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Abstract

The interactions among neural populations distributed across different brain regions are
at the core of cognitive and perceptual processing. Therefore, the ability of studying the
flow of information within networks of connected neural assemblies is of fundamental
importance to understand such processes. In that regard, brain connectivity measures
constitute a valuable tool in neuroscience. They allow assessing functional interactions
among brain regions through directed or non-directed statistical dependencies estimated
from neural time series. Transfer entropy (TE) is one such measure. It is an effective
connectivity estimation approach based on information theory concepts and statistical
causality premises. It has gained increasing attention in the literature because it can
capture purely nonlinear directed interactions, and is model free. That is to say, it
does not require an initial hypothesis about the interactions present in the data. These
properties make it an especially convenient tool in exploratory analyses. However, like
any information-theoretic quantity, TE is defined in terms of probability distributions
that in practice need to be estimated from data. A challenging task, whose outcome can
significantly affect the results of TE. Also, it lacks a standard spectral representation,
so it cannot reveal the local frequency band characteristics of the interactions it detects.

In this thesis, we develop a data driven approach to transfer entropy estimation,
based on kernel matrices, that sidesteps the need to obtain probability distributions
from the neural time series. Then, we use our TE estimator to propose methodologies
that allow capturing directed within-frequency phase to phase interactions and directed
cross-frequency phase to amplitude couplings. We begin by expressing TE as a linear
combination of marginal and joint Renyi entropies of order α, instead of following the
standard definition based on Shannon entropies. Next, we use functionals defined on
positive definite kernels matrices that approximate Renyi’s α entropy to propose a TE
estimator that avoids the intermediate step of probability estimation, termed TEκα. It
does so by computing TE directly from kernel matrices that, in turn, capture similarity
relations among the data. Later, we propose a methodology to estimate TE between
single pairs of instantaneous phase time series, termed TEθ

κα. Our approach combines the
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previously introduced kernel-based TE estimator (TEκα) with phase time series obtained
by complex filtering the neural signals of interest. Our proposal overcomes the hurdles
other single-trial TE estimators face when obtaining TE values from phase time series
data, because it does not have to explicitly obtain their probability distributions. Finally,
we introduce a novel methodology to estimate directed phase-amplitude interactions
through TE, termed TEθθς

κα . Our proposal recasts the problem of detecting directed
phase to amplitude couplings as that of estimating directed interactions between phase
time series. Therefore, it ultimately allows assessing the cross-frequency interactions of
interest through the previously developed TEθ

κα methodology.
Throughout this dissertation, we test the proposed TEκα, TEθ

κα, TEθθς

κα approaches on
simulated data exhibiting the types of directed interactions each of them is intended to
capture. We also test them on electroencephalographic (EEG) data obtained under mo-
tor imagery and visuospatial working memory paradigms. For the latter case, we set up
classification systems that aim to discriminate between the conditions in each paradigm,
and that use as inputs relevant connectivities estimated through the proposed estima-
tors. We then evaluate the classification performances in relation to the connectivity
measures used to characterize the EEG signals. For both the simulated and real EEG
data experiments, we employ alternative TE estimation approaches and other effective
connectivity measures in the state-of-the-art as comparison benchmarks. Regarding the
simulated data, obtained results show that the TEκα estimator detects the presence and
direction of causal interactions, displaying robustness to varying noise levels and data
sizes, as well as to multiple interaction delays in the same connected network. They
also show that TEθ

κα and TEθθς

κα successfully estimate the directed interactions present
in the data for the different scenarios tested, with statistically significant results at the
target frequencies defined in the simulation models. For the motor imagery data, TEκα

and TEθ
κα capture discriminant patterns for the left and right-hand motor imagination

tasks, following the temporal structure of the motor imagery paradigm, especially for
a sub-group of subjects. On the other hand, the features extracted through TEθθς

κα do
not allow discriminating between the tasks. Finally, concerning the working memory
data, the three approaches code discriminant directed connectivities linking the regions
that are commonly associated with that cognitive process. Nonetheless, the best results
are obtained with the TEθ

κα and TEθθς

κα -based features, which points to the key role of
oscillatory activity in visuospatial working memory. Overall, the results obtained with
the proposed TE estimators compare favorably with those of the alternative effective
connectivity measures tested in our experiments.
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As future lines of work, we discuss the viability of extending our kernel-based TE
estimator to multivariate connectivity analysis, the possible effects of alternative pa-
rameter selection strategies, as well as the potential to improve the performance of the
TEθθς

κα approach by selecting kernel functions better suited to the nature of the time
series involved in phase-amplitude interactions.
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Chapter 1

Preliminaries

1.1 Motivation

The dynamic interactions among distributed neural populations and brain areas under-
pin cognitive processing and complex behavior (Engel et al., 2013; Rathee et al., 2017).
The concept above is addressed in theoretical neuroscience as the functional integration
principle (Sakkalis, 2011). It complements and expands on earlier approaches for study-
ing brain activity, which focused on assessing the degree to which an individual brain
area specializes for a particular task (Mišić and Sporns, 2016). The functional integration
of cerebral areas can be studied through brain connectivity measures, that are computed
as directed or non-directed statistical dependencies between neural time series obtained
through various neuroimaging techniques (Bastos and Schoffelen, 2016; Friston, 2011;
Gilson et al., 2020; Sakkalis, 2011). Such brain connectivity analyses have revealed that
functional interactions among brain areas are involved in multiple cognitive domains in-
cluding reward processing, cognitive control, memory, attention, language and learning
(Da Silva, 2009; Dimitriadis et al., 2016a; Fukuda et al., 2019; Mišić and Sporns, 2016;
Wianda and Ross, 2019). Furthermore, anomalous connectivity can be linked to dis-
rupted brain functionality, which leads to neurological disorders (Sridhar et al., 2017).
Brain connectivity measures have also found practical applications in several areas, be-
sides their role as fundamental tools in basic neuroscience research. They have been
proposed as control signals in brain-computer interfaces (BCI) for motor rehabilitation,
and in neuro-feedback systems that aim to achieve behavioral changes through the self-
regulation of functional connections; also as biomarkers for neurological disorders such
as epilepsy and attention-deficit hyperactivity disorder (Abbas et al., 2021; Duffy et al.,
2017; Hassan and Wendling, 2018; Lenartowicz and Loo, 2014; Mišić and Sporns, 2016;
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Rathee et al., 2017; Wang et al., 2021a; Wing et al., 2021).
The challenges associated with brain connectivity estimation from neural time se-

ries stem from two sources: In the first place, there are challenges associated with the
nature of the neuroimaging technique employed to acquire the data under analysis. In
particular, in the field of cognitive neuroscience estimating brain connectivity from scalp
electroencephalographic (EEG) recordings poses a challenge. EEG signals can provide
valuable information about the underlying functional brain networks with a high tem-
poral resolution, which allows tracking their activity over short periods of time, like
those of many cognitive tasks (Hassan and Wendling, 2018; Hassan et al., 2015). Also
scalp EEG recording systems are non-invasive, relatively easy to use, and are less ex-
pensive than other neuroimaging systems (Hassan and Wendling, 2018; Lenartowicz and
Loo, 2014). However, EEG signals are quasi-stationary, and stationarity assumptions
can be easily violated, particularly during physical and mental activities, which poses
a problem for many connectivity estimation strategies (Sakkalis, 2011). An additional
issue is the acquisition by the surface electrodes of scalp EEG of mixed activity from
more than one brain region, an effect known as volume conduction, which can result in
spurious connectivity patterns (Cohen, 2015; Sakkalis, 2011). Moreover, EEG signals
display technical and physiological artifacts, such as noise from other electrical sources
and cardiac, muscle and eye-related artifacts, that must be taken care of before esti-
mating connectivity (Debener et al., 2012; Mennes et al., 2010). Nonetheless, numerous
approaches exist in the literature to deal with the aforementioned challenges, including
windowing procedures to address non-stationarity (Cekic et al., 2018), spatial filtering
and source reconstruction to attenuate or eliminate volume conduction effects (Cohen,
2015; Hassan and Wendling, 2018; Hassan et al., 2014), and filtering, thresholding, and
transformations such as ICA (independent component analysis) for artifact elimination
(Mennes et al., 2010).

In the second place, there are hurdles for brain connectivity estimation that arise
depending on the type of interaction that the connectivity measures must capture in
order to answer a given research question. Whether the target interactions are directed
or non-directed, linear or non-linear, time-domain-based or frequency-domain-based, and
in the latter case whether they are within-frequency or cross-frequency in nature, will
both guide the selection of appropriate connectivity measures and bring about particular
estimation issues. For instance, the use of directed connectivity measures based on the
concept of Wiener causality requires assuming how far back in the past the interactions
might be present (Cekic et al., 2018; Wibral et al., 2013). There can also be scenarios
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where little is known about the nature of the neural interactions of interest. In this
case, an apt connectivity measure is one suited for exploratory analyses, that is to
say, a connectivity measure that is able to capture a range of interactions as wide as
possible. Such is the case of transfer entropy (TE), an information theory-based measure
of directed interactions between dynamical systems increasingly used in neuroscience
(Pinzuti et al., 2020; Schreiber, 2000; Ursino et al., 2020; Vicente et al., 2011; Zhu
et al., 2015). However, as detailed in section 1.2, TE has limitations regarding the
need for probability distribution estimation as an intermediate step in its computation,
and the lack of a standard spectral representation that allows revealing the frequency
characteristics of the detected directed interactions.

In a local context, the Automatic Research Group, at Universidad Tecnológica de
Pereira, has been working for years on the development of computer-assisted diagnosis
systems for neurological disorders through the analysis of EEG signals coupled with ma-
chine learning methods. The group has also been working on brain connectivity based
visualization systems that represent neural activity during cognitive tasks, and on the
development of brain connectivity based neuro-feedback systems for the amelioration
of cognitive abilities, particularly working memory, in association with the Instituto de
Epilepsia y Parkinson del Eje Cafetero, a leading regional health care institution, through
the projects "Sistema de visualización de conectividad cerebral efectiva utilizando repre-
sentaciones kernel orientado a tareas de memoria de trabajo" and "Estrategia de apren-
dizaje adaptativo y representación múltiple para el análisis de conectividad cerebral como
soporte al mejoramiento cognitivo mediante un sistema de neuro-realimentación", respec-
tively. These projects involve the analysis of brain connectivity during working memory
tasks, a cognitive process that implies frequency-dependent directed interactions from
the pre-frontal cortex toward temporal and parieto-occipital areas (Dimitriadis et al.,
2016b; Johnson et al., 2018), a challenging problem that has given rise to attempts to
assess such interactions through TE (Dimitriadis et al., 2016a).

Therefore, from both local and general perspectives, it is necessary to continue de-
veloping and improving upon existing measures of brain connectivity, in order to favor
the characterization of cognitive processes and pathological brain activity in terms of
directed interactions between distributed brain areas.



4 Preliminaries

1.2 Problem statement

The functional interaction of neural assemblies distributed across different brain regions
underlies many cognitive and perceptual processes (Bastos and Schoffelen, 2016). There-
fore, understanding such processes, and brain function overall, requires identifying the
flow of information within networks of connected assemblies, instead of solely focusing on
the activity of specific brain regions in isolation (Sakkalis, 2011; Weber et al., 2017). The
analysis of the interactions mentioned above is carried out through brain connectivity
measures (Friston, 2011). These measures can be subdivided into two categories based
on whether they quantify the direction of the neural interactions (Bastos and Schoffelen,
2016; Sakkalis, 2011). On the one hand, non-directed functional connectivity, or sim-
ply functional connectivity, aims to capture statistically significant interdependencies
among the signals registering the activity of different neural assemblies, without deter-
mining their direction. On the other hand, directed connectivity, commonly referred to
as effective connectivity, measures the influence that a neural assembly has over another
one, establishing statistical causation from their signals, and hence a direction for their
interaction. Effective connectivity is of particular importance in neuroscience because
a large part of brain activity is endogenous and establishing physical causality among
the neural systems supporting that activity is extremely difficult (Vicente et al., 2011).
So statistical causality, based on the premise that a cause precedes its effect, becomes
a valuable tool to decipher multiple aspects of brain function (Bastos and Schoffelen,
2016; Seth et al., 2015).

In general, effective connectivity is assessed through measures that are either based on
a model of the process generating the data, or on approaches based on information theory
(Bakhshayesh et al., 2019; Vicente et al., 2011). The former includes methods such as
Granger causality (GC) and its variants, and dynamic causal modeling (DCM) (Friston,
2011; Seth et al., 2015); while the latter relies on the concept of information transfer
or transfer entropy (TE) (Schreiber, 2000). Even though GC and DCM are widely
used in neuroscience, TE has gained increasing attention in the literature (Timme and
Lapish, 2018; Ursino et al., 2020), because of the advantages it offers as compared with
other effective connectivity measures. Unlike classic GC, TE can capture high order
correlations, and it is well suited to detect purely nonlinear interactions in the data,
which are believed to be ubiquitous in brain activity (Weber et al., 2017). Although
DCM can capture nonlinear interactions too, it requires some a priori knowledge on
the input of the system and on the target connectivity network, which is not always
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available (Vicente et al., 2011); in this sense, TE is model free. As an information-
theoretic quantity, TE does not need an initial hypothesis about the interactions present
in the data (Timme and Lapish, 2018), so it is a particularly useful tool for exploratory
analyses. However, like all other information-theoretic quantities, TE is defined in terms
of the probability distributions of the system under study, that in practice need to be
estimated from data. Probability estimation is a challenging task, and it can significantly
affect the outcome of information theory analyses, including the computation of TE
(Giraldo et al., 2015; Timme and Lapish, 2018). Another drawback of TE is that, unlike
GC, it lacks a standard spectral representation.

Neural oscillations are observed in the mammalian brain at different temporal and
spatial scales (La Tour et al., 2017). These oscillations, and their interactions, have
been linked to fundamental cognitive processes such as attention and memory (Da Silva,
2009; Wianda and Ross, 2019), and to information processing at large (Hyafil et al.,
2015). If the interactions occur between oscillations of the same frequency (within-
frequency), they can be captured through functional and effective connectivity measures,
such as coherence, phase-locking value, Geweke-Granger causality statistics (GGC), par-
tial directed coherence (PDC), and directed transfer function (DTF) (Cekic et al., 2018;
Sakkalis, 2011). On the other hand, if they occur between oscillations of different fre-
quencies (cross-frequency), they can be studied through cross-frequency coupling (CFC)
analysis tools (Aru et al., 2015). Since TE is sensitive to all order correlations, it should
be able to detect directed interactions among neural activities of the same spectral
content, and couplings among activities at different frequency bands without prior spec-
ification (Vicente et al., 2011). However, since it is model-free, TE does not provide
information about the type of interactions that it is capturing. In other words, it can-
not reveal the local frequency band characteristics of the interactions it detects (Chen
et al., 2019), and although several works have proposed strategies to obtain a spectral
representation for TE (Besserve et al., 2010; Chen et al., 2019; Dimitriadis et al., 2016a;
Lobier et al., 2014; Martínez-Cancino et al., 2020; Pinzuti et al., 2020), the question
remains largely open (Pinzuti et al., 2020; Weber et al., 2017).

According to the above, we note that despite its advantages as an effective brain
connectivity measure, TE has two limitations to overcome: i) the need for probability
distribution estimation as an intermediate step in TE computation and ii) the lack of a
spectral representation for TE that allows revealing local frequency band characteristics
of directed neural interactions. Hence, the primary motivation of this thesis is to address
these two problems.
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1.2.1 Probability distribution estimation as an intermediate
step in TE computation

TE is an information-theoretic quantity that estimates the directed interaction, or in-
formation flow, between two dynamical systems (Zhu et al., 2015). It was introduced by
Schreiber (Schreiber, 2000) as a Wiener-causal measure within the framework of informa-
tion theory. Therefore, TE is based on the assumption that a time series A causes a time
series B if the information of the past of A, alongside the past of B, is better at predicting
the future of B than the past of B alone (Cekic et al., 2018). TE quantifies such improve-
ment in prediction by comparing the conditional probability distributions representing
the above-described scenarios through a Kullback-Leibler divergence (Schreiber, 2000).
Then, the resulting expression is re-written as a sum of Shannon entropies, which are
defined in terms of the expected values of a series of joint and marginal probabilities (for
details see Section 1.3) (Timme and Lapish, 2018; Vicente et al., 2011). Consequently,
practical implementations of TE require estimating such probability distributions from
the available data.

Current methods to estimate TE can be divided into two categories: methods that
assume a probability distribution for the data, and plug-in estimators. The most promi-
nent of the methods in the first category is the linear estimation method, which assumes
Gaussianity (Montalto et al., 2014), although more elaborate approaches, such as as-
suming local deterministic nonlinear models for the probability distributions, have also
been proposed (García and Mujica, 2019). However, by assuming a priori probability
distributions for the data TE becomes a model-dependent scheme, neutralizing one of
TE’s key attributes. For that reason, plug-in estimators are more commonly used in
the literature, with the prime examples being binning strategies, usually in combina-
tion with symbolization schemes (Dimitriadis et al., 2016a; Montalto et al., 2014), and
the local approximation of the probability distributions from nearest neighbor distances
(Kraskov et al., 2004; Lindner et al., 2011). The so obtained TE depends on the qual-
ity of the estimated distributions and, consequently, on the performance of the plug-in
estimator. Since the estimation of probability distributions can by itself be challenging,
it would be desirable to be able to compute TE directly from the data, avoiding the in-
termediate stage of probability estimation. In that sense, recent advances in the area of
information-theoretic learning have allowed estimating information-theoretic quantities,
such as entropy and mutual information, directly from data through the use of kernel
methods, sidestepping probability estimation (Giraldo et al., 2015). These methods are
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yet to be adapted for TE estimation.

1.2.2 The lack of a spectral representation for TE

Effective connectivity measures such as GGC, PDC, or DTF can be used to detect di-
rected within-frequency interactions. The former corresponds to the frequency domain
representation of GC, and the two latter concepts are closely related to GGC (Cekic
et al., 2018). However, since they are derived from VAR (vector autoregressive) esti-
mated quantities, their ability to capture non-linear interactions is unclear (Chen et al.,
2019). In the time domain, TE is well suited to analyze such interactions. Nonetheless,
as mentioned before, there is no standard spectral representation for TE. The most com-
mon approach to estimate TE on a specific frequency band is to simply filter the data,
but computing TE from filtered, real-valued time series has been questioned because of
the effects of filters on the data’s temporal structure, and more importantly, because such
approach might not be able to completly isolate frequency-specific interactions (Pinzuti
et al., 2020; Weber et al., 2017). There is, however, one alternative approach that has
found multiple applications in neuroscience (Hillebrand et al., 2016; Numan et al., 2017;
Wang et al., 2021a): phase transfer entropy (Lobier et al., 2014).

Three properties or components characterize a neural oscillation: its amplitude, its
frequency, and its phase; the latter referring to the position of a signal within an oscil-
lation cycle (Xie et al., 2021). Oscillation amplitudes are related to neural synchrony
expansion in a local assembly, while the relationships between the phases of neural oscil-
lations, such as phase synchronization, are involved in the coordination of anatomically
distributed processing (Ahmadi et al., 2020). The concept of phase TE refers to the idea
of estimating TE from instantaneous phase time series obtained at a particular frequency
(Lobier et al., 2014). The interest of studying phase-based interactions independently
from other spectral relationships arises because, from a functional perspective, phase
synchronization and amplitude correlations are independent phenomena (Kang et al.,
2021). Besides, phase relationships are thought to be linked to information flow within
networks of connected neural assemblies (Lobier et al., 2014). Thence the usefulness of
phase TE. Especially when considering that metrics such as the GGC, PDC or DTF de-
pend on both amplitude and phase signal components (Lobier et al., 2014), and measures
capable of capturing directed phase relationships, such as the phase slope index (PSI),
are limited to linear interactions (Jiang et al., 2015; Nolte et al., 2008). Nonetheless,
conventional TE estimators are not well suited for circular variables (Lobier et al., 2014)
(a variable that is measured on a circle in degrees or radians (Cremers and Klugkist,
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2018)), so phase TE estimates are obtained through a binning approach performed over
multiple trials simultaneously, in a procedure termed trial collapsing, which bars its use
in BCI or other machine learning applications requiring features extracted from single-
trial data. Furthermore, recently proposed methods to compute spectrally resolved TE
that can obtain single-trial estimates are conceptually different from phase TE (Chen
et al., 2019; Pinzuti et al., 2020), as they are not phase-specific.

Regarding the assessment of cross-frequency interactions, which have been hypothe-
sized to be directly related to the integration of distributed information by bridging local
and global processes in the brain (Jirsa and Müller, 2013), they are usually carried out
through non-directed metrics such as the modulation index, the mean vector length, and
variations of the concept of mutual information (Cheng et al., 2018; Malladi et al., 2018;
Martínez-Cancino et al., 2019). In general, they are specifically tailored to determine the
presence of one out of four types of cross-frequency interactions, namely, amplitude to
amplitude, phase to phase, phase to amplitude, and phase to frequency couplings (Jirsa
and Müller, 2013). The use of directed metrics is less common, and it is mostly limited
to linear quantities, such as the cross-frequency directionality (CFD) (Daume et al.,
2017; Jiang et al., 2015; Johnson et al., 2018). However, recent works call for further
inclusion of directed connectivity measures in the analysis of CFCs, signaling out TE as
a promising candidate (Dimitriadis et al., 2016b; Jiang et al., 2015; La Tour et al., 2017;
Martínez-Cancino et al., 2019), especially because GC-based methods have been shown
to fail when the signal-to-noise ratios of the interacting signals are different (La Tour
et al., 2017), which is often the case in phase to amplitude couplings (PAC), the most
widely studied type of CFC (Seymour et al., 2017). Yet the lack of a standard spectral
representation for TE also hinders its application in the context of CFCs analysis, with
works aiming to capture PAC relying on TE computation from real-valued filtered data
(Besserve et al., 2010; Martínez-Cancino et al., 2020; Shi et al., 2019), which is advised
against by some authors (Weber et al., 2017).

Therefore, some problems related to TE estimation and its spectral representation
remain unsolved. For this reason, there arises the following research question: how to
develop a data-driven approach to transfer entropy estimation, that avoids the need to
explicitly obtain the probability distribution of the data and reveals directed phase-based
interactions at specific frequencies?
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1.3 Theoretical background

In this section, we introduce the mathematical formulation of transfer entropy and other
relevant related concepts. First, in Section 1.3.1 we formally define transfer entropy.
Then, in Section 1.3.2 we do the same for Granger causality. Finally, Section 1.3.3
describes an approach to estimate information theoretic quantities directly from data
through kernel matrices.

1.3.1 Transfer entropy

The concept of transfer entropy (TE) was introduced by Schreiber (Schreiber, 2000) as
a Wiener-causal measure within the framework of information theory. It estimates the
directed interaction, or information flow, between two dynamical systems (Bakhshayesh
et al., 2019; Zhu et al., 2015). It is based on the assumption that if a time series A is
causal for another time series B, then the history of A should contain information that
helps to better predict B as compared with the information contained in the history of
B alone (Cekic et al., 2018). It is also based on the information-theoretic concept of
Shannon entropy:

HS(X) = E {−log(p(x))} ≈ −
∑

x

p(x)log(p(x)), (1.1)

where X is a discrete random variable, p(·) is the probability mass function of X, and
E{·} stands for the expected value operator. HS(X) quantifies the average reduction in
uncertainty attained after measuring the values of X. By associating the improvement
in prediction power of Wiener’s definition of causality with the reduction of uncertainty
measured by entropy, Schreiber arrived at the concept of TE (Schreiber, 2000). Formally,
TE measures the difference between two conditional probability distributions:

∆ = p(yt+1|ym
t ,xn

t ) − p(yt+1|ym
t ), (1.2)

where xn
t ∈ Rn and ym

t ∈ Rm are Markov processes, of orders n and m, that approximate
two time series x = {xt}T

t=1 and y = {yt}T
t=1, respectively, and t ∈ N is a discrete time

index, T ∈ N. This difference is quantified through the Kullback-Leibler divergence
(DKL(p||q) = ∑

x p(x)log(p(x)/q(x))) of the conditional probabilities p(yt+1|ym
t ,xn

t ) and
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p(yt+1|ym
t ):

TE(x → y) =
∑

yt+1,ym
t ,xn

t

p (yt+1,ym
t ,xn

t ) log
(
p (yt+1|ym

t ,xn
t )

p (yt+1|ym
t )

)
. (1.3)

Therefore, TE measures whether the probability of a future value of y increases given
the past values of x and y, as compared with the probability of that same future value
of y given only the past of y.

In an attempt to better capture the underlying dynamics of the system that generates
the observed data, i.e., the measured values of the random variables contained in the
time series, TE is not usually defined directly on the raw data, but on its space state
(Vicente et al., 2011). We can reconstruct such state space from the observations through
time embedding. The most commonly used embedding procedure in the literature is
Takens delay embedding (Takens, 1981). So that for a time series x its space state is
approximated as:

xd
t = (x(t), x(t− τ), x(t− 2τ), . . . , x(t− (d− 1)τ)), (1.4)

where d, τ ∈ N are the embedding dimension and delay, respectively, which can be
estimated heuristically or through criteria such as those proposed by Cao or Ragwitz
(Lindner et al., 2011). We can now express TE in terms of the embedded data as:

TE(x → y) =
∑

yt+1,ydy
t ,xdx

t

p
(
yt+1,ydy

t ,xdx
t

)
log

p
(
yt+1|ydy

t ,xdx
t

)
p
(
yt+1|ydy

t

)
 , (1.5)

where xdx
t ,y

dy
t ∈ RD×d are time embedded versions of x and y, with D = T − ((d− 1)τ).

To generalize TE to interaction times other than 1, we rewrite Equation 1.5 as:

TE(x → y) =
∑

yt,ydy
t−1,xdx

t−u

p
(
yt,ydy

t−1,xdx
t−u

)
log

p
(
yt|ydy

t−1,xdx
t−u

)
p
(
yt|ydy

t−1

)
 , (1.6)

where u ∈ N represents the interaction delay between the driving and the driven systems.
The changes in the time indexing are necessary to guaranty that Wiener’s definition of
causality is respected (Wibral et al., 2013). Using the definition in Equation 1.1, we can
also express Equation 1.6 as a difference of conditional Shannon entropies:

TE(x → y) = HS

(
yt|ydy

t−1

)
−HS

(
yt|ydy

t−1,xdx
t

)
, (1.7)
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or alternatively, as a sum of joint and marginal Shannon entropies (see Figure 1.1 for a
graphical representation),

TE(x → y) = HS

(
ydy

t−1,xdx
t−u

)
−HS

(
yt,ydy

t−1,xdx
t−u

)
+HS

(
yt,ydy

t−1

)
−HS

(
ydy

t−1

)
. (1.8)
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𝑑𝑦
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(
ydy
t−1,xdx

t−u

)
− HS

(
yt,y

dy
t−1,xdx

t−u

)
+ HS

(
yt,y

dy
t−1

)
− HS

(
ydy
t−1

)

TE(x→ y)

Figure 1.1: Venn diagrams showing the linear combination of joint and marginal en-
tropies associated with the definition of TE, as expressed in Equation 1.8.

