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Abstract: We present a detailed study of the nonlinear optical properties of newly developed
subwavelength diamond-fin waveguides, along with an analysis of soliton generation and pulse
spectral broadening in these structures. Our rigorous mathematical model includes all the key
linear and nonlinear optical effects that govern the pulse dynamics in these diamond waveguides.
As a relevant application of our investigations, we demonstrate how these waveguides can be
employed to efficiently generate frequency combs in the visible spectral domain.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Synthetic diamond is becoming an increasingly fashionable material platform for on-chip optical
communications, particularly due to its attractive classical and quantum optical properties [1–3].
Central among these remarkable optical properties are its large transparency window, ranging
from ultraviolet (UV) to far-infrared (IR), very small optical absorption losses, and it can be
synthesized with a high refractive index, ndi ≈ 2.4, thus enabling enhanced optical waveguides
mode confinement in a broad spectral range extending from 500 nm to 1000 nm. Equally
important for its applications to active photonic devices, diamond possesses key nonlinear optical
properties, including large Kerr nonlinearity that can be employed to frequency conversion and
comb generation devices, and also strong Raman interaction at the operating wavelengths of
∼2 µm and with pump laser wavelengths in the telecom band at around ∼1.6 µm [4]. These
important optical properties are accompanied by excellent thermal properties, synthetic diamond
being good thermal conductor with low thermo-optic coefficient and low thermal expansion
coefficient, properties that render it an ideal material for high-power applications and integration
of electro-optic systems. In addition, due to the numerous color centers of diamond, which
potentially can be precisely controlled, this material has emerged as a promising low-temperature
platform for quantum computing, perhaps one of the future core applications of diamond [5].

The functionality of diamond is greatly broadened by the fact that photonic structures with
subwavelength features, such as subwavelength waveguides, can be readily implemented in this
platform (for a review of optical properties of subwavelength waveguides the reader is referred
to [6]). This enables dispersion-engineered devices and applications in the visible spectrum
and therefore makes diamond photonics an appealing alternative to well-established, more
mature photonic platforms, such as silicon-on-insulator [7], silicon nitride [8], or compound
semiconductor on-insulator [9]. For example, subwavelength diamond waveguides would enable
the development of photonic systems that incorporate cheaper light sources, such as vertical-cavity
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surface-emitting lasers (VCSELs) at 850 nm, which are extensively used in data centers [10].
Moreover, the relatively large nonlinear refractive index coefficient of diamond in the visible
spectrum, i.e. n2 = 1.3×10−19 m2 W−1 [3], in conjunction with the fact that it has an extremely
small two-photon absorption coefficient, would enable the implementation of high quality-factor,
temperature-insensitive, microring resonators [11] for the efficient generation of frequency combs
in these frequency bands. This would further increase the interest in on-chip frequency comb
generation [12], which is a key functionality widely employed in microwave photonic signal
generation and wavelength-division multiplexing systems [13–15].

Motivated by these ideas, here we study pulsed dynamics in subwavelength diamond-fin
waveguides, a recently developed type of diamond waveguide which, apart from the advantages
already highlighted, could improve the seamless integration with very large-scale integration
(VLSI) electronics for on-chip optical communications [16]. More specifically, we demonstrate
that diamond-fin waveguides can be designed to possess zero group-velocity dispersion (GVD)
points, thus enabling soliton formation and efficient supercontinuum generation in ultracompact
photonic devices, the latter being recently demonstrated [17]. To illustrate the versatility of
this type of optical waveguide, we demonstrate that frequency comb generation can be readily
implemented using such photonic structures.

The article is organized as follows. In the next section we present the structure of the
investigated waveguide and the frequency dispersion properties of its optical modes. Then, in
Section 3, we introduce a theoretical model that describes the optical pulse dynamics upon
propagation in diamond fin waveguides. Furthermore, in Section 4 we discuss two applications of
our diamond fin waveguides, namely soliton formation and frequency comb generation. Finally,
in the last section we summarize the main conclusions of our study.

2. Waveguide structure and mode dispersion properties

The waveguide considered in this work, and which has been proposed in [16], is schematically
shown in Fig. 1(a). It is a single-mode uniform waveguide consisting of a diamond substrate,
from which a diamond light guiding fin of width w rises to a height hfin = hb + t + h. A silicon
dioxide buffer layer is grown from the substrate up to height hb, above which the edge of the fin
wall rises by t + h, where t is the thickness of a silicon nitride layer used to increase the refractive
index contrast and thus enhance the field confinement.

