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Abstract 

Increasing populations of brown bear (Ursus arctos) in Greece have resulted in 

recolonisation of areas previously unoccupied for decades. Large carnivore 

recolonisation often threatens hard-established human-wildlife coexistence efforts, 

therefore the need to monitor and predict bear presence and movement becomes more 

apparent as the animals make use of corridors existing between their current range and 

other suitable habitats. The challenge of carrying out surveys in infrequently used areas, 

such as wildlife corridors, is compounded by limited funds for wildlife conservation. This 

calls for the exploration of alternative monitoring techniques that are more cost and 

time-efficient than the standard methods such as scat surveys. This study explored the 

use of habitat suitability modelling techniques in mapping brown bear ecological 

networks in Greece throughout their current range and sites of potential future 

recolonisation. Using these suitability maps as a guide, the study utilised an innovative 

non-invasive genetic monitoring technique, invertebrate-derived DNA (iDNA), to survey 

the species in the field. A single-species targeted qPCR approach was used and method 

development experiments were conducted to form a protocol to optimise its 

performance in the field. Next, iDNA surveys combined with scat surveys were 

conducted to model bear distribution in northern Greece using occupancy modelling. 

These models describe the probability of bear detection in a landscape that 

incorporates a core brown bear habitat, a presumed corridor and a recently recolonised 

area. A review of the laboratory experiments and a comparison of the resulting 

occupancy models indicated that iDNA can effectively monitor the presence of a species 

as well as be subsequently used in occupancy modelling analyses. iDNA can be seen as 

an effective and complementary method of assessing brown bear distribution to inform 

conservation strategies and has the potential to assist with the conservation monitoring 

of other bear species. 
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Chapter 1: Introduction 

 

The case study outlined in this thesis presents a protocol for the survey design, iDNA 

field sampling and occupancy modelling of single-species monitoring efforts. 

 

1. Introduction 

1.1  Monitoring for conservation 

Habitat loss and fragmentation have been identified as major factors to species 

extinction and biodiversity loss (Fahrig, 1997; Groombridge and Jenkins, 2000; Wiegand, 

Revilla and Moloney, 2005). The urge to tackle the current species extinction events at 

a global or continental scale have been reflected in the efforts to prioritise conservation 

investments (Wilson et al., 2011) and inform conservation strategies (Henle et al., 2013; 

Rondinini, Rodrigues and Boitani, 2011). Realistically, all the work conducted to 

prioritise conservation and allocate funds where outcomes will be the most beneficial 

relies on monitoring efforts of wildlife and their habitats. Fundamentally, conservation 

starts with effective monitoring: understanding the presence and status of a species 

within an area over time (Long et al., 2012; Robinson et al., 2018; Stem et al., 2005; 

Tanentzap, Walker and Theo Stephens, 2017). Another component providing essential 

information to conservation planning is deciphering the study area’s capacity to provide 

suitable and connected habitats for the species in question. These two aspects of 

conservation, therefore, provide the backbone of every strategy and are integral to the 

success of the project.  

 

1.2  Non-invasive genetic monitoring 

As a response to this conservation crisis, advances in survey techniques for wildlife and 

habitat monitoring have risen to meet the growing demand for species conservation. 

Non-invasive techniques have been on the forefront of this effort due to their ability to 

minimise disturbance of the target species. Here, the term ‘non-invasive’ is used to 

describe any method of collecting data that does “not require animals to be directly 

observed or handled by the surveyor”(Long et al., 2012). Due to this very broad 

description of the term, non-invasive techniques vary greatly in a practical sense in 

terms of the means used to collect data on a species, from scat surveys and remote 
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camera observations to hair trapping and scent detection using trained dogs (Beebe, 

Howell and Bennett, 2016; Browne, Stafford and Fordham, 2015; O’Connell, Nichols and 

Karanth, 2011; Phoebus et al., 2020). It is important to note that, even though these 

techniques do not require researchers to directly capture, handle, or observe the 

species, non-invasive techniques can still have a negative impact on the behaviour of 

the target animal. For example, tigers (Panthera tigris) have been observed avoiding 

remote camera stations as a result of camera trap flashes (Wegge, Pokheral and Jnawali, 

2004) while other such instances of neophobia can occur in many species, like foxes 

(Culpeo fox (Pseudalopex culpaeus) and Grey fox (P. griseus)) (Travaini et al., 2013) and 

coyotes (Canis latrans) (Harris and Knowlton, 2011). Overall, however, non-invasive 

methods are all designed to minimise the impact of data collection on the target species 

and the ecosystems they inhabit. To add to that, these techniques are often described 

as more ethical, as the target species is not disturbed during data collection (Bekoff and 

Jamieson, 2019; Solberg et al., 2006).  

 

Due to this focus on collecting data without requiring contact with the species itself, 

non-invasive techniques may lend themselves well to monitoring rare or elusive species 

(Solberg et al., 2006; Thompson, 2004). A branch of non-invasive monitoring has been 

proven particularly successful in detecting rare and elusive species has been non-

invasive genetic sampling. Methods that belong to this branch of monitoring aim at 

remotely collecting genetic material from the target species. A review of the commonly 

used methods of non-invasive genetic monitoring in Long et al. (2012) outlines hair 

trapping and faecal sampling as the two main sources of genetic material for Ursus 

arctos horribilis (Grizzly Bears) and U. americanus (American Black Bears). Ursus species 

have long been in the forefront of these methods, from their developmental stages. In 

fact, the first non-invasive genetic monitoring efforts focused on brown bears (Ursus 

arctos) and their declining populations in the Pyrenees (Taberlet and Bouvet, 1992; 

Taberlet et al., 1997) and Northern Italy (Höss et al., 1992). The genetic material 

extracted from these samples (hair and scat) can confirm a species’ presence in a habitat 

as well as draw information on lineages and genetically distinct populations or allow for 

individual identification. When it comes to the latter, nuclear DNA (nDNA) is used, paired 

with microsatellite markers that allow for these differentiations of DNA between 

individuals. However, there are a number of challenges associated with genetic 
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monitoring methods that rely on nDNA and the sample collection that can introduce 

bias to our understanding of the population structure and distribution of the target 

species. Literature related to non-invasive genetic monitoring has highlighted that bias 

introduced in the survey design (see Phoebus et al. (2020) for an example in biases 

introduced with brown bear scat sampling along forestry road networks) as well as 

climatic factors contributing to the degradation of nDNA (Farrell, Roman and Sunquist, 

2000; Goossens et al., 2000; Paetkau, 2003) can significantly hinder monitoring efforts. 

Moreover, sex biases have been repeatedly recorded in both hair and scat collections 

(Bellemain et al., 2005; Boulanger et al., 2008; Phoebus et al., 2020; Pylidis et al., 2021). 

 

When the challenges associated with these methods are controlled or accounted for, 

however, non-invasive genetic monitoring can be very effective in providing important 

insights into the population structure and distribution of a species. Since the 

introduction of non-invasive genetic sampling using hair samples from bears (Taberlet 

and Bouvet, 1992; Taberlet et al., 1997), this field has grown to encompass many 

alternative sources of DNA and collection methods. More recently, novel non-invasive 

genetic monitoring techniques targeting traces of DNA that wildlife leaves in its 

environment, labelled environmental DNA or eDNA, have been developed and used in 

species monitoring. Environmental DNA is increasingly used in both single-species and 

biodiversity monitoring because eDNA does not rely on collecting species-specific 

samples often underpinning the more conventional methods (Barnes and Turner, 2015; 

Ruppert, Kline and Rahman, 2019). Instead, by collecting eDNA samples in an area, any 

organism that has been in contact with the sampling material (i.e., water, soil, air) may 

be detected. This, in turn, gives the researcher the option to perform a targeted, single-

species analysis or follow a metabarcoding approach to explore the diversity of species 

in the sample (Harper et al., 2018; Thomsen and Willerslev, 2015). The potential of eDNA 

techniques is being increasingly explored, in both species-specific methods and via next-

generation sequencing techniques (Gold et al., 2021; Harper et al., 2018; Marshall, 

Vanderploeg and Chaganti, 2021; Thomsen and Willerslev, 2015; Wang et al., 2021) and 

special consideration is given to its ability to monitor rare or elusive species. 
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1.3 Invertebrate-derived DNA 

Under the general umbrella of eDNA lies a method called iDNA, or invertebrate-derived 

DNA (Ruppert, Kline and Rahman, 2019; Schnell et al., 2015). Similar to eDNA 

techniques, iDNA seeks out external sources of target species’ DNA, but in the case of 

iDNA the target species’ genetic material is extracted from invertebrates. This technique 

has been widely used for monitoring invertebrates as vectors of pathogens such as 

Leishmania parasites (sand flies as vectors, e.g. Haouas et al., (2007)), malaria 

(mosquitoes, e.g. Scott et al., (2006)) and many other disease vectors (Kent, Norris and 

Feinstone, 2005). More recently, the technique was adapted in ecological monitoring 

and a number of invertebrate families, such as flies (Bohmann, Schnell and Gilbert, 2013; 

Calvignac-Spencer et al., 2013), mosquitoes (Kent, Norris and Feinstone, 2005; Townzen, 

Brower and Judd, 2008), ticks (Gariepy et al., 2012) and leeches (Schnell et al., 2015). 

Using invertebrates as a sampling unit means that the detection of the animal in 

question relies on being able to capture the focal invertebrate group instead of 

searching for a direct source of genetic material from the target species instead. 

Therefore, the method does not rely on the surveyor being able to detect the target 

species themselves, but instead indirectly monitors its presence through invertebrates 

that have come into contact with it. The effectiveness of the chosen invertebrate 

sampling method in the field, and the ability of the focal group of invertebrates 

themselves to feed on the target species or its scat, become important factors that 

influence the success of iDNA field sampling.  

 

This approach of gathering information about a species by tracking traces of their DNA 

in their environment (eDNA and iDNA techniques) has introduced new avenues of 

monitoring rare or elusive species. However, this twice-removed (e.g. leeches, 

mosquitoes, horseflies) or three times-removed (e.g. flies, dung beetles) method of 

collecting genetic material means that the DNA within the iDNA samples has undergone 

considerable degradation (Lee, Sing and Wilson, 2015). For this reason, combined with 

the fact that each cell carries a single copy of nDNA, efforts following a microsatellite 

approach have shown negligible success rates (1%) (Schubert et al., 2015). Contrastingly, 

mitochondrial DNA (mtDNA) is found in multiple copies in the cells and is proven to be 

more resistant to degradation than nDNA while still carrying information distinct enough 

to determine identity between most vertebrate species (Delisle and Strobeck, 2002; 
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Johns and Avise, 1998; Townzen, Brower and Judd, 2008). Hence, the majority of eDNA 

and iDNA studies focus on mtDNA, a large proportion of which use universal primers, 

like universal mitochondrial 16S markers, following a metabarcoding approach (e.g. 

Calvignac-Spencer et al., 2013). While metabarcoding is invaluable for biodiversity 

monitoring, studies have shown that this approach can miss out on rare species within 

the samples. For example, Schubert et al. (2015), revealed a threefold increase in 

species-specific detection than when using a nonspecific PCR assay (metabarcoding). 

Real-time PCR, using species-specific primers and probes, can apply greater sensitivity 

to the sample analysis since the PCR analysis focuses on only finding and amplifying the 

target species’ DNA (Melero et al., 2011; Schmittgen et al., 2000). Additionally, the costs 

and data processing time involved in a metabarcoding analysis in comparison to a real-

time PCR (qPCR) approach are vastly higher, limiting the number of samples processed 

(Harper et al., 2018). Taking this into consideration, a single-species approach using 

iDNA samples could be more suitable at detecting rare or elusive species and even 

monitor species in areas they are known to use less frequently, such as stepping-stone 

and linkage (corridor) habitats.  

 

1.4  Habitat Suitability Modelling 

In order to conduct surveys that can reliably feed information into monitoring efforts, 

the planning stages of where these surveys should take place can be key (Anderson and 

Gonzalez, 2011). Ensuring that the effort, funds and time spent in the field are allocated 

effectively can drastically increase the amount and quality of data collected (Legg and 

Nagy, 2006; Long, 2008; Thompson, 2004). Habitat suitability analysis tools can provide 

the groundwork for focusing survey efforts to sites of interest by taking the species’ use 

of the landscape into consideration. Habitat suitability models (HSM) calculate the 

likelihood of an area being a suitable habitat for the target species. Broadly, HSMs 

encompass many different spatial analysis approaches, but the common goal is to assess 

the probability of each cell within the study area in fulfilling the ecological requirements 

of the species in question (Anderson and Gonzalez, 2011). Information on these 

ecological requirements can be yielded from previous field monitoring of that area or 

neighbouring habitats, or by applying current understanding of the species’ ecological 

requirements from literature and expert knowledge (Anderson and Gonzalez, 2011; 

Araújo and Guisan, 2006; Majka, Beier and Jenness, 2007; Segurado and Araújo, 2004). 
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The output from these models can serve to highlight the areas where surveying could 

take place depending on the aims of the project. This is especially useful for identifying 

areas that animals are expected to use less frequently but are essential for the long-

term survival of a species, such as stepping-stones and corridors (Correa Ayram et al., 

2016; Schaffer-Smith, Swenson and Boveda-Penalba, 2016). Similarly, HSM can help 

locate survey sites for populations where very little is known about, rare or elusive 

species, and areas that have never been previously monitored. In such cases where 

monitoring data alone is insufficient to guide the survey design, HSMs can extrapolate 

that data to generate predictions of suitability across the landscape. As funds for 

conservation are limited in many parts of the world, project planning that aims to reduce 

the overall cost and duration of monitoring without sacrificing data yield will be key. 

 

1.5  Occupancy modelling 

Furthermore, in the case of rare and elusive species or in monitoring animals with 

expected low use from the target species, detection in the field will always be reduced. 

It is thus important that the survey methods, once the most appropriate study area is 

selected, are sensitive to these reductions in the likelihood of detection. Occupancy 

modelling is often used to tackle this issue of imperfect detections, as this approach 

employs survey repeats to calculate not only the probability of an animal being on site, 

but also the probability of detecting it if it is present on site (Mackenzie et al., 2002; 

Mackenzie and Royle, 2005). Occupancy modelling works under the assumption that the 

detection probability will be less than 1 (perfect detection, where the animal is always 

recorded when present on site). Similar to HSM techniques, occupancy modelling can 

take into account the landscape and anthropogenic influences on the animal’s use of 

the habitat, but it also considers survey-specific information (Comte and Grenouillet, 

2013; Mackenzie et al., 2002; Mackenzie and Royle, 2005). This can include any record 

taken during sampling that is unique to that sampling occasion and could affect the 

detection of the target species, such as the weather, time, surveyor, and other factors, 

depending on the survey type (Strimas-Mackey et al., 2020). Since occupancy modelling 

is based on undertaking repeated survey - thus increasing likelihood of detection if the 

animal is present in a particular area - it has proven especially useful when trying to 

understand the distribution of rare and elusive species (Perkins-Taylor and Frey, 2020; 

Peterman, Crawford and Kuhns, 2013; Thompson, 2004).  
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This thesis uses a case study to showcase the use of these three techniques: habitat 

suitability modelling; non-invasive genetic monitoring using iDNA; and occupancy 

modelling, as tools in conservation planning. The aim underpinning this project is to 

demonstrate the use of tools that can reduce the cost, time and effort in the field, 

without sacrificing on data yield and quality. Furthermore, non-invasive monitoring 

using aquatic eDNA paired with occupancy modelling has been used extensively 

(Dorazio and Erickson, 2018; da Silva Neto et al., 2020; Strickland and Roberts, 2019), 

but, to my knowledge, this is the first case study to generate an occupancy model using 

terrestrial iDNA data, although the need to explore it using case studies has been 

previously highlighted (Gogarten et al., 2020; Schnell et al., 2015). I present iDNA as a 

tool for single species monitoring and show its strengths and disadvantages as a stand-

alone survey technique compared to a complementary monitoring approach.  

 

1.6  The case study 

To successfully illustrate the methods outlined above, a few basic requirements were 

taken into consideration in selecting the study species and location. Firstly, to illustrate 

the benefits of using HSMs to select a suitable study area, the study species needed to 

be a wide-ranging animal the distribution of which is well-studied. This would allow for 

a comparison of the models generated with our already existing knowledge of the 

species’ range, to ensure that the models act as a suitable guide for the field. Secondly, 

to assess the effectiveness of iDNA as a single species monitoring tool, it was essential 

to select the target species for which other, comparable survey methods are present 

and used frequently to detect its presence. Additionally, to be able to assess the 

sensitivity of iDNA in detecting rare occurrences, the target species needed to be rare 

or elusive, or, alternatively, monitored across a habitat it is not expected to use 

frequently.  

 
Brown bears (Ursus arctos) fulfil all these requirements as their presence and ecological 

preferences have been well-monitored across much of their extensive range. 

Specifically, this case study focuses on the Eurasian brown bear (U. arctos arctos) and its 

distribution in Greece. Bears, as most large carnivores, are wide-ranging animals largely 
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dependent on large territories, which makes them especially vulnerable to habitat loss 

and fragmentation. In the nineteenth to early mid-twentieth century, habitat loss paired 

with hunting in Europe caused large declines and local extinctions in all four large 

European carnivore species: Eurasian brown bear, grey wolf (Canis lupus lupus), Eurasian 

lynx (Lynx lynx) and wolverine (Gulo gulo)(Boitani and Linnell, 2015; Chapron et al., 

2014). Due to large pan-European conservation initiatives, changes in legislation (inc. 

Bern Convention of 1982, Habitats Directive of 1992) and local conservation efforts, the 

majority of large carnivore populations are now recovering, with some showing habitat 

expansion and even recolonisation of previous ranges (Boitani and Linnell, 2015; 

Chapron et al., 2014; Kaczensky et al., 2021, 2012a). This range expansion, realised 

despite ongoing habitat fragmentation as a result of human development, poses a new 

challenge in the conservation of large carnivores. Long-term conservation strategies are 

focusing on protecting large expanses of core habitats as well as improving stepping 

stones and corridors to prevent population bottlenecks (Bennet, 1999; Hendry et al., 

2003). This focus on protecting habitat linkage zones has been in the forefront of bear 

conservation strategies in Europe, in an effort to tackle the effects of habitat 

fragmentation and preserve genetic diversity (Karamanlidis et al., 2012; Mateo Sánchez, 

Cushman and Saura, 2014; Mateo-Sánchez et al., 2015b, 2015a; Pylidis et al., 2021). 

 
Bears, amongst other large carnivores, are habitat generalists and often labelled as 

‘umbrella species’ (Dai et al., 2021; Mateo Sánchez, Cushman and Saura, 2014; Wang et 

al., 2018). Having such broad habitat requirements and large territories, they are often 

the first animals to be affected by fragmentation, but it also means that by focusing 

conservation efforts on the habitats they inhabit a large diversity of other species are 

also protected (Crespo-Gascón et al., 2019; Linnell, Swenson and Andersen, 2000). 

Additionally, brown bears display a well-studied tolerance to human disturbance, 

making them more likely to use patches of land between suitable habitats and even 

become habituated (Mattson, 1990; Mertzanis et al., 2005). Furthermore, the range and 

ecological requirements of bears, and especially brown bears, have been studied 

extensively across their global distribution (Brooke et al., 2014), including research 

focusing specifically on U. arctos arctos, providing a good foundation for the HSM 

analysis. To add to that, a recent study of the distribution of brown bear across Europe 

was conducted by collating data from each county’s monitoring efforts, allowing for a 
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baseline of distribution that nationally-focused HSMs could be compared against 

(Kaczensky et al., 2021). Finally, bears are monitored using a variety of methods, from 

invasive techniques such as telemetry, to non-invasive methods such as trail cameras, 

hair trapping and scat surveys. Here, scat surveys were chosen as the most comparable 

method to iDNA monitoring since they can both be conducted during the same sampling 

session. 

 
1.7  Study area 

Since single species monitoring using iDNA is a novel method, brown bears are ideal as 

the case study species because detection in areas of high population density was highly 

probable using standard methods and thus expected to yield results with iDNA as well. 

However, another aim of this project was to test the use of iDNA in monitoring rare or 

elusive species. Even though brown bears are not often put in this category of animals, 

rare detection can still occur when monitoring areas outside core populations. Corridors 

and stepping stone habitats are used more infrequently in search of food and mates, 

creating a mosaic of occupancy across the landscape. This study focused on the brown 

bear range in Greece and the first part of the project, the HSM analysis, was conducted 

to look for these areas that displayed a variety of habitat suitabilities and suggested a 

gradient of habitat use.  

 
U. arctos is the most abundant large carnivore in Europe, present in 22 countries and 

numbering up to 17,000 individuals across ten main populations: Scandinavian, Karelian, 

Baltic, Carpathian, Dinaric-Pindos, Eastern Balkan, Alpine, Central Apennine, Cantabrian, 

and Pyrenean (Boitani and Linnell, 2015; Kaczensky et al., 2021, 2012a). Greece hosts 

the southernmost range of brown bears in Europe, with two genetically distinct 

populations, the western and eastern population (Mertzanis et al., 2008; Pylidis et al., 

2021). Both populations are thought to be growing and brown bears in Greece have seen 

a population increase over the last 50 years, recently estimated between 350-400 

(Karamanlidis et al., 2015) and 500 individuals (Pylidis et al., 2021) across the country. 

The western population forms the southernmost portion of the Dinaric-Pindos 

population, stretching from Slovenia to Greece. The Eastern population belongs to the 

East Balkan population and is mostly confined within the Rhodope Mountain range and 

surrounding habitats (Kaczensky et al., 2012b; Pylidis et al., 2021). The two populations 
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were thought to be geographically fragmented, with the closest stretch between them 

in North Macedonia, but a recent study from Pylidis et al. (2021) showed evidence of 

individuals with admixed ancestry, suggesting a small genetic linkage between the two 

core populations. A connectivity pilot study conducted by Savvantoglou (2016) 

highlighted potential linkage zones between the two core areas as well as future sites of 

natural recolonisation.  

 
As bear populations are recovering in Greece, it is important to monitor those corridors 

and understand the movement of bears across the landscape. Habitat suitability 

analyses allow for a closer look at the landscape’s capacity to host viable bear 

populations and highlight potential areas of connectivity and recolonisation as the 

population continues to increase (Majka et al., 2007). With regard to monitoring bears 

using iDNA, the suitability models can be used to highlight sections of their distribution 

in Greece that offer instances across the gradient of habitat use, from core areas of high 

bear density to corridors and recolonised sites with more rare occurrences.  

 

1.8  Study aims 

The aims of this thesis therefore are to provide a robust assessment of iDNA as a tool 

for elucidating the distribution and habitat preferences of large mammals, using the U. 

arctos arctos as a case study. In the next chapter I use and evaluate multiple habitat 

suitability modelling techniques to define a suitable test landscape for evaluating iDNA, 

these provide a baseline against which I assess the efficacy of iDNA based distribution 

modelling. In chapter 3 I describe the development of the iDNA assay and chapter 4 

illustrates how iDNA can perform to provide the data which underlies spatially-specific 

occupancy models for bear populations. Finally, in chapter 5, I discuss the potential and 

limitations of iDNA as a tool for use in conservation projects both those concerned with 

bears and more broadly. 
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Chapter 2: Look for the (Greek) bear necessities: habitat suitability 
assessments for brown bears (Ursus arctos) across their range in 
Greece 
 

 

Introduction  
Conservation in fragmented habitats: fighting the odds 
 
In recent years, large European carnivore populations have been stable and even increasing 

populations in the majority of their range (Chapron et al., 2014; Kaczensky et al., 2012a). 

European populations of Eurasian brown bear (Ursus arctos arctos), grey wolf (Canis lupus 

lupus), Eurasian lynx (Lynx lynx) and wolverine (Gulo gulo) are increasing in numbers and 

expanding their range, colonising habitats from which they have been absent for decades 

(Boitani and Linnell, 2015; Chapron et al., 2014; Kaczensky et al., 2012a). Nevertheless, 

carnivore population growth often results in range expansion of these animals into areas 

more densely populated by humans. Conservation efforts focus on promoting human-wildlife 

coexistence, ensuring a peaceful integration of these animals as they expand their range near 

settlements and farmlands. Most European landscapes are a complex mosaic of suitable 

habitats and inhabited areas (including urban and rural settlement areas, farming and 

complex road networks), making it a conservation priority to study the relationship species 

have with their landscape (Psaralexi et al., 2022; Langen et al., 2017). Habitat Suitability 

Models (HSM) provide insights into the relationship a species has with its surroundings and 

predict areas the species is most likely to use. The evaluation of species’ habitats is essential 

for conservation and this necessity is reflected in the increasingly high presence of GIS 

analyses in species reports and action plans (e.g. Kaczensky et al., 2012b; Mateo Sánchez, 

Cushman and Saura, 2014; Mertzanis, Psaroudas and Karamanlidis, 2020; Posillico et al., 

2004). This chapter assesses European brown bear (Ursus arctos arctos) habitats in Greece by 

comparing two different approaches to suitability modelling to obtain a more comprehensive 

picture of the suitability mosaic across their range and potential areas of future 

recolonisation. 
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Habitat Suitability Modelling 

 
Advances in remote sensing software and the development of open-source spatial analysis 

tools has meant that habitat suitability modelling and corridor studies have become a 

common tool in species conservation (Araújo et al., 2019; Elith and Graham, 2009). Software 

and specialised packages specifically created for modelling species distribution and habitat 

suitability (e.g. MaxEnt, ArcGIS Pro, CorridorDesigner, ENMeval in R) and wildlife corridors 

(e.g. The Circuitscape Project, CorridorDesigner, Life Mapper, Conefore, Unicor, etc; reviewed 

by Correa Ayram et al., 2015) are becoming increasingly accessible, open source, and, in some 

cases, require minimal training. In this study I used a combination of R packages, a maximum 

entropy method (e.g. MaxEnt; (Phillips et al., 2006)), and ArcGIS software to create a 

collection of suitability models and highlight the importance of different environmental 

variables in predicting suitable habitat and potential corridors for brown bears in Greece. In 

this chapter I identify the ecological requirements of brown bears as highlighted in the 

literature that are relevant to the study area and test their significance in predicting brown 

bear habitat suitability in Greece. 