1.3.2 Granger causality

Granger Causality (GC), like TE, is a mathematical formalization of the concept of
Wiener’s causality, one that is widely used in neuroscience to asses effective connectivity
(Seth et al., 2015). However, unlike TE, GC is not based on a probabilistic approach.
The basic idea behind it is that for two stationary time series x = {xt}T

t=1 and y =
{yt}T

t=1, if x causes y, then the linear autoregressive model:

yt =
o∑

k=1
akyt−k + et, (1.9)

where o ∈ N is the model’s order and ak ∈ R stands for the model’s coefficients, will
exhibit larger prediction errors et than a model that also includes past of observations
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of x; that is, a linear bivariate autoregressive model of the form:

yt =
o∑

k=1
a′

kyt−k +
o∑

k=1
bkxt−k + e′

t. (1.10)

where the coefficients bk ∈ R. The magnitude of the causal relation from x to y can
then be quantified by the log ratio of the variances of the residuals or prediction errors
(Seth, 2010):

GC(x → y) = log
(

var{e}
var{e′}

)
, (1.11)

where e, e′ ∈ RT −o are vectors holding the prediction errors, and var{·} stands for the
variance operator. If the past of x does not improve the prediction of y, then var{e} ≈
var{e′} and GC(x → y) → 0, if it does, then var{e} ≫ var{e′} and GC(x → y) ≫ 0.
As defined above, GC is a linear bivariate parametric method that depends on the order
o of the autoregressive model. Nontheless, there are several variations of this basic
formulation of GC that aim to capture nonlinear and multivariate relations in the data
(Sameshima and Baccala, 2016). As a final remark, it is worth noting that although by
definition TE has an advantage over GC by not assuming any a priori model for the
interaction between the systems under study, the two are linked. As demonstrated in
Barnett et al. (2009), they are entirely equivalent for Gaussian variables (up to a factor
of 2).

1.3.3 Information theoretic learning from kernel matrices

Information theoretic learning (ITL) is a data-driven learning framework that employs
information theoretic quantities as objective functions for supervised and unsupervised
learning algorithms (Li and Principe, 2020). However, instead of using the Shannon-
based definition of entropy, ITL exploits the properties of a mathematical generalization
of such a concept known as Renyi’s α-order entropy. As explained before, Shannon
entropy is defined as the expected value of the amount of information of the outcomes of
a random variable. For a continuous random variable X, and using the linear averaging
operator, we have that H(X) = E{I(X)} =

∫
p(x)I(x)dx, where I(x) = −log(p(x)).

Nonetheless, the linear mean is only a particular case of the average operator. In general,
the expected value associated with a monotonic function g(x), with inverse g−1(x), is
E{x} = g−1 (

∫
p(x)g(x)dx). Furthermore, because of the postulate for additivity of

independent events the possible choices for g(x) are restricted to only 2 classes: g(x) = cx

and g(x) = c2(1−α)x, as proven in Rényi et al. (1961). The former gives rise to the linear
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mean and therefore to the Shannon entropy, while the latter implies that:

Hα(X) = 1
1 − α

log
(∫

p(x)αdx
)
, (1.12)

with α ̸= 1 and α ≥ 0, which corresponds to Renyi’s α entropy (Principe, 2010; Rényi
et al., 1961). This parametric family of entropies encompasses the definition of Shannon
entropy in the limiting case when α → 1. In practice one must estimate entropy from
discrete data. Given an i.i.d. sample of n realizations of a discrete random variable
X, {xi}n

i=1 ⊂ Rd, the probability density function of X can be approximated through
the Parzen density estimator as p̂(x) = 1

n

∑n
i=1 κ(x, xi), where κ(·, ·) ∈ R stands for a

positive definite kernel function (see Appendix A, Section A.1, for a brief introduction
on kernel methods). For the case of α = 2, the parzen approximation yields:

Ĥ2(X) = −log
 1
n2

n∑
i,j=1

κ(xi, xj)
 , (1.13)

where the integral in Equation 1.12 has been replaced by a sum. The expression in
Equation 1.13 can be rewritten in terms of a Gram matrix K ∈ Rn×n as Ĥ2(X) =
−log

(
1

n2 tr(KK)
)

+ C, where K holds elements kij = κ(xi, xj), C ∈ R+ accounts for
the normalization factor of the Parzen window, and tr(·) stands for the matrix trace.
From this result we can see that the Frobenius norm of the Gram matrix K, defined
as ||K||2F = tr(KK), is related to an entropy estimator. In Giraldo et al. (2015) the
authors generalize this notion. They extend it to other spectral norms, and introduce
an entropy-like quantity with properties that closely resemble those of Renyi’s entropy,
while avoiding the estimation of probability distributions altogether. Given a Gram
matrix A ∈ Rn×n with elements aij = κ(xi, xj), a kernel-based formulation of Renyi’s
α-order entropy can be defined as:

Hα(A) = 1
1 − α

log (tr(Aα)) , (1.14)

where it holds that tr(A) = 1. The power α of A can be obtained using the spectral
theorem (Giraldo et al., 2015). Moreover, under this formulation, the joint entropy is
defined as:

Hα(A,B) = Hα

(
A ◦ B

tr(A ◦ B)

)
= 1

1 − α
log

(
tr
((

A ◦ B
tr(A ◦ B)

)α))
, (1.15)
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where B ∈ Rn×n is a Gram matrix holding the pairwise evaluation of the kernel function
κ(·, ·) on an i.i.d. sample of n realizations of a second discrete random variable, and
the operator ◦ stands for the Hadamard product. The joint entropy in equation (1.15)
can be extended to more arguments by computing the Hadamard product of all the
corresponding kernel matrices.

For further details on the kernel-based estimation of Renyi’s α entropy see Appendix
A (Section A.2).

1.4 Literature review on transfer entropy estimation

In practice, one must estimate TE from data. Current methods to estimate TE can
be divided into two categories: methods that assume a probability distribution for the
data, such as the linear estimator method, and plug-in estimators, such as binning or
the nearest neighbor distances approximation.

The linear estimator method works under the assumption that the probability dis-
tributions involved in TE are jointly Gaussian (Montalto et al., 2014). Then, the two
terms in Equation 1.7 are expressed by means of linear regressions, which leads to the
following closed expression for TE:

TE(x → y) = 1
2log

(
var{e}
var{e′}

)
, (1.16)

where e, e′ ∈ RT −o are vectors holding the prediction errors from the linear regres-
sions (the same as in Equation 1.11). As mentioned before, this formulation is entirely
equivalent to GC, except for a scaling factor. In a more elaborate approach, that also
assumes a probability distribution for the data, the authors in García and Mujica (2019)
rewrite TE in terms of cumulative probability density functions (CPDs) and then esti-
mate the CPDs using deterministic models of the rule generating the data, particularly
they chose sigmoid functions for the CPDs, and a Heavyside function as the generating
model. However, as the authors in García and Mujica (2019) themselves point out, by
assuming a priori probability distributions for the data, TE becomes a model-dependent
scheme, eliminating one of its advantages over other effective connectivity measures. For
that reason, plug-in estimators are preferred in the literature.

In the seminal work of Schreiber (Schreiber, 2000), the probability distributions in-
volved in TE were estimated through a binning approach. In general, this approach
consists of a uniform quantization of the time series followed by an approximation of the



1.4 Literature review on transfer entropy estimation 15

probabilities with the frequency of visitation of the quantized states (Montalto et al.,
2014). The binning approach for TE estimation has been coupled with symbolic dynam-
ics, a powerful tool for studying complex dynamical systems (Dimitriadis et al., 2012).
The infinite number of values that can be attained by a given time series is replaced by a
set of symbols through a symbolization scheme. We can then use the relative frequency
of the symbols to estimate the joint and conditional probability distributions needed
to compute TE (Dimitriadis et al., 2016a). Given the space state reconstruction of a
time series x (see Equation 1.4), we can arrange the elements in xd

t according to their
amplitude, in ascending order, as follows:

x(t− r1τ) ≤ x(t− r2τ) ≤ . . . ≤ x(t− rdτ), (1.17)

where r1, r2, . . . rd ∈ {0, 1, . . . , d− 1}, in order to obtain a symbolic sequence sx
t :

xd
t → sx

t ≡ (r1, r2, . . . , rd), (1.18)

in what is known as ordinal pattern symbolization (it is also known as the permutation
approach for the estimation of information theoretic quantities (Kang et al., 2021)).
Finally, we define the symbolic version of TE as:

TE(x → y) =
∑

sy
t+1,sy

t ,sx
t+1−u

p
(
sy

t+1, s
y
t , sx

t+1−u

)
log

p
(
sy

t+1|s
y
t , sx

t+1−u

)
p (sy

t+1|s
y
t )

 . (1.19)

We can rewrite Equation 1.19 in terms of Shannon entropies, as in Equation 1.8, and
estimate the probability functions by counting the occurrences of the discrete symbols
instead of quantizing continuous data, as in conventional binning strategies. Other
symbolization approaches, such as the neural-gas algorithm-based symbolization, can
also be employed (Dimitriadis et al., 2016a).

An alternative approach, widely used in neuroscience studies, is an adaptation for
TE of the Kraskov-Stögbauer-Grassberger method for estimating mutual information
(Kraskov et al., 2004). The method relies on a local approximation of the probability
distributions needed to estimate the entropies from the distances of every data point
to its neighbors, within a predefined neighborhood diameter. Also, it deals with the
dimensionality differences in the data spaces in Equation 1.8 by fixing the number of
neighbors in the highest dimensional space, the one spanned by (yt,ydy

t−1,xdx
t−u), and

projecting the distances obtained there to the marginal (and lower dimensional) spaces so
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that they serve as neighborhood diameters in those. The Kraskov-Stögbauer-Grassberger
estimator for TE is expressed as:

TE(x → y) = ψ(K) + E
{
ψ
(
nydy

t−1
+ 1

)
− ψ

(
nytydy

t−1
+ 1

)
− ψ

(
nydy

t−1xdx
t−u

)}
t
, (1.20)

where ψ(·) stands for the digamma function, K ∈ N is the selected number of neighbors
in the highest dimensional space in Equation 1.8, E{·}t represents averaging over different
time points, and n ∈ N is the number of points in the marginal spaces (Lindner et al.,
2011; Martínez-Cancino et al., 2020).
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Figure 1.2: Summary of the main TE estimation methods discussed, and their drawbacks
(highlighted in red).

The two methods described above, binning and the nearest neighbor distances ap-
proximation, rely on the use of plug-in estimators to approximate the probability distri-
butions in the joint and marginal entropies involved in the definition of TE. Therefore,
the so obtained TE depends on the quality of the estimated distributions and, conse-
quently, on the performance of the plug-in estimator. Since the estimation of probability
distributions can by itself be challenging, it would be desirable to be able to compute TE
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directly from the data, avoiding the intermediate stage of probability density estimation,
as has been proposed for other information-theoretic quantities (Giraldo et al., 2015).
Figure 1.2 summarizes the previous discussion.

1.4.1 Transfer entropy in the frequency domain

Measuring frequency-resolved information transfer, or TE, has been recently shown to
correspond to a partial information decomposition problem (Pinzuti et al., 2020). A
problem in information theory that has only been partly resolved and whose mathemat-
ical formulation is still a subject of research (Pinzuti et al., 2020). Under this framework,
most of the current literature about assessing within-frequency and cross-frequency di-
rected interactions through TE, which explicitly assumes one-to-one interactions between
narrow band spectral components, ignores many of the mechanisms through which such
components may transfer information. Therefore, it addresses only a small part of the
problem, as schematized in Figure 1.3. Unfortunately, even the approach put forward
in Pinzuti et al. (2020) does not really constitute a frequency-resolved TE estimation
method. It is a methodology to determine, through statistical testing, how likely a TE
value is once the information at a particular frequency or frequencies in the source or
target signals has been destroyed, and according to the authors, it is blind to some
possible types of interactions.

y

Frequency-resolved information 
transfer

Cross-frequency 
information transfer

Within-frequency 
information 
transfer

Figure 1.3: Assessing the within-frequency and cross-frequency transfer of information
between time series, as commonly understood in the literature, is only a small part of
the problem of measuring frequency-resolved information transfer.

In view of the above, and of the research interests of our group, in this thesis we de-
cided to go in the opposite direction. Instead of working on a full information-theoretic
analysis that takes into account simultaneously the multiple spectral components that
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can interact at both the sender and receiver side of coupled dynamical systems, we
focused on addressing some of the hurdles associated with the estimation of TE be-
tween specific oscillatory components whose interactions are believed to underlie several
cognitive processes. Namely, we centered our attention on directed within-frequency
phase to phase interactions (Lobier et al., 2014; Nolte et al., 2008), and on directed
cross-frequency phase to amplitude couplings (Jiang et al., 2015; Jirsa and Müller, 2013;
La Tour et al., 2017; Seymour et al., 2017).

Phase transfer entropy estimation

The information carried by the phases of neural oscillations is fundamental for the co-
ordination of anatomically distributed processing in the brain (Ahmadi et al., 2020; Xie
et al., 2021). The computation of TE between two instantaneous phase time series ex-
tracted at a particular frequency (a signal’s phase is only physically meaningful when
its spectrum is narrow-banded (Wilmer et al., 2012)), while disregarding amplitude in-
formation, is known as phase TE (Lobier et al., 2014) (see Figure 1.4).

Figure 1.4: An oscillation from a neural time series (left plot) can be described in terms
of its frequency, its amplitude envelope (top-right plot), and its phase (bottom-right
plot). In phase TE only the information carried by the oscillation’s phases is considered.

Formally, in phase TE the time series x and y are replaced by instantaneous phase
time series θx(f) ∈ [−π, π]Tt=1 and θy(f) ∈ [−π, π]Tt=1, obtained from sx = ςxeiθx(f) ∈
CT and sy = ςyeiθy(f) ∈ CT , which contain the complex-filtered values of x and y at
frequency f , respectively, and with ςx, ςy ∈ RT the amplitude envelopes of the filtered
time series (Lobier et al., 2014). Thus, we have that

TEθ(x → y, f) = HS

(
θy,dy

t−1 ,θ
x,dx
t−u

)
−HS

(
θy

t ,θ
y,dy
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x,dx
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)
+HS

(
θy

t ,θ
y,dy
t−1

)
−HS

(
θy,dy

t−1

)
,

(1.21)
where θx,dx

t and θy,dy
t are time embedded versions of θx and θy. Note that for the sake
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of notation simplicity we have dropped the explicit dependency of the phase time series
on f .

The concept of phase TE has found multiple applications in neuroscience, such as
gaining insight into reduced levels of consciousness by evaluating brain connectivity (Nu-
man et al., 2017), analyzing resting-state networks (Hillebrand et al., 2016), and assess-
ing brain connectivity changes in children diagnosed with attention deficit hyperactivity
disorder following neurofeedback training (Ekhlasi et al., 2021; Wang et al., 2021a). It
has even been used to detect fluctuations in financial markets data (Yang et al., 2017).
Nonetheless, computing the quantity in Equation 1.21 is not straightforward since con-
ventional TE estimators, as most of those previously described, are not well suited for
periodic variables. For that reason, in Lobier et al. (2014) phase TE estimates are ob-
tained through a binning approach performed over multiple trials simultaneously, in a
procedure termed trial collapsing. However, the so obtained phase TE values cannot
be employed in any data analysis strategy that requires features extracted on an inde-
pendent trial basis, i.e., each trial must be associated with a set of features, such as
most machine learning algorithms, or in BCI. In that sense, authors in Ahmadi et al.
(2020) applied a binning strategy to estimate single-trial phase TE to set up classification
systems for visual attention. Nonetheless, binning estimators for single trial-based esti-
mation of information-theoretic measures exhibit systematic bias (Lobier et al., 2014).
Furthermore, other recently proposed approaches that claim to be able to obtain single-
trial frequency-specific TE estimates are conceptually different from phase TE, as they
are not phase-specific metrics (Chen et al., 2019; Pinzuti et al., 2020). Figure 1.5 summa-
rizes the above discussion about phase TE computation, an places it in the larger context
of the approaches used to estimate TE, and other effective connectivity measures, for
within-frequency interactions.

Transfer entropy estimation for directed phase-amplitude interactions

The most widely studied instance of CFC is the modulation of the amplitude envelope
of high-frequency oscillations by the phase evolution of low-frequency activity, known as
phase-amplitude coupling (PAC) (Jirsa and Müller, 2013; La Tour et al., 2017; Seymour
et al., 2017). Such phase-amplitude interactions seem to be linked to normal and patho-
logical brain processes in different mammalian species, including humans (Martínez-
Cancino et al., 2020), and they have been observed locally and interregionally across
a wide range of cognitive tasks (Johnson et al., 2018). Theoretically, PAC allows for
information transfer from large-scale brain networks associated with low-frequency os-
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Figure 1.5: Summary of the approaches used to estimate TE and other effective con-
nectivity measures for within-frequency interactions, and their drawbacks (highlighted
in red). Phase-specific measures are encircled in green, dashed lines. For further details
about the PSI see Section 3.1.1.

cillations to local, fast cortical processing areas exhibiting high-frequency activity (Shi
et al., 2018).

Phase-amplitude interactions are commonly assessed from electrophysiological data
through metrics of statistical dependency such as the modulation index, the mean vector
length, and variations of the concept of mutual information (Cheng et al., 2018; Malladi
et al., 2018; Martínez-Cancino et al., 2019). However, these approaches are unable to
capture the directionality and delay of phase-amplitude interactions, quantities intrinsic
to the concept of information being sent from a neural assembly to another (Jiang et al.,
2015; Martínez-Cancino et al., 2020; Pinzuti et al., 2020). A natural solution to this
limitation, within the framework of information theory, is to assess PACs using TE
(Dimitriadis et al., 2016b; Jiang et al., 2015; La Tour et al., 2017; Martínez-Cancino
et al., 2019; Shi et al., 2019).

In that context, most works related to the estimation of directed cross-frequency in-
teractions through TE are focused on the detection of phase to amplitude couplings. The
conventional approach to do so consists of two stages (Besserve et al., 2010; Martínez-



1.4 Literature review on transfer entropy estimation 21

Cancino et al., 2020). First, a component extraction stage, which involves complex-
filtering, or performing a phase/amplitude decomposition, to extract instantaneous phase
and amplitude time series (see Figure 1.6). Then, a TE computation stage that simply
consists of estimating the information flow between the aformention extracted data.

x y

θx ςxsx(fl) θy ςysy(fh)

x y

θx ςxsx(fl) θy ςysy(fh)

θς ςςsς(fl)

A

B

images/sim_scheme_aux2.pdf

Figure 1.6: Graphical representation of the most common approach to capture directed
phase-amplitude interactions through TE. It consists in estimating TE from instanta-
neous phase and amplitude time series extracted at frequencies fl and fh, respectively.

Formally, given two time series x and y, in order to estimate the TE from the phase
of x at a frequency fl (usually a low frequency) to the amplitude envelope of y at a
frequency fh (commonly a higher frequency than fl), we obtain complex time series
sx(fl) = ςxeiθx ∈ CT and sy(fh) = ςyeiθy ∈ CT , which contain the filtered values of x
and y at fl and fh, respectively; where θx,θy ∈ [−π, π]Tt=1 are instantaneous phase time
series, and ςx, ςy ∈ RT are amplitude envelopes (Lobier et al., 2014). Then, we compute
the desired TE as:

TEθς(x → y, fl, fh) = HS

(
ςy,dy
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x,dx
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)
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(
ςy,dy

t−1

)
,

(1.22)
where θx,dx

t and ςy,dy
t are time embedded versions of θx and ςy. In practice, the phase and

amplitude time series are input to one of the above-described TE estimation methods,
such as a binning approach in Besserve et al. (2010), or a time resolved version of the
Kraskov-Stögbauer-Grassberger estimator in Martínez-Cancino et al. (2020).

The conventional approach to estimate directed phase-amplitude interactions through
TE, as expressed by Equation 1.22, implies the computation of TE from data of different
properties, a phase time series θx, which represents a circular variable, and a smooth,
continuous real-valued amplitude envelope ςy. Thus, as in the case of TE estimation
from real-valued narrow-band filtered data, its ability to isolate frequency-specific in-
teractions can be questioned (Pinzuti et al., 2020). Figure 1.7 summarizes the previous
discussion about the estimation of TE for directed PAC. It also presents alternative
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Iván De La Pava Panche November 18, 2021 1/1Figure 1.7: Summary of the approaches used to estimate TE and other effective connec-
tivity measures for directed phase-amplitude interactions, and their drawbacks (high-
lighted in red). For further details about the CFD see Section 4.1.2.

1.5 Aims

1.5.1 General aim

To develop a data-driven approach to transfer entropy estimation that allows revealing
directed interactions in the time and frequency domains, while sidestepping the need for
probability distribution estimation.

1.5.2 Specific aims

1. To develop a transfer entropy estimation approach that avoids probability esti-
mation by using functionals defined on kernel matrices that approximate Renyi’s
entropy measures of order α.
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2. To develop a spectral representation for transfer entropy that allows revealing di-
rected phase-based within-frequency interactions, using frequency-domain trans-
forms and a kernel-based transfer entropy estimator.

3. To develop a spectral representation for transfer entropy that allows revealing di-
rected phase-amplitude cross-frequency interactions, using frequency-domain trans-
forms and a kernel-based transfer entropy estimator.

1.6 Outline and contributions

In the following, we briefly introduce the main contributions of this thesis. They are
summarized in Figure 1.8.

EEG data

Kernel-based 
Renyi’s α TE

Amplitude 
extraction (𝑓ℎ)

Phase extraction 
(𝑓)

Feature 
selection

Classification

Feature 
selection

Feature 
selection

BCI

Specific 
aim 1

Specific 
aim 2

Specific 
aim 3 Phase extraction 

(𝑓𝑙)

Classification

Classification

TEκα

TEθ
κα

TEθθς
κα

Figure 1.8: Schematic representation of the relationship between the aims of this thesis
and the developed methodologies. TEκα: kernel-based Renyi’s α transfer entropy, TEθ

κα:
Kernel-based Renyi’s α phase transfer entropy (phase TE estimation through TEκα), and
TEθθς

κα : TE estimation for directed phase-amplitude interactions posed as a phase TE
problem and obtained through TEκα. In order to test the performance of the proposed
approaches on EEG data, as BCI characterization strategies, additional feature selection
and classification stages are included.

A Python implementation of the proposed TEκα, TEθ
κα, and TEθθς

κα approaches is avail-
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able at https://github.com/ide2704/ITL_framework_Renyi_effective_connectivity (ac-
cessed on November 28, 2021).

1.6.1 Kernel-based Renyi’s transfer entropy (TEκα)

Like all information theoretic quantities, TE is defined regarding the probability distribu-
tions of the systems under study, which in practice are unknown and must be estimated
from data. Commonly used methods for TE estimation rely on a local approximation
of the probability distributions from nearest neighbor distances, or on symbolization
schemes that then allow the probabilities to be estimated from the symbols’ relative fre-
quencies (Dimitriadis et al., 2016a; Kraskov et al., 2004; Lindner et al., 2011). However,
probability estimation is a challenging problem, and avoiding this intermediate step in
TE computation is desirable. Our first contribution consists of proposing a novel TE
estimator using functionals defined on kernel matrices that approximate Renyi’s entropy
measures of order α (De La Pava Panche et al., 2019; Giraldo et al., 2015), after defining
TE in terms of Renyi’s entropy instead of the usual Shannon entropy-based definition.
Our data-driven approach estimates TE directly from data, sidestepping the need for
probability distribution estimation. Also, the proposed estimator encompasses the well-
known definition of TE as a sum of Shannon entropies in the limiting case when α → 1.
We test our proposal on a simulation framework consisting of two linear models, based on
autoregressive approaches and a linear coupling function, respectively, and on two public
EEG databases, obtained under motor imagery (MI) and visual working memory (WM)
paradigms (see Section 1.7 for details). For the synthetic data, the proposed kernel-
based TE estimation method satisfactorily identifies the causal interactions present in
the data. Also, it displays robustness to varying noise levels and data sizes, and to the
presence of multiple interaction delays in the same connected network. Obtained results
for the EEG data show that our approach codes task-discriminant patterns, with clas-
sification performances that compare favorably to the state-of-the-art. This approach is
related to the first specific aim, and it is described in Chapter 2.

1.6.2 Kernel-based Renyi’s phase transfer entropy (TEθ
κα)

Phase TE is commonly obtained from probability estimations carried out over data from
multiple trials (Lobier et al., 2014), which bars its use as a characterization strategy in
BCI. To address that issue, we propose a novel methodology to estimate TE between
single pairs of instantaneous phase time series. Our approach combines the kernel-based

https://github.com/ide2704/ITL_framework_Renyi_effective_connectivity
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TE estimator defined in terms of Renyi’s α entropy (TEκα) with phase time series ob-
tained by complex filtering the neural signals (De La Pava Panche et al., 2021a). We
tested this proposal on simulated coupled data and on the two public EEG databases,
recorded under MI and visual WM paradigms, referenced in Section 1.6.1. Attained
results demonstrate how the introduced methodology succeeds in detecting the inter-
actions present in the synthetic data, with statistically significant results around the
frequencies of interest. It also reflects differences in coupling strength, is robust to real-
istic noise and signal mixing levels, and captures bidirectional interactions of localized
frequency content. Obtained results for the MI and WM databases show that our ap-
proach, combined with a relevance analysis strategy (Fernández-Ramírez et al., 2020),
codes discriminant spatial and frequency-dependent patterns for the different conditions
in each experimental paradigm. This approach is related to the second specific aim, and
it is described in Chapter 3.

1.6.3 Kernel-based Renyi’s phase transfer entropy for the esti-
mation of directed phase-amplitude interactions (TEθθς

κα )

Phase-amplitude interactions are believed to allow for the transfer of information from
large-scale brain networks, oscillating at low frequencies, to local, rapidly oscillating
neural assemblies. A promising approach to estimate such interactions is to use TE.
The conventional method to do so involves feeding instantaneous phase and amplitude
time series, extracted at the target frequencies, to a TE estimator (Besserve et al., 2010;
Martínez-Cancino et al., 2020). As our third contribution, we propose recasting the prob-
lem of directed phase-amplitude interaction detection as a phase TE estimation problem,
under the hypothesis that estimating TE from data of the same nature, i.e. two phase
time series, will improve the robustness to common confounding factors that affect con-
nectivity measures, such as the presence of high noise levels (De La Pava Panche et al.,
2021b). We implement our proposal using the kernel-based Renyi’s α transfer entropy
(TEκα), which, as pointed out in Section 1.6.2, allows to successfully obtain single-trial
phase TE estimates. We tested our approach on synthetic data generated through a
simulation model capable of producing time series with directed phase-amplitude inter-
actions between two given frequencies, and on the two EEG databases mentioned in
Sections 1.6.1 and 1.6.2. Our proposal detects statistically significant interactions be-
tween the simulated signals at the desired frequencies, identifying the correct direction
of interaction. Also, it displays higher robustness to noise than the alternative methods
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tested. Regarding the results for the EEG databases, our proposal is unable to capture
discriminant interactions for the MI data. The same is true for the alternative meth-
ods explored. However, attained results for the WM data showed that the proposed
approach codes connectivity patterns, based on directed phase-amplitude interactions,
that allow discriminating among the different cognitive load levels of the task. This
approach is related to the third specific aim, and it is described in Chapter 4.

1.7 EEG databases

In order to test the performance of the proposed TEκα, TEθ
κα, and TEθθς

κα approaches
as characterization strategies, in the context of BCI, we obtain effective connectivity
features from EEG signals recorded under two different cognitive paradigms: the first
one consisting of motor imagery (MI) tasks, and the second one of a change detection
task designed to study visual working memory (WM). In that context, our objectives are
to set up classification systems that allow discriminating between the conditions in each
paradigm, using as inputs relevant directed interactions among EEG signals, and then
evaluate their performance in relation to the connectivity measures used to characterize
the data. To those ends, we employ two publicly available databases: the BCI Com-
petition IV database 2a 1 and a database from brain activity during visual working
memory 2. For ease of reference, in this section we describe both databases, as well as
the respective pre-processing pipelines applied before estimating brain connectivity.

