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Abstract

Machine learning and Artificial Intelligence (AI) already support human decision-making and complement professional roles, and
are expected in the future to be sufficiently trusted to make autonomous decisions. To trust AI systems with such tasks, a high
degree of confidence in their behaviour is needed. However, such systems can make drastically different decisions if the input data
is modified, in a way that would be imperceptible to humans. The field of Adversarial Machine Learning studies how this feature
could be exploited by an attacker and the countermeasures to defend against them. This work examines the Fast Gradient Signed
Method (FGSM) attack, a novel Single Value attack and the Label Flip attack on a trending architecture, namely a 1-Dimensional
Convolutional Neural Network model used for time series classification. The results show that the architecture was susceptible to
these attacks and that, in their face, the classifier accuracy was significantly impacted.

Keywords: Adversarial Machine Learning, Neural Networks, Financial Time-Series Models

1. Introduction

Machine Learning (ML) and AI have been groundbreaking
in tackling various problems. They are used today in a vari-
ety of different application domains. AI can outperform human
observers in identifying cancerous cells [1], even when using5

amateur equipment such as a mobile phone camera [2]. Au-
tonomous vehicles are seen as the future of the automotive in-
dustry [3]. AI protects against fraud and cybercrime, from iden-
tifying unusual behaviour [4, 5] to protecting a personal device
with facial recognition software [6]. It is expected to supplant10

many professional roles carried out today, with studies estimat-
ing that between 45% and 60% of jobs could be automated in
the next 10 to 20 years [7].

These uses of AI extend into safety-critical applications and
Internet-of-Things (IoT) devices. For example, poorly designed15

autonomous vehicles pose a significant danger, particularly as
they become ubiquitous. However, it is hard to guarantee that
the AI system will be well-behaved [8, 9]. The decision-making
in the AI system can be extremely complex, making it difficult
to predict how the system will act in all situations.20

The increasing popularity of AI and Machine Learning at-
tracted the attention of malicious parties who started launching
attacks against them. The common goal of all the attacks is
to impact the performance in some way. Most of these attacks
would not fool a human, but many would not even be percepti-25

ble by a human observer, yet they may substantially impact AI
performance.

Attacks can be carried out against real-world AI applications.
For example, unique sunglasses can be designed that trick a fa-
cial recognition network into granting access to a secure system30

[10]. For autonomous vehicles, traffic signs could be covered
in graffiti which tricks their AI into misreading the sign [11].

Attacks may occur in all phases of the AI lifecycle. They
can be executed when an AI system is being trained, by poison-
ing the training data [12], or when it is used in production by35

evading classification. Attacks have been published in white-
box, grey-box and black-box scenarios. Worryingly, the attacks
show transferability across networks. This means that an attack
designed for one system could impact another [13]. Prediction
with financial time series models is one of the application do-40

mains that have been poorly investigated in the literature con-
cerning the influence of such attacks. Besides being a major
influential factor in the global economy, financial time series
models are also known for their non-linear, non-stationary and
noisy nature; hence, making challenging the effort to capture45

their trends accurately.
This work sheds light on this area, proving that attacks are

feasible and that their impact should be taken into consideration
by the security and AI communities. The contributions of our
work can be summarised as follows:50

1. We mount label flipping attacks, poisoning a 1-
Dimensional Convolutional Neural Network model that
makes predictions based on financial stock data, in order
to generate adversarial examples using the FGSM against
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the same model.55

2. We create and launch Single Value attacks, a novel adap-
tation of FGSM based on one-pixel attacks [14] aiming to
identify the most impactful entry for perturbation.

3. Finally, we analyse and critically evaluate the experimen-
tal results along with the model’s robustness against the60

aforementioned attacks.

The rest of the paper is organised as follows. Section 2 builds
the background around attacks against machine learning-based
systems while reviewing the related literature. Section 3 briefly
explains the methodology we followed to perform the study.65

Section 4 presents the results of our experiments, while Sec-
tion 5 discusses the feasibility of the suggested scenarios and
proposes countermeasures drawn from the known literature. Fi-
nally, Section 6 draws the conclusion and gives some pointers
for future work.70

2. Literature Review and Background Knowledge

2.1. Attacks Against Machine Learning

2.1.1. Background
Kearns et al. [15] first referenced the challenges of auto-

mated learning systems where training data is controlled by an75

adversary and proved the bounds for malicious errors in training
data. The first practical applications appeared in the mid-2000s
and were primarily evading spam filters, and anti-malware pro-
cesses [16]. The attacks on spam filters typically involved ob-
fuscating the detected words by adding trusted words. This type80

of attack was called evasion, as the attack would attempt to
evade a trained classifier.