 
Habitat suitability modelling software makes predictions by assessing the relationship 

between the input data and different environmental variables. These modelling tools can be 

broadly categorised into two types according to the input data they require. The first type 

uses occurrence data to reveal a species’ ecological requirements and then inspects the 

landscape to find areas where those characteristics are present. The second type relies 

instead on the prior knowledge the species’ ecological requirements, drawing information 

from literature and expert knowledge to draw a habitat scoring system. For the purposes of 

this study, I will hereafter use the terms Species Presence (SP) and Habitat Suitability Index 

(HSI) to describe type one and two respectively.  

 
Species Presence models: 

Species Presence (SP) model require an occurrence data set (presence-only) of the target 

species collected via sign surveys, GPS locations of telemetry collars, sightings, camera trap 

observations, etc. These data are combined with a set of environmental layers that are 

assumed to affect the species distribution. Large-scale habitat suitability modelling often 
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relies on environmental variables such as elevation, topography, climate and land cover or 

soil types, as well as anthropogenic variables, especially when it comes to small-scale and/or 

finer resolution modelling (Bellamy, Scott and Altringham, 2013; Chauvier et al., 2021; Condro 

et al., 2021; van Gils et al., 2014, 2012; Lennon, Greenwood and Turner, 2000; Rödder et al., 

2021) . These environmental layers are tested for correlations to avoid over-prediction biases 

(Brown, Bennett and French, 2017; Elith and Graham, 2009). Once the best candidate layers 

are identified, they are tested against the occurrence data and a habitat suitability model is 

created, informed by the location the species was present in. The process is straight-forward 

and, given an occurrence dataset that is representative of the species’ behavioural ecology, 

the resulting model can provide a very good understanding the study area’s suitability for the 

target species. 

 
Species Presence models are based on the principle that the probability of a species occurring 

in a cell is a function of the abiotic environmental variables a in that cell (Anderson et al., 

2011; Elith et al., 2006). In other words, an SP model identifies cells in the study area that 

have similar characteristics to localities where the species has been observed. A variety of 

techniques are available for Species Distribution Model (SDM) studies, reviewed in detailed 

in Elith and Graham (2009) and Elith (2006). This study utilised one of the most prevalent 

species distribution modelling tools, MaxEnt, an ecological niche modelling software 

developed by Phillips, Anderson and Schapire, (2006), which has been shown to outperform 

other ecological niche modelling tools (Hijmans and Graham, 2006; Su, Bista and Li, 2021) 

with evidence of it being suitable even given a small set of occurrence records (Dudik and 

Phillips, 2008). 

 
A benefit of using the MaxEnt algorithm in species distribution studies is that MaxEnt can 

introduce transparency to the selection of the most valuable predictors for species 

distribution, thus allowing to removal of less important variables from the analysis and 

creation of more parsimonious models, shown to be more resistant to over-fitting (Anderson 

and Gonzalez, 2011). In fact, given an a priori selection of initial variables thought to predict 

the species’ distribution and a subsequent test of collinearity between those predictors allows 

for a small set of non-collinear predictors to be used for each SDM. Additionally, further 

removal of predictors guided by MaxEnt results can advise a hierarchical procedure for 
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making a posteriori decisions on removing predictors from the analysis based on their 

contribution to the test’s gain (Elith and Graham, 2009; van Gils et al., 2014). The SP modelling 

work outlined in this chapter followed a similar step-wise assessment of the predictor 

variables focusing on the annual distribution of brown bears in Greece. The distribution 

models were focused on three broad categories of variables: topographic, land cover and 

human impact, and highlighted the importance of each of these categories in describing bear 

distribution in Greece.  

 
 
Habitat Suitability Index models 

One of the more challenging aspects of creating distribution models using occurrence data is 

that presence records can often draw a less representative picture of a species’ habitat 

preferences. Although studies have shown that Species Presence models can perform a 

reliable analysis with a small amount of occurrence data (Elith et al., 2006; Hernandez et al., 

2006, 2008), the data itself can be highly biased. Elusive or rare species, or even the lack of 

funds, can potentially prevent the collection of sufficient or unbiased data for the generation 

of robust models (Thompson, 2004). In these cases, a different approach, based on expert 

knowledge may be more effective, whereby the species presence data used in the previous 

method is replaced by our current understanding of the species’ behavioural ecology. Habitat 

models are thus derived by analysing the knowledge of specialists of the likelihood of a 

specific set of circumstances serving as suitable habitat. The collection of expert knowledge 

involves rigorous literature reviews and the advice of experts who have observed the species 

in the field. The understanding of a species’ habitat preferences is collated to create a 

suitability index whereby variables are evaluated and ranked according to their suitability for 

the target species.  

 
HSI models essentially replace the information drawn from the occurrence data points 

collected in the field with prior knowledge about the species’ ecological behaviour. The 

analysis is carried out by manually inputting these ecological preferences into the 

environmental variable analysis and creating a suitability scale for each of the variables. The 

final model combines those variables into one suitability model that depicts what expert 

opinion and previous literature has found to be a suitable condition for the target species.
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Method comparisons 

HSMs can be presented as a binary prediction landscape, showing all values above a certain 

suitability threshold as ‘suitable’ and values below that threshold as ‘unsuitable’, or a gradient 

suitability landscape, showing a range of different suitabilities across the study area (Majka, 

Beier and Jenness, 2007). Both types of HSM maps are used in this chapter, as the binary ones 

are more suitable in model comparisons, while the gradient maps reveal information on less 

suitable areas that may still act as corridors or stepping-stones (Majka, Beier and Jenness, 

2007; Walker and Craighead, 1997). Binary models have been more common in literature for 

U. arctos in Europe (Chapron et al., 2014; Kaczensky et al., 2021, 2012b) as they are a very 

clear way to depict suitable sites, flag conservation sensitive areas and prioritise habitat 

management. However, binary models fail to show the dynamic change in habitat use by the 

species across the gradient of suitability. While it is important to understand the location of 

core habitats that are clearly revealed in binary models, the more nuanced understanding of 

habitat use gets lost. HSMs showing the gradient suitability can reveal a lot more information 

about the use of the entire landscape by the animal, ranging from completely avoiding an 

area to successfully breeding in it (Majka, Beier and Jenness, 2007). Furthermore, the maps 

essentially show the permeability of the landscape, allowing for the creation of corridor 

predictions and potentially, showing how the animals can move between core areas. Species 

action plans looking at the long-term conservation of species in fragmented landscapes are 

often focused on preventing genetic bottlenecks and creating or maintaining linkages 

between core habitats (Clevenger, 2012; Loro et al., 2015; Walker and Craighead, 1997), 

highlighting the necessity for habitat suitability modelling efforts. 

 

Analysis resolution 

A common practice in habitat suitability modelling is to resample the environmental variable 

dataset to the largest cell size present (e.g. Gastón et al., 2017; van Gils et al., 2014). However, 

corridor modelling and management regimes could benefit from the preservation of the more 

fine-scale variables, as literature suggests that cell size can influence the relationships 

between variables and affect the resulting models (van Gils et al., 2012; Gotelli, 2003). Studies 

looking into the response of bears to climatic variables (e.g. Bojarska and Selva, 2012; van Gils 

et al., 2014) reveal strong correlations with elevation and vegetation cover layers, thus 
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making it difficult to decipher the direct impact of climatic variables to bear distribution at a 

finer scale. For that reason, climatic layers were excluded from the models described in this 

chapter.  

 
 
Chapter aims 

This chapter follows basic principles for collecting and preparing appropriate datasets for 

habitat suitability modelling to generate suitability predictions for the European brown bear’s 

range in Greece, following guidance from similar studies in the sub-Mediterranean climate. 

The two above-mentioned approaches are used to generate a series of HSMs and compare 

their outputs. The HSMs focus on creating parsimonious models using variables available 

online so that the methodology presented here can be easily transferable to other species. 

Using bears as a case study, this chapter presents a workflow that focuses on: 

 

1. Creating suitability predictions using two different HSM approaches in both a binary 

(suitable/unsuitable) and a suitability gradient format. 

2. Comparing the resulting models to understand areas of agreement and divergence. 

3. Comparing the resulting models with the current known distribution of the target species as 

presented in Kaczensky et al. (2021). 

4. Using gradient maps to provide a more detailed understanding the distribution of the species 

within the study area. 

 

Ultimately, the work outlined in this chapter presents a series of habitat suitability 

assessments to create a more comprehensive image of predicted bear distribution and 

habitat use in Greece as well as to identify suitable habitats across the Greek mainland for 

brown bears in their current range and in areas of future colonisation. However, the focus 

was on creating a methodology that can be easily transferable to a species where less is 

known about, whether there is a gap in literature on the specie’s ecology, or a lack of records 

data. The SP modelling methodology is focused on using methods and selection processes 

that limit the a priori decisions based on understanding the animal’s ecology, while the HSI 

analysis presents a detailed example of utilising expert knowledge to gather information on 

habitat suitability. 
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Methods  
Study area 
The habitat suitability analysis in this study covered the Greek brown bear range as described 

in Kaczensky et al. (2021) (Figure 2). The study area also includes small parts of neighbouring 

Balkan countries (Albania, North Macedonia, and Bulgaria) in the north. The study area 

totalled 328,340 km2. 

 
 

 
Figure 2. Distribution of bears the period 2012-2016 as described by Kaczensky et al, (2021) for the IUCN assessment of 
population figures for the European brown bear. Dataset available under 'COO 1.0 Universal (CCO 1.0) Public Domain 

Dedication' licence. 
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Modelling Variables  

The habitat suitability models were created using the same variables to allow for a direct 

comparison between the two resulting models. To maintain our efforts to use this method as 

a preliminary, no-cost evaluation of the habitat, the candidate variables used were either 

freely available from an online source or created using a pre-existing layer and further spatial 

analysis. A list of the variables and their source, type and resolution is provided Table 1. 

 
Table 1. Environmental layers used for the HSMs, categorised by their broader groups and listing their source, data type and 
raster resolution. 

Predictor group Predictor Data type Source 
Resolution 

(metres) 

Topography 

Elevation Continuous 
EU DEM, Copernicus, European Environmental Agency 

(EEA) 
30 x 30 

Topography Categorical 
Derived from elevation raster using the Corridor Designer 

toolbox on ArcMap 10.7 
30 x 30 

Land Cover Land cover Categorical 
Corine Land Cover (CLC) 2018 - Copernicus, European 

Environmental Agency (EEA) 
100 x 100 

Human Impact 

Distance from 

urban areas 
Continuous Euclidean distance from CLC 2018 classes 1.1.1 - 1.2.1 30 x 30 

Distance from 

roads 
Continuous 

Euclidean distance form major roads derived from 

OpenStreet Map (data licensed under the Open Data 

Commons Open Database Licence (ODdL) 

30 x 30 

 
 
 
Topography 
Topography variables were comprised of two datasets: elevation and topographic position. 

The elevation raster (EU-DEM v1.1, tiles E50N20 and E50N10, European Environment Agency) 

was used to create a variable reflecting bear preferences of the topographic composition of 

the terrain. The Topographic Position raster was created using the Corridor Designer toolbox 

for ArcMap10.7 to split the landscape into four categories: ridgetops, flat/gentle slopes, steep 

slopes and canyon bottoms (Majka, Beier and Jenness, 2007). 

 



 37 

Land cover 
Corine Land Cover (CLC; EEA, 2018) is a European-wide dataset mapping the extend of 44 land 

cover classes. It was chosen for this study to allow for a uniform cover of the study area, taking 

into account that parts of it fall in neighbouring European countries.  

 
Human Impact 
The ‘Distance from urban areas’ raster was created by measuring the Euclidian Distance 

(ArcMap 10.7) of the Urban Fabric category (CLC 1.1.1-1.1.2) and Industrial, Commercial and 

Transport Units (CLC 1.2.1-1.2.4) of the Corine Land Cover 2018 dataset. These urban classes 

were selected to represent an urban raster with the most important anthropogenic 

disturbances in the land cover mosaic. Other artificial sites represented by the categories 

‘Mine, dump and construction sites’ (CLC 1.3) and ‘Artificial, non-agricultural vegetated areas’ 

(CLC 1.4) were not included in the urban area mosaic due to their less consistent (for example, 

ski resorts which are often only active in Greece between December and March that coincides 

with the bear hibernation period in the south of Europe (Swenson et al., 2007)) use or 

reported use by bears (see (Elfström et al., 2014a) for example of bear use of dump sites).  

 
Road network datasets for the four countries within the study area were derived from 

OpenStreetMap (data licensed under the Open Data Commons Open Database Licence 

(ODdL)) and the major roads (motorway, primary, trunk and associated links) were used to a 

create ‘distance from major roads’ raster (Euclidean distance tool, ArcMap 10.7). 

 
Raster resolution 

All variables were resampled to the same cell size, creating a raster dataset min which was 

resampled to match the highest resolution on the set of variables (elevation raster, cell size: 

30 x 30 m).  

 
Managing correlated environmental variables 

In order to maintain an easily transferable SDM methodology, using bears as a case study, the 

decisions on what variables to include when correlations were present were not made on an 

‘a priori’ selection based on the species’ habitat requirements. Instead, to account for the 

method transferability to a much less studied species, the variable selection was advised by a 

collinearity analysis by looking at the Variance Inflation Factor (VIF). The analysis was ran on 
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the R ‘usdm’ tool (Naimi et al., 2014), using a VIF threshold of 3 as described by Bellamy, Scott 

and Altringham, (2013). This analysis goes through a stepwise variable removal by looking at 

the linear correlations between pairs of variables above the VIF threshold and excludes the 

most highly collinear variables (Naimi et al., 2014).  

 

 
 
Species Presence model 
 
Bear presence data  

Telemetry GPS tracking data were provided by the Environmental Organization for Wildlife 

and Nature, Callisto. The dataset comprised of 77,211 GPS locations collected using GPS/GSM 

(FOLLOWIT) radio-collars that were fitted on a total of 27 bears between 2003 and 2013.  

 
A number of steps were taken to reduce any bias associated with the data.  Firstly, in the two 

datasets where the quality of the GPS signal was recorded (2D or 3D), only the 3D points were 

kept, following findings by Lewis and colleagues (2007) which demonstrated that removing 

all 2D data from their GPS collar dataset resulted in the most accurate dataset. Secondly, all 

remaining data (77,211 GPS points) was merged into one shapefile, 169 location duplicates 

were removed (77,042 points remaining) and ‘thinned’ using the ‘Spatial Rarefy Occurrence 

Data for SDMs’ tool in the SDM Toolbox 2.4(Brown, Bennett and French, 2017). To account 

for the complexity of the terrain, the GPS data was thinned using a topographic heterogeneity 

raster. This raster was generated from the elevation raster (European Digital Elevation Model 

(EU-DEM), version 1.1, European Environment Agency (EEA)) using the tool ‘Calculate 

Topographic Heterogeneity’ which illustrates the heterogeneity gradient of the landscape by 

comparing differences in the values of neighbouring cells (Figure 3). The rarefying tool on 

SDM toolbox calculates a distance matrix and uses a non-random process to systemically 

remove the closest cluster points first, then re-evaluates that distance matrix until all points 

are removed at the specified search distance. When a heterogeneity raster is present, the 

tool uses the heterogeneity gradient to split the rarefying distances into a chosen number of 

groups (here, three; 90m, 180m and 270m) that reflect the complexity of the terrain. A 

smaller rarefying distance is used in areas where the complexity is high, resulting in more 

occurrence points being retained in those more heterogenous areas. Contrastingly, where the 



 39 

terrain is more homogenous, a larger rarefying distance is used, discarding a larger amount 

of occurrence points in those areas. The thinning distance of 90 m was chosen by averaging 

the minimum estimated home range for females and minimum estimated home range for 

male brown bears (Kaczensky et al., 2003; Kanellopoulos et al., 2006; Mertzanis et al., 2005).  

 

The species presence data thinning process using the topographic heterogeneity raster 

retained 4,459 occurrence points, minimising the likelihood of carrying over bias associated 

with autocorrelation and over-thinning data in more heterogeneous regions of the landscape. 

 

 

 
Figure 3. Topographic heterogeneity raster across the study area, used to spatially rarefy the occurrence data. Areas of high 
heterogeneity retained more occurrence points, while larger thinning distances were used for the more homogenous areas, 
resulting in further reduction of occurrences where the landscape is less complex. 

 
 
Sampling Bias files for SP models: 
To minimise bias related to the background data (pseudoabsence points) selection, a bias 

model for each model resolution (max and min) was generated using the Kernel Density 

analysis in the R package ‘GISTools’ (Pérez-Goya U et al., 2020). The function uses the 

occurrence data to create a two-dimensional kernel density raster and is used to constrict the 

MaxEnt data analysis to areas within a given radius (here, 30km) of the presence points. 
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The final analysis for each SP MaxEnt model was carried out in R and the parameters used for 

each model were selected using the package ENMeval (Muscarella et al., 2014). This runs the 

MaxEnt analysis across the entire range of parameter options within the algorithm. The 

analysis compares the Aikake Information Criterion (AIC) values to point out to the model 

with the lowest AIC value (Warren and Seifert, 2011), revealing the parameters that will 

create the model with the best fit and predictive ability. Once the most suitable parameters 

were identified for each model, the MaxEnt analysis was carried out using maxent.jar (Phillips, 

Anderson and Schapire, 2006; Phillips and Dudík, 2008) in R Studio using the ‘Dismo’ package 

(Robert J. Hijmans et al., 2020). Each test included a Jackknife analysis of test gain for each 

variable, to highlight any variables in the model the removal of which would result in a larger 

test gain. If such variables were identified, they were removed from the analysis to arrive at 

the most parsimonious model. An overview of the MaxEnt analysis workflow is shown on 

Figure 4. 

 

 
Figure 4. MaxEnt modelling workflow describing the process of selecting the most suitable MaxEnt parameter settings and 
eliminating variables that do not contribute, or contribute negatively to the model, to finally arrive to the most parsimonious 
species distribution model. 
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Habitat Suitability Index models 
The HSI models were generated based on the guidelines of the GIS tool CorridorDesigner, 

developed for the creation of habitat suitability assessments and corridor models (Majka et 

al. 2007) and operated within ArcGIS v.10.4.1 (ESRI, 2014) and performed using the Suitability 

Modeller in ArcGIS Pro v2.7 (Esri 2021).  

 
This process relies on an a priori index of a habitat suitability scores for each of the variables 

(see (Majka, Beier and Jenness, 2007). These scores ranged from 0, representing unsuitable 

habitat, to 100 being the highest suitability score (Figure 5), and were determined using the 

literature review from Savvantoglou et al. (2017) updated with the addition of recent 

literature.  

 
 

 
Figure 5. Biological interpretation of habitat suitability scores as defined by the CorridorDesigner team (Majka, Jenness and 
Beier, 2007). 

 

The variables and justification of suitability scores is detailed in Table 2 and 3.  For categorical 

variables (Topographic Position Index and Corine Land Cover) this was done by allocating a 

separate score to each variable category. Continuous variables were reclassified and 

converted to categorical variables to match zones within that variable’s range that have been 

identified by literature as important thresholds for bear use.
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Table 2. Habitat suitability values given to the CORINE layers and literature used to make the scoring decisions (Almpanidou et al., 2014; Bartoń et al., 2019; Brody and Pelton, 1989; Chapron et 
al., 2014; van Gils et al., 2014; Güthlin et al., 2011; Kanellopoulos et al., 2006; Kusak and Huber, 1998; Mertzanis, 1994; Mertzanis et al., 2006, 2008, 2005; Savvantoglou et al., 2017; Whiteman 
et al., 2017).  

CLC category CLC code CORINE Layer 
Suitability 
score 

Justification 

1. Artificial surfaces 1.1-1.4.2 Urban areas (codes 1.1 to 1.4.2) 0 Areas of high human activity 

2. Agricultural areas 

2.1.1 Non-irrigated arable land 50 Occasionally used for feeding, but not suitable for breeding 
2.1.2 Permanently irrigated land 30 Occasional feeding areas, but not suitable for breeding. 
2.1.3 Rice fields 10 Not suitable 
2.2.1 Vineyards 30 Potentially occasional feeding areas, but not suitable for breeding. 

2.2.2 Fruit trees and berry plantations 30 
Very good source of food, but plantations associated with intensive 
agriculture. Occasional visits. Not suitable for breeding 

2.2.3 Olive groves 0 Unsuitable food source. Not suitable for breeding 
2.3.1 Pastures 50 Occasionally used for feeding, but not suitable for breeding 
2.4.1 Annual crops associated with permanent crops 30 Occasionally used for feeding, but not suitable for breeding 
2.4.2 Complex cultivation 30 Occasionally used for feeding, but not suitable for breeding 

2.4.3 
Land principally occupied by agriculture, with 
significant areas of natural vegetation 

60 Frequent use for feeding, possible breeding potential 

3. Forest and 
seminatural areas 

3.1.1 Broad-leaved forest 100 Consistent use for feeding and breeding 
3.1.2 Coniferous forest 80 Consistent use for feeding and breeding 
3.1.3 Mixed forest 90 Consistent use for feeding and breeding 
3.2.1 Natural grassland 60 Frequent use for feeding, possible breeding potential 
3.2.2 Moors and heathland 60 Frequent use for feeding, possible breeding potential 
3.2.3 Sclerophyllous vegetation 60 Frequent use for feeding, possible breeding potential 
3.2.4 Transitional woodland shrub 50 Occasionally used for feeding, but not suitable for breeding 
3.3.1 Beaches, dunes, and sand plains 0 Not suitable 
3.3.2 Bare rock 80 Consistent use for feeding and breeding 
3.3.3 Sparsely vegetated areas 20 Bears might cross in search for good habitat types 
3.3.4 Burnt areas 0 Not suitable 

4. Wetlands 4.1.1 Inland marshes 20 Bears might cross in search for good habitat types 
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5. Water bodies 
5.1.1 Water courses 0 To prevent the tool from drawing suitable habitat on river surfaces 
5.1.2 Water bodies 0 As 5.1.1 

 Other Other land cover types from CLC 0 Missing CLC habitat types were not present in the study area 

 
 
Table 3. Habitat suitability category scores of elevation zones, topography type and distance form major roads and urban areas and literature used to make the scoring decisions (Bartoń et al., 
2019; Brody and Pelton, 1989; Elfström, Swenson and Ball, 2008; van Gils et al., 2014; Kanellopoulos et al., 2006; Kusak and Huber, 1998; Lewis et al., 2011; Mattson, Knight and Blanchard, 
1987; Mertzanis et al., 2006, 2011, 2005; Roever, Boyce and Stenhouse, 2008; Savvantoglou, 2015; Whiteman et al., 2017). 

Layer Classifications 
Suitability 

score 
Justification 

Elevation (m) 

0 - 400 20 Rarely used in search of food  
400 - 800 60 Frequent use for feeding, possible breeding potential 
800 - 1700 100 Ideal altitudinal range 
1700-2889 50 Tree line ends and alpine vegetation begins. Occasionally used for feeding 

Topographic 
Position 
(slope) 

Canyon bottom 40 Based on observations due to lack of data on this type of landscape structure in Greece 

Flat-gentle slope 80 Less energetically costly. Consistent use for feeding and breeding 

Steep slope 50 
Use for commuting between places. Narrow field of vision and energetically costly. Occasionally used for 
feeding, not suitable for breeding. 

Ridge top 90 Best field of vision. Path of least resistance. Consistent use for feeding and breeding. 

Distance 
from major 
roads (m) 

0 - 100 30 Mostly avoided, unless crossing.  
100 - 500 60 Frequent use for feeding, potential breeding  
500 and above 100 Ideal minimum distance  

Distance 
from urban 
areas (m) 

0 - 500 50 Infrequent feeding. Not suitable for breeding.  

 500 - 1500 60 Frequent use for feeding, potential breeding  
 1500 and above 100 Ideal minimum distance  
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The variables and allocated suitability scores were used to generate HSIs using a Weighted 

Suitability analysis in ArcGIS Pro. This analysis accounts for the different level of significance 

the input variables have on the species’ suitability by allocating weights to each of the 

variables. Two different weight models were selected in this step: a weight allocation based 

on expert knowledge, referred to here as ‘HSI_EK’ and a weight allocation informed by the 

species presence analysis, referred to as ‘HSI_PI’ and given by the Permutation Importance of 

its corresponding MaxEnt model of the ‘min’ resolution models. Figure 6 illustrates the basic 

methodology workflow of the EK model. Six different models were generated using the HSI 

approach to reflect their corresponding SP models (Figure 7). 

 

 
Figure 6. Flowchart of the Habitat Suitability Index modelling process, using ArcGIS Pro. 
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Resulting models and comparisons 

A total of three SP models and six HSI models were generated (Figure 7). 
 

 
Figure 7. Summary of the habitat suitability models and names. The colours correspond to the groups of variables used for 
each model. The model codes will be used throughout the chapter. 

 

All resulting models (SP and EK) were reclassified in ArcGIS Pro to match the biological 

interpretation of habitat suitability scores as described by (Majka, Beier and Jenness, 2007). 

The suitable patches (areas of suitability ≥ 50 used as default suitability threshold by the 

(Majka, Beier and Jenness, 2007)) were extracted and converted to polygons to calculate the 

suitable area predicted by each model. The corresponding suitable patches were compared 

by looking at the area cover (percent of study area covered by suitable patches predicted by 

each), suitable patch overlap (percent of study area predicted as suitable by both models), as 

well as the area covered solely by each of the models (percent of study area predicted as 

suitable by model a but not model b) (Figure 8). These four metrics were used to compare the 

model pairs.   
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Figure 8. A flowchart of the model analysis outlining the process following the model generation whereby the area covered 
by suitable habitat was calculated.  