1.7.1 Motor imagery

Motor imagery (MI) is the process of imagining a motor action without any motor
execution. During an MI task, a subject visualizes in their mind an instructed motor
action, i.e., to move the right hand, without actually carrying it out. When subjects
plan and execute movements, characteristic rhythms in the sensorimotor areas, typically
the µ or precentral α rhythm (8–12 Hz) and the β rhythm (13–30 Hz), get activated (Xu
et al., 2020). That is to say, MI and motor execution share common sensorimotor areas,
and both involve envisioning and executing the same motor plan (García-Murillo et al.,
2021). Although, their neural mechanisms seem to have some differences (Matsuo et al.,
2021). Assessing and interpreting MI brain dynamics may contribute to applications

1http://www.bbci.de/competition/iv/index.html (accessed on November 28, 2021)
2https://data.mendeley.com/datasets/j2v7btchdy/2 (accessed on November 28, 2021)

http://www.bbci.de/competition/iv/index.html
https://data.mendeley.com/datasets/j2v7btchdy/2
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like the evaluation of pathological conditions, the rehabilitation of motor functions, and
motor learning and performance (Collazos-Huertas et al., 2020). Particularly, much
attention has been paid in the literature to BCI systems that can decode MI-associated
task patterns, usually captured through scalp EEG signals, and translate them into
commands in order to control external devices (Galindo-Noreña et al., 2020; Xu et al.,
2020). One the main limitations for the widespread use of such systems being that
about 15–30% of users display BCI illiteracy, i.e. they do not gain enough control over
the interfaces, possibly because subjects with poor control performance do not exhibit
discriminative task-related changes over the modulation of sensorimotor rhythms during
the interval of MI responses (García-Murillo et al., 2021).

It is worth noting that, in general, brain connectivity-based characterization strate-
gies for MI tasks perform poorly (Rathee et al., 2017), specially when compared with
methods such as the common spatial patterns (Elasuty and Eldawlatly, 2015; Gómez
et al., 2018; Li et al., 2018). Because of that, our interest in using the BCI Competition
IV database 2a to evaluate the behaviour of the proposed TE estimation approaches
stems mostly from some characteristics of the database itself. First of all, the MI ex-
perimental paradigm has a clear temporal structure, several seconds long. Any task-
discriminant directed connectivity values should track the paradigm’s time course, that
is to say, they should be observed mainly in the time segment when subjects are per-
forming the MI tasks. Second of all, the database is well known (Tangermann et al.,
2012), and multiple works that use it show a consistent result in one regard: there is a
subgroup of subjects in the database for which many different characterization strategies
lead to high classification performances, while for a different subgroup, they lead to poor
results (Elasuty and Eldawlatly, 2015; Galindo-Noreña et al., 2020; Gómez et al., 2018;
Li et al., 2018; Liang et al., 2016). It is reasonable to assume that if directed inter-
actions among different regions of the sensorimotor area are involved in MI, then the
high performance subgroup of subjects should display, to a degree, similar discriminant
connections. Lastly, since the MI-tasks information is associated to the sensorimotor
rhythms, the proposed spectral representations for TE at those frequency ranges should
hopefully lead to results at least comparable to those obtained through TEκα.

BCI Competition IV database 2a

The BCI Competition IV database 2a (Tangermann et al., 2012) comprises EEG data
from 9 healthy subjects recorded during an MI paradigm consisting of four different
MI tasks, namely, imagining the movement of the left hand, the right hand, both feet,
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or the tongue. Each trial of the paradigm starts with a fixation cross displayed on a
computer screen, along with a beep. At second 2, a visual cue appears on the screen
for a period of 1.25 s (an arrow pointing left, right, down, or up, corresponding to one
of the four MI tasks). The cue prompts the subject to perform the indicated MI task
until the cross vanishes from the screen at second 6. A representation of the paradigm’s
time course is shown in Figure 1.9A. Each subject performed 144 trials per MI task.
The EEG data are acquired at a sampling rate of 250 Hz, from 22 Ag/AgCl electrodes
placed according to the international 10/20 system, as depicted in Figure 1.9B. Next,
the data are bandpass-filtered between 0.5 Hz and 100 Hz. A 50 Hz Notch filter is also
applied. For each subject, the database contains a training dataset and a testing dataset,
obtained following the same experimental paradigm. The former is intended to be used
to train the MI task classification system, while the latter should be used to test the
performance of the trained system (Gómez et al., 2018; Tangermann et al., 2012).

Data pre-processing In this thesis, we consider a bi-class classification problem in-
volving the left and right hand MI tasks, so we drop the trials associated with the feet
and the tongue. Afterward, we also drop the trials marked for rejection in the database
itself (Tangermann et al., 2012). Then, we perform a windowing procedure in order to
both better capture the temporal dynamics of the MI task, which has several distinct
stages, and to favor the stationarity of the EEG signals to be analyzed. We segment
each EEG trial into six-time windows 2 seconds long with 50% overlap, using a square
window, obtaining six segments of equal length, as schematized in Figure 1.9A. Figure
1.9C displays an example of one of the obtained segments. Finally, we compute the
surface Laplacian of each segmented trial using the spherical spline method for source
current density estimation (Perrin et al., 1989) (see Appendix B for details). The surface
Laplacian reduces the effects of volume conduction by attenuating low spatial frequency
activity, and therefore, it also reduces the presence of spurious connections associated
with it in connectivity analyses (Cohen, 2015; Rathee et al., 2017).

1.7.2 Working memory

Working memory (WM) is a memory system of limited capacity with the ability to
store and manipulate information for a short period of time (Baddeley, 2012; Pavlov
and Kotchoubey, 2020). It plays a key role in complex cognitive tasks such as com-
prehension, reasoning, planning and learning (Johnson et al., 2019; Zhang et al., 2016),
as well as in daily activities such as problem solving and decision-making (Dai et al.,
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Figure 1.9: (A) Schematic representation of the MI protocol. (B) EEG channel montage
used for the acquisition of the MI dataset. (C) Example of a 2 seconds long segmented
EEG trial after data pre-processing (without surface Laplacian).

2017). WM consists of three distinct stages of information processing: encoding, main-
tenance or retention, and retrieval (Johnson et al., 2018), with the retention interval
being considered as a defining component of WM, since it differentiates it from other
memory types (Pavlov and Kotchoubey, 2020). Furthermore, WM is a cross-modal con-
struct, that is to say, it depends on the stimulus modality (Pavlov and Kotchoubey,
2020). The most widely recognized model of WM (Baddeley, 2012) describes it as a
several separate but interacting subsystems: a central component (central executive),
two stimuli dependent storage subsystems (the phonological loop and the visuospatial
sketchpad), and a system of limited capacity that allows the interaction between the
other components (episodic buffer) (Toppi et al., 2018). Moreover, multiple studies have
found that neural oscillatory activity in a wide range of frequencies is modulated during
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WM (Daume et al., 2017). High frequency activity, in the β (13–30 Hz) and γ (>40
Hz) bands, seem to play a role in encoding, retrieval, and maintenance of the stimulus;
while activity in lower frequencies, in the θ (4–7 Hz) and α (8–12 Hz) ranges, especially
in frontal areas, is associated with the coordination and integration of different cogni-
tive processes during the execution of WM tasks (Dai et al., 2017). This has led to
hypotheses about cross-frequency coupling mechanisms underpinning WM, with oscil-
latory activity in the central executive component interacting with oscillations at other
frequencies in the peripheral storage systems (Dimitriadis et al., 2016a,b). In particular,
PAC interactions are thought to play a crucial role in WM (Liang et al., 2021), with
bidirectional interactions linking the prefrontal cortex to parieto-occipital and medial
temporal regions (Johnson et al., 2018, 2019).

The hypotheses about the underlying mechanisms of WM involving the transfer of
information between distant brain areas, possibly through cross-frequency interactions,
make it a prime target to test the TE estimation approaches developed in this thesis.
Also, the characterization of WM through brain connectivity measures is of special
interest to our research group, as mentioned in Section 1.1.

Database from brain activity during visual working memory

The database from brain activity during visual working memory, presented in Villena-
González et al. (2020), contains EEG data recorded from twenty-three subjects, with
normal or corrected-to-normal vision, and without color-vision deficiency, while perform-
ing multiple trials of a change detection task (Vogel and Machizawa, 2004). The task
consists of remembering the colors of a set of squares, termed memory array, and then
comparing them with the colors of a second set of squares located in the same positions,
termed test array. A trial of the task begins with an arrow indicating either the left
or the right side of the screen. Then, a memory array appears on the screen for 0.1 s.
For every trial, memory arrays are displayed on both hemifields, but the subject must
remember only those appearing on the side indicated by the arrow cue. Next, after a
retention period lasting 0.9 s, a test array appears. The subject then reports if the colors
of all the items in the memory and test arrays match. The task has three levels accord-
ing to the number of elements in the memory array: low memory load (one square),
medium memory load (two squares), and high memory load (four squares). A represen-
tation of the above-described experimental paradigm is depicted in Figure 1.10A. The
color of one of the squares in the test array differs from its counterpart in the memory
array in 50% of the trials. Each subject performed a total of 96 trials, with 32 trials
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for each memory load level. The EEG data are acquired at a sampling rate of 2048 Hz,
using 64 electrodes (Biosemi ActiveTwo) arranged according to the international 10/20
extended system. Besides the EEG data, the database provides recordings from four
EOG channels and two externals electrodes located on the left and right mastoids.

Data pre-processing First, we re-reference the data to the average of the mastoid
channels. Next, we bandpass-filter the data between 0.01 Hz and 20 Hz using a Butter-
worth filter of order 2. Afterward, we extract the trial information from the continuous
EEG data using a 1.4 s squared window. Each trial segment starts 0.2 s before the
presentation of the memory array. Then, we perform a visual inspection of the data
and discard two subjects (subjects number 11 and 17) because of the presence of strong
artifacts in a very large number of trials. Subjects number 22 and 23 are reassigned as
subjects 17 and 11, respectively. After that, we remove ocular artifacts from the EEG
data by performing independent component analysis (ICA) on it and then eliminat-
ing the components that more closely resemble the information provided by the EOG
data (Villena-González et al., 2020). Then, we discard all incorrect trials, i.e., trials for
which the subjects incorrectly matched the memory and test arrays. Next, we select 32
out of the 64 channels in the EEG data, as shown in Figure 1.10B. Then, we downsample
the data to 1024 Hz, and segment, for each trial, the time window starting 0.3 seconds
after the onset of the memory array and ending just before the presentation of the test
array (see Figure 1.10A). The 0.7 seconds long segments cover most of the retention
interval, the period when the subjects should maintain the stimulus information in their
working memories, while leaving out any purely sensory responses elicited immediately
after the presentation of the stimulus. An example of segmented data trial is shown
in Figure 1.10C. Finally, with the aim of reducing the presence of spurious connections
associated with volume conduction effects, we compute the surface Laplacian of each
trial.

1.8 Thesis structure

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the
kernel-based Renyi’s transfer entropy estimator (TEκα), which allows obtaining TE esti-
mates while sidestepping the need for probability distribution computation. Chapter 3
develops an approach to obtain single-trial phase TE values, termed kernel-based Renyi’s
phase transfer entropy (TEθ

κα), that combines the TEκα estimator with instantaneous
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Figure 1.10: (A) Graphical representation of the change detection task for WM. (B)
EEG channels selected from the montage used for the acquisition of the WM database.
(C) Example of a 0.7 seconds long segmented EEG trial after data pre-processing (with-
out surface Laplacian).

phase times series extracted from complex-filtered data. Chapter 4 describes the use of
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the kernel-based Renyi’s phase transfer entropy approach for the estimation of directed
phase-amplitude interactions (TEθθς

κα ). Finally, in Chapter 5 we present our conclusions,
outline some possible venues of future work, and list the academic products associated
with this thesis.



Chapter 2

Kernel-based Renyi’s transfer
entropy

In this chapter, we propose a data-driven TE estimator that sidesteps the need to obtain
the probability distributions underlying the data. We begin by expressing TE as a linear
combination of Renyi’s entropy measures of order α (Principe, 2010; Rényi et al., 1961),
instead of using the standard definition in terms of Shannon entropies. Renyi’s entropy
is a mathematical generalization of the concept of Shannon entropy. It corresponds to a
family of entropies that, because of its functional dependence on the parameter α, can
emphasize either mean behavior and slowly change features in the data, or rare, uncom-
mon events (Gao et al., 2011; Giraldo et al., 2015). This flexibility gives Renyi’s entropy
an advantage when it comes to analyzing data from biomedical systems (Liang et al.,
2015), and has been exploited in neuroscience studies, for instance, to better characterize
the randomness of EEG signals in childhood absence epilepsy (Mammone et al., 2015),
and to track EEG changes associated with different anesthesia states (Liang et al., 2015).
Renyi’s entropy has also been employed as an EEG feature extraction strategy in auto-
matic systems for the diagnosis of epilepsy (Acharya et al., 2015), and for the assessment
of cognitive workload (Zarjam et al., 2013). Afterward, we approximate Renyi’s entropy
through a functional defined on positive definite and infinitely divisible kernels matrices,
introduced in Giraldo et al. (2015). The obtained estimator computes TE directly from
the kernel matrices that, in turn, capture the similarity relations among data. Also,
because of the definition of Renyi’s entropy, the proposed approach encompasses the
conventional formulation of TE as a sum of Shannon entropies in the limiting case when
α → 1.

In order to test our proposal, we use a simulation framework consisting of two linear
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models, based on autoregressive approaches and a linear coupling function, respectively,
and on the two EEG databases described in Section 1.7. In particular, we aim to test
whether our method fulfills the requirements established in Vicente et al. (2011) for
a TE estimator suited for neuroscience data. Namely, it must be robust to moderate
levels of noise, it must rely on a limited number of data samples, and it must be reliable
when dealing with high dimensional spaces. For the synthetic data, the proposed kernel-
based TE estimation method successfully detects the presence and direction of the causal
interactions defined in the models. Additionally, it displays robustness to varying noise
levels and data sizes, in terms of the available data samples, and to the presence of
multiple interaction delays in the same connected network. The results for the MI data
show that our approach codes discriminant spatiotemporal patterns for the left and
right-hand motor imagination tasks, that are in accordance with the temporal structure
of the MI paradigm. Finally, the obtained connectivity values for the WM data also
capture information that allows discriminating among the different levels of the task.

2.1 Kernel-based Renyi’s transfer entropy

We begin by generalizing the concept of TE from Shannon entropies to Renyi’s α-order
entropies. Then, we propose a TE estimator using the entropy-like functionals detailed in
Section 1.3.3, thus avoiding the intermediate step of probability distribution estimation
in the computation of TE from discrete data. Given the state space reconstructions
xdx

t , ydy
t ∈ RD×d of two time series x and y, the flow of information from x to y,

for an interaction time u, corresponds to the deviation from the following equality:
p(yt|ydy

t−1,xdx
t−u) = p(yt|ydy

t−1). Now, instead of explicitly applying the definition of the
Kullback-Leibler divergence, as in the standard derivation of TE, we apply the expected
value operator over the logarithm of the probability distributions, yielding:

Eyt,ydy
t−1,xdx

t−u

{
−log

(
p(yt|ydy

t−1,xdx
t−u)

)}
= Eyt,ydy

t−1

{
−log

(
p(yt|ydy

t−1)
)}
. (2.1)

Using the relations between conditional, joint and marginal probabilities, and rewriting
the logarithms of the obtained quotients, we arrive at:

Eyt,ydy
t−1,xdx

t−u

{
−log

(
p(yt,ydy

t−1,xdx
t−u)

)}
− Eydy

t−1,xdx
t−u

{
−log

(
p(ydy

t−1,xdx
t−u)

)}
=

Eyt,ydy
t−1

{
−log

(
p(yt,ydy

t−1)
)}

− Eyt,ydy
t−1

{
−log

(
p(ydy

t−1)
)}
. (2.2)
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The deviation from the above equality corresponds to transfer entropy, thus:

TE(x → y) = Eydy
t−1,xdx

t−u

{
−log

(
p(ydy

t−1,xdx
t−u)

)}
− Eyt,ydy

t−1,xdx
t−u

{
−log

(
p(yt,ydy

t−1,xdx
t−u)

)}
+

Eyt,ydy
t−1

{
−log

(
p(yt,ydy

t−1)
)}

− Eyt,ydy
t−1

{
−log

(
p(ydy

t−1)
)}

(2.3)

From the general definition of entropy, H(x) = E {−log(p(x))}, and assuming an ex-
pected value associated with the function g(x) = c2(1−α)x, we can express TE as a sum
of Renyi’s α-order entropies:

TEα(x → y) = Hα

(
ydy

t−1,xdx
t−u

)
−Hα

(
yt,ydy

t−1,xdx
t−u

)
+Hα

(
yt,ydy

t−1

)
−Hα

(
ydy

t−1

)
. (2.4)

In the limiting case when α → 1, Equations 1.8 and 2.4 are equivalent (TEα yields the
well-known TE). Finally, using the kernel-based formulation of Renyi’s α-order entropy
for marginal and joint probability distributions (Equations 1.14 and 1.15, respectively),
we can estimate the TEα from x to y as:

TEκα(x → y) = Hα

(
Kydy

t−1
,Kxdx

t−u

)
−Hα

(
Kyt ,Kydy

t−1
,Kxdx

t−u

)
+

Hα

(
Kyt ,Kydy

t−1

)
−Hα

(
Kydy

t−1

)
(2.5)

where the kernel matrices Kyt , Kydy
t−1

, Kxdx
t−u

∈ R(D−u)×(D−u) hold elements kij =
κ(ai, aj), with kij(·, ·) a positive definite, infinitely divisible kernel function. For ma-
trix Kyt , ai, aj ∈ R are the values of the time series y at times i and j. In the case of
matrix Kydy

t−1
, the vectors ai, aj ∈ Rd contain the space state reconstruction ydy

t of y at
times i and j, adjusted according to the time indexing of TE. Likewise for Kxdx

t−u
.

2.2 Experiments

2.2.1 VAR model

In order to test the ability of the TEκα functional in Equation 2.5 to detect directed
interactions under varying noise and data size conditions, we perform two experiments
on simulated data. We generate synthetic data from a unidirectional bivariate autore-
gressive (AR) model of order 3:

zt = c +
3∑

i=1
Qizt−i + εt, (2.6)
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where zt = (xt, yt)T is a vector with the values of the simulated signals, x ∈ Rl and
y ∈ Rl, at time t, εt ∈ R2 is a vector of white noise values at time t, c ∈ R2 is vector of
constants, and

Qi =
qi

11 qi
12

qi
21 qi

22

 ; i = {1, 2, 3}, (2.7)

holds the model parameters. The directionality of the causal relation between the sim-
ulated time series is controlled by setting to 0 either the parameters qi

12, to obtain a
causal relation from x to y, or qi

21 to obtain a causal relation in the opposite direction.
The remaining parameters of the model are randomly selected. In order to assess the
robustness of our method to different noise conditions, we add noise to the synthetic
data as follows:

Zη = (1 − γ) Z
||Z||F

+ γ
ΘΞ

||ΘΞ||F
, (2.8)

where Z ∈ R2×l is a matrix containing the signals x and y, ||·||F stands for the Frobenius
norm, Θ ∈ R2×3 is an instantaneous mixing matrix with random elements, and Ξ ∈ R3×l

is a matrix containing 3 time series generated by 3 independent AR models of order 3
with otherwise random parameters, that represent multiple independent sources of noise
and serve to simulate the effects of volume conduction. The parameter γ controls the
relative strength of noise and signal (Dimitriadis et al., 2016a). If γ is assigned a scalar
value then signals x and y will exhibit symmetric noise, that is to say, they will have
the same noise level. Alternatively, if γ is assigned a two-dimensional vector value,
and the two elements of the vector are different, then the noise levels in x and y will
be asymmetric (in this case, to be able to use 2.8 we need to perform a column wise
stacking of l copies of γ, and replace the scalar multiplication by a Hadamard product).
In our first experiment we test both scenarios. First, we assign γ a scalar value that
varies in the range from 0 to 1, in steps of 0.1, in order to simulate different symmetric
levels of noise for signals of 512 data points. Then, to test the behavior of our TE
estimator under asymmetric noise conditions, we assign γ a vector value and vary its
two elements so as to form a two-dimensional grid, with each dimension ranging from 0
to 1, in steps of 0.1, for signals with the same number of data points as above. In the
second experiment, we evaluate the impact of signal length on our method. To that end,
we vary the length l of the noiseless simulated signals between 100 and 1000 data points,
in steps of 100 data points. For both experiments, that is to say, for each noise level
(in the symmetric and asymmetric cases) and signal length, we estimate the accuracy
for 10 realizations of 100 trials each. For each realization, the direction of interaction is
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chosen at random. The accuracy is defined in terms of a directionality index:

∆λ = λ(x → y) − λ(y → x), (2.9)

where λ(·) stands for any of the effective connectivity measures under consideration. ∆λ
indicates the preferred direction of information flow. It gets positive values for couplings
from x to y, and negative values when y drives x. We use it to assess whether each
effective connectivity measure correctly detects the chosen direction of interaction.

2.2.2 Modified linear Kus model

A method to estimate effective connectivity from multiple channel EEG data should
be able to detect causal interactions among multiple signals coming from a connected
network. With the aim of testing whether the proposed TE estimator could successfully
reveal the presence, or absence, of such interactions in a known network, we use the
modified version of the linear Kus model, introduced in Weber et al. (2017). It consists
of 5 channels, connected through direct and indirect couplings (for a graphical represen-
tation of the model see Figure 2.4A). The input to the model is a time series containing
real EEG data that is then contaminated with white Gaussian noise to obtain channel
1. Then, channel 1 is scaled and time-shifted by an interaction delay of 4 time units
(δ = 4), and more white Gaussian noise is added, to generate channel 2. Channels 3
and 4 are generated in a similar fashion, while channel 5 consists only of white Gaussian
noise. The following set of equations describes all the network interactions present in
the model:

x1(t) = ξ(t) + vη1(t)
x2(t) = 0.4x1(t− 4) + vη2(t)
x3(t) = 0.4x2(t− 4) + vη3(t)
x4(t) = 0.4x2(t− 8) + vη4(t)
x5(t) = vη5(t) (2.10)

where xj, ξ, and ηj stand for the 5 network channels, the input EEG data, and the
added white Gaussian noise at time t, respectively. The parameter v is a scaling factor
equivalent to a quarter of the variance of the time series. Additionally, external white
Gaussian noise with zero mean and variance equal to v is added to all channels (Kus
et al., 2004; Weber et al., 2017). It is worth noting that the indirect couplings in the
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model arise in two different ways. They can be the result of upstream dependences
between the network’s channels. For instance, channel 1 generates channel 2, which in
turn generates channel 3, giving rise to an indirect coupling between channels 1 and
3. Indirect couplings can also arise from different time shifts applied to one channel
in order to generate new channels. Such is the case of the indirect coupling between
channels 3 and 4, which are generated by time-shifting channel 2 by 4 and 8 time units,
respectively.

For our experimental set-up, we generate 1000 trials of the modified Kus model,
divided into 10 realizations. As input to the model, we use EEG data from the BCI
Competition IV dataset 2a (for details about this dataset see Section 1.7.1). Namely, we
pool together the Fz channels from all subjects and trials in the dataset, and for each
realization randomly select 100 of them (without repetition), to be used as inputs to
the system. Then, we generate 100 trials of the modified Kus model, each consisting of
a 5 channel network. Next, for all pair-wise combinations of channels in each trial, we
estimate the directed interactions within the elements of the network using our method,
and the other effective connectivity measures under consideration. Afterward, for each
realization of 100 trials, we perform a permutation test, based on randomized trial surro-
gates (see Appendix C for details), to determine which couplings or directed connections
within the network are statistically significant at an alpha level of 0.05 (Lindner et al.,
2011; Weber et al., 2017). The number of permutations in the test is set to 1000. Finally,
in order to asses the overall performance of each method, regarding the detection of the
true connections in the modified Kus model, we compare the statistically significant
connections per realization with the predefined connections in the network to obtain
accuracy, sensitivity, and specificity values.

2.2.3 EEG data

Motor imagery

Feature extraction For each subject, let Ψ = {Xn ∈ RC×M}N
n=1 be the EEG set

holding N trials of the MI tasks, with C = 22 channels, and M = 1750 samples. Besides,
let {ln}N

n=1 be a label set where the n-th element corresponds to the motor imagery task
indicated for trial Xn (it takes the value 1 for right hand motor imagination, and 2 for left
hand motor imagination). First, as detailed in Section 1.7.1, we perform a windowing
procedure which yields a set of matrices {Zw

n ∈ RC×L}Q
w=1, where Q = 6, and L = 500.

Thus, our goal is to estimate the class label from effective connectivity features extracted
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from the segmented EEG trial Zw
n . Afterward, we compute the surface Laplacian of each

segmented trial (Perrin et al., 1989). Then, for each pairwise combination of channels
zc, zc′ ∈ RL, belonging to the spatially filtered version of Zw

n , we estimate the effective
connectivity λ(zc → zc′) to build a connectivity matrix Λ ∈ RC×C . In the case when
c = c′, we set λ(zc → zc′) = 0. Next, for time window w and for the N trials of the MI
task, we obtain a set of connectivity matrices {Λw

n ∈ RC×C}N
n=1. Then, we normalize

each Λw
n to the range [0, 1]. After that, we apply vector concatenation to Λw

n to yield
a vector φw

n ∈ R1×(C×C). Then, we stack together the N vectors φw
n , corresponding to

each trial, to form a matrix Φw ∈ RP , with P = N × (C × C). Φw holds all directed
interactions, estimated through the effective connectivity measure λ, for time window
w, for the entire EEG dataset Ψ.

Feature selection and classification After characterizing the EEG data, we set up
our subject dependent MI task classification system. As mentioned before, the classifi-
cation is carried out separately for each time interval or time window w. Also, since the
MI database has training and testing datasets, we divide our classification system into a
training-validation stage and a testing stage. For the training-validation stage, we first
specify a cross-validation scheme of 10 iterations. For each iteration, 70% of the trials of
the training dataset are randomly assigned to a training set and the remaining 30% to
a validation set. Then, we use CKA (see Appendix D for details) over the connectivity
features obtained from the training set to generate a relevance vector ϱ ∈ [0, 1]P (P
equals the number of features in Φw). Then, we use ϱ to rank Φ. Next, we select a
varying percentage of the ranked features, from 5% to 100% in 5% steps, and input them
to the classification algorithm. The features associated with the highest values of ϱ are
input first, and as the percentage of features increases those associated with lower values
of ϱ are progressively included. In this work, we use a support vector classifier (SVC)
with an RBF kernel (Pedregosa et al., 2011). All classification parameters, including
the percentage of discriminant features, are tuned at this stage through a grid search.
We select the parameters according to the classification accuracy, aiming to improve the
system’s performance. Then, for the testing stage, we train an SVC using the connec-
tivity features from all trials in the training dataset as well as the parameters found in
the previous stage. Lastly, we quantify the performance of the trained system in terms
of the classification accuracy, obtained after predicting the MI task class labels of the
testing dataset from its connectivity features.
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Working memory

Feature extraction Let Ψ = {Xn ∈ RC×M}N
n=1 be an EEG set holding N trials of

the WM dataset, recorded from a single subject, where C = 32 stands for the number of
channels and M = 717 corresponds to the number of samples. In addition, let {ln}N

n=1

be a set whose n-th element is the label associated with trial Xn. Thus, ln can take the
values of 1, 2, and 3 corresponding to low, medium, and high memory loads. Our goal
is to estimate the class label from relevant effective connectivity features extracted from
Xn. Again, let λ(xc → xc′) be a measure of effective connectivity between channels
xc,xc′ ∈ RM . By computing λ(xc → xc′) for each pairwise combination of channels
in Xn we obtain a connectivity matrix Λ ∈ RC×C . In the case when c = c′, we set
λ(xc → xc′) = 0. Then, we normalize Λ to the range [0, 1]. After performing the
this procedure for the N trials, we get set of connectivity matrices {Λn ∈ RC×C}N

n=1.
Then, we apply vector concatenation to Λn to yield a vector φn ∈ R1×(C×C). Next, we
stack the N vectors φn, corresponding to each trial, to obtain a matrix Φ ∈ RP , with
P = N × (C × C), that characterizes the EEG set Ψ in terms of directed interactions
estimated through λ. A graphical representation of the above-described steps, as well
as of our overall classification setup, is depicted in Figure 2.1.

