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Epistasis is a phenomenon in which a phenotype outcome is determined by the interaction of genetic

variation at two or more loci and it cannot be attributed to the additive combination of effects

corresponding to the individual loci. Although it has been more than 100 years since William Bateson

introduced this concept, it still is a topic under active research. Locating epistatic interactions is a

computationally expensive challenge that involves analyzing an exponentially growing number of

combinations. Authors in this field have resorted to a multitude of hardware architectures in order to

speed up the search, but little to no attention has been paid to the vector instructions that current CPUs

include in their instruction sets. This work extends an existing third-order exhaustive algorithm to

support the search of epistasis interactions of any order and discusses multiple SIMD implementations

of the different functions that compose the search using Intel AVX Intrinsics. Results using the GCC and

the Intel compiler show that the 512-bit explicit vector implementation proposed here performs the

best out of all of the other implementations evaluated. The proposed 512-bit vectorization accelerates

the original implementation of the algorithm by an average factor of 7 and 12, for GCC and the Intel

Compiler, respectively, in the scenarios tested.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epistasis is the interaction of genetic variation at two or more
loci during the expression of a phenotype that cannot be at-
tributed to the additive combination of effects corresponding
to the individual loci [1]. It is a phenomenon present in many
lant [2,3], animal [4,5] and human [6,7] traits. Because of its

importance, epistasis detection has been, and currently is, a topic
under active research.

Besides its biological implications, epistasis also represents
a computational challenge: locating a combination of features
(or loci) that can correctly classify the samples (or individuals)
in different groups attending to its phenotype, between all of
the possible combinations of features. For this reason, a mul-
titude of methods have been proposed in order to solve this
problem, many of which refrain from exploring every combina-
tion and, instead, implement non-exhaustive alternatives ranging
from greedy algorithms to machine learning techniques (see, for
instance, [6,8–11]). In a previous study [12], we compared the
performance of all epistasis detection methods published during
the last decade that offer an implementation available to the
scientific community, when locating epistatic interactions of dif-
ferent orders. The study concludes that, despite the rich variety
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of methods, only the exhaustive approaches (those which explore
every combination of loci up to a certain combination size) can
reliably identify interactions with no marginal effects.

Given the computational complexity of finding epistatic in-
teractions, authors in this field have resorted to a multitude of
different architectures to perform this task, which include CPUs
[6,13,14], clusters of CPUs [15,16], GPUs [14,17,18], clusters of
GPUs [16] and other accelerators [19,20]. Most modern CPU archi-
tectures, if not all, include Vector Processing Units (VPUs) in their
processing cores. Exploiting all the resources available in a core
is key in order to achieve the maximum performance. Although
compilers incorporate automatic vectorization techniques to ex-
ploit the VPUs in programs that do not make explicit use of them,
they show limitations on what can be automatically vectorized,
and the performance obtained is not always the optimal, as it
will be later seen. Vectorization has already been successfully
employed in other bioinformatic applications such as local se-
quence alignment [21,22] or genome and metagenome distance
estimation [23]. However, despite the potential that an efficient
use of these units offers, none of the works previously mentioned,
with the exception of [14], consider their use to further accelerate
the epistasis search. In [14] Campos et al. include a couple of Intel
Advanced Vector Extensions (AVX) Intrinsics to parallelize the
bitwise AND and AND-NOT operations, used during the compu-
tation of the genotype frequencies corresponding to a particular
loci combination.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In this work, we detailedly explore the intricacies of the SIMD
arallelization of an exhaustive epistasis detection algorithm to
ind interactions of any order, looking to maximize the per-
ormance per core in modern CPUs. To do this, we manually
mplement an epistasis search explicitly using vector instructions,
nd compare it with the performance achieved by the GCC and
ntel compilers automatically vectorizing the same operations.
tarting from an existing method for third-order epistasis de-
ection (MPI3SNP [16]), Section 2 describes how this method
can be expanded to support loci combinations of any size. We
selected MPI3SNP due to its good performance shown when
locating epistasis [12] and the simplicity of the algorithm imple-
mented. Section 3 explains how each of the operations can be
vectorized through AVX Intrinsics using the AVX2 and AVX512BW
extensions. Section 4 presents the experimental evaluation of the
vectorized algorithm, comparing the performance achieved by
the explicit vector implementations using AVX Intrinsics with
the performance achieved by the automatic vectorization that
compilers offer and the original performance of the MPI3SNP
implementation. Finally, Section 5 discusses the conclusions ex-
tracted from this study, reflects on its limitations and comments
on some lines of future work.

2. Exhaustive epistasis detection

This work explores the extension of the exhaustive third-order
epistasis detection algorithm used by MPI3SNP [16] to support
the detection of epistasis interactions of any order, as well as
the optimization of its implementation from the perspective of
its single-thread performance.

Exhaustive epistasis detection methods, despite their differ-
ences in implementation, follow a common set of steps summa-
rized in the flowchart shown in Fig. 1. The key elements of the
program flow are:

1. The enumeration of all combinations of loci, without rep-
etition, for a set of loci and up to a certain combination
size.

2. The computation of the different allele combination fre-
quencies for each combination of loci.

3. The quantification of the association between the division
of the individuals in groups (such as cases and controls),
and the differences in genotype frequencies between those
groups, for each combination.

In this work, a depth-first algorithm is used for the enumera-
tion of combinations of any given size, genotype and contingency
tables are used for the computation of the different allele fre-
quencies and the Mutual information (MI) method is employed
for the quantification of the association between groups.

Genotype tables were first introduced by Wan et al. in BOOST
[13], and since then have been adopted by a variety of epistasis
detection works, including MPI3SNP [16] (some other examples
are [14,18,24]). Genotype tables are a data structure used to
represent the genotype information of a particular locus or com-
bination of loci, following a binary format that allows for the
combination with further loci using binary operators exclusively.
This work uses Single Nucleotide Polymorphisms (SNPs) as the
input genotype information. An SNP represents a specific locus
in the genome where at least 1% of the population presents a
genomic variation.

Genotype tables, once calculated, can be transformed into con-
tingency tables that represent the allele combination frequencies
of all individuals by simply counting bits on the genotype table
rows. Wan et al. present the genotype and contingency tables
as a single operation. However, when exploring combinations of
109
Fig. 1. Flowchart of a typical exhaustive epistasis detection method.

ore than two loci, as is the case here, it is convenient to sepa-
ate both operations since many combinations share a common
umber of loci with one another, and thus many intermediate
enotype tables can be used to compute the contingency tables of
ifferent combinations. Sections 2.1 and 2.2 cover the calculation

of genotype and contingency tables for combinations of variable
size, respectively.

Once the contingency table of a particular loci combination
is calculated, its association with the phenotype of interest can
be measured using MI. It is a metric from Information Theory
that measures the amount of information obtainable from one
variable through the observation of another. Section 2.3 covers
the calculation of this metric. Lastly, after all the operations are
defined, Section 2.4 describes the algorithm that combines these
operations to exhaustively explore every combination of loci for
a particular combination size and locate the ones most associated
with the phenotype.

2.1. Genotype table calculation

Genotype tables are data structures used to encode the geno-
type information following a binary format. Genotype tables
group individuals by their phenotype class into two separate
subtables, one for cases and another for controls. These subtables
contain as many rows as genotypes each individual can have,
and as many bits in each row as individuals represented in the
table. When representing a single SNP of a biallelic population,
as is the case with human populations, each individual can
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Fig. 2. Example of two genotype tables of two different SNPs, i and j, for sixteen
ases and controls, and the combined genotype table of the two SNPs.

ave three different genotypes, encoded in three different rows:
omozygous dominant, heterozygous and homozygous recessive.
0 or a 1 in a particular position of a row indicates the absence
r presence of the genotype corresponding to that row for the
ndividual represented in that position, respectively. Using this
epresentation, the information of a singular SNP for m individ-
als can be encoded in 3m bits. Fig. 2 includes two examples
f genotype tables for two different SNPs i and j, both of which
nclude 32 individuals and are encoded using 96 bits.

Genotype tables simplify the operation of combining different
NPs, as they can also be used to represent the combination
f multiple genotypes. Considering that each row of the table
epresents the presence of a particular genotype in every individ-
al as set bits, one can find which individuals have a particular
enotype combination by calculating the intersection between
he corresponding table rows. Therefore, obtaining the genotype
istribution of a particular SNP combination involves combining
he rows of the different tables and calculating their intersection
ia bitwise AND operations, for the case and control subtables
eparately. This procedure can be used to combine as many SNPs
s necessary, resulting in a genotype table containing 3s rows and

3sm bits in total, with s being the number of SNPs in combination
and m the number of individuals represented. Fig. 2 also includes
an example of this, in which the two previous example SNPs i and
are combined into a genotype table containing a total of 9 rows.
Note that in an exhaustive exploration of combinations up

o a certain size, smaller combinations are bound to appear in
any larger ones. In this work, to maximize the reuse of tables
nd, thus, the performance, instead of combining numerous SNPs
t once, genotype tables are constructed following an iterative
rocess, adding one SNP to an existing table in each step. Ad-
itionally, and in contrast with the original method in BOOST
13], we are decoupling the representation of the genotype infor-
ation in tables from contingency tables representing numeric
enotype frequencies, as the latter loses the information of sin-
ular individuals and the frequencies are not needed in every step

f the algorithm.