Countermeasures were also studied. [17] investigated mak-
ing models more robust by not giving too much weight to one
single feature. Their method was effective for spam filtering85

and handwriting recognition.
Poisoning attacks were also researched. Newsome et al. [18],

studied an attack against malware classifiers, where the adver-
sary generated labelled samples, which would prevent the train-
ing of an accurate classifier. In the scope of intrusion detec-90

tion systems, Rubinstein et al. [19], studied multiple poison-
ing schemes and found that creating a moderate amount of poi-
soned traffic would substantially increase the chances of evad-
ing detection [19].

Barreno et al. published the first taxonomy of machine learn-95

ing attacks [20]. They modelled attacks by their influence,
specificity and type of security violation. These terms were ex-
panded in subsequent work, by including a comprehensive set
of scenarios where each attack type could be used [21]. Huang
et al. also published a taxonomy, building on existing work and100

expanding their taxonomy into attacks on ML techniques [22].
They discussed attacks on privacy-preserving ML architectures.
These architectures are designed to obfuscate the data used to
train a classifier. Thus, this is particularly important in some
private data, such as medical data, since they discussed the-105

oretical attacks which could break several privacy-preserving
properties.

Recent works on machine learning attacks were catalysed by
the discovery of adversarial examples [23]. Szegedy et al. [24],
found that when testing an image classifier, tiny alterations to110

an image that might be imperceptible to humans could cause
a dramatic misclassification. These findings highlighted a sig-
nificant threat for deep learning architectures, at a time when
they were seeing significant breakthroughs in performance [25].
Since [24] was published, the field of adversarial ML has grown115

considerably to tackle these problems, which could inhibit the
uptake of AI.

2.1.2. Recent Works
Pitropakis et al. performed a taxonomy and survey of the lit-

erature and provided a language for categorising attack knowl-120

edge, style and intention while describing three categorisations
for the knowledge of the attacker, namely Black-box, Grey-box
and White-box [13]. Black-box attacks assume no knowledge,
Grey-box assumes some knowledge, and White-box assumes
total knowledge and unrestricted interactions. The attacks were125

categorised as Poisoning and Evasion. Poisoning attacks are a
subset of the causative attacks defined by [20]. They target the
manipulation of input data to corrupt a network, often by tam-
pering with the training data. Evasion attacks aim to achieve
incorrect classifications for data in the testing stage. These are130

a subset of exploratory attacks. They often involve generating
a malicious input which is incorrectly classified. One example
is the adversarial examples discovered by [24]. For illustration,
consider the example of an attack against a facial recognition
security system. A poisoning attack may seek to train the net-135

work against a modified or mislabelled image. The network
would then incorrectly classify an unaltered image. An evasion
attack may trick the network by changing the input in a partic-
ular way; as such, [10] crafted glasses frames to impersonate
celebrities. Yuan et al. performed a taxonomy for Deep Neural140

Networks (DNN) [14], whilst Gu et al. [11], provided an excel-
lent illustration of some real-world attacks against autonomous
vehicles which could hinder trust in the DNN technology. They
evaluated a DNN, which was designed for an autonomous ve-
hicle. They found that placing a yellow square at a particular145

location on a stop sign would cause it to be misclassified as a
speed limit sign. This misclassification would not happen with
a human observer, but could cause an autonomous vehicle to
drive dangerously.

Sadeghi et al., in [26], published a taxonomy for various as-150

pects of Adversarial ML (AML) research, including the dataset,
the ML architecture and the defence response. They also de-
scribed an AML cycle i.e., a system for representing the arms
race between ML applications and adversaries.

Interestingly, 98% of Adversarial Machine Learning papers155

using deep learning architectures involve image or text classifi-
cation, while time series datasets are significantly ignored, de-
spite their utilisation in mission-critical applications in health
care and financial trading [26].

Academic research focused on machine learning has revealed160

certain network architectures as being optimal for some prob-
lems. Convolutional Neural Networks (CNNs) have shown in-
credible success in computer vision tasks [14] and facial recog-
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nition [27]. Convolutional Neural Networks work by taking
input data and performing convolutions on the data. For image165

classification problems, this involves creating feature maps of
clusters of pixels.