EEG data

Ψ

Connectivity
estimation

N
C

CΛn

N

C × C

Φ CKA SVC

Feature
selection Classification

Figure 2.1: Schematic representation of our overall classification setup. Notice that for
the MI dataset Φ varies according to the time window w.

Feature selection and classification The classification system we set up for the
WM data closely resembles the one previously detailed for the MI data, with three
changes. First, the WM database consists of one set of data for each subject, instead
of two, so there is only a training-validation stage. Second, given the reduced number
of trials available for each memory load level, each of the 10 iterations of the cross-
validation scheme follows an 80%-20% split for the training and validation sets (instead
of a 70%-30% split). Third, since the results provided by CKA are not stable for the low
number of trials available from each subject (less than 30 trials per class, on average),
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we opted to add an auxiliary cross-validation step, with the same characteristics as the
one described above, and use it to estimate a single relevance vector ϱ̄, obtained as the
average of the relevance vectors of each data split. Then, we use ϱ̄ to perform feature
selection in every iteration of the main cross-validation scheme.

2.2.4 Parameter selection

We performed all the experiments mentioned above for two connectivity measures,
namely TE and GC. For TE, we tested three different estimation strategies: the Kraskov-
Stögbauer-Grassberger method (TEKSG), the symbolic version of TE based on ordinal
pattern symbolization (TESym), and the proposed kernel-based Renyi’s Transfer En-
tropy (TEκα). For the latter, we explored the following values of the α parameter:
α = {1.01, 2, 3, 5, 10}, with special emphasis on α = 1.01 and α = 2, using as kernel
function the Gaussian radial basis function or Gaussian RBF kernel with Euclidean
distance (Liu et al., 2011):

κ(ai, aj) = exp
(

−d2 (ai, aj)
2σ2

)
, (2.11)

where d2(·, ·) is the distance operator. We used in-house Python and Matlab imple-
mentations of the algorithms for GC, TESym, and TEκα; while for TEKSG we used the
implementation provided by the open access toolbox TRENTOOL, a TE estimation and
analysis toolbox for Matlab (Lindner et al., 2011).

Regarding the selection of parameters involved in the different effective connectivity
estimation methods, we proceeded as follows: For the TE methods, the embedding de-
lay τ was set to 1 autocorrelation time (ACT) (Vicente et al., 2011). The embedding
dimension d and the interaction delay u were set in an experiment-dependent fashion,
in most cases after a heuristic search intended to maximize performance. For all exper-
iments, except for the WM data, d was set to 3 after heuristic searches in the range
d = {1, 2, . . . , 10}. For the VAR model experiment and the MI tasks experiment u was
set to 1, after heuristic searches in the ranges u = {1, 2, 3} and u = {1, 2, . . . , 100},
respectively. While for the Kus model experiment, u was set to 4, because that is the
most common delay present in the model’s network. For the WM data, d was selected
using Cao’s criterion (Cao, 1997; Lindner et al., 2011) from the same range as the other
experiments (see Appendix E for details), and u was set to 120, a value close to the av-
erage interaction times found in Dimitriadis et al. (2016a) for a visuospatial WM task.
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The number of neighbors K, and the Theiler correction window in TRENTOOL’s im-
plementation of the TEKSG algorithm were left at their default values of 4 and 1 ACT,
respectively (Lindner et al., 2011). The bandwidth σ in the RBF kernel introduced
in Equation 2.11, for the proposed TEκα method, was set in each case as the median
distance of the data (Schölkopf et al., 2002). The order of the autoregressive model
o for GC was set to 3 for all experiments. In the case of the VAR model experiment
o = 3 was chosen to coincide with the order of the data generation model, while for
the Kus model and the EEG data it was the result of heuristic searches in the range
o = {1, 3, 5, 7, 9}. Finally, the two values of the parameter α emphisezed throughout the
experiments were selected with the following rationale: as α → 1 Renyi’s entropy tends
to Shannon’s entropy, so a value of α = 1.01 should allow for a better comparison with
Shannon’s entropy-based TE estimation strategies. Also, for Renyi’s entropy a value of
α = 2 is considered to be neutral to weighting (Giraldo et al., 2015), i.e. it does not
emphasize or penalize rare events, which makes α = 2 a convenient choice when there is
no previous knowledge about the values of the α parameter better suited for a particular
application.

2.3 Results and discussion

2.3.1 VAR model

The experiments described in Section 2.2.1 test whether the effective connectivity mea-
sures under consideration correctly detect the direction of interaction between two time
series, under varying noise and data size conditions. Figures 2.2 and 2.3 present the
results of such experiments. Figures 2.2A and 2.2C show the obtained average accura-
cies regarding the detection of the preferred direction of information flow as the scalar
γ parameter in Equation 2.8, and thus the amount of symmetric noise added to the
simulated signals, increases from 0 to 1. For all the methods tested the performance
peaks for low noise levels and progressively falls as the noise level increases. At γ = 1
the average accuracies reach values of around 50%, which reflects the fact that for γ = 1
noise completely replaces the signals generated by the VAR model, and therefore no
causal interaction is present. Figures 2.2B and 2.2D show the average accuracies ob-
tained with the effective connectivity measures tested as the number of data points of
the VAR signals increases. In all cases, the performance is lowest for the lowest number
of data points considered (100), and increases as the simulated signals become lengthier.
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Figure 2.2: Accuracies in the detection of the preferred direction of information flow for
synthetic data generated from a unidirectional bivariate autoregressive model of order
3: (A) for varying symmetric noise levels (as a function of the parameter γ), (B) for
a varying number of data points. Figures (C) and (D) are analogous to (A) and (B),
respectively, but show the accuracies for the TEκα method for different values of the
parameter α.

This behavior is explained by the fact that a larger number of data points allows for a
better estimation of the entropies (or their associated probability distributions) needed
to compute TE, and for a better adjustment of the AR models in GC.

Figure 2.3 presents the average accuracies obtained with the effective connectivity
measures studied under asymmetric noise conditions, in which the noise level varied
independently for the driving and driven time series. This case is particularly interesting
because asymmetries in the data, like different signal-to-noise ratios, different overall
power or spectral details, and other asymmetries that can arise from volume conduction,
have the potential to affect causality estimates (Haufe et al., 2013). Notice that for TEκα

we only explore two values of α, α = {1.01, 2}, since they yielded the highest accuracies
under symmetric noise conditions. In general, as the noise in any of the two time
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Figure 2.3: Average accuracies in the detection of the preferred direction of information
flow for synthetic data, generated from a unidirectional bivariate autoregressive model
of order 3 under asymmetric noise level conditions. The vertical axis displays the noise
level for the driving time series, while the horizontal axis does so for the driven time
series.

series increases, the accuracy in the detection of the preferred direction of information
flow decreases. However, some of the methods tested produced spurious results when the
noise levels differed, consistently estimating an incorrect interaction direction. This issue
is not present in the results displayed in Figure 2.2A for symmetric noise. Particularly,
GC failed when the noise level was moderate for the driving time series and high for
driven time series. Under those conditions GC estimates had an accuracy of around 30%,
which means that for 70% of the simulated time series in that scenario GC estimated
an incorrect direction of interaction. TEκα for α = 1.01 also failed under the noise
asymmetry conditions described above. Additionally, it failed when the noise level was
high in the driving time series and low in the driven time series. On the flip side, it was
more robust when the noise levels were reversed, that is, a low noise level in the driving
time series and a high noise level in the driven time series. Our TE estimation method
for α = 2 and the other approaches for TE estimation tested were not as affected by
asymmetric noise.

For both VAR model experiments, GC outperforms TE, regardless of the TE esti-
mation method. This result is not surprising, since the simulated data were generated
using an AR model, and such models are at the core of the definition of GC. Further-
more, since the interactions present in the simulated data are purely linear, a linear
method, such as GC, is better suited to capture them than TE (Vicente et al., 2011).
However, despite being outperformed by GC, within the proposed simulation framework,
TE does reveal the direction of interaction of the data with high accuracy, albeit with
marked estimation method dependent differences. Specifically, TEκα exhibits the best
performance of the TE estimation methods under study (for α = {1.01, 2}, it degrades
for higher values of α). In particular, for α = 1.01, it almost matches GC for the ideal
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conditions tested (a noiseless scenario, and a large number of data points). Interestingly,
GC and TEκα, for α = 1.01, were the two methods most affected by asymmetric noise.
Overall, within the tested simulation framework, our method fulfills two of the necessary
conditions for a TE estimator apt for neuroscience applications (Vicente et al., 2011).
Namely, it is robust to moderate levels of noise, represented in this case by a superpo-
sition of the signals of interest with those coming from unknown sources. This factor
is at play in most noninvasive electrophysiological measurements such as EEG, which,
to a large extent, contain unknown superpositions of many sources (Dimitriadis et al.,
2016a). Also, our estimator requires a smaller number of data samples to successfully
determine the direction of interaction between a pair of signals, as compared with other
TE estimators. The former is relevant because neuronal dynamics usually unfolds in
periods of a few hundred milliseconds, which restricts the number of samples available
to uncover any interaction of interest (Vicente et al., 2011). Additionally, the use of
windowing to offset the effects of the non-stationarity of EEG signals further limits the
number of data samples available to estimate TE (Cekic et al., 2018).

2.3.2 Modified linear Kus model

Figure 2.4A shows a graphical representation of the 5 channel network constituting
the modified linear Kus model. The solid and dashed lines represent the direct and
indirect couplings present in the network, respectively; while the arrowheads indicate
the direction of the causal relations introduced in the network by the time shifts δ. Figure
2.4B translates the network in Figure 2.4A to a binary class matrix representation. The
positive class groups the direct and indirect connections among the network’s channels.
It is represented by the yellow elements, and their position, in the 5 × 5 connectivity
matrix. On the other hand, the negative class is depicted in blue and represents non-
existing interactions in the network. For instance, channel 1 drives channel 2; therefore
element (1, 2) belongs to the positive class; but since the opposite is not true, element
(2, 1) belongs to the negative class. Notice that all connections to and from channel 5
belong to the negative class. That is because channel 5 consists only of white Gaussian
noise and is not coupled to the rest of the network.

In this work, the Kus model experiment is intended to evaluate if our method can
detect causal interactions among multiple signals. Unlike the VAR-model experiment, in
which we were solely interested in determining the correct direction of the model’s causal
interactions, this experiment also requires determining whether such interactions exist
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Figure 2.4: (A) Modified Kus model network coupling scheme. (B) Binary class matrix
representation of the direct and indirect couplings in the modified Kus model network.
(C) From left to right, statistically significant couplings according to a permutation test
using trial randomized surrogates for GC, TESym, TEKSG, TEκα (α = 1.01), and TEκα

(α = 2). (D) Accuracy, sensitivity and specificity values obtained after comparing the
statistically significant couplings shown in C with the matrix representation of the Kus
model network presented in A.

at all for any pair of signals within the model. To that end, we performed a permutation
test, based on randomized surrogate trials, over the connectivity estimations, obtained
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with the methods studied, for each combination of channels (Lindner et al., 2011; Weber
et al., 2017).

Figure 2.4C shows, from left to right, the percentage of statistically significant cou-
plings in the 10 realizations of the experiment, according to the permutation test, for
GC, TESym, TEKSG, TEκα (α = 1), and TEκα (α = 2). A visual inspection of Figure
2.4C reveals that the proposed TEκα method and the TEKSG method display the best
performances. Namely, on average, for the 10 realizations of the experiment, the con-
nectivity values estimated through those methods allow to better determine the actual
connections present in the Kus model network. Therefore, their maps of statistically
significant couplings more closely resemble the actual Kus model connectivity matrix
(Figure 2.4B). Note that the TE estimators tested correctly detect both the presence
and direction of the direct connections in the network for every realization, given that
the time shift δ of the connection in question matches the chosen interaction delay u.
That is, the interactions from channel 1 to channel 2, and from channel 2 to channel
3, for which δ = 4, are successfully revealed. However, the direct connection between
channels 2 and 4, for which δ = 8, proves more elusive. The TEKSG method obtains
statistically significant results for that specific coupling in 70% of the 10 realizations,
while the TEκα method does so for 60% of them. Interestingly, our method always de-
tects the indirect connection from channel 1 to 3, despite an accumulated time shift of
8 time units. In addition, the proposed TEκα method (α = 1.01) detects the indirect
connection between channels 3 and 4 in more than 80% of the realizations. For the re-
maining connections, performance degrades for all the TE methods, probably as a result
of both larger accumulated time shifts and the increasing amount of noise present in
the network. It is also worth noting that our method does not point to the presence of
directed interactions involving channel 5 for any realization.

Finally, by comparing the statistically significant couplings per realization with the
binary class matrix representation of the Kus model network, we obtained accuracy, sen-
sitivity, and specificity values for each of the effective connectivity estimation approaches
tested. Figure 2.4D presents these results. The highest accuracies are achieved by the
TEκα and TEKSG methods. Therefore, the proposed TEκα method matches the perfor-
mance of the TEKSG algorithm regarding the detection of unknown causal interactions
within a network from multi-channel data. Furthermore, the shown specificity values
reflect the small number of false positives obtained with said methods. Along with the
results observed in Figure 2.4C, this indicates that our approach seems to be well suited
to detect the couplings among the signals of a connected network with several interac-
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tion delays, while at the same time successfully identifying the pairs of non-interacting
signals.

2.3.3 EEG data

Motor imagery

The MI tasks performed during the acquisition of the BCI IV database have a clear
temporal structure, as depicted in Figure 1.9A. It follows that any characterization
of the ensuing brain activity must reflect this structure. That is, since the visual cue
indicating the MI task to be executed during a particular trial is presented to the subject
at second 2, any information extracted from the EEG signals before that moment should
not exhibit any discriminative power between tasks. Furthermore, since the subjects
performed the MI task from seconds 3 to 6, this is the time period when the features
extracted from the EEG signals of different tasks are expected to diverge. Since we
aimed to test the ability of the proposed TE estimation method to elucidate the directed
interactions among EEG signals during the MI tasks, and to determine whether those
directed interactions allow discriminating between tasks, we can establish the compliance
with the above-described temporal constraints as a necessary condition to achieve those
aims.

Figures 2.5(A) and 2.5(C) depict 10% of the directed connections estimated with
the TEκα method (α = 2), discriminated by time window, that present statistically
significant differences between the left and right hand MI tasks for subjects 8 and 9, re-
spectively. Such differences were assessed for each connection by applying a two-sample
Kolmogorov-Smirnov hypothesis test to the connectivity data for the training dataset,
after separating them in function of their associated class labels, and imposing a sig-
nificance level of 0.01. We found few or no connections with statistically significant
differences between conditions for time windows 1 and 2, which span from seconds 0 to
2, and 1 to 3, respectively. Then, for windows 3, 4 and 5 numerous connections to and
from the centro-parietal area exhibit statistically significant task-dependent differences.
Finally, the number of such connections decreases sharply for window 6, which covers
seconds 5 to 7, and includes the break period after the MI task. Therefore, our method
reveals directed interactions between EEG signals that present statistically significant
differences between the right and left hand MI tasks, according to the temporal evolution
of the MI protocol. Since the proposed classification system exploits the differences in
the directed connections of each MI task to discriminate between them, its performance
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Figure 2.5: (A) Connections with statistically significant differences between the MI
tasks for time windows 1 to 6 for subject 8. (B) Training and testing classification
accuracies per time window for subject 8. (C) Connections with statistically significant
differences between the MI tasks for time windows 1 to 6 for subject 9. (D) Training
and testing classification accuracies per time window for subject 9. For visualization
purposes, only 10% of the statistically significant connections, those with the smallest
p-values, are depicted in (A) and (C).

should also be conditioned by the same temporal constraints. Figures 2.5(B) and 2.5(D)
display the training and testing classification accuracies, per time window for subjects
8 and 9, respectively. As expected, the classification system achieved its highest per-
formances for the time windows during which the MI task was being executed by the
subjects. Here we must point out the fact that the results in Figure 2.5 differ slightly
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from the ones we published in De La Pava Panche et al. (2019). The same holds true
for all the MI classification results in the present chapter. The reason is that in this
thesis document we opted to use the same feature selection and classification strategies
for all EEG databases and connectivity measures, in order to facilitate comparisons and
help the document’s readability. The feature selection strategy we employed in De La
Pava Panche et al. (2019) is not suitable for multiclass data, and such is the case for the
WM database. Therefore, we proceeded as described in Section 2.2.3 instead.

Table 2.1: Average training accuracy [%] for the window (w) with the best performance.

Subject TEκα (α = 2) TEκα (α = 1.01) TEKSG TESym GC
acc (w) acc (w) acc (w) acc (w) acc (w)

s 01 70.7 ± 5.2 (3) 77.1 ± 5.8 (3) 58.8 ± 8.0 (3) 65.2 ± 5.9 (3) 78.3 ± 5.4 (3)
s 02 57.1 ± 6.6 (6) 62.0 ± 7.7 (6) 60.5 ± 5.2 (4) 57.8 ± 4.8 (3) 57.1 ± 4.0 (3)
s 03 76.7 ± 5.5 (3) 75.0 ± 5.2 (4) 78.3 ± 6.8 (4) 86.2 ± 5.3 (4) 79.3 ± 5.6 (4)
s 04 60.8 ± 3.3 (2) 60.8 ± 6.0 (3) 60.8 ± 6.0 (4) 59.5 ± 4.6 (1) 55.6 ± 4.3 (3)
s 05 69.0 ± 6.0 (3) 66.2 ± 7.4 (3) 67.2 ± 7.3 (3) 64.6 ± 4.4 (4) 66.4 ± 10.2 (3)
s 06 60.0 ± 5.9 (6) 62.4 ± 5.1 (4) 59.7 ± 9.4 (4) 58.3 ± 6.6 (2) 60.6 ± 4.0 (6)
s 07 75.5 ± 8.1 (3) 74.0 ± 5.6 (3) 63.3 ± 7.6 (3) 62.3 ± 5.9 (6) 72.5 ± 5.2 (3)
s 08 89.5 ± 2.9 (3) 77.3 ± 5.8 (4) 72.3 ± 5.6 (4) 76.5 ± 5.7 (4) 90.0 ± 3.5 (4)
s 09 85.4 ± 4.1 (3) 71.7 ± 2.7 (3) 68.0 ± 7.2 (4) 80.6 ± 6.7 (3) 78.6 ± 6.0 (3)
AVG 71.6 ± 5.3 69.6 ± 5.7 65.4 ± 7.0 67.9 ± 5.5 70.9 ± 5.4

Table 2.2: Testing accuracy [%] for the window (w) with the best performance.

Subject TEκα (α = 2) TEκα (α = 1.01) TEKSG TESym GC
acc (w) acc (w) acc (w) acc (w) acc (w)

s 01 67.4 (4) 66.0 (4) 57.4 (4) 66.0 (4) 67.4 (3)
s 02 57.0 (6) 57.7 (6) 55.6 (2) 52.8 (3) 57.7 (6)
s 03 82.5 (4) 73.7 (4) 67.2 (4) 82.5 (4) 71.5 (5)
s 04 58.6 (4) 59.5 (3) 56.0 (5) 57.8 (5) 56.9 (5)
s 05 51.9 (1) 53.3 (4) 55.6 (6) 51.9 (3) 48.9 (3)
s 06 59.3 (1) 65.7 (4) 63.0 (1) 61.1 (3) 58.3 (4)
s 07 65.0 (2) 67.1 (2) 61.4 (3) 62.1 (4) 50.7 (1)
s 08 88.1 (4) 68.7 (4) 66.4 (4) 83.6 (4) 82.1 (4)
s 09 76.9 (3) 74.6 (3) 58.5 (3) 70.8 (3) 51.5 (3)
AVG 67.4 ± 11.8 65.2 ± 6.7 60.1 ± 4.3 65.4 ± 11.0 60.6 ± 10.4

Tables 2.1 and 2.2 present the highest accuracies achieved by the proposed classifi-
cation system, for all subjects, and each of the effective connectivity methods studied.
During the training-validation stage, the classifiers based on GC features and features
extracted with TEκα, for α = 2, exhibited the highest average performances. However,
during the testing stage the average performance of the GC-based classifier drops more
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than that of the TEκα-based classifier, which implies that the latter generalizes better
to new data. This points to a more stable identification of discriminant directed interac-
tions across trials by our method as compared to other effective connectivity estimation
approaches. Also, note that, in general, the classifiers attain their best performances
for the time windows corresponding to the execution of the MI task. Here, we must
highlight the fact that the accuracies presented in Tables 2.1 and 2.2 fall short of those
obtained with feature extraction strategies other than effective connectivity analyses,
such as common spatial patterns and its variations (Li et al., 2018; Zhang et al., 2018),
as shown in Table 2.3:

Table 2.3: Average training accuracy for CSP and CSP-related methods.

Subject CSP CSP + LSTSVM TSGSP
(Zhang et al., 2018) (Li et al., 2018) (Zhang et al., 2018)

s 01 76.9 88.2 87.0
s 02 57.1 64.6 64.7
s 03 91.6 94.4 93.8
s 04 65.5 66.0 74.3
s 05 54.8 76.4 90.4
s 06 58.3 67.4 63.9
s 07 73.4 75.0 91.4
s 08 92.8 88.2 95.8
s 09 67.8 88.9 81.3
AVG 70.9 ± 14.1 78.8 ± 11.4 82.5 ± 12.2

This underperformance of connectivity-based analysis for MI tasks discrimination has
been linked to the difficulties of measuring local or short-range connectivities, such as
those expected to appear among different zones of the motor areas during MI tasks, due
to volume conduction effects (Rathee et al., 2017). Interestingly, the results obtained
with the classifiers based on features extracted with our method, and with the other
effective connectivity measures studied, tend to coincide with those of classifiers based
on alternative characterization strategies, in terms of the ranking of the performances
per subject; that is, subjects 8, 9 or 3 present the highest performances, while subjects
2, 4, 5 or 6 exhibit the lowest ones (Elasuty and Eldawlatly, 2015; Gómez et al., 2018;
Li et al., 2018; Liang et al., 2016; Zhang et al., 2018).

In order to gain insight into the large differences in classification performance ob-
served for the different subjects, we computed the average differences in the total infor-
mation flow coming into each channel, estimated through the proposed TEκα method
(α = 2), for all subjects and time windows. Namely, for each trial, we obtained the total
information flow coming into a particular channel as the sum of all directed interactions
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Figure 2.6: Normalized average differences in the total information flow coming into
each channel for the training set, for all subjects and time windows. Large differences
are coded in yellow, while small differences are presented in blue.

targeting that channel, then averaged that magnitude across all trials of the same MI
task, and finally subtracted the averages of the left and right MI tasks. Figure 2.6 shows
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the obtained results. The subjects are organized in descending order according to the
classification accuracies presented in Table 2.1. For the subjects at the top of the plot, we
observed a clear temporal evolution, with small variations between the information flow
of both tasks for time windows 1 and 2, and large localized differences during the time
windows corresponding to MI execution. Furthermore, we observe a trend regarding the
spatial location of the information flow differences. For the top 3 subjects, particularly
for time windows 3 and 4, they are centered around the centro-parietal region, specifi-
cally channel CP4. For the subjects at the bottom of the plot, the same temporal and
spatial patterns are not present. We can also gain this type of information from the
relevance vectors ϱ obtained by applying CKA to the training data during the feature
selection stage of our classification system. Figure 2.7 shows the average nodal relevance,
i.e. the sum of the relevance values corresponding to all directed interactions targeting
and originating from a particular channel, and the most relevant connectivities for two
groups of subjects, for the time segment ranging from 3 s to 5 s (TEκα, α = 2). The
first group (G.I) comprises the subjects with low classification performances (subjects
2, 6, 4, and 5), while the second group (G.II) gathers the subjects that displayed higher
classification accuracies (subjects 8, 9, 3, 7 and 1). Again, for the subjects belonging to
G.II the most relevant connectivities, those that allow to discriminate between right and
left hand motor imagination, arise and target nodes located around the centro-parietal
region. The same isn’t true for the subjects in G.I.

It is worth noting that we have focused our analyses on the differences in the obtained
effective connectivities for the left and right MI tasks, instead of analyzing the connec-
tivities that arise for each task as compared with the resting state (Gong et al., 2018).
Bearing this in mind, and considering the physiological interpretation of MI which states
that motor imagination mainly activates motor representations in the premotor cortex
and the parietal area (Hétu et al., 2013), we can argue that it is the differences in the
information flow to and from the right parietal cortex, during the activation associated
with MI, which allowed us to discriminate between tasks for a subgroup of subjects.

Working memory

The change detection task performed by the subjects during the acquisition of the WM
database introduced in Villena-González et al. (2020), and detailed in Section 1.7.2, aims
to study how the characteristics of brain activity are modulated by changes in memory
loads, as induced by WM tasks with different difficulty levels (Dai et al., 2017). This
topic is closely related to the concept of WM capacity, the amount of information that
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Figure 2.7: Topoplots of the average node (channel) relevance for two groups of subjects
in the MI database (G.I: subjects 2, 6, 4, 5; G.II: subjects 8, 9, 3, 7, 1). The arrows
represent the most relevant connectivities for each group. For visualization purposes,
only 6% of the connections, those with the highest average relevance values per group,
are depicted.

can be maintained and manipulated in WM (Zhang et al., 2016). WM capacity is in
turn linked to important abilities, including non-verbal reasoning, control of attention,
among others; and it can be altered in people with psychiatric disorders (Constantinidis
and Klingberg, 2016). Our goal was to evaluate whether the directed connectivity values
estimated through the proposed TEκα method captured information useful to discrimi-
nate among the low, medium, and high memory loads corresponding to the different the
levels of the change detection task.

Figure 2.8 shows the highest classification accuracy obtained for each subject in
the WM database according to the different connectivity measures studied. Table 2.4
summarizes this results in terms of the average accuracies obtained for all subjects. The
TEKSG and TEκα-based classification systems exhibited the highest performances, with
accuracies well above what would be expected from chance in a three class classification
task. In the latter case, setting the α parameter to 2 yielded better results than setting
it to 1.01. Notice that although the obtained accuracies for the subjects differ, when the
same connectivity measure was used to characterize the data such differences are not as
stark as the ones observed for the MI data.

Table 2.4: Average classification accuracies for the WM database for all the effective
connectivity measures considered.

TEκα (α = 2) TEκα (α = 1.01) TEKSG TESym GC

AVG acc 68.7 ± 4.8 63.5 ± 5.8 80.2 ± 6.0 49.9 ± 4.5 53.0 ± 7.4
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Figure 2.8: Highest average classification accuracy for each subject in the WM database
(mean ± standard deviation). The subjects are ordered from highest to lowest accuracy
for the TEKSG-based classifier, which displayed the best overall performance.

At this point, we must highlight the fact that the auxiliary cross-validation step in-
troduced for feature selection in the case of the WM data, aiming to obtain stable CKA
results for the reduced number of available trials, leads to data leakage. This is because,
ultimately, it requires all the available data to estimate ϱ̄, which can inflate performance
evaluations, such as the accuracy results previously described. However, since the same
strategy was implemented for all classification systems and connectivity measures, com-
parisons among them remain valid, and the relative differences in performance are still
informative.
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Figure 2.9: Topoplot of the average nodal relevance for all the subjects in the WM
database. The arrows represent the most relevant connectivities. For visualization
purposes only the most relevant connections are depicted (top 3%).