110
Listing A.1 shows a candidate C++ implementation of this op-
ration in function combine, taking as arguments a genotype ta-
le representing the combination of any number of SNPs, a geno-
ype table of a singular SNP and a genotype table where the re-
ults will be stored. Note that the template argument uint64_t,
ommon to all genotype table classes, indicates the type used
o store the binary information (Lines 18–20). Since the x86_64
nstruction set operates with 64-bit integers, this type is ideal to
old the genotype information, each value representing the infor-
ation of 64 individuals, and each computation operating with 64

ndividuals at once. The function calls the combine_subtable
ubroutine twice to combine each of the two subtables for cases
nd controls. This function consists of three nested for loops, the
wo outermost loops (Lines 6 and 7) combine the different rows
f the input genotype tables. The innermost loop (Line 8) iterates
ver the different uint64_t values of the selected rows, reading
ne value from each input table, calculating its intersection and
toring the result in the output table. The computational time
omplexity of this operation is O(3sm), where m is the number
f individuals in the data and s is the size of the combination.

.2. Contingency table calculation

Contingency tables represent the frequency distribution of two
iscrete variables from a number of observations. For this domain
f application, the variables represented in the contingency tables
re the phenotype and genotype variation. Constructing these
ables from the genotype table representation is direct, as indi-
iduals are already segregated into different subtables according
o the case and control groups, and different rows according to
heir genotype information. Obtaining the frequency distribution
an be done by counting how many bits are set to one for each
ow. This operation is known as population count (or, in short,
opcount), and most of the current processors provide hardware
upport for this operation.
Separating the genotype table and contingency table calcula-

ions into completely different operations may seem convenient
t first glance, as this allows for genotype tables common to
ultiple SNP combinations to be reused. However, if we compute

hem entirely separate, the resulting values from the computation
f the genotype table are stored in memory just to be brought
ack immediately after, in order to compute the corresponding
ontingency table. Because of this, it is more convenient to com-
ute the rows of the last-level genotype table and, instead of
toring them as usual, perform the popcount operation in a single
tep, saving us from several load and store instructions.
Listing A.2 shows a C++ implementation for this operation,

ery similar to the genotype table calculation (Listing A.1), show-
ng that the function combine_and_popcnt consists of two calls
to the subroutine popcnt_subtable to compute the contin-
gency subtables of the two new genotype subtables, and this
subroutine consists of the same three nested loops. However,
instead of immediately storing the multiple uint64_t values
resulting from the bitwise AND operations, the popcount opera-
tion is called, the results of the same row are summed up in a
single uint32_t value and the sum is stored in the contingency
table (Lines 10–12). In contrast with the genotype table class,
the contingency table class uses the uint32_t type (passed as
a template argument in Line 21) to represent the total count of
individuals having a particular genotype because it can contain
a large enough integer, and for the convenience of matching the
size of a float value which will be useful later during the vector-
ization of the MI operation. The computational time complexity
of this operation is also O(3sm), with m being the number of
individuals in the data and s the size of the combination.
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.3. Mutual information calculation

MI quantifies the degree of association between the genotype
istribution of cases and controls and the phenotype distribution
btained from the previously calculated contingency table. MI
as shown a very good detection power in our previous compre-
ensive study [12], and the presence of low frequencies in the
ata, which become more prevalent as we move towards larger
ombination sizes, do not seem to be a problem.
MI is a metric from Information Theory that measures the

mount of information obtainable from one variable through the
bservation of another one. Taking the genotype and phenotype
ariability as two random variables X and Y, MI can be obtained
s:

I(X; Y ) = H(X)+ H(Y )− H(X, Y ) (1)

here H(X) and H(Y ) are the marginal entropies of the two
ariables, and H(X, Y ) is the joint entropy. Marginal entropies of
single and two variables are defined as:

(X) = −
∑
x∈X

p(x) log p(x) (2)

(X, Y ) = −
∑
x,y

p(x, y) log p(x, y) (3)

with p(x) representing the probability of the random variable X
taking the value x, p(y) the probability of the random variable Y
taking the value y, and p(x, y) the joint probability of both events.
These probabilities can be obtained directly from the contingency
table as the division between the number of occurrences and the
number of total observations.

Listing A.3 shows a base C++ implementation of the function to
alculate the MI from an existing contingency table. It computes
(X, Y ) and H(X) in a single for loop (Lines 11–18 and 19–

22, respectively). The loop includes three if branches to avoid
computing the logarithm of 0, which would lead to an undefined
product of 0×−∞, resulting in a NaN value. H(Y ) and the inverse
f the number of individuals (iinds) are provided as function
rguments because they are independent of the genotype dis-
ribution of individuals, and thus can be calculated just once
utside the function (Lines 3 and 4). The MI function operates
ith float types since single-precision floating point numbers

offer enough numerical precision to represent the MI values. The
time complexity of this operation is O(3s), where s is the size of
he combination represented in the input contingency table.

.4. Combinatory exploration algorithm

Algorithm 1 shows the pseudocode of a depth-first exploration
lgorithm which relies on the genotype table, contingency table
nd MI functions previously defined to combine the different
NPs of the input data and assess the degree of association
etween the SNP combinations and the phenotype of study. The
ey element of this algorithm is that it iterates over all the
ombinations in a depth-first manner with the help of a stack.
his is fundamental to prevent multiple calculations of the same
enotype table, since combinations may share a common set of
NPs with other combinations. When the combination space is
xplored depth-first, we exhaust all combinations starting with
particular prefix (and its corresponding genotype table) before
oving onto the next one.
The arguments to this routine are the data set d containing

he genotype tables of all individual SNPs in the data, the order
of the interactions to locate and a vector v where the results
ill be returned. In the first three lines, the function starts by
llocating enough space for an array g of o − 2 genotype tables
111
Algorithm 1: Non-segmented exploration
Input:
d: Data set containing n genotype tables, each representing a
single SNP for m individuals
o: Order of the interactions to identify
Output:
v: Vector of combinations of o SNPs, and their associated MI
value

1 Allocate an array g of o− 2 genotype tables, for sizes between
1 and o− 1

2 Allocate a contingency table c of size o
3 Create an empty stack s
4 Calculate the marginal entropy H(Y )
5 inv_inds← 1/m
6 for i← 0 to n do
7 g[1] ← d[i]
8 for j← i+ 1 to n do
9 Push the pair {i, j} into the stack s

end
10 while s is not empty do
11 Pop the combination {c1, . . . , ck} from the top of the

stack s
12 if k < o then
13 g[k] ← combine(g[k− 1], d[ck])
14 for j← ck + 1 to n do
15 Push the new combination {c1, . . . , ck, j} into

the stack s
end

end
16 else
17 c ← combine_and_popcnt( g[o− 1], d[ck])
18 mi_val← MI(c,H(Y ), inv_inds)
19 Add {c1, . . . , ck} and mi_val to the vector of results v

end
end

end

of size 1 to o − 1, a contingency table c for combinations of the
target size o and a stack s of combinations of SNP indexes. Before
tarting the exploration, the function computes the inverse of the
umber of individuals inv_inds, and the entropy of the phenotype
ariability H(Y ) (Lines 4 and 5), the two arguments of the MI
unction common to all combinations.

After that, the function starts to loop through all SNPs, explor-
ng all of the combinations starting with that SNP before moving
nto the next one. To do this, the genotype table of the SNP i is
opied in g[1], and all combinations of two SNPs starting with
hat one are pushed into the stack (Lines 7–9). Then, using a
hile loop, the combinations of the stack are processed until it is
mptied. In each iteration, the top combination {c1, . . . , ck} of the
tack is popped (Line 11). If k is smaller than the target interaction
rder o, its corresponding genotype table is computed from the
enotype table of its prefix (stored in the array G) and the table
f the last SNP ck (Line 13). Then, all subsequent combinations
tarting with {c1, . . . , ck} are pushed into the stack (Lines 14–
5). Otherwise, if k is equal to o, its contingency table and MI
re computed, and the result is stored in the vector of results v

Lines 17–19).
For simplicity, in the pseudocode, we are appending all combi-

ations with its MI to the vector of results, although in the actual
mplementation only the combinations with the highest MI value
re retained in the vector. The computational time complexity of
his algorithm is O

((n
o

)
3◦m

)
, where n is the number of SNPs in

the data, m is the number of individuals in the data, and o is the
size of the combinations explored.
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Table 1
Elapsed time, in seconds, during the computation of a single contingency table using different operation widths and popcount implementations. The table highlights
with green background the best times using the AVX512BW extension, and with red text the best times using the AVX2 extension.
AND width POPCNT width POPCNT algorithm Individuals count

256 512 1024 2048 4096 8192

512 512 Harley seal 8.60× 10−7 8.60× 10−7 1.02× 10−6 1.31× 10−6 1.88× 10−6 1.60× 10−6

