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Horofunctions and metric compactification of
noncompact Hermitian symmetric spaces”

Cho-Ho Chuf!, Marfa Cueto-Avellanedat?, and Bas Lemmens$?

LSchool of Mathematical Sciences, Queen Mary, University of London,
London E1 4NS, UK
2School of Mathematics, Statistics & Actuarial Science, University of Kent,
Canterbury CT2 TNX, UK

Abstract

Given a Hermitian symmetric space M of noncompact type, we give a complete description of
the horofunctions in the metric compactification of M with respect to the Carathéodory distance, via
the realisation of M as the open unit ball D of a Banach space (V,|| - ||) equipped with a Jordan
structure, called a JB*-triple. The Carathéodory distance p on D has a Finsler structure. It is the
integrated distance of the Carathéodory differential metric, and the norm || - || in the realisation is
the Carathéodory norm with respect to the origin 0 € D. We also identify the horofunctions of the
metric compactification of (V|| -||) and relate its geometry and global topology to the closed dual unit
ball (i.e., the polar of D). Moreover, we show that the exponential map exp,: V. — D at 0 € D
extends to a homeomorphism between the metric compactifications of (V| - ||) and (D, p), preserving
the geometric structure. Consequently, the metric compactification of M admits a concrete realisation
as the closed dual unit ball of (V, || - ||).

Keywords: Hermitian symmetric space, bounded symmetric domain, horofunction, metric compact-
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1 Introduction

Compactifications of symmetric spaces is a particularly rich subject, which has been studied extensively [4]
17]. A variety of compactifications of symmetric spaces have been introduced with different applications
in mind. For instance, Satake [34] introduced his compactifications in his study of automorphic forms,
and the Martin and Furstenberg compactifications [14], 30] were introduced to analyse harmonic functions.

Recently, metric (or horofunction) compactifications with respect to invariant Finsler metrics have
been used to investigate different types of compactifications of symmetric spaces. In particular, it was
shown in [I8| B5] that generalised Satake compactifications and Martin compactifications of symmetric
spaces can be realised as metric compactifications under suitable invariant Finsler metrics. In [23] an
explicit invariant Finsler metric was constructed on symmetric spaces whose metric compactification gives
the maximal Satake compactification, and in [I5] the minimal Satake compactification of SL,(R)/SO,,
was realised as a metric compactification.

However, for relatively few noncompact type symmetric spaces, with invariant Finsler metrics, is the
metric compactification well understood. In this paper we completely determine the metric compactifca-
tion of noncompact type Hermitian symmetric spaces under the Carathéodory distance and provide a
detailed analysis of its geometry and global topology. The Carathéodory distance plays an important role
in the geometry and analysis of Hermitian symmetric spaces, hence it is natural to consider its metric
compactification.

Given a Hermitian symmetric space M of noncompact type, the Harish-Chandra embedding,

M~DcCyp" — M,

identifies M bihomorphically with a bounded symmetric domain D in a complex Euclidean space pT,
which is biholomorphic to an open dense subset of the compact dual M. of M. By the seminal works of
Loos [29] and Kaup [24], one can equip p* with a Jordan algebraic structure and a norm || || so that D is
biholomorphic to the open unit ball D of (p™, | -||), which is called a JB*-triple. Since the Carathéodory
distance is invariant under biholomorphisms, one can transfer from M to the open unit ball D in the
JB*-triple V = (p*, || - ||) to study the metric compactification and exploit Jordan theory and functional
analysis. This is our task in the paper.

For symmetric spaces of noncompact type, the metric compactification with respect to the Riemannian
distance can be identified with its geodesic compactification ([2] and [20], Proposition 12.6]), and is known
to be homeomorphic to a Euclidean ball, see [5, Chapter I1.8]. It has also been observed for various classes
of finite dimensional normed spaces that the geometry and global topology of the metric compactification
is closely related to the closed dual unit ball of the norm. In [21], 22] this connection was established for
normed spaces with polyhedral unit balls, see also [I0]. At present, however, it is unknown [23, Question
6.18] if this duality phenomenon holds for general finite dimensional normed spaces.

In [25] 27] it was shown that the duality phenomenon does not only appear in finite dimensional
normed spaces, but also occurs in metric compactifications of certain symmetric spaces with invariant
Finsler norms. More precisely, it was shown in [25] 27] for symmetric cones equipped with the Thompson
and Hilbert distances that the geometry and global topology of the metric compactification coincides
with the geometry of the closed dual unit ball of the Finsler norm in the tangent space at the base point
of the metric compactification.

In these symmetric spaces IV the connection between the geometry of the metric compactification and
the dual unit ball manifests itself in the following way. The horofunction boundary N(oo) in the metric
compactification of the symmetric space N carries an equivalence relation where two horofunctions g and
h are equivalent if sup,cy |g(x) — h(x)| < co. This relation yields a natural partition of the horofunction
boundary. On the other hand, the boundary of the closed dual unit ball B* of the Finsler norm on the
tangent space TN at the base point b € IV, is partitioned by the relative interiors of its boundary faces.
For the symmetric spaces N considered in [25] 27] it was shown that there exists a homeomorphism ¢
from the metric compactification N U N(o0) onto B*, which maps each equivalence class of N(oco) onto
the relative interior of a boundary face of B*. In this sense the dual ball captures the geometry of the
metric compactification.



Moreover, in [25] it was observed that the metric compactification of N is closely related to the metric
compactification of the normed space (TN, || - ||5), where || - || is the Finsler norm on the tangent space
Ty N at the base point b € N. More explicitly, it was shown that the exponential map exp,: TN — N
extends to a homeomorphism between the metric compactifications of the normed space (TN, || - ||»)
and N under the invariant Finsler distance. Furthermore, the extension preserves the equivalence classes
in the horofunction boundaries. A case in point is the Hilbert distance on SL,(C)/SU,, which can be
realised as the manifold of positive-definite Hermitian n x n matrices with determinant 1. The tangent
space at the identity I is the real vector space of the n x n Hermitian matrices with trace 0 and has
Finsler norm, |A|; = maxo(A) — mino(A), where o(A) is the set of eigenvalues of A.

For a noncompact type Hermitian symmetric space M identified as the open unit ball D of a JB*-
triple V = (p™, || - ||), with Carathéodory distance p, the JB*-triple norm || - || is the corresponding Finsler
norm [24, (4.5)]. In this paper we show that the analogues of the results in [25] [27] hold for the metric
compactification of (D, p).

More specifically, the following results are established. We provide a complete description of the
horofunctions of (D, p) in Theorem We also determine the horofunctions of the JB*-triple (V.|| - ||)
in Theorem and establish in Theorem an explicit homeomorphism ¢ between the horofunction
compactification of (V|| - ||) and its closed dual unit ball. Further, we show in Section [7] that the
homeomorphism ¢ maps each equivalence class in the horofunction boundary of (V,||-||) onto the relative
interior of a boundary face of the closed dual unit ball. Finally we prove in Section [§]that the exponential
map expg: V. — D extends to a homeomorphism between the metric compactifications V' U V' (o0) and
D U D(o0), which maps equivalence classes onto equivalence classes in the horofunction boundaries,
see Theorem Combining the results we see that the geometry and global topology of the metric
compactification of (D, p) coincides with the geometry of the closed dual unit ball of (V,|| - ).

We start by recalling the essential background on metric compactifications and the theory of JB*-
triples in Sections [2] and [3] respectively.

2 Horofunctions

The origins of the idea of the metric (or horofunction) compactification go back to Gromov [2]. It
has proven to be a valuable tool in numerous fields such as, geometric group theory, complex and real
dynamics, Riemannian geometry, and geometric analysis. It captures asymptotic geometric properties of
metric spaces and provides ways to analyse mappings or groups acting on them. Here we mostly follow
the set up as in [32].

Let (X,d) be a metric space and let RX be the space of all real functions on X equipped with the
topology of pointwise convergence. Fix a point b € X, called the base point, and write Lipé (X) to denote
the set of all functions h € R¥ such that h(b) = 0 and h is 1-Lipschitz, i.e., |h(z) — h(y)| < d(z,y) for all
z,y € X.

The set Lipé(X ) is a compact subset of RX. Indeed, it is easy to verify that the complement of
Lip; (X) is open. Moreover, as |h(z)| = |h(z) — h(b)| < d(z,b) for all x € X and h € Lip}(X), we have
that Lip; (X) C [~d(=,b),d(z,b)]X. The set [—d(z,b),d(x,b)]X is compact by Tychonoff’s theorem, and
hence Lip} (X) is a compact subset of R¥.

For y € X define the real valued function,

hy(z) =d(z,y) — d(b,y) (z € X). (2.1)

Note that hy(b) = 0 and |hy(z) — hy(w)| = |d(z,y) — d(w,y)|] < d(z,w) for all z,w € X, and hence
hy € Lip;(X).

Definition 2.1. Denote the closure of {h,: y € X} in R¥ by X, which is compact. The set X (00) =
X\ {hy:y € X} is called the horofunction boundary of (X,d). The elements of X(co) are called
horofunctions, and the set X U X (00) is called the metric (or horofunction) compactification of (X,d).
The elements of X are called metric functionals, and the metric functionals hy in are called internal
points.



The topology of pointwise convergence on Lipé (X)) coincides with the topology of uniform convergence
on compact sets, see [31, p.291]. In general the topology of pointwise convergence on Lipj(X) is not
metrizable, and hence horofunctions are limits of nets rather than sequences. However, if the metric space
is separable, then the topology is metrizable and each horofunction is the limit of a sequence. In fact, one
can verify that given a countable dense subset {y;.: k € N} of (X, d), the function ¢ on Lip; (X) x Lip{ (X)
given by,

o(f,9) =2 Fmin{1,|f(yx) — g(yw)|} for f,g € Lipj(X),
k

is a metric whose topology coincides with the pointwise convergence topology on Lipi (X), [B1, p.289,
Ex. 10%].

The metric compactification may not be a compactification in the usual topological sense, as the
embedding 1: y € X — hy € Lipé(X ) may fail to have the necessary properties. However, the embedding
t: X — (X)) is always a continuous bijection. Indeed, if x € X and we consider a neighbourhood U =
{h € Lip;(X): |h(y) — ha(y)| < &, y € X} of hy for € > 0, then for z € X with d(z,2) < £/2 we have that
|hx(y)—ha(y)| < |d(y, z)—d(y, z)|+|d(b, z) —d(b,x)| < 2d(z,x) < e, and hence ¢(z) € U, which shows that
¢ is continuous. Moreover, if x,z € X and hy = h;, then 0 = (h.(z) — hy(2)) + (hz(z) — h2(2)) = 2d(z, 2),
which gives injectivity.

It can happen that ¢: X — ¢(X) does not have a continuous inverse. If, however, (X, d) is proper
and geodesic, then the metric compactification will be a compactification in the usual topological sense.
We provide some details of this fact below. Recall that a metric space (X, d) is proper if all its closed
balls are compact. Note that a proper metric space is separable, as each closed ball is compact and hence
separable.

A map v from a, possibly unbounded, interval I C R into a metric space (X,d) is called a geodesic
path if

d(v(s),y(t)) =|s—t| foralls,tel.

The image, (1), is called a geodesic. A metric space (X,d) is said to be geodesic if for each z,y € X
there exists a geodesic path v: [a,b] — X connecting x and vy, i.e, y(a) = x and v(b) = y.

Hermitian symmetric spaces with Carathéodory distance are proper geodesic metric spaces (cf. [16]).
In the discussion below we will focus on the metric compactification of such metric spaces.

The horofunctions of a proper geodesic metric space (X,d) are precisely the limits of converging
sequences (hy, ) such that d(b, zy) — co. A slightly stronger assertion was shown in [32], Theorem 4.7],
but for our purposes the following statement will suffice, see also [26, Lemma 2.1].

Lemma 2.2. If (X,d) is a proper geodesic metric space, then h € X (00) if and only if there ezists a
sequence (zy) in X with d(b,z) — oo such that (hy,) converges to h € X as k — oo.

We use this lemma to show that, in this case, the embedding ¢: X — ¢(X) has a continuous inverse.
Lemma 2.3. If (X,d) is a proper geodesic metric space, then v: X — +(X) is a homeomorphism.

Proof. From the previous observations it remains to show that ¢: X — ¢(X) has a continuous inverse.
Let hy, = t(z0) where zp € X. Note that as (X, d) is proper it is also separable. So, to prove continuity of
1~1 at h,,, we can use sequences, as the topology of pointwise convergence on Lipll, (X) is metrizable. Let
(zr) be a sequence in X with h,, — h,,. By Lemma [2.2| we know that (2;) is bounded, and hence after
taking a subsequence we may assume that z; — 2. It follows that h, = h,,, and hence the injectivity
of + implies that z = zp, which completes the proof. O

Thus, the metric compactification is a compactification in the usual topological sense if (X, d) is a
proper geodesic space.

Special horofunctions come from so-called almost geodesics sequences. They were introduced by
Rieffel [32] and further developed by Walsh and co-workers in [II, 28] 36 [37]. A sequence (zy) in (X, d)
is called an almost geodesic if for each € > 0 there exists an N > 0 such that

d(xn, Tm) + d(Tm, x0) — d(Tp,x0) < e forallm >m > N.



In particular, every unbounded almost geodesic sequence yields a horofunction for a proper geodesic
metric space, see [32].

Lemma 2.4. Let (X,d) be a proper geodesic metric space. If (zy) is an unbounded almost geodesic in
(X,d), then
h(z) = lilgn d(z,xr) — d(b, xy)

exists for all z € X and h € X(00).

Given a proper geodesic metric space (X, d), a horofunction h is called a Busemann point if there
exists an almost geodesic (zy) in X such that h(z) = limg d(z, zx) — d(b, xy) for all z € X. The collection
of all Busemann points is denoted by Bx.

