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Abstract—Non-orthogonal multiple access (NOMA) is a
promising candidate for the sixth generation wireless communi-
cation networks due to its high spectrum efficiency (SE), energy
efficiency (EE), and better connectivity. It can be applied in
cognitive radio networks (CRNs) to further improve SE and
user connectivity. However, the interference caused by spec-
trum sharing and the utilization of non-orthogonal resources
can downgrade the achievable performance. In order to tackle
this issue, intelligent reflecting surface (IRS) is exploited in a
downlink multiple-input-single-output (MISO) CRN with NO-
MA. To realize a desirable tradeoff between SE and EE, a
multi-objective optimization (MOO) framework is formulated.
An iterative block coordinate descent (BCD)-based algorithm is
exploited to optimize the beamforming design and IRS reflection
coefficients iteratively. Simulation results demonstrate that the
proposed scheme can achieve a better balance between SE and
EE than baseline schemes.

Index Terms—Intelligent reflecting surface, cognitive radio,
non-orthogonal multiple access, spectral efficiency, energy effi-
ciency, multi-objective optimization, block coordinate descent.

I. INTRODUCTION

THE fifth generation (5G) wireless communication net-

works have been commercially deployed and their foot-

print will be continuously expanded worldwide. Although they

have made great breakthrough advancements in wireless com-

munication techniques, performance limitations have gradually

appeared along with the unprecedented proliferation of user

connectivity, the emergence of diverse real-time and ultra-

wideband communication services, and the urgent requirement

of green operations [1], [2]. The research initiatives towards

sixth generation (6G) wireless communication networks aim

to address these performance limitations since their inception.

Non-orthogonal multiple access (NOMA) has been envisioned

as a candidate multiple access scheme for the 6G wireless

communication networks since it can improve both spectrum

efficiency (SE) and energy efficiency (EE), and increase user

connectivity [3].

The application of NOMA into cognitive radio networks

(CRNs) can further boost both SE and EE, and enhance user

connectivity [4]. Recently, many researchers have focused

on the resource allocations in CRNs with NOMA [4]-[7].

The authors in [5] studied a full-duplex CRNs with NOMA,

where an iterative algorithm was proposed to maximizing the

throughput of the secondary networks. The results showed that

the achievable throughput of CRNs with NOMA is superior

to that of CRNs with OMA. The authors in [6] proposed

an efficient algorithm in CRNs with NOMA by using the

sequential convex approximation method to enhance EE. In

[7], the minimization of the transmit power was investigated

in MISO CRNs with NOMA relying on simultaneous wireless

information and power transfer (SWIPT) under a practical non-

linear EH model.

Although NOMA can further improve the SE and user

connectivity of CRNs, the complexity of the receiver and

interference caused by using non-orthognal resource increase

with the number of NOMA users, which results in unprac-

tical design and even poor performance. Recently, intelligent

reflecting surface (IRS) has been identified as revolutionary

technology due to its potential of simultaneously improving

EE and SE [8]. Specifically, IRS can intelligently regulate

the phase shifts of its reflecting elements to improve the

desired signal power and mitigate the interference at the same

time, thereby improving system SE without further energy

consumption [9]. Hence, the IRS technique has been exploited

in the system with NOMA to tackle the inherent disadvantages

of NOMA [11]-[13]. In [11], the ideal and non-ideal IRS

assumptions were considered in the sum rate maximization

by jointly optimizing the active and passive beamforming

vectors subject to SIC decoding rate conditions and IRS

reflection coefficients constraints. A novel SIC decoding order

searching algorithm was proposed in the IRS-assisted system

with NOMA via maximizing the combined channel power

gains of each user in [12]. The joint power allocation and

phase shift optimization problems were tackled by using

the alternative optimization (AO) algorithm and semidefinite

relaxation (SDR) method. In contrast to the work in [11] and

[12], the work in [13] focused on the energy-efficient design

of IRS-assisted systems with NOMA, in which the system

EE was maximized by alternatively optimizing the transmit

beamforming and the IRS reflection coefficients. The work in

[11]-[13] illustrated that the employment of IRS is of immense

benefit to the system with NOMA.

