0.105 0.097 0.020 0.038 0.055
R. Vastus Intermedius 0.049 0.106 0.097 0.035 0.052 0.068
R. Vastus Lateralis 0.044 0.060 0.068 0.026 0.044 0.090
R. Gastrocnemius Medial 0.890 0.784 0.731 0.081 0.162 0.161
R. Gastrocnemius Lateral 0.098 0.108 0.122 0.060 0.164 0.152
R. Soleus 0.228 0.192 0.173 0.008 0.071 0.080
R. Tibialis Posterior 0.067 0.086 0.085 0.034 0.146 0.145
R. Tibialis Anterior 0.107 0.186 0.197 0.023 0.169 0.166
R. Flexor Digitorum Longus 0.157 0.145 0.284 2.398 1.742 1.358
R. Flexor Hallucis Longus 0.619 0.780 0.691 1.325 1.116 0.926
R. Extensor Digit. Longus 0.120 0.239 0.268 0.027 0.194 0.192
R. Extensor Hallucis Longus 0.138 0.182 0.207 0.085 0.127 0.128
R. Peroneus Brevis 0.370 0.164 0.186 0.042 0.179 0.178
R. Peroneus Longus 0.052 0.173 0.188 0.031 0.173 0.171
R. Peroneus Tertius 0.122 0.126 0.158 0.098 0.134 0.134
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Table 3 Comparison of efficiency for the four muscle models considered: the full Hill model (H1), the rigid-
tendon model with activation dynamics (H2), the rigid-tendon model without activation dynamics (H3), and
a nonphysiological model (NP). The run-times are given in s. The duration of each movement is indicated in
the first row

GAIT (1.23 s) VERTICAL JUMP (1.90 s)

H1 H2 H3 NP H1 H2 H3 NP

0.453 0.120 0.113 0.108 0.750 0.239 0.218 0.217

Fig. 5 Histories of muscle forces with the four muscle models: (a) Right rectus femoris in gait; (b) Right
rectus femoris in vertical jump; (c) Right gluteus medius middle in gait; (d) Right gluteus medius middle
in vertical jump. Right rectus femoris is a long-tendon muscle while right gluteus medius middle is a short-
tendon muscle

The right gluteus medius middle is a case of short-tendon muscle. The errors in normalized
force provided by Table 2 for this muscle are 0.095 (H2), 0.159 (H3), and 0.166 (NP) for
gait, and 0.056 (H2), 0.119 (H3), and 0.125 (NP) for vertical jump. This time, the errors for
the three models (H2, H3, NP) are lower for the more dynamic motion of vertical jump. This
fact is also confirmed by the results gathered in Table 1. Although the way of calculating
the errors can favor vertical jump, as it presents muscular activity during only a part of the
total duration of the experiment, the plots in Fig. 5 show a good behavior of the models
for this movement. This may indicate that it is easier to model the muscular activity of a
simpler (more two-dimensional) exercise, as the vertical jump, than a more complex (more
three-dimensional) one, as walking, even if the latter is less dynamic.
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Table 4 Comparison of efficiency with respect to the number of muscles modeled for the four muscle models
considered. The run-times given in the table are in s

# of muscles GAIT (1.23 s) VERTICAL JUMP (1.90 s)

H1 H2 H3 NP H1 H2 H3 NP

86 1.077 0.256 0.240 0.237 1.831 0.518 0.471 0.451

43 0.453 0.120 0.113 0.108 0.750 0.239 0.218 0.217

16 0.151 0.040 0.038 0.036 0.253 0.080 0.075 0.070

8 0.072 0.026 0.025 0.023 0.131 0.053 0.050 0.047

0 0.01 0.02

Fig. 6 Relation between number of muscles and run-time needed to execute the forward-dynamics algorithm,
for the four muscle models adopted

7.2 Number of muscles

Table 4 shows the influence of the number of muscles considered in the model on the effi-
ciency of the simulation for the four muscle models considered. Four cases were compared:
(i) the standard model of 43 muscles in both legs, i.e., a model with 86 muscles; (ii) the
standard model in the right leg only, i.e., a model with 43 muscles; (iii) the simplified model
in both legs, i.e., a model with 16 muscles; and (iv) the simplified model in the right leg
only, i.e., a model with 8 muscles. The run-times required for the simulation in the skeletal
case (no muscles) were 0.01 s for gait and 0.02 s for vertical jump.