The set of Busemann points can be equipped with a metric known as the detour distance, which
was introduced in [1], and is defined as follows. Suppose (X,d) is a proper geodesic metric space and
h,h' € X (o0) are horofunctions. Let W} be the collection of neighbourhoods of A in X. Then the detour
cost is given by

H(h,1h') = sup < inf d(b,a:)—i—h’(:z:)),
Wew, \z: uz)eW

and the detour distance is defined by
§(h,h') = H(h,h")+ H(K, h).
It is known [28] 37] that if (z) is an almost geodesic converging to a horofunction h, then

H(h,h') = liin d(b, ) + b (xk) (2.2)

for all horofunctions h’. Moreover, on the set of Busemann points By the detour distance is a metric
where points can be at infinite distance from each other, see [28| 37].

The detour distance induces a partition of Bx into equivalence classes, called parts, where h and
B in Bx are equivalent if §(h,h’) < oo. In particular, if all horofunctions are Busemann points, so
Bar = X (00), then X (co) is the disjoint union of parts, each of which is a metric space under the detour
distance.

The horofunction boundary X (co) has a natural partition induced by the equivalence relation:

h~h if sup|h(z)—h'(z)] < .
zeX

It was shown in [37, Proposition 4.5] that two Busemann points h and A’ in X (co) have finite detour
distance if, and only if, h ~ h’. Thus, if all horofunctions are Busemann points, then the partition of
X (00) into parts coincides with the partition into equivalence classes X (c0)/ ~.
We also like to note that each (surjective) isometry 1: X — X extends as a homeomorphism to
X (00) by
Y(h)(x) =h(@~ (@) — R (b)) (z € X,h € X(0)).

It is known that on the Busemann points in X (co) the extension 1 is an isometry under the detour
distance, see e.g., [28]. Also if h ~ g in X (00), then ¥ (h) ~ ¥ (g).

3 Jordan algebraic structures

In this section, we recall some necessary definitions and results concerning Jordan algebraic structures
associated with Hermitian symmetric spaces. Throughout, M will denote an arbitrary Hermitian sym-
metric space of noncompact type. To determine the horofunctions of M and analyse the geometry and
global topology of its metric compactification with respect to the Carathéodory distance (and base point



b € M), we make use of the fact that M can be realised as the open unit ball in a JB*-triple. Indeed,
there exists a biholomorphism,

oM B DB by, (3.1)

onto the open unit ball D of a finite dimensional JB*-triple V', with ¢(b) = 0, where 1; is the Harish-
Chandra embedding and v is the Kaup Riemann mapping, which is unique up to a linear isometry [24]
Theorem 4.9)].

Since the biholomorphism 1 preserves the Carathéodory distance, it induces a homeomorphism be-
tween the metric compactifications of M and D. Hence we can, and will, work in the setting

D C V, where D is the open unit ball of a finite dimensional JB*-triple V.

The results can be transferred to the corresponding ones for M via .

Let us now present some of the essential background on Jordan triple systems, where we focus on
the finite dimensional case. A JB*-triple is a complex Banach space V' equipped with a continuous triple
product

{5} VxVxV-—V,

called a Jordan triple product, which is linear and symmetric in the outer variables, and conjugate linear
in the middle variable, and satisfies the following axioms:

(i) {a,b,{z,y,2}} = {{a,b,2},y, 2} — {z,{b,a,y}, 2z} + {z,y,{a,b,z}}, (Jordan triple identity)
(ii) aoa is Hermitian, that is, ||expit(aoa)|| =1 for all t € R;
(iii) ao a has nonnegative spectrum o(an a);
(iv) llaoafl = [lall?,
for a,b,x,y,z € V, where an b: V — V is a bounded linear map, called a boz operator, defined by
aob(x) = {a,b,x} (xeV) (3.2)
and condition (iv) can be replaced by

Ha,a,a}| = llal®  (a€V). (3-3)

We note that the box operator in (3.2) satisfies ||ao b|| < ||al|||b||, as the triple product is a contractive
mapping, that is,
[{a, b, e}l < [la[[[[blll|c]] for all a,b,c € V.

Remark 3.1. By definition, a Hermitian operator T: V. — V has real numerical range, which is the
closed convex hull of its spectrum o (7") and ||T']| = sup{|A|: A € o(T")} [3, pp.46-54]. In particular, given
a,b in a JB*-triple, (i) and (ii) above implies

llao al| = sup{\: A € o(ana)}
and a0 b+ bo a is Hermitian. Further, if ||ao b+ bo al| < 1, then we have o(anb+boa) C [—1,1].

A prime example of a JB*-triple is the space of p x ¢ complex matrices M, ,(C) with Jordan triple
product,

1
{A,B.C} = J(AB"C+CB'A)  (A,B,C € My,(0)),

which has open unit ball D = {A € M, ,(C): I — AA* positive definite}. In particular if ¢ = 1, we get
the complex Euclidean space CP with Jordan triple product

{:):,y,z}: %((x,y)z%—(z,y)x) (x,y,zeCp)

6



and D = {z € CP: (z,2) < 1} is the Euclidean ball.
Given JB*-triples V1,...,Vy, the direct sum Vi & - - - & V, with the {,-norm,

(a1,...,a4q)]|lcc = max{|la;||: i=1,...,d}, (a; €V;)

is a JB*-triple with the coordinatewise triple product.

In fact, a finite dimensional JB*-triple V' decomposes into a finite direct sum V3 & - - - ® Vy of so-called
Cartan factors V; (j = 1,...,d) with {s-norm. There are six different types of (finite dimensional)
Cartan factors:

(1) Mpy(C) (2 5,(C)  (3) Hy(€)  (4) Spa(©)  (5) Mia(0)  (6) Hy(O),
where S;(C) and H,(C) are norm closed subspaces of M, ,(C) consisting of p x ¢ skew-symmetric and
symmetric matrices, respectively; and Sp,(C) is a spin factor of dimension n > 2. The Cartan factors of
types 5 and 6 are ezceptional Cartan factors (cf. [0, Theorem 2.5.9]).

There are various operators that play an important role in the theory of JB*-triples. Besides the
box operators, we will use the Bergman operator B(b,c): V. — V and the Mdébius transformation
ga: D — D, where a € D and b,c € V, which are defined as follows:

B(b,c)(x) =x — 2(bo ¢)(x) 4+ {b,{c,x, c}, b} (xeV), (3.4)

ga(z) = a+ Bla,a)"*(I +zoa) ' (z) (z € D). (3.5)

Here I denotes the identity operator on V, and the inverse (I +zoa)™1: V — V exists, as [|zoall <
[z ]lllall < 1.

We note that B(a,b) is invertible for ||al|||b]] < 1. The proof of the following two identities can be
found in [0, Proposition 3.2.13. Lemma 3.2.17].

1

Bz,zfl/2 = —
18972 = ;=

(12l < 1), (3.6)

1

1= llg—y(2)II* = 1B(22) 2B(z. ) Bly.y) 2] (4,2 € D). (3.7)

For the Euclidean ball D € C? with inner product (-,-), we have from [7, Example 3.2.29] the formula

= llyI* @ — =1*)
1= (v, 2)?

Given a € V, the quadratic operator Q,: V — V is defined by

Qa(x) ={a,z,a} (xeV).

L= llg—y(2)II* = (y,2z € D). (3.8)

An element e in a JB*-triple V' is called a tripotent if {e,e,e} = e. Although 0 is a tripotent in
a JB*-triple, we are only interested in the nonzero ones, of which the norm is always 1. Tripotents in
C*-algebras are exactly the partial isometries.

Any tripotent e in V induces an eigenspace decomposition of V', called the Peirce decomposition
associated with e. The eigenvalues of the box operator ene: V. — V are in the set {0,1/2,1}. Let

Vele) = {z e V: 0 o)(w) = oa}  (k=0,1,2)
be the corresponding eigenspaces, called the Peirce k-space of e. We have the algebraic direct sum
V' =Vo(e) @ Vie) @ Vale).
where the Peirce k-spaces satisfy

{Vi(e), Vi(e), Vi(e)} € Viejix(e) (3.9)



if i — j + k belongs to the set {0,1,2}, and {Vi(e), Vj(e), Vi(e)} = {0} otherwise. Further, we have
{Va(e), Vo(e), V} = {Vo(e), Va(e), V} = 0. (3.10)

The Peirce k-space Vi (e) is the range of the Peirce k-projection Py(e): V. — V', which are contractive
and given by
Py(e) = Q% Pi(e) =2(cne—Q2), Pole) = Ble,o).

e’

A tripotent e in a JB*-triple V is called minimal if Q.(V) = Ce, or equivalently, Va(e) = Ce. It is
called mazimal if Vy(e) = {0}. In fact, the maximal tripotents in V coincide with the extreme points of
the closed unit ball V' (cf. [6l, Theorem 3.2.3)).

We note that, with the inherited norm from V', the Peirce 2-space Va(e) is a JB*-algebra with identity
e, Jordan product and involution

zoy={x,e,y}, z"={e,x,e}=Qx, (x,y€ Vale)) (3.11)
respectively [7, Example 2.4.18]. In particular, we have
[zl = llz"]| = [[Qez||  (z € Va(e)). (3.12)

We refer to [7, Definition 2.4.16] for the definition of a JB*-algebra, which are examples of JB*-triples
[0, Lemma 3.1.6].

Let
Ale) ={z € Va(e): z* =z} = {z € Va(e): {e,x,e} =z} (3.13)
be the self-adjoint part of Va(e). Then it is a closed real subalgebra of (V,(e), o) satisfying
lal® = la?|l < lla® + ]I, (a,b € A(e))
where a? = a o a, in other words, it is a so-called JB-algebra [19, 3.1.4].

There is a natural partial ordering < on A(e) defined by the closed cone
Ale)y = {2z € A(e)}

where x < y if and only if y — 2 € A(e). We will make use of the fact that {a, A(e)+,a} C A(e)4 for all
a € A(e), and
la|| < 1if and only if —e<a<e (3.14)

(cf. [19, Proposition 3.3.6; 3.1.5]). An element a € Va(e) is called invertible if there is a (unique) element

a~!, called the inverse of a, such that aoca™! = e and a®?ca™! = a. If a € A(e), then a~! € A(e).
Given a,b € V, we say that a is orthogonal to b if ao b = 0. It is known that a is orthogonal to b if

and only if {a,a,b} = 0. Moreover, a orthogonal to b implies b orthogonal to a, in which case we have

la + bl = max{|[al|, [|b]}

from [6, Corollary 3.1.21].

A linear subspace W C V of a JB*-triple V is called a JB*-subtriple if x,y, 2 € W implies {z,y, 2z} €
W, in the inherited Jordan triple product.

The rank r of a finite dimensional JB*-triple V' is defined by

r =sup{dimV(a): a € V'},

where V(a) denotes the smallest closed subtriple of V' containing a € V. It can be shown that r is the
maximal number of mutually orthogonal tripotents in V' [7, Example 3.3.3].

Let {e1,...,en} a family of mutually orthogonal tripotents in a JB*-triple V. For i,j € {0,1,...,n},
the joint Peirce space V;; is defined by

Vij =Vijler,....en) = {2z € V: 2{ep, ep, 2} = (0 + i)z for k =1,...,n}, (3.15)



where 6;; is the Kronecker delta and V;; = Vj;.
The decomposition
V- B

0<i<j<n

is called a joint Peirce decomposition.
The Peirce multiplication rules

{Vij, Vi, Vel € Vg and Vo Vp, ={0} for i,j ¢ {p,q}

hold. The contractive projection Pjj(e1,...,e,) from V onto Vij(er,...,e,) is called a joint Peirce
projection which satisfies
Pyterene) ={ § 479 (3.16)
We shall simplify the notation Pj;(e,...,e,) to P;; if the tripotents e, ..., e, are understood.
Let M = {0,1,...,n} and N C {1,...,n}. The Peirce k-spaces of the tripotent ey =,y €; are
given by

Valen) = P Vis, (3.17)
,JEN

Vilen) = & Vi,
1EN
JEM\N
Volen) = & Vi
i, JEM\N
The Peirce projections provide a very useful formulation of the Bergman operators. Let ey, ..., e, be
mutually orthogonal tripotents in a JB*-triple V and let « = Y | A\je; with A; € C. Then the Bergmann
operator B(x,z) satisfies

B(z,z) = Y (1= NP1 =[NPy,
0<i<j<n
where we set \g = 0 and P;; = P;j(eq,...,e,). This gives the following formulae for the square roots
Bz, z)"? = Y (1= NP - PR (2] < D), (3.18)
0<i<j<n
B(z,x)'? = > (=N - NP TPR (el < 1), (3.19)
0<i<j<n

The following lemma will be useful later for computing the horofunctions in a noncompact Hermitian
symmetric space.

Lemma 3.2. Let D be the open unit ball of a JB*-triple V. Given a sequence (yi) in D such that
yr — £ € 0D, we have
tim g ()| =1 (=€ D).

Proof. By and , we have
& 1
1B (2, 2) =2 B(2, yn) B(yk, yr) /2|
IB(z,5x) ' B(z,2)"?|
1B (yk, yx) 12|
= |B(zu) " B(z,2)?(1 = lye]?) — 0 (:€D)

as k — oo, since limy ||B(z,yk)_1B(z,z)1/2H = ||B(z,§)_1B(z,z)1/2H. O

0<1—- ”g—yk (z)

For more details of JB*-triples, we refer to [7] and the references therein.



4 Horofunctions of Hermitian symmetric spaces

Given the open unit ball D in a finite dimensional JB*-triple V', we now determine the horofunctions of D
under the Carathéodory distance p, with the origin 0 € D as a base point . Recall that the horofunctions
of the corresponding Hermitian symmetric space M with base point b € M can be obtained via % in
, with ¢ (b) = 0, where 1 preserves the Carathéodory distance. In fact, we have

M(oc0) ={hot: h € D()}.
The Carathéodory distance p on D is given by
p(z,y) = supfw(f(z), f(y)): f € H(D,D)}  (z,y € D),

where H(D, D) is the set of all holomorphic functions f: D — D and w is the Poincaré distance of the
unit disc D = {z € C: |z|] < 1}. We will make use of the formula (cf. [7, Theorem 3.5.9]):

p(z,y) = tanh™ [|g_ (y)].

