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Abstract—In some task-oriented multi-manipulator applica-
tions, the system not only needs to complete the main assigned
tasks, but also should optimize some sub-objectives. In order
to tap the redundancy potential of individual manipulators and
improve the performance of the system, a hybrid multi-objective
optimization solution with robustness is proposed in accordance
with the realistic execution requirements of the tasks. Theentire
control scheme is designed from the perspective of the Nash
game and further refined into a problem to determine the Nash
equilibrium point. Furthermore, a neural-network-assisted model
is established to seek the best response of each manipulator
to others. Theoretical analysis provides support for proving the
convergence and robustness of the model. Finally, the feasibility
of the control design is illustrated by simulation studies of the
multi-manipulator system.

Index Terms—Distributed control, redundancy resolution, hy-
brid multi-objective optimization, neural networks.

I. I NTRODUCTION

BENEFITING from the observation of group behavior in
nature, it is found that collaborative behavior has an ex-

cellent economy. With the deepening of industrial intelligence,
a single robot in operation is no longer advantageous [1]–[3].
In contrast, multi-robot systems have abilities to performtasks
more efficiently through communication and coordination a-
mong individuals [4] and have potential in such applications as
environmental surveillance [5], underwater tasks [6], androbot
machining [7]. Redundant manipulators are widely favored in
intelligent production, given their well executable ability [8]–
[10]. Although the structure with multiple degrees of freedom
brings much convenience for them to perform tasks, it also
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substantially increases their control complexity [11], [12]. In
recent years, a great deal of effort has been put into promoting
the development of manipulator control technology [13]–[15].
Different from driving a single manipulator, controlling mul-
tiple manipulators to perform tasks in collaboration needsto
consider the information interaction between each individual.
The way of broadcast communication depends heavily on
the performance of the central processing unit, which is not
conducive to the development and evolution of the manipulator
system, so it is not suitable for large-scale systems [16]–[18].
In this regard, a distributed design concept can be incorporated
into the system construction. By allocating the communication
and calculation burden to multiple microprocessors, the control
benefits will be largely increased.

Performance metrics are important considerations for guid-
ing the motion synthesis of manipulators, which can improve
the operational performance of manipulators to a certain
extent. Such as the dexterity index [19] reflecting the execution
potential of a manipulator, and the kinematic conditioning
index [20] showing the worst possible performance of a
manipulator. The velocity and acceleration of the joint are
typical indexes reflecting the motion characteristics of the ma-
nipulator in engineering [21]. In the process of task execution,
manipulators are limited by the driving power and need to run
slowly and steadily [22]. On the other hand, the manipulators
need to reduce the acceleration to avoid position overshoot
or oscillation and lower the output torque. In fact, excessive
velocity or acceleration may aggravate the wear and tear of the
hardware mechanism, which is not conducive to the production
activities [23], [24]. Moreover, for tasks that need to move
along a closed path in the workspace, the joint angle of the
manipulator may not be able to return to the initial value after
long-term operations. To this end, an effective approach isto
minimize the Euclidean norm of joint velocity (i.e., minimum
velocity norm, MVN) and joint acceleration (i.e., minimum
acceleration norm, MAN) to optimize the output performance
of the manipulators while considering a joint-drift-free (JDF)
index to meet the demands of repetitive task execution.

One of the factors that make many models not applicable
for online control is that they do not have the ability to
solve problems in real time [25]–[28]. Although some control
methods have been applied to the real-time tracking controlof
robots, they are essentially designed to solve static problems.
Given that time-varying parameters are not static throughout
the process, there are certain limitations when using these
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methods to deal with time-varying problems, such as delay
errors, slow response, etc [29]. Once these parameters change
rapidly and drastically, the error of the entire system may
exceed expectations. Therefore, it is urgent to build a real-time
and efficient solution algorithm [30]. In [31], a controllerthat
integrates neural networks and fuzzy systems is developed to
regulate the transient performance of hypersonic vehicles. The
excellent approximation performance of the neural network
provides the basis for the realization of the above functions.
In [32], a computationally efficient neural network is de-
signed and verified to have higher efficiency than traditional
numerical methods, and also performs well in dealing with
uncertainties and disturbances in control [33]. Given thatthe
states and behaviors involved in the robot control are complex
and it is difficult to filter each state and behavior, the neural-
network-assisted solution algorithms are highly recommended
[34]. For example, a random neural network control scheme
is presented in [35], which effectively overcomes the error
accumulation in the control of robots by introducing error
feedback to the optimization target. In [36], a deep neural
network-based method is adopted to accurately realize the
pose tracking of the fish-like robot. Admittedly, there are more
challenges in real-time control of multi-manipulator systems.
Some attempts on multi-manipulator systems using neural
networks have also achieved preliminary results. For instance,
a dual neural network-based controller is developed to drive
multiple robots to complete the assigned tasks in [37]. To
optimize the joint velocity of the robot in operation, a neural
network-guided control scheme is implemented to adjust the
real-time state of each joint [38]. However, most of these
schemes take the joint velocity as a decision variable, which
is likely to produce a greater joint acceleration. Besides,noise
suppression is also a factor worth considering.

This research attempts to incorporate the Nash game theory
into the collaborative control design of a multi-manipulator
system. The Nash game defines a scenario, in which each par-
ticipant has limited access to information; Each participant’s
decision has impact on the other participant’s payoffs; Each
participant needs to make a favorable decision by guessing the
intentions of others. Nash equilibrium is an important term
in the game, which emphasizes that each participant cannot
unilaterally tamper with its personal strategy to earn higher
payoffs [39]. Based on this pioneering work of John Nash,
many game-based strategies for distributed systems have been
developed, such as providing fair channel resource allocation
for vehicle networks [40], seeking Nash equilibrium for games
with partial information [41], etc. These ideas motivate the
present work. Compared with the previous work, the main
contributions of this paper are as follows.