It can be seen that including muscles increases the required run-times. However, such
increase can range from two to four times with respect to the skeletal case for a moderate
number of muscles (8 or 16) and the simplified muscle models (H2, H3, NP), to two orders
of magnitude for a large number of muscles (43 or 86) and the full Hill model (H1). Once
muscles are included in the model, the required run-time scales more than linearly with the
number of muscles.

Figure 6 illustrates the obtained relation between number of muscles and run-time re-
quired to carry out the simulation of each movement considered in the study, gait and ver-
tical jump, and for the four muscle models adopted. It can be observed that, as said before,
all the models scale more than linearly with the number of muscles, and that the full Hill
model shows a notably higher growth in run-time as the number of muscles increase than its
counterparts, which in turn offer almost identical trends.

It must be noted that, in the case of 8 muscles per leg, only three degrees of freedom are
driven by muscles in each leg (the angles in the sagittal plane of hip, knee, and ankle), instead
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Table 5 Comparison of accuracy
as the RMSE between the
activations provided by each
MTG and the weighted average
activations provided by the
muscles contributing to it when
using the rigid-tendon model
without activation dynamics (H3)
and the standard distribution of
43 muscles in the right leg

MTG # Agonist/Antagonist GAIT V. JUMP

1 Hip adduction 0.0111 0.0050

Hip abduction 0.0581 0.0773

2 Hip flexion 0.0247 0.0279

Hip extension 0.0718 0.0242

3 Hip internal rotation 0.2126 0.0259

Hip external rotation 0.1143 0.0610

4 Knee flexion 0.0137 0.0144

Knee extension 0.0477 0.0783

5 Ankle inversion 0.0101 0.0234

Ankle eversion 0.0068 0.0312

6 Ankle plantarflexion 0.0270 0.0429

Ankle dorsiflexion 0.0216 0.0034

Mean – 0.0516 0.0346

of the six degrees of freedom driven by muscles in each leg when modeling 43 muscles per
leg. More degrees of freedom driven by muscles means more work for the forward-dynamics
algorithm, apart from that strictly due to the increase in the number of muscles, as a higher
number of torque constraints in the optimization for the force-sharing problem, or a higher
number of columns in the Jacobian containing the moment arms.

7.3 Muscle torque generators

Six MTGs (each one with the agonist and antagonist components) were used for the six
degrees of freedom driven by muscles in the right leg. It was found that the efficiency pro-
vided by the use of MTGs was almost the same achieved in the skeletal case: the run-times
required to run the simulations were 0.01 s for gait and 0.02 s for vertical jump, exactly the
same as in the skeletal case.

To give an idea of the accuracy provided by the use of MTGs, the activation of each MTG
was compared with the weighted average activation of the muscles that contribute to that
MTG when using the rigid-tendon model without activation dynamics in the standard model
of 43 muscles for the right leg (the modeling employed to calibrate the MTGs). The weighted
average activation of the muscles that contribute to an MTG was obtained as follows:

ā =
∑m

i=1 aiF0i ri∑m

i=1 F0i ri

, (23)

where ai are the activations of the m muscles contributing to that MTG, F0i are the maxi-
mum isometric forces of the muscles, and ri are the moment arms of the muscles.

Table 5 gathers the RMSE obtained from the difference, for each MTG, between both
magnitudes, a and ā, along the duration of the movements, while Fig. 7 details such dis-
crepancies for two MTGs, the hip adductor and the knee extensor. It can be seen in Table 5
that the mean error is around 5% in gait and around 3.5% in vertical jump. Once again, it
seems that the simplicity of vertical jump prevails over its high dynamics, leading to a better
behavior of the simplified models than in the case of gait.
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Fig. 7 Histories of activations of two MTGs vs. weighted average activations of the muscles contributing to
them, for gait (left) and vertical jump (right)

7.4 Muscular synergies

It was seen in Sect. 5 that muscular activations and forces can be recovered from the synergy
controls by means of Eqs. (13) and (16). It was also said that the forward-dynamics analysis
of gait and vertical jump was solved with a number of synergies ranging from 2 to 6.