512 512 Lookup 2.47× 10−7 2.47× 10−7 3.39× 10−7 5.57× 10−7 9.63× 10−7 1.78× 10−6

512 256 cpu 4.04× 10−7 4.04× 10−7 6.91× 10−7 1.18× 10−6 2.20× 10−6 4.19× 10−6

512 256 Harley seal 7.59× 10−7 7.59× 10−7 1.05× 10−6 1.61× 10−6 1.72× 10−6 2.82× 10−6

512 256 Lookup 2.98× 10−7 2.98× 10−7 4.64× 10−7 7.66× 10−7 1.40× 10−6 2.67× 10−6

512 256 Lookup orig. 2.99× 10−7 2.99× 10−7 4.57× 10−7 8.01× 10−7 1.46× 10−6 2.81× 10−6

512 64 Popcnt movdq 3.02× 10−7 3.02× 10−7 5.19× 10−7 9.99× 10−7 1.86× 10−6 3.60× 10−6

512 64 Popcnt un. err. 4.36× 10−7 4.36× 10−7 7.09× 10−7 1.17× 10−6 2.06× 10−6 3.82× 10−6

256 256 cpu 1.95× 10−7 2.90× 10−7 5.32× 10−7 9.38× 10−7 1.81× 10−6 3.46× 10−6

256 256 Harley seal 5.08× 10−7 6.06× 10−7 7.85× 10−7 1.16× 10−6 1.14× 10−6 1.85× 10−6

256 256 Lookup 2.24× 10−7 3.13× 10−7 4.65× 10−7 5.71× 10−7 9.98× 10−7 1.83× 10−6

256 256 Lookup orig. 2.15× 10−7 2.90× 10−7 4.56× 10−7 7.82× 10−7 1.44× 10−6 2.75× 10−6

256 64 Popcnt movdq 1.60× 10−7 2.58× 10−7 4.73× 10−7 8.82× 10−7 1.73× 10−6 3.36× 10−6

256 64 Popcnt un. err. 1.86× 10−7 3.08× 10−7 5.42× 10−7 1.04× 10−6 2.02× 10−6 3.93× 10−6
3. SIMD implementation

This section covers the explicit vectorization of the operations
resented in the previous section, using 256-bit and 512-bit
VX Intrinsics from the AVX2 and AVX512BW extensions. This
ection also addresses several optimizations introduced both to
he individual operations and the general exhaustive algorithm
o improve the performance of the vectorized codes.

The AVX2 vector extension was first introduced with the Intel
aswell microarchitecture (2013) while the AVX512BW extension
irst appeared in the Skylake-X processors (2017) of the Skylake
icroarchitecture. In this work, these two vector extensions are
sed not only to optimize the runtime of the epistasis detection
ool on a long list of CPUs, but also to compare the performance
hat the two vector widths offer.

.1. Vectorization of the genotype table calculation

The function combine_subtable shown in Listing A.1 is the
one implementing the computation of a genotype subtable from
two previous subtables, and thus our target for vectorization. In
this function, we can identify a vectorization opportunity at the
innermost loop, where the intersection of two rows from two ta-
bles is calculated by performing as many bitwise AND operations
as values contained in the row (Line 9). This operation is already
exploiting the data-parallelism that 64-bit operations offer, as
the information of a singular individual is stored in a single bit
of the data type uint64_t. With the introduction of 256 and
512-bit AVX instructions, the throughput of this operation can be
multiplied.

Listing A.4 shows the implementation using 256-bit AVX In-
trinsics from AVX2. For simplicity, we assume that the number
of bytes in a row of the genotype table is divisible by the vector
unit width. This is achieved by padding the rows with zeros if the
number of individuals is not divisible by the width of the vector
unit, and it will not influence the result of the following popcount
operation. The new figure replaces the C++ code corresponding
to the two array accesses, the AND and the store operations with
AVX loads, ANDs and store intrinsics. With just the introduction of
the AVX Intrinsics, there is a front-end bound problem in which
the CPU wastes many clock cycles waiting for instructions to
be fetched. Therefore, to correct this behavior, the middle loop
was unrolled completely so that the three rows from the second
genotype table are processed concurrently.

The 512-bit vector implementation using intrinsics from the
AVX512BW extension is almost identical to the one shown in
Listing A.4, and thus it was omitted. The only differences are the
name of the functions that implement the same operations for a
112
512-bit width, the types that these operations use and the step
of the innermost loop, which doubles the one used in the 256-bit
implementation.

3.2. Vectorization of the contingency table calculation

The main difference between the codes for calculating geno-
type and contingency tables (Listings A.1 and A.2, respectively) is
the presence of the popcount operation. Up until very recently,
with the introduction of the Intel Ice Lake processors, there was
no AVX vector instruction implementing a popcount. Muła et al.,
in [25], have already explored this problem and they proposed
multiple algorithms for implementing population counts using
the AVX2 extension. Furthermore, in their Github repository [26],
they have developed updated versions of the algorithms to make
use of the more recent AVX512BW and AVX512VBMI extensions.

Deciding which algorithm runs the fastest is not trivial and
cannot be measured in isolation, as interleaving additional loads
and bitwise AND operations in between popcounts will undoubt-
edly affect the performance of the function as a whole. For
this reason, we implemented multiple versions of the combine_
and_popcount function and compared the performance of each
choice. Table 1 includes the elapsed time during the computation
of a contingency table for the different implementations of the
function on an Intel Xeon Gold 6240 CPU, the processor used for
the experimental evaluation in Section 4, and compiled with GCC
version 8.3.0. The table considers:

1. Two different vector widths for the bitwise AND operations:
256 and 512 bits.

2. Three different vector widths for the popcount operations:
64 bits, using the hardware popcount instruction from the
Bit Manipulation Instructions (BMI) extension, and 256 and
512 bits, using the software implementations proposed in
[25,26].

3. Six different table row widths: 256, 512, 1024, 2048, 4096
and 8192 individuals in each row (or 32, 64, 128, 256, 512
and 1024 bytes per row, respectively), equal for cases and
controls.

From these results we can conclude that the fastest implemen-
tation is dependent on the width of the genotype tables. For less
than 512 individuals per subtable, the best times are obtained by
the implementations that make use of the 64-bit hardware pop-
count instruction. However, if we have more than 512 individuals,
the lookup implementations for both the AVX2 and AVX512BW
extensions offer the fastest alternative for most of the widths
tested. Taking a look at all of the epistasis studies referenced
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hroughout this paper, we can find that most of them consider a
umber of individuals between 512 and 4096. Therefore, for this
ork we will use the AVX2 and AVX512BW implementations of

the popcount lookup algorithm.
Vectorizing the combine_and_popcount function from List-

ing A.2 requires vectorizing its auxiliary subroutine popcnt_
subtable. Starting with the AVX2 implementation, Listing A.5
shows an implementation of the vectorized function, combining
the computation of the new genotype table with the popcount
lookup algorithm. This function includes the following modifica-
tions to the original lookup algorithm:

1. Instead of iterating over an input array as in the original
popcount function (Lines 32–43 from file popcnt-avx2-
lookup.cpp from [26]), popcnt_subtable consists of
three nested loops: the two outer ones (Lines 35 and 36)
combining the different rows of the input genotype tables,
and the two innermost loops (Lines 38 and 74) applying the
popcount iteration to each 256-bit word of the two selected
rows. The first of the two innermost loops (Lines 38–67)
maintains the original unrolling of eighth 256-bit words.

2. Each iteration step (inlined function iter) reads a 256-
bit word from each table row (Lines 6 and 7), computes
the bitwise AND of the two words (Line 8) and contin-
ues with the Muła popcount algorithm (Lines 9–15, which
correspond to Figure 10 from [25]).

Listing A.6 shows the implementation of the same popcnt_
subtable subroutine but using Intrinsics from the AVX512BW
extension. The original popcount lookup algorithm for AVX512BW
(file popcnt-avx512bw-lookup.cpp from [26]) is very similar
to its AVX2 implementation, with the obvious difference of not
applying unrolling to its innermost loop (Lines 39–49). Therefore,
the same considerations for the AVX2 implementation of the func-
tion apply to the AVX512BW algorithm: the function combines
the input genotype tables using three nested loops (Lines 14,
15 and 18), and each popcount iteration of the Muła algorithm is
preceded by two loads that read a 512-bit word from each input
genotype table (Lines 22 and 24) and a bitwise AND operation
(Line 26).

3.3. Vectorization of the mutual information calculation

In contrast to the two previous functions, calculating the MI of
a contingency table requires floating-point arithmetic, including
multiplications, fused multiply-adds (FMAs) and logarithms. Mul-
tiplications and FMAs are supported natively, both for 256-bit and
512-bit vector operations, but there is no hardware instruction
that implements a logarithm. However, Intel does provide an
AVX logarithm routine through their Short Vector Math Library
(SVML), an extension to the Intel Intrinsics available only with
the Intel Compiler. GCC provides a vector implementation of the
logarithm through GNU libc ’s vector math library, available since
version 2.22, although the number of vector functions available
with GNU libc is much more limited compared to Intel’s SVML.