For each y,z € D we have

)

Lt gyl Ly Tl 1y (1= P <1+ug_y<z>u>2
T llgy@ 2 B T=llyll ~ 2
1

which can also be written as

1 L—yl* (14 ]9\
hy(z) = = log . (4.2)
! 2 L=llg—=@)I* \ 1+ lyl
Lemma 4.1. Let D be the open unit in a finite dimensional JB*-triple V', and p the Carathéodory
distance on D. Then h € D(00) if and only if there exists a sequence (yx) in D with y, — & € 0D such

thet e ? llyell?
1 1 -y 1 1 — |y
h(z) = lim = log <> = lim - log (> (4.3)
ko2 L= |lg—y, (2)? ko2 1 —[lg—(yr)I?

forall z € D.

Proof. Suppose that h € D(c0). Then by Lemma we know that there exists a sequence (y) in D
with p(0, yx) — oo and limy, hy, (2) exists for all z € D. By taking a subsequence we may assume that
yr — & € 0D. The implication now follows from and Lemma On the other hand, if there
exists a sequence (yx) in D with yp — & € 9D such that holds for all z € D, then p(0,y;) =
tanh ™! ||yx|| — 0o, as ||yx]| — 1. So, we deduce from and Lemmathat h € D(0). O

Remark 4.2. The notion of a horofunction h on D is essentially the same as the function F' introduced
in [9, Lemma 4.1]. Indeed, the formula (4.3) in Lemma {4.1] for & is related to F' by

h(z) = %log F(z) (v€D)

In case D is the open Euclidean ball in C¢ and y;, — € with ||¢|2 = 1, we find that

1 1 — |lyx|®
h(z) = lim = log <
k2 1= [lg—y, (2)I?

is a horofunction, and from ({3.8)) we have

h(z) = n]gn%mg <|1_<Zy’f>‘2> ~ Liog (Hsz) .

1— 22 2 1— 22
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In particular, for the disc D C C we find that h: D — R is given by the well known expression,

1 1—2zE2 1 — 2|2
he) = Llog L8 _ 1) l6=2

L e D).
yle T Tales g €D

We now compute the limit in (4.3]) for general D. By [7, Lemma 3.2.28], one can express the limit
h = limy, hy, in (4.3)) in terms of the Bergman operators as

.1 _ _
h(z) = lim =log(1 — [lyx|*)IB(2,2) /> B(z,yx) By, ux) /| (2 € D).
k—o0 2
Let r be the rank of V. Each y; € D has a spectral decomposition
Yk = a1peik + - + Barerk (4.4)
where eqg, ..., e, are mutually orthogonal minimal tripotents in V and
1> |lyll = cap > o > -+ > apg > 0.

Choosing a subsequence, we may assume for each i that the sequence (o) converges to some «; € [0, 1]
and the minimal tripotents e;; converge to minimal tripotent e;, as the set of minimal tripotents is a
closed subset of dD. Note that oy = limg ||yx|| = 1, as ||yk]| — [|€]] = 1.
By [9, Lemma 5.8], we have
§= li]glyk =are; + -+ apey

and there exists 79 € {1,...,r} such that
(i) ag >0 for each 1 < s <y,

(ii) as =0 for s > o,

(iii) {e1,...,er,} is family of mutually orthogonal minimal tripotents.
Remark 4.3. The minimal tripotents ei,..., e, in the spectral decomposition of y; induce a joint
Peirce decomposition of V', with joint Peirce projections PZ’; = Pjj(eik,...,epp) and 0 < ¢ < j <r. By

(3.19), the Bergman operator B(y,yx) /2 is of the form
Blye,yr) 2= Y (1—af) 21— ad) 2P (ag =0).
0<i<j<r

As (es)r converges to a minimal tripotent e for 1 < s < ry, with 7o as above, and the e,’s are pairwise
orthogonal, we have the following norm convergence,

lim Pij(elk, ooy emk) = Hj(el, ceey em)
k—o0

of Peirce projections (cf. [9, Remark 5.9]).

Furthermore, if ey, ..., e, are mutually orthogonal tripotents and 1 < ¢ < m, then Pjj(e1,...,e;) =
Pij(e1,...,em) forall 1 <i < j <gq, see [9, Lemma 2.1(i)].

We will use the observations in the previous remark to prove the following theorem.

Theorem 4.4. Let D be the open unit ball of a finite dimensional JB*-triple V', with rank r. Then the
horofunction functions in D(o0) are exactly the functions of the form

1
h(z) = ilog Z )\i)\jB(z,z)_l/QB(z,e)B~ (z€ D),
1<i<j<p

where p € {1,...,7}, A\j € (0,1] (¢ = 1,...,p) with max;\; =1, e = e; +ea+ -+ ¢, € 0D, and
P;j: V.=V are the Peirce projections induced by the mutually orthogonal minimal tripotents e1, ..., ep.

11



Proof. Suppose that h is a horofunction. Then by Lemmathere exists a sequence (yx) in D converging
to £ € 0D such that h(z) = limy_,o0 hy, (2) for all z € D.
Let
Yk = ageig + -+ Qe

be the spectral decomposition. From Remark we know there is an rg € {1,...,r} such that
&= lilgnyk =aje;r + -+ apep

with a3 =1, ag > 0 for 1 < s <rg and as; = 0 for s > rg. Moreover,

Blyeye) P = Y (1—af) V21 —ad) T VPPE (o =0).

0<i<j<r
Since 0 < 1 — a%k <1- oz?k for i € {1,...,7}, we may assume, by choosing subsequence if necessary,
for each i that
1- a%k

. converges to some \; € [0, 1].
- zk

Note that Ay =1 and A; = 0 for i > 9. Combining this with Remark [£.3] we get that

lim (1~ [lyel) Bly )™ = lim %\/ “ar
k—o0 — Qg
O<Z<j<7" g
. -« —a?
= hm — alk\/ 1 -P’Lj €1k .- - 76T0k)
O<z<]<ro ik
= 2 AR
0<i<j<ro
where P;; are the Peirce projections induced by the orthogonal minimal tripotents eq,...,e.,. So,
.1 _ _
h(z) = lim —log(1— ysl*)|IB(z,2)""*B(z,yx) Blyr, yr) |l
k—oo 2
1
= 3 log Z AiX;B(z, z)_l/QB(z,ﬁ)Pij(el, ceyerg) (z € D). (4.5)
1<i<j<ro

Let p € {1,...,r0} be such that a; = 1 for i < p, and a; < 1 otherwise. Since A; = 0 when «a; < 1,
the horofunction A in (4.5)) reduces to

1
h(z) = 5 log > ANB(z,2)?B(2,€)Pyer, ., ep)|| (4.6)
1<i<j<p

as Pjj(e1,...,ep) = Pij(er,...,en) for 1 <i < j <p by [9, Lemma 2.1].
Let e =e1+---+ep. For k & {i,j} and w € Vjj(e1,...,e) we have that (e,0w)(V) = {0} by the
Peirce multiplication rules, as ey € Vii(eq, ..., e, ). Therefore, for 1 <i < j <p,

o Pjer,....ep)(r) =&n Pjer, ... en)() =en Pijler,...,en)(:) =en Pij(er,...,ep)(:),
and likewise

QEBJ(ely...,ep)(') = {€1+Oé262+"‘+04r06r0aPij(elv"'vep)(')v 61+a262+'”+ar06m}
{e, Pij(e1,...,ep)(:), e}
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Thus, Q¢Pij(e1, ... ep) = QePij(er, ..., ep). It now follows for 1 <i < j < p that

B(z,&)Pij(e1,...,ep) = Pij(er,...,ep)—2(zoe)Pj(er,...,ep)+Q.QcPij(er, ..., ep) = B(z,e)Pj(er, ..., ep).

Thus, the horofunction h in (4.6)) can be expressed as

1
h(z) = 5 log > ANB(z,2)?B(z,€)Pylen, . .., ep) (z € D).

1<i<j<p

To prove that each function of the form (4.4]) is a horofunction we let

1
h(z) = 5 log > AiNB(z,2)7?B(z,e) P (z € D)

1<i<j<p

where p € {1,...,7}, A\; € (0,1] (i =1,...,p) with max; \; =1, and e = e; + €2+ --- + ¢, € 9D, with
Peirce projections P;j: V — V induced by the mutually orthogonal minimal tripotents e1, ..., e,.
For all k € N sufficiently large (depends on min; A;) we can define

2k —1

aik = [1= "5
k2\2

for 1 <i < p. For those k set y, = (1 — 1/k)e1 + agea + - - - + apre, and note that v, € D.
Then the sequence (yx) norm converges to e and

. _ . 1—(1-1/k)2 [1—(1—1/k)?
_ 2 1/2 _ o NP
0 P e A e D D
0<i<j<p ¢ J 0<i<j<p
Hence
, . 1 — Jlyll?
lim A = lim =1 —_—
oo P ()= Og<1—ug_yk<z>||2
1 - _
= lim S log(1— ul®)1B(z,2) "2 Bz, yx) Blys, yr) 7|
k—oc0 2
1 —-1/2
= log Z ANi\jB(z,2) Y2 B(z,e) Py ,
I<i<j<p
which completes the proof. O

We see from the proof of Theorem that it can happen that two sequence (yx) and (zx) in D
converging to distinct points in dD can give the same horofunction. Indeed, if we let y; be as in the
proof Theorem and set 2 = yr + (1 — 1/vVk)(epy1 + -+ + ), then both h,, and h., converge to h
given by .

We also note that the horofunction h given by can be obtained by taking the limit of an
appropriate sequence in the flat Re; & - - - @ Re,. This is consistent with the observation in [I8, Lemma
4.4]. Later in Lemma we shall show that one can obtain the horofunctions in D(c0) by taking limits
along geodesics in the flats.

5 Horofunctions of finite dimensional JB*-triples

We now determine the horofunctions of finite dimensional JB*-triples (V.|| - ||) as normed spaces, with
base point 0. Throughout we let r be the rank of V. As in (4.4), each element a € V has a spectral
decomposisiton,

a=Aer+Xex+ -+ Ner, (la=A2>X>--> )\ >0),

13



where ey, ..., e, are mutually orthogonal minimal tripotents in V.
Given a sequence (ay) in V' with hg, — h € V(00), we have r, = |Jag|| — oo (by Lemma [2.2)) and

lz — anl® = llaxl® _ 2re)~ (@ — ar)o (z — ap)|| = 77)
[ = ar|l + lla| 271 (|l (@ — ap) || + 1)

hay (2) = [lz = ag|| = [lax]| =

As the denominator goes to 1 when k — oo, we need to analyse
lim (2ry) (| (x — ax) 0 (2 — ag)|| = 77)-
k— 00

First we note that, for each y € V, the spectrum o(yoy) is the set of eigenvalues in [0,00) since
dimV < oo, and by Remark lyoy|| = supo(yoy). On the other hand, V is a finite dimensional
Hilbert space with inner-product

(x,y) = Tr(zovy) (x,y € V). (5.1)
For each self-adjoint operator T" on (V, (-, -)), we use the notation
A(T) =sup{(Tz,2): z € V,(2,2) = 1}
to denote the maximum eigenvalue of T'. In particular, we have

Ayoy) =supa(yoy),

as yo y is a positive self-adjoint operator on the Hilbert space V' (cf. [0, Lemma 1.2.22]).
Since hq, (z) = ||z — ag|| — ||ak|| > —||z|| for all z € V', we have

2re) " (I(z — a)o (@ — ap)|| = 1%) = —2|z|| (5.2)

for sufficiently large & , which will be useful later.
The start we prove the following technical lemma.

Lemma 5.1. Let (ar) be a sequence in V such that v, = |lag|| — oo. Let a = Y ;_; Nixeir, be a
spectral decomposition of ay, with A > Aog > ... 2> Ak > 0 and mutually orthogonal minimal tripotents
€1ks - - -5 Erk-

If ayr, = 1 — Nip — ; € [0,00] and e;, — e; for all i, then

Jim (2r) (@ — ai)o (@ = a)l| = 1)

= sup <<_1(€]D$+$D eI)—Zai(eiD ei))u,u), (5.3)
ueVa(er): (u,u)=1 2 icl

where I = {i: a; < oo} and er =, ¢€;.

Proof. We will show that every subsequence of ((2ry)~!(||(z — ax)o (z — ax)|| — r2))x has a convergent
subsequence whose limit is the right-hand side of (5.3)). Let ((2r,)  (|[(x — am)o (x — am)|| — r2,))m be
a subsequence. Note that

_ 1 1 a a 1
@) 1o~ am)e 2 = am)| = 2) = A (Gm = 3 a0 09 %) 4 o ama o — 2D )
where I: V' — V is the identity operator.
There exists w™ € V with (w™,w™) = 1 such that

xox 1 a a 1
A<2rm —i(imm—i-xm 7;:)+2nn(ammam—rzﬂl)>
rxox 1, a a 1
:<(27’m —i(imx—i—xm r::)—i—%m(ammam—r%lf)) w™, wm>.
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After taking a further subsequence, we may assume that w™ — w and Ay, /T — p; € [0, 1] for all
i. S0, am/rm —> a =Y., pie;. Also note that p; =1 for all i € I, as

Y . Tm — ,
pi = lim =™ = lim ——" =1 for all i € T.
m Ty m T'm
Consider the Peirce decomposition V' = @ <<, Vii* with respect to eipm, ..., €rm and write
m
E Wy
0<s<t<r

Set Ao, = 0 and agy, = 71y, for all m. From (3.15)), we have

wl  (i=s=1t)

(eimD em)wlf =< swh (i=s#tori=1t#s)
0 otherwise.
Therefore
1
(5 (@n D am — 21w, w™) = (3 = (02, (€im eim)wm — r20™), w™)
P am—— (A2 + X2 )/2 —r?
= S Fm Ty gy g 30 e B2 )
0<s<r m 0<s<t<r m
—- 3 el uy
2r
0<s<r m
o Z O‘sm(zrm - asm) + atm(2rm - atm)>< ZZ, w$> (54)
4r 4r
0<s<t<r m m
Note that, as the of set minimal tripotents is compact and ej,..., e are mutually othogonal
tripotents, ei,...,e, are mutually orthogonal minimal tripotents. Let V = ®0§s§t§r Vst and w =
ZOSSStST wgt be the Peirce decompositions with respect to eq,...,e..