1) A collaborative control scheme for a multi-manipulator
system is formulated from the game-theoretic perspec-
tive, which naturally restricts each manipulator to its
own domain for strategy selection, thus facilitating the
development of efficient distributed algorithms.

2) A hybrid multi-objective optimization index is designed
for the motion synthesis of the manipulator, which
effectively optimizes the joint motion of the manipulator

and suppresses the occurrence of joint drift.
3) A computationally effective neural network model is

established to ensure that each manipulator can make
the best strategic response to other manipulators in time.

The rest of this paper is organized as follows. Section II
develops the control laws of each manipulator inspired by
game theory. A neural-network-assisted model is proposed
in Section III for handling the proposed scheme. Theoretical
analysis is provided in Section IV. Section V demonstrates the
effectiveness of the proposed scheme by means of simulations
and experiments. Section VI summarizes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section introduces some basic principles of robot
kinematics. On this basis, it further explores the collaborative
control of multiple manipulators.

A. Robot Kinematics

Robot kinematics studies the conversion relation between
the joints and the end-effector of the robots. Typically, a
general model of the robot kinematics is expressed as

ṙ(t) = J(q(t))q̇(t), (1)

of which ṙ(t) ∈ Rm contains the velocity information of the
end-effector;̇q(t) ∈ Rn contains the joint-velocity information
of the manipulator;J(q(t)) ∈ Rm×n signifies the transmission
ratio of the robot’s kinematic velocity from joint space to
operating space. For a well-defined manipulator,J(q(t)) is
usually known. However, whenm < n, the solution satisfying
(1) is not unique, so poor performance solutions need to be
eliminated according to the requirements of the tasks.

Notice that the minimum norm solution is usually an
appropriate choice among many feasible solutions for manip-
ulator control, which represents a scheme option with minimal
energy expenses. Typical indexes include MVN‖q̇⊤(t)q̇(t)‖22,
MAN ‖q̈⊤(t)q̈(t)‖22, etc. In addition, joint drift is a negative
factor affecting the execution of the manipulator. For some
repetitive motion tasks, the accumulation of joint drift errors
will directly affect the operating accuracy. For this reason, a
JDF index‖q(t)−qd‖22 with qd representing the predetermined
angle state is designed to overcome this phenomenon. By
forcing the start and end states of the robot to tend to the
predetermined configuration, the level of joint drift can be
effectively alleviated. Besides, it is noted that (1) only provides
the variable information of the velocity level, but the study of
the pure velocity-level research is not enough to support the
stability control of a manipulator. In this regard, by calculating
the time derivative of (1), the kinematic relationship of the
manipulator at the acceleration level is given as

r̈(t) = J̇(q(t))q̇(t) + J(q(t))q̈(t), (2)

with r̈(t) = dṙ(t)/dt ∈ Rm, q̈(t) = dq̇(t)/dt ∈ Rn, and
J̇(q(t)) = ∂J(q(t))/∂t ∈ Rm×n. In the following context,
r(t) is replaced byr for convenience. The detailed preparatory
knowledge on robot kinematics can be referred to [42], [43].

Assumption 1:Manipulators do not easily fall into the
singularity, i.e., the Jacobian matrixJ is assumed to be full
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rank in this work. Research on avoiding the singularity of the
multi-manipulator system can be referred to [17].

B. Collaborative Control and Trajectory Planning

The collaborative control of multiple manipulators focuses
on how to enable each manipulator to reach a certain coordi-
nation goal according to the requirements of the tasks. Firstly,
a translation transformation is performed for the motion tra-
jectory of the manipulator, so as to facilitate the collaborative
constraint design. Concretely, the end-effector trajectory of the
ith manipulator after the translation operation is set to

Ai(t) = r i − ~ci ∈ R
m, (3)

where~ci is the distance vector pointing from the end-effector
i to the pre-determined trajectoryrd(t) at the time instantt.
The purpose of this operation is to transform the trajectories
of manipulators adjacent to manipulatori into its reference
coordinate system for easy comparison.

Trajectory planning of a manipulator is a practical appli-
cation of the inverse kinematics solution. To put it simply,
the vibration of a manipulator in operation can be effective-
ly reduced, and its working life can be prolonged through
reasonable planning of the changes of each joint in the case
of preset end-effector trajectory. However, in the process
of real-time inverse kinematics solution, there may be a
small deviation between the actual generated trajectory and
the preset trajectory. For that reason, a trajectory deviation
feedbackr−rd of the end-effector is introduced to compensate
for this deviation. Considering that, in a multi-manipulator
system with the limited communication, a manipulator without
connecting the command center takes the end-effector of the
adjacent manipulatork as the tracking object, the trajectory
deviation feedback of theith manipulator is defined as

ǫi(t) = Ai(t)−Ak(t). (4)

For simplicity, A(t) is abbreviated toA. To forceAi to be
consistent withAk, (4) is further processed as

ǫ̇i(t) = −µǫi(t) = −µ(Ai −Ak), (5)

of which µ ∈ R+. Additionally, in order to further obtain
the trajectory deviation feedback at the acceleration level,
conducting a similar process to (5) derives

ε̇i(t) = −ρεi(t) = −ρ(ǫ̇i(t) + µ(Ai −Ak)), (6)

of which εi(t) = ǫ̇i(t) + µ(Ai − Ak) with ǫ̇i(t) = ṙ i − ṙk,
ε̇i(t) = dǫ̇i(t)/dt+ µ(ṙ i − ṙk) with dǫ̇i(t)/dt = r̈ i − r̈k, and
ρ ∈ R+. Based on (6), it is evident that

r̈ i − r̈k = −(ρ+ µ)(ṙ i − ṙk)− ρµ(Ai −Ak) = De, (7)

which is the trajectory deviation feedback of theith manipu-
lator at the acceleration level.

