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This paper studies a control law to achieve formation flying in cislunar space.

Utilizing the eigenstructure of the linearized flow around a libration point of the

Earth-Moon circular restricted three-body problem, the fuel efficient formation

flying controller based on the chattering attenuation sliding mode controller is

designed and analyzed. Numerical studies are conducted for the Earth-Moon L2
point and a halo orbit around it. The total velocity change required to achieve

formation as well as to maintain the orbit is calculated. Simulation results show

that the chattering attenuation sliding mode controller has good performance

and robustness in the presence of unmodeled nonlinearity along the halo orbit

with moderate fuel consumption.
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1 Introduction

Cislunar space provides an attractive and long-term opportunity to open the way for

future manned and unmanned deep space exploration and to bridge the gap between

current and future space missions. Missions in cislunar space also play an important role

in enabling the future missions to the Moon, near-Earth asteroids (NEAs), Mars, and

other deep space exploration. Recently, considerable attention has been devoted to the

trajectory design in cislunar space (Farquhar et al., 2004; Crusan et al., 2018, 2019; Wu

et al., 2019). Since libration point orbits in cislunar space are highly unstable, a spacecraft

moving on these orbits must use control input to remain close to their nominal orbits. A

great variety of studies have investigated methods for stabilizing the unstable periodic

orbits in the circular restricted three-body problem (CR3BP) (Gomez et al., 1998;

Farquhar et al., 2004; Folta et al., 2014; Ulybyshev, 2014; Xu et al., 2016; Qian et al.,

2018). Floquet mode control has been applied for stationkeeping of libration point orbits

which eliminates the local unstable components by an impulsive maneuver (Simo et al.,

1987). In Howell and Marchand (2005), formation flying around libration point orbits

utilizing natural relative motions on center manifold was proposed by adding an

impulsive maneuver to eliminate the unstable components. The idea of natural
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formation was generalized to a continuous control law by

Scheeres et al. (2003) and it was shown that the simple

feedback control law can stabilize unstable periodic orbits and

create additional center manifolds. However, disturbances such

as the gravitational forces of the Sun and other planets in the

actual space environment, which can destabilize orbits, have not

been taken into account in these methods.

Sliding mode control (SMC) has been recognized as a

nonlinear robust control technique because of its inherent

advantages of strong stability, disturbance rejection and low

sensitivity to plant parameter variations (Utkin, 1992). For

decades until now, many engineers and researchers have

relied on the performance of the SMC for aerospace

applications such as launch vehicles (Shtessel et al., 2000; Hall

and Shtessel, 2006), formation flying in Earth orbit (Li et al.,

2012), asteroid precision landing (Furfaro et al., 2013) and

attitude control (Hu et al., 2013). Based on high-order sliding-

mode theory, an adaptive disturbance-based sliding-mode

controller for hypersonic vehicles has been introduced (Yu

et al., 2015; Sun et al., 2018). Adaptive second-order sliding

mode trajectory tracking control for flexible air-breathing

hypersonic vehicles with measurement noises has been

proposed to cope with uncertainties, disturbances and

measurement noises (Sagliano et al., 2017). In Lian and Tang

(2013), the rendezvous problem between libration point orbits in

the Earth-Moon system was studied based on a terminal sliding

mode controller with prescribed time of flight, which is the

attractive feature of their proposed method. In Gong et al.

(2014), SMC was applied to generate quasi-periodic and

periodic orbits around the L2 libration point in the Earth-

Moon system using a solar sail.

Despite the popularity of SMC technique, SMC has a major

drawback called chattering, i.e., undesired oscillations of

control input. Chattering is an inevitable phenomenon due

to the inherent discontinuity or switching nature around

sliding surfaces. A number of approaches were developed to

avoid the chattering. Continuous approximations are often

used to approximate the discontinuous signum function in a

boundary layer around the switching manifold. However,

sliding mode performances will be compromised by

introducing the boundary layer. To solve this problem while

preserving the main advantages of SMC, higher-order sliding

mode control (HOSM) has been proposed which generalizes

the basic sliding mode idea to act on the higher-order time

derivatives of the system deviation (Emel’Yanov et al., 1996;

Levant, 2003; Boiko, 2014). However, real-time higher-order

output derivatives are necessary to implement the HOSM,

which might be difficult to obtain depending on the

application. In fact, though arbitrary-order exact robust

differentiators have been addressed, implementation of

higher-order differentiation is not exact because of the

computational limitations (Shtessel et al., 2014).

Furthermore, the speed of the system’s trajectory is very

slow when the states are far away from the origin in the

super-twisting algorithm (STA), which is a simplest form of

the second-order sliding mode technique (Moreno, 2014).

Moreover, STA cannot endure uncertainties and

disturbances that change with the system states (Kunusch

et al., 2012). Recently, chattering attenuation sliding mode

control (CASMC) was developed by Nemati et al. as a new

technique to attenuate the chattering phenomena (Nemati

et al., 2017). The structure of CASMC is simple, but

includes a time-varying switching function that can reduce

the magnitude of discontinuous functions over time.