Listing A.7 shows a C++ function implementing the MI com-
putation using AVX Intrinsics from the AVX2 extension. This code
assumes that the contingency table size is divisible by the vector
unit width. Similar to the genotype table and contingency table
calculations, we can achieve this by padding the input contin-
gency table with 0’s, which will not contribute to the final MI
value. The computation follows the same strategy of avoiding
the calculations of the logarithm of zero as in the regular MI
implementation (Listing A.3) but by different means: instead of
skipping the logarithm altogether, which is not possible now
unless all eight values of the vector are zero, the function replaces
the zeros in the vector registers with ones that will evaluate to
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zero and will not contribute in the following FMA operations
(Lines 16–20, 25–29 and 33–36).

Moving onto AVX512BW, this extension provides mask reg-
isters and masked operations, which allow for the execution of
operations only on some of the values contained in the vector
register. Masked logarithms are a very convenient operation to
skip the computation of the logarithm of zero. With masks we
can avoid the zeros without having to blend two vector registers
beforehand. Unfortunately, masked logarithms are only available
under the SVML and for a vector width of 512 bits. The rest of the
implementations still have to rely on the sequence of blends and
logarithms.

Listing A.8 shows the same code implemented using 512-bit
intrinsics from the AVX512BW extension. Comparisons are now
made using the new intrinsic functions operating with 16-bit
masks (Lines 18, 28 and 36) instead of a whole vector register,
and the blend operation takes these masks as an argument. If
the SVML is available, the logarithm plus blend sequences of
operations (Lines 21, 31 and 38) can be replaced with a single
call to the intrinsic mm512_mask_log_ps, which only calculates
the logarithm on the positions specified by the mask.

The AVX512BW extension also includes mask functions for
256-bit operations. Therefore, for comparison purposes, a third
version of the MI function using a width of 256 bits was also cre-
ated. This version uses the same sequence of blend plus logarithm
intrinsic functions shown in Listing A.8 both for the SVML and
GNU’s libc libraries since Intel does not include in the SVML a
masked version of the 256-bit logarithm intrinsic.

3.4. Segmented exploration algorithm

Although the algorithm presented in Algorithm 1 could di-
rectly incorporate the SIMD functions described in the previous
subsections, the performance per core would be penalized due to
the interleaved execution of vector instructions running at very
different frequencies. Intel CPUs, such as the Xeon Gold 6240
used during the evaluation, are known to downscale their CPU
clock frequency based on the number of active cores and the
sequence of instructions executed due to differences in power
consumption and/or heat dissipation. In the processor technical
document [27], Intel identifies three different frequency licenses
in which the processor operates: non-AVX, AVX 2.0 and AVX-512
base core frequencies. Furthermore, different operations inside
each license are not guaranteed to run at the same frequency,
these are only base frequencies that the processor is guaranteed
to run at. For example, floating-point arithmetic vector operations
run at a slower clock frequency than integer arithmetic or bitwise
vector operations.

As a direct consequence of this, the exploration algorithm
would run on the lowest frequency imposed by any of the vector
operations, since the change in frequency is not immediate and
depends on the pipeline of operations executed. To resolve it,
Algorithm 2 proposes a modification to the algorithm, segmenting
the different operations into blocks of operations corresponding
to similar frequency levels and therefore avoiding the frequency
change problem.

Instead of declaring a single contingency table, the function
now reserves space to store b combinations and compute b tables
before applying MI to any of them (Lines 2–3). Combinations
are now explored using two nested while loops, the outer one
iterating until the stack is empty and all combinations starting
with the SNP i have been explored (Line 8), and the inner one
iterating until the block of b contingency tables has been filled
(Line 10).

Every iteration of the innermost loop starts by checking if the
stack is empty. If that is the case, and there are no more SNPs to
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Algorithm 2: Segmented exploration
Input:
d: Data set containing n genotype tables, each representing a
single SNP for m individuals
o: Order of the interactions to identify
b: Size of the block of operations
Output:
v: Vector of combinations of o SNPs, and their associated MI
value

1 Allocate an array g of o− 2 genotype tables, for sizes between
1 and o− 1

2 Allocate an array a of b combinations of size o
3 Allocate an array c of b contingency tables of size o
4 Create an empty stack s
5 Calculate the marginal entropy H(Y )
6 inv_inds← 1/m
7 i← 0
8 while s is not empty or i < n do
9 l← 0

10 while l < b do
11 if s is empty then
12 if i ≥ n then
13 Break from the inner while loop

else
14 g[1] ← d[i]
15 for j← i+ 1 to n do
16 Push the pair {i, j} into the stack s

end
17 i← i+ 1
18 Continue on the next iteration of the loop

end
end

19 Pop the combination {c1, . . . , ck} from the top of the
stack s

20 if k < o then
21 g[k] ← combine(g[k− 1], d[ck])
22 for j← ck + 1 to n do
23 Push the new combination {c1, . . . , ck, j} into

the stack s
end

else
24 a[n] ← {c1, . . . , ck}
25 c[n] ← combine_and_popcnt( g[o− 1], d[ck])
26 l← l+ 1

end
end

27 for j← 0 to l do
28 mi_val← MI(c[j],H(Y ), inv_inds)
29 Add a[j] and mi_val to the vector of results v

end
end

explore, the loop exits (Line 13); otherwise, the genotype table of
the SNP i is copied in g[1], all combinations of two SNPs starting
with i are pushed into the stack, the counter i is increased and
the execution continues on the next iteration of the inner while
loop (Lines 14–18). If the stack is not empty, the loop operates in
a similar manner as the old one: the top combination {c1, . . . , ck}
of the stack is popped (Line 19). If k is smaller than the target
interaction order o, its genotype table is computed and stored in
the array of genotype tables g , and all subsequent combinations
starting with {c1, . . . , ck} are pushed into the stack (Lines 21–
23). Otherwise, {c1, . . . , ck} and its contingency table are stored
in the a and c arrays, respectively (Lines 24–26). When the arrays
a and c of b index combinations and tables, respectively, has been
filled, the inner while finishes and a for loop iterates over all the
114
computed contingency tables, calculating its MI and adding the
combination into the vector of results v (Lines 27–29).

The selection of a proper value for the block size b is key in
order to obtain good performance. It has to be large enough to
make the impact of the transition between frequencies negligi-
ble, but not large enough to exceed the second-level cache of
the processor. Through experimental testing, we found that an
appropriate b for the Intel Xeon Gold 6240, the processor used
in the evaluation, is 1474560/3◦, with o being the order of the
search. This size corresponds to the smallest block size tested at
which the average running frequencies of the functions is very
close or equal to the running frequency of these same functions
in isolation.

4. Evaluation

We have conducted an extensive evaluation of the perfor-
mance achieved by the automatic vectorization offered by the
GCC and Intel compilers, in contrast to manual vectorization using
Intel Intrinsics, when implementing a SIMD epistasis detection
algorithm. It considers the performance of the different functions
that compose the epistasis search in isolation, as well as the
whole depth-first search algorithm. This evaluation starts by as-
saying the individual functions separately, and identifying which
of the implementations obtains the best performance in each
part. Then, the search algorithm is evaluated showcasing how the
relative differences in time spent in each of the functions, and the
operations that each function involves, influence the performance
of the whole search. At last, the best performing implementation
is compared against the original MPI3SNP [16] program using the
compiler’s automatic vectorization, to put into perspective the
performance gain achieved.

Given the exponential time complexity of the operations that
compose an epistasis search, and the search itself, it is difficult
to represent elapsed time results for different problem sizes in
the same graph and extract conclusions from them. For this
reason, this evaluation uses the average elapsed time per cell
or row (depending on the computation being evaluated) as the
metrics to present the results. These measures of time express
the compute time relative to the complexity of the computation,
thus removing the impact of this complexity from the results
and highlighting the differences in performance from multiple
implementations of the same operation.

The two compilers used throughout the evaluation are the
GNU C Compiler 8.3.0 (with the GNU libc version 2.29) and
the Intel C++ Compiler 2020 (version 19.1.1.217). The same op-
timization flags were used for both compilers: -O3, -march=
native and -mtune=native. Additionally, we enabled opti-
mizations on floating-point arithmetic operations using -fast-
math and -fp-model=fast for the two compilers respectively,
as it is a requirement for GCC in order to vectorize some calls
to the math library. Furthermore, for the automatic vectoriza-
tion, we considered the effects of indicating a preference for
a particular vector width during the compilation through the
flags -mprefer-vector-width={256,512} for the GCC com-
piler and -qopt-zmm-usage={low,high} for the Intel com-
iler. Only the flag -qopt-zmm-usage=high had a positive im-

pact on performance, thus it is the only one included in the
results.