Remark 1: In Eqs. (5) and (6), the design formulaǫ̇(t) =
−µǫ(t) is adopted to promoteǫ(t) and ǫ̇(t) close to zero.
Then the solutionǫ(t) = ǫ(0)exp(−µt) is obtained by solving
ǫ̇(t) = −µǫ(t), which implies that the errorǫ(t) would
converge to zero exponentially. Referring to this guideline and
assuming thatǫ(0) = 0.1 m andµ = 70, 0.1exp(−70t) = 0.05

m is obtained within∆t = 0.01 s. This indicates that the
error converges over time to an acceptable value. The above
statement provides a theoretical basis for the selection of
design parameters.

C. Game-Theoretic Formulation of Collaboration Control

In a distributed network, each terminal node plays the
role of both a receiver and a sender. For manipulators in
the network, they strictly follow the established communi-
cation rules, so that the information is transferred reliably.
Restricted by the power, bandwidth, and interaction distance of
the communication equipment, any manipulator with disjoint
communication areas cannot directly establish the connection
on the information. Therefore, each manipulator can only
guess or estimate the state of remaining manipulators basedon
the information obtained from neighboring manipulators, thus
forming an information acquisition approach imitating game
behavior. Here, each manipulator relies on local information
exchange to form a private decision domain. Each decision
domain exists independently but affects each other. It is worth
pointing out that the means used to drive the manipulator
to complete tasks efficiently is regarded as a strategy. Each
manipulator discreetly adjusts its own strategy to increase
performance gains, which is conducive to the execution of
special required subtasks for the manipulators.

The velocity and acceleration of the joint are typical indexes
reflecting the motion characteristics of the manipulator in
engineering. On the one hand, due to the power limitations
of the drive, the manipulator is expected to operate at a
slow and steady velocity to ensure the smooth execution of
the task. On the other hand, a large acceleration is likely to
cause positional overshoot or oscillations in engineering, so
minimizing acceleration is a reliable choice. Besides, in order
to restrain the joint drift of the manipulator, a JDF index
acting on the beginning and end of the task is introduced.
Remarkably, these performance indexes can be used to reflect
the gains and losses of the performance of manipulators in a
game. Aiming at the collaboration problem ofs manipulators
in the framework of game theory, a control law of theith
manipulator is formulated as

payoff function:

− 1

2

(

γ ‖q̇i‖
2
2 + (1 − γ) ‖q̈i‖

2
2

)

+Ψ
(

‖q − qd‖22
)

(8a)

default rules:Ap/v
i =

1
∑

k∈N(i) Wik

∑

k∈N(i)

WikAp/v
k (8b)

with Ap
k =

{

Ak, for k = 1, . . . , s

rd, for k = 0
(8c)

Av
k =

{

Jkq̇k, for k = 1, . . . , s

ṙd, for k = 0
(8d)

Ψ
(

y
)

=

{

y ·
(

1− 2sin(πt/T)
)

, t < T
6 or t > 5T

6

0, T
6 ≤ t ≤ 5T

6

where operator{·}p/v distinguishes the choice between the
displacement levelp and velocity v; N(i) represents the
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neighborhood of the manipulatori; Wik = 1 indicates the
connection between manipulatori and k is activated or0
inactivated; T represents the execution period;γ ∈ R+ repre-
sents the weight coefficient of the objective index. Concretely,
Formula (8a) provides a hybrid index that minimizes joint
velocity and acceleration, and enables JDF index to function
at the beginning and end of the task. It reflects the gains and
losses of the manipulator in a game. Formula (8b) formulates
a default rule to estimate the global information of the ma-
nipulator. Formula (8c) and Formula (8d) respectively store
the displacement and velocity information of the manipulators
connected with manipulatori, wherein, in the case ofk = 0,
the information obtained by manipulatori is consistent with
the information released by the command center.

It is worth pointing out that the control law (8) is an effective
action plan to drive the operation of manipulators, considering
the performance gains and the information acquisition rule
of the manipulator in task execution comprehensively. Every
manipulator can be imagined as a player seeking profit max-
imization within the default rules, who is rational and does
not act in a way that is detrimental to their own interests.
The resulting strategy of each manipulator can be regarded as
the best response to the strategies of other manipulators. In
fact, game theory has proved that, in this limited information
exchange situation, the information obtained by manipulators
through estimation will eventually tend to be consistent, which
is the most favorable choice for them.

III. N ASH EQUILIBRIUM OF THE GAME

This section aims to obtain the optimal strategy for guiding
the collaborative operation of manipulators.

A. Redefinition of Performance Index and Constraints

To minimize‖q̇i‖22 at the acceleration level, a bold goal is
to makeq̇i as close to zero as possible. Noticeably, forcing
q̈i = −̺(q̇i − 0) to be true has the effect of minimizinġqi.
Therefore, the goal of minimizing‖q̇i‖

2
2 can be redefined as

minimizing‖q̇i‖
2
2 , ‖q̈i + ̺q̇i‖

2
2 = q̈⊤

i q̈i+2̺q̇⊤
i q̈i+̺

2q̇⊤
i q̇i,

with ̺ ∈ R+. Since the proposed scheme focuses on harvest-
ing the feasible solution at the acceleration level, the decision
variable is set töqi. Then, bring the above formula into the
Formula (8a), we get

1

2

(

γ ‖q̇i‖22 + (1− γ) ‖q̈i‖22
)

