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Abstract

Multi-label Text Classification (MLTC) is the
task of categorizing documents into one or
more topics. Considering the large vol-
umes of data and varying domains of such
tasks, fully-supervised learning requires man-
ually fully annotated datasets which is costly
and time-consuming. In this paper, we
propose BERT-Flow-VAE (BFV), a Weakly-
Supervised Multi-Label Text Classification
(WSMLTC) model that reduces the need for
full supervision. This new model: (1) pro-
duces BERT sentence embeddings and cali-
brates them using a flow model, (2) generates
an initial topic-document matrix by averaging
results of a seeded sparse topic model and
a textual entailment model that only require
surface name of topics and 4-6 seed words
per topic, and (3) adopts a VAE framework
to reconstruct the embeddings under the guid-
ance of the topic-document matrix. Finally,
(4) it uses the means produced by the encoder
model in the VAE architecture as predictions
for MLTC. Experimental results on 6 multi-
label datasets show that BFV can substantially
outperform other baseline WSMLTC models
in key metrics and achieve approximately 84%
performance of a fully-supervised model.

1 Introduction

As vast numbers of written comments are posted
daily on social media and e-commerce platforms,
there is an increasing demand for methods that
efficiently and effectively extract useful informa-
tion from this unstructured text data. One of the
methods to analyze this unstructured text data is
to classify them into organized categories. This
can be considered as a Multi-label Text Classifica-
tion (MLTC) task since a single data may contain
multiple non-mutually-exclusive topics (aspects).
There are a range of relevant applications of this
task such as categorizing movies by genres (Hoang,
2018), multi-label sentiment analysis (Almeida

et al., 2018) and multi-label toxicity identification
(Gunasekara and Nejadgholi, 2018).

Fully-supervised learning methods are undesir-
able for this task, because of the diversity of do-
mains of application and cost of manual labelling
(Brody and Elhadad, 2010). Seeded topic mod-
els, such as SeededLDA and CorEx (Jagarlamudi
et al., 2012; Gallagher et al., 2017), where users
can designate seed words as a prior to guide the
models to find topics of interest, can be seen as
a Weakly-Supervised Multi-Label Text Classifica-
tion (WSMLTC) method. Nevertheless, as these
models are mainly statistical models based on bag-
of-words representation, they fail to fully exploit
key sentence elements such as context and word
positions. In contrast, large pre-trained language
models such as BERT and GPT-3 (Devlin et al.,
2018; Brown et al., 2020) produce contextualized
embeddings for each word in a sentence, which
has afforded them great success in the NLP field
(Minaee et al., 2021; Ethayarajh, 2019).

Recently, prompt-based Few-Shot Learning
(FSL) and Zero-Shot Learning (ZSL) methods (Yin
et al., 2019, 2020; Gao et al., 2020) that take advan-
tage of the general knowledge of large pre-trained
language models can also approach MLTC tasks us-
ing only a few examples or topic surface names as
a means of supervision. Specifically, these models
convert text classification to a textual entailment
task by preparing a template such as ’This example
is about _’ as input, and then estimating the prob-
ability of the model filling the blank with certain
topic names. However, this method does not work
well for abstract topics and there is no agreed way
to use multiple words for the entailment task.

In this paper, we propose BERT-Flow-VAE
(BFV), a WSMLTC model. It is based on the Vari-
ational AutoEncoder (VAE) (Kingma and Welling,
2013) framework to reconstruct the sentence em-
beddings obtained from distil-BERT (Sanh et al.,
2019). Inspired by the work of (Li et al., 2020), we



use a shallow Glow (Kingma and Dhariwal, 2018)
model to map the sentence embeddings to a stan-
dard Gaussian space before feeding them into the
VAE model. Finally, we use the averaged results
of a seeded sparse topic model and a ZSL model to
guide our model to build latent variables towards
pre-specified topics as predictions for MLTC.

Our contributions can be listed as follows: (1)
We propose BFV, a WSMLTC model based on
VAE framework, that can achieve comparable per-
formance to a fully-supervised method on 6 multi-
label datasets with only limited inputs (4 to 6 seed
words per topic and surface name of topics). (2)
We show that using a normalizing-flow model to
calibrate sentence embeddings before feeding them
into a VAE model can improve the model’s MLTC
performance, suggesting that pre-processing inputs
is needed as it can better fit the overall objective
of the VAE framework. (3) We present that the
topic classification performance of ZSL method
can be further improved by properly integrating pre-
dictions from a sparse seeded topic model, which
complements the results from ZSL method by natu-
rally incorporating multiple words to define a topic
and could play a role of regularization.

2 Related Work

Seeded Topic Model Guided (seeded) topic
models are built to find more desirable topics
by incorporating users’ prior domain knowledge.
These seeded topic models can be seen as Weakly-
Supervised (WS) methods to find specific topics in
a corpus. Andrzejewski and Zhu (2009) proposed
a model by using ’z-labels’ to control which words
appear or not appear in certain topics. Andrzejew-
ski et al. (2009) presented DFLDA to construct
Must-Link and Cannot-Link conditions between
words to indirectly force the emergence of topics.
Jagarlamudi et al. (2012) proposed SeededLDA to
incorporate seed words for each topics to guide the
results found by LDA. This is achieved by biasing
(1) topics to produce seed words and (2) documents
containing seed words to select corresponding top-
ics. Gallagher et al. (2017) presented Correlation
Explanation (CorEx), a model searching for top-
ics that are ’maximally informative’ about a set
of documents. Seed words can be flexibly incor-
porated into the model during fitting. Meng et al.
(2020a) proposed CatE that jointly embeds words,
documents and seeded categories (topics) into a
shared space. The category distinctive information

is encoded during the process.

Weakly-supervised Text Classification Re-
cently, Weakly-Supervised Text Classification
(WSTC) has been rapidly developed (Meng et al.,
2020b; Wang et al., 2020). Most of the works
used pseudo labels/documents generation and
self-training. Particularly, Meng et al. (2018)
proposed WeSTClass which uses seed information
such as label surface name and keywords to
generate pseudo documents and refines itself via
self-training. Mekala and Shang (2020) proposed
ConWea that uses contextualized embeddings to
disambiguate user input seed words and generates
pseudo labels for unlabeled documents based on
these words to train a text classifier. COSINE from
(Yu et al., 2020) receives weak supervision and
generates pseudo labels to perform contrastive
learning (with confidence reweighting) to train a
classifier. Some studies integrated simple rules
as weak supervision signals: Ren et al. (2020)
used rule-annotated weak labels to denoise labels,
which then supervise a classifier to predict unseen
samples; Karamanolakis et al. (2021) developed
ASTRA that utilizes task-specific unlabeled
data, few labeled data, and domain-specific rules
through a student model, a teacher model and
self-training. However, these WSTC methods
were specifically designed for multi-class tasks
and are not optimized for WSMLTC tasks in
which documents could belong to multiple classes
simultaneously.