 

In order to test the predictions against an existing dataset, the models were compared against 

the known bear distribution as described by Mertzanis in the European Report for the Status, 

Management and Distribution of Large Carnivores (Kaczensky et al., 2012b) using the updated 

distribution shapefiles for the period 2012-2016 provided by (Kaczensky et al., 2021) for the 

IUCN assessment of population figures for European brown bears. The dataset was available 

under ‘CC0 1.0 Universal (CC0 1.0) Public Domain Dedication’ licence and will be hereafter 

referred to as the ‘IUCN dataset’. Each of the models was compared with the IUCN dataset to 

reveal the areas where the two datasets overlapped (percent overlap), where the model in 

question predicted suitable areas beyond the extent of the IUCN dataset, and the areas where 

known distribution in the IUCN was not predicted as suitable by the model.  

 

Final models - Gradient Habitat Suitability models 

Finally, gradient models were used to present the suitability as associated with different uses 

of the habitat by bears (Figure 5) across the field site, highlighting the suitable patches, 

potential linkage areas and stepping stones (results of this described in Savvantoglou et al. 

2017), as well as areas of potential future recolonisation. The skeleton overview of the full 

methodology of this chapter is outlined in Figure 9. 
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Figure 9. Flowchart of the methodology skeleton of this chapter. 

 
 
Results  
Species Presence Models 
 

Following the resampling of the variable dataset to the finest cell size, the variables were 

tested for collinearity, aiming to remove one of two variables in a pair when their Variance 

Inflation Factor (VIF) was greater than three, to reduce over-prediction in the model. The VIF 

did not suggest any evidence of collinearity, so all variable predictors were considered. 

 
Following the collinearity analysis, the variables were used to run an ENMevaluate analysis, 

which informed the final model. The variables used for each model, as well as the feature 

types and regularisation multipliers used in each model specified by the ENVevaluate analysis, 
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are outlined in Table 4. Due to the extent of the study area (328,340 km2) and the fine 

resolution of the variables, these models were not able to run a full ENMevaluate analysis. 

Instead, a smaller sample area was used (850km2) to inform the models’ most suitable feature 

types and regularisation multiplier values. The resulting Training AUC of the final MaxEnt 

analysis for each model is shown in Table 4.  

 

Table 4. Overview of the models, variables used and ENMevaluate best model AICc, feature type and regularisation multiplier 
values, along with the best model's Training AUC after the MaxEnt analysis. Due to the fine resolution of the variables, the 
regularisation values and feature types for these models were determined by running the ENMevaluate analysis in a smaller 
sample region within the study area due to processing limitations of running ENMevaluate on the full dataset. 

Model type Variables used Model 
Feature 

types 

Regularisation 

multiplier 

Training 

AUC 

Topography • Elevation 
• Topography  

SP_tp LQHPT 0.5 0.73 

Land cover 
• Elevation 
• Topography 
• Land cover  

SP_lc LQHPT 0.5 0.75 

Human impact 

• Elevation 
• Topography 
• Land cover 
• Distance from urban areas 
• Distance from roads 

SP_hi LQHPT 0.5 0.80 

 

 
Binary Habitat Suitability models  

The three highest contributing variables for each binary model along with the permutation 
importance and shape of the response curve are listed in the Appendix (A.2. MaxEnt model 
outputs for the Species Presence models) along with the MaxEnt model raster output and 
model results as well as the Sensitivity vs 1-Specificity and Omission graphs, Jackknife analysis 
of mode gain, and the response curves for each SP model. The ‘min’ model permutation 
importance values used to inform the HSI permutation importance-weighted models (HSI_PI) 
as well as the model weights informed by literature and expert knowledge are shown in Figure 
10. The HSI_PI models relied heavily in elevation, while land cover was considered the most 
significant variable in the HSI_EK models, with the elevation weight in the PI models being as 
high as three times the value of the expert knowledge models. 
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Figure 10. Weights used for the Expert Knowledge models. HIS_EK: Expert knowledge models advised by the literature. HSI_PI 
models informed by the results of the Species Presence models' Permutation Importance values, while ‘tp’ refers to 
topographic layers, ‘land’ to the addition of the land cover variable to the models, and ‘hi’ to the addition of human impact 
variables (distance from major roads and distance from urban areas). 

 
The binary models were compared to reveal the differences in each model’s coverage and 
model overlap. Firstly, the Expert Knowledge models comparison with the Permutation 
Importance models (HSI_EK vs HSI_PI) produced the most similar predictions across the 
model types, with the Topographic models predicting nearly the exact same suitability 
patches (Figure 11). The Expert Knowledge models were compared to the Species Presence 
models with the high-resolution data (HSI_EK vs SP), suggesting a smaller overlap (from under 
60% for the topographic models to just over 22% for the Human Impact models (Figure 11). 
Overall, all model type predictions were consistent in generating more similar predictions 
when less layers were included in the models, with the overlap decreasing as the layers were 
added to the analysis (Figure 11). A full set of comparison results found in the Appendix, 
section A.3. Binary model comparisons. 
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Figure 11. Proportion of overlap (blue) and disagreement (green) between binary model pairs. HSI_EK vs HSI_PI: comparison 
of HSI models created advised by the Species Presence model’s Permutation Importance Values and ones created using Expert 
Knowledge. HSI_EK vs SP: comparison of HSI models advised by Expert Knowledge and high-resolution Species Presence 
models.  

 

 

Finally, the last comparisons aligned each model binary output to the known distribution in 

Greece, as described in the IUCN assessment of population figures for European brown bears 

(Kaczensky et al., 2021). The percent of overlap between the IUCN dataset and the model 

prediction in question as well as the areas covered only by one of the layers are shown in 

Figure 12. Additionally, in all model types, some of the predictions fell outside the IUCN 

dataset extent, with the SP_max adding the least amount of suitable areas outside the extent, 

and the HSI models (PI models followed by EK) predicting the largest areas of suitability 

outside the IUCN cover models and percent agreement with IUCN data in Figure 12 (area 

predicted only by the model in green). Table 15 detailing the results found in the Appendix, 

section A.3. Binary model comparisons.  



 51 

 
Figure 12. Binary suitability models (suitability ≥ 50) (in green) projected under the European brown bear distribution dataset (Kaczensky  et al., 2021, available under a ‘CC0 1.0 Universal (CC0 
1.0) Public Domain Dedication’ licence) (in orange). Brown showing where the two predictions overlap. Tables detail the model's performance in predicting suitable areas for bears in mainland 
Greece in comparison to the IUCN dataset (percent cover of study area by IUCN dataset = 44%), with A: percentage of Study Area (SA) covered by the model; B: percentage of SA covered only by 
the model; C: percentage of study area covered only by the IUCN dataset; and D: percentage of study area covered by both models.
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Gradient Habitat Suitability models 

The suitability gradient models show a larger degree of difference compared to the binary 

models. The gradients revealed by the Expert Knowledge models (HSI_EK) as well as those 

generated by the Species Presence models (SP) describe a more complex landscape of 

suitability (Figure 13 and Figure 15). The models created using the HSI method, but advised 

by the SP Permutation Importance values, presented a more simple landscape (Figure 14). 

The maps presented here are those of the Land Cover models that were created using 

elevation, topographic position and land cover type as adding human impact variables in the 

analysis created more inconsistent results across the three model types (large drop in percent 

overlap between the models) (Figure 11 and Appendix, Table 14).  

 

 

 
Figure 13. Habitat suitability gradient as predicted by the Expert Knowledge model using topographic and land cover layers 
(HSI_EK_lc).  
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Figure 14. Habitat suitability gradient as predicted by the Species Distribution model advised using topographic and land 
cover layers (SPlc). 

 
Figure 15. Habitat suitability gradient as predicted by the Expert Knowledge method, but weighting the  topographic and land 
cover layers as advised by the Permutation Importance (HSI_PI_lc). 

 
 
Moreover, the HSIs here reveal areas suitable to bears that are either not yet colonised by 

the species or where bears have been reported but are not currently considered areas of 
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permanent presence (Mertzanis, Psaroudas and Karamanlidis, 2020). These areas are 

highlighted in a binary model in Figure 16 using a model average of the Expert Knowledge 

land cover model (HSI_EK_lc) and the Species Presence land cover model (SP_lc) and overlaid 

on the IUCN dataset to highlight the areas outside the known distribution. 
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Figure 16. Binary average suitability of the HSI_EK and SP land cover models, showing regions and records of presence in suitable areas outside the known bear distribution as depicted by the 
IUCN dataset (Kaczensky et al., 2021). Records of presence as described in the National Action Plan for Ursus arctos (Mertzanis, Psaroudas and Karamanlidis, 2020), pointing at the areas of 
current reestablishment (frequent records) and occasional presence records (presence records) highlighting areas of future colonisation. 
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Discussion 
 
 
The work here aimed to obtain a reliable representation of habitat suitability for Greek 

bears as predicted by two broad suitability modelling techniques. The immediate 

purpose of the suitability models, and subsequent analysis of habitat connectivity was 

to advise the fieldwork conducted in the following chapters. Our second aim was to use 

bears as a case study species for comparing the predictions of species distribution and 

habitat suitability techniques that are transferable across species. We believe that this 

case study provides evidence that these two broad categories for suitability modelling, 

when optimised with the best available data (set of variables, presence data, available 

literature) can create comparable predictions, suitable to guide future field studies and 

advise management. Thus, we believe that this case study can encourage the use of 

suitability modelling under scenarios where data is lacking, such as in: 

1. Cases where less is known about a species, thus using Species Presence methods to 

explore suitability. 

2. Cases where a robust national-level dataset is not present, or study areas with no prior 

monitoring efforts, but where more is known about the study animal, therefore using 

expert knowledge methods to predict suitability. 

 

In this case, brown bears present a suitable candidate for comparing different modelling 

techniques as, in the cases of both modelling types (species presence and expert 

knowledge as the two broad categories), an abundance of information was available. 

The large dataset of telemetry records was able to represent the complexity of habitat 

use by bears in the Western core population. Additionally, brown bear ecological 

preferences and tolerance to human disturbance have been studied extensively in 

Europe and around the world, providing a very robust body of literature describing their 

response to the variables used in this analysis. In fact, brown bears are one of the most 

studied species in published literature, third only to red foxes, Vulpes vulpes, and wolves, 

Canis lupus (Brooke et al., 2014).  

 

Having a comprehensive understanding of a species’ ecological preferences means that 

it was possible for us to assess the outputs of the Species Presence models by comparing 

the species’ response to each environmental variable against our current understanding 
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of bear behaviour. Finally, the current distribution of bears in Greece is well-monitored, 

which made it possible to test the model predictions by comparing them with the known 

bear distribution as described by Kaczensky et al. (2021). Therefore, the assumption 

here was that using bears as a case study species meant that each model could be 

generated with a large degree of confidence in location data integrity and ecological 

preferences, while also having access to a distribution dataset with which to compare 

the outputs.  

 
Review of the comparisons between model pairs 

Overall, when looking at the entire set of pairwise model comparisons, the mean overlap 

(35.7%) exceeds the mean disagreement (24.3%) between the pairs, with very 

comparable medians (52% for the overlap and 48% for the disagreement), suggesting 

large differences between some of the models. The inconsistent predictions between 

the pairs highlight the sensitivity of these models to their input data and parameters 

used. Bias associated with each of the approaches used to predict suitable habitat in this 

study. In their review of existing literature and creation of a set of ‘Standards for 

Distribution Models in Biodiversity Assessments’, (Araújo et al., 2019) outline the best 

practice standards for SDMs. Each model’s quality is assessed by the four main aspects 

of the SDM analysis: 1. Response variables; 2. Predictor variables; 3. Model building; and 

4. Model evaluation. To maintain consistency in the interpretation and evaluation of the 

work carried out in this chapter, these four aspects will be discussed here.  

 

Response variables 

In SP models, telemetry data can introduce autocorrelation in the model due to the 

spatial and temporal proximity of the datapoints. Additionally, differences in behaviour 

between sexes or even individuals of the same species can introduce bias in the dataset. 

As an example, female bears (with or without cubs) tend to have restricted home ranges, 

while adult and subadult male bears establish larger territories that greatly exceed those 

of females (Gau et al., 2004; Kanellopoulos et al., 2006; Karamanlidis, Kopatz and de 

Gabriel Hernando, 2021; Mertzanis et al., 2005). Furthermore, individual behaviour 

might not necessarily reflect that of the species as a whole as differences in behaviour 

exist between individual bears (Hertel et al., 2019; Hertel, Swenson and Bischof, 2017). 

To reduce spatial dependencies between data points, the occurrence dataset is often 
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rarefied or thinned, creating a dataset with less occurrence data points in exchange for 

a reduction in autocorrelation (Boria et al., 2014; Veloz, 2009). Here, species occurrence 

records were collected in the form of telemetry data from GPS collars. The accuracy of 

the telemetry data was estimated to have a mean error of 30m (Giannakopoulos, 

Akriotis and Mertzanis, 2011; Mertzanis et al., 2011) and the spatial thinning of the 

dataset minimised bias concerning spatial autocorrelation (Aiello-Lammens et al., 2015; 

Brown, 2014). The SDM Toolbox (Brown, 2014; Brown, Bennett and French, 2017) 

provides two spatial rarefying solutions to reduce autocorrelation: data can be thinned 

either by removing occurrences using a set distance or by gradually filtering it using a 

heterogeneity raster (climatic, topographic of habitat heterogeneity). This latter 

rarefying method ensures more data is preserved in areas of high heterogeneity, thus 

better representing the movement of the species through the landscape. The 

occurrence dataset for this study was thinned using a topographic heterogeneity raster 

to reflect the elevation changes in the species’ range.  

 
Another issue with the occurrence data is that SP models can also be prone to bias 

associated with background point selection (also referred to as pseudoabsences). 

Background data in MaxEnt analysis is a set of randomly selected points (raster cells) in 

the study area that are used to train the model. In cases where background data falls 

too far away from the clusters of occurrence data, those cells can be falsely interpreted 

as areas of low suitability. This can easily occur for locations where the habitat is 

environmentally suitable, but the species has not colonised it yet or surveys failed to 

locate it in the area. Selecting pseudoabsence points from such areas might result in a 

misleading model (Anderson and Gonzalez, 2011; Barbet-Massin et al., 2012). The way 

background data sampling from across the study area could bias the model is that all the 

bears fitted with a telemetry collars in this dataset were situated in the western core 

population of brown bears in Greece, resulting in a dataset biased to the environmental 

conditions in that region of Greece. MaxEnt incorporates ‘bias files’ in the analysis, 

ensuring that background points are selected preferentially from areas of higher 

sampling density (Anderson and Raza, 2010; Phillips et al., 2009). Here, all models were 

run using bias files, restricting the background point collection using a kernel density 

layer of the occurrence points (Bellamy, Scott and Altringham, 2013; Brown, 2014). 
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When it came to the Expert Knowledge models, the challenge was to extract and assess 

the expert understanding and published work on a species’ habitat preferences that 

often varies depending on the aim, scale, season of the study and years of observations, 

which makes deciphering a representative suitability score particularly challenging. 

Furthermore, what might be suitable for a bear in one particular area might not be 

suitable in another as other underlying variables could be the driver for its selection or 

avoidance (as an example, hibernation season is different for bears in the north of 

Europe to the south (Swenson et al., 2007), suggesting that seasonal models would need 

to take great care in accounting for climatic differences across the species’ range). These 

inconsistencies in literature regarding habitat selection were initially managed by 

informing the models with studies from Europe and, when possible, from Greece or 

countries with similar climate (Mediterranean and Balkan countries). Given the large 

body of literature for brown bears, the resulting Expert Knowledge models were more 

consistent with what we know about bear distribution in Greece.  

 

Overall, we recognise the bias introduced by an occurrence dataset that does not 

represent the entire study area (Species Presence models) and potential 

inconsistencies/gaps in literature that may have resulted in inaccurate estimations of 

suitability scores (Expert Knowledge models) and believe that the measures taken were 

appropriate to create the most accurate models with the available data.  

 

Predictor Variables 

In the case of the predictor variable selection, variables already evidenced by previous 

literature as important factors for habitat selection by brown bears were chosen. The 

variables were tested for collinearity to ensure that no overprediction is introduced to 

the model. We are confident that the steps we took to select and prepare the variables 

for the study, coupled with the step-wise addition of variables (topographic, topographic 

+ land cover, and topographic + land cover + human impact) produced a good example 

of the SDM best practice standards (Araújo et al., 2019).  

 

Model building 

Both model types utilised commonly used methods to generate their prediction (MaxEnt 

for Species Present models and Weighted Suitability for Expert Knowledge models). As 
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discussed in the methods section, measures were taken to ensure that the best 

parameters for the MaxEnt models were used for each Species Presence model. The 

Expert Knowledge models were created using a standardised method in ArcGIS Pro and 

the inclusion of a set of EK models informed by the Permutation Importance values 

allowed for an alternative analysis whereby the suitability scores and weights were 

informed by the MaxEnt output for their corresponding Species Presence (SP) models. 

Rather than suggesting that a single model generated here displayed the most accurate 

prediction, we present a variety of models, all of which were created with the best 

practice standards in mind and showcasing these - often stark - differences between 

outputs.  

 

Evaluation 

Following the protocol from (Bellamy, Scott and Altringham, 2013), evaluations for the 

SP models were conducted by sample bootstrapping, allowing for ten iterations of each 

model to run, resulting in a final average model. The final model’s AUC was then used 

to demonstrate the model’s fit. As an additional way to evaluate the model outputs, 

both the large body of literature on bear ecology and the existence of a European-wide 

distribution dataset served as tools to assess each model’s predictions. The Species 

Presence models were assessed for their ability to reflect the patterns of habitat use by 

bears described in published literature.  

 

The EK evaluation is a little more complicated as the analysis is completely guided by the 

researcher’s selection of suitability scores and variable weights. Therefore, careful 

consideration of every decision taking in steps 1-3 will ensure a more reliable model 

based on a robust set of responses of the species to various environmental and 

anthropogenic factors.  

 

Additionally, the fact that multiple models were generated in this study allowed for an 

evaluation that incorporated comparisons between the model outputs. The pair-wise 

comparisons conducted in this study, as well as each model’s relationship with the IUCN 

dataset add another level of evaluation often missing from traditional SDM studies. It is 

worth noting that this European-wide dataset collated presence data from the period of 

2012 to 2016 to create a distribution map at a 10x10km resolution (for more 
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information, see Kaczensky et al. (2021, 2012a). Therefore, the IUCN dataset represents 

bear distribution across Europe in a much more coarse scale than the models in this 

study and some of the variance between the models created here and the European 

distribution dataset might be down to scale differences. As an overview of the best 

practice standards (Araújo et al., 2019) we are confident that the different datasets used 

in this study were processed appropriately to minimise bias in the data and methods 

used and create accurate predictions relative to the data and method used for each 

model. 

 
 
Species Distribution Model considerations 

Studies exploring the most appropriate spatial scale for SDM analysis have highlighted 

the importance of considering this factor carefully, ensuring that the selected scale 

represents the species and goals of the analysis (Addicott et al., 1987; Araújo et al., 

2019). Taking this into consideration, along with the fact that bears are large-ranging 

animals, the scale used here reflects not only the minimum resolution of the variable 

dataset, but also closely resembles the lower limit of female brown bear home range in 

Europe (Cirovic et al., 2015; Kanellopoulos et al., 2006; Mertzanis et al., 2005; Swenson, 

Sandegren and Soderberg, 1998). Therefore, we were confident that the spatial scale 

was appropriate for the study in terms of representing the species movement in the 

landscape in a fine scale and maintaining the landscape heterogeneity as represented 

by the DEM dataset (elevation). However, we would like to caution that, in the case of 

fine resolution models, computing power is a great limiting factor in data processing, 

adding a significant amount of time in the MaxEnt analysis. 

 

 

Comparison of Expert Knowledge and Species Distribution models 

Due to the different techniques used to generate the models, is hard to draw a definitive 

conclusion on the performance of the two methods. To account for this, the variable 

weights and suitability scores for each of the models were extracted from variable 

response curves and the permutation importance values of each Species Presence 

model. The resulting models (HSI_PI), generated in ArcGIS using the same method as the 

EK models, were thus more suitable for a direct comparison. Indeed, once the values 
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from the SP models were used to inform HSI_PI models, the outputs of the binary 

models resembled each other with as much as 99.98% overlap. This model similarity 

suggests that the differences in suitability scores and model weights in the HSI_PI 

models to the literature-derived information did not influence the model outputs to an 

extent that the predictions of the binary suitable habitat were altered. The results of this 

comparison indicate that the EK models was adequate in predicting suitable habitat in a 

very similar way to models informed by species response curves and the variable 

permutation importance generated with a SP model. 

 

However, it is also important to acknowledge the difference in the size and extent of 

suitable patches with the HSI method compared to the SP models. The HSI analysis uses 

purely landscape-specific data and no presence/pseudo-absence data are required, 

which allows for the analysis to be carried out evenly across the study area. Admittedly, 

presence data in SP models can improve the reliability of the design (Correa Ayram et 

al., 2015; Mateo-Sanchez et al., 2015), but it can also restrict the prediction by biasing 

the analysis with autocorrelated data and non-representative individuals of the species. 

The HSI method, even though it perhaps presents a more speculative approach to SDM 

and introduces a large amount of overprediction in comparison to the SP models, it 

evenly assesses the study area unbiased of where the species has been found previously. 

Arguably, some of these areas of overprediction falling outside the known bear 

distribution in Greece fulfil the ecological requirements set by the model and therefore 

could be suitable areas for future bear colonisation (discussed further in (Savvantoglou 

et al., 2017). 

 
Habitat gradient models 

The gradient models revealed a much more comprehensive overview of the habitat 

suitability for brown bears across Greece. While binary models are more straight-

forward to compare across the different methods, they do not portray the dynamic 

change of suitability across the landscape. Using a more diverse gradient of suitability 

ranges, it is possible to start making some assumptions on the type of use of that habitat 

by the animal in question. As outlined in Figure 5, high suitability scores are associated 

with consistent use and breeding, while lower scores can indicate habitats of used 

occasionally for activities such as feeding (Majka, Beier and Jenness, 2007). 
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Furthermore, this type of visualisation offers a better understanding of the areas that 

fall under the binary suitability threshold that could act as stepping-stones or corridors. 

Work done as a part of this project and described in Savvantoglou et al. (2017) reveals 

these potential corridors linking core areas and other smaller, newly recolonised zones. 

This is especially important, given the fact that conservation work has been carried out 

in Greece to improve connectivity within core areas dissected by major roads 

(Karamanlidis et al., 2012; Mertzanis et al., 2011). Understanding connectivity could be 

improved between core areas and predicting the future movements of bears into areas 

not currently colonised could drastically benefit bear conservation in Greece.  

 

The results of our gradient maps, especially those of the Species Presence models (SP) 

and Expert Knowledge models (HSI_EK) provide a good estimate of the suitability mosaic 

across Greece. Some areas highlighted in Figure 16 as potential future recolonisation 

areas have already had confirmed sightings of bears (Mertzanis, Psaroudas and 

Karamanlidis, 2020), proving that movement between these areas is not only possible, 

but it is already underway. This is another evidence that both modelling methods were 

effective at predicting suitability across the landscape at a level refined enough to 

provide valuable information for future management plans. We believe that the work 

presented here can provide a baseline suitability mosaic to advise monitoring in areas 

outside the core habitats, where less is known about the presence of bears and use of 

habitats. Surveys aiming to create a better on-the-ground understanding of bear 

occupancy in these areas could contribute to a much more comprehensive overview of 

bear distribution across Greece. 

 

The work outlined in this chapter explores the suitability mosaic across mainland 

Greece, as well as zones that could serve as linkages, and future colonisation areas. 

Suitability studies for bears in Greece have looked at suitability across smaller study 

areas such as the north-eastern part of the Pindos Mountain Range (Almpanidou et al., 

2014), or have looked at a more coarse scale across in European-wide studies (Kaczensky 

et al., 2021, e.g. 2012a). The most recent study looking at bear distribution across 

Greece was included in the National Management Plan for Ursus arctos report for the 

LIFE-IP 4 NATURA (LIFE16 IPE/GR/000002) programme (Mertzanis, Psaroudas and 

Karamanlidis, 2020). The study outlines the areas of range expansion between the years 
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2000 and 2015 as well as areas of permanent areas and areas of recent and future 

recolonisation (Mertzanis, Psaroudas and Karamanlidis, 2020). Here I present work 

complimentary to this report by exploring multiple methods for modelling suitable 

habitats and creating a fine-scale suitability gradient for U. arctos in Greece. The 

inclusion of the neighbouring countries in the north allows for the exploration of 

suitability and potential connectivity assessments in a cross-country basis so as to not 

falsely restrict dispersal to country borders. 

 

Additionally, while not included in this chapter, work conducted during this project 

carried out an initial exploration of the study area via an expert knowledge model as 

well as a subsequent habitat patch and corridor analysis and is described in 

(Savvantoglou et al., 2017). The results of that work assisted in revealing areas of 

dispersal potential and selecting a suitable study area for the work in following chapters. 

The corridor analysis case study was peer-reviewed and published in the 18th Hellenic 

Forestry Congress and has been appended in the Research Outputs section 

(Savvantoglou et al., 2017). 

 

 

Conclusion and thoughts on application of results 

 
The work conducted in this chapter allows for an analysis of our study area and an 

exploration in the habitat preferences of bears across their Greek range. This is, to my 

knowledge, the first species distribution modelling study for the Greek range of brown 

bears, incorporating differences in modelling outputs and datasets used. Our aim, for 

the purpose of this project, was to carry out habitat assessments that would aid the 

planning stage of the field surveys described later in thesis. However, the large body of 

literature in suitability modelling techniques prompted a more in-depth analysis of the 

study area, revealing a multitude of models and showcasing the sensitivity of these 

methods to changes in input data and parameters. Admittedly, it is important to 

acknowledge the large variation in predictions across the models and urge that these 

methods are be studied with much caution. 
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However, I strongly believe that habitat suitability models are invaluable at the planning 

stage of conservation efforts when it is essential to focus on modelling techniques that 

could be generated with a thorough understanding of the focal species’ ecology and 

behaviour or species occurrence records available from previous studies. In the case of 

EK models, their power lies in their simplicity and in providing a system of rapid 

examination of a large study area without the existence of prior field surveys can be 

ideal for the initial steps of a study.  