= γq̈⊤
i q̈i+γ̺q̇⊤

i q̈i+̺
2q̇⊤

i q̇i/2,

with γ representing the weights of‖q̇i‖
2
2. Additionally, the

indexΨ
(

‖q−qd‖22
)

can be processed in a similar method, and
then its index at the acceleration level is obtained asΨ

(

h
⊤q̈i

)

with h = (ρ+ µ)q̇i + ρµ(qi − qd).
Beyond that, in order to yield the constraint equation at the

acceleration level, a second-order system described by Laplace
matrix is obtained by combining Formula (8b), Formula (8c),
and Formula (8d), which is expressed as

(L+V)⊗Em(Ap+Av)−(V⊗Em)
(

1s⊗(rd+ ṙd)
)

= 0, (9)

whereL = diag(V1s) − W ∈ Rs×s is a Laplacian matrix;
Em = diag(1, . . . , 1) ∈ Rm×m; W = [Wik] ∈ Rs×s is
an adjacency matrix;Ap = [A1; . . . ;As] ∈ Rms; Av =
J̌ ˇ̇q ∈ Rms with J̌ = diag(J1; . . . ; Js), ˇ̇q = [q̇1, . . . , q̇s];
V = diag(v) ∈ Rs with v = [v1; . . . ; vs], where vi = 1
if the manipulatori is connected to the virtual manipulator,
otherwisevi = 0. However, a material fact to consider is
that attempting to directly control an open-loop system like
(9) is an inefficient choice. On this account, Equation (9)
is transformed into a closed-loop system described from the
perspective of error, so as to obtain

(L+ V)⊗ Em(J̌ ˇ̇q + ˇ̇J ˇ̇q + J̌ ˇ̈q)− (V ⊗ Em)
(

1s ⊗ (ṙd + r̈d)
)

= ς
(

(V ⊗ Em)
(

1s ⊗ (rd + ṙd)
)

− (L + V)⊗ Em(Ap + J̌ ˇ̇q)
)

,

where ˇ̇J = diag(J̇1; . . . ; J̇s) ∈ Rms×ns; ˇ̈q = [q̈1; . . . ; q̈s] ∈
Rns; r̈d represents the acceleration instruction issued by the
command center.

B. Real-Time Redundancy Resolution

Based on the redefined hybrid index, constraints and de-
viation feedbackDe, the control law (8) is conceived as the
following optimization procedure:

min ˇ̈q
⊤ˇ̈q/2 + γ̺ˇ̇q

⊤ ˇ̈q + ̺2 ˇ̇q
⊤ ˇ̇q/2 + ωΨ

(

ȟ
⊤ ˇ̈q

)

s.t. (L+ V)⊗ Em(J̌ ˇ̇q + ˇ̇J ˇ̇q + J̌ ˇ̈q +De)− øm = 0

with øm = (V ⊗ Em)
(

1s ⊗ (ṙd + r̈d)
)

+ ς(L+ V)⊗ Em(Ap + J̌ ˇ̇q)

− ς(V ⊗ Em)
(

1s ⊗ (rd + ṙd)
)

,

(10)

of which ȟ = (ρ+µ)ˇ̇q+ρµ(q̌−1s⊗qd), q̌ = [q1; . . . ; qs] ∈
Rns, ω ∈ R+. Remarkably, the solution satisfying (10)
is the optimal strategy for driving the collaborative motion
of manipulators. Then, Lagrange multiplier method [44] is
adopted to further process (10), thus yielding

L(ˇ̈q, ϑ) =ˇ̈q
⊤ˇ̈q/2 + γ̺ˇ̇q

⊤ˇ̈q + ̺2ˇ̇q
⊤ˇ̇q/2 + ωΨ

(

ȟ
⊤ˇ̈q

)

+ ϑ⊤
(

(L+ V)⊗ Em(J̌ ˇ̇q + ˇ̇J ˇ̇q + J̌ ˇ̈q +De)− øm
)

,

whereϑ ∈ Rms is the Lagrange multiplier. Then, by setting
∂L(ˇ̈q, ϑ)/∂ ˇ̈q = 0 and∂L(ˇ̈q, ϑ)/∂ϑ = 0, one has

{

ˇ̈q + γ̺ˇ̇q + ωΨ
(

ȟ
)

+ ((L + V)⊗ EmJ̌)
⊤ϑ = 0

(L + V)⊗ Em(J̌ ˇ̇q + ˇ̇J ˇ̇q + J̌ ˇ̈q +De)− øm = 0.
(11)

Remarkably, the solution of (11) constitutes the optimal set of
strategies for the manipulators, which is the equilibrium point
of the Nash equilibrium. For the sake of description, (11) is
rewritten as an equilibrium equation:

Γ(t)ζ(t) = Υ(t), (12)

where

Γ(t) =

[

Ens×ns ((L+ V)⊗ EmJ̌)
⊤

(L+ V)⊗ EmJ̌ 0ms×ms

]

,

ζ(t) =

[

ˇ̈q
ϑ

]

,Υ(t) =

[

−γ̺ˇ̇q − ωΨ
(

ȟ
)

øm − (L+ V)⊗ Em(J̌ ˇ̇q + ˇ̇J ˇ̇q +De)

]

.
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Then, the error function of (12) is set toe(t) = Γ(t)ζ(t) −
Υ(t) ∈ R(m+n)s. By pushinge(t) closer to zero, the entire
system will move towards one of its Nash equilibriums to
get the best response for each manipulator. To speed up
this process, a neural-network-assisted formula is exploited
for approximating the optimal strategies in (11), which is
expressed as

ė(t) = −α̥Ω(e(t))−β̥Ω

(

e(t)+α

∫ t

0

̥Ω(e(ν))dν
)

, (13)

where̥Ω denotes the activation function, andα, β ∈ R+.
Furthermore, substituting the definition of error into (13)yields

ζ̇(t) =Γ(t)−1

{

− Γ̇(t)ζ(t) − α̥Ω

(

Γ(t)ζ(t) −Υ(t)
)

+ Υ̇(t)− β̥Ω

(

Γ(t)ζ(t) −Υ(t)

+ α

∫ t

0

̥Ω

(

Γ(ν)ζ(ν) −Υ(ν)
)

dν

)}

,

(14)

which is the proposed neural-network-assisted model for the
manipulator system.