Although Recurrent Neural Networks and Long Short-Term
Memory Networks have traditionally been the recommended
ML architecture for time series classification, it has recently170

emerged that CNNs can outperform these architectures for this
problem [28, 29]. Chen et al. applied transformations to a time
series, such as moving averages, and then combined these to-
gether [28]. This approach allowed a 2-Dimensional CNN to
be used as there were effectively multiple time series being175

analysed simultaneously. Fawaz et al. used a 1-Dimensional
CNN by training their data on the raw time series [30]. In this
approach, the CNN concept of kernel size is still applicable.
However, the kernel window only includes adjacent entries in
the time series across one dimension.180

The FGSM produced tiny perturbations imperceptible to hu-
mans to a test image which was subsequently misclassified, was
proposed in [23]. As in [24], it was found that the adversarial
examples transferred to different models. Since its publication,
the FGSM method has seen a lot of research attention. Simple185

variations, such as adding random perturbations, add robustness
to countermeasures [14]. Multi-step methods are more power-
ful variations, which use projected gradient descent for the neg-
ative loss function instead of the sign of the gradient [31, 32].
These have proven to be extremely robust against defences [33].190

Causative attack strategies target the classifier itself by ma-
nipulating the parameters, the architecture or the training set.
Sadeghi et al. [26], claimed that data poisoning is the most
common causative attack and defined “Label Flip” as poison-
ing a dataset by changing the hard class labels. Xiao et al. [34],195

attacked a Support Vector Machine model with targeted Label
Flip, where they changed the labels to an alternative class. Their
method required a classifier trained with the uncontaminated
dataset. Then, a new model was trained on this manipulated
data. This new model was found to be very underperforming.200

2.2. Financial Time Series Prediction
Time series analysis problems are a common class of prob-

lems in domains such as finance, weather, health care and secu-
rity [28].

Selvin et al. used several neural network models to analyse a205

financial time series [35]. Each model was given a sliding win-
dow of the time series as input. They used minute-wise stock
data with a 90 minute sliding window and trained their models
to predict 10 minutes into the future. They trained a Recurrent
Neural Network (RNN), a Long Short-Term Memory (LSTM)210

network and a CNN. RNN and LSTM networks are tradition-
ally popular architectures for deep learning with a time series.
In an RNN, computational units form a directed circular graph
which use internal memory when processing inputs. This is
achieved with a recurrent feedback loop. An LSTM is a form215

of RNN with special cells which allow it to store memory for
a longer period of time. The authors found that the RNN and
LTSM models were incapable of capturing dynamic trends in
the price movement, with the CNN being much more accurate.

They hypothesised that this was a result of the dynamic nature220

of the stock market. As price movements happen for reasons in-
dependent of the recent price history, the recent history offered
poor predictive value. The CNN model does not use the recent
history for any particular sliding window, and was therefore not
impacted by this.225

Chen et al. [28], used CNNs for financial time series fore-
casting. They found that CNNs could understand complex
patterns with more accuracy than rule based systems. Their
work was specific to a 2-Dimensional convolutional network.
They applied transformations to the time series to get a 2-230

Dimensional output. For example, several moving averages
were derived from the time series. These were combined to-
gether, which resulted in a 2-Dimensional output. Their exper-
iment utilised a sliding window approach, similar to [35].

2.2.1. Time Series Attacks235

Even though adversarial attacks on 2-Dimensional problems
such as image recognition have received a lot of attention in
recent years, such attacks against a 1-dimensional time series
have not being thoroughly studied.

Fawaz et al. published the first study on adversarial exam-240

ples against deep learning architectures used for time series
classification [30]. They attacked a state of the art deep learn-
ing architecture across spectroscopic time series used for food
safety, electrical sensor readings from vehicles and a time se-
ries of electricity consumption. As in this work, they success-245

fully utilised the FGSM method to produce adversarial exam-
ples. However, they had to add noise to investigate how the
model would behave, and they did not investigate the financial
time series model which, in comparison to their chosen time
series models, has larger amounts of noise.250

Karim et al. used a fully connected CNN and demonstrated
attacks across 42 datasets. They experimented with white-box
and black-box attacks. The black-box attacks featured a num-
ber of restrictions, such as no access to the dataset labels during
an attack. They used a Gradient Adversarial Transformation255

Network model to generate their adversarial examples, as pro-
posed in [36], and used an unsupervised neural network. They
found that all datasets were susceptible to attack [37].