Prompt-based Zero-Shot Learning MLTC
tasks can also be approached with very limited
supervision by Prompt-based Few-Shot Learning
(FSL) or Zero-Shot Learning (ZSL). For example,
Yin et al. (2019) proposed a ZSL method for text
classification tasks by treating text classification
as a textual entailment problem. This model
treats an input text as a premise and prepares a
corresponding hypothesis (template) such as ’This
example is about _’ for the entailment model.
Finally, it uses the probability of the model filling
the blank with topic names as the topic predictions.
However, the choice of template and word for
the entailment task requires domain knowledge
and is often sub-optimal (Gao et al., 2020).
Also, it is not straightforward to find multiple
words as entailment for a topic. This may limit
model’s ability to understand abstract topics (e.g.,
’evacuation’ and ’infrastructure’) where providing



a single surface name is insufficient (Yin et al.,
2019). Although some automatic search strategies
(Gao et al., 2020; Schick and Schütze, 2020;
Schick et al., 2020) have been suggested, relevant
research and applications are still under-explored.

3 Proposed Model: BERT-Flow-VAE

3.1 Problem Formulation and Motivation

Problem Formulation Multi-label text classifi-
cation task is a broad concept, which includes many
sub-fields such as eXtreme Multi-label Text Clas-
sification (XMTC), Hierarchical Multi-label Text
Classification (HMTC) and multi-label topic mod-
eling. In our model, instead of following these
approaches, we follow a simpler assumption that
the labels do not have a hierarchical structure and
distribution of examples per label is not extremely
skewed.

More precisely, given an input corpus consist-
ing of N documents D = {D1, ...DN}, the model
assigns zero, single, or multiple labels to each doc-
ument Di ∈ D based on weak supervision signal
from a dictionary of {topic surface name:keywords}
W provided by user.

This is a more challenging task than multi-class
text classification as samples are assumed to have
non-mutually exclusive labels. This is a more prac-
tical assumption for text classification task because
documents usually belong to more than one con-
ceptual class (Tsoumakas and Katakis, 2007).

Motivation Inspired by relevant work of VAE
and β-VAE (see Appendix A), we assume that the
semantic information within sentence embeddings
are composed of multiple disentangled factors in
the latent space. Each latent factor can be seen as a
label (topic) that may appear independently. Hence,
we adopted VAE as our framework to approach this
task.

3.2 Preparing the Inputs

Language Model and Sentence Embedding
Strategy As we will model the latent factors
from the semantic information of sentences en-
coded in the word embeddings, we need to firstly
convert sentences into embeddings. Specifically,
given the input corpus D, we firstly process them
into a collection of sentence embeddings Es ∈
RN×V , where V is the embedding dimension of
the language model. Taking BERT as an example,
there are two main ways to produce such sentence

embeddings: (1) using the special token ([CLS] in
BERT) and (2) using a mean-pooling strategy to ag-
gregate all word embeddings into a single sentence
embedding. We tested and showed the performance
of the two versions in section 5. Lastly, for com-
putational efficiency, we used distil-BERT (Sanh
et al., 2019) as our language model, which is a
lighter version of BERT with comparable perfor-
mance.

Moreover, instead of simply averaging the em-
beddings of words in a sentence with equal weights,
we also tested a TF-IDF averaging strategy. Specif-
ically, we firstly calculated the weights of words
in a sentence using the TF-IDF algorithm with L2

normalization, and then averaged the words accord-
ing to the TF-IDF weights. To avoid weights of
some common words to be nearly zero, we com-
bined 10% mean pooling weights and 90% TF-IDF
pooling weights as the final embeddings.

Flow-calibration Sentence embeddings ob-
tained from BERT without extra fine-tuning
have been found to poorly capture the semantic
meaning of sentences. This is reflected by the
performance of BERT on sentence-level tasks
such as predicting Semantic Textual Similarity
(STS) (Reimers and Gurevych, 2019). This may
be caused by anisotropy (embeddings occupy
a narrow cone in the vector space), a common
problem of embeddings produced by language
models (Ethayarajh, 2019; Li et al., 2020). To
address this problem, following the work of (Li
et al., 2020), we adopted BERT-Flow to calibrate
the sentence embeddings. More exactly, we
used a shallow Glow (Kingma and Dhariwal,
2018) with K = 16 and L = 1, a normalizing-flow
based model, with random permutation and affine
coupling to post-process the sentence embeddings
from all 7 layers of distil-BERT (including the
word embedding layer). We tested different
combinations of the 7 post-processed embeddings
and took the average of embeddings from the
first, second and sixth layer based on the metrics
evaluated on the STS benchmark dataset.

Since normalizing-flow based models can create
an invertible mapping from the BERT embedding
space to a standard Gaussian latent space (Li et al.,
2020), the advantages of using flow calibration
are: (1) it improves the anisotropy to make the sen-
tence embeddings more semantically distinguish-
able, and (2) it converts the distribution of BERT
embeddings to be standard Gaussian, which fits the



objective of minimizing mean-squared reconstruc-
tion error and Kullback–Leibler Divergence (KLD)
with a standard Gaussian prior distribution in the
following VAE model.

Backend Model To guide our model towards
some pre-specified topics, we used Zero-Shot Text
Classification method (0SHOT-TC) proposed by
(Yin et al., 2019) as the backend model. Specifi-
cally, we used RoBERTa-large (Liu et al., 2019)
as the language model for 0SHOT-TC. Following
the example mentioned previously, we prepared a
template (hypothesis) with the shape ’This example
is about _’ for each sentence (premise) and filled
the blank with the surface name of topics. Finally,
we took the probability of entailment as that of the
topic appearing in the sentence for each class and
collected this as T0SHOT−TC ∈ RN×M , where M
is the number of topics.

However, because current zero-shot learning
methods lack an agreed way to find multiple words
as entailment for a topic, we further used a seeded
topic model as a complement. More exactly, we se-
lected Anchored Correlation Explanation (CorEx)
(Gallagher et al., 2017) as another backend model.
By following the approach used by (Jagarlamudi
et al., 2012; Gallagher et al., 2017), we randomly
chose 4 to 6 seed words from the top 20 most dis-
criminating words of each topic as seed words to
better simulate real-world applications. Finally,
we estimated unnormalized document-topic matrix
TCorEx ∈ RN×M and took the combination:

T = ω × T0SHOT−TC + (1− ω)× TCorEx

where ω is the combination weight. We set ω = 0.5
herein (details will be discussed in section 5.2).

3.3 Model Description
Model Architecture and Objective Function
An overview of the model architecture can be seen
in Fig 1. Specifically, we used fully connected
layers combined with layer normalization (Ba
et al., 2016) and Parametric ReLU (PReLU) (He
et al., 2015). The encoder model qφ receives flow-
calibrated sentence embeddings Es and outputs
mean (µ ∈ RN×M ) and variance (σ ∈ RN×M )
which will be the inputs to the decoder model
pθ to produce reconstructed sentence embeddings
Ês ∈ RN×V .

As in the vanilla VAE model in Appendix A, the
objective function of our model contains a recon-
struction loss and KLD loss. We used the mean-

Figure 1: Architecture of the proposed model.

squared error between Es and Ês as the recon-
struction loss because input embeddings have been
calibrated to have a standard Gaussian distribution,
and used the KL divergence between the output
(µ and σ) of the encoder and the prior N (0, I) as
the KLD loss. In addition, in order to guide the
model’s direction towards the pre-specified topics,
we added another loss term dubbed topic loss:

LT = − 1

NM

N∑
i

M∑
j

Tij · log(sigmoid(µij))

where sigmoid(·) is the element-wise sigmoid
function. LT is the binary cross-entropy between
µ and T to encourage µ to be closer to T .

Notice that the value of sigmoid(µ) ∈ RN×M
produced by the encoder can be viewed as a
document-topic matrix. Thus, we used it as the
model’s prediction for MLTC. sigmoid(µij) >
0.5 is be predicted as positive (i.e., topic j appears
in ith document). σ is be left as free values to
reconstruct Ês.