Figure 2.9 displays the most relevant connectivities (average for all subjects), accord-
ing to the relevance vector ϱ̄ for the TEκα method (α = 2). The background topoplot
shows the average nodal relevance, that is to say, the relevance of the total information
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flow of every channel. In general, the highest nodal relevance is displayed for interactions
involving the frontal and pre-frontal regions, followed by temporal and parieto-occipital
areas. Regarding the connections with the highest class discrimination capability, we
observe long-range interactions involving mostly the regions previously listed, many of
them linking frontal and parieto-occipital nodes. There are also relevant, shorter range
conenctions among frontal and pre-frontal channels. These results coincide with those
of studies that identified the presence of fronto-parietal and fronto-temporal interactions
during cognitive task that activated visuospatial WM (Dimitriadis et al., 2016a; Johnson
et al., 2018). However, as we explained in Section 1.7.2, the current understanding of
the underlying mechanisms of WM entails interactions among neural oscillations orig-
inating from different brain regions. As will become evident in the next chapters, the
WM data is better characterized by effective connectivity estimation approaches that
capture frequency-specific information.

The above results, and those of Sections 2.3.1 and 2.3.2, show that the proposed
TEκα method is apt for TE estimation from neuroscience data. Regarding the require-
ments outlined in the chapter’s introduction, we have shown that our TE estimator is
robust to moderate levels of noise and performs satisfactorily under data size constrains.
The third requirement, concerning the reliability of the estimator when dealing with
high-dimensional spaces, is readily taken care of by the intrinsic capacity of kernels
to deal with such spaces (Schölkopf et al., 2002). Nonetheless, our approach also has
shortcomings, which we will discuss in the following.

2.3.4 Limitations

First, we must note that the exponentiation operation in 1.14, central to the kernel-based
approximation of Renyi’s entropy, makes our TE estimator ill-suited for the analysis of
long time series (i.e. time series with several thousands of data points) due to the increase
in computational cost. This is especially true for non-integer values of α. Furthermore,
our approach also exhibits limitations inherent to the concept of TE (Vicente et al.,
2011). Namely, the definition of causality underlying TE is observational, so unobserved
common causes cannot be analyzed. This shortcoming encompasses the different delay
driving problem. Given three variables, this problem occurs when the first variable
drives the two remaining variables but each with a different delay, giving rise to an
indirect casualty relation between the second and the third variables that cannot be
identified as spurious in bivariate connectivity analyses (Cekic et al., 2018). This is the
case, for instance, of some of the interactions present in the modified linear Kus model
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(see Sections 2.2.2 and 2.3.2). Additionally, the fact that TE is model-free implies that
while TE provides information about the directed or causal interactions among data, it
does not give any further insight into the nature of those interactions. Furthermore, TE
assumes at most weak non-stationarities in the data, so strong non-stationarities pose a
challenge for its estimation; although progress has been made in that regard (Wollstadt
et al., 2014). Finally, by using Renyi’s entropy measures of order α to define TE, instead
of Shanon’s entropy, we gain flexibility regarding the characteristics of the data we wish
to highlight, by having at our disposal an entire parametric family of entropies. As
observed in our results, the choice of the parameter α indeed influences the performance
of the TEκα estimator. It becomes more or less successful at uncovering the interactions
of interest as a function of α. The flip side of this flexibility is that in practice α becomes
one more parameter to select. In general, the choice of α should be associated with the
task goal (Principe, 2010). For Renyi’s entropy, a large α emphasizes slowly changing
features (Giraldo et al., 2015). Particularly, α > 2 characterizes mean behaviour, while
α < 2 emphasizes rare events or multiple modalities, and α = 2 is neutral to weighting.

2.4 Summary

In this chapter, we proposed a new TE estimator based on Renyi’s entropy of order
α, which we approximate through positive definite kernel matrices. Our data-driven
method, termed TEκα, sidesteps the probability distribution estimation stage involved
in the computation of TE from discrete data, thus avoiding the challenges associated with
it. We tested the performance of our method on two different synthetic datasets, and
on two EEG-databases obtained under MI and WM paradigms. We compared it with
that of state-of-the-art methods for TE estimation, as well as with that of GC, another
commonly used brain effective connectivity measure. Our results show that the proposed
TE estimator successfully detects the presence and direction of Wiener-causal interac-
tions between a pair of signals, exhibiting robustness to varying noise levels and number
of available data samples, and to the presence of multiple interaction delays within a
connected network. Furthermore, our method revealed discriminant spatiotemporal pat-
terns for the MI data, that are consistent across the top performing subjects, and which
follow the temporal constraints imposed by the MI experimental paradigm. Regarding
the results obtained for the WM data, our proposal coded discriminant directed con-
nectivities linking the regions that the literature usually associates with visuospatial
WM. For all the performance evaluation metrics employed, the proposed kernel-based
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TE estimation method was competitive with the state-of-the-art.



Chapter 3

Kernel-based Renyi’s phase transfer
entropy

In this chapter, we propose a novel methodology to estimate TE between single pairs
of instantaneous phase time series. Our approach combines the kernel-based TE esti-
mator introduced in Chapter 2, with phase time series obtained by convolving neural
signals with a Morlet Wavelet. We hypothesize that our estimator could overcome the
hurdles other single-trial TE estimators face when obtaining TE values from this type of
data, since it would not have to explicitly obtain probability distributions from circular
variables (Lobier et al., 2014).

In order to test our proposal we employ a simulation model, and the EEG databases
described in Section 1.7. The simulated data are obtained from neural mass models
(NMM), mathematical models of neural mechanisms that generate time series with oscil-
latory behavior similar to that of electrophysiological signals (David and Friston, 2003).
Our results for such data show that the proposed kernel-based phase TE estimation
approach successfully detects the direction of interaction imposed by the model. Indeed,
it detects statistically significant connections in the frequency bands of interest, even for
weak couplings and narrowband bidirectional interactions. It also displays robustness to
realistic levels of noise and signal mixing. Regarding the EEG data, attained classifica-
tion results demonstrate that our approach is competitive compared to real-valued and
phase-based directed connectivity measures. Thus, this proposal extends the approach
described in Chapter 2 by introducing a measure that captures directed interactions be-
tween the phases of oscillations at specific frequencies. Unlike alternative approaches in
the literature, it can be obtained from single trial data, which allows it to be potentially
used as a characterization strategy in BCI applications. In addition, the results obtained
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for the EEG data show that our approach, coupled with a CKA-based relevance analy-
sis (see Appendix D), largely outperforms the real-valued kernel-based transfer entropy
(TEκα) as characterization strategy for cognitive tasks such as working memory.

3.1 Kernel-based Renyi’s phase transfer entropy

As described in Section 1.4.1, in phase TE the time series x and y are replaced by
instantaneous phase time series θx(f) ∈ [−π, π]Tt=1 and θy(f) ∈ [−π, π]Tt=1, obtained by
complex-filtering x and y at frequency f (Lobier et al., 2014). Thus, phase TE is defined
as

TEθ(x → y, f) = HS

(
θy,dy

t−1 ,θ
x,dx
t−u

)
−HS

(
θy

t ,θ
y,dy
t−1 ,θ

x,dx
t−u

)
+HS

(
θy

t ,θ
y,dy
t−1

)
−HS

(
θy,dy

t−1

)
,

where θx,dx
t , θy,dy

t ∈ [−π, π]D×d are time embedded versions of θx and θy, and the explicit
dependency of the phase time series on f has been dropped.

Here, we hypothesize that the TEκα estimator, having previously displayed robust-
ness to common issues that affect connectivity analyses (De La Pava Panche et al., 2019),
could overcome many of the problems associated with single-trial phase TE estimation.
Hence, we propose a kernel-based Renyi’s phase TE estimator defined as:

TEθ
κα(x → y, f) = Hα

(
Kθy,dy

t−1
,Kθx,dx

t−u

)
−Hα

(
Kθt ,Kθy,dy

t−1
,Kθx,dx

t−u

)
+Hα

(
Kθt ,Kθy,dy

t−1

)
−Hα

(
Kθy,dy

t−1

)
, (3.1)

where the kernel matrices Kθt , Kθy,dy
t−1

,Kθx,dx
t−u

∈ R(D−u)×(D−u) hold elements analogous to
those of matrices Kyt , Kydy

t−1
, and Kxdx

t−u
in Equation 2.5, while replacing the time series

x and y for their instantaneous phase time series θx and θy at frequency f , respectively.

3.1.1 Phase-based effective connectivity estimation approaches
considered in this chapter

Phase transfer entropy

We obtain phase TE values through three different estimators that allow computing TE
from individual signal pairs. First, the proposed kernel-based Renyi’s phase TE estima-
tor (TEθ

κα), defined in Equation (3.1). Second, the Kraskov-Stögbauer-Grassberger TE
estimator (TEθ

KSG), which relies on a local approximation of the probability distribu-
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tions needed to estimate the entropies in TE from the distances of every data point to its
neighbors (Kraskov et al., 2004) (see Equation 1.20). And third, symbolic TE (TEθ

Sym)
(Dimitriadis et al., 2016a), as defined in Equation 1.19.

In all cases, θx and θy are obtained by convolving the real-valued time series with a
Morlet wavelet, defined as

h(t, f) = exp(−t2/2ξ2
t )exp(i2πft), (3.2)

where f stands for the filter frequency, ξt = m/2πf is the time domain standard devia-
tion of the wavelet, and m defines the compromise between time and frequency resolu-
tion (Lobier et al., 2014).

Phase slope index

The phase slope index (PSI) is an effective brain connectivity measure that assesses the
direction of coupling between two oscillatory signals of similar frequencies (Jiang et al.,
2015). Given two time series x = {xt}T

t=1 and y = {yt}T
t=1, the PSI is defined as the

slope of the phase of the cross-spectra between x and y:

PSI(x → y) = ℑ

∑
f∈F

C∗
xy(f)Cxy(f + df)

 , (3.3)

where Cxy(f) = Sxy/
√
Sxx, Syy is the complex coherence, Sxy ∈ C is the cross-spectrum

between x and y, Sxx, Syy ∈ C are the auto-spectrums of x and y, df ∈ R+ is the
frequency resolution, F stands for the set of frequencies over which the slope is summed,
and ℑ indicates selecting only the imaginary part of the sum (Nolte et al., 2008). If the
PSI, as defined in Equation (3.3), is positive, then there is directed interaction from x to
y in F . Conversely, if the PSI is negative, the directed interaction goes from y to x. Note
that by definition the PSI is an antisymmetric measure: PSI(x → y) = −PSI(y → x).

Granger causality

We also characterize the simulated and EEG data using Granger causality (GC) (see
Section 1.3.2). In analogy to the concept of phase TE, we define GCθ(x → y, f) =
GC(θx → θy), where θx and θy are instantaneous phase time series obtained by filtering
x and y at frequency f , as a measure within the framework of GC that captures phase-
based interactions.
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3.2 Experiments

3.2.1 Neural mass models

Neural mass models (NMM) are biologically plausible mathematical descriptions of neu-
ral mechanisms (David and Friston, 2003). They represent the electrical activity of
neural populations at a macroscopic level through a set of stochastic differential equa-
tions (David et al., 2004) (see Appendix F for details). NMMs allow generating mildly
nonlinear time series with properties that resemble the oscillatory dynamics of electro-
physiological signals, such as EEG, and how they change as a result of coupling between
different cortical areas. Therefore, NMMs are useful to study the behavior of brain
connectivity measures that aim to capture such interactions (Chen et al., 2019; David
et al., 2004; Lobier et al., 2014; Ursino et al., 2020). Figure 3.1A shows a schematic
representation of an NMM with two interacting cortical areas from which two signals,
x and y (see Figure 3.1B), can be obtained. The parameters C12 and C21 are known
as coupling coefficients, and they determine the strength of the coupling from Area 1
to Area 2, and from Area 2 to Area 1, respectively. The parameter ν represents the
interaction lag between the two areas, while p1 and p2 are external inputs coming from
other cortical regions.

In this work, we use NMMs to generate interacting time series with known oscilla-
tory properties in order to test the performance of the proposed phase TE estimator.
In particular, we test our proposal in terms of its ability to detect directed interactions
for different levels of coupling strength, under the presence of noise and signal mixing,
and for bidirectional narrowband couplings. We proceed as follows: first, we set the
model parameters describing Areas 1 and 2 as in David et al. (2004), so as to generate
signals with power spectrums peaking in the α (8 Hz–12 Hz) and lower β bands (12–20
Hz), as depicted in Figure 3.1C. Then, in order to generate unidirectionally coupled
signals, with interactions from x to y, we set the parameter C21 to 0 for all simulations.
Also, the parameter ν is set to 20 ms, and the extrinsic inputs p1 and p2 are modeled
as Gaussian noise (David et al., 2004). Afterward, we generate 50 pairs (trials) of 3 s
long signals, using a simulation time step of 1 ms, equivalent to a sampling frequency
of 1000 Hz, for each condition in the three scenarios detailed in Sections 3.2.1–3.2.1.
Next, we select a 2 s long segment from the signals, from 0.5 s to 2.5 s, and downsample
them to 250 Hz. Then, we compute connectivity estimates for the simulated data in the
frequency range between 2 Hz and 60 Hz, in steps of 2 Hz. After that, we obtain net
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Figure 3.1: (A) Schematic representation of a neural mass model. (B) 1 s long unidi-
rectionally coupled time series generated by the model. (C) Average power spectrums
peaking in the α and lower β frequency bands.

connectivity values, defined as

∆λ(x,y, f) = λ(x → y, f) − λ(y → x, f), (3.4)

where λ stands for any of the phase-based effective connectivity measures studied, ex-
cept for the PSI, in which case all subsequent analyses are performed directly on the PSI
values. Lastly, for each condition in the three scenarios and at each frequency evaluated,
we perform permutation tests based on randomized surrogate trials (Lindner et al., 2011;
Weber et al., 2017) to determine which net couplings or directed connections are statis-
tically significant. The permutation test employed uses the trial structure of the data
to generate surrogate datasets for the null hypothesis (absence of directed interactions).
It does so by shuffling the data from different trials (see Appendix C). The significance
level for the tests was set to 3.3 × 10−4 after applying the Bonferroni correction to an
initial alpha level of 0.01 in order to account for 30 independent tests, one for each
evaluated frequency per condition.
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Coupling strength

In order to test the ability of our phase TE estimation method to detect phase-based
directed interactions of varying intensity, we modify the coupling strength between the
simulated signals, x and y, by varying the parameter C12 in the range {0, 0.2, 0.5, 0.8},
with 0 indicating the absence of coupling and 0.8 a strong interaction between the
two signals.

Noise and signal mixing

To asses the robustness of our proposal to realistic levels of noise and signal mixing, we
do the following: we generate a noise time series η, with the same power spectrum of
x, through the methodology proposed in Lobier et al. (2014). Then, we add x and η

to generate a noisy version of x, xη = x + 10−SNR
20 η, where SNR is the signal to noise

ratio. Likewise for y. Then, we mix xη and yη to simulate one of the effects of volume
conduction, by doing xw

η =
(
1 − w

2

)
xη +

(
w
2

)
yη, and yw

η =
(
1 − w

2

)
yη +

(
w
2

)
xη, with w

the mixing strength. We set the parameters SNR and w to 3 and 0.25 respectively, based
on the results obtained in Lobier et al. (2014) for realistic values of noise and mixing for
EEG signals. The coupling coefficient C12 is held constant at a value of 0.5 to simulate
couplings of medium strength.

Narrowband bidirectional interactions

In this experiment, we aim to evaluate how our proposal deals with bidirectional inter-
actions of localized frequency content. Particularly, we want to assess its performance
for signals x and y containing a directed interaction from x to y at 10 Hz and an inter-
action in the opposite direction, from y to x, at 40 Hz. To generate such signals, first,
we modify the model parameters of Area 2 so that it produces a signal y with a power
spectrum peaking in the γ band (David and Friston, 2003). The power spectrum of x
remains as before. The coupling coefficient C12 is again held constant at a value of 0.5.
The change in the parameters of Area 2 leads to strong directed interactions from x to
y around 10 Hz and 40 Hz. Then, we use a Morlet wavelet (Equation 3.2) to filter both
x and y at those frequencies (10 Hz and 40 Hz). The obtained real-valued narrowband
time series are then combined as follows: x∗ = x10 Hz +y40 Hz and y∗ = y10 Hz +x40 Hz.
Next, x∗ and y∗ are added to broadband noise generated following the same approach
described for the previous experiment, with an SNR of 6.
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3.2.2 EEG data

In order to test the performance of our phase TE estimator in the context of BCI,
we obtain effective connectivity features from EEG signals recorded under two different
cognitive paradigms: the first one consisting of motor imagery (MI) tasks and the second
one of a change detection task designed to study working memory (WM) (see Section
1.7). Our aims are to set up classification systems that allow discriminating between the
conditions in each paradigm, using as inputs relevant directed interactions among EEG
signals and then evaluate their performance in relation to the connectivity measures
used to train them.

Classification setup

Feature extraction Let Ψ = {Xn ∈ RC×M}N
n=1 be an EEG set holding N trials from

either an MI or a WM dataset, recorded from a single subject, where C stands for the
number of channels and M corresponds to the number of samples. For MI, C = 22 and
M = 500 (we only select a 2 s long time window stretching from second 3 to second
5), while for WM, C = 32 and M = 717. In addition, let {ln}N

n=1 be a set whose n-th
element is the label associated with trial Xn. For the MI database ln can take the values
of 1 and 2, corresponding to right hand and left hand motor imagination, respectively.
Similarly, for the WM database, ln can take the values of 1, 2, and 3 corresponding to
low, medium, and high memory loads. In both cases, our goal is to estimate the class
label from relevant effective connectivity features extracted from Xn. Because of the
results obtained for the simulated data (see Section 3.3.1 for details), here we consider
features from only three approaches for phase-based effective connectivity estimation,
namely, TEθ

κα, GCθ, and PSI. Additionally, we also characterize the data through the
real-valued versions of TEκα and GC.

For the real-valued effective connectivity measures considered, we do the following:
let λ(xc → xc′) be a measure of effective connectivity between channels xc,xc′ ∈ RM .
By computing λ(xc → xc′) for each pairwise combination of channels in Xn we obtain
a connectivity matrix Λ ∈ RC×C . In the case when c = c′, we set λ(xc → xc′) = 0.
Then, we normalize Λ to the range [0, 1]. After performing the above procedure for the
N trials, we get set of connectivity matrices {Λn ∈ RC×C}N

n=1. Then, we apply vector
concatenation to Λn to yield a vector φn ∈ R1×(C×C). Next, we stack the N vectors
φn, corresponding to each trial, to obtain a matrix Φ ∈ RN×(C×C) holding all directed
interactions, estimated through λ, for the EEG set Ψ.
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For the phase-based effective connectivity measures of interest, we proceed in a sim-
ilar fashion: let λθ(xc → xc′ , f) be a measure of phase-based effective connectivity
between channels xc,xc′ at frequency f . By computing λθ(xc → xc′ , f) for each pair-
wise combination of channels in Xn we obtain a connectivity matrix Λ(f) ∈ RC×C

(when c = c′, we set λθ(xc → xc′ , f) = 0). For the MI database, we vary the values
of f in the range from 8 Hz to 18 Hz, in 2 Hz steps, since activity in that frequency
range has been associated with MI tasks (Collazos-Huertas et al., 2020). Then, we
define two bandwidths of interest ∆f ∈ {α ∈ [8 − 12], βl ∈ [14 − 18]} Hz. After-
ward, we average the matrices Λ(f) within each bandwidth, normalize the resulting
matrices to the range [0, 1], and stack them together, so that for each trial we have
a connectivity matrix Λ′ ∈ RC×C×2. Therefore, for the N trials, we get set of con-
nectivity matrices {Λ′

n ∈ RC×C×2}N
n=1. Then, we apply vector concatenation to Λ′

n

to yield a vector φn ∈ R1×(C×C×2). After that, we stack the N vectors φn in order
to obtain a single matrix Φ ∈ RN×(C×C×2) characterizing Ψ for the MI data. For the
WM we follow the same steps, only that in this case we vary the values of f in the
range from 4 Hz to 18 Hz, in 2 Hz steps, since oscillatory activity at those frequen-
cies has been shown to play a role in the interactions between different brain regions
during WM (Johnson et al., 2018, 2019). Next, we define three bandwidths of interest
∆f ∈ {θ ∈ [4 − 6], α ∈ [8 − 12], βl ∈ [14 − 18]} Hz, which leads to a connectivity matrix
Λ′ ∈ RC×C×3 for each trial and ultimately to a matrix Φ ∈ RN×(C×C×3) characterizing
Ψ for the WM data. Note that since the PSI is an antisymmetric connectivity measure,
we only use the upper triangular part of the connectivity matrix associated with each
trial to build Φ.

Feature selection and classification After characterizing the EEG data, either
through real-valued or phase-based effective connectivity measures, we set up subject-
dependent classification systems for the MI and WM databases following the same steps
described in Section 2.2.3 for each database.

3.2.3 Parameter selection

We used in-house Python implementations of the algorithms for all the connectivity
measures studied, except for TEθ

KSG. In that case, we used the implementation provided
by the open access toolbox TRENTOOL, a TE estimation and analysis toolbox for
Matlab (Lindner et al., 2011).

Regarding the selection of parameters involved in the different effective connectivity
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estimation methods, we proceeded as follows: For the TE methods, we estimated all
parameters from the real-valued time series, i.e., before extracting the phase time series.
The embedding delay τ was set to 1 autocorrelation time (ACT), as proposed in Vicente
et al. (2011). The embedding dimension d was selected from the range d = {1, 2, . . . , 10}
using Cao’s criterion (Cao, 1997; Lindner et al., 2011) (see Appendix E). Note that for
any signal pair, the embedding parameters selected are those of the driven or target
time series, i.e., to estimate TE(x → y) we use for both time series the embedding
parameters found for y. The interaction delay u was set as the value generating the
largest TE from ranges that varied depending on the experiment: u = {1, 2, . . . , 10}
for the NMMs, u = {1, 4, . . . , 25} for the MI data, and u = {50, 60, . . . , 250} for the
WM data. Note that the meaning of u in terms of the time delay of the directed
interaction between the driving and driven systems is associated with the sampling
frequency, e.g., u = {1, 2, . . . , 10} for data sampled at 250 Hz translates to a time range
between 4 ms and 40 ms. For TEθ

κα, in most experiments we select a value of α = 2,
which is neutral to weighting, a convenient choice when there is no previous knowledge
about the values of the α parameter better suited for a particular application (De La
Pava Panche et al., 2019; Giraldo et al., 2015). In addition, as kernel function, we employ
an RBF kernel with Euclidean distance (see Equation (2.11)). The bandwidth σ was set
in each case as the median distance of the data (Schölkopf et al., 2002). For TEθ

KSG the
Theiler correction window and the number of neighbors were left at their default values in
TRENTOOL, 4 and 1 ACT, respectively (Lindner et al., 2011). For the GC methods the
order of the autoregressive models o was selected from the range o = {1, 3, . . . , 9} using
Akaike information criterion (Akaike, 1974; Gong et al., 2018). Furthermore, in order
to estimate the PSI we employed a sliding window 5 frequency bins long (3 bins long for
the WM data), centered on the frequency of interest. Finally, for all the connectivity
methods involving the extraction of phase time series through Morlet wavelets, we varied
the parameter m (see Equation (3.2)) from 3 to 10 in a logarithmic scale, according to
the selected frequency of the filter.

3.3 Results and discussion

3.3.1 Neural mass models

The experiments described in Section 3.2.1 are intended to assess whether the phase-
based connectivity measures considered in this study correctly detect the direction of
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Figure 3.2: Obtained results for the experiments performed using simulated data from
NMMs. Column (A) shows the average connectivity values obtained for different levels
of coupling strength. Column (B) presents the average connectivity values estimated for
ideal signals and for signals contaminated with noise and signal mixing. Column (C) dis-
plays the average connectivity values obtained for bidirectional narrowband couplings.
The rows correspond to each of the net phase-based effective connectivity estimation
approaches considered for the aforementioned experiments. Circled values indicate sta-
tistically significant results.
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interaction between two time series of known oscillatory properties. Figure 3.2 presents
the results obtained from such experiments. Namely, column A shows the connectiv-
ity values obtained for different levels of coupling strength, column B compares the
connectivities estimated for ideal signals with those of signals contaminated with noise
and mixing, and column C displays the results obtained for bidirectional narrowband
couplings. The rows in Figure 3.2 correspond to each of the phase-based connectivity
measures studied. The first row contains average PSI values computed on the frequency
range between 2 Hz and 60 Hz, while rows two to five display average net connectivity
values for TEθ

κα, TEθ
KSG, TEθ

Sym, and GCθ, respectively. Circled values indicate statisti-
cally significant connectivities at a particular frequency, according to a permutation test
based on randomized surrogate trials. The test identifies connectivity values that are,
on average, significantly different from those expected for that connectivity measure ap-
plied to non-interacting signals. For the three experiments involving simulated data from
NMMs, we use the PSI as a comparison standard, since it is a robust and well-stablished
measure of linear directed interactions defined in terms of phase relations (Jiang et al.,
2015; Nolte et al., 2008). Therefore, it is suited to analyze the coupled, mildly nonlinear
time series generated by NMMs.

Regarding the first experiment, which modifies the coupling strength between the
simulated signals, the obtained results (Figure 3.2, column A) show that all the measures
studied satisfactorily detect the coupling direction of the simulated data. Note that since
we set the NMMs to generate unidirectional interactions from x to y, and because of the
way we defined ∆λ, then all net connectivity values for the simulated coupled signals
should be positive. The same is true for the PSI(x → y). On the other hand, only
the PSI, TEθ

κα, and GCθ fulfill the criteria for an overall description of the phase-based
interactions present in the data. First, we observe higher net connectivity values at
higher coupling strengths, that is to say, stronger interactions lead to larger connectivity
estimates. Second, for each coupling strength, there are higher net connectivity values
around the frequencies corresponding to the main oscillatory components of the time
series generated by the NMMs, in this case, oscillations in the range between 8 Hz and
20 Hz. Third, there are statistically significant results for all the coupling strengths
explored, except for non-interacting time series (C12 = 0). TEθ

KSG does not capture
statistically significant interactions for a coupling coefficient value of 0.2, indicating a
lower sensitivity to weak couplings. While TEθ

Sym exhibits a very distorted connectivity
profile when compared with the PSI. In addition, it has much larger standard deviations
for all the coupling strengths considered.
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The second experiment assesses the robustness of our proposal to realistic levels
of noise and signal mixing, two sources of signal degradation that can lead to spuri-
ous connectivity results. In electrophysiological signals, such as EEG, signal mixing
arises as a result of field spread, while noise is the result of technical and physiologi-
cal artifacts (Debener et al., 2012; Mennes et al., 2010; Sakkalis, 2011). The results in
Figure 3.2, column B, show that PSI, TEθ

κα, and GCθ capture statistically significant
interactions in the frequencies of interest for both the ideal (no noise or signal mixing)
and realistic conditions. The smaller connectivity values for the data contaminated with
noise and signal mixing, as compared with the ideal signals, are mostly explained by the
reduction in asymmetry between the driving and driven signals caused by mixing (Lobier
et al., 2014). On the contrary, we observe that neither TEθ

Sym nor TEθ
KSG produce sta-

tistically significant results under the realistic scenario, indicating that those estimators
are less robust to signal degradation.

The third experiment aims to evaluate how our proposal deals with bidirectional
interactions of localized frequency content. Because of our experimental setup, the ob-
tained results should exhibit a positive deflection around 10 Hz in order to capture the
directed interaction from x to y and a negative deflection around 40 Hz to represent
the directed interaction from y to x. Figure 3.2, column C, shows that both PSI and
TEθ

κα successfully detect the change in the direction of interaction in localized frequency
bands, with statistically significant connectivity values around the frequencies of inter-
est. However, under this scenario, TEθ

κα is less frequency specific for high-frequency
interactions than the PSI, with statistically significant connections present for a large
range of frequency values around 40 Hz. This is probably due to the filtering step
involved in the estimation of TEθ

κα, while PSI is directly defined on the data spectra.
Additionally, TEθ

KSG and TEθ
Sym fail to produce any significant results, while GCθ shows

a statistically significant, non-existing coupling from y to x for frequencies under 10 Hz.
Note that, ultimately, the permutation test indicates whether the connectivity values
obtained are unlikely to be the result of chance and not whether they correctly capture
the directed interactions present in the data. In this case, the statistically significant
results mean that GCθ consistently found a directed interaction from y to x in the range
mentioned before.