Our work differentiates from others in the literature since
it contributes an evaluation of several attacks against a 1-260

Dimensional CNN architecture when used for time series clas-
sification. This work also contributes to the 2% of AML re-
search against a deep learning architecture which does not use
image or text datasets [26]. Compared to the existing literature,
we experimented with: i) A novel Single Value attack; ii) A265

Label Flip attack; and iii) An FGSM attack using a financial
time series model. As there is limited research into using deep
learning for financial time series analytics [28], to the best of
our knowledge, our work contributes to this research area and
demonstrates how financial groups may be vulnerable to a range270

of attack vectors. It also features a stock trading simulation to
assess the financial impact.
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3. Methodology

This section describes a 1-Dimensional Convolutional Neu-
ral Network model and three attack methodologies, namely275

FGSM, Single Value and Label Flip.
Each experiment represented a real-world security risk in the

financial trading domain. The FGSM and Single Value were
evasion attacks, attempting to force a misclassification at testing
time. The attacks were performed by intentionally altering the280

price of a financial instrument across the time series.
The Label Flip attack demonstrated how a poisoned dataset

could create a disproportionately inaccurate model. In a real-
world scenario, an attacker with access to the training data
could poison a small amount of the data and drastically affect285

performance.

3.1. Model Under Attack

Financial stock data was obtained from [38], and daily stock
price data for Google stock was used. The time range was
2006–2018. The training period was 2006–2014 and the re-290

maining data was used for validation. The data was processed
with a sliding window. The sliding window size was fixed to 30
days, and the future price prediction offset was fixed to 14 days.
These values are chosen to investigate whether a month of data
could predict the price in two weeks.295

The data was normalised so that each entry in the time series
was the price difference from the previous entry. This is known
as the price delta or ∆. By examining relative price movements,
the model would identify certain patterns used for prediction.
This is known in financial analytics as technical analysis [39].300

The Convolutional Neural Network that was used is com-
posed of two convolution layers and two hidden layers. It was
trained for 2000 iterations using the PyTorch library. The pseu-
docode representing the model and its parameters can be seen
in Algorithm 1.305

Algorithm 1 Pseudocode of 1-D CNN Model

1: Conv1d(inputs=1, outputs=32, kernel_size=3, padding=1,
stride=1)

2: ReLU(inplace=True)
3: Conv1d(inputs=32, outputs=3, kernel_size=3, padding=1,

stride=1)
4: ReLU(inplace=True)
5: Linear(84,250)
6: ReLU(inplace=True)
7: Linear(250,2)

The network output was a vector with two entries. This form
of output is known as a one-hot vector. The two entries repre-
sented the predicted probability of a sell or a buy. The sigmoid
function was used on the vector in the final stage of the network
to normalise the entries between 0 and 1. The Stochastic Gra-310

dient Descent (SGD) optimiser was used for backpropagation.
Binary Cross-Entropy (BCE) Loss was used as the loss func-
tion. Cross-Entropy Loss functions are common loss functions
when evaluating one-hot vector results [37].

3.1.1. Optimisation315

The CNN had two convolution layers, each with its own out-
put and kernel sizes. These were hyperparameters to be op-
timised. For computational performance reasons, a limit was
placed on these parameters. A range of 1 to 200 was chosen
for tuning the number of convolution layers. A range of 1 to 20320

was the constraint for the kernel size. This resulted in 8 million
possible hyperparameter combinations.

The Stochastic Gradient Descent algorithm was parame-
terised with a learning rate and momentum. The learning rate
affects how much the gradients are changed during backprop-325

agation. The momentum accelerates the gradient change and
leads to faster converging. Both of these parameters were con-
sidered hyperparameters. The range for optimisation was be-
tween 1e − 9 and 1e − 1 for both parameters.

The Optuna optimisation framework was used for efficient330

hyperparameter optimisation [40]. The framework allowed the
hyperparameter search space to be dynamically generated in
the program at runtime. It then performed sampling to find
the optimal parameters given the loss function. It used a Tree-
structured Parzen Estimator during the search. This form of335

Bayesian Optimisation uses a probability model to determine
which hyperparameters should be evaluated.

The optimisation framework used BCE Loss as the loss func-
tion to mirror the model’s loss function. The optimisation ran
for 150 rounds, and the accuracy in each round is illustrated in340

Figure 1.
The optimal parameters for the first convolutional layer were

a 32-dimensional output with a kernel size of 3. The optimal
parameters for the second layer were a 3-dimensional output
with a kernel size of 3. The learning rate was 1.71176e − 05.345

The momentum was 0.081.

3.2. FGSM Attack

The FGSM [23] is very similar to the methodology used in
this experiment. However, it was adapted slightly to function
with a time series as an input.350

The experiment used validation data from the dataset. This
meant that the model was attacked with data which was not used
for training. As discussed, the data was processed with a sliding
window. This attack created a small perturbation to the original
test data. The perturbation created for each sliding window can355

be seen in Algorithm 2.