As shown by (Higgins et al., 2016; Burgess et al.,
2018), the weight of different components in the
objective function of the VAE model is important
to find disentangled representations. In particu-
lar, based on our observations, the ratio between
LKLD and LT is be crucial. Hence, we set a hyper-
parameter γ in the objective function controlling
the ratio of LKLD and LT . Finally, the objective
function of our VAE model is:

L(θ, φ;Es, T , α, η) = −(LR + αLKLD + ηLT )

where α = 0.1×√γ and η = 0.1× γM . It can be
seen that a higher value of γ will lead to a heavier
penalty on LT , and therefore µ will become more
similar to T ; while, conversely, a lower value of
γ will make µ diverge from T . As LKLD pushes



sigmoid(µ) towards 0.5, a lower value of γ would
encourage model to make aggressive predictions.

Hyper-Parameter Scheduling (HPS) We
adopted the strategy to gradually change the
hyper-parameters of the model. We used the first
epoch of training as a warm-up stage (Sønderby
et al., 2016) by setting the value of α to one-tenth
of its original value. Similarly, we also halved the
value of η in the last epoch of training, aiming to
reduce the dependency of µ on T .

4 Experiments Setup

4.1 Datasets

We chose Restaurant and Laptop datasets from Se-
mEval 2014 Task 4 (Pontiki et al., 2014) as well as
CitySearch (Ganu et al., 2009), which are very pop-
ular in aspect-based sentiment analysis studies. We
also added SentiHood (Saeidi et al., 2016), a simi-
lar dataset to the SemEval datasets. Additionally,
Reuters (ApteMod version) (Apt’e et al., 1994), a
well-known text classification dataset containing
Reuters financial newswire service in 1987 was
also selected. Finally, given that the Restaurants,
CitySearch and SentiHood are all largely related to
food-related aspects, we added a self-made dataset
called Heritage, which is composed of 3,760 online
reviews for 77 heritage sites. There are 9 categories
in this dataset: heritage, exhibition, price, family,
service, transport, facilities, environment and mis-
cellaneous (see Appendix D).

4.2 Data Pre-processing

Pre-processing For all datasets, we only kept
categories which have at least 30 corresponding
samples or account for at least 1% in the whole
dataset. Also, we removed categories with no spe-
cific meaning (e.g., ’miscellaneous’). Finally, for
datasets which do not have a pre-specified train-
test split, we used 20% of the examples as the test
set (splits were carefully conducted to account for
class balance). Table 1 shows detailed information
on the datasets after pre-processing.

Model Fine-tuning and Training We finetuned
distil-BERT before using it to produce embeddings.
Specifically, we used a learning rate of 1 × 10−5

for the word embedding layer and top 3 layers of
distil-BERT, and 1 × 10−3 for last 3 layers. The
weight decay was set to 0 for the bias and layer nor-
malization weights. We used a warm-up strategy to
gradually unfreeze the parameters of distil-BERT.

We ran the fine-tuning process for 5 epochs on
each dataset separately. Additionally, we trained
the Glow model with a learning rate of 1 × 10−3

for 5 epochs. Lastly, we trained the BFV model
with a learning rate of 1 × 10−3 for 10 epochs,
with weight decay set using the same values as the
distil-BERT fine-tuning. AdamW (Loshchilov and
Hutter, 2017) is the optimizer used for training all
three models.

4.3 Evaluation Procedure

Evaluation Metrics One of the limitations of
this model is that, as we only reconstruct the pooled
representation of the sentences rather than words,
there is no explicit modelling of word-topic rela-
tionship. Therefore, metrics for topic models such
as perplexity and topic coherence cannot be di-
rectly measured. Thus, they will not be reported.
We calculated the macro-average of each class for
the metrics defined only for binary predictions such
as F1-score. More detailed definition of metrics
can be found in Appendix E. We report the average
and standard deviation over 10 runs for our model
and its ablated versions.

Baseline Models In this paper, we only compare
our model with methods that can perform multi-
label prediction with weak supervision (only sur-
face names and keywords are provided). To the best
of the authors’ knowledge, there are few methods
built specifically for the WSMLTC tasks. There-
fore, we consider guided topic models and prompt-
ing based zero-shot learning language models as
the work most closely related to our model as base-
lines. For weakly-supervised methods that were
specifically designed for multi-class tasks, we com-
pare our model with them in Appendix B since
we converted them to perform MLTC tasks which
may cause them to perform differently from their
original multi-class design.

We used backend models (CorEx, 0SHOT-
TC and CorEx+0SHOT-TC) and Guided LDA
(GLDA), a standard LDA with initial word-topic
priors biased towards seeded topics, as baseline
models to compare the performance of our mod-
els. Following the work in (Brody and Elhadad,
2010), we used a POS-tagging model1 to only keep
nouns and adjectives for GLDA and CorEx. We
also included ablated versions of BFV:

BERT-Whitening-VAE (BWV): The Flow in
1huggingface.co/vblagoje/

bert-english-uncased-finetuned-pos

huggingface.co/vblagoje/bert-english-uncased-finetuned-pos
huggingface.co/vblagoje/bert-english-uncased-finetuned-pos


Dataset Number of samples Number of classes
Max number of data

per class
Min number of data

per class
Multilabel

ratio
Average

text length

Reuters 10788 42 3964 31 0.14 128
CitySearch 3315 4 1227 298 0.11 14
Sentihood 5215 9 714 143 0.10 15
Restaurant 3844 4 1651 402 0.16 13
Laptop 3308 5 639 175 0.12 13
Heritage 3760 8 623 156 0.11 18

Table 1: Metadata for 6 selected datasets after pre-processing. "Multilabel ratio" is the percentage of samples
having more than one label.

BFV is replaced by a simple whitening operation
introduced by (Huang et al., 2021).

BERT-VAE (BV): No calibration is performed
to the BERT-embeddings.

BERT-Flow-VAE-CLS (BFVCLS): Instead of
using pooling average strategy, [CLS] token is
used as the representation of a sentence.

BERT-Flow-Encoder (BFE): Only the encoder
part of the VAE is kept, and two loss components
(LR and LKLD) are disabled.

BERT-Flow (BF): The VAE part in BFV is re-
placed by a textual entailment classification header
2 with the same template. The classification header
has been finetuned on the MNLI dataset to adjust
for the flow-calibrated model.

0SHOT-TC-Flow: Flow calibration is applied
to the original 0SHOT-TC model. The classifica-
tion header has been finetuned on the MNLI dataset
to adjust for the flow-calibrated model.

Lastly, to show the performance gap between
our model and fully-supervised methods, the perfor-
mance of the BFE trained in a fully-supervised way
using groundtruth labels (BFE-Sup) is included.

5 Results

5.1 Quantitative Evaluation
Table 2 presents the quantitative evaluation of the
models measured using classification metrics (clus-
tering performance and qualitative evaluation can
be found in Appendix C.). We make the following
observations based on these results:

(1) BFV outperforms other WSMLTC models in
most datasets with relatively large margin except
for Reuters, in terms of F1-score and APS.