 

This study recognises that bears are an umbrella species and the more accurate the 

suitability predictions are for them, the more they will be able to envelop other species 

they share their habitats with. Ultimately, we hope that these models can be 

subsequently used to drive conservation management plans for bears and the wider 

community of organisms within current and future bear range in Greece. 
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Chapter 3: Developing an iDNA method for monitoring brown 

bears 
 
 
 
3.1  Introduction  

 

3.1.1  Single-species monitoring using iDNA samples 

The use of non-invasive survey techniques that allow for the detection of a target 

species without the need to directly observe or trap the animal has radically changed 

the way we monitor species in the wild (Long et al., 2012). Techniques such as camera 

trapping and sign surveys have been used to monitor animals while minimising the risk 

of harming the animal or altering its natural behaviour (Long et al., 2012). Non-invasive 

monitoring often replaces other survey techniques that might cause stress or increase 

the mortality risk for vulnerable or declining populations (Bekoff and Jamieson, 2019). 

With the emergence of non-invasive genetic monitoring, the ability to collect traces of 

DNA the animal leaves behind, the field has expanded to techniques even further 

removed from acquiring data directly from the focal species. Moreover, these 

techniques have been instrumental in surveying rare or elusive species that other 

methods fail to detect (Thompson, 2004).  Genetic techniques for monitoring wildlife 

using non-invasive sampling methods, such as hair trapping and faecal sampling, have 

been widely used to survey mammals since their introduction in 1992 (Höss et al., 1992; 

Taberlet and Bouvet, 1992). These first non-invasive genetic monitoring studies focused 

on bear monitoring in Europe but the field quickly expanded to make encompass a 

multitude of techniques and species, all working under the premise that the focal 

species is not directly targeted for the collection of samples, rather data collection in the 

field focuses on the traces of DNA they leave behind.  

 

 

A novel non-invasive genetic monitoring tool for rare and elusive species targets traces 

of these animals’ genetic material by sampling invertebrates in their environment. The 

technique, known as invertebrate-derived DNA or iDNA, targets invertebrate groups to 
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trace the DNA of target species they came into contact with (Bohmann, Schnell and 

Gilbert, 2013; Lynggaard et al., 2019). Invertebrate-derived DNA lies under the general 

umbrella of environmental DNA (eDNA) monitoring, describing survey techniques that 

allow for a collection of samples not directly derived from the target species (Ruppert, 

Kline and Rahman, 2019). These can lend themselves well for both single-species surveys 

as well as monitoring broad species assemblages (Harper et al., 2018; Ruppert, Kline and 

Rahman, 2019). Next-generation sequencing has allowed for the assessment of species 

assemblages in single eDNA samples and is becoming more accessible as the analysis 

costs are reduced. This has resulted in eDNA studies tending to gravitate towards using 

a metabarcoding approach, providing researchers and conservationists with snapshots 

of the area’s diversity of the group of species in question (including, but not limited to, 

vertebrates (Ji et al., 2020), mammals (Gogarten et al., 2020; Lee et al., 2016) and 

amphibians (Harper et al., 2018)). However, when looking at the assemblages in eDNA 

samples, the analysis might miss rarer species’ DNA amongst the more frequent species 

found in the samples due to the differences in initial copy numbers in the sample (Harper 

et al., 2018; Ruppert, Kline and Rahman, 2019). The more common species’ DNA in the 

samples increases exponentially during PCR, making it more difficult to detect the rare 

species in the samples. Single species detection with species-specific primers, using real-

time PCR, has been shown to be more sensitive in detecting rare species, where the 

amount of genetic material within the sample is negligible (Harper et al., 2018; 

Lacoursière-Roussel et al., 2016; Schneider et al., 2016). This same principle applies 

when processing iDNA samples, therefore suggesting that single species approaches 

could be more effective at detecting rare and elusive species’ DNA in the invertebrate 

samples.  

Another reason to explore the use of the single-species PCR approach is related to the 

costs and expertise of running the laboratory analysis and subsequent data. 

Metabarcoding is associated with higher costs when the analysis is all carried out 

externally, or a very specialised skillset to process the raw sequenced data when the 

data analysis is done in situ. In their study, comparing qPCR against a metabarcoding 

approach for 380 samples, Harper et al. (2018) found that the time it took to processes 

the samples was very similar for both methods, but metabarcoding increased the 

sample analysis cost by 12%. The per-sample cost of metabarcoding can increase with 

smaller sample sizes, therefore for small-scale and low budget efforts looking at rare or 
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elusive species, a single-species qPCR is a more suitable approach. Therefore, in species 

monitoring, metabarcoding is a very powerful tool when looking at species assemblages 

or looking for the occurrence of multiple, potentially unknown species. However, for 

targeting a specific species, a qPCR approach is more efficient and sensitive. This chapter 

focused on developing the use of iDNA in single species monitoring. Specifically, the 

work outlined describes a series of experiments that form a single-species iDNA lab 

protocol for monitoring brown bears (Ursus arctos) using flies. 

 

Invertebrates have been extensively utilised for tracking human disease vectors (e.g. 

tsetse fly (Steuber, Abdel-Rady and Clausen, 2005) and mosquito (Beier, 2003; Kiszewski 

et al., 2004)). Following the principles of tracking the DNA of a different organism in 

invertebrates, iDNA has subsequently been developed for ecological monitoring for a 

number of invertebrate groups and families, such as flies (Lee, 2016; Bohmann et al., 

2013; Schubert et al., 2006), mosquitoes (Townzen et al., 2008; Kent and Norris, 2005), 

ticks (Gariepy et al., 2012) and leeches (Schnell et al., 2015). Simply, the novel use of 

iDNA in wildlife monitoring focusses on isolating traces of target species’ DNA from the 

digestive tracts of invertebrates (Schnell et al., 2015). Prior to the use of iDNA for 

mammal monitoring, studies using end-point PCR and qPCR have looked at invertebrate 

predation by examining the predator’s gut contents for prey DNA (e.g. Ma et al., 2005). 

More recently, like in the case of eDNA, published methods have largely concentrated 

on a metagenomic approach which attempts to reveal biodiversity in the sample, rather 

on species-specific monitoring (e.g. Abrams et al., 2018; Bohmann, Schnell and Gilbert, 

2013), with the exception of a few studies that that looked at single-species detection 

as a small part of the work (Drinkwater et al., 2021; Schubert et al., 2015). This chapter 

aims to explore this particular method by developing a rapid, species-specific iDNA 

method for monitoring specific species in the wild, using brown bears as a case study. 

This includes the use of already established iDNA methods and their adaptation to 

single-species detection using real-time PCR (qPCR).  

 

Non-invasive genetic monitoring has often been successful for species living at low 

densities because the sample collection does not rely on detecting the animal itself, but 

merely on sampling traces of DNA the species has left in its environment (Long et al., 

2012). A valuable aspect of eDNA/iDNA monitoring methods is that they utilise generic 
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genetic sampling methods instead of relying on collecting samples using methods 

unique to the target species. The species identification is implemented at a later stage, 

using species-specific or universal primers (single-species and metabarcoding approach 

respectively). One of the biggest challenges in most non-invasive genetic monitoring 

techniques, however, is the sample quality collected in the field. Due to limited sample 

collection possibilities, surveyor skills and the potential degradation of genetic material 

when exposed to extreme environmental conditions, detection or individual 

identification is not always successful (Barnes et al., 2014; Thompson, 2004). 

Furthermore, in the case of iDNA studies that focus on groups of invertebrates that feed 

on scat, the target species genetic material is twice removed from its original host – from 

the target species to the scat and from the scat to the invertebrate. Here, the genetic 

material on the scat itself becomes degraded (Thuo et al., 2019; Vynne et al., 2012) and, 

once ingested by the invertebrate, these DNA fragments become further degraded as 

they are digested (Lee, Sing and Wilson, 2015). Therefore, iDNA genetic material is 

expected to be degraded and broken down into small fragments, more so that in most 

other genetic non-invasive methods. As an example, hair and scat samples are often 

used to reliably amplify microsatellite fragments from nucleic DNA or mitochondrial 

DNA (mtDNA) (common method for phylogenetic and lineage studies in bears 

(Bellemain et al., 2005; Pylidis et al., 2021; Taberlet and Bouvet, 1992)), but similar 

studies in primate species using fly iDNA found only 1% of mammal mtDNA in the sample 

was of good enough quality to genotype (Schubert et al., 2015).  

 

The benefit of using mitochondrial markers in monitoring studies and DNA barcoding is 

that there are more initial copies of mtDNA in the sample (Hebert et al., 2003; Nelson, 

Wallman and Dowton, 2007; Ruppert, Kline and Rahman, 2019). Compared to a nuclear 

locus, like a microsatellite, which would have 2 copies per cells, a mitochondrial locus 

would have between 1000-2000 mitochondria per cell, and between 2-10 mitochondrial 

genome per mitochondria (Chinnery and Hudson, 2013; Shadel, 2008; Wiesner, Rüegg 

and Morano, 1992). As DNA degrades, it is more likely that a mtDNA fragment of 

sufficient length that can be used as a template for PCR will be present in the sample. 

eDNA/iDNA studies, therefore, focus on targeting mitochondrial DNA, to increase the 

chances of amplification, given a larger initial copy number. Moreover, mtDNA is 

maternally passed to the offspring, allowing for a minimal variation between individuals 
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of the same species (Barnes and Turner, 2015; Hutchison et al., 1974). Although 

differences in the mitochondrial DNA are more limited, research involving mitochondrial 

DNA has shown that it can reveal phylogenetic patterns between populations and has 

been used to show historical linkages and differentiate between genetically distinct 

populations (Johns and Avise, 1998; Meyer, 1994; Yu et al., 2007).  

 

Another way to mitigate the issue of DNA degradation is to target short sequence 

amplicons which have been proven to be persistent enough with extraorganismal DNA 

to recover DNA from paleontological samples (Hofreiter et al., 2001). To increase the 

chances of detection, species-specific eDNA studies target fragments short enough to 

increase the chances of them being present in the sample, but enough to enable the use 

of fluorescent probe for PCR amplification detection that would maintain species 

specific detection. Advised by protocols from eDNA studies, the targeted amplicons 

usually range between 62 base pairs (bp) (Foote et al., 2012) and 650 bp (Deiner et al., 

2015; Egan et al., 2013) long, with primer pairs of 18-30 nucleotides (nt) long and a probe 

that ranges between 20 and 30 nt (Hajibabaei et al., 2006; Langlois et al., 2021; Piggott, 

2016). A vast majority of eDNA studies focus on amplicons of 150 bp or less (Piggott, 

2016). Expecting similar degrees of DNA degradation, this study targeted fragments 

between 80 bp and 150 bp long. This size is a good compromise that allows for the 

existence of species-specific differences in the mtDNA fragment and the addition of a 

probe in the qPCR analysis, while also accounting for the fragmentation of genetic 

material prior to and after its ingestion by the invertebrate. 

 

In comparing the different sampling techniques between eDNA and iDNA, the physical 

samples taken with iDNA can be much smaller in size and covering a larger area of the 

study site. With iDNA, invertebrates concentrate the DNA themselves, compared to 

eDNA where concentration of DNA is achieved by filtering larger volumes of water/air 

or processing of larger volumes of soil. Furthermore, water sampling for eDNA, 

depending on the flow of the water body, the samples can represent a very large or 

much smaller area (Hunter et al., 2019; Milhau et al., 2021; Stoeckle et al., 2017). 

Similarly, with iDNA the sample coverage depends on the group of invertebrates used 

and dispersal behaviour of that invertebrate as that widely varies across the target 

invertebrate groups in iDNA studies (Calvignac-Spencer et al., 2013; Cutajar and Rowley, 
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2020; Ji et al., 2020; Lynggaard et al., 2021). Moreover, each invertebrate is a small 

sampling unit and thus individual iDNA samples are often processed separately (Schnell 

et al., 2018). In studies where individual invertebrate extractions are not necessary, it is 

more cost-effective to pool iDNA samples together. The final part of the laboratory 

optimisation examines the threshold in sample pooling where target species detection 

is compromised. The results can inform sample collection and pooling for iDNA studies 

and provide an inside into the sensitivity of qPCR in detecting the target species in very 

low concentrations.  

 

3.1.2  Chapter aims 

This chapter aims to explore the potential of using invertebrate-derived DNA (iDNA) as 

an alternative or complementary survey method for single-species monitoring, using U. 

arctos as a case study species. I describe the development, testing and optimisation of 

a real-time PCR iDNA assay in silico, in vitro and in laboratory and field trials. The field 

application demonstrates the technique’s capacity to monitor a rare species in the wild 

and the effectiveness of iDNA in single-species detection.  

 

 

Specifically, the chapter aims to: 

 
1) To refine and test the iDNA method for single-species detection using brown 

bears as a case study target species. 

2) To test the qPCR sensitivity in detecting target species DNA in diluted samples. 

3) To estimate the period within which target species DNA remains amplifiable in a 

fly’s digestive system. 

4) To utilise field samples to explore the effectiveness of the method as a 

monitoring tool. 
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3.2  Methods  

3.2.1 DNA extraction 

DNA extraction from arthropods can be challenging due to their hard exoskeletons. This 

protective covering made of chitin can be more difficult to break down in the cell lysis 

stage of the extraction, therefore studies often homogenise the samples with cryogenic 

grinding using liquid nitrogen (Asghar et al., 2015; Post, Flook and Millest, 1993). Here, 

liquid nitrogen was used to cryogrind the iDNA samples into a fine powder. The samples 

were then processed using Quick-DNA Miniprep (D3024), a spin column-based kit, as 

per manufacturer’s instructions (Zymo Research). The kit is designed to extract genetic 

material from up to 25 mg of total sample weight per extraction, so using cryogrinding 

allowed for the samples to be well homogenised prior to transferring the specified 

amount into a spin column. To ensure the DNA extraction method yield was maximised, 

end-point PCR (PCRBIO HS Taq Mix, PCR Biosystems) was performed in variations of the 

manufacturer’s instructions, including the elongation of the lysis and elusion stages of 

the extraction. End-point PCR using brown bear-specific primers was also performed on 

positive pilot field samples to confirm the increase in DNA yield when the samples were 

ground up prior to the extraction using liquid nitrogen (cryogrinding). 

 

 

3.2.2  In vitro testing and optimisation 

Design of primer and probe in silico and in vitro 

Primers were designed and tested for the detection of brown bear DNA targeting 

regions between 80-120bp in the mitochondrial cytochrome b (cytb) gene. Firstly, a 

consensus sequence was create using the software MEGA X: Molecular Evolutionary 

Genetics Analysis across computing platforms (Kumar, Stecher, Li, Knyaz, and Tamura 

2018) by aligning complete cytb U. arctos FASTA sequences from NCBI 

(https://www.ncbi.nlm.nih.gov/nuccore). The resulting alignment was copied into the 

NCBI Primer Blast tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast) to create ten 

candidate primer sequences. Three of these primer pairs were selected based on their 

amplicon length and low self-complementarity (no larger than a value of 5.0 globally or 

only 3.0 at 3’ end). Additionally, a 500 bp sequence covering all potential primers was 

selected and ordered as a custom synthetic gene from IDT (gBlocks® Gene Fragments, 

https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/tools/primer-blast
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Integrated DNA Technologies, Inc.; full sequence included in the Appendix B.1. Synthetic 

DNA sequence section) to use as a reference positive control sample for the primer 

selection and as standard for the qPCR analysis.  The selection of the final set of primers 

was made using end-point PCR (1.2% agarose TAE gel) for a visual examination of 

amplification products. The final primer pair was further examined using a melt curve 

qPCR analysis (qPCRBIO SyGreen Mix, PCR Biosystems) which tested the that the primer 

pair to ensure the amplification of a single amplicon, as outlined in the MIQE protocol 

(Bustin et al., 2009). The primer and assays were also tested against large carnivores in 

the area (Eurasian wolf, Canis lupus lupus, and Eurasian lynx, Lynx lynx) to ensure they 

do not match any region in candidate non target species, and are not likely to generate 

false positives. 

 

Additionally, a probe within the selected amplicon was designed using the IDT Oligo 

AnalyserTM Tool (https://eu.idtdna.com/pages/tools/oligoanalyzer) and was ordered as 

a custom PrimeTime qPCR Probe® (5’ 6-FAM™/ ZEN™/3’ IB®FQ) (Integrated DNA 

Technologies, Inc.). For the qPCR master-mix, qPCRBIO Probe Mix was used (PCR 

Biosystems), following manufacturer’s protocol. The final primer/probe set targeted a 

112 bp region in the brown bear mtDNA cytb gene and is detailed in Table 5. 

 

Table 5. Amplified fragment and primer and probe sequences targeting a 112bp region in the brown bear mtDNA ctyb 
gene. The position of the primers and probe is underlined in the amplified sequence. 

Amplified sequence 

5’-

CATCGGTCACCCACATTTGCCGAGACGTTCACTACGGGTGAGTTATCCGATATGTACATGCAAATGGAGCCTCC

ATCTTCTTTATCTGCCTATTTATGCACGTAGGACGGGG-3’ 

Forward primer Reverse primer Probe 

5’-

CATCGGTCACCCACATTTGC-

3’ 

5’-

TTTATGCACGTAGGACGGGG-

3’ 

5’-

TCCGATATGTACATGCAAATGGAGCCTCCATCT-

3’ 
 

 

The Mastermix for all qPCRs performed during this project consisted of 10 μl 2x qPCRBIO 

Probe Mix, 0.8 μl each of forward and reverse primer (10 μM), 0.4 μl of probe (10 μM), 

0.4μl BSA (2 ng μl-1), 5.6μl PCR grade H2O and 2 μl template DNA. The following 

conditions were programmed into the StepOne instrument: 1 cycle of 95oC for 2 

minutes, and 40 cycles of 95oC for 5 seconds and 60oC for 20 seconds. 

https://eu.idtdna.com/pages/tools/oligoanalyzer
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In addition to testing the primers and probe using the synthetic DNA fragment, DNA was 

extracted from three European brown bear faecal samples using the ZYMO Quick-DNA 

Miniprep kit according to manufacturer’s instructions. Similarly, positive control fly 

samples from the lab-reared flies (extracted using ZYMO Quick-DNA Miniprep kit) were 

used to validate the amplification of brown bear DNA using the primers and probe set.  

 

Further examination of the performance of the primer pair included an end-point PCR 

optimum temperature test and limit of detection analysis for the primers and probe set 

using synthetic DNA, as suggested in the MIQE protocol (Bustin et al., 2009). The Limit 

of Detection (LOD) was examined at an LOD6 and LOD95% level, to examine the sensitivity 

of the selected assay. The LOD is instrumental in understanding the lower threshold of 

copy numbers present in the sample sufficient for amplification(Bustin et al., 2009). 

Here, the LOD numbers explored looked at amplification with complete success (LOD6) 

and with a reasonable certainty at a 95% probability (LOD95%) (Bustin et al., 2009; 

Weldon et al., 2020). The LOD6 was calculated following protocol from published 

literature (Burns and Valdivia, 2008; Weldon et al., 2020), while the LOD95% was 

computed in R using the POD script (Boenn, 2020). 

 

Due to the nature of the samples, the extracted product of environmental DNA samples 

(eDNA, iDNA, airDNA) is expected carry over PCR inhibitors from the original sample and 

various studies have explored ways to mitigate inhibition from sample preservation to 

extraction and PCR preparation (Goldberg et al., 2016; Kumar, Eble and Gaither, 2020). 

To decrease inhibition in the samples, bovine serum albumin (BSA) and dimethyl 

sulfoxide (DMSO) are often introduced to the final PCR mastermix (Farell and Alexandre, 

2012). Previous eDNA studies have used both reagents to improve DNA amplification 

(Díaz et al., 2020; Weldon et al., 2020; Wong, Nakao and Hyodo, 2020). This chapter 

explores the capacity and optimum quantity of BSA and DMSO in reducing inhibition 

iDNA samples, ensuring that the target species detection is not hindered by the presence 

of PCR inhibitors. To test this, BSA and DMSO, often used to boost amplification in 

environmental DNA samples (Díaz et al., 2020; Farell and Alexandre, 2012; Wong, Nakao 

and Hyodo, 2020), were tested for their added efficiency in improving DNA amplification 

in iDNA samples. A series of twelve master-mixes were prepared, using the two reagents 
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in different concentrations and maintaining the volume of qPCRBIO Probe Mix, primers 

and probe as per the manufacturer’s protocol (PCR Biosystems), but altering the amount 

of water added to the reaction to account for the added BSA/DMSO (Table 6). The 

concentration of BSA used was 2mg/μl. 

 

Table 6. Concentrations of all components of the twelve master-mixes (15μl reactions) for testing the benefits of 
adding BSA and DMSO in the qPCR master-mix for iDNA samples. 

Master-mix 
qPCRBIO 

Probe (μl) 

Primers 

(μl) 
Probe (μl) 

Water 

(μl) 
BSA (μl) 

DMSO 

(μl) 

Protocol 7.5 1.2 0.3 4.5 0 0 

BSA (2%) 7.5 1.2 0.3 4.2 0.3 0 

BSA (6%) 7.5 1.2 0.3 3.6 0.9 0 

BSA (10%) 7.5 1.2 0.3 3 1.5 0 

BSA (3%) + 

DMSO 

(1.25%) 

7.5 1.2 0.3 3.675 0.45 0.375 

BSA (3%)  + 

DMSO (2.5%) 
7.5 1.2 0.3 3.3 0.45 0.75 

BSA (3%) + 

DMSO (5%) 
7.5 1.2 0.3 2.55 0.45 1.5 

DMSO 

(1.25%) 
7.5 1.2 0.3 4.125 0 0.375 

DMSO (2.5%) 7.5 1.2 0.3 3.75 0 0.75 

DMSO (5%) 7.5 1.2 0.3 3.375 0 1.125 

DMSO (7.5%) 7.5 1.2 0.3 2.25 0 2.25 

DMSO (10%) 7.5 1.2 0.3 1.5 0 3 

 

 

Control fly culture in the lab 

Bluebottles (Calliphora vomitoria) were reared in fly rearing boxes in a laboratory 

setting. The flies were purchased as casters (pupa) and immediately placed in rearing 

boxes and raised following recommendations in Erzinçlioğlu (1996). The adult flies were 

kept with a constant supply of water and sugar by providing water-soaked cotton wool 

in a petri dish, and an additional petri dish with a water and sugar-soaked cotton wool 

(Erzinclioglu, 1996). Providing the flies with sugar and water as the sole source of food 
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ensured the absence of any other mammalian DNA in their intestinal tract prior to their 

exposure to target species DNA.  

 

 

3.2.3  DNA retention in the fly gut 

A time series experiment was carried out to examine the time period in which 

amplifiable target species DNA could be present in the sample. The experiment was 

carried out using the lab-reared colony described above and the protocol for this 

experiment was adapted from Lee (Lee, 2016). As positive control, three European 

brown bear scat samples were provided by the Welsh Mountain Zoo (Material Transfer 

Agreement reference: CE-17-0542). Following protocol from Lee (2016) all food sources 

were removed 24 hours prior to the experiments. Thirty flies were then removed from 

each colony and preserved in -20oC to be used as a negative control (no target species 

DNA present).  

Following the 24 hours past the removal of the sugar from the fly boxes, 20 g of bear 

faecal sample was introduced as the new source of food into each colony of flies. The 

blowflies were observed during that period to ensure they fed on the scat. As outlined 

in Figure 17, the fly colonies were provided with a brown bear scat sample for the 

duration of four hours. Subsequently, the scat samples were removed and replaced with 

sugar and water to provide a constant food source for the duration of the experiment. 

Ten flies from each rearing box were selected at random at the following intervals: 0h, 

+4h, +8h, +12h, +24h, +48h, +72h, +96h, +120h, +144h, +168h, following the removal of 

the scat samples. The fly samples from each colony were stored in -20oC until further 

sample processing (cryogenic grinding and DNA extraction).  
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Figure 17. Time series experiment to examine the persistence of target species DNA in iDNA samples. 

 

All flies were euthanised with 96% ethanol and preserved at -20oC (Post, Flook and 

Millest, 1993). The experiment was repeated twice using two different starting colonies, 

with each experiment using a total of 420 flies (flies per experiment run/rearing cage: 

140 (30 negative controls and 10 post-feeding samples * 11 time points). The extraction 

and qPCR analysis follow the methodology described above. Experiments were carried 

out in May and June 2019. The welfare and ethical aspects of this experiment were 

reviewed by the University of the West of England’s Animal Welfare and Ethics 

Committee (AWEC) (Ethics Approval document reference number: R34). 

 

 

3.2.4  Target species DNA dilution in pooling of fly samples 

A dilution experiment was carried out to test the reliability and limits of sample pooling 

in detecting rare DNA fragments in iDNA samples. Confirmed positive fly samples (T0) 

from the three lab-reared colonies were pooled and macerated using liquid nitrogen. 

The process was repeated for control negative flies collected from the three colonies 

before the introduction of bear scat as food source. A dilution series was prepared for 

DNA extraction. Accounting for the 25 mg dry sample weight limit of the DNA extraction 

kit, eight dilutions were prepared, starting with a pure positive sample (pooled sample 

of T0 positive flies), to a 1:50 positive to negative fly sample (Figure 18). Three 

extractions were performed for each dilution to test the repeatability in detecting small 
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traces of bear DNA in pooled iDNA samples. The qPCR included three replicates of each 

extraction, resulting in nine replicates for each dilution (3 sample replicates x 3 

extraction replicates = 9 replicates for each dilution factor). 

 

 
Figure 18. Fly pooling experiment combinations (green=positive bear DNA samples, red=negative control). Percentage 
of positive control in total sample and amount of positive control of ground material per extraction (total amount per 
sample: 25mg). 