Then wg = 0 if {s,t} ¢ I. Indeed, w]} — wg for all 0 < s < ¢t < r, and if wg # 0 for some
{s,t} ¢ I, then the right-hand side of ([5.4) goes to —oco as m — oo, since

Qs (21, — « Qpm (21 — @ «
sm( m sm) Z sm oo or tm( m tm) Z tm s 0.
2rm 2 2rm 2

As (Gfw™, w™) — 0 and

1 1
<——(a—mmx+xm a—)w w"™) — (—=(ao x4+ 0 a)w, w),
2°Trm Tm 2

we find that (2rg)~'(||(z — ax) 0 (z — ay)|| — 72) — —oc, which contradicts (5.2). Hence

w e @ Vst—VQ 61)

s,tel: s<t

Now using the Peirce decomposition V' = Va(ey) @ Vi(er) @ Vo(er) with respect to the tripotent e
and the Peirce multiplication rules, we find for each z € Va(er) (and in particular for w) that

((aox)z,2) = {er,x, 2} + {Z wier,x,z},z) = ((ejo )z, z)
gl
and

((xoa)z,z) = ({x,er, 2} + {z, Z/,LZ’GI, z},z)y = ((zoeg)z, 2).

gl
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Hence we deduce from (j5.4) that

1
limsup(QTm)fl(H(z—am) (x—am)H—r ) < (—=(aox+ z0a)w,w) E s (Wss, Wss)
m—>o00 2

sel
1
— Z §(C¥s + at)<wstawst>
s,tel: s<t
1
:(—i(elmx—i—xme[ w, w) Zas esOes)w,w). (5.5)
sel

Next we show

. _ 1
%rgrg(%m) Yz = am)o (2 — am)|| — 72) > <—§(elmx+xm er)w, w) Ze;as esOegs)w,w). (5.6)
S

Let €' = > ;e €im and set u™ = Py(ef’)w™. Then u™ — Py(er)w = w and

1 1
A <mmx - f(a—meJr:L“D a—m)+ —(am o amrgll)>

27m 2°rm Tm 27m

1 1
> <<$D T —(a—mm x4+ zo a—m) + —(amO am — 7“nt)> um,um> (u™ ™)1

2rm, 2°Tm Tm 2rm,

for large m, as (u™,u") — (w,w) = 1. Since

1 1
<(x27[;: — 5(%[1 T+ xO Z—:))um,um> — <7§(61D x4+ zoer)w,w)
and 1
ligln<r—((amm am)u™ — r2u™ Z as{(es0es)w,w),
m

sel

the inequality follows.

From (j5.5)) and (5.6]), we now obtain

1
lirgn(%m)*l(”(x — )0 (T — ap)|| —12) = <—§(61DZL‘—|—3§D er)w,w) Zas ((esO es)w, w),
sel

which implies that the left-hand side of (5.3]) does not exceed the right-hand side.
To prove equality of the two sides, pick v € Va(er) with (v,v) = 1 such that

1
(—5(eroz+zoer) =) aileine))v, v) = sup <(—1(61D$+wﬂ er) — Y ai(e;0e))u, u).
2 , . - 2 ,
icl ueVa(er): (uu)=1 el

Let v™ = P(e*)v. Again by definition of w™, we have for large m,

zxox 1 an A 1

{( o —§(amx—l—xm E)-i-%(amm G, — r?nl))wm,wm)
rox 1 a a 1 _
Z<( 2rm —§<£Daj‘—|—xD i)—i_%(ammam_r I)) m’vm><vm7vm> 17

where €' = Y. €im and v = Py(e])v — Pa(er)v = v.
Write v™ = Z DS @ Vgi'. Then (52%20™,v™) — 0 and

s,tel: s<t 0<s<t<r
1 am Am~ m m 1
<—§(T—Dx—|—mm r—)v U >—><—§(amx+xma)v,v>.
m m
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As before,

moymy = — Z s (2rm — asm)< m

(am D ap — 72, D0™, v v

(5—

2T‘m = 2Tm $S7 7SS
asm(2rm - asm) Oétm(Qrm - atm) m m
a Z 4r + Ay < Vst U st)
s,tel: s<t m m
— — Z as((esO es)v,v).
sel

We conclude that

lim (2r) N (||(z = am) o (2 — an)|| — 72,) > <—%(6[D$+$D er)v — Zas (esO es)v,v),

m—r00
sel

which completes the proof. ]
Remark. In (5.3), we have

1
sup ((—=(ejoz+axoeg) _Zai(eimei))uvu>
ueValer): (wuy=1 2 i€l

1
= sup ((—=(ero Py(er)x + Pa(er)zoerg) g ai(e;oe;))u,u)
) _ 2
ueVa(er): (uu)=1 icl

1
= Ayy(en) (= 2(6][1 Py(er)x + Py(er)xoer) Zal eine;)), (5.7)
i€l

where the latter denotes the maximum eigenvalue of the operator

1
2(61D Py(er)x + Py(er)xoeg) Zaz e;0 e;)
el

restricted to the subspace Va(er), which it leaves invariant.

We are now ready to describe the horofunction boundary V(oo).

Theorem 5.2. Let h be a horofunction in V(o). Then there exist I C {1,...,r} nonempty, mutually
orthogonal minimal tripotents e; € V and «; > 0 for ¢ € I, with min;c; a; = 0, such that

h(z) = sup{((—%(ejm x+xoer)— Zai(eim ei))u,u): u € Va(er), (u,u) =1}
el
1(eID Py(er)x + Py(er)zoer) ZO‘Z eige;)) (xeV), (5.8)

= AVQ(C]) (_ 2
el

where e; = Y ;. €; is a tripotent with Peirce 2-space Va(er) and Peirce projection Pa(eg).
Conversely, each function h: V — R of the form in @ is a horofunction of V.

Proof. Let h = limy hq, be a horofunction, where a; € V and rp = |lag|| — oo. For each k, let
ar = Y iy Nikeik be a spectral decomposition, with pairwise orthogonal minimal tripotents e;, and
lagll = Ak > .. > Mg > 0.

After taking a subsequence, we may assume o = rp — Az — «; € [0,00] and e;; — e; for all

i =1,...,r, where ej,...,e, are mutually orthogonal minimal tripotents. Let I = {i: a; < oo} and
ey = Zie[ ei, and note that I # (), since a; = 0.
We have

o — ail® = llaxl® _ @re)~ (= — ar)o (@ — ar)]| = 7%)
[ — ar| + llax| 27 (I (@ = an)l| +1)

hay () =
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and 271(||r; (z —ay)|| +1) — 1. Hence follows readily from Lemma and the preceding remark.
Conversely, let h: V' — R be of the form , where I is a nonempty subset of {1,...,7}, min;e; a; =
0 and ey = >, € is the sum of mutually orthogonal minimal tripotents e;.
We show h € V(o0). For k=1,2,..., define

ap = ker — Zaiei.
i€l
For k > max;ecs o, we have ry = ||ag|| = k and, in the notation of Lemma

= {ai (iel)

k  (otherwise)

It follows from Lemma [5.1] that

1
lim @) (| —a)o @—a)l - )= swp ((~i(eroataoen) = aslein e))uu)
k—soc0 ueVa(er): (u,u)=1 2 icl
and
) -1 _ _ 2
i o (o) =t 2070 = 0000 @ — )] = )
koo koo 27 (llry (= ap)|[ + 1)
= sup <(—l(6[D[E—|—ﬂZD eﬂ—Zai(eiD ei))u,u) = h(x)
ueVa(er): (u,uy=1 2 el
for all z € V. Hence h € V(0). O

If I is a singleton in the preceding theorem, e; = e, where e is a minimal tripotent. In that case the last
term of (.8) vanishes and h is a real continuous linear functional of V. Indeed, P(e)(V) = Va(e) = Ce
implies Ps(e)xz = ¢(x)e for some functional ¢ € V* and

h(z) = (—%(em Py(e)z + Py(e)zoe)e, e)(e,e) = —%((e, (U(x)ene)e) + ((L(z)eD e)e, e)) (e, e) !

- —%(e(x) +{(z)) = —Re(z).
Remark 5.3. In the course of proving the preceding theorem, we observe that each horofunction h €
V(00) can actually be constructed from a sequence (ay) going to infinity along a straight line, which is a
geodesic in the normed space V. In fact, the sequence ay, = ker — ), a;e; used in the proof lies on the
straight line, t — te; — Zz‘el a;e; in the flat @;c7Re;. Also note that if &k > m with k > max;ej «;, then
llak]| = k and hq, (am) = |lax — am|| — ||ak|| = (kK —m) — k = —m, so that h(a,,) = —m for all m.

By the remark we have the following corollary.
Corollary 5.4. Fach horofunction in V(o) is a Busemann point.

For general finite dimensional normed vector spaces it need not be true that all horofunctions are
Busemann points, see [36].

6 Homeomorphism onto the dual unit ball

In this section we give a homeomorphism of the metric compactification of V' onto the closed dual unit
ball B* of (V.|| - ||). We subsequently show in the next section that this homeomorphism maps each
equivalence class in V(c0)/ ~ onto the relative interior of a boundary face of B*. So, the dual ball B*
captures the geometry of the metric compactification of V.
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To prove these results we need a lemma concerning the partial ordering on the set of tripotents of a
JB*-triple. Recall that, given two tripotents ¢ and e in V', we shall write ¢ < e if e — ¢ is a tripotent in
V orthogonal to ¢, or equivalently, if and only if Py(c)e = ¢ ([12, Corollary 1.7]). We also have ¢ < e if
and only if ¢ is a projection in the JB*-algebra V3(e). Particularly,

c={e,ce} (6.1)
(cf. [6, pp.34-36]).
Lemma 6.1. Given two tripotents c,e € V, the following conditions are equivalent:
(i) c<e,
(i) {c, Pa(c)e,c} + {c,c, Pa(c)e} = 2c,
(iii) {c,e,c} +{c,c,e} = 2c,
(iv) B(e,c)w =0 for all w € Va(c).

Proof. (i) = (ii). If ¢ < e, then Ps(c)e = c and (ii) follows directly.

(ii) = (i). We note that {c, P2(c)e, c} € Va(c) by (3.9), and {c,c, P2(c)e} = Ps(c)e € Va(c).

Observe that ¢ is a maximal tripotent in the JB*-triple V5(c), and hence ¢ is an extreme point of
the closed unit ball of Va(c) (J6, Theorem 3.2.3]). As |[{c, P2(c)e,c}|, [|P2(c)e]| < 1, we conclude that
Py(c)e = ¢, that is, ¢ < e.

(i) = (iii). Suppose ¢ < e. The orthogonality between e and e — ¢ gives clearly (iii).

(iii) = (i). The arguments used in the implication (ii) = (i) apply, by observing that {c,e,c} =

{¢, Pa(c)e, c} € Va(c) from ([3.9) and (3.10)), which gives {c, c,e} = 2¢c — {c,e,c} € Va(c).
(i) = (iv). Let w € Va(c). Using orthogonality, (6.1)) and the Jordan triple identity, we deduce

Ble,c)w = w—2{e,c,w}+ {e,{c,w,c}, e}
= w—2e,c,w}+2{e c {e,c,wt} —{w,c {e, c e}}
= w—2{e,c,w} + 2{e,c,{e,c,w}} — {w,c,c}
= w—2{e,c,w} + 2{e,c,{e,c,w}} —w

w— 2w+ 2w —w = 0.

(iv) = (i). Let a = Pa(c)e € Va(c). We show a = c¢. Using the identities (JP1), (JP3) and (JP2) in
[29, Appendix], one deduces that

Q(e)B(a, c)w = Q(c)Ble,cjw =0,  (w € Va(c)).
Now take w = ¢ — {¢,a, c} € Va(c). Then we have

B(a,c)w = B(a,c)c— B(a,c){c,a,c}
= c¢—2a+{a,c,a} — ({c,a,c} — 2{a,c,{c,a,c}} + {a,{c,{c,a,c},c},a})
= c¢—2a+{a,c,a} —{c,a,c} +2{c,a,a} — {a,a,a}

= {c—a,c—a,c—a},

where {c,a,a} = {c,a,{c,c,a}} = {{c,a,c},c,a} —{c,{a,c,c},a} + {c,c,{c,a,a}} = {{c,a,c},c,a}. As
{c—a,c—a,c—a} € Va(c), it follows from (3.12)) that

{e—a,c—a,c—a}|| = [|Q(c){c —a,c —a,c— a}|| = |Q(c) B(a, c)uw|| = 0,
so that ¢ —a = 0 by (3.3). O
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Remark 6.2. Given tripotents ¢,e € V and identity map I: V — V', we have ||co Py(c)e+Pa(c)enc|| < 2
and 21 — (co Pa(c)e + Py(c)enoc) is a positive operator on the Hilbert space (Va(c),(:,-)) by Remark
Hence ((2I — (co Pa(c)e + Py(c)eoc))v,v) > 0 for all v € Va(c). Moreover, ((2I — (co Py(c)e
Py(c)eoc))v,v) =0 for all v € Va(c) is equivalent to 21 = co Ps(c)e + Pa(c)en ¢ on Va(c).

The previous lemma has the following useful corollary.