The results obtained when using synergies were compared with the results obtained with
the rigid-tendon model without activation dynamics (H3) for the standard distribution of 43
muscles in the right leg (the muscle model used to state the force-sharing problem in terms
of synergies in Sect. 5).

Table 6 gathers the mean RMSE of aggregated muscular activations and normalized
forces (normalized by dividing the force by the maximum isometric force) when using 2
to 6 synergies. The RMSE for each muscle was obtained from the difference between the
history of the corresponding magnitude in the case of using synergies and the history of the
same magnitude when using muscles modeled by method H3. Then, the mean RMSE was
calculated as the mean of the RMSE of the 43 muscles. Figure 8 details the differences in
force for two particular muscles.

When using muscles, the muscular forces are capable of yielding the torques, in the
degrees of freedom driven by muscles, that are required by the CTC controller to track
the captured movements. However, this may not occur, as pointed out in Sect. 2, for some
modeling options. And this is the case when using synergies. Table 7 presents the RMSE
between the torques required by the CTC method and the torques provided by the muscles
when using the synergy-based approach, for the number of synergies ranging between 2 and
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Table 6 Comparison of accuracy as the RMSE between the aggregated activations and normalized forces
obtained when using synergies and the same magnitudes obtained when using muscles modeled by method
H3

# of
synergies

GAIT VERTICAL JUMP

Activation Norm. Force Activation Norm. Force

2 0.0886 0.4907 0.0848 0.6576

3 0.0919 0.5637 0.0762 0.4847

4 0.0819 0.9299 0.0645 0.4277

5 0.0832 1.2619 0.0695 0.4588

6 0.0663 0.8146 0.0816 0.5553

Fig. 8 Histories of muscle forces obtained with the synergy-based approach for a number of synergies rang-
ing from 2 to 6 compared to those obtained with the muscle-based approach and the muscles modeled by
method H3. The plots on the left correspond to gait and the plots on the right correspond to vertical jump

6. In each case, the presented RMSE is the mean of the RMSE of the six degrees of freedom
driven by muscles. Figure 9 details these discrepancies.

It can be seen in Table 7 and Fig. 9 that the satisfaction of the torque constraints in the
force-sharing problem is better as more synergies are considered. This happens because the
optimizer has more freedom to fulfill the constraints as the number of synergies increases.
The problem is that the optimizer gives priority to the satisfaction of the constraints, putting
less effort in minimizing the cost function. This is why the accuracy of muscular activations
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Table 7 RMSE in the
satisfaction of torque constraints
in the force-sharing problem
when using synergies. The
presented values are RMSE
expressed in Nm

# of synergies GAIT V. JUMP

2 5.38 4.30

3 4.29 3.59

4 2.88 2.54

5 1.68 1.86

6 1.60 1.02

Table 8 Efficiency achieved
when using synergies. The
run-times are given in s

# of synergies GAIT V. JUMP

2 0.0907 0.1758

3 0.0914 0.1767

4 0.0917 0.1779

5 0.0918 0.1817

6 0.0981 0.2016

No synergies 0.113 0.218

Table 9 Comparison of accuracy
in aggregated muscular
excitations, activations and
normalized forces when using
tables with two resolutions for
the calculation of
configuration-dependent
magnitudes

Resolution GAIT VERTICAL JUMP

5◦ 10◦ 5◦ 10◦

eu (×10−3) 1.22 2.13 6.65 10.77

ea (×10−3) 0.54 1.26 2.94 4.95

eF (×10−3) 4.55 6.21 7.95 15.70

and forces does not improve with the number of synergies considered (see Table 6), as it
happens with the level of constraint satisfaction.

Table 8 shows the run-times required to carry out the forward-dynamics analysis for the
two movements considered in the study.

The run-times provided in Table 8 are similar to those shown in Table 4 for the model
with 43 muscles in the right leg and using the rigid-tendon model without activation dy-
namics (H3). For gait, the run-time was 0.113 s, and, for vertical jump, the run-time was
0.218 s. Therefore, for this problem there is little advantage in using synergies from the effi-
ciency point of view (a maximum gain of 20% for both movements), and the results are less
accurate, as previously shown.

7.5 Interpolation of configuration-dependent muscular magnitudes

As said in Sect. 6, moment arms, lengths and length derivatives with respect to degrees of
freedom were tabulated for the 43 muscles of each leg conforming the standard distribution,
with several table resolutions. Linear interpolation was applied.