Although resource allocation problems have been well s-



tudied in CRNs with NOMA [4]-[7] and IRS-assisted NOMA

systems [11]-[13], to the best authors’ knowledge, there are

no investigations focused on resource allocation schemes in

the IRS-assisted CRNs with NOMA. Moreover, the resource

allocation schemes for IRS-assisted CRNs with OMA pro-

posed in [14] are inappropriate to IRS-assisted CRNs with

NOMA since the non-orthogonal resources are utilized. Thus,

in order to further improve both SE and EE and provide

massive connectivity, it is of great importance to study the

resource allocation problems in IRS-assisted MISO CRNs with

NOMA.

In this paper, a multi-objective optimization (MOO) frame-

work is formulated in IRS-assisted downlink MISO CRNs with

NOMA to simultaneously optimize SE and EE while address-

ing the tradeoff between them. The formulated problem is non-

convex and intractable. The ε-constraint method is adopted to

transform the MOO problem (MOOP) into single-objective

optimization problem (SOOP). Moreover, a block coordinate

descent (BCD)-based iterative algorithm is proposed, where

the original problem is decomposed into two sub-optimization

problems to design the optimal beamforming vectors and the

phase shift iteratively. Simulation results demonstrate that the

exploitation of IRS in CRNs with NOMA can achieve a

better balance between SE and EE. Moreover, it is shown that

our proposed resource allocation schemes can simultaneously

improve EE and SE compared to the benchmark schemes.

II. SYSTEM MODEL

A. System Model

An IRS-assisted downlink CRN with NOMA is consid-

ered, which consists of a licensed primary network and

an unlicensed secondary network. Specifically, the primary

network comprises one primary base station (PBS) and K
PUs, while the secondary network contains one secondary

base station (SBS) and N SUs. Let K = {1, 2, . . . ,K}
and N = {1, 2, . . . , N} denote the set of PUs and SUs,

respectively. The SBS is equipped with Ns antennas, while

the PBS, K PUs and N SUs are all equipped with a single

antenna. Besides, an IRS with M passive reflecting elements,

denoted by M = {1, 2, . . . ,M}, is deployed in the sec-

ondary network to enhance the transmission from the SBS

to SUs. The diagonal phase shift matrix of IRS is denoted by

Θ = diag{β1e
jθ1 , β2e

jθ2 , . . . , βMejθM }, where βm ∈ [0, 1]
and θm ∈ [0, 2π] denote the amplitude and phase shift of the

mth passive reflecting elements, respectively.

In order to realize NOMA, the superposition coding is

employed at the SBS. The data flow for each SU is assigned

with a dedicated beamforming vector. Thus, the transmitted

superposition of K data flows from the SBS to the SUs

can be given as x =
N∑

n=1
wnxn, where xn∼CN (0, 1) and

wn ∈ C
Ns×1 are the data flow intended to the nth SU and the

corresponding beamforming vector, respectively.

Let hk,I ∈ C
Ns×1 and fk,R ∈ C

M×1 denote the channel

vector between the SBS and the kth PU and the channel vector

between the IRS and the kth PU, respectively. The channel

between the SBS and the nth SU is denoted by gn,D ∈ C
Ns×1.

gn,R ∈ C
M×1 denotes the reflecting channel between the IRS

and the nth SU. The channel between the PBS and the nth SU

is denoted by fP
n,D. The baseband equivalent channel between

the SBS and the IRS and the channel between the PBS and

the IRS are modeled as gSI ∈ C
M×Ns and fPI ∈ C

M×1,

respectively. The transmit power from the PBS to the kth PU is

denoted by pPk ∈ R, and the information symbol for the kth PU

transmitted by PBS is represented by sk ∈ C. nk ∼ CN (0, σ2)
and nn ∼ CN (0, σ2) are the additive white Gaussian noises

(AWGNs) at the kth PU and the nth SU, respectively.
According to the NOMA principle, SIC is employed at the