All experiments were run on an Intel Xeon Gold 6240, an
18-core CPU that implements the AVX2, AVX512F, AVX512CD,
AVX512BW, AVX512DQ, AVX512VL and AVX512VNNI vector exten-
sions. As mentioned in Section 3.4, performance during SIMD
operation in modern Intel CPUs is tied to the number of active
threads and the type of vector operations used in the instruction
pipeline. This is stated in the processor technical document [27],



C. Ponte-Fernández, J. González-Domínguez and M.J. Martín Future Generation Computer Systems 132 (2022) 108–123

u

Fig. 3. Average elapsed time per row during the calculation of genotype tables, for an increasing number of individuals and a fixed combination size of three, both
sing the GNU C Compiler and the Intel C++ Compiler.
Fig. 4. Average elapsed time per row during the calculation of genotype tables, for combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both
using the GNU C Compiler and the Intel C++ Compiler.
where the maximum core frequencies in turbo mode are specified
attending to the number of cores and type of vector operation
used. Therefore, to obtain a realistic multithreaded performance,
elapsed times throughout the evaluation are measured during a
simultaneous execution of the function in question on every core
of the processor. The 18 different times are then averaged and
presented as a single value.

4.1. Genotype table calculation performance

Figs. 3 and 4 represent the performance results for the geno-
type table calculation function. The figures compare the perfor-
mance of the explicit vectorization using 256-bit and 512-bit
vector instructions with the automatically vectorized code, both
for the GCC and Intel compilers. The measure of time used in both
figures is the average time per row, that is, the average elapsed
time during the calculation of a single row of the table including
both cases and controls, for all of the genotype tables of the order
and number of individuals specified.

Both compilers are capable of automatically vectorizing this
function with no problems. Despite this, and as the figures show,
the performance of the autovectorization for both compilers is
inferior than the performance of both explicitly vectorized alter-
natives.

Fig. 3 represents the time per row during the computation of
genotype tables corresponding to a combination of three SNPs,
for a growing number of individuals. The time per row grows
linearly with the number of individuals, as every row of the
genotype table contains information about all the individuals in
the data. Both compilers show a gap between the performance of
the automatic and explicit vectorizations that is present until a
number of individuals higher than 7040. The 512-bit explicit im-
plementation performs slightly better in general than the 256-bit
one.
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Fig. 4 represents the time per row during the computation
of genotype tables corresponding to combinations of 2, 4 and
8 SNPs, using a fixed number of individuals of 2048. Here, the
time per row should remain constant when increasing the size
of the combinations (s), as the number of rows in the table (3s)
grows with the number of SNPs in combination considered, but
each row contains the same 2048 individuals. This is the case
for combination sizes smaller than eight, where the time per
row remains mostly constant between combination sizes of two
to seven. Starting at genotype tables of eight SNPs, there is an
increase in the elapsed time due to the size of the operands and
result tables exceeding the level 1 data cache of the processor,
which is manifested in the results by bringing the vector and
non-vector performances much closer.

For second and fourth-order interactions, both explicit vec-
torization alternatives obtain again better results than the vec-
torization applied by the compiler, with the 512-bit implemen-
tation performing the best. For eighth order interactions the
performance gap is smaller, with less relative difference between
implementations.

When taking a look at the frequencies at which the differ-
ent implementations run, we observe that the genotype table
calculation runs at 3270 MHz for the 256-bit vector width and
2805 MHz for the 512-bit vector width. In a different architecture,
or in future Intel microarchitectures, where the difference in
frequencies between vector widths could be smaller or nonex-
istent, we can expect the performance gap between the two
widths to be larger. As an example, the elapsed time per row
of calculating a fourth-order genotype table of 2048 individu-
als at a fixed frequency of 2.6 GHz (the base frequency of the
processor) is 6.52× 10−9 s and 3.00× 10−9 s for the explicit 256-
bit and 512-bit implementations under GCC, respectively; and
6.32× 10−9 s and 4.04× 10−9 s for the same implementations
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Fig. 5. Average elapsed time per cell during the calculation of contingency tables, for an increasing number of individuals and a fixed combination size of three,
both using the GNU C Compiler and the Intel C++ Compiler.
Fig. 6. Average elapsed time per cell during the calculation of contingency tables, for combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both
using the GNU C Compiler and the Intel C++ Compiler.
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under Intel, respectively. That is, the 512-bit implementation is
2.18 and 1.56 times faster than the 256-bit one for each compiler,
significantly larger than what we observe in Fig. 4 between these
wo implementations (1.66 and 1.01).

.2. Contingency table calculation performance

Figs. 5 and 6 represent the performance results for the contin-
gency table calculation function. Similar to the figures from the
genotype table calculation, these also compare the performance
of the explicit vectorization using 256-bit and 512-bit vector
operations with the automatically vectorized code using both GCC
and Intel compilers. In this case, we use the average elapsed time
per cell to represent the performance results, that is, the average
time for the calculation of a single cell of the table, for all of
the contingency tables of the order and number of individuals
specified.

For this function, only the Intel compiler is capable of vectoriz-
ng the popcount operation via the introduction of its own vector
mplementation. GCC, on the other hand, refuses to vectorize this
unction due to the presence of the aforementioned operation
nside the innermost loop.

Fig. 5 represents the time per cell during the computation of
ontingency tables corresponding to a combination of three SNPs,
or a growing number of individuals. The elapsed time per cell
uring the creation of contingency tables also grows linearly with
he number of individuals, since the function operates with the
ows from the two previous genotype tables, which include the
ata of all individuals. The differences in compiler behavior are
pparent: GCC results display a linear increase of the elapsed time
er cell with the number of individuals, at a faster pace than
he Intel results due to the lack of vectorization. It is also worth
oting that there is a small reduction of the elapsed time per cell
 t
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in the explicit 256-bit vectorization under GCC at 3712 individu-
als, which corresponds to the minimum number of individuals
required to enter the loop that includes unrolling (Listing A.5,
ine 38). Anyhow, both explicit implementations are faster than
he codes that the two compilers offer, with the 512-bit explicit
ectorization being the fastest alternative.
Fig. 6 represents the time per cell during the computation

f contingency tables for combination sizes of 2, 4 and 8, and
sing the same number of 2048 individuals. Analogous to the
lapsed time per row during the calculation of genotype tables,
he time per cell should also remain constant with the size of
he combinations explored. However, contrary to those results,
here is no increase in the elapsed time for eight order tables due
o cache problems thanks to the avoidance of the genotype table
torage. This is due to the merge of the last level genotype table
alculations and contingency table computations in a single func-
ion. Results show that the explicit implementations are faster
han the compiler-generated code, with the 512-bit vectorization
eing the fastest implementation.
Similar to the genotype table calculations, we observe that the

ontingency table computation function runs at a frequency of
195 MHz for the 256-bit vector width and 2800 MHz for the
12-bit vector width. If we run the function at a fixed frequency
f 2.6 GHz (the base frequency of the processor), the elapsed time
er cell of calculating a fourth-order contingency table of 2048
ndividuals is 1.97× 10−8s and 1.24× 10−8s for the explicit 256-
it and 512-bit implementations under GCC, respectively; and
.58× 10−8s and 1.29× 10−8s for the same implementations
nder Intel, respectively. This represents a speedup of 1.59 and
.23 between vector widths for each compiler, slightly larger than

hose observed in Fig. 6 (1.42 and 1.11).
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Fig. 7. Average elapsed time per cell during the calculation of the MI metric, for combination sizes of 2, 4 and 8, both using the GNU C Compiler and the Intel C++
ompiler.
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.3. Mutual information calculation performance

Fig. 7 shows the performance results for the MI computation
function. This figure compares the performance of the automat-
ically vectorized code with three explicit implementations: two
256-bit vector implementations using Intrinsics from the AVX2
and AVX512BW extensions, respectively, and a 512-bit vector
implementation using Intrinsics from the AVX512BW extension.
ere we also use the time per cell to represent the performance
esults. This time measures the average elapsed time during the
I calculations corresponding to a single cell of the contingency

able (both for cases and controls), for all of the tables of the
pecified order. The number of cells of a contingency table only
epends on the number of SNPs in combination. Thus, MI, as
pposed to the previous routines, does not depend on the number
f individuals.
Results show that the time per cell for the explicit vector

mplementations generally decreases with the table size, despite
he fact that, ideally, the workload per contingency table cell
hould remain constant regardless of the size of the table. This
an mostly be attributed to the additional computations derived
rom the padding introduced in the input contingency tables.
he larger the tables are, the lower the number of unnecessary
omputed cells is relative to the total number of cells in the table.
The best vector performance is achieved by the automatic

ectorization of the Intel Compiler when coupled with the flag
qopt-zmm-usage=high. In contrast, GCC’s automatic vector-
zation does not vectorize the loop, despite having a vectorized
ogarithm function available in the GNU libc math library. Explicit
vectorization using 512-bit AVX instructions obtains the best per-
formance out of the explicit vector implementations (for GCC it is
the fastest alternative). Furthermore, the introduction of 256-bit
AVX512BW instructions in the function have no significant impact
on the elapsed time when compared to the AVX2 implementation.