Table 9 gathers the RMSE in aggregated excitations, activations and normalized forces,
obtained with expressions (21) and (22), when using tables with two resolutions (5◦ and
10◦) and having as reference the values obtained without tables. In all cases, the full Hill
model (H1) was employed as muscle model.

It can be observed in Table 9 that errors are very low, being higher in vertical jump
than in gait. It can also be seen that reducing the resolution leads to higher errors, with an
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Table 10 Effect of the resolution
in the size of the tables (in MB)
used for the calculation of
configuration-dependent
magnitudes

Resolution GAIT V. JUMP

5◦ 32.50 81.00

10◦ 1.49 1.77

Table 11 Effect of the resolution in the efficiency of the forward-dynamics analysis. The run-times are given
in s

Resolution GAIT (1.23 s) VERTICAL JUMP (1.90 s)

H1 H2 H3 NP H1 H2 H3 NP

5◦ 0.346 0.049 0.045 0.040 0.627 0.102 0.087 0.080

10◦ 0.344 0.049 0.045 0.040 0.627 0.098 0.087 0.080

No tables 0.453 0.120 0.113 0.108 0.750 0.239 0.218 0.217

Fig. 9 Histories of mean absolute errors in the satisfaction of the torque constraints in the force-sharing
problem when using synergies

approximately linear trend in the analyzed range of resolution (since a null error could be
expected for a resolution of 0°). However, this reduction in resolution entails an exponential
reduction in the size of the tables, as shown in Table 10.

Finally, Table 11 gathers the run-times employed to carry out the forward-dynamics anal-
ysis of the two movements considered when using tables, along with the run-times required
when not using them.

As it can be observed in Table 11, non-negligible advantages are obtained from the use of
tables, being almost independent on the adopted resolution. The lower advantage obtained
for H1 is reflecting the lower weight of the calculation of moment arms, lengths and length
derivatives with respect to degrees of freedom in the whole forward-dynamics algorithm (see
Fig. 1): the computation of the muscle force limits, the optimization for the force-sharing
problem and the root-solver are much more computationally demanding. However, for H2,
H3 and NP, these blocks are either less burdensome or even unnecesary. Gains in efficiency
are between 16% and 24% for H1, and around 60% for the other muscle models.
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8 Conclusions and future work

In this paper, the efficiency and accuracy of several muscle modeling alternatives (four mus-
cle models, the number of muscles, muscle torque generators, muscular synergies, and look-
up tables for musculotendon lengths and moment arms) has been studied, for gait and ver-
tical jump, in the context of a framework that encompasses the computationally intensive
character of predictive simulation algorithms with a known resulting motion that allows
establishing a fair comparison among the different alternatives. The framework is a cointe-
gration approach for the forward-dynamics analysis of captured real motions that does not
require the unified integration of the multibody and muscle dynamics equations. After the
study, the following conclusions can be extracted:

– Muscle models. The rigid-tendon model with activation dynamics offers a good compro-
mise between accuracy and efficiency, being especially accurate for short-tendon muscles,
as concluded in [20]. The damped-equilibrium model, also tested in this work, does not
show any advantage over the full Hill model when used with an implicit integrator, as it
was also concluded in [20]. Neglecting activation dynamics or using a nonphysiological
model do not provide advantage in efficiency but yield less accurate results. The complex-
ity of the movement seems to have more influence on the error due to the use of simplified
models than the fact of being a high- or low-dynamic motion.

– Number of muscles. Including muscles in the model leads to a decrease in efficiency, no
matter the number of muscles considered. However, such decrease can range from a factor
of a few times for a moderate number of muscles and the simplified muscle models, to a
factor of one or two orders of magnitude for a large number of muscles and the full Hill
model. Run-times scale more than linearly with the number of muscles, with a notably
higher growth for the full Hill model than for the simplified models (this means a much
more moderate increment in computational cost with the number of muscles than the one
obtained in [18] for an optimal control algorithm).

– Muscle torque generators (MTG). The use of this approach to consider the muscular effect
allows to keep the same efficiency as in skeletal models (confirming previous impressions
of good efficiency, as that offered by [9]). Although a detailed comparison with the case
of modeling the individual muscles cannot be established, the approach yields muscle
activation levels that are similar to the weighted average of the activations provided by
the muscles contributing to each MTG.