Fig. 1. (a) Schematics of a diamond fin waveguide. (b) Spatial profile of the Ex-component
of the quasi-TE mode supported by the optical waveguide. (c) Photonic circuit model for the
frequency comb generation, including the cavity boundary conditions.

With buffer layers thicker than about 1 µm, the propagation losses due to substrate leakage can
be reduced below 0.15 dB cm−1 [16]. In Fig. 1(b), we show the waveguide cross-section with
hb = 1 µm, h = 350 nm, t = 200 nm, and w = 200 nm. For these waveguide parameters, we
employed the finite-element method implemented in Synopsys’s commercially available software
FemSIM [19] to compute the optical guiding modes supported by the structure. The spatial
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profile of the dominant component (Ex) of the quasi-TE mode, calculated for λ = 637 nm, is also
depicted in Fig. 1(b). At this wavelength, the effective refractive index is neff = 2.129.

We investigate four waveguide designs, labeled A, B, C, and D, defined by the parameters: w
was 200 nm, 300 nm, 400 nm, and500 nm, h was 350 nm, 350 nm, 500 nm, and 600 nm, and hb
was 1 µm, 2.2 µm, 3.5 µm, and7 µm, respectively. In practice, waveguides with aspect ratios as
large as 10:1 can be readily fabricated using anisotropic inductively coupled plasma reactive
ion etching, so that our choice for the waveguide configuration is relevant from a practical
point of view. For all these cases we computed the following waveguide dispersion coefficients:
the first-order dispersion coefficient, β1 = dβ/dω = 1/vg, where β and vg are the propagation
constant and group-velocity (GV), respectively, the GVD coefficient, β2 = d2β/dω2, and the
third-order dispersion (TOD) coefficient, β3 = d3β/dω3; the frequency dependence of these
coefficients are plotted in Fig. 2.

Fig. 2. (a), (b), (c) Group index, second-order dispersion coefficient, and third-order
dispersion coefficient, respectively, determined for four diamond-fin waveguides. The colors
blue, red, green, and black correspond to the designs A, B, C, and D, respectively, described
in the text of the paper.

Figure 2(b) deserves particular attention as it illustrates that it is possible to design waveguides
with β2<0 (e.g. waveguides B, C, and D), which can support soliton propagation and efficient
four-wave mixing, as well as waveguides that possess zero-GVD points defined by β2(ω) = 0
(e.g. waveguides B and C), which enable efficient supercontinuum generation. Especially of
interest is the waveguide B, since it shows the smallest vg for the widest wavelength range, which
suggests it provides broadband enhanced Kerr nonlinearity.

A sensitivity analysis of the effective index on the key design parameters was performed in
order to show the tolerance against potential fabrication errors. The dependence of the effective
index on waveguide width and buffer height, determined for designs B and C, are plotted in
Figs. 3(a), 3(b) and 3(c), 3(d), respectively. The results summarized in these plots suggest that
the variation of the effective index and, consequently, of the waveguide mode, is very small for
both waveguides B and C. Note that, in this study, the wavelength is fixed to 750 nm; in addition,
the width used for the study of the impact of height variations is the nominal width for each
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waveguide as detailed earlier, and similar applies for the analysis of the variation of the width,
e.g. the height employed is the nominal value for each waveguide.

Fig. 3. Dependence of the effective index on the waveguide width w and buffer height hb,
determined for the designs B (top panels) and C (bottom panels).

3. Theoretical model and simulation of pulse dynamics

Within the standard slowly-varying envelope approximation, the pulse dynamics in the diamond-fin
waveguide is described by the well-known nonlinear Schrödinger equation (NLSE):
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pulse envelope, respectively, and T0 and P0 are the input pulse width and peak power, respectively.
In Eq. (1), αin = 1 cm−1 is the intrinsic loss of diamond [1], κ is an overlap integral and γ is the
nonlinear waveguide coefficient. These quantities are defined as [20,21]:
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where e(r;ω) is the electric field component of the optical mode, W the energy density of the
mode, and χ̂(3)(ω) ≡ χ̂(3,e)(ω;ω,−ω,ω) is the the third-order (electronic) susceptibility tensor
of diamond. As diamond has cubic crystal lattice, χ̂(3) has three independent components. The
relationships between these 3 independent components are χ̂(3)

1111 = 3χ̂(3)
1221 = 3χ̂(3)