When examining the assembly code to characterize the dif-
ference in performance between the explicit vector implementa-
tions and the code that the Intel auto-vectorizer generates, we
found that the Intel Compiler calls a function from the SVML that
is not available using Intrinsics: __svml_logf8_mask_e9 (a log-
arithm function for a vector width of 256 bits that uses a masked
input). Therefore, in some scenarios, explicit vectorization may
never obtain a performance equal or better than Intel’s auto-
vectorization due to the difference in SVML functions available
through Intrinsics.

As for the frequencies at which the function is executed, the
256-bit implementation runs at 2805 MHz (we only measured the
256-bit implementation using AVX2 Intrinsics, since the elapsed
times are almost the same) while the 512-bit implementation
runs at 2500 MHz. These frequencies are considerably lower
 s
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than the two previous functions due to the usage of floating-
point arithmetic operations. If the running frequencies are fixed
to 2.5 GHz (slightly lower than the base frequency because the
512-bit implementation runs at this frequency), we observe that
the elapsed time per cell of calculating the MI of a fourth-order
contingency table are 3.48× 10−9 s and 2.10× 10−9 s for the
256-bit and 512-bit vectorizations under GCC, respectively, and
2.87× 10−9 s and 2.10× 10−9 s under the Intel Compiler. This
represents a speedup of 1.66 and 1.36 between vector widths for
each compiler, respectively, slightly larger than those observed in
Fig. 7 (1.49 and 1.23).

4.4. Exhaustive search performance

At last, Figs. 8 and 9 present the performance results for the
whole exhaustive search algorithm. The two figures compare
the performance of the 256 and 512-bit explicit vectorization
approaches using operations from the AVX2 and AVX512BW ex-
tensions, with the automatically vectorized code using both GCC
and Intel compilers, for both versions of the search algorithm
presented in Algorithms 1 and 2.

Figs. 8 and 9 use the average elapsed time per cell to represent
he performance results. The time per cell is the average elapsed
ime spent during the computation of a single contingency table
ell, the subsequent MI operations corresponding to the cell of
he table and a fraction of the time spent during the calculations
f previous genotype tables (this time is equally divided across
ll cells of all combinations that make use of that genotype table),
or all of the contingency tables of the order, number of SNPs and
ndividuals specified.

Fig. 8 represents the time per cell, shown as stacked bars
ndicating the fraction of the time spent in each of the functions,
uring the search of epistasis in combinations of 2, 4 and 8
NPs, and for a fixed number of individuals of 2048. The number
f SNPs was tied to the size of the combinations so that the
orkload among different explorations was as similar as possible.
able 2 indicates, for each exploration order, the number of SNPs
elected, the resulting number of SNP combinations of said order,
he number of different cells among those combinations and
he difference in workload that exploration order and number
f SNPs supposes from the first one. The figure shows that the
12-bit explicit vectorization performs the best out of all of the
ersions compared, which is coherent with what we saw during
he evaluation of the individual functions. The 256-bit explicit
mplementations obtain practically the same results and the only
ompiler-generated vectorization that beats any of the explicit
ectorizations is the Intel Compiler when coupled with the op-
imization flag -qopt-zmm-usage=high for low-order epistasis

earches.
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Fig. 8. Average elapsed time per cell during the exhaustive search of epistasis, for combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both using
the GCC and Intel compilers. The times for each approach is divided into the calculation of the Genotype Tables (GT), Contingency Tables (CT), Mutual Information
(MI) and the rest of the operations included in the algorithm.

Fig. 9. Average elapsed time per cell during the exhaustive search of epistasis, for an increasing number of individuals, a fixed number of 680 SNPs, a fixed
combination size of three and for both the GCC and Intel compilers.

118



C. Ponte-Fernández, J. González-Domínguez and M.J. Martín Future Generation Computer Systems 132 (2022) 108–123

h
m
a
i
w
5
s
3
f
s
v
o
s

b
m

Table 2
Combination size and number of SNPs used during the exhaustive search
evaluation, indicating the resulting number of combinations and table cells, and
the relative workload deviation. The total number of cells is the product between
the number of combinations (as indicated by the previous column) and the
number of cells in each contingency table, 3size , for a particular combination size.
The deviation is the difference between the total number of cells for a particular
combination size and SNP number, and the number of cells for combinations of
two SNPs and 25000 SNPs, relative to the latter one.
Size SNPs Combinations Total cells Deviation

2 25000 312487500 2812387500 +0.00%
4 242 34389810 2785574610 −0.95%
8 23 490314 3216950154 +14.39%

The segmentation of operations introduced in the algorithm
as an overall positive effect on the explicitly vectorized imple-
entations. From a CPU frequency perspective, the segmentation
lgorithm achieves its goal. When there is no separation between
nteger and binary arithmetic, and floating-point arithmetic, the
hole program runs at 2.8 and 2.5 GHz for the 256-bit and
12-bit implementations, respectively. However, when there is
egmentation, genotype and contingency table calculations run at
.05 and 2.75 GHz, and the MI operations run at 2.8 and 2.5 GHz
or each implementation respectively. From the performance per-
pective, the segmentation strategy only works with the explicitly
ectorized implementations and results in a noticeable reduction
f the elapsed time of the searches under GCC, and a much
maller gain under the Intel Compiler for high-order interactions.
Fig. 9 represents the time per cell for a growing number of

individuals from 128 to 8192, using a fixed combination size of
three and a fixed number of SNPs of 680. Although the number
of individuals is irrelevant to the calculation of the MI, it affects
the calculation of the genotype tables and contingency tables, and
therefore the time per cell during the whole search also grows
linearly with the number of individuals, although with a less
pronounced slope than the two first individual operations. These
two subfigures show similar behavior to the one shown in Fig. 5
ecause the calculation of the contingency table accounts for the
ajority of the elapsed time during the whole search.
Results from Fig. 9 show that the explicit vectorization using

512-bit operations achieve the best times. These are very similar
to those of the contingency table calculation function (Fig. 5),
which makes sense since it is the most time-consuming function
of the algorithm as Fig. 8 showed. The best implementation is
again the explicit 512-bit vectorization.

4.5. Performance of the vectorized search compared against
MPI3SNP

To conclude the evaluation, Table 3 compares the elapsed time
required to complete a third-order epistasis search using the orig-
inal MPI3SNP [16] program and the explicit 512-bit vectorization
proposed in this paper, for an input data consisting of 1000 and
4000 SNPs and 1000 and 2000 individuals, and using a single
core of the processor. MPI3SNP was compiled using the same
flags indicated during the introduction of this section, enabling
for both compilers the automatic vectorization. Results show that
the vector implementation of the algorithm speeds the execution
up by an average factor of 7 using GCC and 12 using the Intel C++
Compiler. The speedup with the Intel Compiler is in part due to
its poor memory handling when allocating memory for objects
inside a loop, something that has been accounted for in the new
implementation and that MPI3SNP does not do. Therefore, we
believe that the speedups obtained by GCC paint a more realistic
picture of what speedups should be expected of this algorithm.
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Table 3
Elapsed time, in seconds, and speedup of the explicitly vectorized 512-bit im-
plementation compared to MPI3SNP. Results are the average of three executions
of a single-threaded third-order search.

SNPs Inds. MPI3SNP 512-bit vectorization

Runtime Runtime Speedup

GCC

1000 1000 200.77 39.09 5.14
1000 2000 254.43 50.97 4.99
4000 1000 25698.86 2527.58 10.17
4000 2000 31506.60 3401.53 9.26

Intel

1000 1000 391.47 40.64 9.63
1000 2000 735.52 48.98 15.02
4000 1000 25113.33 2626.10 9.56
4000 2000 47179.35 3288.37 14.35

5. Conclusions

Epistasis detection is still a biological problem that is far from
being resolved. Despite the efforts, there is no single method that
can be applied to a genome-wide scale data set to locate high
order epistasis interactions reliably [12]. In this work, we propose
different SIMD implementations that exploit the parallelization
opportunities inherent to the epistasis detection problem in or-
der to speed up the execution of an exhaustive search. This is
achieved by the introduction of AVX Intrinsics functions dur-
ing the calculation of the genotype tables, contingency tables
and MI metric. We also include general optimization strategies,
such as the segmentation of the operation pipeline due to the
license-based downclocking on Intel processors, and other opti-
mizations specific to this code, such as the loop unrolling during
the calculation of genotype and contingency tables, or the avoid-
ance of logarithms of 0 during the MI calculation. Although this
work considers a specific exhaustive search algorithm, many of
these vectorization and optimization techniques could be directly
applied to a multitude of epistasis detection methods in the
literature where genotype and contingency tables are constructed
to assess the association between a genotype combination and a
particular phenotype.

The results obtained highlight the potential of the SIMD par-
allelization when applied to the epistasis detection problem. For
example, the runtime under GCC of an exhaustive search of an
interaction consisting of three SNPs from two data sets containing
4000 SNPs and 1000 and 2000 individuals, respectively, was
reduced from 428 and 525 min using MPI3SNP down to 42 and
57 min when using the 512-bit vector implementation proposed
in this work. The observed speedups are not exclusive to single-
core executions and will benefit multi-threaded runs, accelerating
the computations in each of the CPU cores used.