 

The qPCR was performed following the tested protocol from the sections above, using 

the qPCRBIO Probe Mix and synthetic bear gene as reaction standards. This experiment 

tested the presence of bear DNA in the samples and quantified the amount present in 

each dilution. A Binomial Linear Model looked for the indication of a dilution threshold 

after which the amplification of target species DNA could no longer be reliably traced in 

the sample.  

 

 

3.2.5  Field experiments 

Study area 

The previous chapter focused on creating a picture of the habitat suitability and brown 

bear distribution in Greece. The Expert Knowledge models were the first habitat 

suitability assessments generated in this study and thus constituted the backbone of 

fieldwork survey planning. Specifically, a model taking topography, land use and human 
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impact into consideration was used here to guide field survey planning and select a 

smaller case study area within the greater analysis area to carry out the field 

experiments. Using the suitability map as a guide reflecting the suitability mosaic across 

the country, a smaller study site was drawn to include areas of low-medium-high 

suitability (Figure 19). Looking at our current understanding of brown bear distribution 

across Greece, the study site incorporates two core areas, a long-established population 

on the left, the Mt. Verno (left) habitat patch, as well as the relatively recently re-

established Mt. Voras (right) habitat patch (population previously persecuted but 

recovering in the last 100 years) (Kaczensky et al., 2012b; Mertzanis, 1994). The 

population of Mt. Verno is well-monitored and belongs to the western brown bear 

population, the Greek part of the Dinaric-Pindos biological population (Pylidis et al., 

2021; Tsaparis et al., 2014). The Mt. Voras population has been much less frequently 

monitored, with evidence of a small population of bears (Mertzanis, 1994; 

Savvantoglou, 2015). Both core areas are mountainous with the largest proportion of 

the land covered by deciduous, mixed and evergreen forests, while the connecting area 

is predominantly covered by grazing land and farmland with scattered villages and 

industrial activity, such as quarries.  

 

Sample collection 

The study area was split into 2 km x 2 km grid squares and ten grids from each predicted 

suitability type (high-medium-low, N = 30) were randomly selected for the field surveys 

(Figure 4). The cell size (2 x 2 km) was selected to reflect the average distance covered 

by a blowfly within which amplifiable DNA could still be tracked in their digestive tracts 

(Lee, 2016). The sampling sites were surveyed three times, with each sampling season 

taking place between August and September in the years 2017-2019, collecting a total 

of ninety iDNA samples.  
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Figure 19. Field survey locations showing the sampling grids and corresponding mean suitability within each grid. The 
habitat suitability model was created using topographic, land use and human impact variables after an extensive 
literature review of U. arctos ecological requirements, detailed in Chapter 2. 

 

Flies were caught using a modified mosquito net (Figure 20) and commercial fly bait 

(RedTop Flycatchers). The traps were active for one hour per sample point whereupon 

the traps were closed and all flies present in the trap were collected. Sets of 20-50 flies 

were transferred into 96% ethanol for one hour (Schubert et al., 2015). These were 

subsequently drained of the ethanol and sample tubes were filled with silica beads and 

then stored and transported back to the UK in fine silica beads (Post, Flook and Millest, 

1993). The samples were transferred back to the University of the West of England and 

analysed for the presence of brown bear mtDNA. The samples varied in the number of 

flies caught in the fly traps, from just four individuals to over three hundred within a 

single sampling session. On sites where less than 40 flies were collected, the second 

sample was comprised of the remaining flies left after the first twenty were pooled 

together to allow for the processing of two separate iDNA extractions from each 

sampling session. 
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Figure 20. Mosquito net and bait setup, used for the iDNA sampling. 

 

 

Field sample processing 

Samples were processed following the techniques determined by the laboratory 

optimisation and two extractions of each sample pool were conducted to increase 

detection chances (30 sampling stations, 3 survey repeats, 2 extraction repeats for each 

survey). Each extraction was processed with six qPCR repeats (after Ficetola et al., 2015) 

and, given the fact that there were two extraction replicates for each sample, each 

survey sample was run under qPCR 12 times. A GLM analysis was performed to compare 

the effect of the number of positive amplifications in the CT values and DNA 

concentration in the samples.  

Finally, 35% of the positive amplifications were Sanger sequenced in both directions. 

The resulting sequences were analysed using the ‘sangerseqR’ in R Studio (Hill and 

Demarest, 2014) and checked against the NCBI database to confirm that the 

primer/probe set was targeting the desired amplicon. 
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3.2.6  Data analysis  

All qPCR analyses were performed in a StepOneTM Real Time PCR System (Applied 

Biosystems) instrument and the results were exported from the StepOneTM (Applied 

Biosystems) software as excel files. All data was analysed in R Studio (R Core Team, 2021) 

using ‘stats’, ‘LOD’ and ‘sangerseqR’ as the main data analysis packages. An overview of 

the methodology skeleton outlined in this chapter is shown on Figure 21.  

 

 
Figure 21. Overview of laboratory optimisation and field sample analysis 

 

 

3.3  Results  

 

3.3.1  DNA extractions and in vitro testing of primers and probe 

A series of pilot experiments were carried out to optimise the DNA extraction, primer 

performance and qPCR setup. Firstly, it was confirmed that cryogrinding using liquid 

nitrogen in combinations with the ZYMO Quick-DNA Miniprep Kit (D3024) gave the most 

consistent results in DNA extraction in comparison to no pre-processing of samples or 

other DNA extraction kits. End-point agarose gels and a qPCR melting curve confirmed 

that the amplicon of the primer pair was a single product and the recommended 

annealing temperature in the qPCRBIO Probe Mix (PCRBiosystems, UK) protocol 

performed well for the primer pair and probe, so no changes in the qPCR reaction setup 

were made.  
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The dataset from the LOD qPCR for this specific primer/probe set suggested a drop in 

amplification in DNA concentrations under 1.02 x 10-8 ng μl-1, suggesting that this 

concentration represents the LOD6. The LOD95% was computed in R using the POD R 

package (Boenn, 2020) as LOD95% 2.15 x 10-9 ng μl-1 [95% CI 1.49 x 10-9 - 2.05 x 10-9]. As 

expected, a linear relationship between the DNA concentration of the standards and the 

CT values, suggesting that the smaller the DNA concentration in the sample, the longer 

it takes for the amplified DNA to reach the amplification threshold (Figure 22). A 

Generalised Linear Model (GLM) was performed in R Studio (R Core Team, 2021) looking 

at the power (r-squared) of DNA concentration to explain the change in CT values. The 

DNA concentration datasets across all experiments was transformed logarithmically 

(log(concentration)) to reduce residuals and normalise the data (Sokal and Rohlf, 2009)). 

The GLM confirmed a negative relationship whereby the increase in DNA concentration 

decreases the CT values by 3.21% (R-squared: 0.9818; F1,46 = 2531, p <0.001). 

 

 

 
Figure 22. Increase in CT values as standards become more dilute. Blue line: fit of the GLM; grey shaded area: 95% 
confidence limits of the model.  
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3.3.2  BSA/DMSO and final qPCR Mastermix 

The presence of BSA and DMSO in the qPCR mastermix did not follow the expected 

beneficial impact on the reaction. In the case of these iDNA samples, DMSO, used on its 

own or in combination with BSA, increased the CT values and in some cases completely 

blocked amplification. BSA, even though it showed a very slight increase in CT values at 

the higher concentrations, it marginally decreased the CT value at its lowest 

concentration (2% BSA) (Table 7). BSA (2%) was added in the final Mastermix, as it is also 

proven by other studies to positively impact the reactions (Díaz et al., 2020; Weldon et 

al., 2020; Wong, Nakao and Hyodo, 2020). 

 

Table 7. BSA and DMSO effect on qPCR amplification. 

Sample Cт Median Cт SD Amplification (out of 6) 
BSA (2%) 29.23 0.44 6 
BSA (6%) 29.42 0.30 5 
BSA (10%) 29.53 0.35 6 
BSA (3%) + DMSO (1.25%) 29.86 0.46 6 
BSA (3%) + DMSO (2.5%) 29.83 0.75 6 
BSA (3%) + DMSO (5%) 29.79 0.49 1 
DMSO (1.25%) 30.30 0.00 6 
DMSO (2.5%) 29.15 0.26 6 
DMSO (5%) 29.90 0.49 6 
DMSO (7.5%) 0 0 0 
DMSO (10%) 0 0 0 
Protocol control 29.26 0.31 6 
    

 

 

The following manufacturer’s instructions for a 20μl reaction using the qPCRBIO Probe 

Mix (PCR Biosystems), with the addition of 2% BSA. The final Mastermix is detailed in 

the Methods section. 

 

 

3.3.3  Target species DNA dilution in pooling of fly samples 

The dilution series was examined both by the number of amplifications each dilution 

produced, as well as the amount of DNA that was amplified (in ng μl-1). The samples that 

were not diluted (T0 positive controls) were all amplified, while the dilutions from 1:5 
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(20% positive control in samples) to 1:20 (5% positive control in sample) had all similar 

success rates (6-7 amplifications out of 9 repeats). The amplification success was 

negligible at the 1:50 dilution samples (2% positive control in the sample), with only 3 

out of the 9 samples successfully amplifying (note: these three amplifications were from 

three separate extractions of that dilution, so the ‘per sample’ amplification for the 2% 

samples were 1 out of three). A binary logistic regression showed a significant 

relationship of lower amplification with the more dilute the samples (β (estimate) = 

2.5471, SE = 1.0415; Wald = 2.445, p = 0.0145; Figure 23).  

 

  
Figure 23. The effect of diluting an iDNA positive control sample. Percentage of positive control transformed using a 
logarithmic formula (Log10(X+1)), showing the more diluted samples on the left. Blue line: fit of the binomial logistic 
regression curve; grey shaded area: 95% confidence limits of the model. .  

 

 

3.3.4  DNA retention in the fly gut 

The Binomial Linear Model revealed a pattern of decrease in detection probability with 

time, reflected also in the decrease of DNA concentration and increasingly larger mean 

CT values as time passed. A significant positive relationship was suggested with time 

post-feeding (β (estimate) = -0.05285, SE =  0.01087, Wald = -4.862, p < 0.001)) and 

CTmean (β (estimate) = -0. 1139, SE = 0.0208, Wald = 5.476, p < 0.001)) values, as well as 

a negative relationship between detections and DNA concentration (β (estimate) = -
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0.2982, SE = 0.1127, Wald = -2.646, p < 0.01)). The regression line fitted on the data 

illustrates that quick drop in detection probability within the first 24h (Figure 24). 

 

 

Figure 24. Reduction in target species’ DNA amplification success as a result of time post-feeding the fly colonies with 
a source of target species DNA. Blue line: binomial logistic regression curve; grey shaded area: 95% confidence limits 
of the model.  

 

A GLM examined the relationship between time points and the LOG concentration of 

DNA in the samples revealed a pattern of rapid decay in the amplifiable DNA found in 

the sample (Estimate -1.627, Std. Error: 3.193E-08, t value: -0.510, Pr(>|t|): 0.6122)). 

The CT values also reflected this pattern (Estimate 2.778, Std. Error: 1.427, t value: 1.946, 

Pr(>|t|): 0.0561). 

 

Furthermore, the impact that time had on the CT values of the samples evaluated with 

a one-way ANOVA test suggested significant differences between the time points 

(ANOVA, F(9, 55) = 3.53, p = 0.002, η2g = 0.37). Tukey post-hoc analyses revealed 

significant differences between 0h and time points 8h (p = 0.04), 24h (p = 0.026), 60h (p 

= 0.045) (Figure 25). A GLM regression line illustrating the increase and eventual plateau 

in CT values as time post feeding passed is shown on Figure 26. Finally, a regression line 

showing the effect of time on DNA amplification (Figure 25) depicts the sharp drop in 

detection within the first 24h post-feeding. After period of 20h, detection dropped to 
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67%, with detection dropping below 20% shortly after. However, mtDNA was still 

detected (a single amplification in 3 experimental repeats of 6 qPCR repeats each (1 out 

of 18)) after 84 hours. 

 

 
Figure 25. Mean DNA concentration and SD bars for each time point where target DNA was detected, looking at the 
persistence period of amplifiable brown bear mtDNA in control fly colonies. Blue line: fit of 95% CI; grey shaded area: 
95% confidence limits of the model. 
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Figure 26. Mean CT value and SD bars for each time point where target DNA was detected, looking at the persistence 
period of amplifiable brown bear mtDNA in control fly colonies. Blue line: fit of 95% CI; grey shaded area: 95% 
confidence limits of the model. 

 

3.3.5  Field data analysis 

In total, U. arctos DNA was detected in 28 out of the 90 field samples with both 

extraction repeats detecting target species’ DNA on over half of the occasions (16 out of 

28). In total, adding a second extraction replicate added six more detections (three in 

the first season, one in the second and two in the last one), increasing overall detections 

by 21%. Bears were detected at seventeen of the thirty sample locations over the three 

seasons (Figure 27).  
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Figure 27. Field iDNA survey results from all seasons. The letters on the survey results points describe the habitat 
suitability score within the sampling grid. The habitat suitability model was created using topographic, land use and 
human impact variables after an extensive literature review of U. arctos ecological requirements, detailed in Chapter 
2. 

 

An observed positive relationship between the number of positive amplifications and 

DNA concentration was not statistically significant. A significant negative relationship 

was observed between the number of positive amplifications in the qPCR replicates and 

CT value (GLM: F2,41 = 22.81, p <0.001, r2 = 0.5036; Figure 28).  
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Figure 28. Response of CT values to the number of qPCR amplifications (out of six qPCR replicates per sample). The 
more positive amplifications within a sample, the lower the mean CT value. Blue line: fit of the GLM; grey shaded area: 
95% confidence limits of the model.  

 

3.3.6 Sanger sequencing 

Twelve samples (over 35% of positive amplifications in all three seasons and extraction 

replicates) were sent for confirmatory sequencing. A BLAST (Morgulis et al., 2008; Zhang 

et al., 2004) of the primary sequence confirmed a 98% match to U. arctos (E value range: 

3e-09 to 1e-07, complete list in the B.2. Sanger results BLAST section in the Appendix). 

 

3.4 Discussion  

This chapter demonstrates the development of an iDNA-based method for single-

species detection and presents a cost-efficient protocol for the collection, storage, 

processing and analysis of the invertebrate samples. The results will be discussed below 

in detail, but a summary of the protocol developed here is presented in Figure 29 (note: 

carrion fly dispersal distance estimates as per Lee (2016)).   
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Figure 29. Protocol developed as a result of this work. Fly dispersal distances for carrion flies as seen in literature (Lee, 2016). 
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The laboratory experiments outlined here demonstrate the sensitivity, as well as some 

of the limitations, of iDNA as a monitoring method. This chapter is, to our knowledge, 

the first study to focus solely on single-species detection using iDNA, both in the 

refinement of the method in a laboratory setting, as well as field surveys. The 

introduction of this method opens new possibilities for bear monitoring, 

complementary to the commonly used methods, such as hair trapping and scat 

surveying. Monitoring bear species can be very challenging in different parts of the 

world, especially when it comes to bears in the tropics due to climatic conditions and 

the more elusive behaviour of tropical bear species (Tee et al., 2016; Tee et al., 2020). 

We believe that this study provides evidence of the potential of iDNA as a 

complimentary sampling technique for bear monitoring. The supporting laboratory 

experiments have allowed for the refinement of this method and understanding of the 

advantages and limitations involved. The aim of this study is also to serve as a template 

for the design of sampling and laboratory analysis of iDNA using flies for monitoring 

bears located in different part of the world, or targeting other invertebrate groups in 

efforts to detect rare or elusive animals.  

 

3.4.1  Dung flies as a target invertebrate group 

Flies (here predominantly, but not solely, represented by Sarcophagidae, Calliphoridae, 

Muscidae) were chosen as the most suitable invertebrate group for creating a 

transferable protocol based on a variety of criteria, such as distribution across the 

specific study site; ease of capture; and the ability to carry out control laboratory 

experiments. Firstly, they were abundant at the field site in comparison to other 

invertebrates present in the area such as mosquitoes and dung beetles. Fly trapping 

using mosquito nets and canopy traps was simple and efficient in terms of costs, time 

and surveyor effort  (Calvignac-Spencer et al., 2013; Hoffmann et al., 2018). Additionally, 

climate differences in elevation, terrain and land cover type seemed to restrict the 

distribution of some of the other invertebrates but flies were found throughout the 

study area. Moreover, flies were straight forward to rear in a laboratory environment 

(Erzinçlioğlu, 1996) which allowed for the fine-tuning of the method prior to the field 

sampling and field sample processing, following similar efforts for iDNA monitoring in 

the tropics (Lee, 2016; Lee, Sing and Wilson, 2015). Finally, in regards to field collections 

and the potential use of this data for further analysis, such as occupancy modelling, fly 
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dispersal rates and preservation of DNA studies (here, as well as in published literature, 

e.g. Lee, Sing and Wilson, 2015; Lee, 2016) indicate that a closure assumption for the 

iDNA samples can be maintained. Contrastingly, Schnell et al. (2015) explore the use of 

leeches in yielding results for occupancy modelling and highlight the potential violation 

of population closure of such efforts due to the extent of time within which target 

species DNA remains amplifiable in leeches as blood meal. 

 

In the case of flies used for monitoring mammals, the genetic material, in most cases, is 

derived by target species’ faecal samples present on site. Flies of the Calliphoridae, 

Sarcophagidae and Muscidae families (mostly targeted in this study, although the field 

sampling did not select against other families to avoid bias associated with the potential 

presence of specialists) are most often targeted by iDNA studies (Calvignac-Spencer et 

al., 2013; Gogarten et al., 2020; Hoffmann et al., 2018; Schubert et al., 2015).  

 

To understand the state of DNA fragmentation expected in the samples, it was assumed 

here that most of the DNA found in the samples would be twice removed from the bear 

it originated from (from the bear to the scat and from the scat to the fly). Indeed, the 

predicted larger degree of fragmentation within the sample was reflected in the DNA 

persistence experiment, both in this study and in literature (Drinkwater et al., 2021; Lee, 

2016; Lee, Sing and Wilson, 2015), making it essential for this study to focus on short 

amplicons. A controlled experiment in the tropics using mtDNA mini-barcode target 

(205bp) found that the period within which mtDNA in blowfly guts remains amplifiable 

for is 24-96h, with the rate of detection using end-point PCR dropping to 22% for the 

latter (Lee, Sing and Wilson, 2015). Our replication of this experiment in a temperate 

climate using qPCR revealed a similar persistence period but lower rates of detection. It 

is worth considering a number of reasons that might have contributed to this lower 

success rate, including a heat wave with an uncharacteristic temperature spike during 

the experiment (over 30oC); and the age and condition of the scat samples used to feed 

the lab-reared flies. The high temperatures in eDNA studies have shown to increase the 

rate of DNA degradation (Kasai et al., 2020) and it is possible that the uncharacteristically 

high temperature in the laboratory had similar effects on this experiment. The scat was 

collected fresh by the Welsh Mountain Zoo staff, but freeze-thawing the samples during 

transportation might have contributed to a level of DNA degradation prior to ingestion. 
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Furthermore, bacterial activities could start again once the samples are defrosted, 

fragmenting the DNA even further (Fouhy et al., 2015; Pérez-Burillo et al., 2021). In any 

case, this experiment demonstrates a drop in amplification success between the 20h 

and 24h time points, from over 44% (8 amplification out of 18 positive samples) to just 

under 17% (3 amplifications out of 18 positive samples), suggesting that the target 

species mtDNA in fly samples is most likely no older than 24 hours. 

 

3.4.2  Brown bears as a target species 

In selecting the most appropriate study species for single-species monitoring, this study 

considered a number of factors that would contribute the most amount of information. 

Firstly, bears were chosen because of their elusive nature, often avoiding the presence 

of humans and thus more challenging to detect. Moreover, bears roam large ranges and 

are territorial animals which, in this study, translates to a decreased rare of detection 

due a low species density within a given study area. However, bear presence is often 

monitored with the presence of scat, so iDNA monitoring could be a suitable alternative. 

Another factor considered here was to select a species with a clear genetic 

differentiation at an mtDNA level that did not compromise the reliability of the results. 

Wolves (Canis lupus), otherwise a suitable candidate due to their distribution and 

relative abundance, were not considered due to the significant mtDNA overlap with 

domestic dogs (C. lupus familiaris). Finally, this study aimed to explore the sensitivity 

and limits of iDNA in single-species monitoring, so a range of habitats where the animal 

was expected to use at different levels was desired. Using the habitat suitability 

modelling outlined in the previous chapter, we were able to locate areas with expected 

high/low/medium use advised by the suitability score. The study area, described in more 

detail in the following chapter, comprised of a gradient of suitability, allowing the testing 

of this method to be tested for its effectiveness in detecting bears in areas of low to high 

use. We believe that the results of the field study clearly demonstrate that iDNA was 

effective at detecting bears in the field and, to our knowledge, introducing this method 

as the first study solely focusing on single-species detection.  
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3.4.3  Target DNA dilution and its repercussions on its detection using qPCR  

Single-species qPCR approaches in the literature have shown improved detection 

compared to other methods, such as end-point PCR or metabarcoding (Carvalho et al., 

2021; Furlan et al., 2016). This may be especially useful when monitoring rare or elusive 

species. In this case, bears were considered rare, due to their low numbers and 

territorial nature (Dahle, Støen and Swenson, 2006; Mertzanis et al., 2005; Penteriani et 

al., 2018; Swenson, Sandegren and Soderberg, 1998; Tsaparis et al., 2014). This study 

explored the sensitivity of a single-species PCR approach by looking at the limit of 

detection for the chosen amplicon and understanding the dilution threshold for pooling 

samples together. The results of the LOD experiments highlight the sensitivity of this 

method, able to consistently detect (LOD6) the mtDNA amplicon in concentrations as 

low as 1.02 x 10-8 ng μl-1 (88.4 copies μl-1), with LOD95 = 2.15 x 10-9 ng μl-1 (17.8 copies μl-

1). Limit of detection in eDNA has been extensively studied and reported (e.g., Brys et 

al., 2021; Guan et al., 2019; Mauvisseau et al., 2019; Weldon et al., 2020) but, to our 

knowledge, this is the first iDNA study detailing LOD values and the effect of initial 

sample concentration to the detection of the target species. Results from eDNA LOD 

studies tend to be lower than the values reported here, with eDNA methods being 

sensitive enough to detect a 1-4 copies μl-1 (Guan et al., 2019; Weldon et al., 2020). The 

difference in detection limits here could be a result increased PCR inhibition (by 

comparison to eDNA samples) due to the nature of the iDNA samples. When extracted, 

the iDNA sample carries DNA not just from the target species (if present in the sample), 

but also the host’s genetic material, any microorganism (such as gut microbiota) the 

invertebrate is a host of (Aksoy et al., 2014; Gupta et al., 2014), and the genetic material 

of non-targeted species the fly fed on (Calvignac-Spencer et al., 2013; Rodgers et al., 

2017). The results in samples that are challenged by environmental inhibitors as well as 

the fact that, in the species-specific approach, the majority of genetic material found in 

the sample is not targeted by the primer- probe set.  

 

Moreover, sample pooling in iDNA sample analysis has been used in various studies, but 

the effect of pooling in the detecting of the target species is  generally not reported. Our 

efforts with this experiment focused on understanding the level of sample pooling of a 

single invertebrate group that allows for a reduction of extraction and qPCR costs 

without compromising the detection of the target species. The success rates of the 1:20 
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dilution suggested that two extraction replicates would be sufficient to detect the 

fragment if present in the pooled sample. Moreover, this protocol was able to detect 

the amplicon even in a 1:49 dilution (1 out of 3 times for each of the 3 extraction 

repeats). The 1:19 and 1:4 dilutions had a similar success rate, highlighting the sensitivity 

of this method in detecting the target fragment when present in the sample. Informed 

by the dilution results from this study and following methodologies from eDNA studies 

using 6 sample replicates for the qPCR analysis, we are confident that a pooled sample 

of 20 flies analysed in six qPCR sample replicates would be able to detect our target 

fragment if present in the sample. 

 

Overall, this experiment contributed to understanding the threshold after which pooling 

fly samples for iDNA monitoring could affect detection in a single-species approach. To 

our knowledge no such information has been previously published for iDNA analysis so, 

given budget and time restrictions of this project, this experiment was instrumental in 

maximising detection probability while minimising the time and costs of sample analysis. 

 

3.4.4  Fly dispersal and the assumptions we can make on the spatial resolution of 

positive samples 

When working with iDNA samples it is important to take into consideration the dispersal 

behaviour of the invertebrate group the study focusses on to understand the coverage 

of each sampling station. An experiment conducted in the tropics studying the maximum 

dispersal distance of flies to draw conclusions on how far an iDNA sample might have 

originated from (Lee, 2016). In an attempt to replicate this study for a temperate region, 

an experiment was conducted during the field control sampling and fly trapping tests 

that took place in the initial stages of this project. The experiment was unsuccessful, 

failing to recapture any of the marked individuals. Therefore, this study followed 

published literature, suggesting daily dispersal within a 2 km radius (Lee, 2016). 

Combined with this study’s findings on the persistence period of amplifiable mammal 

mtDNA in flies, the spatial resolution of the sampling grid was chosen to ensure, to the 

best of our efforts, closure between sampling stations.  
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3.4.5  Field samples 

One of the advantages of iDNA is that each of the invertebrates collected is a single 

sampling unit, potentially carrying the target species’ genetic material into the sampling 

station. Instead of the duration and field costs of more commonly used methods, such 

as camera trapping and scat surveys, or of filtering litres of water or processing large 

amounts of soil as with increasingly used eDNA methods, invertebrates constitute a 

small, concentrated sampling unit. In that sense, iDNA has the ability to collect large 

amounts of data, decreasing the amount of surveyor effort and bias associated with it. 