1122 [1], so
that in the case of diamond χ̂(3) has only one independent component. The corresponding
Kerr coefficient is similar or larger than that of commonly used nonlinear optical materials,
e.g. silica (n2 ∼ 2.5×10−20 m2 W−1), SiN (n2 ∼ 2.5×10−19 m2 W−1) [18], and SiC
(n2 ∼ 5×10−18 m2 W−1).
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There are several reasons why in our study we considered only the Kerr nonlinearity of
diamond: i) The main characteristic of the waveguide investigated in our work is that it is made
of diamond, so that we primarily investigate the influence of the optical nonlinearity of diamond
on pulse propagation in such waveguides. ii) In principle, one could use a covering layer made of
a different material or a waveguide configuration in which this layer is absent altogether, and
therefore there could be many potential contributions to the effective nonlinear optical coefficient
of the waveguide. The particular configuration of the diamond waveguide studied in our paper
was inspired by the results reported in Ref. [16], where the fabrication of such waveguides is
discussed. iii) The optical mode is mostly confined in the diamond region, so that the contribution
from the SiN layer can be omitted. Thus, whereas the confinement factor, κ, is smaller than in the
SOI configuration, where κ>0.95 can be readily achieved, a confinement factor κ>0.7 can still
be obtained without even trying to optimize the waveguide configuration. Moreover, the fact that
a relatively small amount of optical field spills into the SiN region does not negatively affect the
nonlinear optical properties of the waveguide because SiN has a large Kerr coefficient, too, and
therefore the optical field that propagates in the SiN region contributes to nonlinearly induced
phase shifts. iv) Finally, the contribution of the silica region to the waveguide nonlinearity can be
neglected, too, since the Kerr nonlinearity of silica is much weaker than that of diamond. As a
consequence of all these ideas, the overlap integrals in Eq. (2) were restricted to the diamond
cross-section area.

The frequency dependence of the nonlinear coefficient, γ, and waveguide loss coefficient
α = cκαin/(2ndivg) defined in Eq. (2) are shown in Fig. 4. Note that the mode confinement
decreases (less of the optical field is contained inside the waveguide) as the wavelength increases,
a property that affects both waveguide coefficients. This is true particularly in the case of the
waveguide with the smallest transverse cross-section (A, blue curves), whose coefficients γ and α
decrease significantly when the wavelength increases.

Fig. 4. (a) Frequency dispersion of the nonlinear waveguide coefficient. (b) Waveguide loss
coefficient vs. wavelength. The colors blue, red, green, and black correspond to designs A,
B, C, and D, respectively.

The data presented in Fig. 4 also guided our choice for the waveguide design we considered in
more detail in our study. Thus, to be suitable for nonlinear optical applications, a waveguide must
have large nonlinear optical coefficient and small loss coefficient. Among our four waveguides
the design B best satisfies these requirements, so that in what follows we restrict our analysis to
this waveguide.

Before discussing applications of these diamond fin waveguides, we would like to explain why
we can neglect the influence on pulse dynamics of two nonlinear optical effects often included in
the NLSE (1), namely the self-steepening (SS) effect and stimulated Raman scattering (SRS). To
this end, let us consider first the contribution of SS effects to the pulse evolution. Following the
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approach introduced in [22], we calculated the shock time, τs =
∂ln(γ)
∂ω

, which quantifies the
strength of SS effects. To do this, we have included in the calculation of the nonlinear waveguide
coefficient γ the contribution of the material dispersion n2(ω), taken from [23] and plotted in
Fig. 5(a), as well as that of the waveguide dispersion shown in Fig. 4(a). The results of these
calculations are depicted in Fig. 5(b). They demonstrate that τs ≲ 0.6 fs, which means that for
pulses with width of tens of fs, as those considered in this work, SS effects can be neglected.

Fig. 5. (a) Dependence on wavelength of the nonlinear refractive index n2 of diamond. (b)
Shock time parameter of the diamond waveguide (design B), with contributions from both
material and waveguide dispersion being included.

Furthermore, we have similarly assessed the relevance of the SRS effects on pulse dynamics
by calculating the characteristic time TR, which quantifies the Raman effect contribution to
pulse reshaping. Specifically, this contribution can be accounted for by adding to (1) the term

−γP0
TR
T0

u∂ |u|
2

∂τ
, where T0 and TR =
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the nonlinear response function, R(t), respectively. Using the expression given in [24] for the
nonlinear response function R(t) of diamond, we obtain the following relation:
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where the parameters τ1 ≈ 4 fs and τ2 ≈ 5.7 ps are the vibrational period and the decay time of
the Raman response in diamond, respectively. Using these specific values of τ1 and τ2 in Eq. (3)
and a pulse with T0 = 10 fs one obtains TR

T0
= 5.6×10−4 ≪ 1. This leads us to conclude that the

SRS effects can be neglected, too. By comparison, in the case of optical fibers and for the same
pulse parameters TR

T0
= 0.81 (for optical fibers τ1 ≈ 12.2 fs and τ2 ≈ 32 fs), which explains

why in that case SRS effects must be incorporated in the theoretical model.