The goal of this paper is to design a robust and fuel efficient

control law for formation flying in the vicinity of a collinear

libration point in the Earth-Moon system, leveraging the

manifold structure of natural dynamics and robustness of

SMC. In this study, the controlled state is constrained to a

hyperplane with zero unstable component by sliding mode

control to achieve natural formation under unmodeled

nonlinearity. In particular, we show that it is possible to

stabilize the unstable relative motion and generate a bounded

motion by a single control input. Although SMC has the

remarkable property that the response of the system remains

insensitive to disturbances and/or uncertainties of models,

conventional SMC presents drawbacks of chattering.

Moreover, SMC requires high control authority in general. To

overcome these problems, we formulate a novel SMC control law

based on the chattering attenuation sliding mode control

framework. The control gain is designed to reduce the cost of

SMC by incorporating the linear quadratic regulator (LQR)

theory. The parameters of the CASMC are chosen so that the

total cost (ΔV) of CASMC is almost equal to that of LQR for the

ideal case and the L1 norm of the control input to maintain a halo

orbit is examined.

The paper is organized as follows. Section 1 is the

introduction. Section 2 reviews the equations of motion in the

CR3BP and their state space form. Section 3 gives the

stabilization of unstable mode by linear control and sliding

mode control. Section 4 presents simulation results. Section 5

considers formation flying along a halo orbit by sliding mode

control. Finally, Section 6 gives the conclusions.

2 Equations of motion in the CR3BP

The equations of motion of a massless spacecraft under the

gravitational attraction of the Earth and Moon is considered. In

the CR3BP, the Earth and Moon are assumed to move in circular

orbits about their common barycenter. Consider a rotating frame

in which the origin is fixed at the barycenter, the Z-axis is aligned

with the angular velocity of the primaries, the X-axis is directed

from the Earth to Moon, and the Y-axis completes the right-

handed coordinate system. The distance between spacecraft and

the Earth and Moon are respectively given by r1 and r2 as

Frontiers in Space Technologies frontiersin.org02

Bando et al. 10.3389/frspt.2022.919932

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2022.919932


r1 �
����������������
X + ρ( )2 + Y2 + Z2

√
r2 �

�������������������
X − 1 + ρ( )2 + Y2 + Z2

√
Then, the equations of motion of the CR3BP in the non-

dimensional form (Wie, 2008) are given by

€X − 2 _Y −X � −1 − ρ

r31
X + ρ( ) − ρ

r32
X − 1 + ρ( ) + ux

€Y + 2 _X − Y � −1 − ρ

r31
Y − ρ

r32
Y + uy

€Z � −1 − ρ

r31
Z − ρ

r32
Z + uz

(1)

where ρ = Mm/(ME + Mm), ME and Mm are the masses of the

Earth and Moon, (ux, uy, uz) is the control acceleration and the

equations of motion are normalized so that the distance d

between the Earth and Moon and angular velocity ω are equal

to one. Eq. 1 has stationary points known as Lagrangian points Li
satisfying

X � 1 − ρ

r31
X + ρ( ) + ρ

r32
X − 1 + ρ( )

Y � 1 − ρ

r31
Y + ρ

r32
Y

Z � 0

(2)

and

L1 � l1 ρ( ), 0, 0( ), L2 � l2 ρ( ), 0, 0( ), L3 � l3 ρ( ), 0, 0( )
L4 � 1/2 − ρ,

�
3

√ /2, 0( ), L5 � 1/2 − ρ,− �
3

√ /2, 0( )
where li(ρ) are determined by the first equation of Eq. 2. To

describe equations of motion near a collinear equilibrium point

Li (i = 1, 2, 3), it is convenient to use the coordinate system with

its center at Li. Replacing X, Y, Z by x + li, y, z, Eq. 1 can be

written as

€x − 2 _y − x � li − 1 − ρ

r31
x + li + ρ( ) − ρ

r32
x + li − 1 + ρ( ) + ux

€y + 2 _x − y � −1 − ρ

r31
y − ρ

r32
y + uy

€z � −1 − ρ

r31
z − ρ

r32
z + uz

(3)
where

r1 �
������������������
x + li + ρ( )2 + y2 + z2

√
r2 �

���������������������
x + li − 1 + ρ( )2 + y2 + z2

√
The linearized equations of Eq. 3 at the origin are given by

€x − 2 _y − 2σ i + 1( )x � ux

€y + 2 _x + σ i − 1( )y � uy

€z + σ iz � uz

(4)

where

σ i � ρ

|li ρ( ) − 1 + ρ|3 +
1 − ρ

|li ρ( ) + ρ|3 (5)

The state space form of Eq. 4 is expressed as

_x � Ax + Bu (6)

where x � [x y z _x _y _z]T, u � [ux uy uz]T, and

A �

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2σ i + 1 0 0 0 2 0
0 1 − σ i 0 −2 0 0
0 0 −σ i 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The state space form of nonlinear equations in Eq. 3 is then

semilinear and is given by (Akiyama et al., 2018)

_x � Ax + Bf x( ) + Bu (7)
where

f x( ) �

li − 2σ ix − 1 − ρ

r31
x + li + ρ( ) − ρ

r32
x + li − 1 + ρ( )

σ iy − 1 − ρ

r31
y − ρ

r32
y

σ iz − 1 − ρ

r31
z − ρ

r32
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
fx

fy

fz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (8)

Observe that the matrixA has two real eigenvalues and a complex

conjugate eigenvalue pair. New state vector is introduced as

z � [z1c z2c z3c z4c zs zu]T � T−1x, where subscripts c, s and

u denote center, stable and unstable modes, respectively. Then

the matrix T transforms the matrix A into a real block diagonal

form ~A by AT � T ~A. The transformation matrix T and the real

block diagonal form ~A are given by.