The autovectorization provided by the compilers showed vary-
ing degrees of success attending to the compiler and the opera-
tions considered. Intel, for example, was capable of vectorizing all
operations while GCC fell short. As for the performance achieved,
we observed that optimization flags play a big role in the re-
sulting performance of the code generated. GCC required the
-fast-math flag to be capable of vectorizing calls to the math
library, while Intel improved the performance significantly with
the usage of the flag -qopt-zmm-usage=high. With respect to
performance, Intel’s autovectorization remained competitive with
the explicit implementations for low-order interaction searches
but fell behind when moving past fourth-order interactions. GCC’s
autovectorization, on the other hand, was never close to the
performance of the explicit implementations due to its failure of
vectorizing the operations.

Although the proposed explicit implementations are faster,
they are tailored to the x86_64 CPU architecture. For differ-
ent architectures, autovectorization is the only alternative at the
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oment, and the results obtained in this study suggest that
ompilers will be able to vectorize some computations of the
lgorithm, if not all. If the vector width is comparable to those
f AVX, as is the case with ARM’s Scalable Vector Extension,
his algorithm is likely to be effective. However, for architectures
ith much larger vector widths, e.g. the NEC SX-Aurora TSUBASA
ector processor, this algorithm will be inadequate, as there are
ot enough values in the calculation of genotype and contingency
ables to fill the whole vector register.

Moving forward, with future CPU microarchitectures and the
ntroduction of new AVX extensions, it is reasonable to expect
he performance of the SIMD epistasis detection algorithm to
mprove even further. During the evaluation we saw the effect
hat the Intel frequency model had on the performance attend-
ng to the width of the operations, penalizing the larger vector
idths. If these differences in frequency are reduced in upcoming
PUs, the performance will consequently increase. Furthermore,
ith future AVX instructions, for example, the popcount operation

rom the AVX512VPOPCNTDQ extension recently introduced with
ntel Skylake processors, some operations of the algorithm will
llow for a more efficient implementation.
This work also presents some limitations and lines of future

ork:

1. The algorithm described here is single-thread, and only
focuses on the SIMD performance of a sequential execution.
Combining the proposed SIMD implementations with a
multi-thread or multi-process execution is fundamental for
exploiting all the computing power that current CPUs and
clusters of CPUs offer.

2. This paper focuses solely on the x86_64 architecture, the
most extended architecture in general-purpose computers
and high-performance clusters. Therefore, the proposed
algorithm may or may not be appropriate for different CPU
architectures, GPUs or vector processors such as the afore-
mentioned NEC SX-Aurora TSUBASA. Studying different im-
plementations of this algorithm, or a different algorithm
better suited to the characteristics of another architecture,
is something to consider.

All codes presented in this work are available online.1
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ppendix. C++ functions

Listing A.1: Genotype table combination C++ function
1 inline void combine_subtable(
2 const uint64_t *gt_tbl1, const size_t size1,
3 const uint64_t *gt_tbl2, const size_t words,
4 uint64_t *gt_tbl3)
5 {
6 for (size_t i = 0; i < size1; i++) {
7 for (size_t j = 0; j < 3; j++) {
8 for (size_t k = 0; k < words; k++) {
9 gt_tbl3[(i * 3 + j) * words + k] =

10 gt_tbl1[i * words + k] &
11 gt_tbl2[j * words + k];
12 }
13 }
14 }
15 }
16
17 void combine(
18 const GenotypeTable <uint64_t > &t1,
19 const GenotypeTable <uint64_t > &t2,
20 GenotypeTable <uint64_t > &out)
21 {
22 combine_subtable(t1.cases, t1.size, t2.cases,
23 t1.cases_words , out.cases);
24 combine_subtable(t1.ctrls, t1.size, t2.ctrls,
25 t1.ctrls_words , out.ctrls);
26 }

Listing A.2: Contingency table calculation C++ function
1 inline void popcnt_subtable(
2 const uint64_t *gt_tbl1, const size_t size1,
3 const uint64_t *gt_tbl2, const size_t words,
4 uint32_t *ct_tbl, const size_t ct_size)
5 {
6 for (size_t i = 0; i < size1; i++) {
7 for (size_t j = 0; j < 3; j++) {
8 ct_tbl[i * 3 + j] = 0;
9 for (size_t k = 0; k < words; k++) {

10 ct_tbl[i * 3 + j] += std::bitset <64>(
11 gt_tbl1[i * words + k] &
12 gt_tbl2[j * words + k]).count();
13 }
14 }
15 }
16 }
17
18 void combine_and_popcnt(
19 const GenotypeTable <uint64_t > &t1,
20 const GenotypeTable <uint64_t > &t2,
21 ContingencyTable <uint32_t > &out)
22 {
23 popcnt_subtable(t1.cases, t1.size, t2.cases,
24 t1.cases_words , out.cases, out.size);
25 popcnt_subtable(t1.ctrls, t1.size, t2.ctrls,
26 t1.ctrls_words , out.ctrls, out.size);
27 }

2 https://github.com/WojciechMula/sse-popcount.

https://github.com/UDC-GAC/fiuncho
https://github.com/WojciechMula/sse-popcount
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Listing A.3: MI computation C++ function
1 float MI(
2 const ContingencyTable <uint32_t > &table,
3 const float h_y,
4 const float iinds)
5 {
6 size_t i;
7 float h_x = 0.0f, h_all = 0.0f;
8 float p_case, p_ctrl, p_any;
9 const size_t table_size = table.size;

10 for (i = 0; i < table_size; i++) {
11 p_case = table.cases[i] * iinds;
12 if (p_case != 0.0f) {
13 h_all -= p_case * logf(p_case);
14 }
15 p_ctrl = table.ctrls[i] * iinds;
16 if (p_ctrl != 0.0f) {
17 h_all -= p_ctrl * logf(p_ctrl);
18 }
19 p_any = p_case + p_ctrl;
20 if (p_any != 0.0f) {
21 h_x -= p_any * logf(p_any);
22 }
23 }
24 return h_x + h_y - h_all;
25 }

Listing A.4: Genotype table calculation auxiliary C++ function
ectorized with AVX2 Intrinsics
1 inline void combine_subtable(
2 const uint64_t *gt_tbl1, const size_t size1,
3 const uint64_t *gt_tbl2, const size_t words,
4 uint64_t *gt_tbl3)
5 {
6 size_t i, j, k;
7 const __m256i *ptr1 = gt_tbl1;
8 for (i = 0; i < size1; ++i) {
9 const __m256i *ptr2_1 = gt_tbl2 + 0 * words;

10 const __m256i *ptr2_2 = gt_tbl2 + 1 * words;
11 const __m256i *ptr2_3 = gt_tbl2 + 2 * words;
12 __m256i *ptr3_1 = gt_tbl3 + (i*3+0) * words;
13 __m256i *ptr3_2 = gt_tbl3 + (i*3+1) * words;
14 __m256i *ptr3_3 = gt_tbl3 + (i*3+2) * words;
15 for (k = 0; k < words; k += 4) {
16 __m256i y0 = _mm256_load_si256(ptr1++);
17 __m256i y1 = _mm256_load_si256(ptr2_1++);
18 __m256i y2 = _mm256_load_si256(ptr2_2++);
19 __m256i y3 = _mm256_load_si256(ptr2_3++);
20 _mm256_store_si256(ptr3_1++,
21 _mm256_and_si256(y0, y1));
22 _mm256_store_si256(ptr3_2++,
23 _mm256_and_si256(y0, y2));
24 _mm256_store_si256(ptr3_3++,
25 _mm256_and_si256(y0, y3));
26 }
27 }
28 }

Listing A.5: Contingency table calculation auxiliary C++ function
vectorized with AVX2 Intrinsics

1 inline void iter(
2 const uint64_t *ptr1, const uint64_t *ptr2,
3 const __m256i &lu, const __m256i &low_mask,
4 __m256i &local)
5 {
6 __m256i o1 = _mm256_load_si256(ptr1);
7 __m256i o2 = _mm256_load_si256(ptr2);
8 __m256i vec = _mm256_and_si256(o1, o2);
9 __m256i lo = _mm256_and_si256(vec, low_mask);