The results discussed above indicate that the proposed phase TE estimator is able
to detect directed interactions between time series resembling electrophysiological data
for different levels of coupling strength, under the presence of noise and signal mixing,
and for bidirectional narrowband couplings. Furthermore, they show that it is competi-
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Figure 3.3: Obtained results for the experiments performed using simulated data from
NMMs for different values of the α parameter in the proposed TEθ

κα approach. Col-
umn (A) shows the average connectivity values obtained for different levels of coupling
strength. Column (B) presents the average connectivity values estimated for ideal sig-
nals and for signals contaminated with noise and signal mixing. Column (C) displays the
average connectivity values obtained for bidirectional narrowband couplings. The rows
correspond to different values of the α parameter in the TEθ

κα approach. Circled values
indicate statistically significant results.
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tive with well-established approaches for phase-based net connectivity estimation, such
as PSI, in the case of weakly nonlinear signals. Lastly, our results also show that com-
monly used single-trial TE estimators, such TEKSG and TESym, are ill-suited to measure
directed interactions between instantaneous phase time series.

Finally, Figure 3.3 presents results analogous to those of Figure 3.2, except that
its rows correspond to different values of the α parameter in the proposed TEθ

κα ap-
proach. Most of the discussion previously presented for the case when α = 2 holds for
the other values of α explored. However, we observe variations in two aspects. First,
the connectivity profiles become more peaky around the frequencies of interest as α in-
creases, even in the presence of noise and signal mixing. Second, for α > 2 the estimated
TEθ

κα connectivities stop capturing bidirectional interactions of localized frequency con-
tent correctly. Because of the latter, and considering the higher computational cost of
estimating TEθ

κα for non-integer values of α (see Section 2.3.4), we set α = 2 for all
subsequent experiments.

3.3.2 EEG data

Table 3.1: MI and WM classification results in terms of the average classification accu-
racy for all the effective connectivity measures considered.

Motor Imagery (acc %) Working Memory (acc %)

Cross-Validation Testing Cross-Validation

GC 64.3 ± 11.7 57.1 ± 11.0 53.0 ± 7.4
TEκα 65.5 ± 11.4 62.8 ± 11.7 67.5 ± 4.2

PSI 62.4 ± 7.8 58.8 ± 8.3 75.2 ± 5.2
GCθ 67.0 ± 11.9 63.5 ± 14.4 74.5 ± 4.4

TEθ
κα 70.4 ± 12.5 69.0 ± 14.8 93.0 ± 5.9

Table 3.1 presents the average accuracies achieved by the proposed classification
systems for both the MI and WM databases, for each effective connectivity method
studied. For the MI database, in the training-validation stage, the classifier based on
TEθ

κα features exhibited the highest average performance, closely followed by the one
based on GCθ. In the testing stage, we observe the same overall accuracy ranking,
although a smaller drop in the classification accuracy occurs for TEθ

κα than for GCθ,
which points to a better generalization capacity by the system trained using features
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extracted through phase TE. For the WM database, the classifier trained from TEθ
κα

features also displays the highest average accuracy. However, in this case, there is a
large gap in performance between the TEθ

κα-based classification system and the closest
results from an alternative approach. Furthermore, the results in Table 3.1 show a
consistent improvement in performance between the classifiers that use real-valued TE
estimates and those that are trained from phase TE values. They also show relatively
low accuracies for the classifiers trained using PSI features. We believe the latter can
be explained by two factors. First, by definition, the PSI is unable to explicitly detect
bidirectional interactions. It measures connectivity in terms of lead/lag relations, which
leads to ambiguity regarding the meaning of PSI values close to zero, since they can be
the result of either the lack of interaction or evenly balanced bidirectional connections.
If the relevant information to discriminate among the conditions of a cognitive paradigm
is related to the bidirectionality of interactions, such as those present in WM (Johnson
et al., 2018, 2019), then the PSI might not be an adequate characterization strategy.
Secondly, the PSI, like GC, is a linear measure; its performance degrades for strongly
nonlinear phase relationships.

In the sections below, we detail and further discuss the results obtained for each
database.

Motor imagery

Figure 3.4 depicts the average classification accuracy for all subjects in MI database as a
function of the number of selected features during the training-validation stage, for TEκα

and TEθ
κα. These results show there is a small improvement in the ability to discriminate

between the MI tasks when using features extracted through phase TE, as compared with
real-valued TE. In addition, they reveal that the CKA-based feature selection strategy
successfully identified the most relevant connections for MI task classification. That
is to say, the classification system has a stable performance even for a very reduced
number of connectivity features. This is fundamental for any practical BCI application
that intends to use phase TE as a characterization strategy, since estimating single-trial
phase TE is computationally expensive (Lobier et al., 2014). Therefore, it is important
to reduce as much as possible the number of channel pair connectivity features required
to achieve peak classification performance. Additionally, it is important to highlight
that while classification accuracies in Figure 3.4, and in Table 3.1, are in the same range
of those obtained through other connectivity-based characterization approaches (De La
Pava Panche et al., 2019; García-Murillo et al., 2021), they are far below those obtained
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from methods such as common spatial patterns (Elasuty and Eldawlatly, 2015; Gómez
et al., 2018; Li et al., 2018). A possible explanation is that bivariate TE might be
more robust at describing long-range interactions rather than local ones (Ursino et al.,
2020), like those arising from MI-related activity, centered on the sensorimotor area.
In addition, the differences with the results in Section 2.3.3, where we used TEκα to
characterize the same database, lay mostly in the fact that in this chapter we select
and analyze one 2 s long time window covering the period right after the end of the
visual cue, while in Section 2.3.3 we report results from multiple overlapping windows
covering the entirety of the task. Lastly, the large standard deviations from the average
accuracies in Figure 3.4 point to disparate performances for different subjects.
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Figure 3.4: Average classification accuracies, and their standard deviations, for all sub-
jects in the MI database as a function of the number features selected to train the clas-
sifiers.

Figure 3.5A shows the highest average classification accuracy per subject for TEθ
κα,

GCθ and PSI, during the training-validation stage. The subjects are ordered from highest
to lowest performance. The analogous information for the testing stage is presented in
Figure 3.5B. In both stages, the TEθ

κα-based classifier performs slightly better than those
based on alternative connectivity estimation strategies in most subjects. In addition,
as inferred from Figure 3.4, there are large variations in performance for the different
subjects in the database, consistent across the two classification stages. We previously
observed this behavior in the results presented in Section 2.3.3. It has also been reported
elsewhere (De La Pava Panche et al., 2019; Elasuty and Eldawlatly, 2015; Gómez et al.,
2018; Li et al., 2018; Liang et al., 2016).

In order to gain insight into the observed performance differences, in the case of
TEθ

κα, we exploited the second advantage provided by the CKA-based relevance analysis
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Figure 3.5: (A) Highest average classification accuracy for each subject in the MI
database during the training-validation stage. (B) Accuracies obtained for each sub-
ject during the testing stage. The subjects are ordered from highest to lowest perfor-
mance according to the accuracies obtained for the TEθ

κα-based classifier in the training-
validation stage.

(see Appendix D). The relevance vector index ϱ not only allows us to perform feature
selection but also provides a one-to-one relevance mapping to each connectivity feature.
That is to say, we can reconstruct normalized relevance connectivity matrices by properly
reshaping ϱ, so as to visualize the connectivity pairs and frequency ranges that are
discriminant for the task of interest. In that line, we followed the approach proposed
in García-Murillo et al. (2021) to interpret the relevance information by clustering the
subjects according to common relevance patterns.

First, for each subject and frequency band of interest, we obtained a relevance vector
ϱn,∆f ∈ RC whose elements were associated with each node (EEG channel) in the
data by computing the relevance of the total information flow of every node. Such
magnitude was defined as the sum of the relevance values ϱ, obtained from all data in
the training dataset, corresponding to all directed interactions targeting and originating
from a particular node. Then, we concatenated the vectors ϱn,∆f ∈ RC for all frequency
bands to obtain a single relevance vector ϱn ∈ R2C . Next, we reduced the dimension
of the relevance vectors ϱn of each subject through t-Distributed Stochastic Neighbor
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Embedding (t-SNE), which preserves the spatial relationships existing in the initial
higher-dimensional space (Linderman and Steinerberger, 2019). Figure 3.6A shows the
obtained two-dimensional representation of the relevance vectors for each subject in the
MI database, colored according to their respective classification accuracy. Note that the
distribution of the subjects in the plot is related to their classification accuracies. This
indicates that shared relevance patterns are related to the obtained classification results,
meaning that subjects with similar ϱn had close performances. Then, we grouped the
subjects into two clusters using the k-means algorithm. The number of clusters was
selected by visual inspection of the t-SNE results. Figure 3.6B displays the two groups,
termed G. I and G. II. The TEθ

κα-based classifier has average accuracies of 0.59 ± 0.05
and 0.80 ± 0.09 for the subjects in G. I and G. II, respectively.
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Figure 3.6: (A) Two-dimensional representation of the relevance vectors for each subject
in the MI database obtained after applying t-SNE on ϱn. (B) Groups identified by k-
means. For the TEθ

κα-based classifier the subjects grouped in G. I have an average
accuracy of 0.59 ± 0.05, while those in G. II have an average accuracy of 0.80 ± 0.09.

Finally, Figure 3.7 shows the average nodal relevance, as defined by ϱn, and the
most relevant connectivities for each group, discriminated by frequency band. For G.
I we observe high node relevance mostly in the α band in right fronto-central, left-
central, and centro-parietal regions. The most relevant connections in the α band tend
to originate or target fronto-central nodes, while the ones in the βl band favor pari-
etal and centro-parietal areas. For G. II, the node relevance is concentrated around
the right centro-parietal region, particularly channel CP4, for both frequency bands.
The most relevant connections in the α band involve short-range interactions mainly
between centro-parietal and central regions. The most relevant connections in the βl

band, which display higher values than those of α, originate from CP3 and CP4 and
target central and fronto-central nodes. Since the G. II includes all the subjects with
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Figure 3.7: Topoplots of the average node (channel) relevance for each group of clustered
subjects and frequency band of interest in the MI database (see Figure 3.6). The arrows
represent the most relevant connectivities for each group. For visualization purposes,
only 3% of the connections, those with the highest average relevance values per group,
are depicted.

good classification performances, we can conclude that the information that allows to
satisfactorily classify the left and right hand MI tasks from TEθ

κα features corresponds
mostly to the incoming and outgoing information flow coded in the phases of the oscil-
latory activity in the centro-parietal region. These results are in line, in terms of spatial
location, with those we found in De La Pava Panche et al. (2019), and with physiological
interpretations that argue that MI activates motor representations in the parietal areal
and the premotor cortex (Hétu et al., 2013).

Working memory

Figure 3.8 presents the average classification accuracy for all subjects in the WM database
as a function of the number of selected features, for TEκα and TEθ

κα. The results show
that the classifier trained from phase TE features markedly outperforms the one trained
using real-valued TE estimates, as long as the appropriate percentage of features is
selected. This difference might be attributed to the hypothesized phase-based nature
of directed interactions during WM tasks (Dimitriadis et al., 2016a; Johnson et al.,
2018), which would be better captured by phase TE. Furthermore, both accuracy curves
highlight the importance of feature selection, since they show a steep performance degra-
dation as more features are used to train the classifiers. In this case, the CKA-based
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relevance analysis not only allows reducing the number of features needed to success-
fully classify the three cognitive load levels present in the WM data but also prevents the
classifiers from being confounded by connections that do not hold relevant information
to discriminate between the target conditions.
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Figure 3.8: Average classification accuracies, and their standard deviations, for all sub-
jects in the WM database as a function of the number features selected to train the clas-
sifiers.

Figure 3.9 depicts the highest average classification accuracy per subject for TEθ
κα,

GCθ and PSI. The subjects are ordered from highest to lowest performance. Unlike the
results obtained for the MI database, we do not observe an underperforming group of
subjects, especially after considering the fact that for the WM database the classifiers
must discriminate among three classes instead of two. On the other hand, in this case,
the TEθ

κα-based classifier largely outperforms those based on alternative connectivity
estimation strategies in most subjects. Here, as in Section 2.3.3, we must point out
that the auxiliary cross-validation step introduced for feature selection leads to data
leakage, since it requires all the available data to estimate ϱ̄, which renders it a nonvi-
able approach for practical BCI implementations and can inflate performance measures.
Nonetheless, we implemented the same strategy for all classification systems involving
the WM database. Therefore, we can carry out valid comparisons among the classifiers
trained with features extracted through the different connectivity measures explored.

In order to elucidate the pairwise connectivities, and their corresponding frequency
bands, that allow the TEθ

κα-based classification system to successfully discriminate among
different memory loads, we proceeded as described in Section 3.3.2, and from ϱ̄ obtained
a node relevance vector ϱ̄n ∈ R3C . Then, we applied t-SNE on ϱ̄n. Figure 3.10A shows
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Figure 3.9: Highest average classification accuracy for each subject in the WM database.
The subjects are ordered from highest to lowest performance according to the accuracies
obtained for the TEθ

κα-based classifier.

the obtained two-dimensional representation of the relevance vectors for each subject in
the WM database. Unlike the results observed before for the MI database, there is not
a clear association between the subject distribution on the plot and their classification
accuracies. Nonetheless, Figure 3.10A shows the presence of well-defined groups shar-
ing similar relevance patterns. As before, we grouped the subjects into clusters using
the k-means algorithm. The number of clusters was selected as three by visual inspec-
tion of the t-SNE results. Figure 3.10B displays the three groups, termed G. I, G. II,
and G. III. The TEθ

κα-based classifier has average accuracies of 0.94 ± 0.04, 0.92 ± 0.08,
and 0.93 ± 0.08 for the subjects in G. I, G. II, and G. III, respectively.
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Figure 3.10: (A) Two-dimensional representation of the relevance vectors for each subject
in the WM database obtained after applying t-SNE on ϱn. (B) Groups identified by
k-means. For the TEθ

κα-based classifier the subjects grouped in G. I, have an average
accuracy of 0.94 ± 0.04, while those in G. II and G.III have average accuracies of 0.92 ±
0.08 and 0.93 ± 0.08, respectively.
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Figure 3.11: Topoplots of the average node (channel) relevance for each group of clus-
tered subjects and frequency band of interest in the WM database (see Figure 3.10).
The arrows represent the most relevant connectivities for each group. For visualization
purposes, only the 1% of the connections, those with the highest average relevance values
per group, are depicted.

Lastly, Figure 3.11 shows the average nodal relevance, as defined by ϱn, and the
most relevant connectivities for each group, discriminated by frequency band. For G. I
we observe widespread high node relevance in both the α and βl bands and low node
relevance in the θ band. Most relevant connections are present in the βl band with
many connections originating in the parieto-occipital region and targeting frontal and
centro-frontal areas. For G. II and G. III node relevance is more evenly distributed
across the three frequency bands considered. Spatially, it is more prominent around
some pre-frontal, frontal, centro-parietal, and parietal nodes. In terms of the most
relevant connections, we observe long-range contralateral interactions involving mostly
the regions previously listed, as well as some connections to and from temporal areas.
Therefore, we argue that the information flow between frontal, parietal, and temporal
regions, coded in the phases of oscillatory activity in the θ, α, and βl bands, is what
allowed us to discriminate among different memory loads from TEθ

κα features. These
results agree with several studies that identify fronto-parietal and fronto-temporal neural
circuits operating in frequency ranges spanning from θ to β as key during the activation
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of working memory (Dimitriadis et al., 2016a; Johnson et al., 2018, 2019).

3.3.3 Limitations

In this study, we employed Morlet wavelets as filters for instantaneous phase extraction
prior to phase TE estimation, as proposed in Lobier et al. (2014). However, as discussed
by the authors in Lobier et al. (2014), the choice of filter can influence the behavior of
phase TE. This is an aspect we have yet to explore for our proposal. In the same line, in
Weber et al. (2017) the authors showed, using the Kraskov-Stögbauer-Grassberger TE
estimator on real-valued filtered signals, that filtering and downsampling are deleterious
for TE, since they can lead to altered time delays and hide certain causal interactions.
Furthermore, from a conceptual perspective, while filtering dampens spectral power, it
does not always remove the information contained in specific frequencies (Pinzuti et al.,
2020). This would hinder the isolation of frequency specific interactions in TE estimates
from real-valued filtered data, the most common approach to obtain spectrally resolved
TE values. Whether those effects are also present in the case of phase TE is yet to be
analyzed; however, as pointed out in Pinzuti et al. (2020), phase TE is conceptually
different from spectrally resolved TE. Additionally, the results obtained with our phase
TE estimator for the NMM data closely follow those obtained with the PSI, a measure
that does not rely on data filtering, which points to a certain degree of robustness to the
negative effects that might be associated with phase extraction through complex filtering.
A related issue is the possible effects on our proposal of the preprocessing pipelines
employed on the EEG data, which involve spectral and spatial filtering. Regarding the
former, we have not studied its effects in this work; while for the latter, surface Laplacian
positively impacted the discrimination capability of the connectivity features obtained
from the different measures considered.

In addition, we selected the autocorrelation time and Cao’s criterion to obtain the
embedding parameters for all the TE estimation methods. More complex approaches
such as time-delayed mutual information and Ragwitz criterion may yield better re-
sults (Lindner et al., 2011). However, since our motivation was to propose a single-trial
phase TE estimator suited as characterization method for BCI applications, the choice
of simple parameter estimation methods is justified. As a matter of fact, a practical
implementation of a phase TE-based BCI system would likely require further simplifi-
cations regarding parameter estimation, in order to facilitate the computation of phase
TE in real time. Furthermore, our proposed phase TE estimator inherits most of the
limitations of TEκα, described in Section 2.3.4.
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3.4 Summary

In this chapter, we proposed a single-trial phase TE estimator. Our method combines a
kernel-based TE estimation approach, which defines effectivity connectivity as a linear
combination of Renyi’s entropy measures of order α, with instantaneous phase time series
extracted from the data under analysis. We tested the performance of our proposal on
synthetic data generated through NMMs and on two EEG databases obtained under MI
and WM paradigms. We compared it with commonly used single-trial TE estimators,
applied to phase time series, and the PSI and GC. Our results showed that the proposed
phase TE estimator successfully detected the direction of interaction between individual
pairs of signals, capturing the differences in coupling strength and displaying statistically
significant results around the frequencies corresponding to the main oscillatory compo-
nents present in the data. It also succeeded in detecting bidirectional interactions of
localized frequency content and was robust to realistic noise and signal mixing levels.
Moreover, our method, coupled with a CKA-based relevance analysis, revealed discrim-
inant spatial and frequency-dependent patterns for both the MI and WM databases,
leading to improved classification performance compared with approaches based on real-
valued TE estimation. In all our experiments, the proposed single-trial kernel-based
phase TE estimator was competitive with the comparison methods previously listed in
terms of the performance assessment metrics employed.



Chapter 4

Kernel-based Renyi’s phase transfer
entropy for the estimation of
directed phase-amplitude
interactions

In this chapter, we reframe the problem of estimating directed phase-amplitude inter-
actions through TE as a phase TE problem. That is to say, as the computation of TE
between two instantaneous phase time series. We do so by borrowing the underlying
premise of the cross-frequency directionality (CFD), a linear connectivity measure ca-
pable of estimating the direction of PAC (Jiang et al., 2015), along with the use of the
phase TE estimation methodology developed in Chapter 3. We hypothesize that for di-
rected PAC the proposed approach can correctly identify the interacting frequencies, as
well as the direction of interaction, while being robust to common factors that degrade
the performance of connectivity estimation methods such as the presence of high levels
of noise and volume conduction effects (Bastos and Schoffelen, 2016).

In order to test our proposal, we use a simulation model that allows generating syn-
thetic data with unidirectionally phase-amplitude couplings at two target frequencies
(Jiang et al., 2015), as well as the MI and WM databases described in Section 1.7.
Obtained results for the simulated data show that the proposed approach successfully
captures statistically significant phase-amplitude interactions, correctly identifying the
direction of interaction and the target frequencies under noisy and signal mixing con-
ditions. Furthermore, the results for the WM data reveal that our proposal captures
discriminant phase-amplitude connectivity patterns that allow identifying the cognitive
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load associated with a trial of the change-detection task. On the other hand, the pro-
posed approach is unable to capture discriminant interactions for the MI data.

4.1 Kernel-based Renyi’s phase transfer entropy for
the estimation of directed phase-amplitude in-
teractions

4.1.1 Transfer entropy for directed phase-amplitude interac-
tions

As described in Section 1.4.1, given two time series x and y, in order to estimate the TE
from the phase of x at a frequency fl to the amplitude envelope of y at a frequency fh,
we first obtain complex time series sx(fl) = ςxeiθx ∈ CT and sy(fh) = ςyeiθy ∈ CT , which
contain the filtered values of x and y at fl and fh, respectively; where θx,θy ∈ [−π, π]Tt=1

are instantaneous phase time series, and ςx, ςy ∈ RT are amplitude envelopes (Lobier
et al., 2014). Then, we compute the desired TE as:

TEθς(x → y, fl, fh) = HS

(
ςy,dy

t−1 ,θ
x,dx
t−u

)
−HS

(
ςy
t , ς

y,dy
t−1 ,θ

x,dx
t−u

)
+HS

(
ςy
t , ς

y,dy
t−1

)
−HS

(
ςy,dy

t−1

)
,

where θx,dx
t and ςy,dy

t are time embedded versions of θx and ςy. This approach is schema-
tized in Figure 4.1A.

4.1.2 Cross-frequency directionality

The cross-frequency directionality (CFD) estimates the direction of interaction between
the phase of low frequency (fl) oscillations and the amplitude of faster, higher frequency
(fh) oscillations (Jiang et al., 2015). It is based on the phase slope index (PSI), which
measures the coupling directionality between two oscillatory signals of similar frequencies
(Nolte et al., 2008). Given two time series x and y, the CFD from x to y is computed
as the PSI between x, the time series containing the slow oscillations of interest, and
the amplitude envelope of y at fh (ςy). Thus:

CFD(x → y, fh) = PSI(x → ςy) = ℑ

∑
f∈F

C∗
xς(f)Cxς(f + df)

 , (4.1)
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where Cxς = Sxς/
√
Sxx, Sςς is the complex coherence, Sxς ∈ C is the cross-spectrum

between x and ςy, Sxx, Sςς ∈ C are the auto-spectrums of x and ςy, df ∈ R+ corresponds
to the frequency resolution, F indicates the frequency range over which the slope is
summed, and ℑ stands for the fact that only the imaginary part of the sum is selected
(Nolte et al., 2008). Therefore, the CDF estimates the slope of the phase difference,
between the phases of x and ςy, as a function of frequency. That is to say, it translates
the problem of estimating the direction of phase-amplitude interactions to estimating
the interaction between phases.

4.1.3 Phase transfer entropy and directed phase-amplitude in-
teractions

We begin by noting that the conventional approach to estimate directed phase-amplitude
interactions through TE implies the computation of TE from data of different properties,
a phase time series θx, which represents a circular variable, and a smooth, continuous
amplitude envelope ςy. In this work, we reformulate the problem of directed phase-
amplitude interaction detection using TE as a phase TE estimation task (Lobier et al.,
2014). We do so by applying the same idea behind the CFD: obtaining the directionality
of interaction between phase and amplitude time series can be redefined as estimating the
direction of interaction between two phase time series. We hypothesize that such change
can improve the robustness of phase-amplitude TE estimates to signal degradation by
noise and volume conduction effects.

Given two time series x and y, we want to estimate the TE from the phase of x
at a frequency fl to the amplitude envelope of y at a frequency fh. As before, θx ∈
[−π, π]Tt=1 and ςy ∈ RT are the corresponding phase and amplitude time series, obtained
at the adequate frequencies. However, before TE computation, we obtain a complex
representation of ςy at fl, sς(fl) = ς ςeiθς ∈ CT , where θς ,∈ [−π, π]Tt=1 is an instantaneous
phase time series, and ς ς ∈ RT is an amplitude envelope (See Figure 4.1B). Next, we
define:

TEθθς (x → y, fl, fh) = HS

(
θς,dς

t−1 ,θ
x,dx
t−u

)
−HS

(
θς

t ,θ
ς,dς
t−1 ,θ

x,dx
t−u

)
+HS

(
θς

t ,θ
ς,dς
t−1

)
−HS

(
θς,dς

t−1

)
,

(4.2)
where θx,dx

t and θς,dς,
t are time embedded versions of θx and θς .

The quantity in Equation 4.2 indicates the estimation of TE from two-phase time
series extracted at the same frequency (fl). Thus, it corresponds to the definition of
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Figure 4.1: (A) The conventional approach to capture directed phase-amplitude inter-
actions through TE consists in estimating TE from instantaneous phase and amplitude
time series extracted at frequencies fl and fh, respectively. (B) Our approach implies
a further step comprising the extraction of the phase of the amplitude time series at
frequency fl, in order to reformulate the problem as a phase TE estimation task.

phase TE. Using the approach developped in Chapter 3 for phase TE estimation, we
can redefine Equation 4.2 as:

TEθθς

κα (x → y, fl, fh) = Hα

(
Kθς,dς

t−1
,Kθx,dx

t−u

)
−Hα

(
Kθς

t
,Kθς,dς

t−1
,Kθx,dx

t−u

)
+Hα

(
Kθς

t
,Kθς,dς

t−1

)
−Hα

(
Kθς,dς

t−1

)
, (4.3)

where Hα(·) stands for the kernel-based formulation of Renyi’s α entropy introduced
in Giraldo et al. (2015), Kθς

t
, Kθς,dς

t−1
,Kθx,dx

t−u
∈ R(D−u)×(D−u) are kernel matrices holding

elements kij = κ(ai, aj), with κ(·, ·) ∈ R a positive definite and infinitely divisible kernel
function. For Kθς

t
, ai, aj ∈ R contain the values of the time series θς at times i and j.

While for Kθς,dς
t−1

and Kθx,dx
t−u

the vectors ai, aj ∈ Rd correspond to the time embedded
versions of θς and θx, θς,dς

t and θx,dx
t , respectively, at times i and j, in accordance with

the time indexing of TE.
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4.2 Experiments

4.2.1 Simulated phase-amplitude interactions

Simulation model

In order to evaluate the performance of our proposal, we generate simulated time series
using a modified version of the PAC modeling strategy introduced in Jiang et al. (2015).
The model simulates a directed interaction from the phase of a time series x ∈ RN , at a
low frequency fl, to the amplitude of a time series y ∈ RN , at a high frequency fh. We
implement the model as follows: first, we build d time series’ segments x′

i corresponding
to a period of a sinusoidal signal:

x′
i = Ai(sin(2πfiti + 1.5π) + 1), (4.4)

where fi = 1/Ti, ti = {0, dt, 2dt, . . . , Ti}, and dt = 1/fs, with fs the sampling frequency
in Hz; as shown in Figure 4.2A. For each segment i, the amplitude Ai and the period Ti

are drawn from Gaussian distributions with means A = 1 and T = 1/fl, and standard
deviations of 0.1A and 0.2T , respectively. Then, we concatenate the d segments to
obtain a continuous signal of varying amplitude, as depicted in Figure 4.2B, x′ ∈ RN =
[x′

1,x′
2, . . . ,x′

d] , and with a power spectrum peaking at around fl. Next, we generate a
signal oscillating at fh, whose amplitude is a function of x′, by defining:

y′ = ζ

(
1 − 1

1 + exp(−a(x′ − c))

)
(sin(2πfht) + 1), (4.5)

where t = {0, dt, 2dt, . . . , (N −1)dt}, ζ =
√
fl/fh, c = 0.6, and a = 10 (see Figure 4.2C).