T �

0 0 −P2 0 −P1 −P1

0 0 0 −1/Q2 −1/Q3 1/Q3

1/Q1 0 0 0 0 0
0 0 0 −P2Q2 P1Q3 −P1Q3

0 0 1 0 1 1
0 1 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

~A �

0 Q1 0 0 0 0
−Q1 0 0 0 0 0
0 0 0 Q2 0 0
0 0 −Q2 0 0 0
0 0 0 0 −Q3 0
0 0 0 0 0 Q3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Where

Q1 � ��
σ i

√
P1 � 4

4 + 3σ i − ��
σ i

√ �������−8 + 9σ i
√

Q2 �
��������������������
2 − σ i + ��

σ i
√ �������−8 + 9σ i

√ )
2

√
P2 � 4

4 + 3σ i + ��
σ i

√ �������−8 + 9σ i
√

Q3 �
�������������������
−2 + σ i + ��

σ i
√ �������−8 + 9σ i

√
2

√
(11)
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are positive constants. The state space form [Eq. 6] becomes in

the new state variables as

_z � ~Az + ~Bu (12)
where

~B � T−1B �

0 0 0

0 0 1

0
P1

P1 − P2
0

− Q2

P2Q2
2 + P1Q3

2 0 0

Q3

2 P2Q2
2 + P1Q3

2( ) − P2

2 P1 − P2( ) 0

− Q3

2 P2Q2
2 + P1Q3

2( ) − P2

2 P1 − P2( ) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Also, the semilinear form [Eq. 7] is rewritten as

_z � ~Az + ~Bf Tz( ) + ~Bu (14)
where

Tz � x �

−P2z3c − P1 zs + zu( )
− 1
Q2

z4c − 1
Q3

zs − zu( )
z1c
Q1

−P2Q2z4c + P1Q3 zs − zu( )
z3c + zs + zu

z2c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

Consequently, the equations of motion can be rewritten in the

new variables as.

_z1c � Q1z2c (16)
_z2c � −Q1z1c + fz + uz (17)

_z3c � Q2z4c + P1

P1 − P2
fy + uy( ) (18)

_z4c � −Q2z3c − Q2

P2Q2
2 + P1Q3

2 fx + ux( ) (19)

_zs � −Q3zs + Q3

2 P2Q2
2 + P1Q3

2( ) fx + ux( )
− P2

2 P1 − P2( ) fy + uy( ) (20)

_zu � Q3zu − Q3

2 P2Q2
2 + P1Q3

2( ) fx + ux( )
− P2

2 P1 − P2( ) fy + uy( ) (21)

In the following, we construct a controller to place the

spacecraft in the center manifold of the libration point based

on Eqs 16–21, then it is generalized to formation flying along a

periodic orbit. Although control input affects both stable and

unstable manifolds, we can design a controller to stabilize

unstable manifold while stable and center manifolds are

preserved, owing to the explicit form of Eqs 16–21. As a

result, a spacecraft will naturally circulate about the periodic

orbit in three-dimensional space.

3 Stabilization of unstable mode by
linear and nonlinear control

For simplicity, stabilization of the in-plane motion is

discussed based on the new state variables since the in-plane

and out-of-plane motions of the linearized system (Eq. 12) are

independent. Motivated by the fact that eliminating the unstable

mode and the use of the center manifold is enough to achieve

stable formation flying (Scheeres et al., 2003; Howell and

Marchand, 2005), this section studies feedback controllers

based on reduced-order system.

3.1 Stabilization of unstablemode by linear
control

The in-plane motion of linearized equation (Eq. 12) can be

rewritten by the following two state equations:

_z1 � ~A1z1 + ~B1uin (22)
_z2 � ~A2z2 + ~B2uin (23)

where

z1 � z3c
z4c

[ ], z2 � zs
zu

[ ], uin � ux

uy
[ ]

~A1 � 0 Q2

−Q2 0
[ ], ~A2 � −Q3 0

0 Q3
[ ]

~B1 �
0

P1

P1 − P2

− Q2

P2Q2
2 + P1Q3

2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ~B2 � 1
2

Q3

P2Q2
2 + P1Q3

2 − P2

P1 − P2

− Q3

P2Q2
2 + P1Q3

2 − P2

P1 − P2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Based on Eq. 23, the feedback controllers are designed and the

stability of the whole system should be verified through Eqs 22,

23. In the following, three approaches are shown: 1) using only ux
(referred to as “ux-controller”), 2) using only uy (referred to as

“uy-controller”), and 3) using the combination of ux and uy
(referred to as “(ux, uy)-controller”).

3.2 Stabilizing the unstable mode by single
input

Since both ux and uy affect the unstable manifold in Eq. 21,

we first assume uy = 0 for simplicity and ux is designed to stabilize

the system shown in Eqs 22, 23. Applying ux = kxzu to Eq. 21

yields

_zu � Q3 1 − kx
2 P2Q2

2 + P1Q3
2( )[ ]zu (24)
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Therefore, if kx > 2(P2Q2
2 + P1Q3

2), then Eq. 24 is

asymptotically stable, i.e. zu → 0 as t → ∞. On the other

hand, Eq. 22 becomes

_z3c
_z4c

[ ] � 0 Q2

−Q2 0
[ ] z3c

z4c
[ ] −

0

kxQ2

P2Q2
2 + P1Q3

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦zu (25)

Then from Eq. 25, z3c and z4c are bounded because zu → 0 as t→
∞. The stability of zs can be verified by,

_zs � −Q3zs + Q3kx
2 P2Q2

2 + P1Q3
2( )zu (26)

From Eq. 26, zs is asymptotically stable since zu → 0 as t → ∞.