Corollary 6.3. Suppose that h and h' are horofunctions given, respectively, by (@ and

1
h/($):AV2(cJ)( 2(CJDP2(CJ)I+P2 CJ xDCJ Z’BJ ch
jeJ

Leta =3, .;aje; and b= Zje] Bjcj. Then h =h' if and only if e; = c; and a =b.
Proof. The sufficiency follows from the observation that e; = ¢y and a = b implies that

Z%‘(Q’Dez Zazel Oe; = Zﬁjc] DCJ—ZﬁJ ¢jocj).

el el jeJ jeJ

Conversely, let limy, hq, = h = b’ = limy, by, , where we can choose a;, = ke — a and b, = kcy — b by
Remark [5.3] As h(ay) = —k, we have k + h/(az) = 0 and

1
ErR(a) =kt s (- i(ero (her —a) + (her —@)o e — 3 Bilesoep)un)
. _ 2
veVa(cy): (v,u)=1 jeJ

k
=k+ sup (<—§((CJD Py(cy)er) + (Pa(cy)eroey))v,v)
veVa(ey): (vw)=1

+<(1(cjma+aDCJ ZBJ cjocj))v,v))

2
JjeJ

—k( sw <<<I—§<<cJaP2<CJ>eI>+<P2<CJ>emCJ>>>v,v>
veEVa(ey): (vw)=1

Flgr(ermatanes) — 1 Y Bi(eo)n)

JjeJ

for k =1,2,.... So we find that ((I — 3(cjo Pa(cs)er + Pa(cy)erncy))v,v) = 0 for all v € Va(cy), and
hence 21 = cyo Pay(cy)er + Pa(cy)ero ¢y by Remark on Va(ey). Moreover,

1
sup (5(csoa+ancy) =) Bjlcjoc)v,v) =0. (6.2)
. -1 2
veVa(cy): (v,v)=1 JjeJ

In particular, we have 2c; = (cyo Pa(cy)er)(cs) + (Pa(cy)erocy)(cy), so ¢y < e by Lemma [6.1]
Analogously, 0 = k + h/(by) = k + h(by) implies e; < ¢y and

1
sup ((z(ejob+boey) — g a;(e;0e;))v,v) =0. (6.3)
; —1 2 ,
veVa(er): (v,v)=1 jet

We conclude that e; = ¢y and note that this implies that
1 1
§(CJD a+aocy) = 5(6[D a+aoey) = Zai(eim )
el

and

1 1
§(€[Db+bD€[):§(CJDb+bDCJ E Bj(cjo ;).
jeJ
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It now follows from and ( that >,y ai(eine;) = 3 50, B8i(cjocs) on Va(er) = Va(ey), as both

operators are Self—ad301nt In partlcular

a:E oie; = Zaz e;ae;)(er) Zﬁj c;oc)( Zﬁjc]—b

i€l el jedJ jedJ

O

To show that the metric compactification V' U V' (o0) is homeomorphic to closed dual unit ball of
(V|| - |I), we identify V' with its (algebraic) dual space V* by using an inner-product on V', which we can
do as V is finite dimensional. For convenience we adjust the inner-product (-,-) on V to define a new
inner-product [-, -] such that [¢,¢] = 1 for each minimal tripotent ¢ € V.

To realise this we note that a finite dimensional JB*-algebra V decomposes into a finite £y .-sum,
V=WV&- - @®Vy of Cartan factors, each of which contains a minimal tripotent (cf.[7, Theorem 3.3.5,
Theorem 3.8.17]. In a finite dimensional Cartan factor Vj, the tripotents form a compact submanifold
M; of Vj, in which the minimal tripotents form a connected component N; [29, §5]. As shown in [8]
Proposition 2.2], the tangent space T.(N;) at each e € N; identifies with iA(e) ® Vi(e), where A(e) is
defined in ([3.13)).

In particular, dim(iA(e) @ Vi(e)) = 1+ dim Vi(e) is constant for all e € N;. On V; we define, for a
fixed e € Nj, a normalised trace form

1
1+d1mV1( )/

(z,y); = 5 Trace(zoy)  (z,y € Vj),
so that (c,c); =1 for all ¢ € N;, and (V}, (-,+);) is a Hilbert space.

Henceforth, we denote by [, -] the inner-product of the Hilbert space direct sum V =V, & --- @ Vg,
with (Vj,(-,-);). Then each minimal tripotent ¢ € V lies in some V; and [c,c¢] = 1. Moreover, the
inner-product is associative, i.e.,

[{(L, b, y}a Z] = [y7 {bv a, Z}] (CL, by,z € V)

(cf. [6, (2.31)]). In particular, we have [Pa(c)y, z] = [y, Pa(c)z] for each tripotent ¢ € V. We note that if
a,b € V are triple orthogonal, i.e., ao b = 0, then [a, b] = 0.
By the Riesz representation theorem, the map

zeV s F=[aeV* (6.4)

is a conjugate linear isomorphism.

Let D* = {z € V*: ||z|l« < 1} be the closed dual unit ball in dual space of the JB*-triple (V,|| - ||).
Then for each ¥ = [,z] € V*, where = has spectral decomposition z = 2521 Ajc; € V, we have
1Z][ = >y Aj- Indeed,

1]l = sup |[y,«]| = sup ZA [y, ¢;]| = sup ZA [P2(cj)y, ¢j]| < sup ZA el = A,
j=1

lyll=1 lyll=1 =% lyll=1=3 lyll=14=3

as P(cj)y = pcj for some p € C and |u| = [|P(c;)yll < [lyll = 1. On the other hand, y = >7%_, ¢;
satisfies [|y|| < 1 and hence [|Z|[. > | >7_[cj, #]| = 2201 A
We define

T T
D°={zeV:.x= Z Ajc; spectral decomposition with Z Aj <1} (6.5)
j=1 j=1
It follows from the previous observations that the conjugate linear isomorphism x € V +— z € V* in (6.4))
maps D° onto D*, and hence D° is the closed unit ball of a norm on V.

Thus, to prove that V' UV (c0) is homeomorphic to D*, it suffices to show that there exists a homeo-
morphism ¢ from V UV (oco) onto D°, which is what we will do.

21



Remark 6.4. Given z € V with spectral decomposition x = Y _;_; A;e;, so r is the rank of V', we have

that the eigenvalues \; > ... > A\, > 0 are unique, but the pairwise orthogonal minimal tripotents e;
need not be unique. We can however collect terms with equal non-zero eigenvalue in the sum and write
T =Y 7 | [i¢, where pug > ... > pg > 0 and the ¢;’s are (not necessarily minimal) pairwise orthogonal

tripotents. In this case both the p;’s and ¢;’s are unique, see [29, Corollary 3.12]. For clarity we refer to
this decomposition of x, as the unique spectral decomposition.

We define the map ¢: V U V(c0) — D° by

> i1 (exp Ay — exp(—X\;))e;

ola) = iy (exp A; + exp(—X\;)) (6.6)
for each « € V with spectral decomposition z =, ; Ai¢; € V, and
crexp(—aj)e;
olt) = L0, ©7)
for h € V(o00) of the form,
h(z) = Avy(e) (= ;(eID Py(er)z + Py(er)roer) Zal (e;0e;)) (xeV).

el

To see that ¢(x) is well-defined note that the right-hand side of is the spectral decomposition of
o(z). Moreover, if \; = 0, then the correspond coefficient in ¢(z) is also 0. So by switching to the
unique spectral decomposition we find that ¢(z) is well-defined by Remark Also ¢(h) is well defined.
Indeed, if h was expressed as

1
h(:c):AVQ(cJ)( 2(CJEIP2(CJ)$+P2 CJ xEICJ Z/BJ DC] (.TEV),
jeJ

thene; =cjanda =), ;ase; = ZjeJ Bjc; = b by Corollary Viewing a and b in the JB*-subtriple
Va(er) = Va(ey) we may assume after relabelling that [ = J and o; = §; for all ¢ € I = J. Now using
the unique spectral decomposition and the fact that e; = ¢, we find that ¢(h) is well-defined.

Theorem 6.5. The map ¢: VUV (c0) — D° is a homeomorphism.

The proof of the theorem will be split in to several lemmas. Note that the interior of D°, denoted
int D°, consists of those x = 27}:1 Ajc; with Z§:1 Aj < 1, and the boundary, dD°, of D° are precisely
those = 3% _; Aje; with 377 A; = 1. This follows from the fact that z — & = [, 2] is a conjugate
linear isomorphism mapping D° onto B*.

Lemma 6.6. We have (V) C int D° and ¢(V(c0)) C 0D°.
Proof. The right-hand side of is the spectral decomposition of ¢(x) and

T T
0< (Z e+ e_/\i)_l(z N — M) < 1,
i=1 i=1

so ¢(x) € int D°. Clearly, p(h) € 0D°. O
Lemma 6.7. The map ¢: V UV (c0) — D° is continuous on V.

Proof. Let (vg) be a sequence in V' converging to v € V. To show ¢(vr) — ¢(v) as k — oo, we show that
each subsequence of (vg) contains a subsequence (vy,) satisfying ¢(v,) — ¢(v) as n — oco.

For each k, let v, = > ;_, pxcir, be a spectral decomposition. By convergence, (vy) is bounded. Hence
each subsequence of (vg) contains a subsequence

r
= § HinCin
=1
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such that u;, — p; > 0 and ¢, — ¢; as n — oo, where cy,...,c, are mutually orthogonal minimal
tripotents.

It follows that v = limy, vy, = > ;_; pic; and
(p(v ) _ z:_l(elu‘zn —e #zn)cin N Z:Zl(eul — 67/”)61' _ SO(/U)
n ZiZI eMin 4 e~ Hin Z::l eti + e Hi
as n — oo, which completes the proof. ]

Lemma 6.8. We have (V) = int D°.

Proof. As ¢ is continuous on V and maps V into int D°, we know from the Brouwer invariance of domain
theorem that (V) is open in int D°. Suppose, for the sake of contradiction, that ¢(V) # int D*. Then
there exists w € dp(V) Nint D°. Let (v,) in V' be such that ¢(v,) — w. As ¢ is continuous on V, we
must have that ||v"| — oo.

Consider the spectral decomposition v, = Y ;_; A\inCin. After taking a subsequence we may assume

that (1) cin — ¢, and (2) i = A — Ain —> a; € [0,00], for all i = 1,...,r. Note that A1, = ||vn|] —
0.
Let I = {i: a; < oo}. Then 1 € I and
T (elin — g~ Ain) . T (e=%n _ o= An—Ain)e. e g,
(P(Un) = ZZ?}‘( N _>\.) L= ZZ 1( . Y _)\) z — ZZGI _a.z-
Zi:le zn+€ in ZZ 16 in _|_€ in n Ziele i
This implies that w = lim,,—,~ @(v,) € D°, which contradicts the assumption that w € int D°. O

Lemma 6.9. The map ¢ satisfies o(V (00)) = 0D°.

Proof. Let x € 9D°. Then z has spectral decomposition z = >\ ; \ie; with > : ; A\; = 1 and there
existsap e {1,...,r} such that \y > ... >\, >0and Ay =0 forp < s <r.

Forv=1,....,p put u; = —log); and o; = p; — 1. Then o; > 0 and a3 = 0. Now consider the
horofunction h € V(o0) given by

1 p
h(z) = Ayye)(— (eD Py(e)x + Pa(e)zoe) Zal e;oe;)) (xeV).
=1

Then we have ) )
D exp(—ai)ei D Niei
(p(h) - P - D \ =

i1 exp(—ay) i=1 M

Lemma 6.10. The map ¢ is injective on V UV (00).

Proof. Suppose first that p(z) = ¢(y). Let =Y/ | Aic; and y = >, pid; be the spectral decomposi-
tions. Then we have

o Tl e
it eh Dy et ek

where the coefficients of the minimal tripotents of both sides are decreasing through the order of the
indices. If we let for j =1,...7,

T

Ze +e M) —e M) and By = (D et e ) et — e ),

=1

then a; = 3; by Remark It now follows from [27, Lemma 3.7] that A\; = p; for j =1,...,r
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Note that «; = 0 if and only if A\; = 0, and similarly 5; = 0 if and only if y; = 0. So by considering
the unique spectral decompositions of ¢(x) and ¢(y) and using Remark we find that z = y.
Now suppose h, h/ € V(oc0) with ¢(h) = p(h'). Let h be of the form (5.8) and A’ of the form

1
h’(x) ZAvg(cJ)( 2(cJD Py(cj)x 4+ Py(cy)zocy) Z’BJ c;jo¢j))
jeJ

Then we have
Dicrexp(—ai)ei E:jEJeXp(_¢%)97
Zz’el exp(—a;) Zje] exp(—0;)
where the coefficients of the minimal tripotents on both sides are strictly positive. By relabelling the

indices, we may assume that I = {1,...,p}and 0 = a3 < ap < ... < ap. Likewise we can assume that
J=A{1,...,q} and 0 = 1 < B < ... < f3,;. Since the norm of both sides above in V' are equal, we have

S exp(—a)) = 3 exp(—5)).

iel jedJ

By Remark. we havep =q,e % =e —bi ,ef =ei+---+e, =ci+---+cg = cjand Z aie; = Pici.
Hence h = k' by Corollary [6.3] O

Lemma 6.11. If (a) in V is such that he, — h € V(00), then p(ar) — ¢(h).

Proof. Let h be given by (5.8). To show that ¢(ay) — ¢(h), we show that each subsequence of
(p(ag)) has a convergent subsequence with limit ¢(h). So let (¢(an)) be a subsequence. Using the
spectral decomposition we write a,, = Z:Zl WimCim With f1m > ... > trm > 0. As h is a horofunction,
ftim = ||am| — oo by Lemma [2.2]

After taking a subsequence we may assume that Bim, = fim — fim — 8i € [0, 00] and ¢, — ¢; for
all i. Let J = {i: 8; < oo} ={1,...,q} and note that ¢ > 1, as p; = 0.