10 __m256i hi = _mm256_and_si256(
11 _mm256_srli_epi16(vec, 4), low_mask);
12 __m256i popcnt1 = _mm256_shuffle_epi8(lu, lo);
13 __m256i popcnt2 = _mm256_shuffle_epi8(lu, hi);
14 local = _mm256_add_epi8(local, popcnt1);
15 local = _mm256_add_epi8(local, popcnt2);
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16 }
17
18 inline void popcnt_subtable(
19 const uint64_t *gt_tbl1, const size_t size1,
20 const uint64_t *gt_tbl2, const size_t words,
21 uint32_t *ct_tbl, const size_t ct_size)
22 {
23 const __m256i lookup = _mm256_setr_epi8(
24 /* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
25 /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
26 /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
27 /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4,
28 /* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
29 /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
30 /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
31 /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4);
32 const __m256i low_mask = _mm256_set1_epi8(0xf);
33
34 size_t i, j, k;
35 for (i = 0; i < size1; ++i) {
36 for (j = 0; j < 3; ++j) {
37 __m256i acc = _mm256_setzero_si256();
38 for (k = 0; k + 32 <= words; k += 32) {
39 __m256i local = _mm256_setzero_si256();
40 iter(gt_tbl1 + i * words + k + 0,
41 gt_tbl2 + j * words + k + 0,
42 lookup, low_mask, local);
43 iter(gt_tbl1 + i * words + k + 4,
44 gt_tbl2 + j * words + k + 4,
45 lookup, low_mask, local);
46 iter(gt_tbl1 + i * words + k + 8,
47 gt_tbl2 + j * words + k + 8,
48 lookup, low_mask, local);
49 iter(gt_tbl1 + i * words + k + 12,
50 gt_tbl2 + j * words + k + 12,
51 lookup, low_mask, local);
52 iter(gt_tbl1 + i * words + k + 16,
53 gt_tbl2 + j * words + k + 16,
54 lookup, low_mask, local);
55 iter(gt_tbl1 + i * words + k + 20,
56 gt_tbl2 + j * words + k + 20,
57 lookup, low_mask, local);
58 iter(gt_tbl1 + i * words + k + 24,
59 gt_tbl2 + j * words + k + 24,
60 lookup, low_mask, local);
61 iter(gt_tbl1 + i * words + k + 28,
62 gt_tbl2 + j * words + k + 28,
63 lookup, low_mask, local);
64 acc = _mm256_add_epi64(acc,
65 _mm256_sad_epu8(local,
66 _mm256_setzero_si256()));
67 }
68
69 __m256i local = _mm256_setzero_si256();
70 for (; k < words; k += 4) {
71 iter(gt_tbl1 + i * words + k,
72 gt_tbl2 + j * words + k,
73 lookup, low_mask, local);
74 }
75 acc = _mm256_add_epi64(acc,
76 _mm256_sad_epu8(local,
77 _mm256_setzero_si256()));
78
79 ct_tbl[i * 3 + j] =
80 _mm256_extract_epi64(acc, 0) +
81 _mm256_extract_epi64(acc, 1) +
82 _mm256_extract_epi64(acc, 2) +
83 _mm256_extract_epi64(acc, 3);
84 }
85 }
86 for (i = size1 * 3; i < ct_size; ++i) {
87 ct_tbl[i] = 0;
88 }
89 }

Listing A.6: Contingency table calculation auxiliary C++ function
vectorized with AVX512BW Intrinsics

1 inline void popcnt_subtable(
2 const uint64_t *gt_tbl1, const size_t size1,
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3 const uint64_t *gt_tbl2, const size_t words,
4 uint32_t *ct_tbl, const size_t ct_size)
5 {
6 const __m512i lookup = _mm512_setr_epi64(
7 0x0302020102010100llu ,0x0403030203020201llu ,
8 0x0302020102010100llu ,0x0403030203020201llu ,
9 0x0302020102010100llu ,0x0403030203020201llu ,

10 0x0302020102010100llu ,0x0403030203020201llu);
11 const __m512i low_mask = _mm512_set1_epi8(0xf);
12
13 size_t i, j, k, l;
14 for (i = 0; i < size1; ++i) {
15 for (j = 0; j < 3; ++j) {
16 k = 0;
17 __m512i acc = _mm512_setzero_si512();
18 while (k < words) {
19 __m512i local = _mm512_setzero_si512();
20 for (l = 0; l < 255 / 8 && k < words;
21 ++l, k += 8) {
22 __m512i z0 = _mm512_load_si512(
23 gt_tbl2 + j * words + k);
24 __m512i z1 = _mm512_load_si512(
25 gt_tbl1 + i * words + k);
26 __m512i z2 = _mm512_and_si512(z0, z1);
27 __m512i lo = _mm512_and_si512(
28 z2, low_mask);
29 __m512i hi = _mm512_and_si512(
30 _mm512_srli_epi32(z2, 4), low_mask);
31 __m512i popcnt1 = _mm512_shuffle_epi8(
32 lookup, lo);
33 __m512i popcnt2 = _mm512_shuffle_epi8(
34 lookup, hi);
35 local = _mm512_add_epi8(local,popcnt1);
36 local = _mm512_add_epi8(local,popcnt2);
37 }
38 acc = _mm512_add_epi64(acc,
39 _mm512_sad_epu8(local,
40 _mm512_setzero_si512()));
41 }
42 ct_tbl[i * 3 + j] =
43 _mm512_reduce_add_epi64(acc);
44 }
45 }
46 for (i = size1 * 3; i < ct_size; ++i) {
47 ct_tbl[i] = 0;
48 }
49 }

Listing A.7: MI computation C++ function vectorized with AVX2
Intrinsics

1 float MI(
2 const ContingencyTable <uint32_t > &table,
3 const float h_y,
4 const float iinds)
5 {
6 const __m256 ones = _mm256_set1_ps(1.0);
7 const __m256 ii = _mm256_set1_ps(iinds);
8 __m256 h_x = _mm256_setzero_ps();
9 __m256 h_all = _mm256_setzero_ps();

10 __m256i y0;
11 __m256 y1, y2, y3, y4, y5;
12 for (auto i = 0; i < table.size; i += 8) {
13 y0 = _mm256_load_si256(table.cases + i);
14 y3 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), ii);
15 // Identify cells with 0’s
16 y1 = _mm256_cmp_ps(y0,
17 _mm256_setzero_ps(), _CMP_NEQ_OQ);
18 // Replace 0’s with 1’s before log
19 y4 = _mm256_log_ps(_mm256_blendv_ps(
20 ones, y3, y1));
21 h_all = _mm256_fmadd_ps(y3, y4, h_all);
22 y0 = _mm256_load_si256(table.ctrls + i);
23 y4 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), ii);
24 // Identify cells with 0’s
25 y2 = _mm256_cmp_ps(y0,
26 _mm256_setzero_ps(), _CMP_NEQ_OQ);
27 // Replace 0’s with 1’s before log
28 y5 = _mm256_log_ps(_mm256_blendv_ps(
29 ones, y4, y2));
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30 h_all = _mm256_fmadd_ps(y4, y5, h_all);
31 y5 = _mm256_add_ps(y3, y4);
32 // Merge previous masks
33 y1 = _mm256_or_ps(y1, y2);
34 // Replace 0’s with 1’s before log
35 y3 = _mm256_log_ps(_mm256_blendv_ps(
36 ones, y5, y1));
37 h_x = _mm256_fmadd_ps(y5, y3, h_x);
38 }
39 y3 = _mm256_hadd_ps(h_all, h_x);
40 return (y3[0] + y3[1] + y3[4] + y3[5]) -
41 h_y - (y3[2] + y3[3] + y3[6] + y3[7]);
42 }

Listing A.8: MI computation C++ function vectorized with
AVX512BW Intrinsics

1 float MI(
2 const ContingencyTable <uint32_t > &table,
3 const float h_y,
4 const float iinds)
5 {
6 const __m512 ones = _mm512_set1_ps(1.0);
7 const __m512 ii = _mm512_set1_ps(inv_inds);
8 __m512 h_x = _mm512_setzero_ps();
9 __m512 h_all = _mm512_setzero_ps();

10 __m512i z0;
11 __m512 z1, z2, z3, z4;
12 __mmask16 mask1, mask2, mask3;
13 for (auto i = 0; i < table.size; i += 8) {
14 z0 = _mm512_load_si512(table.cases + i);
15 z2 = _mm512_mul_ps(
16 _mm512_cvtepi32_ps(z0), ii);
17 // Identify cells with 0’s
18 mask1 = _mm512_cmp_epi32_mask(z0,
19 _mm512_setzero_si512(), _MM_CMPINT_NE);
20 // Replace 0’s with 1’s before log
21 z3 = _mm512_log_ps(_mm512_mask_blend_ps(
22 mask1, ones, z2));
23 h_all = _mm512_fmadd_ps(z2, z3, h_all);
24 z0 = _mm512_load_si512(table.ctrls + i);
25 z3 = _mm512_mul_ps(
26 _mm512_cvtepi32_ps(z0), ii);
27 // Identify cells with 0’s
28 mask2 = _mm512_cmp_epi32_mask(z0,
29 _mm512_setzero_si512(), _MM_CMPINT_NE);
30 // Replace 0’s with 1’s before log
31 z4 = _mm512_log_ps(_mm512_mask_blend_ps(
32 mask2, ones, z3));
33 h_all = _mm512_fmadd_ps(z3, z4, h_all);
34 z1 = _mm512_add_ps(z2, z3);
35 // Merge previous masks
36 mask3 = _kor_mask16(mask1, mask2);
37 // Replace 0’s with 1’s before log
38 z2 = _mm512_log_ps(_mm512_mask_blend_ps(
39 mask3, ones, z1));
40 h_x = _mm512_fmadd_ps(z1, z2, h_x);
41 }
42
43 return _mm512_reduce_add_ps(h_all) -
44 _mm512_reduce_add_ps(h_x) - h_y;
45 }
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