Therefore, the whole system Eqs 22, 23 is stable in the Lyapunov

sense. In a similar way, we can choose the feedback control as

uy = kyzu with ux = 0.

3.3 Stabilizing the unstable mode by a
combination of ux and uy

There exists another option to stabilize the unstable mode

where ux and uy are chosen as

Q3

P2Q2
2 + P1Q3

2ux � P2

P1 − P2
uy (27)

In this case, no control input is added to the stable mode zs. A

feedback control is designed to satisfy Eq. 27 as.

ux � kxyzu (28)
uy � Q3 P1 − P2( )

P2 P2Q
2
2 + P1Q

2
3( )ux � Q3 P1 − P2( )

P2 P2Q
2
2 + P1Q

2
3( )kxyzu (29)

To summarize the three approaches, the following controllers are

derived:

(ux = kxzu with uy = 0) where

kx > 2 P2Q2
2 + P1Q3

2( ) (30)

(uy = kyzu with ux = 0) where

ky > 2Q3
P1

P2
− 1( ) (31)

(ux = kxyzu and uy = Cux) where

kxy >P2Q2
2 + P1Q3

2, C � Q3 P1 − P2( )
P2 P2Q

2
2 + P1Q

2
3( ) (32)

Since the system ( ~A, ~B) is controllable, a feedback control law

can be designed by the pole placement technique. Consider the

generalized feedback control of the form for Eqs 22, 23:

uin � K1z1 + K2z2 (33)

Then, the control laws Eqs 30–32 can be considered as a special

case of the pole placement where the unstable eigenvalue is

moved to left-half plane while other eigenvalues are not changed,

i.e. K1 = 0. It is observed that the first term K1z1 of Eq. 33 can only
change the pole locations of Eq. 22 while those of Eq. 23 are not

affected. Therefore, any K1 such that ~A1 + ~B1K1 has eigenvalues

on the imaginary axis would change the center mode to other

center mode. Moreover, Eq. 22 is stabilized by any feedback

control K2z2 such that ~A2 + ~B2K2 ≤ 0. Note that Scheeres et al.

(2003) considers only the special case where ~A2 + ~B2K2 has

eigenvalues on the imaginary axis.

3.4 Stabilization by sliding mode control

In this section, one of robust control techniques called sliding

mode control (SMC), which is a particular type of variable

structure control, is introduced to deal with nonlinearities and

uncertainties of the CR3BP. SMC design generally proceeds in

two steps. The first step is to design a switching manifold such

that the system’s states are restricted to the sliding surface and

hence, those states can be ensured to reach the desired dynamics.

The second step is to design a robust control law to drive the

states to the switchingmanifold andmaintain them on the sliding

surface based on the Lyapunov stability approach. The simple

sliding manifold for the first-order system is expressed as

S � λ zu,d − zu( ) (34)

where S is the switching manifold, zu,d is a desired response for zu
and λ is a positive constant. For example, the desired response

zu,d can be chosen as

_zu,d � −σ2zu,d (35)

It should be noted that the parameter λ is typically limited by

three factors: the frequency of the lowest unmodeled structural

resonant mode ]R, the largest neglected time delay Td, and the

sampling rate ]s as follows (Slotine and Li, 1991):

λ≤
2π
3
]R, λ≤

1
3Td

, λ≤
1
5
]s (36)

In the following, the ux-controller is designed by a conventional

SMC approach as an example. The SMC for the other type of

controllers described in Section 3.1 are designed in the same

manner. Consider the Lyapunov candidate as

V � 1
2
S2 (37)

where S is the sliding manifold described by Eq. 34. The time

derivative of Eq. 37 along the solution of Eq. 21 is given by

_V � S _S � S λ _zu,d − λ Q3zu − Q3

2 P2Q2
2 + P1Q3

2( )~ux − P2

2 P1 − P2( )fy[ ]{ }
(38)
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where ~ux � fx + ux. To guarantee the asymptotic stability, the

time derivative of the Lyapunov function should be negative, i.e.,

_V � −μ|S| (39)

where the parameter μ is a strictly positive constant and should

be greater than the magnitude of the disturbance (see Appendix

A). Substituting Eq. 39 into Eq. 38 yields

_S � −μ sign S( ) (40)

where sign(S) is a signum function defined as follows:

sign S( ) � |S|
S

�
1 S> 0
0 S � 0
−1 S< 0

⎧⎪⎨⎪⎩ (41)

From Eqs 38, 40, we have

Q3zu − Q3

2 P2Q2
2 + P1Q3

2( ) ~ux − P2

2 P1 − P2( )fy � _zu,d + μ

λ
sign S( ).