The constant c represents a threshold value, so that when x′ < c the amplitude of y′

increases; a controls the steepness of that increase. Next, we impose a directionality of
interaction from x′ to y′ by time-shifting y′ by ∆t seconds y′

∆t = y′(t+ ∆t). Afterward,
we construct two pairs of auxiliary signals following the steps described above. From
one pair, we select the signal with low frequency components, x′′. From the remaining
pair, we select the signal oscillating at the highest frequency, y′′. Finally, we define
x = x′ +y′′, and y = x′′ +y′

∆t, so that, by design, x and y have closely resembling power
spectra (see Figures 4.2D-4.2F).
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Figure 4.2: Schematic representation of the simulation model used to obtain data with
directed phase-amplitude interactions. (A) Sinusoidal signal segments of varying am-
plitude and period (x′

i). (B) A continuous, low frequency signal (x′) is obtained after
concatenating the sinusoidal signal segments. (C) A high frequency signal (y′) modu-
lated by x′ is computed through Equation 4.5. Then y′ is time-shifted by ∆t seconds
(y′

∆t). (D) x′ and y′
∆t are combined with a pair of auxiliary, non-interacting signals x′′

and y′′ to generate signals x and y. (E) Signals x and y are contaminated with noise and
linearly mixed. (F) The resulting signals, xw

η and yw
η , have very similar power spectra.

Experimental setup

We simulate 100 pairs (trials) of 2 s long signals, sampled at 1000 Hz, with directed
phase-amplitude interactions from the θ band (fl = 6 Hz) to the β band (fh = 24 Hz),
with a time shift of 20 ms. We detrend and normalized the simulated signals, before
contaminating them with normalized white (η) and pink (ηp) noise, as follows:

xη = x + 10−SNR
20

(
0.6ηx + 0.4ηx

p

)
,
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yη = y + 10−SNR
20

(
0.6ηy + 0.4ηy

p

)
,

where the parameter SNR controls the signal to noise ratio. We vary it to simulate
low (SNR = 6), moderate (SNR = 3), and high (SNR = 1) noise conditions. For each
scenario, we also mix the noisy signals, xη and yη, aiming to reproduce the effects of vol-
ume conduction, by defining xw

η =
(
1 − w

2

)
xη +

(
w
2

)
yη, and yw

η =
(
1 − w

2

)
yη +

(
w
2

)
xη,

with w = 0.25 the mixing strength. Then, we downsample xw
η and yw

η to 250 Hz, and
estimate the directed phase-amplitude interactions present in the data for a square fre-
quency grid ranging from 3 Hz to 45 Hz, in 3 Hz steps, using the three approaches
described in Section 4.1. Finally, in order to determine whether the estimated inter-
actions are statistically significant, we perform permutation tests based on randomized
surrogate trials (Lindner et al., 2011; Weber et al., 2017) for each condition and fre-
quency pair evaluated (see Appendix C). The Bonferroni-corrected significance level for
the tests is set to 4.4 × 10−5.

4.2.2 EEG data

As in previous chapters, our aim is to set up subject-dependent classification systems
(one classifier per subject) that allow discriminating between the different conditions in
the MI and WM paradigms. Here we use as inputs relevant directed phase-amplitude
interactions captured through the proposed TEθθς

κα approach, as well as through the CFD,
and the conventional methodology to estimate directed PAC through TE, implemented
using our kernel-based approach (TEθς

κα).

Classification Setup

Feature Extraction Let Ψ = {Xn ∈ RC×M}N
n=1 be an EEG set holding N trials from

either an MI or a WM dataset, recorded from a single subject, where C stands for the
number of channels and M corresponds to the number of samples. For MI, C = 22 and
M = 500 (we only select a 2 s long time window stretching from second 3 to second
5), while for WM, C = 32 and M = 717. In addition, let {ln}N

n=1 be a set whose n-th
element is the label associated with trial Xn. For the MI database ln can take the values
of 1 and 2, corresponding to right hand and left hand motor imagination, respectively.
Similarly, for the WM database, ln can take the values of 1, 2, and 3 corresponding to
low, medium, and high memory loads. We want predict the label ln from TE or CFD
features that capture the directed phase-amplitude interactions present in Xn.
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Let λ(xc → xc′ , fc, fc′) be a directed connectivity measure between the phase of
channel xc at frequency fc, and the amplitude envelope of xc′ at frequency fc′ , as defined
in Equation 4.3. For all pairwise combinations of channels in Xn, computing λ(xc →
xc′ , fc, fc′) yields a connectivity matrix Λ(fc, fc′) ∈ RC×C . When c = c′, then λ(xc →
xc′ , fc, fc′) = 0. The values of fc, fc′ vary in the range from 4 Hz to 18 Hz, in 2 Hz steps for
both MI and WM data (Collazos-Huertas et al., 2020; Johnson et al., 2018). Note that
for the MI data this time we have also included activity in the 4 Hz to 6 Hz range, because
it is commonly involved in PAC interactions (Aru et al., 2015). Then, three bandwidths
are defined ∆f ∈ {θ ∈ [4−6], α ∈ [8−12], βl ∈ [14−18]} Hz, and the matrices Λ(fc, fc′)
are averaged within each pairwise combination of bandwidths (θ−α, θ−βl, and so on).
After that, each of the averaged matrices are normalized to the range [0, 1], and stacked
together. Therefore, each trial is characterized by a connectivity matrix Λ′ ∈ RC×C×6.
For the N trials, there is a set of connectivity matrices {Λ′

n ∈ RC×C×6}N
n=1. Then,

applying vector concatenation to Λ′
n a vector φn ∈ R1×(C×C×6) is obtained. Finally,

the N vectors φn are stacked together in order to obtain a single bi-dimensional matrix
Φ ∈ RN×P , P = C × C × 6, that characterizes Ψ in terms of directed phase-amplitude
measures.

Feature Selection and Classification After characterizing the EEG data through
the directed PAC estimation methods considered, we set up subject-dependent classi-
fication systems for the MI and WM databases following the same steps described in
Section 2.2.3 for each database.

4.2.3 Parameter selection

For the TE methods, all parameters were estimated before extracting the phase and
amplitude time series, that is to say, from the initial real-valued time series data. All
TE parameters were selected as detailed in Section 3.2.3, except the parameter u for
the simulated data, which was chosen from the range u = {4, 8, . . . , 40} as the delay
producing the largest TE. For CFD estimation, we used a sliding window 5 frequency bins
long. Furthermore, for all measures the required phase and amplitude decompositions
were carried out by convolving the real-valued data with a Morlet wavelet (see Equation
3.2). The parameter m in the wavelet was also tuned as described in Section 3.2.3.
Finally, all connectivity values were obtained through in-house implementations of the
algorithms for the different measures studied.
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4.3 Results and discussion

4.3.1 Simulated phase-amplitude interactions
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Figure 4.3: TEθθς

κα results for the simulated data in the case when SNR = 3. (A) Average
TEθθς

κα (xw
η → yw

η ) values. (B) average TEθθς

κα (yw
η → xw

η ) values. (C) Results of the
permutation test performed on the TEθθς

κα (xw
η → yw

η ) values. Statistically significant
connectivities are indicated in white. (D) Results of the permutation test performed on
the TEθθς

κα (yw
η → xw

η ) values.

Figure 4.3 presents the results obtained through the proposed TEθθς

κα approach for the
simulated data in the case when SNR = 3. Figure 4.3A shows the average values obtained
for TEθθς

κα (xw
η → yw

η , fl, fh), with fl and fh varying in the range from 3 Hz to 45 Hz, in 3
Hz steps. That is to say, it shows TE values computed following our proposal assuming
that the phases of the oscillations in xw

η drive the amplitude envelopes of the oscillations
in yw

η . Likewise, Figure 4.3B shows the obtained average TEθθς

κα (yw
η → xw

η , fl, fh) values,
where the underlying assumption is that phases of the oscillations in yw

η are causal to
the amplitude envelopes of the oscillations in xw

η . Figures 4.3C and 4.3D display the
results returned by the permutation tests carried out over the TE data estimated for all
the simulated trials, and whose average values are displayed in Figures 4.3A and 4.3B,
respectively (statistically significant results are indicated in white). The results show
that the proposed approach captures strong and statistically significant phase-amplitude
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directed interactions around the target frequencies used to generate the simulated data.
Also, statistically significant results were obtained only when TE was estimated from
the phase of xw

η in the θ band, at around 6 Hz, to the amplitude of yw
η in the β band,

at around 24 Hz, and not when estimated assuming causality in the opposite direction.
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Figure 4.4: Results of the permutation tests carried out on the connectivity val-
ues estimated using CFD, TEθς

κα and TEθθς
κα , for the three noise conditions modeled

(SNR = 6, 3, 1), assuming interactions in the simulated data from the phase of xw
η

to the amplitude of yw
η . Statistically significant results are shown in white.

Figure 4.4 shows the results of the permutation tests carried out on the connectivity
values estimated for all trials from the simulated data using, from top to bottom, CFD,
TEθς

κα (conventional approach to estimate directed phase-amplitude through TE, using
our kernel-based TE estimator), and TEθθς

κα , under the three noise conditions modeled,
from left to right, low (SNR = 6), moderate (SNR = 3) and high (SNR = 1) noise levels.
In this case, all connectivity measures were obtained assuming the correct direction of
causality, from xw

η to yw
η . As before, statistically significant results are displayed in white.

For the low and moderate noise levels the three connectivity estimation methods success-
fully capture statistically significant phase-amplitude directed interactions around the
target frequencies. Note that the CFD and TEθς

κα display significant results on narrower
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frequency ranges around the interacting frequencies actually present in the data than
TEθθς

κα . This is likely to be associated with the additional filtering stages involved in the
computation of TEθθς

κα , and in the case of CFD, its high frequency specificity is proba-
bly linked to its robustness against false positives (Jiang et al., 2015). However, unlike
TEθθς

κα , both CFD and TEθς
κα failed to capture any statistically significant interactions

for the high noise scenario. Therefore, our proposal exhibits higher robustness to the
noise present in the data. Thus, from the results presented in Figures 4.3 and 4.4, we
can argue that the proposed TEθθς

κα approach allows uncovering directed phase-amplitude
interactions, capturing their strength and direction, even in the presence of high levels
of noise and a confounding factor such as signal mixing due to volume conduction.

4.3.2 EEG data

Motor imagery

Table 4.1 presents the average classification accuracies obtained for all subjects in the
MI database, after characterizing the EEG data through the three directed PAC esti-
mation methods considered. Our results show that none of the approaches tested coded
discriminant connectivity features for the right and left MI tasks. Having in mind that
better classification results were obtained through the proposed TEκα and TEθ

κα ap-
proaches, that we have used the same feature selection and classification strategies for
all the MI-related experiments throughout this dissertation, and that the accuracies dis-
played in Table 4.1 are in the range of what would be expected from random guessing,
we can argue that directed phase amplitude interactions for oscillations between 4 Hz
and 20 Hz do not carry discriminant information for the MI tasks of interest. It is worth
noting that we also carried out tests disregarding any interactions involving the θ band,
so as to focus only on the α and lower β bands, which the literature associates to MI
(Collazos-Huertas et al., 2020), but the obtained results were equally poor.

Table 4.1: Average classification accuracies for all subjects in the MI database.

Cross-Validation Testing

CFD 54.3 ± 3.1 51.0 ± 3.5
TEθς

κα 56.8 ± 4.5 51.7 ± 2.5
TEθθς

κα 56.7 ± 10.2 50.4 ± 4.0
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Working memory

Phase-amplitude interactions are thought to play a crucial role in WM (Liang et al.,
2021), with current hypothesis pointing to bidirectional interactions between the θ, α,
and β bands (particularly around 13.5 Hz to 16 Hz for the latter), linking the prefrontal
cortex to parieto-occipital and medial temporal regions during the activation of WM
(Johnson et al., 2018, 2019). In this chapter, we built subject-dependent classification
systems based on directed PAC features obtained from EEG data recorded during the
retention interval of a visuospatial working memory task. The goal of the classifiers is to
assign a particular cognitive load (number of elements in the memory array) to a trial
characterized through directed PAC.
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Figure 4.5: Average classification accuracy for all subjects as a function of the percentage
of selected features.

Figure 4.5 presents the classification accuracy for all subjects in the WM database as a
function of the percentage of features used to train the classifiers. The best results for all
the directed PAC estimation approaches tested are obtained when 5% of the features are
selected, those with the highest relevance values according to the CKA-based relevance
vector ϱ̄ (see Appendix D). The TEθθς

κα -based classifier achieves an average classification
accuracy of 95.9±3.1% for the three classes corresponding to each cognitive load level in
the change detection task, while the TEθς

κα and CFD-based classifiers achieve accuracies
of 94.6 ± 4.6% and 92.1 ± 4.7%, respectively.

Figure 4.6 shows the highest accuracy obtained for each subject in the WM database.
Although the subjects differ in performance, for all of them the proposed classification
systems exhibit accuracies well above what would be expected from chance in a three
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class classification task. These results show that our TEθθς

κα characterization strategy, as
well as the other approaches tested, successfully captured discriminant directed phase-
amplitude interactions that are elicited during the change detection task. Moreover,
only a small fraction of those interactions are required to discriminate between the task’s
levels. In fact, employing a higher percentage of features led to a pronounced decrease
in classification performance, as shown in Figure 4.5. This phenomenon (also observed
in Figure 3.8) can be explained because all to all channel connectivity analyses lead to
datasets with a large number of features, which in turn leads to a well-known problem in
machine learning: the curse of dimensionality. The larger the dimensionality of the data
the higher the chance that most training instances are far away from each other, and
that new instances will also be far away from those used to train the machine learning
system, which makes it difficult to make good predictions (Géron, 2019). Besides, many
of the obtained connectivity features may not provide useful information to discriminate
between the conditions of the cognitive paradigm of interest (De La Pava Panche et al.,
2019), only adding noise and complexity to the classification stage. Adequate feature
selection reduces the dimensionality of the data by getting rid of non-relevant features
(connectivity values), which can, as in our case, help classification performance.
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Figure 4.6: Highest average classification accuracy for each subject in the WM database.
The subjects are ordered from highest to lowest performance, according to the results
obtained for the TEθθς

κα -based classifier.

At this point, it is worth stating once again that the vector ϱ̄, used to rank the
features, is obtained as the average of the relevance vectors stemming from the different
folds of an auxiliary cross-validation scheme, outside of the cross-validation process where
classification is carried out. Therefore, our classification setup suffers from data leakage,
and, as a consequence, the above-described results area probably higher than what could
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be obtained from a classification system suitable for real world applications. Nonetheless,
our results still show that relatively few connectivity values describing directed phase-
amplitude interactions suffice to successfully discriminate among brain activity elicited
during the different levels of the change detection task. Furthermore, the vector ϱ̄

in itself provides valuable insights regarding the directed phase-amplitude interactions
that arise while the subjects perform the task. It does so by assigning a relevance
value ϱp to each column, or feature, in the characterizing matrix Φ. In the case of our
TEθθς

κα analysis, ϱp indicates whether a particular connectivity between two channels, for
a specific frequency band pair (θ − α, θ − βl, etc), allows discriminating between the
different cognitive loads of the task. A feature’s discriminant capability is tantamount to
its variation across classes. That is to say, the most relevant connectivities in ϱ̄ are those
that change consistently across trials as a function of the cognitive load, which points to
the involvement of those directed phase-amplitude interactions in the underlying working
memory systems being activated during the task.

Figure 4.7 displays the most relevant connectivities, on average, according to the
relevance vector ϱ̄, discriminated by frequency band pair. The average was taken over
all subjects after a t-SNE-based analysis, analogous to that of Section 3.3.2, did not
reveal any evident relevance clusters. The background topoplots show the average nodal
relevance, which corresponds to the relevance of the total information flow of every
node. That is to say, the sum of all the ϱp in ϱ̄ associated to all directed interactions
originating an targeting a specific node or EEG channel. We note that, in general, there
is high nodal relevance for interactions where the phases of oscillations in the θ band
drive the amplitudes of oscillations in the α and βl bands. However, the highest nodal
relevance is achieved by the phase-amplitude interactions from α to βl band activity.
As expected, the relevant connectivities are distributed in a similar fashion frequency-
wise. Spatially, they tend to involve long range interactions linking frontal, temporal
and parietal regions. In particular, for the phase-amplitude interactions from α to βl,
there are multiple bidirectional connections between channels on frontal and prefrontal
areas and channels on parietal and parieto-occipital areas. Also there are several long
range relevant connections targeting the right temporal region. These results coincide
with those we obtained in Chapter 3 from within-frequency phase-based connectivity
values, as well as with studies that identified the presence of fronto-parietal and fronto-
temporal interactions during cognitive task that activate visuospatial working memory
(Dimitriadis et al., 2016a; Johnson et al., 2018, 2019).
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Figure 4.7: Topoplots of the average nodal (channel) relevance for each frequency band
pair tested. The arrows represent the most relevant connections. For visualization pur-
poses, only the connections with the highest average relevance values are depicted (1% of
all connections). The rows indicate the frequency band driving the phase-amplitude in-
teractions, while the columns correspond to the frequency band of the driven oscillations
(e.g. the topoplot at the top right corner shows the nodal relevance, and the relevant
connections, obtained when TEθθς

κα was computed assuming directed interactions from
the phases of oscillations in the θ band to the amplitude envelope of oscillations in the
βl band).

4.3.3 Limitations

The results obtained for the simulated data show that our proposal is, unlike the other
approaches tested, able to detect statistically significant directed phase-amplitude in-
teractions in data with high levels of noise. However, it tends to be less frequency
specific than the CFD and the conventional approach for the estimation of directed
phase-amplitude interactions through TE. Therefore, our method is well suited for the
analysis of noisy data, but care should be taken with results under more ideal con-
ditions. Also, the proposed approach relies on the kernel-based phase TE estimation
method introduced in Chapter 3, and therefore, it suffers from the same limitations,
especially regarding the selection of the many parameters involved in TE computation.
Here, we employed relatively simple parameter selection strategies, but it is possible that
more elaborate approaches (Zhou et al., 2018) may lead to better results. Additionally,
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our kernel-based TE estimator assumes stationary or weakly non-stationary data, and
cannot tell apart direct interactions from those originating from unobserved common
causes (De La Pava Panche et al., 2019). Finally, our proposal is strictly limited to
the detection of directed phase-amplitude interactions. It is unable to capture any of
the other types of cross-frequency interactions that arise in oscillatory neural activity
(phase-phase coupling, phase-frequency coupling, etc) (La Tour et al., 2017). It does not
intend to be a full information-theoretic analysis that takes into account simultaneously
the multiple rhythms that can interact at both the sender and receiver side of coupled
dynamical systems (Pinzuti et al., 2020).

4.4 Summary

In this chapter, we proposed a novel approach to estimate directed phase-amplitude
interactions through TE. The central idea behind our proposal is to recast the prob-
lem of detecting directed PAC as that of estimating directed interactions between phase
time series. Doing so allowed us to employ a single-trial kernel-based phase TE estima-
tor to assess the cross-frequency interactions of interest. We tested the performance of
our proposal on synthetic data containing directed phase-amplitude interactions and on
EEG databases obtained under MI and WM paradigms. The obtained results for the
synthetic data showed that our approach successfully detected the direction of interac-
tion and the interacting frequencies while being more robust to noise than alternative
methods. Additionally, for the WM data, our proposal revealed discriminant directed
phase-amplitude interactions associated with the different cognitive loads of the task.
However, it did not capture discriminant phase-amplitude interactions for the MI data.



Chapter 5

Final Remarks

5.1 Conclusions

In this dissertation we have shown that the TE between pairs of time series can be
successfully estimated through a data-driven approach based on a kernel formulation
of Renyi’s α entropy, thus avoiding the need to obtain the probability distribution of
the data. Directed phase to phase within frequency interactions, and directed phase to
amplitude cross-frequency couplings can also be satisfactorily assessed through such an
approach, provided the data has previously undergone phase-amplitude decomposition
at the specific frequency or frequencies of interest. Furthermore, the TE estimation
proposals developed in this document allow uncovering directed bivariate interactions
among data degraded by factors such as the presence of noise or signal mixing, as
evidenced by the attained results for simulated data, which are challenging problems for
successful connectivity estimation commonly encountered in electrophysiological signals.
Indeed, our proposals coded, with varying performance levels, discriminant connectivity
patterns for real EEG data obtained under motor imagery and visuospatial working
memory paradigms. All the above points to the viability of using our kernel-based
approach to TE estimation as a tool to characterize and gain insights from EEG data
obtained under different cognitive tasks. In the following, we support these overall
conclusions by highlighting the main results from our work:

- We introduced a new approach to estimate TE between pairs of time series. We
arrived at the proposed kernel-based Renyi’s α transfer entropy (TEκα) estimator
by expressing TE as a linear combination of joint and marginal Renyi entropies,
and then replacing the elements of such linear combination by functionals defined
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on positive definite kernel matrices. Our matrix-based formulation of TE bypasses
the need to explicitly obtain the probability distribution of the data. We tested our
approach using synthetic time series generated through two simulation models: a
vector-autoregressive model that produces data with known directed interactions,
and a linear coupling function that models a network of several interacting chan-
nels. We also tested the ability of our proposal to estimate discriminant directed
connections from EEG data obtained under MI and WM paradigms. In that sense,
we aimed to classify a data trial, characterized through TEκα, as belonging to
the different classes in each database through subject-dependent classification sys-
tems coupled with kernel-based relevance analysis. For the synthetic data, results
showed that our proposal successfully detected the direction of the interactions in
the data, that it was robust to moderate levels of noise, and that it worked well
for different data sizes. Also, when coupled with a trial-based permutation test, it
revealed the presence, or absence, of directed interactions in a connected network
with multiple time delays. For the MI data, the proposed estimator coded dis-
criminant interactions for a subgroup of subjects that allowed separating left hand
from right hand trials, with the discriminant interactions appearing on the appro-
priate time windows. Results for the WM data showed long range discriminant
connections for the three different cognitive load levels in the data, linking mostly
frontal and parieto-occipital regions. Also, discriminant shorter range conenctions
among frontal and pre-frontal channels were identified.

- We proposed a methodology to obtain phase TE estimates from single trial data, a
task for which commonly used TE estimators are ill-suited. Our approach, termed
kernel-based Renyi’s phase transfer entropy (TEθ

κα), combines phase time series,
obtained from the data of interest through complex filtering, with our TEκα es-
timator. We tested our proposal using simulated data from NMMs, which allow
generating time series with properties that resemble the oscillatory dynamics of
electrophysiological signals. We used the NMM data containing directed interac-
tions at known frequencies to explore the response of our proposal under scenarios
of varying coupling strengths, of noise and signal mixing, and in terms of its ability
to detect narrow-band bidirectional interactions. Like for TEκα, we also tested it on
the MI and WM EEG databases. Obtained results for the simulated data showed
that the proposed TEθ

κα approach captured statistically significant phase-based
interactions at the frequencies of interest for all the scenarios considered. In the
same experiments other phase TE estimation approaches failed to achieve positive
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results. For the MI data, the TEθ
κα-based analysis provided results similar to those

of TEκα, regarding the obtained classification performances and the distribution
of the connectivities relevant to discriminate between the MI tasks, additionally
showing that such interactions arise in the α and βl bands. Finally for the WM
data, characterizing the signals through TEθ

κα led to improved classification ac-
curacies, as compared with TEκα, with discriminant directed connectivities found
among frontal, parietal, and temporal regions, coded in the phases of oscillatory
activity in the θ, α and βl bands.

- We put forward a methodology that estimates directed phase-amplitude interac-
tions through kernel-based Renyi’s phase TE (TEθθς

κα ). The key of our proposal
is recasting the problem of computing TE for phase-amplitude interactions as a
phase TE estimation problem, by extracting the phase of the target amplitude
time series at a specific frequency, exploiting the underlying idea of the CFD
(Jiang et al., 2015). In order to test the proposed approach, we employed syn-
thetic data obtained from a model that simulates directed phase-amplitude in-
teractions at specific frequencies. Furthermore, we also tested it on the MI and
WM EEG databases, following the same strategy described for the TEκα method.
According to the attained results, our proposal correctly detected the direction of
phase-amplitude interactions, with statistically significant connectivity values at
the frequencies of interest. Also, it was more robust to noise than the alternative
approaches tested. Regarding the results for for the MI data, the TEθθς

κα -based
characterization did not capture discriminant interactions, and neither did the
comparison methods considered. On the other hand, for the WM data, the classi-
fiers based on TEθθς

κα features performed on par with those trained using features
extracted through TEθ

κα. This behavior was also observed for the other directed
PAC estimation methods explored. Additionally, the relevance analysis carried
out on the TEθθς

κα features revealed discriminant interactions for the WM data in-
volving, in general, directed connections among the same regions mentioned in the
items above, with the phases of oscillations in the θ band driving the amplitudes
of oscillations in the α and βl bands, and specially, phase-amplitude interactions
from α to βl band activity.
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5.2 Future work

We have presented a data-driven framework to TE estimation that allows revealing
directed interactions in the time and frequency domains, while sidestepping the need
for probability distribution estimation. However, as explained in the limitation sections
of Chapters 2 to 4, there are still many issues that can be addressed to improve the
performance of our proposals, or to build upon them. In particular, the following aspects
could be of interest for future work:

- As pointed out in Section 2.3.4, bivariate TE is, by definition, blind to the effects
of third variables, which leads to issues such as the different delay driving problem.
Given three time series x = {xt}T

t=1, y = {yt}T
t=1, and z = {zt}T

t=1, with t ∈ N a
discrete time index, and T ∈ N, an approach to account for the influence of z in
the information transfer from x to y is to condition TE on z,

TE(x → y|z) =
∑

yt+1,ym
t ,xn

t ,zo
t

p (yt+1,ym
t ,xn

t , zo
t ) log

(
p (yt+1|ym

t ,xn
t , zo

t )
p (yt+1|ym

t , zo
t )

)
. (5.1)

Extending 5.1 to more possibly interacting systems (and their corresponding sam-
pled time series) is theoretically possible under stationarity assumptions (Montalto
et al., 2014). However, in practice, the growing dimensionality of the data as more
time series are included poses an estimation challenge. It would be interesting to
explore the performance of our kernel-based TE estimator in the above-described
multivariate setting.

- One of the downsides of TE estimation approaches, including ours, is the need to
adjust multiple parameters. In this thesis, we chose to follow simple and commonly-
used parameter estimation strategies. It is possible that the performance of our
proposals could be improved by a more careful parameter selection process. The
same logic applies to the selection of the complex-filters in TEθ

κα and TEθθς

κα . It
would be specially useful if such selection procedures could also be automatized.

- In Chapter 4, we reframed the problem of estimating directed phase-amplitude in-
teractions through TE as a phase TE problem, under the hypothesis that avoiding
the estimation of TE from time series with markedly different behaviors (phase and
amplitude time series), could be beneficial. However, our kernel-based formulation
of TE allows for another possible solution to that problem: using different kernels
for different types of input data. One could, for instance, use a Gaussian RBF



104 Final Remarks

kernel for the terms involving the amplitude time series, and a periodic kernel,
such as

κ(θi,θj) = exp
(

−2sin2(πd2(θi,θj)/p)
l2

)
, (5.2)

where d(·, ·) stands for the Euclidean distance operator, p, l ∈ R+ are the kernel
periodicity and length scale, respectively; for the phase time series.