It follows from Lemma [5.1| that h,,, — h’ where

1
—(cgjo Py(cy)x + Pa(cy)xocy) Zﬂj cjocj)) (xeV),

W (x) = Avye,) (= 5
jeJ

and b’ € V(oc0) by Theorem As hg, — h, we know that b’ = h, and hence e; = ¢; and
D aiei =) By
iel jeJ

by Corollary
We can relabel the o;’s such that I = {1,...,p} and 0 = oy < a3 < ... < . It follows from Remark

that p=gqgand a; = §; for all i € {1,...,p}. Moreover, Y ?_, e"%e; = Zp e Pic;.

As
Sp(a ) _ Z:Zl(e,ufim _ e_,uim)cim _ Z::l (e_/Bim _ e_ﬂlm_ﬂinz)cim
m E;ﬂzl etim — e—Him Z::l e_ﬂim — e~ H1im—Him
we find that
P P P
hm<p am) Ze i 126752'@ = (Z e*a")*lze*“iei.
1=1 1=1 i=1
Thus, ¢(am) — ¢(h), which completes the proof. O

To prove continuity of ¢ on the boundary V(c0), we need the following technical lemma.
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Lemma 6.12. Let J C {1,...,r} be nonempty, and for eachn, let {cj,: j € J} be a collection of mutually
orthogonal minimal tripotents in V' such that cj, — ¢; for all j € J. For j € J let (Bjn)n a sequence
in [0, 00) converging to B € [0,00], with minjcy Bjn = 0 for each n. If we let J' = {j € J: B; < oo} # 0
and consider the horofunctions,

() = AVQ(an)(—l(CJnD Py(cyn)z + Pa(can)r0cin) =Y Bin(enOcjn))  (weV),

2 -
jeJ
where cjn = Y ;c; Cin, then
. 1
L () = Avye,) (=5 (crn Paley)e + Paley)zn ) — > Bilejoey)) (6.8)

jeJ

with Cjr = Zjej’ Cj.

Proof. We show that each subsequence of (h,(x)) has a convergent subsequence with limit the right-hand
side of (6.8)). Pick a subsequence (hg(z)). As {u € V: (u,u) = 1} is compact, there exists w* € Va(cz)
with (w”*, w*) =1 and

1
hi(z) = <(_§<CJI€D Py(cyp)x + Pa(cyr)rocgy) — Zﬁjk(cﬂcﬂ cjr))wk, wh).
Jje€J
Taking a subsequence, we may assume that w* —s w. For each k, let

v= P Vi (6.9)

0<s<t;s,teJ
be the Peirce decomposition of V' with respect to the tripotents {c;: j € J}, and let
Ve @D W
0<s<t;s,teJ
be the decomposition with respect to the tripotents {c;: j € J}. We show
we P Va=Valer) (6.10)
s,teJ’: s<t
Let w¥ € V% be the (s,t)-component of w* in the Peirce decomposition in . Then we have w¥, —
we € Vg and

1 1
—i(chD Py(cyi)x + Pa(cyr)zo ch)wft — —§(CJD Py(cy)x + Pa(cy)xo cg)ws.

Moreover,
0sjBjk + 0t Bk

Zﬁjk(%ﬂ cjk)wh, = Z (”2” wh.

jeJ jeJ
Recall that if s,¢t € J with {s,t} ¢ J', then Bg, —> 00 or Sy, —> o0. As hi(z) > —||z|| for all & and
Bir > 0 for all j € J, we find that w¥, — 0 for all s,t € J with {s,t} ¢ J’. This implies that (6.10)
holds.

Next, we make use of the following fact. Let e be a tripotent. If v € Va(e)UVp(e), y € V and z € Va(e),

then Py(e){v,y,z} = {Pa(e)v, Px(e)y, z} and Pa(e){y,v, z} = {Pa(e)y, P2(e)v, z}. In particular,

<—%(CJD Py(cy)x + Pa(cy)zocy)w,w) = <—%(CJ/ 0 Py(cy)Po(cy)x + Pa(cy)Pa(cy)xo cy)w, w)

1
= <_§(CJ/ 0 Py(cy)z + Pa(ey)zo ey )w, w),
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as PQ(CJ/)PQ(CJ) = PQ(CJ/).
It follows that

. . 1
limsup hy(x) = llmsup<(—§(chD Py(cyp)r + Py(cyg)zo egr) — Zﬂjk(cjkm cjr))w®, wh)
k—>o0 k—> o0 jeJ
. 1 ko, ok
< kgrlm<(—§(CJkD Py(cjr)x + Pa(c)xn cgy) — ;Bjk(cjkm cjk))w", w")
J
1
= <(—§(CJ/D Py(cy)z + Py(cy)zo CJ/_gﬁj 50 ¢j))w, w).
j

On the other hand,

1
lim inf hk(:(}) > hminf<(—§(CJkD PQ(CJk).I' + PQ(CJk)m'D Cjk)

k—o0 k—o0

— Z Bjk(cjro i) Palcyn)w®, Py(cym)wF) (Pa(cym)w®, Py(cym)w®) ™

jeJ
1
— <(—§(CJID Py(cy)x + Py(cy)zo cJ/—Zﬁ] ¢;0¢j))w,w).
jeJ’
Thus,
. 1
kh_r)noo hi(z) = <(—§(CJ/D Py(cy)x + Py(cyp)xocy — ;,@’] 50 ¢j))w, w).
J

Since w € Va(cyr), we find that

1
kh_r)noohk( x) < AVQ(CJ,)(—§(CJ/D Py(cy)x + Py(cy)zocy) Zﬁﬂ i0¢j))

jeJ’
To show that this is an equality, let u € Va(c /) be such that
1
AVQ(CJ/)( 2(CJ/D PQ(CJ/)[B—FPQ CJ/ x O CJ/ ZBJ DCJ
jed’
1
:<(—§(CJ/D Py(cy )z + Py(cy)zocy) Zﬁj c;0¢j))u, u).

jeJ!
As Py(cyii)u € Va(egy), we have that

<(_%(CJ]€D PQ(CJk)x -+ PQ(CJk)xD CJk) — Z Bjk(cjkm Cjk))wk, wk>
jeJ
<(—%(0ka Pyegr)z + Pa(cqr)ro cr)

— Z Bjk(cjkm Cjk))PQ(CJ/k)U, PQ(CJ/k)u> <P2(lek)u, P2(CJ/k.)U>_1
jeJ
Note that, as (Py(cyg)u, Pa(cyi)uy — (u,u) = 1, the right-hand side is defined for all k large.
So,

Vv

<(—%(CJ,I€D Pacgr)r + Palesi)zo cgr) = Bik(cied cji)) Pa(cn)u, Pa(cyn)u)

jeJ
= <(—%(CJ/]€D PQ(CJ/k).’E + PQ(CJ/k,)J,‘D cJ’k) — Z /B]k(cjk[l Cjk))PQ(CJ/k)u, PQ(CJ/k)U>
jeJ’
L P, P,
— {(=5(eyo Polcy)z + Poley)roey) — > Bilejoe))u,u),

jeJ

which proves .
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Lemma 6.13. The map ¢: VUV (00) — D° is continuous on V(o0).
Proof. Let h, — h in V(c0). We show that each subsequence (¢(hy)) of (¢(hy)) has a convergent
subsequence with limit ¢(h). As h,, is horofunction, we can express it as
1
hn () = AVQ(CJnn)( (CJnnD Py(crn)® + Po(Cr,n)x0 Cjyn) Z Bin(cin ¢jn)) (eV).
J€JIn

After taking a successive subsequences we may assume that J, = J for all k, ¢ji, — ¢; and B, — B; €
[0, 00] for all j € J. Note that minjecy 3; = 0, as minje s B = 0 for all .
Now let J' = {j € J: §; < oo}. By Lemma we find that hy(z) — h'(x) for each z € V, where

1
h/(l‘) :A'VQ(CJ/)( 2(CJ/D PQ(CJ/)$+P2(CJ/ xra CJ/ Z’BJ DC]
JjeJ’
By Theorem we know that A’ is a horofunction. As h,, — h, we conclude that h = A/, and hence
e =cy and ) . ;e = Zjej, Bjc; by Corollary This implies, by Remark that

—Bjkp. —Bjn. —a .
ZJeJe " Cik ZjeJ’e i D er€ Ve

lim A = lim — — — o(h
kgnoo k(x) k;oo Z e —Bjk ZjEJ’ e*ﬁj Zie[ e~ 90( )
and hence we are done. O

Collecting the results it now easy to show that ¢ is a homeomorphism.

Proof of Theorem [6.5, Note that ¢ is continuous on V' UV (c0) by Lemmas and Moreover, ¢ is
a bijection by Lemmas and As V U V(00) is compact and D° is Hausdorff, we conclude
that ¢ is a homeomorphism. O

7 Geometry of V U V(00)

We now analyse the geometry of the metric compactification of V. Recall that on V' (c0) there is a natural
equivalence relation, h ~ g if sup,cy |h(x) — g(z)| < co. In this section, we show that the partition of
V(00) into equivalence classes is closely related to the geometry of D° (and hence also to D*). In fact,
we prove that the homeomorphism ¢: V U V(c0) — D° given in and maps each equivalence
class onto the relative interior of a boundary face of D°.

For the basic terminology from convex analysis we follow [33]. If C' C V is convex, then F' C C is
called a face if \x + (1 — \)y € F for some 0 < A < 1 and z,y € C implies that z,y € F. Note that the
empty set and C' are both faces of C', and each face is convex. The relative interior of a face F', denoted
ri F, is the interior of F regarded as a subset of the affine hull of F. It is well known that each nonempty
convex set C' is partitioned by the relative interiors of its nonempty faces, see [33, Theorem 18.2].

To analyse the equivalence classes it is useful to recall that for Busemann points h,g € V(0c0) one
has that h ~ g if and only if d(h, g) < oo, see [37, Proposition 4.5]. As each horofunction is a Busemann
point by Corollary we see that the equivalence classes coincide with the parts of V(co). Therefore
we start by analysing the parts.

Using and Remark |5.3| we find for h,h' € V(o0) that

H(h,h') = Tim [l (@)l + 1 (4(1), (7.1)
where ]
h(z) = Avy(e) (= 2(6][] Py(er)x + Py(er)zoey) Zaz (e;oe;)) (xeV) (7.2)
el
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and ¢(t) = ter — > ,c; viej. Likewise, H(h/, h) = lim; o |9/ (t) || + h(¢'(t)), where

1
—(cgjo Py(cjy)x + Pa(cy)xzocy) ZBJ cjocj)) (xeV) (7.3)

W(@) = Avygen)(—5
jeJ

and ' (t) = teg — > e 5 Bicy.
Lemma 7.1. Let h and h' be given by and . If e; = ¢y, then

H(h, ') = sup (((a=b)oer)u,u)
ueVa(er): (uu)=1

and

H(h/¢h) = Sup <((b_ CL)EI 6])U,U>.
ueVa(er): (u,u)=1

where a =) ;. aie; and b = ZjeJ Bjcj-

Proof. Let 9(t) = tef — Y ,c; ase;. For t > 0 large, ||4(t)|| = ¢, and hence

[OI+H @) =t 4 sup (o(ey0h(e) + ()0 eshu— 3 Bleso eg)u )

ueVa(ey): (w,u)=1 ey

1
= sup (t(cjocy)u— =(cyjo (tey —a) + (tey —a)o cy)u — E Bj(c;o¢j)u, u)
. - 2 ,
ueVa(cy): (u,u)=1 jed

1
= sup (= (eIDa—i—aDe[u—g Bj(c;o ¢j)u, u)
. -1 2
ueVa(cy): (u,u)=1 jeJ

= sup ((aoer)u — (bocy)u,u)
ueVa(cy): (u,u)=1

= sw ((a-boeuu).
ueVa(er): (u,u)=1

So, by ([7.1)) the first equality holds. The second one is obtained by changing the roles of h and A'. [

We use this lemma to give a simple criterion for two horofunctions to be in the same part of V' (oc0).

Theorem 7.2. Two horofunctions h and ' given by and , respectively, are in the same part
of V(o0) if and only if e; = ¢y,
Proof. Let ef = c¢j. Then by Lemma we have that

)= sp ((a-Boeduu+ s ((b—a)oerhuu) < oo
ueVa(er): (u,u)=1 ueVa(er): (u,u)=1

where a = ), .; aje; and b = ZjeJ Bjc;. Hence h and h' are in the same part.

Conversely, given e; # ¢, we need to show h and b’ are in different parts, that is, d(h, h’) = co. We
have either ¢; £ ey or e % ¢;. Assume the former. Note that it suffices to show H(h,h') = oo, since the
detour cost is nonnegative

By Lemma [6.1] and Remark [6.2] we have
1
<CJ — *(CJD P2(CJ)€] + PQ(CJ)€[D CJ)(CJ), CJ> > 0. (74)
2

As before, for large ¢, we have ||1)(t)|| = ¢, so that

[l + 7' ((t) =t + sup <_%(CJD Y(t) +ot)aesu—y Bilejo¢)uu)

ueVa(cy): (u,u)=1 ey

t 1
sup (tu — —(cyjo Pa(cy)er + Pa(cy)erocy)u+ =—(cyjoa+ancy) u—Zﬁ] 50 Cj)U, ).
. — 2 2
ueVa(cy): (u,u)=1 j€J
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Hence ([7.4)) implies

. t 1
H(h,h") > tgrlo()(tcj — i(CJD Py(cy)er + Pa(cy)eroey)(cy) + §(CJD a+adcy)ey — ;ﬂjcj, cj) = 0.
J

Analogously, e; & ¢; implies H (', h) = co. O

Let us now recall the facial structure of D*. By [I1, Theorem 4.4], the closed boundary faces of D*
are exactly the sets of the form F* = {z € D*: z(e) = [e,z] = 1}, where e is a tripotent in V. So, the
boundary faces of D° are precisely the sets of the form

F.={x €D le,z] =1} (e € V tripotent).