(2) In terms of the F1-score, BFV with only seed
words and surface name of topics as supervision
can, on average, achieve approximately 84% perfor-
mance of the fully-supervised model as reflected in

2huggingface.co/huggingface/
distilbert-base-uncased-finetuned-mnli

% of BFE-Sup’s F1

BFE-Sup 100.0 (100.0)
BFV 84.38 (83.40)
BWV 78.67 (77.49)
BV 73.47 (71.28)
BFVCLS 58.93 (56.10)
BFE 69.15 (67.46)
BF 26.57 (25.50)
0SHOT-TC+CorEx 57.84 (53.97)
0SHOT-TC-Flow 33.42 (33.56)
0SHOT-TC 69.57 (71.53)
CorEX 53.86 (50.25)
GLDA 27.84 (27.37)

Table 3: Models performance in percentage of the
fully-supervised model measured by F1-score averaged
across all datasets. Numbers in the brackets are F1-
score averaged across 5 datasets excluding Heritage.

Table 3. In addition, the performance gap between
weakly-supervised and fully-supervised model is
narrow in datasets of social media reviews. This
suggests that the weakly-supervised models are
able to find topics with limited guidance in the con-
text of short text, informal and polysemous words
that characterise reviews.

(3) After replacing Flow with a simple whiten-
ing operation, there is no significant drop of perfor-
mance of the model in terms of key metrics such
as F1, demonstrating the robustness of the model.

Table 4 shows examples of prediction results in
the format of document-topic matrix, where each
value shows the probability of the topic (column)
appearing in the document (row).

5.2 Ablation Study and Sensitivity Analysis

In order to investigate further the effectiveness of
each component and the sensitivity with respect
to backend models, we sequentially added each
component of the model and calculated its perfor-

huggingface.co/huggingface/distilbert-base-uncased-finetuned-mnli
huggingface.co/huggingface/distilbert-base-uncased-finetuned-mnli


ACC HS P@3 F1 Recall Precision APS AUC

Reuters

BFE-Sup (20) 75.52 80.82 82.86 63.29 54.12 83.00 70.18 97.91
BFV (20) 44.65 (1.33) 55.74 (1.35) 66.03 (1.5) 44.99 (0.51) 55.38 (0.6) 51.58 (0.84) 56.18 (0.34) 95.86 (0.14)
BWV (20) 39.83 (1.23) 51.33 (1.23) 61.98 (1.2) 44.59 (0.41) 54.96 (0.5) 50.27 (0.76) 55.96 (0.36) 95.85 (0.1)
BV (20) 48.84 (2.5) 57.72 (2.61) 65.40 (2.88) 40.91 (0.73) 45.63 (1.65) 50.56 (1.71) 51.12 (0.7) 95.58 (0.11)
BFVCLS (20) 49.60 (4.92) 56.85 (5.15) 62.53 (5.51) 33.97 (1.84) 37.08 (3.32) 44.19 (1.57) 46.23 (0.54) 94.37 (0.11)
BFE (20) 45.09 (0.74) 53.54 (0.78) 60.37 (0.75) 37.56 (0.36) 39.81 (0.35) 50.13 (1.1) 44.21 (0.39) 94.07 (0.09)
BF 1.82 3.35 7.96 3.92 33.51 2.72 3.12 43.86
0SHOT-TC+CorEx 12.62 25.61 49.30 25.28 60.56 21.43 50.28 93.91
0SHOT-TC-Flow 0.43 4.76 11.39 5.22 58.01 3.31 3.81 54.94
0SHOT-TC 19.68 43.19 75.26 44.55 70.65 38.21 56.22 91.64
CorEx 10.53 22.84 31.56 24.27 57.53 20.71 17.90 86.71
GLDA 7.92 8.28 8.28 6.88 4.15 34.33 26.33 75.18

CitySearch

BFE-Sup (1) 71.79 75.72 76.66 72.66 64.81 83.13 82.30 94.37
BFV (1) 61.07 (1.25) 68.95 (0.93) 72.79 (0.75) 69.48 (0.96) 76.50 (1.33) 64.92 (1.35) 77.25 (0.42) 92.37 (0.22)
BWV (1) 54.60 (1.38) 61.07 (1.39) 62.87 (1.51) 62.63 (1.53) 60.99 (2.92) 66.13 (1.92) 69.98 (0.69) 89.19 (0.26)
BV (1) 53.74 (0.99) 58.51 (1.12) 59.34 (1.25) 59.64 (2.2) 52.24 (5.07) 75.06 (3.06) 72.41 (0.47) 89.09 (0.25)
BFVCLS (1) 54.39 (1.34) 58.86 (1.37) 59.08 (1.38) 48.82 (1.61) 39.67 (2.3) 79.56 (2.76) 67.09 (0.4) 87.97 (0.2)
BFE (1) 53.26 (0.68) 57.90 (0.79) 58.33 (0.79) 54.28 (1.25) 43.84 (1.09) 78.08 (1.62) 69.89 (0.84) 88.63 (0.46)
BF 29.41 33.74 33.81 18.80 21.09 19.04 19.39 48.41
0SHOT-TC+CorEx 47.36 51.43 51.92 39.98 30.83 58.42 63.75 87.80
0SHOT-TC-Flow 37.86 46.10 50.35 41.68 51.13 40.97 45.08 77.08
0SHOT-TC 41.78 53.12 61.29 60.43 86.90 48.30 71.04 88.12
CorEx 45.70 49.57 50.04 35.66 26.44 55.57 43.89 69.97
GLDA 33.18 35.97 35.97 27.42 23.55 35.92 30.63 65.73

Sentihood

BFE-Sup (1) 74.04 77.41 78.14 68.88 61.32 79.05 76.60 96.81
BFV (1) 42.94 (1.57) 51.23 (1.37) 56.35 (1.25) 53.54 (0.88) 75.58 (1.13) 47.21 (0.96) 59.10 (0.68) 92.12 (0.14)
BWV (1) 50.29 (1.73) 55.61 (1.51) 57.80 (1.36) 51.40 (1.36) 60.18 (2.32) 53.49 (0.71) 59.80 (0.33) 91.96 (0.13)
BV (1) 51.41 (3.61) 56.66 (3.14) 59.00 (2.67) 51.02 (1.66) 53.77 (2.94) 59.25 (1.04) 60.78 (0.48) 91.93 (0.22)
BFVCLS (1) 53.62 (2.56) 56.13 (2.42) 56.75 (2.17) 32.92 (1.28) 31.04 (2.14) 55.77 (2.0) 48.80 (0.58) 89.20 (0.14)
BFE (1) 52.60 (0.45) 56.88 (0.4) 58.63 (0.44) 46.55 (0.87) 46.83 (0.79) 56.58 (1.09) 56.12 (0.44) 90.46 (0.21)
BF 20.66 24.32 25.57 10.81 46.58 6.42 6.76 51.86
0SHOT-TC+CorEx 53.05 55.90 56.42 39.17 39.50 45.05 53.26 91.29
0SHOT-TC-Flow 0.60 6.82 10.02 11.37 64.15 6.42 9.03 48.18
0SHOT-TC 4.16 18.33 36.82 39.13 89.11 28.16 55.30 91.12
CorEx 52.52 54.98 55.34 34.71 33.82 40.76 33.00 75.87
GLDA 39.17 40.39 40.40 16.41 15.43 20.58 16.70 71.18