SUs to remove the co-channel interference. An optimal SIC

decoding order plays a vital role in systems with NOMA,

which is determined by the channel power gains. However,

in IRS-assisted CRNs with NOMA, the combined channel

power gains are influenced by changing the phase shift matrix

of IRS, i.e., Θ. Thus, the low-complexity decoding order

search algorithm proposed in [12] is first adopted to obtain

the SIC decoding order. Let n represents that the signal of

nth SU is the nth signal to be decoded, while the signal of

the ith SU with i > n is treated as interference. The signal of

the mth SU with m < n is previously decoded at the nth SU

and is removed from the received signal. Thus, the achievable

signal-to-interference-plus-noise ratio (SINR) at the nth SU

to decode its own signal can be written as SINRn→n =
|(gH

n,D+gH
n,RΘgSI)wn|2

N∑

i>n
|(gH

n,D+gH
n,RΘgSI)wi|2+ K∑

k=1
|fP

n,D+gH
n,RΘfPI |2pP

k +nn

. The

corresponding achievable rate at the nth SU to decode its own

signal is represented as Rn→n = log2(1 + SINRn→n).
Moreover, the jth SU with j > n is able to

decode the signal of the nth SU. The corresponding

SINR for the jth SU decoding the signal intended

to the nth SU can be expressed as SINRn→j =
|(gHj,D+gHj,RΘgSI)wn|2

N∑

i>n
|(gHj,D+gH

j,RΘgSI)wi|2+ K∑

k=1
|fP

j,D+gHj,RΘfPI |2pP
k +nj

. Hence,

the achievable rate of the jth SU to decode the signal of the

kth SU is Rn→j = log2(1 + SINRn→j).
Moreover, the power allocated to each SU should be in-

versely proportional to its channel strength based on the given

decoding orders, which can avoid the case that the high

decoding order SU uses most of the wireless resources [12].

Therefore, the following condition should be satisfied∣∣(gHn,D + gH
n,RΘgSI)wi

∣∣2 ≤ ∣∣(gHn,D + gH
n,RΘgSI)wj

∣∣2 ,
∀n ∈ N , i, j ∈ N , i > j. (1)

The inequalities in (5) ensures the successful SIC implemented

at the stronger SU and achieve fairness among SUs.
To protect the QoS of the PU, the interference power

constraint needs to be considered, given as

N∑
n=1

∣∣∣(hH
k,I + fHk,RΘgSI)wn

∣∣∣2 ≤ ptol,k, ∀k, (2)

where the maximum interference that the kth PU can tolerate

is denoted by ptol,k.



The total system energy consumption consists of the trans-

mit power and the circuit power consumption. The circuit

power consumption denoted by Pc, which is from the circuit

power consumed by the SBS, i.e., Pc = PSBS , where PSBS

denote the power consumption of the SBS. In order to protect

the transmitter, the maximum power constraint needs to be

satisfied, which is given as

Ptot =

N∑
n=1

||wn||2 + Pc ≤ Pmax. (3)

B. Problem Formulation

In order to comprehensively investigate the tradeoff be-

tween EE and SE in the downlink IRS-assisted CRN with

NOMA, an MOOP framework is adopted to simultaneously

optimize those two objectives. EE is defined as the ratio of

the system transmission rate to the total power consumption,

while SE is defined as the ratio of the system throughput to

the total transmission bandwidth. Accordingly, the EE and

SE can be respectively expressed as ηEE =
∑N

n=1 Rn→n

Ptot
,

ηSE =
∑N

n=1 Rn→n. Then, the MOOP is formulated as

P1 : max
w,Θ

ηSE , (4a)

max
w,Θ

ηEE , (4b)

s.t. C1 : Rn→n ≥ Rmin, n ∈ N (4c)

C2 : |[Θ]mm| ≤ 1, ∀m, (4d)

(1) − (3), (4e)

where i, j, and n denote the decoding index of the ith SU,

the jth SU and the nth SU, respectively. The constraint C1
indicates the minimum quality of service (QoS) requirement

of each SU, where Rmin is the minimum rate requirement.

The constraint C2 is the reflection coefficients constraint. The

constraint (1) is served as the SIC constraint which facilitates

the successful SIC implementation at SUs. The constraint (2)

guarantees that the maximum interference leakage at the kth

PU is tolerable.