The field samples collected during this study were able to demonstrate that iDNA single-

species monitoring is effective for rare or elusive species, but also highlighted some of 

the limitations of this technique. Repeated field sampling lends itself to distribution 

assessments, such as occupancy modelling, highlighted in previous iDNA work (Gogarten 

et al., 2020; Schnell et al., 2015). The use and effectiveness of occupancy modelling with 

iDNA data will be explored in the next chapter but it is important to study the benefits 

of repeat sampling in detection success. The mean DNA concentration of the field 

samples (1.67 x 10-9 ng μl-1) falls below the LOD6 value, but very close to LOD95% (only 4.8 

x 10-10 below the suggested LOD95%). It is possible, therefore, that positive samples show 

a slight decrease in amplification success. This means that the very small concentration 

of often very fragmented mtDNA in the samples might not always be successfully 

amplified to an amount the qPCR machine can detect reliably. It is important to keep in 

mind the optimal quality of the synthetic DNA used to create the standard curves and 

compute the LOD, as well as the meaning of the LOD values. The LOD simply shows levels 

of reliable detection (100% with LOD6 or 95% with LOD95%), but the experiments have 

shown that this protocol (primer pair, probe, qPCR setup) can detect the amplicon in 

concentrations as low as 8.19 x 10-11 ng μl-1 with just over 30% success (18 out of 57 

detections in the standard dilutions experiment). We have demonstrated that detecting 

bears in the field with this protocol is possible and, advised by the standard dilution 

experiment, the mean concentration in positive field samples has a detection success 

rate of just under 95% (LOD95%: 2.15 x 10-9 ng μl-1). 

 

As observed with the dilution experiment, pooling samples using cryogrinding was 

effective at detecting target species at 20 flies per pooled sample. To account for the 

significantly more degraded target species’ DNA expected in the field, two extractions 
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were carried out for each field sample, under the hypothesis that a second extraction 

would increase detection instances. Indeed, the second extractions increased detection 

by 21% (6 more amplifications), suggesting that, where possible, extraction repeats as 

well as PCR replicates increase detection likelihood. Additionally, the sites where bears 

were detected changed throughout the three sampling seasons, demonstrating the 

efficacy of repeat site visits at increasing detections over the study area. In this case 

study, the number of detections increased by 37.5% after the second site visit and an 

additional 54.5% after the third sampling repeat. Accumulatively, the second and third 

repeats added an additional 9 site detections, increasing the overall site detections by 

112.5%. 

 

I believe that the issue of detecting false negatives resulting from the decreased 

amplification rate due to sample quality (reflected in the low mean DNA concentration 

in the field samples) and loss of data that could have resulted from performing a single 

survey repeat or a single extraction per pooled sample, was addressed by the various 

levels of replication (field repeat sampling, repeat DNA extractions and six qPCR 

replicates) aiming to increase the chances of detecting the target species when mtDNA 

is in very low concentrations. The lowest concentrations in the field iDNA samples were 

just over 1.6 x 10-10 ng μl-1 and the highest concentrations over 2.7 x 10-8 ng μl-1 , 

demonstrating the notable differences in mtDNA concentration between samples. Our 

results on repeat sampling for iDNA highlighted the importance of multiple site visits as 

well as DNA extraction repeats to increase yield and account for false negatives during 

sample analysis. Repeat sampling in iDNA surveys shows very promising results for the 

detection of rare and elusive species. In cases where the DNA is expected to be 

degraded, the results show that small DNA concentrations will result in smaller numbers 

of amplifications within the qPCR replicates, emphasising the need for repeat surveys 

and repeat DNA extractions. Our results demonstrate how sensitive this method is at 

tracing bears in the field, while also bringing attention to approaches that could 

drastically improve detection yield.  

 

3.4.6  The potential of target species individual identification using iDNA 

Overall, this chapter explored a number of approaches aiming to increase detection and 

optimise the laboratory analysis of iDNA samples. The laboratory experiments, with data 
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collected in the field, provides a comprehensive insight to the collection, processing and 

laboratory analysis of iDNA samples. The methods utilised were all centred around 

techniques and equipment available in smaller laboratory facilities and associated with 

lower costs relative to next-generation approaches. Exploring iDNA as a single-species 

detection approach to this depth is a novel study and we believe that this chapter 

contributes to our understanding of the advantages and limitations of iDNA as a species-

specific monitoring tool. The results of this chapter can serve as the skeleton of an 

adaptable protocol for other iDNA single-species studies. 
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Chapter 4: Modelling brown bear occupancy in Northern 

Greece: a comparison of iDNA and scat sampling 

 

 

4.1  Introduction 

4.1.1  Considering imperfect detection 

Imperfect detection during field sampling sessions, especially in the case of rare or 

elusive animals or where the habitats are used less intensely, often leads to incorrect 

interpretations of a species’ ecological requirements and habitat use (Mackenzie et al., 

2002). Occupancy modelling was developed to address this issue, by accounting for 

imperfect detections on repeat surveys. Occupancy models examine both the 

probability of a species inhabiting that area and the probability of detecting it if it is 

indeed present on site (Mackenzie et al., 2002). Furthermore, false absences are very 

common in the case rare or elusive animals or areas of low use, as most monitoring 

methods fail to detect the species when it is present in the area (Karanth et al., 2011; 

Keane et al., 2012; Strickland and Roberts, 2019). To tackle that, occupancy models 

require repeat surveys, increasing the number of observations per site. Revisiting sites 

multiple times increases the chances of detecting the species, thus reducing the 

likelihood of recording false absences.  

 

To compare this method to the Species Distribution Modelling (SDM) method used in 

Chapter 2, occupancy modelling is often referred to as the realised niche, or the suitable 

habitat occupied by the species (Braschler et al., 2020; McGeoch and Gaston, 2002). 

SDMs, on the other hand, reveal a species’ fundamental niche, identifying areas suitable 

for the species, but with no assumption that the species is present in the area. 

Therefore, theoretically, when detectability is close to “1”, an SDM (assuming it is based 

on the correct underlying data) and an occupancy model should present the same 

results. However, most monitoring efforts are not effective to that extent, resulting in 

imperfect detection, false absence records and inaccurate predictions of a species’ 

realised niche (Gu and Swihart, 2004; Mackenzie et al., 2002). In fact, considering that 

field surveys rely on a variety of factors related, but not limited to, the effectiveness of 

the specific method used for detecting the target species, surveyor experience and 
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training, climatic conditions, and the nature and abundance of the species in question, 

imperfect detection is to be expected in most monitoring efforts (Long, 2008; 

Thompson, 2004). It is, therefore, recognised that detectability is most likely imperfect 

(probability of detection < 1), thus, if we were to compare the resulting occupancy 

model (repeat visits) and SDM (presence-only dataset) of the same survey efforts, we 

would expect to see differences, highlighting the importance of accounting for imperfect 

detection and false absences in low-use habitats. In the case of rare or elusive species, 

especially, the need for multiple site visits and an analysis that takes imperfect detection 

into consideration becomes more apparent (Karanth et al., 2011; Keane et al., 2012).  

 

In the case of species monitoring in wildlife corridors, imperfect detection could occur 

as a result of low habitat use and the relatively low number of individuals using the 

corridor at any given time. Furthermore, corridors are often less suitable habitats due 

to the fact that they are, by definition, relatively small ‘linkage zone’ spaces that improve 

functional connectivity between core areas, but often associated with higher levels of 

disturbance (Bennet, 1999; Lawton, 2010; Servheen, Waller and Sandstrom, 2001). In 

the case of brown bears, home range size and movement into less suitable areas can be 

the result of a number of reasons, such as sex, body mass and size, age, food availability, 

and population density, as outlined in (Dahle, Støen and Swenson, 2006). Male brown 

bears are territorial, with large home ranges that envelop those of several females who 

tend to establish smaller home ranges that are near or within their natal areas. In 

contrast, sub-adult males disperse in search of new home ranges, travelling distances of 

up to 90 km (Dahle, Støen and Swenson, 2006; Swenson, Sandegren and Soderberg, 

1998). Additionally, to the potential use of corridors as pathways to other core areas by 

dispersing subadult males, these less suitable areas are serving as linkage zones to food 

sources and mates. The tolerance of bears to human disturbance indicates that bears 

are likely to opportunistically utilise the broader landscape (Elfström et al., 2014b). With 

the above in mind, we can expect that surveys in corridors would have a higher rate of 

false absences, and assume that an SDM generated from a single-survey data may not 

provide a reliable representation of these low-use areas. Due to the nature of the study 

area, occupancy modelling offers an alternative way of looking into bear distribution 

throughout this complex landscape, while taking detectability into account by 

performing repeat site visits.  
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4.1.2  Effective survey methods 

Several non-invasive methods commonly used of detecting brown bears are carried out 

to monitor bears in Europe. Track and sign surveys aiming at detecting signs of bear 

presence, like tracks, scat, fur and damage on trees and electricity poles, as well as 

camera trap surveys are used interchangeably depending on the purpose of the study 

(Kaczensky et al., 2012b, 2012a). However, such monitoring efforts require a team of 

trained surveyors and call for a large effort in the field, often centred around the forestry 

network. In fact, scat surveys are frequently conducted on forestry roads and paths to 

increase visibility, ensure access and minimise disturbance. Scat is often recorded on 

trails and forestry roads (or ‘low-volume roads’ as described by (Chruszcz et al., 2003)) 

as bears and other large carnivores will repeatedly use specific routes in search of food 

and/or for leaving territorial markers (scat, scrapes, etc.) for conspecifics (Henschel, 

2015; O’Brien, Kinnaird and Wibisono, 2003; Phoebus et al., 2020). In the case of road 

transects, it is important to consider that roadside observations can give rise to 

observation bias (Austin et al., 2000; Keller and Scallan, 1999), resulting in the model 

considering proximity to road as an important factor when it comes to predicting the 

species’ distribution (see (Kadmon, Farber and Danin, 2004) as an example of roadside 

bias effects on predicting species distribution).  

 

The capacity of occupancy models to account for imperfect detection in an analysis can 

create more accurate distribution models (Comte and Grenouillet, 2013; MacKenzie et 

al., 2017). Species Distribution Models, such as those created in chapter 2, use presence-

only data and all the information accumulated for the model generation comes from our 

understanding of the species’ preferences (Elith et al., 2006). Occupancy, on the other 

hand, adds the element of absence, allowing for the model to take the ecological 

settings in absence areas into account too. Additionally, occupancy modelling takes into 

account factors that could have affected the detection of the species, by performing 

multiple visits on the same site (repeat surveys) which SDMs do not account for 

(Mackenzie et al., 2002). Furthermore, occupancy models also provide information on 

factors affecting species detection in the field (observation covariates), including, but 

not limited to, survey-effort information (such as transect length, number of observers, 

time of survey, duration, etc.), biotic and physiological interactions, which MaxEnt 
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models are not able to incorporate (Guisan and Thuiller, 2005). As an example, 

(Peterman, Crawford and Kuhns, 2013) compared SDMs created on MaxEnt with 

occupancy modelling and found that the latter was able to reveal that the distribution 

of Ambystoma jeffersonianum, a threatened North American salamander species, was 

impacted by the presence of fish in potential breeding ponds. Such inclusion of biotic 

factors demonstrates another strength of occupancy modelling, even when a small 

sample size is considered. Overall, my decision to move forward with designing the field 

surveys as a smaller set of repeat surveys was made under the assumption that, based 

on all the above, occupancy modelling would be more suitable for processing data 

derived from rare or elusive species, areas of infrequent use and monitoring methods 

that are very sensitive and more successful in repeat survey scenarios.  

 

This chapter explores the potential of using detections from the iDNA surveys to build a 

robust spatially-explicit occupancy model when compared to scat surveys. Gogarten and 

colleagues (2020) looked at iDNA as a means of monitoring biodiversity compared to 

camera traps. Their results suggested that iDNA can be especially useful as an effective 

complementary method, especially in terms of detecting smaller animals that camera 

traps fail to detect. As this study is solely focused on monitoring brown bears, it presents 

a good case for examining whether this complementarity is reflected when looking at 

single-species detection. If this is the case, it might be expected that merging the survey 

datasets for each season would improve the occupancy model.  

 

Considering that iDNA is a novel monitoring method that has been promoted as a way 

of increasing time efficiency in the field and cost-reduction, scat surveys were chosen as 

the closest comparable and more commonly used monitoring method (see report by 

(Kaczensky et al., 2012b) highlighting the use of scat surveys for carnivore monitoring in 

many European countries). Bear scat is relatively easy to identify, which reduces the 

need for highly trained surveyors, as demonstrated by (Bellemain et al., 2005) who 

collaborated with hunters for the collection of scat samples. 

 

4.2.3 Chapter aims 

This chapter aimed to answer the following questions: 
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1. How does brown bear (U. arctos) detection using iDNA compare to a standard 

survey method: scat surveys? 

2. Can a single-species iDNA survey protocol be used to generate occupancy 

models? 

3. How do iDNA-derived occupancy models compare to those derived from scat 

surveys when predicting the distribution of U. arctos across a landscape of 

varying habitat suitability? 

 

It is important to note that, to date, this is the only study to date that uses single-species 

iDNA detection data to produce habitat models and draw conclusions on the distribution 

of the target species. The results will contribute to the larger body of work concerning 

iDNA and highlight its use in occupancy modelling and potential to inform species 

conservation strategies. 

 

 

 

4.2  Methods 

 

4.2.1  Study area 

As outlined in the previous chapter, this case study focused on a smaller study area, the 

Mt. Voras – Mt. Verno connectivity section, as described in Chapter 3, within the greater 

study site  (see Chapter 2). The study area incorporated two core bear habitats and the 

less suitable area between them, part of which was presumed to function as a 

movement corridor (see Savvantoglou et al., 2017; here, Figure 30. The area was chosen 

due to the gradient suitability across the landscape, as predicted by the Expert 

Knowledge model that incorporated the area’s topography, land use and human impact, 

making a good case study for the effectiveness of the two survey methods in habitats of 

predicted high, medium and low use (Figure 30).  

 

4.2.2  Sample collection 

A 2 x 2 km grid was laid over the area and ten grids from each predicted broad suitability 

range (high-medium-low, N = 30) were selected randomly and sampled for both scat 

and iDNA. The sampling season took place between August and September 2017 and 
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was repeated in the years 2018 and 2019, resulting in three repeat surveys for both 

methods in each of each of the 30 grids. By focusing monitoring efforts outside the bear 

breeding season (April-June) when males disperse further in search of females, we 

ensured that bear movement range is within normal limits (Clevenger, Purroy and 

Pelton, 1990; Piédallu et al., 2017).  

 

Scat transects and fly sampling was conducted simultaneously within each survey cell 

on each sampling occasion. Both survey techniques were performed between the hours 

of 9am and 5pm by the same team, carried out during the same seasons and simillar 

weather conditions, and, in the case of recording the presence of scat, following the 

same road transects across the three sampling seasons. Scat detections were recorded 

out on road transects by inspecting the available forestry road network found within the 

sampling grid and observations were recorded using the sample’s GPS location. The 

iDNA sampling targeted flies and were carried out using one sampling station in the 

middle of each sampling grid, repeated once per field season. The fly sampling, 

preservation and subsequent analysis details are outlined in Chapter 3. Finally, a 

Combined dataset was created by collating the results of the two surveys, indicating 

presence where either scat transects or iDNA sampling were successful at detecting 

bears. 
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Figure 30. Study site and sampling grids on a habitat suitability model (Expert Knowledge model, see Chapter 2). The 
letters in the black sampling grids describe the habitat suitability score within the sampling grid. Figure taken from 
Chapter 3. 

 

 

4.2.3  Environmental Parameters 

To allow for a direct comparison, the same set of environmental and habitat covariates 

were used across all subsequent modelling scenarios. The set of predictors considered 

for the species distribution modelling described in Chapter 2 was used to explore the 

most descriptive combination of predictors for performing an occupancy analysis on the 

survey data (Table 8). Following the resolution of the survey grid squares, a raster with 

a cell size of 2 x 2 km was created, covering the entire study area. Additionally, the cells 

of this raster were used to create a dataset where values from each variable were given 

to their corresponding cell. For continuous variables (elevation, distance from major 

roads and distance from urban areas), the mean and mean standard deviation (SD) of 

the values within each sampling cell (2 x 2 km) were calculated for the original variable 

raster cells (resolution: 30 x 30 m). In categorical habitat covariates (land cover and 

topography) the categories were split to individual datasets, showing the percentage 

cover of each category within each sampling cell. The percentage cover was calculated 

in proportion to the other categories present in that cell. 
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To allow for uncontrollable inter-annual differences, a ‘survey year’ dataset was added 

to the analysis to allow for such differences across the monitoring years to influence 

detection. Additionally, guided by each survey dataset’s predictor importance, some of 

the environmental and habitat variables mentioned above were included as survey 

covariates. Specifically, percentage of canyons was included in two models (iDNA and 

combined surveys) and the SD distance from roads was included in the iDNA surveys. 

Moreover, transect length was considered as a factor that could influence detection in 

the scat and combined surveys models.  

 

 
Table 8. Model predictors: groups, sources and resolution of the categorical and continuous variables used to predict 

bear occupancy.  

Predictor group Predictor Data type Source 
Resolution 

(metres) 

Habitat and 

topography 

Land cover Categorical 
Corine Land Cover (CLC) 2018 - Copernicus, 

European Environmental Agency (EEA) 
100  

Elevation Continuous 
EU DEM, Copernicus, European 

Environmental Agency (EEA) 
30 

Topography Categorical 
Derived from elevation raster using the 

Corridor Designer toolbox on ArcMap 10.7 
30 

Anthropogenic 

influences 

Distance from 

urban areas 
Continuous 

Euclidean distance from CLC 2018 classes 

1.1.1 - 1.2.1 
30 

Distance from 

roads 
Continuous 

Euclidean distance form major roads 

derived from OpenStreet Map (open 

source data, licensed under the Open Data 

Commons Open Database Licence (ODdL) 

30 

Survey specific 

Survey year Categorical Field data n/a 

Transect length Continuous Field data                                                                                                                   n/a 

 

 

 

 

4.2.4  Data Analysis 

Three encounter rate predictions were generated independently using the scat survey 

and iDNA survey datasets, as well as the Combined dataset, using the R package ranger 
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(Wright and Ziegler, 2015). Additionally, occupancy modelling was performed on the 

three datasets independently using the R package unmarked (Fiske and Chandler, 2011; 

2019; see Figure 31 for a schematic of the workflow). Data preparation and spatial 

modelling was performed in R version 4.0.4 (R Core Team, 2021). To account for spatial 

autocorrelation within transects, each set of scat observations within a grid was 

considered a single detection record. Similarly, the results of replicate iDNA extractions 

and qPCR repeats were treated as a positive record when one of more qPCR sample 

repeats amplified. For the Combined model, the data was pooled together, and any 

evidence of species presence was a positive presence data. 

 

 

 

 
Figure 31. Schematic of the workflow for this chapter, outlining the basic steps taken to create a robust set of 
occupancy models using the iDNA, scat survey and combined survey datasets. 
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4.2.5  Evaluating brown bear encounter rate 

In order to create robust, spatially-explicit occupancy models it is important that data is 

pre-assessed to provide statistically meaningful inputs into the occupancy analysis 

(Guillera-Arroita et al., 2015; Strimas-Mackey et al., 2020). This was achieved using a 

Random Forest (RF) approach, a machine learning algorithm process used in 

classification analyses. In this case, the RF algorithm was used to classify detections and 

non-detections of bears using the two different survey methods. Firstly, the Encounter 

Rate model showed the variation in detectability and occurrence as a joint framework 

(in contrast to occupancy models that look into these two processes separately). 

Secondly, a Predictor Importance (PI) rank was generated, in the form of an average Gini 

Index analysis, showing which covariates are most influential in the model. Gini Index, a 

statistical analysis originally used in economics, measures the distribution of values 

across a dataset (Gini, 1921). In the case of PI, the Gini Index ranges from 0, where all 

predictors are equally important, to 1, where only one predictor contributes to the 

variation in data (Chen and Liaw, 2004; Strimas-Mackey et al., 2020). Even though RF 

models do not take imperfect detection into account, including effort covariates in the 

RF analysis results in measurements of encounter rate proportional to occupancy, 

therefore this PI serves as indicator best predictors for occupancy modelling (Guillera-

Arroita et al., 2015; Strimas-Mackey et al., 2020). In the case of more elusive species, 

these RF encounter rate measurements are expected to be lower than the occupancy 

values (Strimas-Mackey et al., 2020), but the predictor importance from the RF analysis 

will still highlight the covariates with the largest contribution to the model. In view of 

the number of covariates considered in this study, the PI analysis here was key in guiding 

unbiased decisions of the most important predictors for the generation of occupancy 

models. 

 

 

Models were generated individually for each survey type (scat and iDNA) and by 

combining the two survey datasets (Combined dataset). In order to stay consistent with 

the field survey grid system, a study area raster with a cell size of 2 x 2 km2 was used to 

develop the encounter rate and occupancy models. Each of the three survey datasets 

(scat surveys, iDNA surveys and combined surveys) was randomly split into 80% to be 
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used for training the model and 20% to test the model’s predictive performance once 

the model was fit to the dataset following the protocol of (Strimas-Mackey et al., 2020).  

 

The probability of encountering the species (joint detectability and occurrence) was 

calculated using balanced random forest analysis, a machine learning approach using R 

package ranger, (Wright and Ziegler, 2015) which models detection/non-detection of 

the species in relation to the environmental and habitat covariates. The balanced 

random forest analysis resamples the data using bootstrapping, so that on each 

generated ‘tree’ there is an equal amount of detection and non-detection data 

(Robinson, Ruiz-Gutierrez and Fink, 2018; Strimas-Mackey et al., 2020).  

 

The balanced random forest approach is ideal for accounting for rare detections, but it 

can introduce bias due to the selective subsampling methods used. To account for that, 

following protocol from (Strimas-Mackey et al., 2020), the model results were calibrated 

by predicting the encounter rate for each sampling grid in the training set and fitting a 

binomial Generalised Additive Model (GAM) using the real observed encounter rate as 

the response variable and the predicted encounter rate as the predictor variable. GAM’s 

for each model were generated using the R package scam (Pya and Wood, 2014) by 

applying monotone increasing P-splines (‘bs=“mpi”’) to account for the a priori 

assumption that high real-observed encounter rate values will correspond to high 

estimated-observed encounter rate values. 

 

The calibrated and uncalibrated models were assessed by examining the values of mean 

square error (MSE) opting for the prediction model with the smallest MSE value and 

therefore smallest error between observed and predicted values using the test data. The 

values of sensitivity and specificity will allow for an examination of how accurate the 

model is at predicting encounter rate when the animal is present (sensitivity), and how 

accurate the model is at correctly predicting absence where they animal is not present 

(specificity). Finally Cohen’s κ, which looks at the level of agreement between two 

predictions (while also allowing for the agreement to be the product of chance) and Area 

Under the Curve (AUC), which measures the probability of the model’s ability to make 

predictions that are better than random. The predictors that best describe bear 

encounters were selected using the Predictor Importance values (Gini Index approach), 
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which describe the changes in model accuracy when a predictor is removed from the 

algorithm. Each of the predictors was tested and ranked for their importance against a 

training subsample of the dataset. Finally, the calibrated random forest analysis was 

used to generate a prediction model of the brown bear encounter rate for each of the 

three methods. 

 

4.2.6. Occupancy modelling 

The occupancy models were generated using the R package unmarked (Fiske and 

Chandler, 2019, 2011) using covariates with predictor importance value larger than or 

equal to 0.8 (PI ≥ 0.8). As an additional measure, the predictors were tested for 

correlation (R package ‘stats’, v.4.0.4) and removed from the analysis when a correlation 

larger than or equal to 0.8 was present between predictor pairs. Further removal of 

predictors from the occupancy analysis was suggested by the Unmarked script when the 

model did not converge, suggesting the use of less covariates. A goodness-of-fit test 

(MacKenzie and Bailey, 2004) was applied to the resulting occupancy models with a one 

thousand bootstrap sample simulations (nsim = 1000), comparing the observed and 

expected frequencies of detection observations. 

 

The function dredge was used to generate all possible covariate combinations from the 

original unmarked frame dataset as well as a model assuming constant occupancy (ψ(.)) 

and constant detectability (p(.) across the study site. The models were compared using 

ΔAICc values which show the difference between the corrected Akaike Information 

Criterion (AICc) between the best fit model and each of the other models generated by 

the dredge function. Where it was not clear that a single model was the most likely 

candidate to explain the data (i.e., ΔAICc ≤ 2.5), a model average prediction was 

generated (Strimas-Mackey et al., 2020). Finally, the model-averaged prediction was 

rasterised to generate a prediction surface using a 2 x 2 km template raster. Response 

curves were generated using the model-averaged predictions, highlighted the direct 

relationship between occupancy (ψ) or detection (p) and each of the predictors 

depending on whether they were used as site or observation covariates, respectively. 

The three resulting occupancy models (iDNA, scat and combined data) will be referred 

to as ‘optimised models’ in the rest of the text.  
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In addition to these models, a further three models were produced by adding all the site 

covariates and all the observation covariates used in the above models, thus creating a 

consistent covariate dataset for all three models. These three models will be referred to 

as ‘comparison models’ in the rest of the text.  

 

Finally, as a means of comparing the models, the Probability of Occupancy raster 

produced from the scat survey comparison model was subtracted from the iDNA model 

in ArcGIS Pro (v 2.8, Esri), revealing the areas where the models were the most different.  

 

Ethical approval was granted by the UWE Animal Welfare and Ethics Sub-committee, 

reference number: R34. 