Note that F. C 0D°, as F} C 0D*.
The next lemma gives an alternative description of F,, which will be useful in our discussion.

Lemma 7.3. Suppose that e € V' is a tripotent. Then
F, = {Zle i€ le Ai =1, \; >0, and e;’s mutually orthogonal minimal tripotents with e; < e}.

Proof. Suppose that z € F,. Using the spectral decomposition we can write z as x = Y »_; \;e;, where
Ap > 0 and p < r (so we ignore the zero eigenvalues). Then > P, \; =1, since x € dD°. As F, is a face
and e; € D°, we know that e; € F, and hence 1 = [e,¢;] = [Pa(e;)e, ¢;]. Combining this with the fact
that Py(e;)e € Ce; and [e;, ;] = 1 gives Pa(e;)e = e;. Thus, e; <efori=1,...,p.

On the other hand, given z = >"* | Aje; such that >°7 ;A\, =1, A; > 0, and ey, ..., e, < e mutually
orthogonal minimal tripotents in V', we have that = € D° and

p p

le,x] = Zx\i[e, ei] = Z)\i[ei,ei] =1.

Hence x € F.. L]

We like to point out that F, = 9D°NA(e),, where A(e), is the closed positive cone in the JB-algebra
A(e) in Vi(e), cf. 29, Theorem 6.12].

Theorem 7.4. If h € V(c0) is given by (7.2), then p(h) € riF,,. Moreover, ¢ maps each equivalence
class in V(o0)/ ~ onto the relative interior of a boundary face of D°.

Proof. Let ¢ = |I| > 0 and w = ¢ 'es, so [ej,w] = 1 and w € F,,. We claim that w is in the
relative interior of Fi,. Let x € F,. To prove the claim it suffices to show that for each ¢ > 0 small,
we =w+e(w — x) is in F,, see [33, Theorem 6.4].

By Lemma we know that we can write x = > % | \je;, where > & \; =1, \; > 0 and ¢; < ¢ for

all i. We have that e — >0 e; = 33! €; is a (possibly 0) tripotent. So,

P

we = Z(q_l(l +e)—el)e + Z ¢ N1 +e)e (7.5)

i=1 i=p+1

and [er, we] = (1+¢)[er, w] —¢eler, 7] = 1. As g1 (1+¢&)—e); > 0 for all € > 0 small, the right hand-side of
(7.5]) is a spectral decomposition of w, for all € > 0 small. (We have ignored terms with zero eigenvalues.)
Thus, w. € D° for all € > 0 small, and hence w, € F,.

To complete the proof of the first assertion we assume by way of contradiction that ¢(h) € ri Fy,. As
w(h) € Fe,, we know that ¢(h) is in the relative boundary of F,,. This implies that z. = (1+¢)p(h)—cw &
F,, for all ¢ > 0. Here we use the fact that w is in ri F,, and F¢, is a convex set.

Note that .

1+e)e ™ ¢

Ze = Z % —_ - €;. (76)
i=1 j=1¢ 7 q
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Let 1 be the coefficient of the e; in the sum . Then 5 > 0 for all ¢ when € > 0 is sufficiently small.
Moreover, Y7, us = [er, 2] = 1, since e = e1 + - - + ¢,. But this implies that z. € F,, for all e > 0
small, which is impossible.

To show the second statement we note that for h, b’ € V(00) given by and , respectively, we
have that h ~ b’ if and only if they are in the same part, as all horofunctions are Busemann points. This
is equivalent to saying that ey = ¢y by Theorem So by the first assertion, we get that h and h’ are
both mapped into ri F¢, under ¢. As ¢ maps V' (00) onto 0D° we conclude that ¢ maps each equivalence
class in V' (00)/ ~ onto the relative interior of a boundary face of D°. O

In the remained of this section we show that each part in V(oo0) with the detour distance is isometric
to a normed space. To introduce the norm let e € V be a tripotent and define for x € A(e),

[]lvar - = sup  ((woe)u,u)+  sup - ((—zDe)u,u)
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1
= sup roe)u,u) — inf roe)u,u). 7.7
ueVa(e): (u,u):l« ) > u€Va(e): (u,u>:1<( ) > ( )
Lemma 7.5. The function || - |lvar is a semi-norm on the real vector space A(e), with ||z||var = 0 if and

only if © = Xe for some A € R.

Proof. From the definition, we have ||z||var > 0 for all z € A(e). If @ > 0, then ||az|var = af|||var by
(7.7). For a < 0 we have

loz||var = sup ((axoe)u,u) — inf ((axoe)u, u)
ueVa(e): (uu)=1 ueVa(e): (u,u)=1
= — inf —axoe)u,u) + sup —axroe)u,u
ueVa(e): (u,u):1<( ) > ueVa(e): (u,u>:1<( ) >
= —allz[lvar,

and hence [|ax||var = |]|z]|var for all @ € R and z € A(e).
It follows directly from the definition that ||z + yllvar < [|Z]lvar + [|Y]|var for all z,y € A(e). Given
A € R and z € A(e), we have

|z + Aellvar = sup (((x + Xe)o e)u,u) — inf (((x + Xe)o e)u, u)

ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

= sup (((xoe)u,u) + A((eo e)u,u)) — inf (((xoe)u,u) + X((eo e)u,u))
u€Va(e): {(u,u)=1 ueVa(e): (u,u)=1

= sup ({((xoe)u,u) + A) — inf ({((xoe)u,u) + N)
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

= sup roe)u,u) — inf xoe)u,u),
ueVa(e): (u,u>:1<( ) > ueVa(e): <u,u):1<( ) >

and hence ||z + Ae|lvar = ||%]|var-

On the other hand, if ||z|lvar = 0 with a spectral decomposition z = Y ¥ | a;e; in V(e), where
a1 > ...>ap>0and e + -+ ¢, = e, then we show x = e for some \ € R.

Take pu = inf,cvy(e): (uuy=1((z0 €)u,u) and set y = z — pe. So, [|y[lvar = [|7[|var = 0 and

[llvar = sup  ((yoe)u,u) — inf ~ — ((yoe)u,u) = sup  ((yoe)u,u).
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

But y = Y7, (a; — p)ei, and hence for each e € Va(e) with 1 < k < p we get that
((yoe)ex, exr) = (ar, — p){(ex D ex)ex, ex) = (o — p){ex, ex) < 0.

This implies that ap —p < 0 for all 1 < k < p and hence —y is in the closed cone of the JB-algebra A(e),
so that < pe in A(e). Likewise

sup —yoe)u,u) = — inf yoe)u,u) =0,
u€Va(e): (u,u):1<( Ju, ) ueVa(e): <u7U>=1<( Ju. )
gives y > 0 and hence pe < x. We conclude that © = pe, which completes the proof. O
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The preceding result shows that || - |lvar is genuine norm on the quotient space A(e)/Re of the JB-
algebra A(e). Further, we have the following corollary.

Corollary 7.6. For h € V(co) we have that ([h], ) is isometric to (A(er)/Rer, || - ||var)-
Proof. Let h € V(o0) be given by (7.2)). We define a map 7: [h] — A(es)/Res by

T(h') = Zﬁjcj + Rey € A(er)/Rey (W' € [h] given by (7.3))).
JjeJ
This is a bijection, as minjcy 5; = 0 and ey = ¢; for all horofunctions i’ € [h] by Theorem It is an
isometry by Lemmas [7.1] and O

8 Extension of the exponential map

The exponential map expy: V' — D of the Bergman metric at 0 € D is a real analytic homeomorphism,
where

expy(z) = tanh(x) = Z tanh(\;)e; (8.1)
i=1

for each x € V' with spectral decomposition x =Y _;_; \ie; by [29, Lemma 4.3 and Corollary 4.8].

In this final section we show that exp, extends as a homeomorphism expy: V UV (c0) — DU D(o0)
such that exp, maps each equivalence class in V(c0)/ ~ onto an equivalence class of D(c0)/ ~. In
particular, we find that the metric compactification of a Hermitian symmetric space M ~ D C V can
be realised as the closed dual unit ball D*, by Theorem [6.5 and its geometry coincides with the facial
structure of D* by Theorem [7.4

Given h € V(o0) with

P
h(z) = AVQ(G)(—%(eD Py(e)x + Pa(e)zoe) — Zai(eim ei)) (zeV),
i=1

we define expy(h) = g, where the function g: D — R is given by

g(z) = }log Z e e % B(z,2) YV?B(z,e) Py (z € D), (8.2)

2 —
1<i<j<p

which is a horofunction by Theorem as min; o; = 0 implies max; e = 1.
We will prove that the extension expy is a homeomorphism in following theorem.

Theorem 8.1. The extension expy: V UV (o00) — D U D(00) of the exponential map is a well-defined
homeomorphism that maps each equivalence class of V(c0)/ ~ onto an equivalence class of D(c0)/ ~.

It follows from this theorem that the geometry and global topology of the metric compactifications of
(D, p) and of the JB*-triple (V|| - ||) with open unit ball D coincide. So have the following consequence

by Theorems [6.5] and

Corollary 8.2. There exists a homeomorphism 1: D U D(co0) — D° that maps each equivalence class
in D(00)/ ~ onto the relative interior of a boundary face of D°.

To prove Theorem (8.1, we will need the fact that all horofunctions of DU D(c0) are Busemann points
and exploit the detour distance on the parts in D(c0).
Let h be horofunction functions in D(c0) of the form,

h(z) = 11og > XiXjB(z,2)"'/?B(z,¢)P; (z € D) (8.3)

2 —
1<i<j<p
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for some p € {1,...,7}, \; € (0,1] with max; \; = 1 and e = e; + ez + --- + ¢, a tripotent. Using
Va(e) = @1993) Vir and (3.17), the norm in (8.3) can be computed over V3(e), that is,

IS MABG R BEOP =1 Y ANB(22) B0 P (8.4)
1<i<j<p 1<i<j<p

Fori=1,...,p, let a; = —log A; > 0, so min; o; = 0. Let : [0,00) — D be the path

v(t) = expg(te — Z aje;) = tanh(te — Z aie;) = ztanh(t —a;)e; (t>0). (8.5)

Note that y(t) — e € 9D as t —» o0, in other words, 7(t) goes to infinity in the metric space (D, p).
We show below that 7 is a geodesic in the metric space (D, p), in the sense that d(y(s),v(t)) = |s — ¢
for all s,t € [0,00). We will see that h in is a horofunction obtained by taking a sequence (y(tx))
along . For simplicity we say that v(t) converges to h, viewing h € D(o0) as an ideal boundary point of

(D, p).

Lemma 8.3. The path v in is a geodesic in (D, p) converging to the horofunction h in , and
h is a Busemann point.

Proof. A direct computation gives, for ¢ > s, that
P
19 () = 'S tanh(t — s)e || = tanh(t — s)
i=1

and hence p(y(t),7v(s)) =t — s, which shows that ~ is a geodesic.

Observe that for sufficiently large ¢ > 0, we have ||y(¢)|| = tanh(¢), as min; a; = 0. It follows that
1 —||v(®)|?> = 1 — tanh?(t) for large t.

Set By = tanh(t — o) for i = 1,...,p, and put B;; = 0 for i = 0. Then

By, ()2 = Y (L= B 852 Ry

0<i<j<p

Using the identity €2* = (1 + tanh(z))/(1 — tanh(z)), we get

ast — oo

1 — tanh2(t)\ /2 e~t(1 + tanh(t)) .
1 2 = —t+ay — v —E€ '
- B e i(1+ tanh(t — «;))

for i = 1,...,p. For i = 0, we have (1 — tanh?(¢))/(1 — $2) = 1 — tanh®(t) — 0.
Recall that by Lemma and equations (3.7)) and (4.2)), we have for each z € D that

. .1 - -
lim () = lim 3 log (1 = tanh?(6) B(z, 2) /2B (z,1(1) B(y(), /(1) ™|
1/2
1 1 — tanh?(t 1/2 1 — tanh?(¢ _
= hgnilog Z (1—52()> 1_2<> B(z,z) 1/23(%’}’(75))13@7
0<i<j<p it Jjt

This implies that
. 1 e —as _
limhy(z) = log|| Y e e B(z2) "/’ B(z,0)Py| = h(z)  (z€D)
1<i<j<p
and shows that A is a Busemann point. ]

Let us now analyse the parts of horofunction boundary D(co).
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Proposition 8.4. Let h,h' € D(o0) with h given as in and I/ given by

1 .
W(z)=glog| > wipiBlz,2) 2Bz )Py, (8.6)

1<i<j<gq
where ¢ = ¢y + -+ ¢q. If h and b/ are in the same part, then e = c.

Proof. If h and I’ are in the same part, then H(h,h') < oco. Let v(t) be the geodesic converging to h

given in (8.5). As h and h' are Busemann, H(h, h') = lim; p(0,~(¢)) + ' (y(t)) = lim; ¢t + 1/ (y(t)) by (2.2,
so that

. 1 _
H(h 1) =limt + Slog| Y pipgBO(1),4(1)"2B((1), )P
1<i<j<q
1/2

i

Y wiBO(6),7(1) 2 B(y(1), o) Py = B(y(t),7(1)) "2 B(1(1), )@

1<i<j<q

If we let v=>"7, pu;""¢c;, then

by [29, Corollary 3.15]. So, H(h,h') < oo implies that

IBOy(£),(£) 2By (1), Q3 — 0. (8.7)

We claim that this implies that B(e,c)w = 0 for all w € Va(c). To show this we set 8 = tanh(t — ;)
fori=1,...,q, and set B; = 0 for ¢ = 0. Then

B(y(t),y(t)"' = Z (1-83) "' (1- jt)flpij-

0<i<j<q

We note that B(vy(t),v(t)) is a self-adjoint invertible operator on the Hilbert space (V, (-,-)) in (5.1]), by
[0, Lemma 1.2.22]. Hence the preceding equation implies

(B(y(t),7(t) " v,0) > (v,v)  (veV).