It is evident that problem P1 is a challenging non-convex

MOOP. The objective function (4b) is a fractional function,

and the beamforming vector and IRS phase shift matrix are

highly coupled. In order to tackle the highly-coupled non-

convex MOOP, we transform problem P1 into a SOOP and

then decompose the original problem into two subproblems

of beamforming optimization and reflection coefficients opti-

mization. An alternative algorithm is proposed to tackle this

challenging problem.

III. JOINT BEAMFORMING AND PHASE SHIFT

OPTIMIZATION

A. Problem Reformulation

To tackle the MOOP, the ε-constraint method is employed

[16]. In particular, the EE maximization is kept as the objective

function and the objective function of SE maximization is

transformed into a constraint. Thus, the corresponding SOOP

can be given as

P2 : max
w,Θ

ηEE , (5a)

s.t. ηSE ≥ ε, (5b)

(4c)-(4e), (5c)

where constraint (12b) guarantees the sum throughput of the

secondary network is larger than ε.

Remark 1: The feasibility of P4 is significantly dependent

on the value of ε. Note that the value of ε should not be larger

than the maximum ηSE [16]. Thus, the ε can be specified as

a value in (0, ηSE,max] after solely maximizing ηSE .

Due to the highly coupled variables and the fractional form

of the objective function, the problem P4 is still non-convex

and intractable. In order to solve this problem, a BCD-based

iterative algorithm is proposed. The beamforming vectors are

first optimized with the given phase shift matrix, then the phase

shift matrix design is optimized with the obtained feasible

beamforming vectors.

B. Beamforming Design for Given IRS Phase Shift

Let Wn = wnwH
n , Wn ∈ H

Ns . Then, the active beamform-
ing optimization can be rewritten as

P2.1 : max
Wn

N∑
n=1

Rn→n

N∑
n=1

Tr (Wn) + pc

, (6a)

s.t. C1, (5b), (6b)

N∑
n=1

Tr (Wn) + pc ≤ Pmax, (6c)

N∑
n=1

Tr
(

WnHH
k eeHHk

)
≤ ptol,k, ∀k, (6d)

Tr(WivH
n eeHvn) ≤ Tr(WjvH

n eeHvn),

i > j, ∀n, i, j ∈ N , (6e)

Wn � 0, ∀n, (6f)

Rank (Wn) = 1, ∀n. (6g)

where e = [β1e
jθ1 , β2e

jθ2 , . . . , βMejθM 1]H , vn =[
diag(gHn,R)gSI

gHn,D

]
, fn = diag(gH

n,R)fSI , ϑn = fP
n,D + eH fn and

Hk =

[
diag(fHk,R)gSI

hH
k,I

]
, respectively. Note that constraints (6f)

and (6g) are imposed to guarantee that Wn = wnwH
n holds

after optimization. Problem P2.1 is a non-convex problem due

to the fractional form of the objective function and the non-

convexity of the constraint (6b). To tackle the problem P2.1,

we introduce auxiliary variables α and γ = {γ1, . . . , γN}. The



equivalent problem can be given as

P2.2 : max
Wn,α,γ

α, (7a)

s.t. (6b) − (6g), (7b)

N∑
n=1

log2 (1 + γn)

N∑
n=1

Tr (Wn) + pc

≥ α, (7c)

SINRn→n ≥ γn, ∀n. (7d)

Although the objective function (7a) is linear, the problem

P2.2 is still non-convex. The non-convexity originates from

the constrains (7c), (7d) and the rank-one constraint (6g).