Restaurant

BFE-Sup (1) 75.38 80.93 81.72 81.59 75.57 89.11 90.02 95.87
BFV (1) 68.85 (1.95) 74.42 (2.02) 76.34 (2.16) 80.49 (0.77) 80.58 (1.72) 80.88 (2.24) 89.73 (0.4) 95.21 (0.27)
BWV (1) 58.09 (1.91) 65.65 (1.76) 68.13 (1.97) 73.44 (1.35) 80.02 (3.47) 69.62 (3.21) 85.55 (0.35) 93.34 (0.17)
BV (1) 53.66 (2.18) 59.43 (2.36) 60.27 (2.63) 69.52 (1.97) 60.85 (4.55) 84.74 (3.94) 84.97 (0.45) 91.78 (0.33)
BFVCLS (1) 57.84 (2.94) 64.95 (2.83) 66.02 (2.61) 60.14 (2.89) 53.00 (2.45) 83.62 (8.77) 78.28 (1.11) 90.09 (0.34)
BFE (1) 57.36 (1.01) 63.38 (0.9) 64.11 (0.86) 69.05 (1.45) 60.35 (1.42) 83.59 (1.18) 81.57 (0.59) 91.21 (0.24)
BF 8.38 21.33 24.74 30.21 51.64 25.00 25.62 49.18
0SHOT-TC+CorEx 46.00 51.12 51.54 57.02 45.92 78.68 83.06 93.40
0SHOT-TC-Flow 4.88 28.45 47.24 38.44 88.02 26.49 30.58 60.69
0SHOT-TC 37.25 56.46 72.90 63.04 95.00 48.61 83.65 92.43
CorEx 45.25 50.19 50.31 54.42 43.00 77.55 61.20 74.97
GLDA 26.12 31.08 31.08 34.46 30.93 46.52 42.51 72.39

Laptop

BFE-Sup (2) 60.15 63.48 63.90 49.24 39.87 65.76 57.66 87.21
BFV (2) 45.72 (1.18) 49.37 (1.18) 50.53 (1.2) 36.40 (1.2) 38.59 (1.54) 42.75 (1.67) 39.25 (0.54) 73.38 (0.49)
BWV (2) 45.04 (0.57) 47.96 (0.37) 48.76 (0.42) 32.58 (1.15) 32.34 (1.46) 44.62 (0.84) 37.56 (0.31) 72.72 (0.18)
BV (2) 51.18 (2.11) 52.82 (1.86) 53.16 (1.7) 24.82 (1.71) 21.52 (2.59) 52.31 (2.46) 37.21 (0.49) 73.28 (0.33)
BFVCLS (2) 52.46 (0.97) 53.59 (0.86) 53.79 (0.86) 18.78 (1.56) 14.36 (1.04) 54.01 (3.23) 35.23 (0.65) 72.30 (0.36)
BFE (2) 49.15 (0.63) 50.96 (0.6) 51.30 (0.55) 25.14 (0.5) 22.35 (0.74) 52.14 (3.68) 35.96 (0.69) 71.90 (0.36)
BF 9.90 18.32 21.60 21.03 68.05 12.85 14.60 54.14
0SHOT-TC+CorEx 48.76 50.51 50.56 23.71 22.39 35.82 33.91 71.89
0SHOT-TC-Flow 13.00 20.07 23.24 18.99 44.92 12.97 13.59 53.47
0SHOT-TC 14.98 25.13 31.76 34.49 64.18 27.10 34.78 70.96
CorEx 48.39 50.09 50.12 23.00 21.89 34.69 23.64 60.20
GLDA 43.19 43.79 43.79 10.91 9.73 17.03 16.56 60.99

Heritage

BFE-Sup (5) 53.44 56.59 56.81 49.52 39.42 67.95 58.86 89.85
BFV (5) 40.10 (1.41) 47.23 (1.36) 51.42 (1.5) 44.20 (1.22) 50.34 (2.11) 41.75 (0.85) 46.68 (0.56) 81.55 (0.32)
BWV (5) 33.75 (0.98) 42.22 (0.77) 47.29 (0.85) 41.89 (0.64) 51.99 (2.07) 37.30 (0.95) 45.08 (0.49) 79.90 (0.21)
BV (5) 42.37 (1.01) 47.77 (1.11) 50.26 (1.4) 41.81 (1.49) 41.18 (2.85) 46.84 (1.39) 45.33 (0.25) 81.28 (0.25)
BFVCLS (5) 41.58 (1.61) 46.34 (1.26) 48.61 (1.17) 36.18 (1.25) 33.39 (1.94) 47.93 (3.81) 40.75 (0.46) 80.81 (0.15)
BFE (5) 40.05 (1.04) 45.65 (0.73) 48.60 (0.59) 38.41 (0.72) 37.44 (0.88) 42.86 (0.74) 40.15 (0.46) 80.86 (0.34)
BF 4.41 11.06 13.44 15.81 67.63 9.22 9.65 49.20
0SHOT-TC+CorEx 41.50 44.95 46.10 38.21 36.36 44.89 40.32 78.10
0SHOT-TC-Flow 0.39 9.17 12.86 16.21 76.19 9.29 9.46 49.09
0SHOT-TC 9.34 24.08 40.43 29.59 73.51 19.37 33.76 75.55
CorEx 41.25 44.27 44.87 35.61 32.67 43.58 31.60 71.87
GLDA 24.64 25.14 25.14 14.95 13.43 19.30 18.58 66.81

Table 2: Results for classification performance. Definition of metrics can be found at Appendix E. Highest values
are marked with bold font. Numbers in the brackets are γ values (for model name) or standard deviation (for
metrics). All numbers are percentages. γ values are chosen based on the observation of the aggressiveness of the
model.



ambience service price food

The wait staff is friendly, and the food has gotten better and better! (’food’, ’service’) 0.43 0.69 0.37 0.73
The staff is unbelievably friendly, and I dream about their Saag gosht...so good. (’service’, ’food’) 0.43 0.71 0.36 0.51
The crust is thin, the ingredients are fresh and the staff is friendly. (’food’, ’service’) 0.47 0.69 0.30 0.68
The food is outstanding and the service is quick, friendly and very professional. (’food’, ’service’) 0.47 0.88 0.30 0.74
Get the soup and a nosh (pastrami sandwich) for $8 and you’re golden. (’food’, ’price’) 0.36 0.42 0.52 0.53
Wonderful menu, warm inviting ambiance, great service the FOOD keeps me coming back! (’food’, ’ambience’, ’service’) 0.61 0.69 0.32 0.68
The food was good, the service prompt, and the price very reasonable. (’food’, ’service’, ’price’) 0.42 0.80 0.76 0.81
Great food at REASONABLE prices, makes for an evening that can’t be beat! (’food’, ’price’) 0.47 0.35 0.78 0.72
While the food was excellent, it wasn’t cheap (though not extremely expensive either). (’food’, ’price’) 0.34 0.32 0.69 0.75
I found the food, service and value exceptional everytime I have been there. (’food’, ’service’, ’price’) 0.33 0.68 0.43 0.65

Table 4: An exemplar of document-topic matrix using sentences selected from Restaurant dataset, where rows
represent documents and columns represent topics. Words in brackets after the document show the corresponding
groudtruth label.

Figure 2: Ablation study with respect to various back-
end models and components, averaged across 5 multi-
label datasets excluding Heritage dataset. Title: differ-
ent backend models. X-axis: 1 : Backend model only;
2 : 1 +BERT+encoder; 3 : 2 +Flow; 4 : 3 +VAE;
5 : 4 +TF-IDF; 6 : 5 +HPS. NMI: Normalized Mu-

tual Information

mance by averaging several key metrics across 5
multi-label (excluding Heritage) datasets in Fig 2.