Remark 2: The activation function contributes to the conver-
gence of the model to a certain extent. In general, the activation
function is defined as̥ Ω(θ) = {arg minΘ∈Ω ‖Θ− θ‖ , 0 ∈
Ωı} where‖·‖ represents the Frobenius norm, which is essen-
tially a mapping ofθ on setΩ.

IV. T HEORETICAL ANALYSIS

This section aims to theoretically verify that the strategy
obtained through solution model (14) is the best response of
each manipulator to the strategies of other manipulators.

A. Convergence Analysis

As far as model (14) is concerned, it is a typical intercon-
nected system. In addition, we know that if the residual error
e(t) approaches zero, the state variableζ(t) will approach the
equilibrium point, and the strategÿ̌q∗ obtained at this point is
the best response of each manipulator to others.

Theorem 1:The solution synthesized by scheme (10) and
model (14) is the best response of each manipulator to others.

Proof: First, based on the existence of (13), an auxiliary
variableχ(t) is designed as

χ(t) = e(t) + α

∫ t

0

̥Ω(e(ν))dν. (15)

Then, take the time derivative of (15), anḋχ(t) = ė(t) +
α̥Ω(e(t)) can be found. Here, re-substitute (13) intoχ̇(t),
and an equation forχ(t) is expressed as

χ̇(t) = −β̥Ω(χ(t)). (16)

Furthermore, a Lyapunov function candidate is selected as
£(t) = χ⊤(t)χ(t)/2. By calculating the time derivative of
£(t) and combining it with (16), we have

£̇(t) = −βχ⊤(t)̥Ω(χ(t)). (17)

Referring to the definition of̥ Ω, one deduces

‖χ(t)−̥Ω(χ(t))‖22 ≤ ‖χ(t)−Θ‖22 ,Θ ∈ Ω.

Notice that‖χ(t)−̥Ω(χ(t))‖22 ≤ ‖χ(t)‖22 at Θ = 0, so 0 ≤
̥⊤

Ω(χ(t))̥Ω(χ(t)) ≤ 2χ⊤(t)̥Ω(χ(t)) is concluded. Then,
by substituting the aforementioned inequality into (17), we
can obtain

£̇(t) = −βχ⊤(t)̥Ω(χ(t)) ≤ 0.

According to LaSalle’s invariance principle [45], it can be
determined thatχ(t) converges to zero. Thus, (13) degenerates
into ė(t) = −α̥Ω(e(t)) over time. Since the discussions on
ė(t) = −α̥Ω(e(t)) are similar to the analysis on (16), it is
omitted here. As a result,e(t) eventually converges to zero,
which implies that the model (14) is able to assist (10) in
finding the optimal state variableζ∗(t) for the system to reach
the equilibrium point. Meanwhile, the searched strategyˇ̈q∗ is
the best response of each manipulator to others. �

B. Robustness Analysis

In industrial production, noise is one of the disadvantageous
factors affecting system stability. The disturbance attached to
the solution model will cause the internal response of the
system, and then induce the system to fluctuate. In this section,
the effects of constant, linear and white noises on model (14)
are considered.

Theorem 2:The model (14) subject to unknown additive
constant noisep ∈ Rms+ns is able to find the best response
for each manipulator to others.

Proof: First, theith subsystem (i ∈ 1, 2, . . . ,ms+ ns) of
the model (14) disturbed by additive constant noisep can be
abbreviated as

ėi(t) =− α̥Ω(ei(t))

− β̥Ω

(

ei(t) + α

∫ t

0

̥Ω(ei(ν))dν
)

+ pi.
(18)

Referring to (15), an intermediate variable is defined as
χi(t) = ei(t) + α

∫ t

0 ̥Ω(ei(ν))dν, and its time derivative is
calculated asχ̇i(t) = ėi(t) + α̥Ω(ei(t)). Then, usingχi(t)
andχ̇i(t) to simplify (18), the following equation is acquired:

χ̇i(t) = −β̥Ω(χi(t)) + pi. (19)

Here, to test the stability of theith subsystem, a Lyapunov
function candidate is selected as

ℓi(t) =
(

β̥Ω(χi(t))− pi
)2
/2. (20)

The time derivative ofℓi(t) is calculated as

ℓ̇i(t) = β
(

β̥Ω(χi(t))− pi
)∂̥Ω(χi(t))

∂χi
χ̇i(t)

= −β ∂̥Ω(χi(t))

∂χi

(

β̥Ω(χi(t))− pi
)2
.

(21)

By the definition of̥Ω(·), we know that d̥ Ω(χi(t))/dχi

is always a non-negative value, sȯℓi(t) ≤ 0. Assuming
that time progresses to a nodetfinal representing the large
enough period, it is clear thatℓi(t) will eventually converge
to zero, i.e., limt→tfinalβ̥Ω(χi(t)) − pi = 0. According to
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(19), limt→tfinalχ̇i(t) = 0 can be obtained. Thus, (18) will
eventually degenerate tȯei(t) = −α̥Ω(ei(t)). At this point,
the proof of the noise resistance of the subsystem is further
transformed into the proof of the convergence of−α̥Ω(ei(t))
with time. Note that the proof oḟei(t) = −α̥Ω(ei(t)) is
essentially similar to the analysis of (16), so it is omittedhere.
According to the aforementioned analysis, it can be deduced
that e(t) finally converges to zero, implying that the model
(14) is able to find the optimal state variableζ∗(t) that enables
the system to reach the equilibrium point under the additive
constant noise. Meanwhile, the searched strategyˇ̈q∗ is the best
response of each manipulator to others. �

Theorem 3:The linearly activated model (14) subject to
bounded linear time-varying noiseυ(t) = (1ms+ns ⊗ ι)t ∈
Rms+ns with t ∈ [0, tfinal] is able to find the best response
of each manipulator to others that makes the residual error
converge to‖ι‖2/(αβ).