(42)
By substituting ~ux � fx + ux into Eq. 42, ux can be found as

ux � 2 P2Q2
2 + P1Q3

2( )
Q3

Q3zu − _zu,d − P2

2 P1 − P2( )fy − μ

λ
sign S( )[ ] − fx

(43)

Note that the feedback gain of zu in Eq. 43 is specified as

2(P2Q2
2 + P1Q3

2) by the constants in Eq. 11. The stability of

the whole system [Eqs. 22, 23 can be verified in the same manners

as in Section 3.1. Since the state reaches the switchingmanifold in a

finite time and is kept on the manifold, the value of sliding

surface becomes zero (S = 0) theoretically. However, in real

applications, states are not kept on the switching manifold

exactly. The signum function [Eq. 41] switches the control

signal at a high but finite frequency, and thereby excites the

unmodeled fast dynamics or undesirable oscillations

called chattering, although it contributes the insensitivity

to disturbances and model uncertainties. Chattering

can deteriorate system performance, and even lead to

instability.

Hereby, without violating the sliding condition, an improved

SMC strategy called the chattering attenuation sliding mode

control (CASMC) (Nemati et al., 2017) is introduced to

alleviate the magnitude of the discontinuous function over

time. Typically, the chattering attenuation sliding manifold of

CASMC is defined as

SCASMC � λeat+b zu,d − zu( ) (44)
where a and b are positive constants which are designed under

the conditions of Nemati and Hokamoto (2014). This procedure

is illustrated for the specific problem of CR3BP in Section 4.2.

Consequently, the chattering attenuation sliding control law is

obtained as

ux,CASMC � 2 P2Q2
2 + P1Q3

2( )
Q3

Q3 + a( )zu − _zu,d − a zu,d[
− P2

2 P1 − P2( )fy − μ

λeat+b
sign S( )] − fx (45)

It can be seen that the magnitude of signum function is μ
λeat+b while

μ
λ for the conventional SMC. Therefore, the trade-off between

chattering attenuation and robustness can be regulated by two

parameters a and b. Furthermore, the feedback gain of zu is

replaced by 2(P2Q2
2+P1Q3

2)
Q3

(Q3 + a), which is a function of a. This

property is also used to reduce the L1 norm of the control input in

Section 4.2. The uy-controller can be designed in a similar way as

uy,CASMC � 2
P1 − P2

P2
Q3 + a( )zu − _zu,d − a zu,d[

− Q3

2 P2Q2
2 + P1Q3

2( )fx − μ

λeat+b
sign S( )] − fy (46)

Similarly, (ux, uy)-controller is given by.

ux,CASMC � P2Q2
2 + P1Q3

2

Q3
Q3 + a( )zu − _zu,d − a zu,d[

− P2

2 P1 − P2( )fy − μ

λeat+b
sign S( )] − 1

2
fx (47)

uy,CASMC � C ux,CASMC + 1
2
fx( ) − 1

2
fy (48)

Note that the stable mode zs naturally converges to zero as

time goes to infinity by single input CASMC. However, to

guarantee fast convergence of the stable mode, the multi-input

CASMC can be designed. To design multi-input CASMC, two

independent sliding manifolds are selected as

S1,CASMC � λ1e
a1t+b1 zs,d − zs( ) (49)

S2,CASMC � λ2e
a2t+b2 zu,d − zu( ) (50)

Then, the ux- and uy-controllers for the multi-input CASMC are

obtained similarly as

ux,2−CASMC � P2Q2
2 + P1Q3

2

Q3
Q3 zu + zs( ) + μ1

λ1e
a1 t+b1 sign S1,CASMC( ) − _zu,d + _zs,d[

− μ2
λ2e

a2 t+b2 sign S2,CASMC( ) + a1 zs,d − zs( ) − a2 zu,d − zu( )] − fx

(51)

uy,2−CASMC � P1 − P2

P2
Q3 zu − zs( ) − μ1

λ1e
a1 t+b1 sign S1,CASMC( ) − _zu,d − _zs,d[

− μ2
λ2e

a2 t+b2 sign S2,CASMC( ) − a1 zs,d − zs( ) − a2 zu,d − zu( )] − fy

(52)

TABLE 1 Parameters of the earth-moon CR3BP.

Constants Values

d 384,400 [km]

ω−1 375,186 [s]

ρ 0.01215

l2(ρ) 1.1556

σ2 3.1904
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4 Numerical simulations

In order to validate and compare the L1 norms of the

proposed controllers, the Earth-Moon L2 point is considered.

The parameters of the Earth-Moon CR3BP are shown in Table 1.

Here, no control input for the out-of-plane motion (z − axis) is

assumed, i.e. uz = 0 because the out-of-plane motion is decoupled

in the linearized system [Eq. 6].

4.1 Eliminating unstable mode by
feedback controllers

As a preliminary analysis, feedback controllers are designed

by the linear quadratic regulator (LQR) theory to minimize the L1
norm of the control input (∫tf

t0
|u|dt). The feedback gain is

given by

K � −R−1BTP (53)
where the matrix P is the solution to the algebraic Riccati

equation (ARE):

ATP + PA − PBR−1BTP + Q � 0 (54)

Q � I, R � 10rI (I is an identity matrix) and r is a scalar

parameter. It is known that the L2 norm (square integral) of

control input converges monotonically to its minimum value as

Q decreases to zero, or equivalently as R increases to infinity

(Bando and Ichikawa, 2013). However, the required total velocity

change (ΔV) is represented by the L1 norm of the control input.

Thus, the L1 norms of the proposed controllers are investigated.