The results shown in Fig 2 suggest that there is
a consistent improvement of BFV models (at stage
6 ) with respect to various backends (at stage 1 )

in terms of F1, manifesting the generalizability of
the benefits brought by BFV. Furthermore, after
adopting the flow model and VAE in step 3 and
step 4 , most metrics outperform that of the base
models. This indicates the effectiveness of Flow-
calibrated embeddings and extra two losses (LR
and LKLD) brought by VAE. On the other hand,
the TF-IDF averaging strategy ( 5 ) does not result
in significant effects on model performance. Also,
the HPS strategy ( 6 ) does yield performance gains
when GLDA and CorEx as backend models, but has
limited effects on 0SHOT-TC and CorEx+0SHOT-
TC backend models.

We also conducted a sensitivity analysis with
respect to γ and ω in Fig 3. It could be observed
that the model performs best when γ is between
0.5 and 5 and ω is between 0.5 and 0.6 for nearly

Figure 3: Sensitivity with respect to γ and ω in terms
of F1 (solid line), Precision (dashed line) and Recall
(dotted line) on 6 datasets

all datasets. From the bottom two plots in Fig 3
we can see that, γ has a positive (negative) rela-
tionship with Precision (Recall). This relationship
is reversed when it comes to ω. This makes sense
because γ controls the relative weight of LKLD
and LT in the loss function, and ω controls the
weight of the combination of two backend models.
Therefore, they could influence the aggressiveness
of the model. This can be used to control specificity
and sensitivity of the model (with default value of
γ = 1 and ω = 0.5).

5.3 Discussion

Effectiveness of Flow and VAE Based on the
performance of VAE-ablated models (BFE, BF
and 0SHOT-TC-Flow) and Flow-ablated models
(BV and BWV) shown in Table 2 and Figure 2, we
can observe that, neither Flow nor VAE alone can
outperform their combination (BFV) in terms of



Figure 4: Normalized histogram of all predicted prob-
abilities (x-axis) by backend models. The numbers in
the bracket are the percentage of positive predictions.

F1-score and APS. This reflects the importance of
combining Flow and VAE to model disentangled la-
tent variables within calibrated BERT embeddings.

Mixture of Backend Except for the benefits
brought by the pre-trained language model and em-
beddings calibration, we also suggest that BFV
can learn from both a sparser and conservative
model (CorEx) and a denser and aggressive model
(0SHOT-TC) simultaneously:

(1) BFV can capture complementary information
from seed words in the results of CorEx in addi-
tion to the topic surface name. Specifically, Fig
2 shows that the average of the results of CorEx
and 0SHOT-TC has a lower value of F1-score ( 1
of d) compared to that of only 0SHOT-TC ( 1 of
c). Note that this still holds even if we compare
F1-score in 3 of d and 1 of c. However, after
being fully processed by BFV, the F1-score in 6
of d is significantly large compared to that of using
only 0SHOT-TC ( 6 of c) as backend.

(2) Results from CorEx may provide regular-
ization. We observe in Fig 4 that, results from
CorEx are sparser and conservative (most labels
were predicted to be negative) than that of 0SHOT-
TC. We also observe from Table 2 that CorEx has
a higher Precision than GLDA (and thus GLDA is
not mixed) and 0SHOT-TC in general.

Different Language Models When replacing
the backend language model (distil-BERT) with
BERT, RoBERTa and XLM-R, in terms of the F1-
score over 10 runs averaged across the 6 datasets,
we found: BERT-base (54.35%), BERT-large
(54.54%), RoBERTa-base (55.47%), RoBERTa-
large (55.96%) and XLM-R-base (54.50%) com-
pared to distil-BERT of 54.85% (detailed dataset-
specific results fan be found in Appendix C). How-
ever, we simply tested these models using the same

hyper-parameters, which may cause impacts on the
performance. We didn’t test the effects of differ-
ent combinations of language models and hyper-
parameters because the potential amount of com-
putation will be very large for grid search. Thus, it
is difficult to draw conclusions at this stage and we
propose to leave in-depth analysis as future work
where different characteristics of the backend lan-
guage model should be thoroughly considered.

6 Conclusion

We presented BFV, a WSMLTC model, that uses
a VAE framework to reconstruct BERT-produced
and flow-calibrated sentence embeddings under
the guidance of the averaged results of CorEx
and 0SHOT-TC. It can significantly outperform
other WSMLTC models in key metrics and achieve
a approximately 84% performance of a fully-
supervised model in terms of macro F1-score eval-
uated on 6 datasets. We found the improvements
are mainly due to: (1) combining BERT and VAE
framework, (2) mapping the sentence embeddings
into a standard Gaussian space to better fit the over-
all objective of the VAE framework and (3) learning
simultaneously from the results produced by a mix-
ture of backends. As the input of surface name of
topics and seed words are only used to produce T ,
BFV can be viewed as a post-processing model to
refine an already made document-topic matrix.

One limitation of the current BFV model is that it
does not explicitly model the relationship between
topics and words. Thus, relevant tasks such as cal-
culating topic coherence and selecting keywords
for each topic cannot be done directly. Another
drawback of the BFV model is that it does not
take into account the dependencies and hierarchies
within topics. This may limit the model’s perfor-
mance for datasets in which labels are correlated.

In the future, BFV could be improved by recon-
structing embeddings of each words in a sentence
rather than an embedding of a sentence as a whole.
This can also potentially expand this method into
an applicable generative model for real sentence
generation. Further work could also evaluate the
performance of the model using embeddings made
by language models other than distil-BERT.
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Appendix

A Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE) (Kingma and
Welling, 2013) has been widely used as an unsuper-
vised generative method, especially in computer
vision filed. It has been shown that β-VAE (Hig-
gins et al., 2016) and its variants are capable of
finding visual disentangled latent representations
which remain invariant to some transformations
(Burgess et al., 2018). This section provides a brief
review of VAE and β-VAE.

VAE starts by solving the evidence (or marginal
likelihood) pθ(x) in Variational Inference (VI)
problems involving latent variable Z. In partic-
ular, the evidence pθ(x) =

∫
p(x, z)dz is often

intractable to compute in practice due to computa-
tional cost. In VI, pθ(x) can be approximated by
introducing variational distributions and building a
lower bound L to reframe the problem as in Eq. 1
based on Jensen’s inequality.

logpθ(x) = log(Eqφ(z|x)[pθ(x|z)
p(z)

qφ(z|x)
])

≥ Eqφ [logpθ(x|z)]−KLD(qφ(z|x)||p(z))
= L(θ, φ;x)
= −(LR + LKLD)

(1)

LR and LKLD refer to reconstruction loss and
KLD loss respectively. By considering qφ(z|x)
as a Gaussian probabilistic encoder, p(z) as a
standard Gaussian prior N (0, I) and pθ(x|z) as
a probabilistic decoder, the objective can be de-
fined as max

θ,φ
L(θ, φ;x). In particular, this objec-

tive function aims at finding optimal parameters
θ and φ to maximize the lower bound L which
in turn approximates the log-probability of the
data logpθ(x). In addition, in order to estimate
the gradients of the lower bound with respect to φ
more smoothly, a parameterization trick is applied:
zi ∼ qφ(zi|x) = µi + σiεi, where εi ∼ N (0, 1).