 

 

4.3  Results 

 

4.3.1  Presence data 

A total of 30 out of 90 scat surveys (33.3%) detected scats and 27 out of 90 iDNA samples 

(30%) were amplified, indicating the presence of brown bear mtDNA within flies 

captured from that sample cell (Figure 32). The combined dataset increased the number 

of positive observations to 45 out of 90, with 12 surveys detecting bears in both iDNA 

sampling and scat transects simultaneously (13.3% of all surveys, 26.6% of all positive 

surveys; Figure 32). The spatially thinned scat transect detections and results from the 

laboratory analysis of iDNA samples formed the final datasets used for the spatial 

modelling. In terms of the relationship between detection and suitability, both methods 

had nine detections in high suitability areas, four in medium suitability areas for iDNA 

and six for scat survey data. Finally, four detections were recorded in low suitability 

areas with iDNA sampling and three with scat transects (Figure 32). 
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Figure 32. Survey results and comparison matrices of field detections for all seasons as well as for each season for 

scat and iDNA detections. Survey results shown on top of a habitat suitability model and the overall suitability within 
the sampling grid is indicated as Low/Medium/High in the letters within the survey results. 
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4.3.2  Model predictors 

The predictor selection for the optimised models was initially made using the Gini Index 

analysis for each of the three survey datasets (Table 9). These top predictors were also 

checked for correlation (Appendix, section C1. Correlation of top predictors).  

 

Table 9. Gini Index results highlighting the importance of the top predictors (PI ≥ 0.8) for each of the three datasets. 
All data on land cover type (in green) and topography (in blue) covariates are represented here as their percentage 
cover (relative to the other layers from their respective categories) within a cell. Covariates associated with distance 
from roads and urban areas (in yellow) and elevation (in orange) were analysed as the mean and mean SD of the 
distance of each pixel within the sampling cell. Survey covariates in purple. 

 Predictor Importance (PI) 

Predictors iDNA surveys 
Scat 

surveys 

Combined 

surveys 

Broadleaved forest  2.22 1.09 3.50 

Flat/gentle slopes 0.87 1.22 2.32 

Transect length < 0.8 1.10 2.11 

Natural grassland < 0.8 1.30 1.63 

Mean elevation 0.93 1.27 1.60 

Steep slopes 0.83 0.94 1.50 

Canyons 0.97 0.88 1.49 

Mean distance from major roads SD < 0.8 < 0.8 1.35 

Mean distance from major roads 1.17 < 0.8 1.28 

Transitional woodland < 0.8 0.94 1.22 

Mean elevation SD < 0.8 0.87 1.08 

Mean distance form urban areas < 0.8 < 0.8 1.02 

Non-irrigated arable land 1.22 < 0.8 0.89 

Ridgetops < 0.8 < 0.8 0.88 

Mean distance form urban areas SD < 0.8 < 0.8 0.81 

Survey year < 0.8 1.30 < 0.8 
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4.3.3  Encounter rate 

The random forest calibration showed a small improvement on the mean squared error 

after calibration (Figure 45 in Appendix), while all other metrics remained constant. The 

calibrated models were used to generate an encounter rate model for each of the 

datasets. The resulting encounter models were rasterised to create a mosaic of 

encounter rate (a joint measurement of detectability and occurrence) for each of the 

survey methods (Figure 33).  

 

 
Figure 33. Encounter rate models of iDNA (top left), scat survey (bottom left) and combined dataset (bottom right). 

 

 

4.3.4  Occupancy modelling  

Occupancy model selection – optimised models 

Each data frame of observations of the three survey combinations and the four 

predictors were converted to an unmarked object to inform a single-season occupancy 

model. The goodness-of-fit p-value for all three optimised models was larger than 0.1, 
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suggesting there was no reason to consider lack of fit, but the estimate of ĉ value for the 

scat data (0.23) showed some evidence of overdispersion (Table 10).  

 

Table 10. Model evaluation metrics for the optimised occupancy models (AIC and Goodness of Fit) and model 
coefficients (in logit-scale) for occupancy (ψ) and detection (p) for each model. Note that habitat type and topography 
covariates show the percentage of land covered by that habitat/topography type within each sampling cell. 

 iDNA  Scat  Combined  

Model AIC 106.67 102.48 96.31 

Goodness of fit 
 

χ2 5.36 1.19 3.86 

p 0.50 0.97 0.68 
ĉ 0.90 0.23 0.69 

Model-averaged 

coefficients  

(logit-scale) 

ψ 

. -2.71 16.51 12.87 

Mean elevation -0.12  -13.30 - 
Broadleaved forests 4.64 - - 

Natural grassland - -22.98 -16.09 

Flat/gentle slopes - -16.06 -13.54 

p 

. 21.74 2.10 -0.49 

Canyons 10.44 - 8.61 

Distance from major roads -17.69 - - 

 
Survey year - -1.01 - 

Transect length - - 0.33 

 

 

The function dredge resulted in a set of candidate models that were subsequently 

ranked by their AICc values, with the lowest AICc model and smallest delta AICc values 

being the ones considered to fit the data more suitably. The models with a ΔAICc value 

≤ 2.5 were averaged to generate a single model-averaged prediction (see Table 11 for 

contributing models) with six models contributing to the iDNA, two to the scat and four 

to the combined model-averaged predictions.  
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Table 11. Model dredge showing the best fit models (ΔAICc≤ 2.5) contributing to the model-averaged predictions and model coefficients (in logit-scale) for occupancy (psi) and detection (p) for each 
model. Note that habitat type and topography covariates show the percentage of land covered by that habitat/topography type within each sampling cell. 

iDNA model dredge - models with ΔAICc ≤ 2.5 

Model  ψ (.) ψ (mean elevation) ψ (broadleaved forests) p (.) p (mean distance from major roads) p (canyons) df AICc ΔAICc weight 

9 -0.30 NA 3.73 -0.17 NA NA 3.00 107.26 0.00 0.20 
8 -14.73 21.74 NA 0.12 -22.59 13.31 5.00 108.14 0.88 0.13 

12 -0.11 NA 7.14 0.28 -19.46 10.33 5.00 108.23 0.97 0.12 
10 -0.33 NA 5.20 0.39 -8.53 NA 4.00 108.80 1.54 0.09 
11 -0.11 NA 2.63 -0.61 NA 6.47 4.00 108.86 1.60 0.09 
3 1.24 NA NA -1.11 NA 10.42 3.00 109.23 1.97 0.07 

           
Scat model dredge - models with ΔAICc ≤ 2.5 

Model number ψ (.) ψ (mean elevation) ψ (natural grasslands) ψ (flat/gentle slopes) p (.) p (survey year) df AICc ΔAICc weight 

386 12.40 NA -22.11 -13.81 2.10 -1.01 5.00 92.11 0.00 0.17 

418 30.07 -13.30 -25.86 -23.52 2.10 -1.01 6.00 94.50 2.39 0.05 

           

Combined data model dredge - models with ΔAICc ≤ 2.5 

Model number ψ (.) ψ (flat/gentle slopes) ψ (natural grasslands) p (.) p (transect length) p (canyons) df AICc ΔAICc weight 

46 14.32 -14.90 -17.70 -2.00 0.37 9.55 6.00 96.36 0.00 0.18 

41 11.80 -12.55 -14.88 0.89 NA NA 4.00 96.82 0.46 0.14 
45 12.08 -12.84 -15.17 -0.65 0.26 NA 5.00 97.19 0.82 0.12 
42 12.73 -13.36 -16.03 0.37 NA 7.04 5.00 97.40 1.03 0.11 
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The model-averaged response curves highlighted the relationship of each variable to the 

model’s occupancy or detection predictions (Figure 34, Figure 35 and Figure 36).  

 

 

Figure 34. Response curves for iDNA model-averaged predictions with 95% CI. 
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Figure 35. response curves for scat model-averaged predictions with 95% CI. 

 

 
Figure 36. GAM response curves for combined data model-averaged predictions with 95% CI. 
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Finally, the comparison models were generated using seven out of the nine covariates 

used across the three optimised models. The percentage cover of broadleaved forests 

was excluded from the analysis, because the models did not converge when it was 

included in the analysis, while transect length was removed, because it was not 

associated with the collection of iDNA data. The results revealed that detection is 

influenced by different sets of observation covariates across the models. Specifically, the 

iDNA model-averaged predictions utilised the percentage of canyons, mean distance 

from major roads and survey year; while the scat model used only the percentage of 

canyons and survey year, and the combined surveys used the mean distance from roads 

and percentage of canyon cover to predict detection (Table 12).  

 

 
Table 12. Model evaluation metrics for the comparison occupancy models (AIC and Goodness of Fit) and model 
coefficients (in logit-scale) for occupancy (psi) and detection (p) for each model. Occupancy estimates were not 
calculated for the combined model’s mean elevation (psicombined(mean elevation) because the dredge analysis did not 
highlight any models using mean elevation good enough to include in the model-averaged prediction. Note that 
habitat type and topography covariates show the percentage of land cover. 

 Comparison iDNA model Comparison scat model Comparison combined 
model 

Model AIC 100.54 93.87 94.10 

Goodness of fit 
χ2 4.33 0.90 4.06 
p 0.51 0.98 0.48 
ĉ 0.87 0.19 0.89 

Model-averaged 
coefficients (logit-
scale) 

ψ 

. 17.27 15.92 11.58 

flat/gentle slopes -18.88 -15.79 -12.36 

natural grassland -20.41 23.10 -14.55 

mean elevation - -13.30 NA 

p 

. -0.03 2.04 1.37 

mean distance from 
major roads -13.71 - -23.27 

canyons 8.93 3.86 16.12 
 survey year 0.30 -1.01 - 
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Optimised occupancy models 

The model-averaged probability of occupancy and standard error (occupancy 

uncertainty) were extrapolated for the entire study area, creating rasters that depict 

occupancy across the site. The comparison model predictions are seen in Figure 37 and 

the optimised models can be found in the Appendix (C2. Optimised occupancy models). 

 

 

Finally, the comparison between the iDNA and scat survey models highlighted the 

differences between the two models, pointing to areas within core habitats displaying 

high probability of occupancy with the scat survey dataset. These models appear to 

highlight the areas of higher frequency of bear use and display a larger degree of 

uncertainty in the edges between high and low occupancy. Contrastingly, the corridor 

and some edge habitats showed higher probability of occupancy with iDNA data, 

matched with smaller degrees of uncertainty in those areas. Slightly larger SE values 

were present in the iDNA model in the two large patches of mostly unsuitable land 

between the two core areas. The Combined model appeared to reduce the levels of 

uncertainty and display a model that still indicates the presence of a corridor connecting 

the two core areas (Figure 38). 

Figure 37. Comparison models: Occupancy probability and uncertainty for iDNA (left), scat survey (middle) and 
combined dataset (right). 
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Figure 38. Raster comparison of the probability of occupancy predicted by iDNA data and scat survey data. 

 

 

4.4  Discussion 

4.4.1  Overview 

The data presented in this chapter indicates that iDNA is a robust and complimentary 

survey tool for monitoring brown bears; that it may be more effective at identifying 

areas of low usage or population densities and that it provides data which can underpin 

the development of spatially explicit occupancy models. As the development of iDNA 

continues in different ecological survey scenarios, a small number of studies have 

compared it with more commonly used monitoring methods. (Gogarten et al., 2020) 

compared iDNA detection rates with camera trapping, finding that the methods are 

more effective at collecting information on species assemblages when used in 

combination. Their results suggest that the overlap of species detected using both 

methods ranged between 6%-43%, with iDNA being more successful at detecting 

smaller-bodied species those observed with camera traps (Gogarten et al., 2020). To 

date, however, published iDNA case studies primarily focus on multiple species 

detection using a metagenomic approach (Abrams et al., 2019; Hoffmann et al., 2018; 

Schnell et al., 2015; Schubert et al., 2015). The potential to use iDNA-derived data in 

occupancy modelling was proposed by previous literature (Baerholm Schnell et al., 
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2015; Gogarten et al., 2020), suggesting that repeated sampling, combined with the 

understanding of dispersal distances and target species DNA persistence in or on the 

invertebrates is accounted for. To our knowledge, this is the first study which utilizes 

iDNA data in the development of spatially explicit occupancy models to draw 

conclusions about the distribution of a single species across a given geographical area. 

The data presented in this chapter demonstrates the use of iDNA in a statistically robust 

assessment of single-species, single-season occupancy. 

 

4.4.2  iDNA as an effective single-species monitoring technique 

As advised by (Gogarten et al., 2020), the estimation of fly dispersal and DNA persistence 

period in fly guts was necessary for this analysis, to ensure that the iDNA sampling sites 

were ‘closed’ for the duration of the surveys and no changes to occupancy occurred 

during sampling. In her PhD thesis, Lee described that blowflies disperse at a maximum 

of 1km per day and that mtDNA amplifications from iDNA samples significantly dropped 

within 24h (Lee, Sing and Wilson, 2015). Lee’s findings, alongside the results from this 

project’s controlled DNA retention experiment (Chapter 3), suggest that mtDNA of 

sufficient quantity and quality persists for a period of 24h in blowfly guts (Lee, Sing and 

Wilson, 2015). Furthermore, studies looking at blowfly dispersal distances in temperate 

and subtropical climates suggest a dispersal rate of 100-2400m per day (Braack and 

Retief, 1986; Lee et al., 2016; Tsuda et al., 2009; Wall, 1998). By sampling in the middle 

of a 2km x 2km grid, the distance between the two sampling points (if those grid squares 

happen to be adjacent) was 2km, which corresponded to the period of estimated time 

by which the majority of target species mtDNA in the iDNA sample would no longer be 

amplifiable. Using this information, I estimated that each iDNA sampling session was a 

separate event that recovered iDNA from within the boundaries of a “closed” sampling 

grid. Similarly, the scat data was spatially thinned to follow the same principle and 

account for multiple records of scat along the transects within each sampling grid. 

 

It is evident that the two surveys complemented each other; there were many occasions 

when one of them detected bear presence when the other failed to do so (Figure 32). In 

fact, when looking at the detection data from all seasons, only 26.6% of the detections 

were recorded by both methods, while 33.3% were exclusively made by iDNA surveys 

and 40% were only recorded with scat surveys. Out of the 90 sampling events (30 sites 
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x 3 seasons), 67 sampling event records were consistent for detections/non detections 

between the two survey types (non detection by both methods = 45 sampling events, 

detection by both methods = 12 sampling events). Out of the thirty sampling sites across 

all seasons, four revealed presence of bears only in the scat dataset, while three 

revealed presence only in the iDNA dataset. Those detection differences came from a 

single repeat (one season’s successful detection), with the exception of grid 14 and grid 

29 where scat were recorded in two separate seasons (two repeats). The fact that the 

majority of the detection differences come from one of the survey repeats, could 

indicate areas of less frequent use by bears, decreasing the likelihood of detecting the 

species at the time of the survey. The results from this study add to the work of 

(Gogarten et al., 2020), expanding the body of research on using iDNA as a 

complementary monitoring method. This chapter introduces results that support the 

complementarity of iDNA with more commonly-used monitoring techniques on single-

species detection. 

 

 

4.4.3. Predictor importance 

Each of the three models revealed a slightly different rank of predictor importance as a 

result of the Gini Index (GI) analysis (Table 9). The percentage cover of broadleaved 

forests was the strongest predictor of both the iDNA and the combined dataset and third 

most important predictor for the scat surveys. The other two habitat predictors that 

were highlighted by the GI analysis were percentage cover of natural grassland (scat and 

combined surveys), percentage cover of transitional woodland (scat and combined 

surveys), and percentage cover of non-irrigate arable land (iDNA and combined surveys). 

The results here are consistent with findings from van Gils et al. (2014) who showed that 

the summer/autumn distribution is better predicted by habitat types such as 

broadleaved woodland, abandoned farmland, meadows, pastures and residual forest 

patches. Particularly in the case of broadleaved woodland, the findings reflect habitat 

use in Spain were the percentage of deciduous forests cover was found to be a strong 

predictor of suitability for bears (Clevenger, Purroy and Campos, 1997; Clevenger, 

Purroy and Pelton, 1992; Güthlin et al., 2011). Indeed, the percentage broadleaved 

cover indicated a positive relationship to the probability of occupancy (Figure 34). 

Similarly, percentage cover of natural grassland was an important predictor of bear 
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presence, but here we saw a drop in occupancy probability as the percentage cover 

became greater, which points to the assumption that bears prefer these areas in 

landscapes where they are mixed with areas provide canopy cover (van Gils et al., 2014; 

Posillico et al., 2004). Mean elevation was one of the important predictors of the 

probability of occupancy for the scat and iDNA models. In the scat model, the probability 

of occupancy was predicted consistently high across elevations, while the iDNA model 

revealed an increase in occupancy probability as elevation increases, with a small drop 

and plateau after 1000m elevation. This could be a result of temperature differences in 

high elevation areas that made for a different composition of blowfly community, but it 

is consistent with bibliography for European brown bear altitude preferences in the sub-

Mediterranean climate (Clevenger, Purroy and Campos, 1997; Falcucci et al., 2009; van 

Gils et al., 2014; Posillico et al., 2004). Additionally, the percentage cover of flat/gentle 

slopes showed negatively impacts the probability of occupancy in the scat and combined 

modes, indicating that bears tend to prefer steeper slopes instead of large extents of 

flat areas (Falcucci et al., 2009; van Gils et al., 2014; Güthlin et al., 2011).  

 

My results suggest that detection probability for the iDNA and combined data models is 

positively affected by the percentage cover of canyon formations. Due to the fact that 

this specifically affected detection in the iDNA data which in turn influenced the 

combined model, this could be due to environmental reasons, such as scent dispersal. 

Nottingham, Johnson and Pelton (1973) present an example of the effects of scent 

dispersal in the detection of raccoons (Procyon lotor) on bottomland versus upland 

locations of scent stations. The same effect could be present in this study, with the scent 

of the fly bait essentially becoming contained by the canyon structures, allowing for the 

flies to detect and travel to it more effectively. Additionally, Macleod and Donnelly 

(1958) studied changes in the distribution of five blowfly species and demonstrated that 

flies often seek refuge in more sheltered areas (outlined as ‘topographically conditioned 

shelter’). Canyons, forests and other ‘shelter’ type covariates used here could also 

explain some of the variation in detection. Additionally, detection was greater nearer 

major roads, which was unexpected from our understanding of bears. The negative 

impact of major roads, as well as other urban structures and human activity, to bear 

distribution has been covered thoroughly in Europe (Bartoń et al., 2019; van Gils et al., 

2014; Güthlin et al., 2011) and North America (Brody and Pelton, 1989; Lewis et al., 
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2011; Van Manen et al., 2012; Mattson, Knight and Blanchard, 1987). My results suggest 

that iDNA detection quickly drops after a mean distance from major roads of 250m and 

reaches a plateau at approximately 15% detection probability.  

 

Transect length was found to be a good predictor for combined survey detection, 

confirming that the longer the forestry road network within the sampling grid, the more 

likely it is to detect bears. Finally, survey year was a strong predictor for the scat 

probability of detection, especially highlighting the lack of scat detected during the last 

season (2019). This reveals that, in the case of the scat surveys, it is likely that predictors 

outside the scope of this study were important for detecting bear presence, such as 

differences in the food resources and habitat usage within this particular geographical 

area across the three years, or other factors that were not measured here. 

 

 

4.4.4. Encounter rate and detection probability 

When assessing a binary presence-absence model, we can look at the model’s sensitivity 

as the rate to which a probability of detection relates to a true field detection (true 

positive) and its specificity as the model’s ability to match low detection probability 

values to non-detection events in the field (true absence). An ideal survey, with a 

detection probability of 1, would assume not only that the survey method is 100% 

successful at finding the species if it is there, but also 100% confident in confirming that 

the species is absent when it is not detected. However, this is not a realistic concept 

when it comes to most species monitoring efforts and assuming perfect detection can 

introduce bias and lead to underestimations of a species’ spatial distribution (Mackenzie 

et al., 2002; Thompson, 2004).  

 

This model’s predictors were selected using a training dataset consisting of 80% of the 

total observation data (n=90 observations for each survey type) for each survey method. 

The rest of the data (test data) was kept aside and used for the validation of the random 

forest model that calculated the bear encounter rate. For each of the survey types the 

calibrated encounter models generated by the relatively small amount of training data 

produced models with an improved mean square error (MSE), showing the mean 
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squared difference between field encounter and estimated encounter but had no effect 

on the other model metrics (sensitivity, specificity, AUC and the Cohen's κ).  

 

The calibrated scat model had the smallest mean squared difference between field and 

estimated encounter and highest AUC value, but the sensitivity and Cohen’s κ suggested 

a moderate agreement between true and estimated encounter. Contrastingly, the iDNA 

model had a higher MSE and lower AUC, but the sensitivity and Kappa values were the 

highest across all models, suggesting substantial agreement between true and 

estimated encounter rate. Finally, the combined model had the lowest specificity value. 

This drop in specificity relative to the individual models suggests that the combined 

model is less likely to correctly identify true absences than the individual survey models. 

This could be explained by the wider range of values that go into the combined model 

when the data from the scat and iDNA detections are pooled. It is possible that where 

one survey was more effective in detecting bears than the other, especially when there 

was only one detection out of the six observations (three repeats for scat surveys and 

three repeats for iDNA sampling), the detection inconsistencies contribute to a model 

that is less effective in confirming true absences. This assumption is also supported by 

the combined model’s MSE and Cohen’s K values that present the highest and lowest 

values for those two parameters respectively, suggesting a moderate agreement 

between the model’s true and estimated encounter rate. All three models are powerful 

in accurately predicting areas of species presence (sensitivity range = 0.667-0.833), as 

well as true absence and thus correctly identifying areas of species occurrence 

(specificity range = 0.636- 0.889) (Strimas-Mackey et al., 2020).  

 

Visually, the three models result in very similar encounter rate predictions, with the 

combination model predictably showing a higher rate of encounter across the landscape 

since the effort the combined dataset comprises of more detection observations. The 

resemblance of the encounter models adds to our argument that iDNA is a robust 

monitoring method and, ultimately, the differences in the values of the encounter 

prediction metrics highlight the fact that the two survey methods were able to 

complement each other in detecting bears.  
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4.4.5  Occupancy modelling 

Here, similar to the encounter rate models, the occupancy models (both optimised and 

comparison models) generated using the three datasets predicted a very similar 

landscape of bear distribution across the study area (Figure 37 and Appendix C2. 

Optimised occupancy models). The large difference in predictions seen in the optimised 

iDNA model was evidently introduced by the inclusion of the percentage of broadleaved 

woodland predictor and creating a model that predicted a much lower probability of 

bear occupancy along the study area, matched with very high standard error values. 

Once that predictor was removed, in the comparison models, the analysis generated a 

probability mosaic that matched that of the other two models. The discussion around 

this study’s occupancy models will focus on the comparison models hereafter, to allow 

for a direct comparison of the outputs.  

 

Interestingly, the iDNA and combined survey models describe a more continuous 

predicted corridor while still highlighting the complexity of habitat use, as confirmed by 

the rarity of observations across the two surveys and three seasons. The iDNA data here 

was able to illustrate a more permeable landscape, with more evidence of predicted 

corridor use as well as some higher predictions in core area edges and less suitable 

habitats (as seen in Figure 38). In contrast, the scat survey model, even though very 

similar, does not reveal a change in permeability to reflect the fact that presences at 

four sites were only detected with scat surveys. The ability of the iDNA model to reflect 

the more rare sightings and corridor use, combined with the high standard errors in the 

scat model’s probability of occupancy, results in a combined model with an overall 

higher probability of occurrence and a lower standard error across the study site.  

 

Occupancy modelling emerged out of the need to tackle imperfect detections in the 

field, which becomes especially important when it comes to understanding the 

distribution of rare or elusive species (Dorazio and Erickson, 2018; Elith et al., 2006; 

Keane et al., 2012). This chapter highlights the effectiveness of occupancy modelling in 

studying areas of low use, such as corridors and stepping stone habitats. The challenge 

in looking at corridors and other areas of low use is that these areas are often monitored 

to prove their use, but they are unlikely to be permanently inhabited by the species in 
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question. By definition, these habitats are areas the species uses to cross between core 

areas, therefore a drop in detection probability similar to rare or elusive species 

monitoring efforts can be expected, making occupancy modelling a more suitable 

method of estimating spatial distribution of a species. This study demonstrates the use 

of occupancy modelling in monitoring predicted corridors using brown bears in Greece 

as a case study. More importantly, it highlights the use of iDNA in this effort by 

comparing it with the occupancy model produced by scat survey observations. 

 

The model created using iDNA detections demonstrates a marginally more connected 

network of bear habitats and illustrates the pattern of bear use of the corridor as seen 

in the telemetry data (see Chapter 2). In SDMs sampling bias can be introduced in the 

form of false absences by selecting background points away from the sampling area and 

thus risking training the model in discounting suitable areas where no detections were 

recorded (Elith and Leathwick, 2009; Fourcade et al., 2014). This case study 

demonstrates how, in addition to false absences, occupancy models generated from 

small datasets can be influenced by detections in ‘atypical’ areas, breaking the 

distribution pattern of the entire survey dataset by a single observation of a single 

repeat. The three occurrences that only iDNA was effective in detecting, two of which 

located in habitats outside core areas, meant that the resulting model further highlights 

the corridor existing between the two core areas and emphasises the corridor use by 

bears (see Figure 32). The possibility that bear detection in these areas was a result of 

flies dispersing from core to corridor areas instead of bear use of the corridor areas was 

considered. However, the grid size chosen along with the experiments of target DNA 

persistence in these iDNA samples suggests that the presence of bears in the sampling 

grid. Moreover, if flies were dispersing from core areas, that dispersal would be equal 

to corridor and non-corridor areas, suggesting that iDNA would have detected bear 

presence in other areas outside the corridor zone. The fact that these detections were 

confined to the areas that were predicted as suitable supports the argument that the 

detections are a real effect of bear presence. 

   

Contrastingly, the fact that scat surveys located observations in core areas that iDNA 

failed to detect generated a model that seems to be slightly more restricted to the core 

areas (differences illustrated in Figure 38). Scat surveys showed a higher resilience to 
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error in core areas, but higher error values in the margins between high and low 

occurrence probability. In both surveys a pattern whereby the number of detections 

increases with predicted suitability emerged, indicates that both methods could be used 

to ground-truth suitability predictions effectively. This decrease in detections as areas 

become less suitable for bears shows that the methods appear to be sensitive to 

changes in habitat use.  