Proof: First, theith subsystem (i ∈ 1, 2, . . . ,ms+ ns) of
the linearly activated model (14) affected by the bounded
linear time-varying noiseυ(t) = (1ms+ns ⊗ ι)t ∈ Rms+ns

with t ∈ [0, tfinal] can be expressed as

ėi(t) = −(α+ β)ei(t)− αβ

∫ t

0

ei(ν)dν + υi(t). (22)

To further analyze the regulation process of the subsystem,the
Laplace transform is performed on it:

sei(s)− ei(0) = −(α+ β)ei(s)−
αβ

s
ei(s) +

υi(s)

s2
. (23)

Then, utilizing the final value theorem gets

lim
t→∞

ei(t) = lim
s→0

ei(s)

= lim
s→0

s2ei(0) + ι

s2 + (α+ β)s+ αβ
=

ι

αβ
.

(24)

From the aforementioned derivations we know thatei(t)
eventually converges to‖ι‖2/(αβ). Note that by adjusting
the parametersα and β, the error can be reduced to an
acceptable range for performing the task. Under this execution
accuracy, model (14) is able to find the optimal state variable
ζ∗(t) that enables the system to reach the equilibrium point.
Meanwhile, the searched strategyˇ̈q∗ is the best response of
each manipulator to others. �

Theorem 4:The linearly activated model (14) subject to
bounded white noisew(t) ∈ Rms+ns is able to find the best
response of each manipulator to others so that the residual
error converges to the upper bounds2σ

√
ms+ ns/|α−β| for

α 6= β andσ
√
ms+ ns(κ/κ + 1/α) for α = β.

Proof: The ith subsystem (i ∈ 1, 2, . . . ,ms+ ns) of the
linearly activated model (14) disturbed by bounded white noise
w(t) can be abbreviated as

ėi(t) = −(α+ β)ei(t)− αβ

∫ t

0

ei(ν)dν + wi(t). (25)

Depending on the value ofα and β, the solution of the
subsystem (25) is discussed in the following possible cases:

1) Forα 6= β, the solution of (25) is

ei(t) =
ei(0)(ψ1 exp(ψ1t)− ψ2 exp(ψ2t))

ψ1 − ψ2

+
1

ψ1 − ψ2

(
∫ t

0

(ψ1 exp(ψ1(t− ν))

− ψ2 exp(ψ2(t− ν)))wi(ν)dν

)

,

whereψ1,2 =
(

−(α+β)±
√

(α+ β)2 − 4αβ
)

/2. Next,
based on the triangle inequality, there is

|ei(t)| ≤
|ei(0)(ψ1 exp(ψ1t)− ψ2 exp(ψ2t))|

ψ1 − ψ2

+

∫ t

0
|ψ1 exp(ψ1(t− ν))| · |wi(ν)|dν

ψ1 − ψ2

+

∫ t

0
|ψ2 exp(ψ2(t− ν))| · |wi(ν)|dν

ψ1 − ψ2

≤|ei(0)(ψ1 exp(ψ1t)− ψ2 exp(ψ2t))|
ψ1 − ψ2

+
2

ψ1 − ψ2
max
0≤ν≤t

|wi(ν)|.

Thus forα 6= β, i.e.,α > β orα < β, there isψ1−ψ2 =
|α− β|. Therefore, there is

lim
t→∞

sup ‖ei(t)‖2 ≤ 2σ
√
ms+ ns

|α− β| ,

whereσ = max1≤i≤ms+ns{max0≤ν≤t |wi(ν)|}.
2) Forα = β, the solution of (25) is

ei(t) =ei(0) exp(ψ1t)(1 + ψ1t)

+

∫ t

0

(t− ν)ψ1 exp(ψ1(t− ν))wi(ν)dν

+

∫ t

0

exp(ψ1(t− ν))wi(ν)dν.

Referring to Theorem 1 in [46], there existκ ∈ R+ and
κ ∈ R+ such that|ψ1|t exp(ψ1t) ≤ κ exp(−κt). Then,
based on the triangle inequality, one can derive

|ei(t)| ≤|ei(0) exp(ψ1t)(1 + ψ1t)|

+

∫ t

0

|κ exp(−κ(t− ν))| · |wi(ν)|dν

+

∫ t

0

| exp(ψ1(t− ν))| · |wi(ν)|dν

=|ei(0) exp(ψ1t)(1 + ψ1t)|

+ (
κ

κ
− 1

ψ1
) max
0≤ν≤t

|wi(ν)|.

Thus forα = β, ψ1 = −α. Accordingly, there exists

lim
t→∞

sup ‖ei(t)‖2 ≤ σ
√
ms+ ns(

κ

κ
+

1

α
),

whereσ = max1≤i≤ms+ns{max0≤ν≤t |wi(ν)|}.

From the aforementioned derivations we know that the
upper bound of|e(t)| is 2σ

√
ms+ ns/|α − β| for α 6= β

or σ
√
ms+ ns(κ/κ + 1/α) for α = β in the presence of

white noisew. By selecting the appropriate parametersα and
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Fig. 1. Simulation results of eight manipulators moving to preset points directed by scheme (10) assisted by model (14).(a) The movement process of
manipulators. (b) Real-time distance between end-effector and preset point. (c) Joint acceleration.