In β-VAE, a hyper-parameter β is added into the
objective function as shown in Eq. 2. Usually β >
1 will result in more disentangled representations
and when β = 1, the β-VAE is equivalent to the
vanilla VAE model (Burgess et al., 2018).

L(θ, φ;x, β) = −(LR + βLKLD) (2)

B Comparison with Weakly-supervised
Multi-Class Methods

Here we compare our model with the following
strong weakly-supervised multi-class models on
MLTC datasets:

WeSTClass (Meng et al., 2018): a WSTC model
that has been briefly introduced in the related-work
section. It can receive inputs of topic surface name,
keywords or limited amount of documents. We
used the keywords as input to it. We replaced its
last softmax layer with sigmoid layer and used the
same threshold (0.5).

X-Class (Wang et al., 2020): this methods is
based on aligning document representation and
class representation. It uses class surface names as
input and can generage pseudo labels to train a text
classifier. We used its X-Class-Align version which
uses a Gaussian Mixture Model (GMM) to make
final predictions. We modified its final to output
unnormalized probabilities and used the threshold
of 0.5.

LOTClass (Meng et al., 2020b): it is based on
Masked Category Prediction (MCP) task and a sub-
sequent self-training to perform WSTC with only
label surface names. We replaced its last softmax
layer with sigmoid and used the same threshold of
0.5. We also tested transforming it into a binary rel-
evance task by only using one label surface name
each time, which results in similar performance
and therefore is not reported.

We used default hyper-parameters for all three
models. We slightly modified keywords and topic
surface names if the model has a different spec-
ification, otherwise we used the same keywords
and topic surface names as used in our model. The
results of comparison is presented in Table 5. It
can be shown that there is a large performance mar-
gin between our model and the weakly-supervised
multi-class models on multi-label tasks in terms of
key metrics such as F1-score.

C Further Evaluation

Qualitative Analysis To further check the valid-
ity of the BFV model, we used Integrated Gradients
(IG) (Sundararajan et al., 2017) to calculate the at-
tributions of each word with respect to predicted
topics. In Fig 5, we applied this inspection on 3 sen-
tences from different datasets as examples. From
Fig 5, it can be seen that the gradients of words can
largely align with human intuition.



Clustering Results We also tested our model’s
performance in terms of clustering metrics. In cal-
culating clustering metrics, we only used samples
with single label in the whole dataset. Table 6
shows the models’ performance measured by clus-
tering metrics.

Embeddings Visualization Embeddings pro-
duced at different stages of the model are visu-
alized by T-SNE in Figure 6, where the shift of the
embeddings during the process could be observed.

Other Language Models We tested the model’s
performance with different backend language mod-
els. Table 7 shows the model’s performance on
different datasets in terms of F1-score when using
other language models. However, we simply tested
these models using the same hyper-parameters,
which may cause impacts on the performance.

D Supplementary Information of the
Datasets

Fig 7 displays the distribution of the amount of
topics in the samples in percentage for different
datasets used in this paper.

In regard to the Heritage dataset, all annotators
(authors of the paper) have checked the correct-
ness of labelling and are fully aware of the risks to
participant.

E Definition of Evaluation Metrics

In evaluating our model in Table 2, we have the fol-
lowing metrics. Assuming yi ∈ RC is the ground
truth label and ŷi is the prediction for ith sample,
where C is the number of classes:

ACC:

Accuracy =
1

n

n∑
i=1

I(yi = ŷi)

HS:

Hamming Score =
1

n

n∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

Precision:

Precision =
1

n

n∑
i=1

|yi ∩ ŷi|
|ŷi|

Recall:

Recall =
1

n

n∑
i=1

|yi ∩ ŷi|
|yi|

F1-score:

F1 =
1

n

n∑
i=1

2|yi ∩ ŷi|
|yi|+ |ŷi|

APS:

Average Precision Score3

AUC:
ROC-AUC score4

P@3:

Mean Average Precision @ k = 35

Homogeneity:

homogeneity score6

Completeness:

completeness score7

NMI:

v =
2× homogeneity× completeness

homogeneity + completeness

Adj MI:

Adjusted Mutual Info Score8

Adj Rand:

Adjusted Rand Score9

3https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
average_precision_score.html

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_
auc_score.html

5https://github.com/benhamner/Metrics/
blob/master/Python/ml_metrics/average_
precision.py

6https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
homogeneity_score.html#sklearn.metrics.
homogeneity_score

7https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
completeness_score.html#sklearn.metrics.
completeness_score

8https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
adjusted_mutual_info_score.html

9https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
adjusted_rand_score.html
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ACC F1 Recall Precision APS AUC

Reuters

BFV (20) 44.65 44.99 55.38 51.58 56.18 95.86
X-Class 27.63 33.83 38.05 40.64 30.44 67.84
WeSTClass 6.16 1.12 2.60 1.84 2.99 48.18
LOTClass 0.50 0.06 2.52 0.07 7.15 68.46

CitySearch

BFV (1) 61.07 69.48 76.50 64.92 77.25 92.37
X-Class 49.77 16.62 25.00 12.44 18.78 50.00
WeSTClass 25.49 22.26 23.31 24.21 18.99 47.50
LOTClass 33.33 25.43 36.17 32.93 36.23 69.49

Sentihood

BFV (1) 42.94 53.54 75.58 47.21 59.10 92.12
X-Class 55.94 17.29 16.29 46.58 12.48 54.32
WeSTClass 8.92 6.50 12.30 10.61 7.34 51.28
LOTClass 10.93 4.26 11.72 4.98 10.05 58.75

Restaurant

BFV (1) 68.85 80.49 80.58 80.88 89.73 95.21
X-Class 38.75 13.96 24.92 9.70 24.75 50.03
WeSTClass 26.38 23.64 24.94 25.91 25.90 49.72
LOTClass 35.25 13.53 25.16 37.41 44.58 69.51

Laptop

BFV (2) 45.72 36.40 38.59 42.75 39.25 73.38
X-Class 68.07 16.20 20.00 13.61 11.88 50.00
WeSTClass 22.65 15.01 18.93 19.53 12.73 49.27
LOTClass 9.03 10.41 28.27 18.04 15.83 55.45

Heritage

BFV (5) 40.10 44.20 50.34 41.75 46.68 81.55
X-Class 41.25 7.31 12.50 5.16 10.01 50.22
WeSTClass 10.12 8.47 9.59 12.07 9.80 48.71
LOTClass 10.25 5.48 15.42 4.15 16.41 61.87

Table 5: Performance of BFV in comparison with weakly-supervised multi-class models on multi-label datasets.
All numbers are percentages.