4. Applications to soliton formation and frequency comb generation

In what follows, we will illustrate how the diamond-fin waveguides analyzed in the preceding
section can be used to implement important nonlinear optics applications, namely pulse reshaping,
soliton generation, and frequency comb generation. To begin with, we consider the waveguide
design B and select the wavelength λ = 665 nm, which is in the anomalous dispersion regime
(β2<0) but close to the zero-GVD point. This ensures that key nonlinear optical phenomena,
such as soliton formation and supercontinuum generation, can be achieved. At this wavelength,
the waveguide parameters are ng = c/vg = 2.5, β2 = −0.043 ps2 m−1, β3 = −5.6×10−5 ps3 m−1,
α = 0.262 cm−1, and γ = 1.687 W−1 m−1. Using these parameters, we first determined the
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pulse dynamics in a waveguide with length Lwg = 5 cm, by integrating Eq. (1) with the standard
split-step Fourier method [25]. More specifically, we seek to determine the input pulse parameters,
i.e P0 and T0, for which phenomena such as soliton formation and spectral broadening occur.

The temporal pulse profiles calculated for several z-distances are depicted in Fig. 6(a). These
calculations correspond to a case when we launched in the waveguide a Gaussian pulse with input
peak power larger than the soliton formation threshold power. Specifically, we chose an input pulse
width of T0 = 25 fs, meaning that the dispersion length is LD = T2

0/|β2 | = 1.5 cm<Lwg, and input
power P0 = 60 W. Under these conditions, the power threshold for soliton formation, defined by
the relation LD = Lnl, where Lnl = 1/(γP0) is the nonlinearity length, is Pth = 40 textrmW<P0.
These numerical simulations show that the input pulse evolves into a soliton superimposed on
a pedestal, that is the well-known scenario of soliton formation at peak powers larger than the
soliton threshold power. Note that for our parameters Lwg ≪ L′

D, where L′
D = T3

0/|β3 | = 28 cm
is the TOD length, so that the pulse shape remains symmetric upon propagation.

Fig. 6. (a) Temporal pulse profiles at different propagation lengths for a Gaussian input
pulse with P0 = 60 W and T0 = 25 fs. Inset shows the output pulse and its sech-fit. (b)
Output pulse profile determined for different pulse widths and P0 = 60 W. (c) Output pulse
spectra for different input peak powers when T0 = 10 ps. In all cases, Lwg = 5 cm.

In Fig. 6(b) we illustrate how the temporal pulse profile at the waveguide output changes when
varying the input pulse width. Thus, when T0 = 12 fs, the dispersion length (LD = 0.3 cm) is
considerably smaller than Lnl and Lwg, which means that large pulse broadening is achieved. In
addition, L′

D = 3 cm<Lwg, so that TOD effects lead to pulse asymmetry. By contrast, when
T0 = 50 fs, LD = 5.8 cm is comparable with Lwg, meaning that in this case both dispersive
and nonlinear effects influence the pulse dynamics. Furthermore, we illustrate in Fig. 6(c) that
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significant pulse spectral broadening can be achieved in the same waveguide length by using
broader input pulses with larger input peak power, so that SPM effects become dominant in
determining the pulse evolution. For example, the emergence of spectral modulations upon pulse
propagation, for a pulse with T0 = 10 ps can be clearly observed when the pulse peak power
increases from 1 W to 1 kW.

From a practical point of view, perhaps an even more important application of diamond-fin
waveguides, which we demonstrate in what follows, is frequency comb generation. This nonlinear
optical phenomenon can be traced to the generation of dissipative solitons in optically driven Kerr
cavities [27–31]. In particular, the nonlinear partial differential equation describing the evolution
of the slowly-varying envelope of the electric component of an optical field propagating in an
optical material with Kerr nonlinearity and driven by a continuous-wave (CW) monochromatic
optical field, the so-called Lugiato-Lefever equation (LLE), was first derived in the context of
optically driven nonlinear optical cavities [32] and shown to govern the generation of dissipative
solitons. The temporal version of the LLE has been formulated in [33] and later extended to
optical cavities containing nonlinear left-handed materials [34]. Its generalisation to an externally
pumped NLSE with boundary conditions, a model relevant to the device we will investigate in
what follows, has been first derived in [35].