In the numerical simulations, the linear feedback is applied to the

nonlinear equation [Eq. 1] and the L1 norm for five periods is

computed.

The three types of controllers described in Section 3 (ux-, uy-,

and (ux, uy)-controller) are designed by ARE.When ux-controller

is used, Eq. 54 is reduced to a scalar equation

FIGURE 1
Controlled trajectory by ux-controller [x0, y0, z0] = [38, 38, 38] km, r = −4. (A) ux-controller, (B) uy-controller, (C) (ux, uy)-controller.

FIGURE 2
L1 norm vs. r based on LQR.

FIGURE 3
Schematic of a chattering attenuation function.
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2Q3p − p2

r

Q3

2 P2Q
2
2 + P1Q

2
3( )( )2

+ q � 0 (55)

where q = 1, and the stabilizing feedback is explicitly given by

ux � kxzu � − 2 P2Q
2
2 + P1Q

2
3( ) + �������������������

4 P2Q
2
2 + P1Q

2
3( )2r2 + r

√
r

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦zu
(56)

Similarly, uy-controller and (ux, uy)-controller are respectively

given by

uy � kyzu � − 2Q3 P1 − P2( )
P2

+
������������������
4Q2

3r
2 P1 − P2( )2 + rP2

2

√
P2r

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦zu
(57)

and.

ux � kxyzu � − P2Q
2
2 + P1Q

2
3( ) + ������������������

P2Q
2
2 + P1Q

2
3( )2r2 + r

√
r

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦zu
(58)

uy � Q3 P1 − P2( )
P2 P2Q

2
2 + P1Q

2
3( )ux (59)

By these controllers, stabilization of the unstable mode is realized.

FIGURE 4
Controlled trajectory by CASMC ux-controller. (A) Control history, (B) $z_u$, (C) $z_s$, (D) $z_{c3{$.

FIGURE 5
L1 norm vs. r based on CASMC.
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Figure 1 demonstrates the controlled trajectory by ux-, uy-

and (ux, uy)-controllers. It can be seen that the trajectory of

spacecraft becomes a quasi-periodic orbit which encloses the L2
point by eliminating the unstable mode. As being consistent to

the analytical result in Sec. 3, it can be said that the in-plane

motion can be controlled by a single control input ux or uy.

From Eqs 56–58, it is clear that when r→∞ the limit of the

feedback gains exist and are given by.

lim
r→∞

kx � −4 P2Q
2
2 + P1Q

2
3( ) ≈ − 16.2586 (60)

lim
r→∞

ky � −4Q3 P1 − P2( )
P2

≈ − 25.7974 (61)
lim
r→∞ kxy � −2 P2Q

2
2 + P1Q

2
3( ) ≈ − 8.12932 (62)

Therefore, the L1 norms of the control input saturates for large r.

The L1 norms for each LQR controller for various r are

summarized in Figure 2. It is found that the L1 norms for r ≥ −9

are reduced by ux- and (ux, uy)-controllers compared to uy-

controller. The L1 norms of ux-controller and (ux, uy)-controller

are almost half of that of uy-controller for large r. This can be

explained by Eq. 21 as that ux has more impact than uy since the

coefficient of ux is almost double of that of uy. Moreover, it is

worth noting that the L1 norm of ux-controller is almost the same

as (ux, uy)-controller although an extra control effort is added to

the stable mode.

4.2 Chattering attenuation sliding mode
controllers

The CASMC is designed to validate the practical

implementation of SMC. The CASMC is employed because it

has a simple structure with sufficient robustness. For simplicity,

zu,d ≡ 0 is considered so that the state on the sliding manifold is

restricted to the stable and center subspaces. The CASMC can

affect the robust performance of the system because in general,

there is a delicate balance between chattering attenuation and

robustness as described in Appendix A. However, compared with

other methods to eliminate chattering (e.g., using continuous

approximations such as a sigmoid function, a hyperbolic

function, etc (Khalil, 2002)), the CASMC somewhat preserves

robustness because chattering phenomenon will not be

completely eliminated or replaced by a continuous

approximation, but it will be suppressed over time. In the

following, the same parameters λ = 0.01 and μ = 0.02 are

used for CASMC.

To preserve the robustness over time, a saturating function

f(t) as shown in Figure 3 is employed such that the term 1
f(t)

numerically suppresses the chattering effect and simultaneously

preserves the robustness. The saturating chattering attenuation

function is given by

f t( ) � eat+b t≤ tp

F t> tp
{ (63)

where t* is a specified time and F is the upper bound of the

chattering attenuation function. The parameter t* determines the

length of the interval where the effect of chattering attenuation

remains. If we choose tp to be larger than a settling time Ts, then

the chattering can be sufficiently attenuated but the robustness

decreases. However, if large disturbance exists, we have to choose

tp < Ts to maintain robustness though the chattering might

remain more than expected.

In the following, the CASMC parameters a, b and F are

designed for the Earth-Moon CR3BP. Since the CASMC has the

linear feedback termwhich is a function of the parameter a in Eqs

45, 46, the parameter a affects the L1 norm as the parameter r in

LQR. Therefore, the parameter a corresponding to a sufficiently

large r is chosen to ensure the small L1 norm. On the other hand,

FIGURE 6
Controlled trajectory by CASMC ux-controller (large initial
deviation [δx0, δy0, δz0] = [384, 384, 384] km is used to exaggerate
the result in this figure).