- Although clinical application questions were not raised in this work, the proposed
approaches and the obtained results could have clinical applicability in experimen-
tal models with patients affected by specific mental disorders. For instance, they
could be used to asses connectivity changes for different cognitive load levels in
working memory tasks in patients diagnosed with schizophrenia, since alterations
in such cognitive process are well documented in this population group (Karls-
godt et al., 2007; Schlösser et al., 2003). One could hypothesize that patients with
schizophrenia will exhibit higher cognitive loads, and their associated connectivity
changes, with low-complexity working memory tasks compared to a control group.
Alternatively, an absence of objective changes in connectivity could be observed
regardless of the degree of difficulty of the working memory task to which the
patient is subjected. A third possible hypothesis would be to evaluate dynamic
changes in connectivity, obtained at different clinical moments to assess whether
there is any correlation with acute clinical decompensation or with the severity of
symptoms in general. More generally, one could hypothesize that our approaches
to TE estimation could serve as a biomarkers of the clinical status of patients with
mental illness who have alterations in working memory, particularly schizophrenia,
but also in other pathologies such as attention deficit disorder with or without hy-
peractivity (Roman-Urrestarazu et al., 2016), depressive episodes of moderate to
severe intensity (Wang et al., 2021b), or bipolar disorders (Townsend et al., 2010).

5.3 Academic products

5.3.1 Journal papers

1. De La Pava Panche, I., Gómez-Orozco, V., Álvarez-Meza, A., Cárdenas-Peña, D.,
& Orozco-Gutiérrez, Á. (2021). Estimating Directed Phase-Amplitude Interactions
from EEG Data through Kernel-Based Phase Transfer Entropy. Applied Sciences,
11(21), 9803. (Q2-A1).
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Appendix A

Kernel methods and Renyi’s α
entropy estimation

The contents of this appendix are largely based on references (Liu et al., 2011) and
(Giraldo et al., 2015).

A.1 Reproducing kernel Hilbert spaces

A Hilbert space is a linear, complete, and normed space endowed with an inner product.
A reproducing kernel Hilbert space (RKHS) is a special Hilbert space associated with a
kernel κ such that it reproduces (via an inner product) each function f in the space (Liu
et al., 2011). The RKHS framework is commonly applied in machine learning (Géron,
2019), where it provides a way of simplifying the computation of kernel-based methods
thanks to the "kernel trick", and also in information-theoretic learning (ITL), where
kernel-based probability density estimation has a central role in obtaining information-
theoretic quantities such as entropy.

A.1.1 Reproducing kernels

Let Hκ be a Hilbert space of real-valued functions defined on a set X , equipped with
an inner product ⟨·, ·⟩ and a real-valued bivariate function κ(xi, xj) on X × X . Then
the function κ(xj, xj) is said to be nonnegative definite (positive semi-definite) if for any
finite point set {x1, x2, . . . , xn} ⊂ X and for any not all zero corresponding real numbers



A.1 Reproducing kernel Hilbert spaces 107

{α1, α2, . . . , αn} ⊂ R,
n∑

i=1

n∑
j=1

αiαjκ(xi, xj) ≥ 0. (A.1)

Because of the following theorem, any nonnegative definite bivariate function κ(xi, xj)
is a reproducing kernel.

Moore-Aronszajn’s theorem Given any nonnegative definite function κ(xi, xj), there
exists a uniquely determined (possibly infinite-dimensional) Hilbert space Hκ consisting
of functions on X such that

(I) ∀x ∈ X , κ(·, x) ∈ H,

(II) ∀x ∈ X , ∀f ∈ H, f(x) = ⟨f, κ(·, x)⟩Hκ .
(A.2)

By property (I) each point in the input space is mapped onto a function in the
RKHS defined by the selected kernel. Property (II) is called the reproducing property
of κ(xi, xj) in Hκ. It allows defining a nonlinear mapping from the input space to an
RKHS as φ(x) = κ(·, x), which leads to

⟨φ(xi), φ(xj)⟩Hκ = ⟨κ(·, xi), κ(·, xj)⟩ = κ(xi, xj), (A.3)

and thus φ(x) = κ(·, x) defines the Hilbert space associated with the kernel. The kernel
property of Equation A.3, is normally called the kernel trick. Moreover, the similarity
between functions in the RKHS is also totally defined by the kernel because it defines
the inner product of functions (Liu et al., 2011).

A.1.2 Kernel-based learning

The idea behind kernel-based learning consists in mapping the input data {x1, x2, . . . , xn}
⊂ X (where X is usually Rd) into a another space Hκ, potentially of a much higher di-
mension, through a non-linear mapping φ. Then, the initial learning problem in X is
solved in Hκ instead, by working with the mapped features {φ(x1), φ(x2), . . . , φ(xn)} ⊂
Hκ. Since Hκ is high-dimensional, a linear learning algorithm applied to the mapped
data has the potential to solve arbitrarily nonlinear problems in the input space (provided
Hκ is sufficiently rich). This idea is schematized in Figure A.1. The linear algorithm
is implicitly executed in the kernel feature space but thanks to the kernel trick (Equa-
tion A.3), the calculations are actually done in the input space, provided the quantities
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of interest in the algorithm can be expressed by inner products. The existence of the
nonlinear mapping φ is ensured by Mercer’s theorem.

xi

xj

φ(xi)

φ(xj)

φ(·)

Hκ

X

Figure A.1: Schematic representation of the idea behind kernel-based learning. The
input data is mapped to a higher dimensional space, where a nonlinear problem in the
input space could potentially be solved by a linear learning algorithm.

Mercer’s theorem Consider a symmetric kernel function κ ∈ L∞(X × X ). If κ is
the kernel of a positive integral operator in L2(X ), and X is a compact subset of Rd then

∀ψ ∈ L2(X ) :
∫

X
κ(xi, xj)ψ(xi)ψ(xi)dxdy ≥ 0. (A.4)

Let φi ∈ L2(X ) be orthonormal eigenfunctions of the above operator and λi > 0 their
corresponding eigenvalues. Then

κ(xi, xy) =
NF∑
i=1

λiφi(xi)φi(xy) (A.5)

holds for NF < ∞ or NF = ∞. In the latter case the series converges absolutely and
uniformly for almost all xi and xj in X . Because of Mercer’s theorem, one can use κ as
a kernel because φ is guaranteed to exists, even if one does not know explicitly what φ
is (Géron, 2019).

A kernel that satisfies Equation A.5 is known as a Mercer kernel. One of the most
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commonly used Mercer kernels is the Gaussian radial basis function (RBF):

κ(xi,xj;σ) = exp
(

−d2(xi,xj)
2σ2

)
(A.6)

where the kernel bandwidth σ acts as a scale parameter. The Gaussian RBF kernel
is widely used because of its universal approximating capability, i.e. it allows approxi-
mating any continuous function up to a desired accuracy, and mathematical tractability
(Hammer and Gersmann, 2003; Liu et al., 2011). Furthermore, it can be shown that
for the Gaussian RBF kernel, φ maps each training instance to an infinite-dimensional
space (Géron, 2019).

A.2 Kernel-based estimation of Renyi’s α entropy

ITL, as discussed in Section 1.3.3, is a data-driven learning framework that employs
information theoretic quantities as objective functions for learning algorithms (Li and
Principe, 2020). In particular, it exploits the properties of Renyi’s α-order entropy
(Principe, 2010):

Hα(X) = 1
1 − α

log
(∫

X
p(x)αdx

)
,

where p is the probability density function (or the probability mass function, in which
case the integral is taken as a sum) of the random variable X with support X .

Given an i.i.d. (independent and identically distributed) sample of n realizations of
X, {xi}n

i=1 ⊂ Rd, in order to estimate Renyi’s α entropy, for α = 2, one can use Parzen
density estimation to approximate p as p̂(x) = 1

n

∑n
i=1 κ(x, xi), where κ(·, ·) ∈ R stands

for a positive definite kernel function. Then, the obtained probabilities are plugged-in
into the definition of Renyi’s α entropy, which yields the following estimator:

Ĥ2(X) = −log
 1
n2

n∑
i,j=1

κ(xi, xj)
 . (A.7)

The expression above can be rewritten in terms of Gram matrices. A Gram matrix
contains all pairwise evaluations of a positive definite function G on {xi}n

i=1, that is, it
consists of elements gi,j = G(xi, xj) for all i, j = 1, . . . , n. Therefore, the Parzen-based
entropy estimator in Equation A.7 can be defined in terms of the Gram matrix K ∈ Rn×n

as
Ĥ2(X) = −log

( 1
n2 tr(KK)

)
+ C, (A.8)
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where K holds elements kij = κ(xi, xj), C ∈ R+ accounts for the normalization factor
of the Parzen window, and tr(·) stands for the matrix trace.

From Equation A.8 we can see that the Frobenius norm of K, defined as ||K||2F =
tr(KK), is related to an entropy estimator. Thereby, the Gram matrix K establishes
a connection between information theoretic concepts and kernel methods. In a wider
sense, this means that the intermediate step of probability density estimation in the
computation of Renyi’s α entropy may be bypassed by directly applying a positive
definite kernel to the data, as schematized in Figure A.2.

HκX

κ(·, ·) Data
driven

operator

Renyi’s α
entropy

estimator

Figure A.2: Schematic representation of the elements involved in the data-driven, kernel-
based estimation of Renyi’s α entropy.

In Giraldo et al. (2015) the authors employ this notion to introduce entropy func-
tionals that are defined on positive definite matrices and that satisfy similar axioms
to those of Renyi’s definition of entropy (Rényi et al., 1961). Given a positive definite
Gram matrix A ∈ Rn×n with elements aij = κ(xi, xj), and tr(A) = 1, they propose a
kernel-based formulation of entropy expressed as

Hα(A) = 1
1 − α

log (tr(Aα)) . (A.9)

Such extension of Renyi’s α entropy relies on the following theorem to define matrix
functions from scalar continuous functions:

Spectral decomposition theorem Let D ⊂ C be a given set and let Nn(D) := {A ∈
Mn : A is normal and σ(A) ∈ D}, where σ(A) is the spectrum of A, and Mn is the set
of all real valued matrices of size n × n. If f(x) is a continuous scalar-valued function
on D, then the matrix function

f(A) = U


f(λ1) · · · 0

... . . . ...
0 · · · f(λn)

U∗ (A.10)
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is continuous on Nn(D), where A = UΛU∗, Λ = diag(λ1, . . . , λn), and U ∈ Mn is
unitary.

The spectral theorem implies that if A is a positive definite matrix with spectrum
σ(A), and f(x) is a continuous real function defined for all x ∈ σ(A) ⊆ R. Then,
the matrix function f(A) is defined as ∑i∈I f(λi)uiuT

i , where {λi} ∈ σ(A) are the
eigenvalues of A and {ui} the corresponding eigenvectors. In Giraldo et al. (2015), the
authors use it to prove that the functional in Equation A.9 satisfies the following set of
conditions:

• Hα(PAP∗) = Hα(A) for any orthonormal matrix P ∈ Mn.

• Hα(pA) is a continuous function for 0 < p ≤ 1.

• Hα

(
1
n
I
)

= log(n), where I is the identity matrix.

• Hα(A ⊗ B) = Hα(A) +Hα(B).

• If AB = BA = 0; then for the function g(x) = 2(α−1)x, for α ̸= 1 and α ≥ 0, we
have that Hα(tA + (1 − t)B) = g−1(tg(Hα(A)) + (1 − t)g(Hα(B))),

where B ∈ Rn×n is a second positive definite matrix, and tr(B) = 1. The authors also
prove that for α > 1

Hα(A) ≤ Hα

( 1
n

I
)

(A.11)

Furthermore, they use Hadamard products to extend their matrix-based definition of
entropy to convey a joint representation of two random variablesX and Y , while ensuring
that the proposed joint entropy is compatible with the entropies of its components (for
instance, the joint entropy should always be larger than the individual entropies). Given
two Gram matrices A and B holding elements aij = κ(xi, xj) and bij = κ(yi, yj), with
κ1 : X × X → R and κ2 : Y × Y → R positive definite kernels, and {zi = (xi, yi)}n

i=1 a
sample of n pairs representing two sets measurements x ∈ X and y ∈ Y obtained from
the same realization, the joint entropy is defined as:

Hα(A,B) = Hα

(
A ◦ B

tr(A ◦ B)

)
= 1

1 − α
log

(
tr
((

A ◦ B
tr(A ◦ B)

)α))
, (A.12)

where the operator ◦ stands for the Hadamard product. The authors show that for the
expression in Equation A.12 the following inequalities hold, as long as tr(A) = tr(B) = 1,
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the entries of A and B are nonnegative, and aii = bii = 1/n:

Hα

(
A ◦ B

tr(A ◦ B)

)
≥ Hα(B) (A.13)

Hα

(
A ◦ B

tr(A ◦ B)

)
≤ Hα(A) +Hα(B) (A.14)

Moreover, under this formulation, it is also possible to define conditional entropy
and mutual information, provided the additional constraint that the kernels be infinitely
divisible. Namely, the conditional entropy can be expressed as:

Hα(A|B) = Hα(A,B) −Hα(B), (A.15)

while the mutual information can be written as:

Iα(A; B) = Hα(A) +Hα(B) −Hα(A,B). (A.16)
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Surface Laplacian

The surface Laplacian of electric potentials measured on the scalp is an estimate of cur-
rent density entering, or exiting, the scalp through a local region of the skull (Nunez
et al., 2006). It is defined as the second spatial derivative of the scalp potential (∇2φS).
In the context of EEG analysis, the surface Laplacian serves as a spatial filter that re-
duces components of low spatial frequency (electrical activity that is broadly distributed,
that is to say, activity present simultaneously in several electrodes), which can be asso-
ciated, for instance, to volume conduction effects (Cohen, 2014). It is this property, its
ability to attenuate volume conduction, which makes the surface Laplacian particularly
useful as a pre-processing step in electrode-level connectivity analysis (Cohen, 2015).

Spherical spline method for current density approximation: One way to es-
timate the surface Laplacian is the spherical spline method for source current density
estimation, first proposed in Perrin et al. (1989). This approach consists on projecting
the electrodes positions onto a sphere, interpolating their corresponding electric poten-
tials on the new coordinates, where the resulting expressions are defined in terms of
Legendre Polynomials Pn, and then exploiting the fact that ∇2Pn = −(2n + 1)Pn. In
practice, for an EEG montage with C channels one proceeds as follows: the first step is
obtaining two weighting matrices G, H ∈ RC×C holding elements

g(i, j) = 1
4π

o∑
n=1

(2n+ 1)Pn(cos(ei, ej))
(n(n+ 1))m

, (B.1)

and
h(i, j) = 1

4π

o∑
n=1

−(2n+ 1)Pn(cos(ei, ej))
(n(n+ 1))m−1 , (B.2)
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where Pn stands for a Legendre Polynomial of order n, o is the highest polynomial order
considered (usually ranges from 7 to 10), m ∈ Z+ is smoothness constant (commonly
given values from 2 to 6), cos(ei, ej) = 1 − ||ei − ej||2/2, and ei, ej ∈ [−1, 1]3 correspond
to the Cartesian coordinates of electrodes i and j, respectively, normalized to a unit-
radius sphere. Then, the Laplacian for the C electrodes at time t, lt ∈ RC×1, is computed
as

lt = (ϖHT )T , (B.3)

with the vector ϖ ∈ R1×C being defined as

ϖ = d′
t −

∑d′
t∑∑G−1
s

∑
G−1

s , (B.4)

and,
d′

t = dT
t G−1

s , (B.5)

where dt ∈ RC×1 holds the values of the C EEG channels at time t, and Gs = G +µI is
a smoothed version of G, I ∈ RC×C is the identity matrix, and µ is a parameter usually
ranging from 10−6 to 10−5 (Cohen, 2014).



Appendix C

Permutation testing

A permutation test is a non-parametrical statistical significance test (Maris and Oost-
enveld, 2007). It is used to evaluate whether two groups of data are exchangeable (null
hypothesis). In the context of TE analyses, permutation tests using trial randomized
surrogates have been proposed to address the fact that absolute TE values have limited
meaning (Lindner et al., 2011), since information theoretic estimators usually exhibit
some level of bias for finite datasets. The overall idea is to test whether a set of TE
values, measuring the directed interactions present for a pair of time series from multiple
trials of an experiment, are statistically different from a second set of TE values, ob-
tained from non-interacting surrogate data generated by shuffling the target time series
between trials (Weber et al., 2017).

Given Ωx = {x ∈ RT }N
n=1, a set containing N trials of source time series x; Ωy =

{y ∈ RT }N
n=1, a set of N trials of the corresponding target time series y; and λ(x → y),

an effective connectivity measure (TE, GC, etc); the permutation test consists of the
following steps:

• Compute λ(x → y) for the N data trials, so as to obtain a connectivity vector
λ = [λ(x1 → y1), λ(x2 → y2), . . . , λ(xN → yN)] ∈ RN .

• Generate the surrogate data by shuffling the set of target time series between trials,
and then compute λ(x → y). The result is a connectivity vector λsh = [λ(x1 →
y2), λ(x2 → y3), . . . , λ(xN → y1)] ∈ RN , where the trials have been shifted by one
position.

• Calculate the mean difference between λ and λsh (υ = E{λ − λsh}).

• Randomly swap (exchange) the elements of λ and λsh, to obtain auxiliary connec-
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tivity vectors λ′ and λ′
sh, and then calculate the mean difference between them

(υ′ = E{λ′ − λ′
sh}).

• Repeat the above step Pr times (number of permutations) to generate a vector
υ′ = [υ′

1, υ
′
2, . . . υ

′
Pr

] ∈ RPr , which holds the distribution of the average differences
of the permuted results. In this thesis, the number of permutations was set to
10000, unless otherwise stated.

• If υ falls above the 99 percentile of the distribution in υ′ (υ is lager than 99% of
the elements of υ′), the null hypothesis is rejected, and the connectivity values in
λ are considered to be statistically significant at an alpha level of 1%. For other
significance thresholds the percentage of elements of υ′ that should be smaller than
υ is modified accordingly.

Note that the test implicitly assumes that the connectivity values are larger for
interacting data than for non-interacting data, so care should be taken when applying
it to measures such as the PSI or net connectivities. In those cases, the test should be
carried out over the absolute values of the estimated measures.



Appendix D

Kernel-based relevance analysis

When characterizing EEG data through effective brain connectivity measures, it is com-
mon practice to carry out all to all channel analyses, which results in a large number of
features (compared to the number of trials or observations available). This is especially
true in the case when the selected measure also involves spectral information (De La
Pava Panche et al., 2021b). Furthermore, many of the estimated connectivity features
may not be useful to discriminate between the conditions of the cognitive paradigm of
interest (De La Pava Panche et al., 2021a). This can add noise and complexity to any
subsequent analysis stage, and potentially lead to a well-known problem in machine
learning: the curse of dimensionality (Géron, 2019). This hurdle can be addressed by
identifying the set of pairwise channel connectivities that are relevant to discriminate
between specific conditions, which, additionally, would lead to a clearer neurophysiolog-
ical interpretation of the obtained results (Ahmadi et al., 2020). To that end, in this
thesis we employ a relevance analysis strategy based on centered kernel alignment.

Centered kernel alignment (CKA) allows quantifying the similarity between two sam-
ple spaces by comparing two characterizing kernel functions (Cortes et al., 2012). First,
assume we have a feature matrix Φ ∈ RN×P , and a corresponding vector of labels
l ∈ ZN , with N the number of observations and P the number of features. For the case
of connectivity-based EEG analysis, each element in Φ holds a connectivity value for a
pair of channels, with each row of Φ containing multiple connectivity values (features)
estimated for a single trial or observation. The corresponding element in l holds a label
identifying the condition associated to that trial. Next, we define two kernel matrices
KΦ ∈ RN×N and Kl ∈ RN×N . The first matrix holds elements kΦ

ij = κΦ(φi,φj) with
φi, φj ∈ RP row vectors belonging to Φ, and κΦ(φi,φj;σ) a Gaussian RBF kernel
(see Equation A.6), where σ ∈ R+ is the kernel’s bandwidth. The second matrix has
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elements kl
ij = κl(li, lj) with li, lj ∈ l, and

κl(li, lj) = δ(li − lj), (D.1)

a dirac kernel, where δ(·) stands for the Dirac delta. Then, the CKA can be estimated
as:

ρ̂
(
K̄Φ, K̄l

)
= ||K̄Φ, K̄l||F

(||K̄Φ, K̄Φ||F||K̄l, K̄l||F)1/2
, (D.2)

where K̄ ∈ RN×N is the centered version of K, obtained as K̄ = ĨKĨ, where Ĩ =
I −1⊤1/N is the empirical centering matrix, I ∈ RN×N is the identity matrix, 1 ∈ RN

is an all-ones vector, and ||K̄, K̄||F=
√

tr(K̄K̄T ) denotes the matrix-based Frobenius
norm. Now, for κΦ we select as distance operator the the Mahalanobis distance

d2
A(φi,φj) = (φi − φj) ΓΓ⊤ (φi − φj)⊤ (D.3)

where Γ ∈ RP ×Q, Q ≤ P , is a linear projection matrix, and ΓΓ⊤ is the corresponding
inverse covariance matrix. Afterward, the projection matrix Γ is obtained by solving
the following optimization problem:

Γ̂ = arg max
Γ

log
(
ρ̂
(
K̄Φ, K̄l; Γ

))
, (D.4)

where the logarithm function is used for mathematical convenience. Γ̂ can be estimated
through standard stochastic gradient descent, as detailed in Fernández-Ramírez et al.
(2020), through the update rule

Γr+1 = Γr − µr
Γ∇Γr (ρ̂ (KΦ,Kl)) , (D.5)

where µ ∈ R+ is the step size of the learning rule, and r indicates a time step. Finally,
we quantify the contribution of each feature to the projection matrix Γ̂, which maximizes
the alignment between the feature and label spaces, by building a relevance vector index
ϱ ∈ RP , whose elements are defined as:

ϱp =
Q∑

q=1
|γpq|; ∀p ∈ P, γ ∈ Γ. (D.6)

ϱ can then be used to rank the features in Φ according to their discrimination capability.
A high ϱp value indicates that the p-th feature in Φ, in our case a connection between
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a specific pair of channels, is relevant when it comes to distinguishing between the
conditions contained in the label vector l.



Appendix E

Cao’s criterion

Cao’s criterion is a practical method for determining the minimum embedding dimension
of a scalar time series (Cao, 1997). The time-delay reconstruction of a time series x ∈ RN

can be expressed as

xt(d) = (xt, xt−τ , xt−2τ , . . . , xt−(d−1)τ ), (E.1)

where t = {1, 2, . . . , N− (d−1)τ}, and d, τ ∈ N are the embedding dimension and delay,
respectively. Note that for the sake of clarity, and in order to make the dependence of
the reconstructed vectors on d explicit, we have changed the notation used in Equation
1.4. The first step proposed by Cao to determine an adequate value for d, consists of
computing the following quantity

a(i, d) = ||xi(d+ 1) − xn(i,d)(d+ 1)||∞
||xi(d) − xn(i,d)(d)||∞

, (E.2)

where i = {1, 2, . . . , N − dτ}, xi(d + 1) is the ith reconstructed vector with dimension
d + 1, and 1 ≤ n(i, d) ≤ N − dτ . The value of n(i, d) is chosen so that xn(i,d)(d) is the
nearest neighbor of xi(d) in the d-dimensional embedded space, according to ||·||∞. If
xn(i,d)(d) and xi(d) are equal, the second nearest neighbor is selected. Then, the average
of the a(i, d) values is obtained as

E(d) = 1
N − dτ

N−dτ∑
i=1

a(i, d) (E.3)
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E(d) depends only on d and τ (which can, for instance, be estimated as the time series
autocorrelation time), and its variation from d to d+ 1 is defined as

E ′(d) = E(d+ 1)
E(d) (E.4)

The target embedding dimension is the first value of d for which E ′(d) = E ′(d − 1) (in
practice one might need to search instead for |E ′(d)−E ′(d−1)|< ϵ, with ϵ an acceptable
tolerance).



Appendix F

Neural mass model equations

The neural mass model schematized in Figure 3.1A consists of the following set of
stochastic differential equations (David et al., 2004):

ż0 = z3

ż1 = z4

ż2 = z5

τ 1
e ż3 = H1

eS(wz1 + (1 − w)z10 − wz2 − (1 − w)z6) − 2z3 − z0/τ
1
e

τ 1
e ż4 = H1

e (C∗
21(S(w(z13(t− ν) − z14(t− ν)) + (1 − w)(z22(t− ν) − z18(t− ν))) − a)+
(1 − C21)p1 + P + c2S(c1(wz0 + (1 − w)z8))) − 2z4 − z1/τ

1
e

τ 1
i ż5 = H1

i c4S(c3(wz0 + (1 − w)z8)) − 2z5 − z2/τ
1
i

ż6 = z7

τ 2
i ż7 = H2

i c4S(c3(wz0 + (1 − w)z8)) − 2z7 − z6/τ
2
i

ż8 = z9

τ 2
e ż9 = H2

eS(wz1 + (1 − w)z10 − wz2 − (1 − w)z6) − 2z9 − z8/τ
2
e

ż10 = z11

τ 2
e ż11 = H2

e (C∗
21(S(w(z13(t− ν) − z14(t− ν)) + (1 − w)(z22(t− ν) − z18(t− ν))) − a)+

(1 − C21)p1 + P + c2S(c1(wz0 + (1 − w)z8))) − 2z11 − z10/τ
2
e

ż12 = z15
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ż13 = z16

ż14 = z17

τ 1
e ż15 = H1

eS(wz13 + (1 − w)z22 − wz14 − (1 − w)z18) − 2z15 − z12/τ
1
e

τ 1
e ż16 = H1

e (C∗
12(S(w(z1(t− ν) − z2(t− ν)) + (1 − w)(z10(t− ν) − z6(t− ν))) − a)+

(1 − C12)p2 + P + c2S(c1(wz12 + (1 − w)z20))) − 2z16 − z13/τ
1
e

τ 1
i ż17 = H1

i c4S(c3(wz12 + (1 − w)z20)) − 2z17 − z14/τ
1
i

ż18 = z19

τ 2
i ż19 = H2

i c4S(c3(wz12 + (1 − w)z20)) − 2z19 − z18/τ
2
i

ż20 = z21

τ 2
e ż21 = H2

eS(wz13 + (1 − w)z22 − wz14 − (1 − w)z18) − 2z21 − z20/τ
2
e

ż22 = z23

τ 2
e ż23 = H2

e (C∗
12(S(w(z1(t− ν) − z2(t− ν)) + (1 − w)(z10(t− ν) − z6(t− ν))) − a)+

(1 − C12)p2 + P + c2S(c1(wz12 + (1 − w)z20))) − 2z23 − z22/τ
2
e

where
S(v) = e0

1 + exp(r(v0 − v))

C∗
12 =

σp

√
2C12 − C2

12√
var{S(w(z1 − z2) + (1 − w)(z10 − z6))}

C∗
21 =

σp

√
2C21 − C2

21√
var{S(w(z13 − z14) + (1 − w)(z22 − z18))}

.

The signals originating from cortical areas 1 and 2, corresponding to the time series x
and y in Figure 3.1A, are defined as

signalArea 1 = w(z1 − z2) + (1 − w)(z10 − z6), (F.1)

and
signalArea 2 = w(z13 − z14) + (1 − w)(z22 − z18). (F.2)

Finally, for the experiments described in Section 3.2.1, the initial model parameters
were set as in David et al. (2004), using the following values: a = 3.501, c = 135,
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c1 = c2 = 0.8c, c3 = c4 = 0.25c, H1
e = 3, H2

e = 7, H1
i = 20, H2

i = 150, τ 1
e = 0.0108,

τ 2
e = 0.0046, τ 1

i = 0.022, τ 2
i = 0.0029, e0 = 5, v0 = 6, r = 0.56, w = 0.8, P = 220,

and σp = 22 (which stands for the standard deviation of the Gaussian noise terms p1,2).
Furthermore, the model’s differential equations where numerically integrated using a
second order Runge–Kutta algorithm.
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