To deal with the non-convex constraint (7c), we first rewrite

it as
∑N

n=1 log2 (1 + γn) ≥ α
∑N

n=1 Tr (Wn) + αpc. The

first right hand term α
∑N

n=1 Tr (Wn) is the joint convex

function with respect to α and Wn. By performing the first-

order Taylor approximation, the lower bound of f(α,Wn)
Δ
=

α
∑N

n=1 Tr (Wn) for a given feasible point (αl,Wl
n) in the

lth iteration of the SCA is expressed as

f (α,Wn) ≥ f(αl,Wl
n)

+
∑
n∈N

Tr
(�Wnf(α

l,Wl
n)

H(Wn − Wl
n)
)

+�αf(α
l,Wl

n)(α− αl)
Δ
= f̂(α,Wn). (8)

Then, concerning the constraint (7d), we further introduce a

set of auxiliary variables In, ∀n ∈ N as the interference-plus-

noise power of the data transmission of the nth SU. Hence,

constraint (7d) can be transformed as

Tr(WnvHn eeHvn) ≥ γnIn, (9a)∑N

i=n+1
Tr(WivHn eeHvn) + |ϑn|2pPk + σ2 ≤ In. (9b)

Similarly, in the lth iteration of the SCA, a lower bound

of γnIn in constraint (9a) at a given point (γl
n, I

l
n) can be

constructed as

γnIn ≥ γl
nIn

l + γl
n(In − In

l) + In
l(γn − γl

n)
Δ
= f̂(γnIn). (10)

Then, the original problem P2.1 is approximated as

P2.3 : max
Wn,α,γ,I

α, (11a)

s.t. (6b) − (6g), (9b) (11b)

N∑
n=1

log2 (1 + γn) ≥ f̂(α,Wn) + αpc, (11c)

Tr(WnvH
n eeHvn) ≥ f̂(γnIn), ∀n. (11d)

Note that the remaining non-convexity of problem P2.3 is

caused by the rank-one constraint (6g). Hence, the SDR

method is adopted to relax the rank-one constraint [14].

Finally, the relaxed problem of problem P2.3 is a convex

semidefinite program (SDP), which can be optimally solved

via standard convex solvers such as CVX [17]. To verify the

tightness of SDR, Theorem 1 is given.

Theorem 1: The optimal solution of problem P2.3 with-

out the rank-one constraint can always satisfy rank(Wn) ≤
1, ∀n ∈ N .

Proof: Please refer to Appendix A.

Note that the obtained objective function of problem P2.3 is

served as a lower bound of that in the problem P2.1 owing to

the replacement of the constraints (11c) and (11d). Let W‡
n, ∀n

denote the optimal solution of problem P2.3. Since W‡
n =

w‡
nw‡H

n , the optimal beamforming vector w‡
n can be obtained

by utilizing eigenvalue decomposition.

C. Phase Shift Optimization with Given Beamforming Vector

For given wn, the IRS phase shift optimization problem can

be written as

P2.4 : max
Θ

ηSE , (12a)

s.t. C1, C2, (1), (2), (5b). (12b)

Note that the objective function and constraints are non-convex

with respect to Θ. Therefore, the following transformation is

performed to make the optimization problem more tractable.

Recall Wn = wnwH
n , e =

[β1e
jθ1 , β2e

jθ2 , . . . , βMejθM 1]T , vn =[
diag(gHn,R)gSI gHn,D

]H
, fn = diag(gH

n,R)fSI , and

Hk =
[
diag(fHk,R)gSIhH

k,I

]H
. Similar to the method

adopted for solving problem P2.1, by applying SDR and

introducing auxiliary variables Γn and zn, the problem P2.4

can be transformed into

P2.5 : max
E,Γ,z

1

Ptot

N∑
n=1

log2 (1 + Γn), (13a)

s.t. C1, (5b), (13b)

N∑
n=1

Tr
(
EHkWnHH

k

) ≤ ptol,k, ∀k, (13c)

Tr
(
EvnWivHn

) ≤ Tr
(
EvnWjvH

n

)
, i > j, ∀n, i, j ∈ N ,

(13d)

E (m,m) ≤ 1,m ∈ M,EM+1 = 1, (13e)

E � 0, (13f)

Tr
(
EvnWnvHn

) ≥ Γnzn, ∀n, (13g)

N∑
i=n+1

Tr(EvnWivHn ) +

K∑
k=1

Tr(EFn)p
P
k + nj ≤ zn.