Suppose that there exists a w € Va(c) with z = B(e, c)w # 0. Now letting z; = B(v(t), c)w, we find
that

(BOY(),7() 220, B(y(t), 7 (1))~ ?21) = (B(v(£),7(£)) "2, 2¢) > (21, 2) — (2,2) > 0. (8.8)

From [29, Corollary 3.15] we know that Q32 is invertible on Va(c), with inverse Q?_, and v =
g:l ,u;l/zci. So, if we let u = Qg,lw, then there exists 6 > 0 such that for all large ¢ > 0,

IB(y(), 7)™ 2By (1), Q3| = 1B(y(2),v(£) ™ 2By (1), )Qullull =t = [B(y(8),7(8)) 2zl ul| 7' = 6

by ({8.8]), which contradicts (8.7)).

It now follows from Lemma that ¢ <e. As H(h',h) < oo as well, we can interchange the roles of
h and b’ and deduce e < ¢, hence concluding the proof of e = c. O

In the next proposition we show that e = ¢ is also a sufficient condition for A and A’ to be in the same
part.

Proposition 8.5. Let h,h' € D(o0) be given by and , respectively. If e = ¢, then h and h' are
in the same part. Moreover, h = h' if and only if e = ¢ and Y b_; Nie; = > 4_, pici.
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Proof. Let e = c. Then p = q. Since h and A’ are Busemann points, we have by (2.2)) that
H(h,h') = li{nt +h(y(t) = hm log || exp(2t) Z pip B fy(t))_l/gB('y(t),e)R»’jH,
1<i<j<p

where ~(t) is the geodesic converging to h in (8.5)), and we have used e = c.
Let V = ®o<k<i<pVi be the Peirce decomposition with respect to e, ..., e,. For wy € Vi, we have

(1 — Bre)(1 — Bur)
1— B2 )V2(1 = )2

where §;; = tanh(t — ;) for 1 < ¢ < p and Bo; = 0. So,

B(y(t),4(8)) "By (1), e)wis = <( > wi = exp(—(t — ag)) exp(—(t — c))wpi,

lim exp(2t) B(7(t),7(t)) /2 B(v(t), e)wys = exp (cu) exp (on)wi = Ay '\ i,

where a; = —logA\; fori =1,...,p and A\g = 1.
For w € Va(e) = @1<k<i<pVii we have that

lim exp(2) B(~(t), (1)) Y2B(y(1), eJw = lim exp(2?) Y BO®):() T 2B((1), e)ww
1<k<I<p

Yo NN ww= Y AN QIwn = Q1 Qew,

1<k<I<p 1<k<I<p

where ™! = >"P_ A tey by [29, Corollary 3.15]. Recall that by (3.11)), Va(e) carries the structure of a
JB*-algebra, in which the self-adjoint part A(e) is partially ordered by the cone A(e)y = {2?: 2 € A(e)}.
The tripotents eq,...,ep,c1,...,¢q reside in A(e)4 and are idempotents in the JB-algebra A(e). Let

a = Zk Mkeg and b = Y% pic;. Then a and b are invertible elements in A(e);, with inverses

-1 _ -1 “1-_xvq -1 .
a k 1A exand b7 = ) o p; ¢, Tespectively.

So, as e = ¢, we now find for v € Va(e) = Va(c) that

hmexp Qt Z ,Uzﬂj V(t))_l/QB(’V( ) P, v = Z Nz#]@a 1Qe = Qa*lQeQerU-

1<i<j<q 1<i<j<q
Hence, by ,
H(h, ) = 3 108 Qa1 Qe@uQePo(e)]| = 5108 1Qu1 Qe < oo. (9)
Interchanging the roles of h and h’, we conclude
§(h,h'y = H(h,h') + H(h',h) < o0.
Finally, given e = ¢ and a = b, we can use the identity Q.QyQc = Qg.» = Qp to get
Qu-1QeQpQe = {071, {b,-,0},07'} = Pa(e),

which is the identity operator on Va(e), and therefore H(h,h’) = 0 by (8.9). Likewise, H (', h) = 0, so
that 6(h,h') = 0 and hence h = 1/.

Conversely, if h = I/, then they are in the same part. By Proposition we have e = ¢, and
implies [|Q,-1QcQpQc|| = 1. In particular,

a8, 07 1 = 1Ques Qe@u@eell <1 and [[{57L, a2, b1} = | Qps QeQuQeell < 1.
In A(e), the first inequality implies {a~!,b% a='} < e, by (3.14)), and hence
v ={a,{a 0% a1}, a} < {a,e,a} =d?,

whereas the second implies a? < b2. It follows that a® = b? and a = b, since a,b € A(e) . O
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We now begin the proof of Theorem [8.1] which will be split into several lemmas. Let
expg: VUV (o00) — DU D(o0)

be as defined in (8.1)) and (8.2).

Lemma 8.6. The map expy is a well-defined bijection which maps V' onto D and V(c0) onto D(oc0).
Further, it maps each equivalence class in V(00)/ ~ onto an equivalence class of D(o0)/ ~.

Proof. To see that exp, is well-defined, pick h € V(0c0) with two formulations

p

h(a) = Ao (—5 (€0 Pafe)a + Po(e)roe) = Y aiferoe)) (e V)
i=1
and .
h(z) = AVg(e’)(_%(B/D Pz + Py(e)zoe’) — Z’yi(eém e)) (xeV).
i=1
Note that

%log Z e e % B(z,2) V2 B(z,e)P;|| = élog HB(z,z)*l/QB(z,e)Q(a)Q(e)Pg(e)H (z € D),
1<i<j<p

where a = >°F_ ase;. Likewise,

1 IR _ 1 _
slog|| > e B(z,2) 2B (z )Py | = 5 log HB(z,z) V2B(2, NQ(1)Q() Po(e') (z € D),
1<i<j<q
where b= Y"1 | ~el.
It follows from Corollary that e = ¢/, p = ¢ and a = b. By relabelling we may as well assume that
a1 > ...>2ap=0and y1 > ... >, = 0. As the eigenvalues in the spectral decomposition in V' are

unique, we conclude that «; = ; for all 4, and hence exp, is well-defined.
Note that it follows from Theorems and [5.2| that exp, maps V' (co) onto D(c0). Moreover, given
h' is in the same part as h, with

b (z) = AV2(C)(—%(CD Py(c)x + Py(c)zoc) — Zﬂj(czﬂ ¢i)) (xeV),
i=1

Theorem implies e = ¢, and hence expy(h) and expy(h') are in the same part in D(c0) as well, by
Proposition Thus, the extension maps each equivalence class in V(00)/ ~ onto and equivalence class
on D(c0)/ ~, as all horofunctions are Busemann.

To complete the proof, we need to show that exp, is injective on V(o0). Let h,h’ € V(c0) be given

by
p

h(a) = Ao (5 (€0 Pafe)a + Pole)roe) = Y aifeioe)) (€ V)
=1

and
q

W(x) = AVQ(C)(—%(CD Py(c)x + Py(c)zoc) = Y Bileine))  (zeV).

=1

Set g = expy(h) and ¢’ = expy(h’), and suppose g = ¢’. Thene =c,p=gqgand > 7 e %e; =Y 1 e Pig

by Proposition By Remark we have Y P aje; =31, Bici, and hence h = I/ by Corollary
which concludes the proof. O
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Lemma 8.7. Let (vy,) be a sequence in' V' converging to h € V(c0). Then (expy(vy)) converges to expy(h).

Proof. Let h € V(c0) with

1 p
h(z) = Ayye)(— (eD Py(e)x + Pa(e)zoe) Zal e;ioe;)) (xeV),
i=1
and
9(2) = expy(h) = %bg Z e*a"e*afB(z,z)*l/QB(z,e)Pij (z € D).

1<i<j<p

It suffices to show that each subsequence (expg(vg)) has a convergent subsequence with limit g.
Since h € V(c0), we know ||vg|| — oco. Let 7, = ||vg|| and denote by

Vi = W1kCik + pokCok + - - + UrkCri

the spectral decomposition of wvy.
Taking subsequences, we may assume that

(1) Bik = 1 — par — Bi € [0, 00],
(2) cix — i,

for all i = 1,...,r, where 0 = 51 < By < ... < B,. Let J = {i: 8; < oo} = {1,...,q} and set
c=c1+- -+
Observe that

o () = lz — ol = flowl® _ )" (= — vk) 0 (@ — o) — 73)
o [l = vkl + [lvx | 271 (|l (= = w) | + 1)

and 271(||r;*(z — vy)|| + 1) — 1. Hence it follows from Lemma that (h,,) converges to

q
B (z) = AVQ(C)(—%(CD Py(c)x + Py(c)zoc) — Zﬁi(cm ¢i)) (xeV)
i=1

and, it follows from Theorem that b’ € V(o0).
Therefore h = h/, and it follows from Corollary that e=c¢, p=gand Y 0 | aje; = D1, Bici. By

Remark we get
P

q
g e_aieizg e Pic
=1

i=1
Let wy, = expy(vk) and fu, (2) = p(z,wx) — p(0,wy) for z € D. By taking a subsequence, we may
assume that wy — & € 9D. Note that £ has a spectral decomposition § = Y ;_, pic;, where pu; = 1 for
t=1,...,q. Let g_y,: D — D be the Mcbius transformation that maps wy to 0. Then

1 1+ tanhry,
- _ Clog - TR
fuy, (2) plz,wp) — 5 log T——— o

_ 110g1+||g,wk( 2)| 1 1+ tanh 7y
1 — [|g—uw, (2)l

2 20
_ 1 1—tanh27'k 1+ [lg—w, ()
- 2 %®\1C | g—w, (2 1+ tanhry
By Lemma [3.2] we have limy, [|[g—_uw, (2)|| = 1, so that
Ll w O
1 + tanhry, '
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As before, we set ugr = 0 and let PZ’; be the Peirce projections with respect to the tripotents cyg, ..., Crk-
Then

1 — tanh? ry,
1= [|g—uw, (2)[1?

1 — tanh?r 1/2 1 — tanh?r 1/2 _
= > <’“> <’“> B(z,2) 2 B(z, wy,) P

0<i<i<r 1 — tanh? ik 1 — tanh? ik

= || (1 — tanh® r) B(2, 2) "'/2B(z, w") B(wy,, w) /7|

= D eTretmmeritu ( 1+ tanh > ( L+ tanh ) B(z,2)""*B(z, wy,) Pk
o<i<i<r 1 + tanh 1 + tanh gy,

= E —Bik ,—B; 1 + tanh g ) < 1+ tanh g > 3
ﬁzk 18 k 1/2 &

€ e BZ,Z Bz,wk Pr ,
| 0<i<j<r (1 tanh(ry — Bir) 1 + tanh(ry — Bjk) (2,2) ( ) ij |

where Sgr = .

For each : =1,...,q, we have
1+ tanh g

1+ tanh(rk — sz)
By [9, Remark 5.9], the Peirce projections PZ; converge to the Peirce projections P/; of the minimal

tripotents c1,...,¢, as ¢ — ¢; for all i. Using the fact that wy, — & = >, pic; and p; = 1 for
i=1,...,q, we find that

0<i<i<r 1+ tanh(rk — ,sz) 1+ tanh(rk — /Bjk)

— 1.

— Y REB )T B P = 1| Y e e B(z,2) T 2B (z, )Py
1sisizq 1<i<j<q

and hence

1 a4 B
fun(z) = Glogll 3 e PeTMB(z,2) 2B (z, ) Pl
1<i<j<q

The right-hand side is a horofunction, say f, in D(oco) by Theorem Ase=cand >0 e %e =
> e Pic;, we obtain ¢ = f from Proposition This shows that (expy(vk)) has a subsequence
converging to g. O

Finally, we prove the following lemma which, together with the preceding ones, complete the proof
of Theorem [R.11

Lemma 8.8. Let (hy) be a sequence in V(00) converging to h € V(00). Then (expy(hy)) converges to
o (h).

Proof. Let h,, € V(o) be given by
1 qn
(@) = Asien (2 (0 Ba(e)a + Po()r0 @) = 3 Binlemo e)) (€ V).
i=1

and let h € V(0c0) be given by

h(z) = AVQ(E)(—%((BD Py(e)x + Py(e)xoe) — Z a;(e;0e;)) (xeV).
i=1

We show that each subsequence (expgy(hg)) has a convergent subsequence converging to expg(h) = g,
where

1
g9(z) = = log Z e e % B(z,2) YV?B(z,e)P; (z€ D).

2 —
1<i<j<p

37



Taking further subsequences, we may assume that g, = qo for all k, B;x — 5; € [0,00] and ¢;; — ¢;
forall e = 1,...,q0. As min{B: 7 =1,...,90} = 0, we have min{f;: i = 1,...,q0} = 0. Let J =
{i: B; < oo}. After relabelling we may assume that J = {1,...,¢}. Let ¢ =¢; +--- + ¢;. Then Lemma
implies

ln () = AVZ(C)(—%(CD Py(c)a+ Po(c)ro ) = S filcine))  (weV).
=1

The right-hand side is horofunction by Theorem say b/ € V(). As hy — h, we conclude that
h = 1’ and hence Corollary (6.3 gives e = ¢, p = ¢, and Y & _; aze; = > 1| Bic;. By Remark we have

p

q
g e_aieizg e Pic;.
i=1

i=1

The right-hand side of the following limit is a horofunction ¢’ in D(c0), by Theorem

_ 1 A A B
Dy(he) = glog || 3 e eI B(z,2) " 2Bz, ) P
1<i<j<qo

1 _8, —B. _
— Jlogl| > e P Bz 2B 0 P
1<i<yj<q

where PZ’; are the Peirce projections for the tripotents cy, ..., cgr, and PZ’J the Peirce projections for the
tripotents c1,...,¢q. Ase=cand Y b ;e Ye;, =1 e Pig, Proposition gives g = g’. We conclude
that (expg(hx)) has a subsequence converging to g, which completes the proof. O
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