Figure 5: Qualitative analysis of the correct predictions made by BFV model using Integrated Gradients (IG).
Numbers with bracket attached to each words are gradients given by the IG



Homogeneity Completeness NMI Adj MI Adj Rand

Reuters

BFV (20) 67.72 (0.39) 58.73 (0.74) 62.90 (0.56) 61.87 (0.58) 69.99 (1.86)
BWV (20) 66.08 (0.38) 54.94 (0.62) 60.00 (0.52) 58.87 (0.53) 64.90 (1.45)
BV (20) 67.87 (0.38) 61.73 (0.64) 64.66 (0.48) 63.71 (0.5) 73.34 (0.83)
BFVCLS (20) 64.17 (1.1) 60.21 (1.98) 62.11 (1.41) 61.23 (1.43) 71.00 (3.85)
BFE (20) 63.29 (0.26) 56.39 (0.33) 59.64 (0.28) 58.56 (0.29) 69.03 (0.6)
BF 22.45 17.47 19.65 17.93 9.12
0SHOT-TC+CorEx 58.74 45.12 51.04 49.62 54.98
0SHOT-TC-Flow 11.36 7.22 8.83 6.33 3.99
0SHOT-TC 63.93 52.93 57.91 56.78 64.09
CorEx 34.40 25.24 29.12 27.23 22.75
GLDA 46.96 31.69 37.85 35.98 23.46

CitySearch

BFV (1) 51.71 (1.19) 48.99 (1.17) 50.31 (1.16) 50.21 (1.16) 60.21 (1.37)
BWV (1) 44.91 (1.24) 42.36 (1.64) 43.60 (1.44) 43.48 (1.44) 51.63 (1.94)
BV (1) 43.50 (1.7) 43.19 (2.29) 43.32 (1.7) 43.20 (1.7) 51.72 (2.89)
BFVCLS (1) 40.11 (1.95) 44.07 (1.8) 41.98 (1.68) 41.85 (1.68) 50.32 (2.88)
BFE (1) 41.06 (0.81) 42.58 (0.87) 41.81 (0.81) 41.67 (0.81) 50.94 (0.78)
BF 0.69 2.77 1.11 0.73 2.59
0SHOT-TC+CorEx 35.86 33.45 34.61 34.47 40.80
0SHOT-TC-Flow 14.94 13.61 14.25 14.06 13.96
0SHOT-TC 43.24 46.24 44.69 44.56 54.24
CorEx 15.92 14.07 14.94 14.76 8.28
GLDA 7.36 6.24 6.75 6.56 6.75

Sentihood

BFV (1) 53.83 (1.48) 51.72 (1.48) 52.76 (1.46) 52.34 (1.47) 49.13 (2.69)
BWV (1) 48.83 (1.39) 48.41 (1.15) 48.62 (1.25) 48.15 (1.26) 37.53 (3.33)
BV (1) 45.42 (3.17) 48.56 (2.38) 46.92 (2.61) 46.41 (2.64) 28.08 (5.67)
BFVCLS (1) 34.68 (2.8) 41.01 (2.71) 37.57 (2.69) 36.96 (2.73) 20.68 (5.11)
BFE (1) 42.67 (0.75) 44.54 (0.76) 43.59 (0.75) 43.06 (0.76) 28.01 (0.8)
BF 3.37 5.26 4.11 3.44 3.03
0SHOT-TC+CorEx 52.08 50.04 51.04 50.60 49.09
0SHOT-TC-Flow 5.42 5.56 5.49 4.61 3.59
0SHOT-TC 57.08 56.77 56.92 56.53 49.87
CorEx 24.57 25.50 25.03 24.33 11.79
GLDA 18.67 16.53 17.53 16.84 15.11

Restaurant

BFV (1) 59.23 (1.29) 57.23 (1.85) 58.21 (1.5) 58.13 (1.51) 68.13 (1.84)
BWV (1) 50.04 (1.78) 44.93 (1.84) 47.34 (1.81) 47.25 (1.81) 53.10 (2.78)
BV (1) 46.07 (1.34) 44.48 (1.85) 45.25 (1.5) 45.15 (1.5) 49.78 (4.81)
BFVCLS (1) 41.03 (2.32) 44.44 (2.63) 42.63 (2.08) 42.51 (2.08) 50.98 (4.88)
BFE (1) 45.86 (0.79) 44.64 (0.84) 45.24 (0.81) 45.14 (0.81) 52.47 (1.19)
BF 1.41 27.83 2.69 2.45 1.50
0SHOT-TC+CorEx 49.44 45.98 47.65 47.55 56.46
0SHOT-TC-Flow 1.79 1.59 1.68 1.50 3.32
0SHOT-TC 54.94 56.52 55.72 55.63 67.55
CorEx 19.13 18.50 18.81 18.66 5.37
GLDA 9.93 8.21 8.99 8.83 7.97

Laptop

BFV (2) 22.28 (0.95) 21.90 (1.11) 22.09 (1.02) 21.78 (1.02) 14.27 (0.77)
BWV (2) 20.38 (0.58) 21.46 (0.51) 20.90 (0.54) 20.58 (0.55) 12.78 (1.18)
BV (2) 20.45 (0.99) 22.04 (0.98) 21.20 (0.84) 20.87 (0.84) 12.75 (1.75)
BFVCLS (2) 12.52 (1.12) 17.58 (1.59) 14.60 (1.09) 14.25 (1.11) 6.13 (0.95)
BFE (2) 18.67 (0.69) 21.48 (0.77) 19.98 (0.73) 19.63 (0.73) 10.42 (0.43)
BF 2.75 44.62 5.18 4.85 1.46
0SHOT-TC+CorEx 18.45 19.57 19.00 18.66 11.48
0SHOT-TC-Flow 0.58 0.62 0.60 0.18 -0.25
0SHOT-TC 15.33 18.53 16.78 16.41 8.40
CorEx 9.85 11.51 10.61 10.23 3.80
GLDA 4.11 3.86 3.98 3.61 2.24

Heritage

BFV (5) 26.95 (0.7) 26.49 (0.77) 26.72 (0.73) 26.31 (0.74) 23.98 (1.29)
BWV (5) 25.24 (0.38) 24.61 (0.35) 24.92 (0.36) 24.50 (0.37) 22.20 (0.5)
BV (5) 28.99 (0.74) 28.82 (0.71) 28.90 (0.7) 28.50 (0.7) 25.30 (1.66)
BFVCLS (5) 26.43 (0.89) 27.59 (0.96) 26.99 (0.84) 26.57 (0.84) 22.10 (2.16)
BFE (5) 26.92 (0.58) 27.04 (0.6) 26.98 (0.59) 26.57 (0.59) 23.28 (0.61)
BF 0.69 3.40 1.15 0.65 -0.17
0SHOT-TC+CorEx 21.22 20.78 21.00 20.56 17.60
0SHOT-TC-Flow 1.08 1.63 1.30 0.61 -0.18
0SHOT-TC 20.70 20.69 20.70 20.25 16.25
CorEx 15.07 15.97 15.50 15.01 8.00
GLDA 6.62 6.41 6.51 5.99 4.52

Table 6: Results for clustering performance. Highest values are marked with bold font. Numbers in the brackets
are γ values (in column) or standard deviation (in matrix). All numbers are percentages.



Figure 6: Visualization of embeddings produced at different stages of the model by T-SNE using the Restaurant
dataset. Red, Green, Blue and White are used to represent topics ’ambience’, ’service’, ’price’ and ’food’ in the
dataset. Colors other than Red, Blue, Green and White are mixed by the color of the corresponding topics when
there are more than one topics assigned to the document.

BERT-base BERT-large RoBERTa-base RoBERTa-large XLM-R-base

Reuters 42.12 43.53 40.22 44.16 42.16
CitySearch 69.52 69.05 70.96 71.73 70.42
Sentihood 54.49 52.14 55.34 54.48 53.54
Restaurant 79.02 80.72 81.14 83.53 79.29
Laptop 38.49 38.40 40.56 39.45 39.16
Heritage 42.45 43.41 44.57 42.41 42.43

Table 7: Models performance on 6 datasets with different backend language models in terms of F1-score. All
numbers are percentages



Figure 7: Distribution of the amount of topics in the samples in percentage.