FIGURE 7
Relative motion with respect to halo orbit.
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the upper bound of the chattering attenuation function F is

important to suppress the chattering over time. To design F, one

may employ a settling time Ts as a saturation condition for tp in

Eq. 63, that is, the parameter F can be designed as

f Ts( ) � eaTs+b � F (64)
Figure 4 shows the histories of the control input and state

variables by the CASMC ux-controller with different

parameters a, which correspond to −3 ≤ r ≤ 6. The controlled

trajectory of spacecraft becomes a quasi-periodic orbit with

different periods which encloses the L2 point by eliminating

the unstable mode. It can be seen that chattering is sufficiently

suppressed and that the magnitude of control input is very small

(< 3.5 × 10−9) in Figure 4A. Next, the parameter b is determined

from the robust performance as well as chattering suppression at

initial phase. From the robustness condition [Eq. 78] at t = 0, the

parameter b should satisfy b≤ ln μ
λD. Practically, the magnitude of

the maximum amplitude of the disturbance D should be taken

into account to satisfy 0< b≤ ln μ
λD, however, this condition is

relaxed in many cases as can be seen in the following results.

FIGURE 8
Relative trajectory generated by CASMC ux-controller for 10 revolution. (A)Control history, (B)Nonlinear terms, (C) $z_u$, (D) $z_s$, (E) $z_{c1
{$, (F) $z_{c3{$.
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Here, b = 13 is chosen by that the value of the signum function is

reduced by e−13 = 2.26 × 10–6. The settling time which is

determined by the stopping rule |zu| ≤ 10–10 is Ts = 1.13 [day]

which corresponds to 0.2626 in nondimensional time unit,

therefore F = 1.7614 × 108 is obtained from Eq. 64. From the

robustness condition [Eq. 78], the maximum amplitude of

disturbances or uncertainties to guarantee the stability is given

by D � μ
λF � 1.1354 × 10−8 in nondimensional unit. Figure 5

summarizes the result of CASMC for −3 ≤ a ≤ 6 and b = 20

based on ux- and uy-controllers. The figure shows that the cost of

CASMC is almost the same as that of LQR.

The maximum accelerations shown in Figure 4A vary

between 3.47 × 10–9 ≤ umax ≤ 5.20, ×, 10–10 [km/s2]. These

value are compatible with recent or proposed low-thrust

missions such as Deep Space 1, Dawn, Gateway and Lunar

IceCube mission (Rayman et al., 2000; Russell and Raymond,

2012; McCarty et al., 2018; Pritchett et al., 2019). For example, the

low-thrust capability of Dawn is 7.473 × 10–8 [km/s2] which is

larger than the maximum thrust magnitude of the proposed

controller. Moreover, the solar gravitational perturbation is

compatible with the proposed thrust magnitude level which is

the largest perturbation in cislunar environment. Other

perturbations such as the gravitational attraction and the

ephemeris of the planets, the presence of solar radiation

pressure and orbit determination errors are also considered as

an unmodeled dynamics in the CR3BP. Figure 9 summarizes the

result of CASMC ux-controller for formation flying.

5 Formation flying along halo orbit

5.1 Derivation of relative dynamics

Tomaintain the halo orbit, which is denoted by xf, a standard
way is to linearize Eq. 7 along xf and apply the target method or a

linear feedback theory for periodic systems (Howell and Henry,

1993; Folta and Vaughn, 2004; Bando and Ichikawa, 2014; Bando

and Scheeres, 2016). In Bando and Ichikawa (2014), a simple

feedback control for station-keeping is proposed based on the

semilinear form Eq. 7. The advantage of this approach is that the

control law does not require the computation of the state

transition matrix along the reference halo orbit. In this

section, the semilinear form described by the new variable

[Eq. 14] is used instead of the semilinear form Eq. 7, which

makes it possible to take into account the eigenstructure of the

libration point for the fuel efficient trajectory design.

Let zf be a periodic orbit of the leader near the Li point

given by

_zf � ~Azf + ~Bf Tzf( ) (65)

where zf � [z1cf z2cf z3cf z4cf zsf zuf]T. Let z be the

controlled trajectory of the follower given by

_z � ~Az + ~Bf Tz( ) + ~Bu (66)

where z � [z1c z2c z3c z4c zs zu]T and u is control input.

Then, the error system is given by

_e � ~Ae + ~B f Tz( ) − f Tzf( )( ) + ~Bu (67)

where e � z − zf � [e1c e2c e3c e4c es eu]T. The semilinear

form (67) is reduced to the linearized equation

_e � ~Ae + ~Bu (68)

if |f (Tz) − f (Tzf)| is sufficiently small. Observe that Eq. 68 has the

same structure as Eq. 12. Therefore, the follower can achieve

natural formation around the leader’s orbit by elliminating the

unstable mode with the controllers designed for the libration

points in Section 3 where the nonlinear term |f (Tz) − f (Tzf)| can
be considered as an unmodeled nonlinearity.