To demonstrate frequency comb generation in a diamond-waveguide device as the one shown
in Fig. 1(c), we consider a microring resonator of length L coupled to a straight optical bus,
both made of diamond-fin waveguides. The boundary conditions for our model are provided in
Fig. 1(c), whereas the externally pumped NLSE describing the pulse propagation in the microring
[36] (and which establishes a link between the dissipative soliton formation and frequency comb
generation) is given below:
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In this equation, the variable z has been substituted by a temporal variable equivalent to a number
m of roundtrips, i.e. t = mtr, α′ = (αr + θ)/2, with αr = αL, θ is the coupling constant of the
driving field into the microring, and δ is the detuning of the microring resonance closest to
the frequency of the driving field. The associated boundary conditions describe the coherent
superposition of the field incoming from the pump and the field propagating inside the microring.
More precisely, they show that the field starting the round m + 1 can be viewed as being equal
to the in-coupled pump field plus the part of the field from the previous round m that has not
escaped out of the microring. This latter field has accumulated with respect to the pump field
during the round trip the linear phase ϕ0.

The steady-state solution of Eq. (4) consists of a train of solitons with repetition time equal
to the cavity round-trip time. This is equivalent to a comb in the frequency domain, with a
frequency-spectral-range equal to the inverse of the round-trip time. To find the steady-state
solution of Eq. (4), we impose the condition ∂a(t, τ)

∂t = 0. The resulting equation, whose solution
only depends on τ, is solved by combining a discrete Fourier transform (DFT) method with the
Newton-Raphson algorithm for solving nonlinear systems of equations. It is important to note
that the DFT method requires the use of wavelength dependent waveguide coefficients, so that
the coefficients c/vg, β2, β3, γ, and α are incorporated in the numerical method as wavelength
dependent functions.

Following this approach, we considered a microring resonator based on waveguide B, of length
L = 628 µm and operating at λ = 665 nm. For simplicity, we assumed that the system operates
in the critical coupling regime, i.e. θ = αr, and the detuning parameter was set to δ = 0.05.
Note this assumption can be justified as the microring radius of 100 µm is large enough to
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avoid a tight coupling gap spacing, and especially narrower than the fin width, by comparing it
with smaller microrings found in the literature [26]. The spectra and pulse shapes are shown in
Figs. 7(a) and 7(b), respectively. They demonstrate that diamond-fin waveguides can be used to
generate frequency combs in visible range reaching close to one octave-span. The pulse train
building up inside the microring sits onto a CW background and has width of ∼15 fs. Achieving
such short pulses is made possible by the large nonlinearity (γ) of the system, which induces
significant spectral broadening and thus the excitation of a large number of optical modes of the
microring. Our simulations reveal that the lowest input power required to reach the steady state is
Pin ≈ 0.5 W. When Pin increases, the comb is hardly affected, but the driving wavelength is
slightly redshifted. In the time domain, increased Pin leads to larger CW background.

Fig. 7. (a) Simulated frequency comb spectra for a microring of length L = 628 µm based
on waveguide design B. The inset demonstrates the flatness of the comb around the driving
wavelength. (b) Temporal pulse profile within the microring. The inset shows the variation
of the CW background intensity with the input power.

As a final observation, we mention that the NLSE Eq. (4) can be used directly to investigate
the formation and evolution of the comb towards its stationary state [36], but this method would
have required considerably more computational time without gaining much in return. Inasmuch
as our study is geared towards applications to nonlinear optics of ultrasmall diamond waveguides,
the specific nature of the soliton formation during the build-up process is not particularly relevant
for the properties of the final frequency comb that is generated. In fact, this is why we chose to
employ in our simulations a numerical method tailored for computing directly the steady-state
solution, and as such a method not suitable for the analysis of the transient regime. The advantage
of our method, which is particularly relevant for practical application, is that it allows one to
investigate extremely broad frequency combs as a very large number of spectral modes can be
incorporated at minimum computational cost.

5. Conclusions

To conclude, we have presented the design of diamond-fin waveguides and analyzed in detail
their linear and nonlinear optical properties. In particular, we have determined the frequency
dependence of the main linear and nonlinear optical coefficients of the waveguides and analyzed
the dependence of these parameters on the waveguide geometry. By selecting one of the proposed
waveguide designs with optimum characteristics, we have simulated the pulsed dynamics through
these structures by means of a comprehensive mathematical model based on NLSE. The results
of our investigations suggest that these structures can enable efficient soliton formation and
propagation and, potentially, supercontinuum generation. In addition, we have demonstrated how
these waveguides can be employed to generate frequency combs operating in the visible spectral
domain. Importantly, our simulations show that it is possible to generate almost one octave span
stable combs in the visible range with input continuous-wave powers as low as 0.5 W.
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