β, the error is reduced to an acceptable range for performing
the task. The strategÿ̌q∗ searched with this error precision is
the best response of each manipulator to others. �

Remark 3: The collaborative control problem of the multi-
manipulator system is reformulated using quadratic program-
ming techniques in this paper. In this way, the problem is
evolved to solve a convex quadratic programming problem so
that the analytic solution can be obtained relatively easily, and
the solution is the global optimal solution.

Remark 4: In this paper, the proposed scheme relies on
the accurate manipulator model to obtain the good operation
effect. However, there are some limitations in systems with
unknown structures. Inspired by [47], the fuzzy logic system
can be introduced to further improve the robustness of the
system, which will be a beneficial attempt.

V. SIMULATIONS AND EXPERIMENTS

In this section, a group of robots following control law (8)
is driven to execute the trajectory planning task. According
to the operation characteristics of the manipulator, the task is
further subdivided into point-to-point motion and continuous-
path motion. Then, simulations are performed to verify the
operation effect of manipulators in these two task scenarios.

0
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4.543.532.521.51 X (m)
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Fig. 2. The entire process of eight manipulators performingthe pentagram
curve motion task directed by scheme (10) assisted by model (14).

A. Point-to-Point Motion task

Point-to-point motion only requires the manipulator to move
toward a preset point without considering what path it is
running on. One typical application scenario is that manip-
ulators should actively adjust their end-effectors to a specified

initial position before executing the task, which can be treated
as a preprocessing operation. Besides, imagine an extreme
case: when the manipulator appears illegal configuration in
the execution of the task, it needs to go back to a specific
configuration for further overhaul. In that sense, initializing the
manipulators to a fixed configuration is of great significance
for their control. With these factors in mind, eight randomly
initialized manipulators are assigned to perform a point-to-
point motion task to test the validity of the scheme (10)
assisted by solution model (14).

In the simulation of the task, the initial conditions are
set asγ = 0.5, ̺ = 100, α = β = ς = 25, ω =
ρ = µ = 0, and the operation time is allocated to5 s.
Manipulators M1 and M6 are set to connect to the virtual
manipulator0, thus v1 = v6 = 1. Besides, the manipulator
obeys the rule that information can be exchanged between
adjacent nodes, i.e.,Wik = 1 only if |i − k| ≤ 1. Based
on the above settings, the simulation results of the point-to-
point motion task performed by the manipulators are shown
in Fig. 1. Specifically, Fig. 1(a) is a record of the point-
to-point motion task performed by the randomly initialized
manipulators during the period, in which the pentagonal star
marks the position of the preset points and the initial position
of the end-effectors is marked with a circle. Subsequently,the
real-time distance‖(xi, yi, zi)− (xd, yd, zd)‖2 of each end-
effector is revealed in Fig. 1(b). Clearly, the distance between
the end-effector and the preset point is constantly decreasing,
which implies that the point-to-point motion task is performed
smoothly. Furthermore, Fig. 1(c) records the variation of the
joint-acceleration variables of each manipulator. The above
simulation results indicate that the manipulators are ableto
be driven to the desired position points under the action of
scheme (10) assisted by solution model (14).

B. Continuous-Path Motion Task in Noisy Environment

In this part, a continuous-path motion task is assigned
to the manipulator system and executed in a noisy envi-
ronment. The information exchange rules between manipu-
lators are the same as those set in Sec. V-A, i.e., when
|i − k| ≤ 1, Wik = 1; the amplitude of additive noise is
set ast; the motion of the end-effector is prescribed by a
pentagram curverd = [3 cos(πt/5)/20+ 3 cos(3πt/10)/50+
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Fig. 3. Simulation results of eight manipulators tracking the pentagram curve directed by scheme (10) assisted by model(14). (a) The actual trajectories
plotted in X-Y plane. (b) Tracking errors. (c) Speed of the end-effector. (d) Joint angle. (e) Joint velocity. (f) Joint acceleration.
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Fig. 4. Statistics on the performance index of eight manipulators directed by scheme (10) assisted by model (14) during the task execution. (a) Profiles of
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(tfinal)− qd|.

1/2; 3 sin(3πt/10)/50 − 3 sin(πt/5)/20 − 1/5; 1/2]; the
task period is set to20 s. Additionally, the initial conditions
used for this simulation are set toγ = 0.5, ̺ = 100,
α = β = ς = 70, ω = 0.2, and ρ = µ = 70, and the
simulation results obtained are shown as below.

Figure 2 records the entire process of the manipulators
performing the continuous-path motion task. Judging from
the execution results, the task is well executed. Furthermore,
Fig. 3 records the joint changes of each manipulator and the
tracking states of each end-effector. Specifically, the motion
trajectories of each end-effector on the X-Y plane are drawn
in Fig. 3(a), where the desired curves are marked with a cross-
lines cursor. As the results show, the end-effectors perform
the task smoothly along the desired curve. Next, Fig. 3(b)
shows the execution errorξi =

√

(r i − rd)⊤(r i − rd) of each
end-effector performing the continuous-path motion task.The

results reveal thatξ = [ξ1; . . . ; ξs] ∈ Rms is always kept
within a tiny range throughout the task duration, which is
completely in line with the actual task requirements. Subse-
quently, the changes in the velocity of each end-effector are
recorded in Fig. 3(c), which shows that all end-effectors are
running at a consistent speed. The changes of joint-angle,
joint-velocity, and joint-acceleration of the manipulator are
recorded in Fig. 3(d)-(f). However, it is noted from Fig. 3(f)
that there is a small spike in the joint-acceleration of the
manipulator at0 s and16.67 s of the task, which is caused
by the action of the JDF index at these two instants. But
soon, this peak is eliminated under the combined action of
the minimum velocity and acceleration indexes. To intuitively
reflect the performance of the manipulators during operation,
the values of‖ˇ̇qi‖2 and ‖ˇ̈qi‖2 are measured and shown
in Fig. 4(a)-(b). Besides, Fig. 4(c) reveals the joint drift
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Fig. 5. Experiment ofUR5 manipulators tracking the pentagram curve directed by scheme (10) assisted by model (14). (a) Experimental snapshots.(b)
Tracking trajectories in the X-Y plane. (c) Profiles of tracking error. (d) Joint drift errors|q

i
(tfinal)− qd|.