(13h)

where E Δ
= eeH ,E ∈ C

(M+1)×(M+1). Fn is defined as

Fn =

[
fnf

H
n f∗P

n,Dfn

fHn fP
n,D |fP

n,D|2
]

. Since variables in the right hand

term of constraint (13g) is coupled, the SCA is applied to

tackle the non-convexity of constraint (13g). Thus, in the lth
iteration of the SCA, the lower bound with the first-order

Taylor approximation at the given feasible point (Γl
n, z

l
n) can
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Fig. 1. (a) SE versus the maximum available transmit power; (b) EE versus the maximum available transmit power; (c) EE-SE tradeoff for different schemes.

be given as

Γnzn ≥ Γl
nzn

l + Γl
n(zn − zn

l) + zn
l(Γ− Γl

n)
Δ
= f̂(Γnzn).

(14)

Then, a lower bound of the IRS optimization problem in

P2.5 can be obtained by solving the following problem, given

as

P2.6 : max
E,Γ,z

1

Ptot

N∑
n=1

log2 (1 + Γn), (15a)

s.t. (13b) − (13h), (15b)

Tr
(
EvnWnvHn

) ≥ f̂(Γnzn), ∀n. (15c)

The problem P2.6 is a standard SDP problem and the optimal

E‡ can be obtained by using the standard convex optimization

toolboxes such as CVX [17]. Finally, since E‡ = e‡e‡H , e‡
can be obtained by eigenvalue decomposition if the rank of E‡

is one. Otherwise, the Gaussian randomization can be adopted

to alternatively obtain the approximate e [14].

IV. SIMULATION RESULTS

In this section, simulation results are provided to validate

the effectiveness of the proposed algorithm. The simulation

settings are based on the works in [9]. The locations of the

primary and secondary base station are respectively set as

(5, 0, 20) and (5, 100, 20). Moreover, the locations of 3 SUs

are set as (5, 165, 0), (5, 145, 0) and (5, 125, 0), respectively.

The IRS is employed in the secondary network, whose location

is set to be (0, 125, 2). The channels are generated by the

model hβ =
√

G0(d)
−cβ gβ , where G0 = −30 dB denotes the

path loss at the reference point. d denotes the link distance. cβ
and gβ denote the path loss exponent and fading component,

respectively, where β ∈ {D,SI,R}. The path loss exponents

for the direct link, SBS-IRS link and IRS-user link are set

to be cD = 3.5, cSI = 2.2 and cR = 2.2, respectively. The

bandwidth is normalized as 1 Hz. The minimum rate threshold

Rmin of SUs is set as 0.5 Bits/Hz/s. The interference tolerance

of the kth PU is set to be ptol,k = −90 dBm. The noise power

is set as −110 dBm. The tolerance error of SCA and BCD

are set to be εSCA = εBCD = 10−2.

The proposed algorithm is marked as ‘BCD-based algorith-

m’. For comparison, four baseline schemes are considered. The

first baseline scheme aims to maximize EE, which is marked as

‘EE maximization’. The second baseline scheme is the method

that with the assistance of IRS, the phases of the IRS are

generated randomly, denoted by ‘Random phase shifts’. For

the third baseline scheme, the IRS reflecting coefficients do not

have phase adjustment, which is marked by ‘No phase shifts’.

The fourth baseline scheme is based on the conventional CRN

with NOMA without the assistance of IRS, which is marked

as ‘No IRS’.

Fig. 3(a) and Fig. 3(b) show the SE and EE versus the

SBS maximum available transmit power achieved by different

designs, respectively. It is seen from Fig. 3(a) that the proposed

BCD-based algorithm can achieve the best SE among all

schemes. Meanwhile, as shown in Fig. 3(b), the proposed

scheme also can achieve a better EE than all baseline schemes.

This indicates that the exploitation of IRS in CRNs with NO-

MA is beneficial for improving both SE and EE. Specifically,

in Fig. 3(a), the system SE increases monotonically with the

maximum transmit power Pmax. Moreover, the SE achieved

by ‘No IRS’ baseline scheme is lower than other schemes,

which demonstrates that SE can be further improved by the

assistance of IRS. As shown in Fig. 3(a), the ‘Random phase

shifts’ and ‘No phase shifts’ schemes also can achieve better

SE performance than those of other baseline scheme without

IRS. This indicates that IRS is able to increase the system

performance to a certain extent, even without the adjustment

of phase shifts.