 

4.4.5  Conclusion 

The results of the occupancy modelling analysis are very encouraging for the future of 

iDNA monitoring in ecological network studies. Using iDNA data to make species 

distribution inferences is novel and this chapter is the first work describing it and 

comparing it to a more commonly used method. The results of this study demonstrate 

that iDNA can robustly predict occupancy and detection given a set of repeat surveys. It 

is important to reiterate that the results presented in this chapter do not, by any means, 

suggest that iDNA could solely replace other monitoring efforts. Instead, we hoped to 

unveil the benefits and disadvantages of this method and the compatibility of using iDNA 

in conjunction with other survey methods. The models above present a very interesting 

case study, illustrating the advantages and pitfalls of using iDNA in collecting species 

records for spatial analyses.  

 

Furthermore, this work was carried out to explore the potential of using this novel 

method to monitor wildlife corridors and areas of expected low use. The case study 

demonstrates the use of iDNA as a single-species monitoring method for exploring the 

existence and use of wildlife corridors for the species in question. The results suggest 

that iDNA can be effective in detecting the species in areas of infrequent use. Caution 

must be taken in interpreting those results, as models that incorporate observations 

from less suitable habitats are more likely to have increased levels of over-prediction 

and uncertainty in occupancy predictions. We believe that the occurrence data and 

resulting occupancy models show some evidence of the strength of iDNA in detecting 

target species in areas of low use and rare occurrences.  

 

Given the extended body of literature around bear habitat preferences and distribution 

predictors, we were able to confirm that our results concerning the iDNA encounter rate 
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and occupancy modelling reflected current understanding of bear ecology. The iDNA 

models and response curves were able to show the expected patterns of bear 

distribution, confirmed by similar responses in the scat model results. This consistency 

in the model outputs validates our efforts to create an accurate model for bears and the 

hypothesis that iDNA can be a successful tool not only for monitoring, but also for the 

spatial analysis of the species’ distribution and habitat preferences. More importantly, 

this uniformity in model outputs suggests that this method could be a more robust way 

to assess the occupancy of a species that less is known about by implementing repeat 

survey sampling using iDNA and a supplementary survey method. By introducing a 

second survey technique, alternative to the iDNA, our results demonstrate that it is 

possible to further validate the results where the understanding of what to expect for 

the species’ ecological preferences lacks.  
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Chapter 5: Discussion 

 

Successful conservation projects are centred around species monitoring, from the very 

early stages of getting a grasp of the distribution, and population numbers and trends 

of a species in an area, to evaluating management action (Legg and Nagy, 2006; Nichols 

and Williams, 2006; Stem et al., 2005). Optimising the collection of data in the field has 

been in the forefront of new habitat and species monitoring advancements, with 

emerging technology being adapted for species surveys, such as the use of drones 

(Shewring and Vafidis, 2021; Vafidis et al., 2021; Wich and Koh, 2018), bioacoustic and 

chemical sensors (Bardeli et al., 2010; Calupca, Fristrup and Clark, 2000; Larsson and 

Svensson, 2009; Salamon et al., 2016; Svensson et al., 2011) and environmental DNA 

monitoring techniques (iDNA eDNA airDNA) (Abrams et al., 2018; Bohmann et al., 2014; 

Bohmann, Schnell and Gilbert, 2013; Calvignac-Spencer et al., 2013; Lynggaard et al., 

2022; Ruppert, Kline and Rahman, 2019). Following such efforts, the overall work 

undertaken in this project has focused on exploring the use of cost- and time-efficient 

tools that can be used in conservation planning and species monitoring. The three broad 

techniques I present here describe a complete monitoring project, from the initial 

planning stages and understanding the distribution have habitat use for a species 

(habitat suitability modelling), to conducting field surveys (iDNA monitoring) and using 

repeat survey results to estimate the distribution of the species across the study area 

(occupancy modelling) (Figure 39).  
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Figure 39. Overall workflow and project skeleton, detailing the outcomes of each part of the project. 

 

 

The protocol outlined here takes into consideration cases where knowledge of the 

species ecology is lacking, or existing field data is sparse, ensuring that the model is easily 

transferable to species that are more elusive or less studied. The two methods used to 

create the Habitat Suitability Models (HSM) were tailored to these two scenarios of 

missing data. Both models were able to create distribution scenarios that follow the 

known target species’ distribution, while also considering sites currently unoccupied 

that fulfil the same habitat requirements. Within the context of creating a monitoring 

protocol, the HSM study was conducted to reveal areas that would optimise the survey 

results and consequent understanding of the iDNA limits of detecting the target species 

in areas of low, medium and high use. The HSM analysis assisted, at the planning stages 

of the monitoring part of the project, in finding a study area that fulfilled all these 

requirements in terms of habitat type, while also incorporating a potential corridor, core 

habitats (expected high use) and unsuitable areas. The HSM analysis was instrumental 

to the selection of a study area that incorporated all the suitability gradient to allow for 
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a successful test of the iDNA method as well as provide evidence of corridor use by the 

species. 

 

Keeping in mind the transferability of the method and focus on species that are more 

challenging to detect, the study focused on single-species monitoring that has proven in 

eDNA and iDNA studies to be more effective than metabarcoding at detecting target 

species when they are rare (Harper et al., 2018; Schubert et al., 2015). I believe that the 

protocol presented here could be used in this format, with small adjustments, to adapt 

and use in species monitoring of other target animals or in other climates. In fact, the 

targeted qPCR iDNA protocol developed here was adapted and used to collect and 

analyse iDNA samples from sun bears (Helarctos malayanus) in Cambodia in 

collaboration with the Free the Bears non-profit charity and funded by the International 

Association for Bear Research and Management Conservation and Research Grant. The 

pilot results from sun bear sanctuaries confirmed presence of sun bear DNA in fly 

samples and more research is currently underway to analyse and compare the targeted 

qPCR results with metabarcoding results from field samples (data pending). We believe 

that the single-species approach used in this project has great potential for monitoring 

efforts of rare or elusive species such as the sun bear and other, more cryptic species in 

a variety of environments. The ease of adaptation of this method using different traps, 

bait types and groups of invertebrates has been demonstrated in literature, even in the 

use of mixed invertebrate group samples (Bohmann, Schnell and Gilbert, 2013; 

Calvignac-Spencer et al., 2013; Lynggaard et al., 2019).  

 

As iDNA continues to develop as a monitoring tool, studies looking at the nuanced 

information, such as limit of detection tolerances, optimising the qPCR reagents and 

DNA extraction techniques, and revealing the detection tolerances for each group of 

invertebrates (persistence period of amplifiable target species DNA) will be essential to 

move the field forward. Understanding such details will help create a more 

comprehensive body of research in the use of iDNA for wildlife monitoring, showcase 

the advantages and sensitivities of the method, and highlight some of the limitations. 

Although individual identification has not had a sufficient rate of success in the past 

(Schubert et al., 2015), further research could focus on adapting this iDNA protocol for 

population structure studies by changing the target gene. The mitochondrial D-loop 
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region can reveal genetic diversity in phylogeographic and demographic variation within 

populations (Jia et al., 2007; Mereu et al., 2019; Osman, Yonezawa and Nishibori, 2016; 

Wu et al., 2015). Adapting this iDNA protocol to target and sequence the mitochondrial 

D-loop region could introduce some variation between individuals and would greatly 

broaden the scope of this monitoring method. 

 

Finally, a comparison survey method, repeat surveys and occupancy modelling ensured 

that the efforts to optimise this technique would be tested in the field and put under a 

modelling analysis that accounts for small sample sizes and rare detections. A model 

average was created using the Expert Knowledge model and corresponding Species 

Presence model (both made using elevation, topography and land cover variables), to 

illustrate the results of creating a combined prediction of these two different methods 

(Figure 40). The results of the occupancy modelling analysis very closely resemble those 

of the Habitat Suitability Index model that incorporated elevation, topography and land 

cover data (Figure 40). Overall, the creation of the HSM models was significant in the 

study site selection, but it is the occupancy modelling that explicitly focused on bear 

distribution in this area and therefore the occupancy results can be subsequently used 

to ground-truth the HSMs. The results indicate that the Expert Knowledge model at this 

particular study area was more effective at predicting the distribution of the target 

species and describing the use of the habitat by the animal. 
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Figure 40. Model predictions of suitability (top) compared with the occupancy modelling outputs. The Expert 
Knowledge and Species Presence models were averaged to create a model that combines the two very different 
methods to test the potential that these two could be used in combination. 

 

 

In regards to the impact of this study to the target species, I believe that this project has 

potential to impact bear conservation planning in Greece, while also introducing iDNA 

monitoring as a new method to survey bears. This study demonstrates the advantages 

and challenges in using iDNA for single species monitoring and highlights excellent 

potential for expanding species monitoring efforts within noninvasive survey 

techniques. I believe that iDNA can be used as a complementary method to other survey 

techniques, as this study demonstrates its ability to detect bears in areas where scat 

surveys failed to yield results. Furthermore, the spatial analysis carried out presents the 

first focused attempt to map the entire distribution of bears in Greece and potential 

areas of future colonisation. This information will be used to understand how best to 

conserve the areas that are already important for bears, while also improving and 

maintaining linkages between them. As bears continue to increase in numbers and 

expand their range, the suitable but currently not inhabited areas on the HSMs could 

serve as guides to where bears will move towards as they recolonise the land. This 

information is invaluable for large carnivore conservation efforts to prevent conflict and 

raise awareness in these communities that have not interacted with bears before. In 
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fact, human-bear conflict continues to be the largest conservation threat to bears in 

Greece and the costs related to all damages caused by bears amount to over £119,000 

annually (Kaczensky et al., 2012b), making the understanding of future bear movement 

essential to their long-term conservation.  

 

This work was conducted with the aim to serve as a baseline case study for the planning, 

implementation, analysis and interpretation of iDNA surveys, and so I hope that this 

thesis can be used as a protocol for monitoring efforts that incorporate single species 

iDNA monitoring. 

 

 

 

 

 

 
Figure 41. Brown bear surrounded by mosquitoes and other invertebrates. Photo taken 

by Drew Hamilton and used with his permission. 
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Appendix I: Supplementary material 

A. Habitat Suitability Modelling 

A.1 Three most important variables for each model: 

The shape descriptions for the response curves followed the categories used in (van Gils et 
al., 2014). 
 

 

Table 13. Brown bear SDMs in the two raster cell size groups and four categories of environmental variables and percentage 
contribution of the three largest contributors. 

Model Predictor 1 
Permutation 

importance 

Curve 

shape c 
Predictor 2 

Permutation 

importance 

Curve 

shape c 
Predictor 3 

Permutation 

importance 

Curve 

shape c 

SP_tp Elevation 93.65 Bell Topography 6.35 na - - - 

SP_lc Elevation 85.05 Bell Land cover 12.06 na Topography 2.90 na 

SP_hi Elevation 66.47 
Bell Dist. from 

roads 
15.18 

Curvln - Distance from 

urban areas 
13.98 

r-skew 

a Bio 14: Precipitation of driest month  
b Bio 3: Isothermality 
c Types of curves: Bell, bell-shaped; r-skew, right-skewed; l-skew, left-skewed;  curvln-, curvilinear negative; curvl+, curvilinear positive; na, 

not applicable to categorical predictors, as described by van Gils et al. (2014). 
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A.2. MaxEnt model outputs for the Species Presence models 

Topography (Variables: elevation and topographic position) 

 
Figure 42. Species Presence MaxEnt model outputs: Topography model (Variables: elevation and topographic position) 
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Land Cover (Variables: elevation, topographic position and land cover type) 

 
Figure 43. Species Presence MaxEnt model outputs: Land Cover model (Variables: elevation, topographic position and land cover type) 
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Human Impact (Variables: elevation, topographic position, land cover type, distance from major roads and distance from urban areas) 

 
Figure 44. Species Presence MaxEnt model outputs: Human Impact model (Variables: elevation, topographic position, land cover type, distance from major roads and distance from urban areas).
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A.3. Binary model comparisons 

 
Results of binary model comparison showing the differences between model pair 

coverage and model overlap (Table 14). 

 
Table 14. Comparison of suitable patches predicted by each binary model, along with the areas of overlap and areas 
uniquely predicted by only one of the modes. 

A. Comparison of expert knowledge models 

Model Topography Land cover Human impact 
EK_tp versus EK_tp(PI) EK_lc versus EK_lc(PI) EK_hi versus EK_hi(PI) 

Percent cover overlap 99.98 85.93 44.77 

Percent cover of IUCN dataset  
  

 
EK_tp EK_tp(PI) EK_lc EK_lc(PI) EK_hi EK_hi(PI) 

Percentage of study area covered 

by each model 38.11 38.10 38.23 36.19 43.29 20.53 

Percentage of study area covered 

only by this model 0.01 0.00 3.34 5.38 23.91 1.16 

       

B. Comparison of Expert Knowledge models with Species Presence models 

Model 
Topography Land cover Human impact 

EK_tp VS SPmin_tp EK_lc VS SPmin_lc EK_hi VS SPmin_hi 

Percent cover overlap 58.93 45.11 22.34 
Percent cover of IUCN dataset    

 
EK_tp SPmin_tp EK_lc SPmin_tp EK_hi SPmin_tp 

Percentage of study area covered 

by each model 38.11 22.45 38.10 19.08 43.29 10.70 

Percentage of study area covered 

only by this model 15.66 0.00 20.98 1.84 33.62 1.03 
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Results of binary model comparison with the IUCN dataset showing the differences in 
each model’s coverage and model overlap (Table 15). 
 
Table 15. Comparison of model predictions (suitability ≥50) with IUCN dataset. All percentage (%) values are in relation 
to the percentage cover of the total IUCN dataset extent in the study area. 

Expert Knowledge models (HSI_EK) Topograhy Land cover Human impact 
Percentage IUCN dataset covered by the model prediction 86.87 85.03 87.28 

Percentage of IUCN dataset not covered by the model 

prediction 13.13 14.97 12.72 

Model prediction outside the extent of the IUCN dataset 58.12 60.41 77.41 

    
Permutation Importance models (HSI_PI) Topograhy Land cover Human impact 
Percentage IUCN dataset covered by the model prediction 86.85 84.12 82.11 

Percentage of IUCN dataset not covered by the model 

prediction 13.15 15.88 17.89 

Model prediction outside the extent of the IUCN dataset 58.11 53.56 39.79 

 
   

Species Presence models – fine resolution (SP_min) Topograhy Land cover Human impact 
Percentage IUCN dataset covered by the model prediction 54.79 46.77 23.61 

Percentage of IUCN dataset not covered by the model 

prediction 45.21 53.23 76.39 

Model prediction outside the extent of the IUCN dataset 30.63 25.83 17.09 

    
 
 

 

 

B. Single-species iDNA monitoring 

 

B.1. Synthetic DNA sequence 

The following sequence was manufactured by the IDT ((gBlocks® Gene Fragments, 

Integrated DNA Technologies, Inc). Sequencefound in the cytochrome b region, mtDNA: 

5’-TTCCTAGCCATACACTATACACCAGACACAACCGCAGCTTTTTCATCGGTCACCCACATTTG 

CCGAGACGTTCACTACGGGTGAGTTATCCGATATGTACATGCAAATGGAGCCTCCATCTTCTTT 

ATCTGCCTATTTATGCACGTAGGACGGGGCCTGTACTATGGCTCATACCTATTCCCAGAAACAT 

GAAACATTGGCATTATTCTCCTATTTACAATTATAGCCACCGCATTTATAGGATACGTCCTACCC 

TGGGGCCAAATGTCCTTCTGAGGAGCGACTGTCATCACCAATCTACTATCGGCCATTCCCTACA 

TCGGAACGGACCTGGTAGAATGAATCTGAGGGGGCTTTTCCGTAGATAAGGCGACCCTAACA 

CGATTCTTTGCTTTCCACTTTATTCTCCCGTTCATCATCCTAGCACTAGCAGCAGTCCATCTATTG 

TTCCTACACGAAACAGGATCTAACAACCCCTCTGGAATCCCATCTGACTCAGA-3’ 
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B.2. Sanger results BLAST 

The Sanger sequencing primary sequence was checked against the NCBI database using 

BLAST (Table 16). The results are found below. The amplicon matched with two extinct 

bear species, the Deninger's bear (Ursus deningeri) and the Kudaro bear (Ursus 

kudarensis) with 100% Percent Identity, and two dik-dik species (Madoqua kirkii and 

Madoqua guentheri) with 92-94% Percent Identity (disregarded due to the fact that they 

are not present in the area and not matched fully to the amplicon).  

 

Table 16. NCBI BLAST results of the primary sequence from the Snager sequencing analysis. 

Description Scientific Name Per. 

ident 

Acc. 

Len 

Accession   

Ursus deningeri kudarensis mitochondrion, partial genome Ursus kudarensis 100.00 16815 MH605139.1 

Ursus kudarensis praekudarensis mitochondrion, partial 

genome 

Ursus kudarensis 

praekudarensis 

100.00 16816 MW491935.1 

Ursus kudarensis kudarensis mitochondrion, complete genome Ursus kudarensis kudarensis 100.00 16814 MW491934.1 

Ursus arctos mitochondrion, partial genome Ursus arctos 97.50 17022 MH255807.1 

Ursus maritimus voucher F-2374 mitochondrion, partial 

genome 

Ursus maritimus 97.50 17020 OK001279.1 

Ursus arctos voucher F-2296 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001278.1 

Ursus arctos voucher IK-1 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001277.1 

Ursus arctos voucher F(R)-217 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001274.1 

Ursus arctos voucher F(R)-276 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001269.1 

Ursus arctos voucher F(R)-247 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001268.1 

Ursus arctos voucher F(R)-219 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001267.1 

Ursus arctos voucher F(R)-19 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001266.1 

Ursus arctos voucher F(R)-18 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001265.1 

Ursus arctos voucher F(R)-7/2 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001264.1 

Ursus arctos voucher F(R)-248 mitochondrion, partial genome Ursus arctos 97.50 17020 OK001262.1 

Ursus arctos from China mitochondrion, partial genome Ursus arctos 97.50 16446 OK512981.1 

Ursus arctos voucher VNHM 40626 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512979.1 

Ursus arctos voucher VNHM 40601 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512978.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16447 OK512977.1 

Ursus arctos voucher VNHM 40648 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512976.1 

Ursus arctos voucher VNHM 40604 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512975.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16447 OK512974.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16447 OK512973.1 

Ursus arctos haplogroup 3b mitochondrion, complete genome Ursus arctos 97.50 16448 OK512972.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16447 OK512971.1 
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Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16447 OK512966.1 

Ursus arctos voucher IPAE 705/514 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512965.1 

Ursus arctos voucher TP5-01-1 haplogroup 4 mitochondrion, 

complete genome 

Ursus arctos 97.50 16447 OK512964.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16418 OK512955.1 

Ursus arctos from Canada mitochondrion, partial genome Ursus arctos 97.50 16446 OK512954.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16442 OK512953.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16306 OK512952.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16399 OK512950.1 

Ursus arctos voucher AMNH 30422 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512949.1 

Ursus arctos voucher FAM 95630 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512948.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16447 OK512947.1 

Ursus arctos voucher FAM 95642 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512946.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16441 OK512944.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16434 OK512943.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16427 OK512942.1 

Ursus arctos voucher FAM 95612 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512941.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16443 OK512940.1 

Ursus arctos voucher FAM 95596 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512939.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16446 OK512938.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16424 OK512936.1 

Ursus arctos voucher FAM 95671 haplogroup 3c 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512935.1 

Ursus arctos voucher FAM 95603 haplogroup 3c 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512934.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16437 OK512933.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16390 OK512932.1 

Ursus arctos voucher FAM 30770-F haplogroup 3c 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512931.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16415 OK512928.1 

Ursus arctos voucher FAM 95640 haplogroup 3c 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512927.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16440 OK512926.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16443 OK512925.1 

Ursus arctos from Canada mitochondrion, partial genome Ursus arctos 97.50 16443 OK512924.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16440 OK512923.1 

Ursus arctos voucher KU 23034 haplogroup 4 mitochondrion, 

complete genome 

Ursus arctos 97.50 16445 OK512920.1 

Ursus arctos voucher CMN 28972 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512919.1 
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Ursus arctos voucher FAM 95665 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512918.1 

Ursus arctos voucher CMN 42381 haplogroup 4 mitochondrion, 

complete genome 

Ursus arctos 97.50 16447 OK512917.1 

Ursus arctos from USA mitochondrion, partial genome Ursus arctos 97.50 16446 OK512915.1 

Ursus arctos from Canada mitochondrion, partial genome Ursus arctos 97.50 16424 OK512914.1 

Ursus arctos from Canada mitochondrion, partial genome Ursus arctos 97.50 16443 OK512912.1 

Ursus arctos voucher MMZ S34928 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512910.1 

Ursus arctos voucher MMZ S1396 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512909.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16442 OK512908.1 

Ursus arctos voucher MMZ S159009 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512907.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16439 OK512906.1 

Ursus arctos voucher MMZ S34972 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512905.1 

Ursus arctos voucher MMZ S34958 haplogroup 3b 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512904.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16444 OK512903.1 

Ursus arctos voucher MMZ S84888 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512902.1 

Ursus arctos voucher MMZ S34934 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512901.1 

Ursus arctos voucher MMZ S84887 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512900.1 

Ursus arctos voucher MMZ S66341 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512899.1 

Ursus arctos voucher MMZ S59248 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512898.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16443 OK512897.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16424 OK512896.1 

Ursus arctos voucher MMZ S6039 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512895.1 

Ursus arctos from Mongolia mitochondrion, partial genome Ursus arctos 97.50 16429 OK512894.1 

Ursus arctos voucher MMZ S34945 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512893.1 

Ursus arctos voucher MMZ S1395 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16447 OK512892.1 

Ursus arctos voucher MMZ S2073 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512891.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16442 OK512890.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16442 OK512889.1 

Ursus arctos voucher MMZ S22359 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512888.1 

Ursus arctos voucher MMZ S14882 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512887.1 

Ursus arctos from Russia mitochondrion, partial genome Ursus arctos 97.50 16443 OK512886.1 



 177 

Ursus arctos voucher MMZ S66362 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512885.1 

Ursus arctos voucher MMZ S113733 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512884.1 

Ursus arctos voucher MMZ S-66359 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512883.1 

Ursus arctos voucher IPAE 621/9 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512882.1 

Ursus arctos voucher IPAE 107/06 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512881.1 

Ursus arctos voucher IPAE 871/1 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512880.1 

Ursus arctos voucher IPAE 719/449 haplogroup 3a 

mitochondrion, complete genome 

Ursus arctos 97.50 16448 OK512879.1 

Ursus arctos JBB-32K mitochondrial DNA, nearly complete 

genome 

Ursus arctos 97.50 17012 LC595633.1 

Madoqua kirkii cytochrome b (cytb) gene, complete cds; 

mitochondrial 

Madoqua kirkii 94.00 1140 JF489137.1 

Madoqua guentheri isolate BM32A cytochrome b (cytb) gene, 

partial cds; mitochondrial 

Madoqua guentheri 94.00 300 HM209242.1 

Madoqua guentheri cytochrome b (cyt b) gene, mitochondrial 

gene encoding mitochondrial protein, partial cds 

Madoqua guentheri 94.00 300 AF030598.1 

Madoqua kirkii voucher FL0193 cytochrome b (cytb) gene, 

partial cds; mitochondrial 

Madoqua kirkii 92.00 306 MN124227.1 
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C. Occupancy 

C1. Correlation of top predictors 

Table of predictor correlation analysis.  

Table 17. Correlation matrix for top predictors. Positive correlations shown in green and negative correlations show in red. Survey covariates (transect length and survey year) were excluded from the 
analysis. 

 

 
Non-

irrigated 
arable land 

Broadleav
ed forest 

Natural 
grassland 

Transitional 
woodland Canyons Flat/gentle 

slopes Steep slopes Ridgetops Mean 
elevation 

Mean 
elevation SD 

Mean distance 
from major roads 

Mean distance from 
major roads SD 

Mean distance form 
urban areas 

Mean distance form 
urban areas SD 

Non-irrigated arable 
land 1 -0.41 -0.22 -0.28 -0.52 0.67 -0.65 -0.54 -0.47 -0.58 -0.38 -0.07 -0.33 0.36 

Broadleaved forest  1 -0.17 0.09 0.63 -0.63 0.57 0.59 0.53 0.62 0.16 -0.04 0.28 -0.3 

Natural grassland   1 -0.08 0.1 -0.28 0.3 0.21 0.28 0.18 0.15 -0.03 0.11 -0.1 

Transitional 
woodland    1 0.31 -0.38 0.38 0.26 0.18 0.28 0.28 0.03 0.2 -0.23 

Canyons     1 -0.79 0.65 0.84 0.64 0.79 0.43 -0.08 0.29 -0.34 

Flat/gentle slopes      1 -0.97 -0.83 -0.77 -0.89 -0.49 0.06 -0.36 0.41 

Steep slopes       1 0.69 0.73 0.83 0.47 -0.04 0.34 -0.4 

Ridgetops        1 0.71 0.8 0.37 -0.08 0.29 -0.33 

Mean elevation         1 0.75 0.52 -0.04 0.33 -0.41 

Mean elevation SD          1 0.44 -0.04 0.29 -0.35 

Mean dist, major 
roads           1 0.16 0.3 -0.37 

Mean dist, major 
roads SD            1 0.09 -0.06 

Mean distance form 
urban areas             1 -0.87 

Mean distance form 
urban areas SD              1 
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C2. Optimised occupancy models 

Figure of optimised occupancy models.  

 
Figure 45. Optimised models: Occupancy probability and uncertainty for iDNA (left), scat survey (middle) and combined 
dataset (right). 

 

Appendix II: Publications 

[1] Savvantoglou, A., Mertzanis, Y., Bird, D., & Steer, M. D. (2017). A GIS approach to 

identifying connectivity potential between brown bear (Ursus arctos) habitat in 

northern Greece. 18th Hellenic Forestry Congress & International Workshop, 1422–

1432.  
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