TABLE I
COMPARISONSAMONG VARIOUS CONTROL SCHEMES FORMANIPULATORS

Number of Network Position error Disturbances Performance Experimental Mathematical
manipulators topology compensation rejection index verification formulation

This paper Multiple Distributed Ya Yb Hybrid indexc Yd Game theory
Paper [1] Two Centralized N/A N N/A N Dynamic programming
Paper [8] Single N/A N Yb JDF index Yd Optimization
Paper [14] Single N/A Ya N JDF index N Optimization
Paper [16] Multiple Distributed N/A Yb Manipulability index Yd Game theory
Paper [17] Multiple Distributed N Yb Manipulability index Yd Optimization
Paper [24] Single Distributed Ya N Hybrid indexc Yd Optimization
Paper [30] Two Centralized N N MVN index Yd Optimization
Paper [37] Multiple Distributed N N MVN index N Game theory
Paper [38] Multiple N/A N Yb MVN index N Optimization

a The scheme introduces a trajectory deviation feedback to improve the tracking accuracy.
b The model is capable of resisting disturbance.
c The scheme takes into account a hybrid performance index.
d The model is validated on a virtual robot experimental platform.

errors |qi(tfinal) − qd| of each manipulator after completing
the task. The aforementioned statistical results show thatthe
manipulator system operated according to scheme (10) runs
smoothly, and the state of the manipulators can be restored
to the original configuration after the completion of the task.
Furthermore, the comparisons between the scheme (10) solved
by (14) and various typical redundancy resolution schemes are
listed in Table I. It can be seen that the proposed scheme (10)
adopts a hybrid performance index, so it has certain advantages
in terms of control effect. Additionally, the proposed model
(14) performs well on fault tolerance in the case of disturbance,
so it has bright prospects in industrial applications.

C. Validation on UR5 Robots in CoppeliaSim

In order to make the neural-network-assisted model (14)
running in the simulation environment also guide the manipu-
lators to work in the real environment, firstly, the CoppeliaSim

experimentation platform is used to bridge the gap between
simulation and reality. TheUR5 manipulator in the model li-
brary is selected as the experimental object, and the parameters
and tasks are leveraged identical to those in Sec. V-B. On this
basis, the operating states of the manipulators implanted with
scheme (10) assisted by model (14) are shown in Fig. 5(a).
Here, snapshot 1 records the initial postures of the manipu-
lators prior to the task; Snapshot 2 captures an instant of the
manipulators during the task execution; Snapshot 3 shows the
completion of the entire task. Visibly, the manipulators with
the aforementioned algorithm can accomplish the task well.
Furthermore, the performance parameters ofUR5 manipulators
performing tasks during this period are recorded in Fig. 5(b)-
(d). Specifically, Fig. 5(b) records the task completion ofUR5
manipulators in the X-Y plane. Subsequently, the tracking
errors of end-effectors are reported in Fig. 5(c). The results
show that the tracking status of each end-effector is well
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Fig. 6. Experimental snapshots of a three-axis robotic system tracks the circular curve.

during the task execution. Finally, the joint drift errors of each
end-effector are counted in Fig. 5(d). The data reveal that
the joint drift of the manipulators is significantly curbed at
the end of the task. Through the aforementioned simulative
experiments on CoppeliaSim, the feasibility of the scheme
(10) solved by model (14) on the manipulators is verified.
Furthermore, an experiment on a three-axis robotic system
with D-H parameters listed in Table II is conducted to further
demonstrate the effectiveness of the proposed model (14). The
motion of the end-effector is prescribed by a circular curve
rd = [sin(πt/5)/10 + 1/10; cos(πt/5)/10 − 1/10; 2/25],
and the task period is set to10 s. Serial port communication
is adopted between manipulators, and other parameters are
the same as in Section V-B. The corresponding experimental
results are shown in Fig. 6.

TABLE II
D-H PARAMETERS OF ATHREE-AXIS ROBOT

Link ι αι−1 (rad) aι−1 (m) dι (m) Joint-Angleqι
1 0 0 0.097 q1
2 -π/2 0 0 q2
3 0 0.140 0 q3
4 0 0.160 0 q4

VI. CONCLUSIONS

In this paper, a hybrid multi-objective optimization solution
with robustness has been developed. This solution has not only
completed the main tasks assigned, but also optimized the joint
velocity and acceleration of the manipulators, and effectively
curbed the occurrence of joint drift. The entire control scheme
has been designed from the perspective of the Nash game,
and further refined into the problem of determining the Nash
equilibrium point. On this basis, a neural-network-assisted
model has been established to seek the best response of
each manipulator to others. Theoretical analysis has provided
the basis for the convergence and robustness of the model.
Finally, simulations on the manipulator system have revealed
the feasibility of the proposed control scheme, and the tests on
the CoppeliaSim experimentation platform have implied that
the scheme has the desirable engineering application potential.
In the next research, an event-triggered mechanism attempts
to be developed to reduce the frequent computational cost.
Secondly, an attempt will be made to enhance the robustness

of the system by combining the fuzzy logic system in the
designed model.
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