In order to further illustrate the relationship between SE

and EE, Fig. 3(c) shows the tradeoffs between SE and EE of

all five schemes in the range of the maximum transmit power

constraint from 10dBm to 25 dBm. It is seen that the system

EE is a quasi-concave function of SE. When SE increases,

EE firstly grows and then decreases with it. It indicates that

the achievement of higher SE demands more energy con-

sumption. Meanwhile, EE is the ratio of system throughput to

energy consumption. When the energy consumption becomes

faster than the growth of SE, EE starts to decrease with

the increase of SE. Moreover, the tradeoff achieved by the



baseline schemes is presented. It is also seen that the proposed

BCD-based algorithm can achieve a better SE-EE tradeoff

compared to the other baselines schemes enabled by the joint

optimization of SE and EE. It demonstrates that the proposed

algorithm has great potential for achieving a superior balance

between SE and EE.

V. CONCLUSION

In this paper, the tradeoff between SE and EE was studied

in an IRS-assisted downlink MISO NOMA CRN. The MOOP

framework was formulated by simultaneously maximizing SE

and EE via jointly optimizing the beamforming design and

the reflection coefficients of IRS. The ε-constraint method

was adopted to transform the MOOP into SOOP. Due to

the fact that the variables are highly coupled, a BCD-based

algorithm was exploited to optimize the beamforming design

and IRS reflection coefficients iteratively. Simulation results

demonstrated that the proposed scheme can achieve a better

balance between SE and EE than the baseline schemes.

APPENDIX A

PROOF OF THEOREM 1

The relaxation of problem P2.3 is jointly convex over all
optimization variables. Therefore, the optimal solution is char-
acterized by the KKT conditions. In particular, the Lagrangian
function of the relaxation of problem P2.3 in terms of the
beamforming matrix Wn can be given as

L =a1

(
N∑

n=1

log2 (1 + γn)− f̂(α,Wn)

)
+ a2

(
Tr(WnvH

n eeHvn)− f̂(γnIn)
)

+ a3

[
In −

N∑
i=n+1

Tr(WivH
n eeHvn) + |ϑn|2pPk + σ2

]

+ a4

[
Pmax −

(
N∑

n=1

Tr (Wn) + pc

)]

+ a5

[
ptol,k −

N∑
n=1

Tr
(

WnHH
k eeHHk

)]
+ a6

[
Tr

(
WjvH

n eeHvn

)
− Tr

(
WivH

n eeHvn

)]
+ Tr (WnYn) +Υ, (16)

where Υ are the terms independent of Wn, a and Yn

are Lagrange multipliers associated with the corresponding

constraints. By checking the KKT conditions with respect to

Wn, for the optimal W‡
n, one has

a‡ ≥ 0, Yn � 0, Y‡
nW‡

n = 0, �W‡
n
L = 0, (17)

where a‡ and Y‡
n are the optimal Lagrange multipliers while

the �W‡
n
L represents the gradient vector of L with respect to

W‡
n. The �W‡

n
L is explicitly expressed as

Y‡
n = a4INs

+Δ‡
n, (18)

where Δ‡
n is given by a1�Wn f̂(W

‡
n)−(a2 + a6) vH

n eeHvn+
a5HH

k eeHHk.

Then, we will prove the optimal beamforming matrix W‡
n is

rank-one by unveiling the structure of matrix Y‡
n. The maxi-

mum eigenvalue of matrix Δ‡
n is denoted by νmax ∈ R. Note

that due to the randomness of the channels, the probability

of the case where multiple eigenvalues have the same value

νmax ∈ R is zero. According to (18), if νmax > a4, Y‡
n

cannot be positive semidefinite which contradicts Yn � 0. On

the other hand, if νmax ≤ a4, Y‡
n is positive semidefinite with

Rank(Y‡
n) ≥ Ns− 1. According to Y∗

nW‡
n = 0, Rank(W‡

n) =
1. The proof is completed.
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