– Muscular synergies. The use of muscular synergies limits the capacity of muscles to sat-
isfy the torque constraints of the force-sharing problem, this limitation being reduced as
more synergies are considered. Since the optimizer focuses on fulfilling the torque con-
straints, less effort is put in minimizing the cost function, which reduces the accuracy
obtained in activations and forces. However, the efficiency is not significantly improved
with respect to the case of not using synergies, which means that the synergy approach
is not recommended (the same conclusion obtained in [21] for inverse-dynamics based
optimization).

– Interpolation of configuration-dependent muscular magnitudes. The use of tables for mo-
ment arms, lengths and length derivatives with respect to degrees of freedom does not
entail a loss of accuracy, and has a non-negligible impact on the efficiency, especially for
the simplified muscle models, reaching gains of around a 60% (less than 25% for the full
Hill model as the interpolated terms have a lower relative weight in the corresponding
algorithm). However, these gains are much more moderate than those reported in [22] for
musculoskeletal kinematics.
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Table 12 Values of the consistency index defined to select the best capture among the set of captures carried
out, and values of its three components (kinematic, dynamic, and muscular). For each activity (gait and
vertical jump), both the ranges of the four terms and their values for the selected capture are shown

GAIT VERTICAL JUMP

Max. Min. Selected Max. Min. Selected

CIk 13.30 10.62 10.96 14.82 11.46 11.46

CId 17.63 9.83 10.25 37.63 18.89 21.62

CIm 61.00 26.32 61.00 52.79 19.05 52.79

CI 26.53 15.11 15.11 47.33 27.80 27.80

The approach used in this study, the forward-dynamics analysis of captured real move-
ments, sought to possess the actual characteristics of predictive simulations (iterative,
computationally costly), but does not fulfill the essence of a predictive simulation, which
is to obtain the unknown motion corresponding to certain inputs. Therefore, an ulterior
work must be done, in which the several muscular modeling alternatives are tested in
predictive simulation algorithms. While it is likely, but not sure, that the conclusions of
this study about efficiency can still be valid in that context, it must be investigated how
the differences found in accuracy translate into differences in the resulting motions, and
whether they are more or less human-like.

Appendix

It was said in the paper that the most consistent capture for each movement was selected
based on a consistency index that was defined from contributions at kinematic level (min-
imum dispersion in geometric constraints satisfaction along the motion), at dynamic level
(minimum residual in the base body), and at muscular level (best match with EMG signals
[21]). In this Appendix, this consistency index is further explained.

At kinematic level, consistency was evaluated by calculating the difference between the
position of each marker estimated by the Kalman filter and measured by the optical system.
The RMS of these differences, expressed in mm, for all the markers and for all the time
points of the movement, was defined as the consistency index for the kinematics, CIk .

At dynamic level, consistency was evaluated by calculating the RMSE between each
component of the ground reactions obtained from inverse dynamics and measured by the
force plates. The average of the RMSE of the six components was defined as the consistency
index for the dynamics, CId .

At muscular level, consistency was evaluated by calculating the Pearson correlation co-
efficient r between the obtained muscular activation and the measured EMG for each of the
nine muscles where EMG was recorded. The average of the nine coefficients was defined as
the consistency index for muscular dynamics, CIm.

Since kinematic and dynamic consistency indices had an order of magnitude of 10, while
the Pearson correlation coefficient r varies between −100 (no correlation) and 100 (total
correlation), the final consistency index was defined as

CI = CIk + CId − CIm

10
. (24)

The ranges of the indices obtained in the set of captures carried out for each activity, along
with their values for the selected captures, are shown in Table 12.
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Fig. 10 Ground reactions obtained from inverse dynamics (thin line) and measured by the force plates (thick
line): gait (top); vertical jump (bottom)
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Fig. 11 Computed muscular activations (solid line) and measured EMGs (dashed line): gait (top); vertical
jump (bottom)
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Moreover, to provide a better understanding of the meaning of the dynamic and muscu-
lar consistency indices, plots of the ground reactions obtained from inverse dynamics and
measured by the force plates are provided in Fig. 10, while plots of the computed muscular
activations and the measured EMGs are shown in Fig. 11.
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