5.2 Formation flying along halo orbit by
sliding mode control

The parameters of the Earth-Moon CR3BP in Section 4 are

used in this section. A particular halo orbit around L2 is given by

the normalized initial condition

xf0 � 1.1776 0.0000 − 0.0550 0.0000 − 0.1712 0.0000[ ]T
(69)

and its period is T = 3.3904 (≈14.7226 [day]). The initial position
of the follower at time t0 (= 0) is assumed to be

x0 � xf 0( ) + e 0( ) (70)

where e (0) = 10–5 × [1.0 1.0 1.0 0.0 0.0 0.0]T (≈38.44 [km])

represents the initial offset. For the parameters a, b and F of

CASMC, the same values are used as in the libration point case.

FIGURE 9
L1 norm vs. r based on CASMC.
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Figure 6 shows the controlled trajectory for 10 revolutions

(10T = 33.904) by the single input CASMC (ux-controller is

used here). It should be noted that the larger initial deviation

(≈384 [km]) is used to exaggerate the result in this figure since

the deviation of 38.44 km is too small to distinguish from the

reference halo orbit. Figure 7 shows the relative trajectory

with respect to the reference halo orbit. Figure 8 shows the

results by the CASMC ux-controller with different parameters

a, which correspond to −3 ≤ r ≤ 6. It is confirmed in Figure 8A

that the chattering does not occur and the magnitude of

control is sufficiently small. Compared to the results in

Sec.4, deviations in unstable error components eu exist for

the formation flying case. Moreover, for a large r, which

corresponds to a smaller gain, the deviation of unstable

element becomes larger. This is because the nonlinear term

acts the system as a time-varying unmodeled nonlinearity

shown in Figure 8B and cause a large deviation in the stable

error components es. Even though the deviations exist, the

bounded relative motion along the halo orbit is achieved for

−3 ≤ r ≤ 6. The center components (e1c, e2c, e3c, e4c) constitute

quasi-periodic motions in Figures 8E,F. Simulation results

show that the proposed sliding mode controller has good

performance in the presence of unmodeled nonlinearity along

the halo orbit with relatively small stationkeeping cost. In

fact, the maximum accelerations shown in Figure 8A vary

between 3.24 × 10–10 ≤ umax ≤ 2.19, ×, 10–9 [km/s2]. These

value are compatible with recent or proposed low-thrust

missions.

6 Conclusion

This paper studies the control law to stabilize the orbital

motion in the vicinity of an unstable equilibrium point and

periodic orbits in the circular restricted three-body problem.

First, it was shown that the single input controller can stabilize

the unstable mode to generate a bounded motion. Three types

of controllers were derived and their stability conditions were

given. Then, the chattering attenuation sliding mode controller

was designed to attenuate chattering and reduce control costs at

the same time based on the optimal gain computed by linear

quadratic regulator. The performance of the proposed

controller was tested on the Earth-Moon L2 point and the

halo orbit in the vicinity of L2 point. It was revealed that the

total velocity change is the smaller along the x-axis. Then, the

proposed controller was applied to the relative motion with

respect to a halo orbit. The proposed sliding mode controller

can stabilize the error dynamics along a halo orbit in the

presence of unmodeled nonlinearity. Moreover, the fuel

expenditure of the chattering attenuation sliding mode

controller is moderate and the chattering phenomena are

suppressed by selecting the reasonable value for design

parameters. The proposed controller is powerful and easy to

implement, hence formation flying proposed in this paper is

useful for the implementation in actual missions.
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7 Appendix A: Robustness analysis of
the SMC and the CASMC

The robust performance of SMC is analyzed by applying

matched disturbances. A nonlinear dynamical system with

disturbance or parameter uncertainty can be described as follows:

_x � g x( ) + h x( )u + d x, t( ) (71)

where x represents the system’s state, g(x) and h(x) ≠ 0 are two

nonlinear functions describing system dynamics, u is the control

input, and d (x, t) denotes the matched disturbances or

uncertainties that are unknown but bounded as d (x, t) < D.

Taking the time − derivative of the Lyapunov candidate given by

Eq. 37 along the uncertain system described by Eq. 71, yields

_V � S λ _x( )
� Sλ g x( ) + h x( )u + d x, t( )( ) (72)

Eq. 72 can be rewritten using Eq. 40 in the form of

Sλ g x( ) + h x( )u + d x, t( )( )≤ Sλ −μ sign S( ) +D( ) (73)
Therefore, if the condition

μ≥D (74)

is satisfied, then _V< 0 and the asymptotic stability of (71) is

guaranteed.

The robust performance of CASMC can be evaluated by

defining the following Lyapunov candidate:

V � 1
2
SCASMC

2 (75)

Differentiating Eq. 75 with respect to time along the uncertain

system, Eq. 71, leads to

_V � SCASMC
_f t( ) SCASMC + f t( ) λ _x( )[ ]

� SCASMC
_f t( ) SCASMC + f t( )λ g x, _x( ) + h x, _x( )u + d x, t( )( )[ ]

(76)

Thus, substitution of Eq. 40 into Eq. 76 results in

_f t( ) SCASMC + f t( )λ g x, _x( ) + h x, _x( )u + d x, t( )( )≤
−μ sign SCASMC( ) + f t( ) λ D (77)

Clearly, for assuring the Lyapunov stability, the following

condition must be satisfied.

μ≥ |f t( )| λ D (78)
Eventually, Eq. 78 proves that the robust performance of the

proposed chattering attenuation technique can be reduced over

time. This is a crucial aspect of any methods employed chattering

reduction tends to diminish the robust performance. In other

words, there is a direct trade-off between chattering attenuation

and robustness.
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