Algorithm 2 Pseudocode of Perturbation

1: Evaluate the sliding window with the model.
2: For each entry in the time series, capture the gradient using

backpropagation.
3: For each gradient, obtain the sign of the gradient as −1 or

1.
4: Multiply the gradients by the parameter ϵ.

Formally, the perturbation can be expressed as: η = ϵ ·
sign(∇xJ(X)) where X is the model input and ∇xJ(X) is the gra-
dient. This perturbation was added to the original input data, as
in [23] and [30]. This is illustrated in Figure 2.360
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Figure 1: Hyperparameter Optimisation Accuracy Results

Figure 2: Sliding Window input and FGSM attack

The parameter ϵ drives the magnitude of the attack. In this
scenario, it represented how much the price of the stock would
be moved to perform the attack. It was important not to set ϵ too
high, as this could be identified as an abnormal price movement
by human observers.365

For these reasons, ϵ was limited to the mean delta across the
dataset. The value was calculated as 4.54. This means that
the perturbation would modify the time series by the average
amount of daily price change. The experiment was repeated for
different values of ϵ up to this limit. The initial value for ϵ was370

0, where no data was perturbed. In each subsequent iteration, ϵ
increased by 10% of the mean delta. The experiment concluded
after ϵ was equal to the mean delta.

3.3. Single Value Attack

The Single Value attack is a novel adaptation of the FGSM375

attack. It attempted to identify the most impactful entry in each
sliding window to perturb. It was inspired by the one-pixel at-
tack [14], which caused poor performance by perturbing a sin-
gle pixel in an image. In our case, each sliding window was
passed through the model, and the gradients were retrieved us-380

ing backpropagation. In the FGSM attack, a single perturbation
was created, which perturbed all entries in the sliding window.
The Single Value attack methodology differed can be seen in
Algorithm 3. This was done for all sliding windows. An exam-
ple of a chosen perturbation is illustrated in Figure 3.385

The value for ϵ was two times the standard deviation of the
delta between each entry. This is represented as ϵ = 2∆. This
value was chosen as it would have more impact than using the
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Figure 3: Single Value attack example

Figure 4: Sliding Windows sorted by profitability

Algorithm 3 Pseudocode of Single Value Perturbations

1: For each sliding window, n number of perturbations were
temporarily created, where n is the number of entries in
the time series. Each of these perturbations affected just a
single entry in the sliding window, such that all entries had
a corresponding perturbation.

2: Each of the perturbations were applied to the original data.
3: The perturbed data was passed through the model and a loss

was obtained.
4: The worst performing perturbation was chosen as the per-

turbation to use in the attack.

mean, but would still be viewed as a normal price movement by
human observers. The value was calculated to be 10.4.390

3.4. Label Flip Attack

The Label Flip attack involved changing the label of training
data so that an inaccurate classifier was trained. The objective
was to change a small percentage of the training data and have
a relatively large impact on performance. In this experiment,395

flipping a label meant changing a Buy label to a Sell and vice
versa [34], and this can be seen in Algorithm 4.

This method produced a model which had maximal loss un-
der the original classifier, but minimal loss with the poisoned
classifier. This is because it was trained to identify the most400

costly trades as profitable. This experiment used profitability as
the loss function to identify the worst performers. This function
was chosen in order to demonstrate the impact in a real-world
scenario. For computational performance reasons, the models
for the clean and poisoned datasets were trained for 2000 itera-405

tions.
The methodology was parameterised by n. This was the per-

centage of data which would be flipped in the experiment, and
a value of n = 10 was used. This was chosen by analysing
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Algorithm 4 Pseudocode of Label Flip

1: Use a model trained on a clean dataset.
2: Using a trading simulation, calculate a profit for each slid-

ing window in the training dataset.
3: Sort the sliding windows by the least profitable.
4: Extract the worst performing n sliding windows, where n

is a parameter representing the percentage of data to be
flipped.

5: Flip the label of the worst performing data.
6: Re-combine the original and flipped datasets.
7: Train a new model using this poisoned dataset.

the distribution of poorly performing datasets. It was found410

that some 10% of the sliding windows are disproportionately
unprofitable. This is visualised in Figure 4, which shows the
profitability for each sliding, sorted by the least profitable first.
It can be observed that there is a small percentage of sliding
windows which underperform.415

4. Results

4.1. FGSM attack

The FGSM attack caused a significant reduction in perfor-
mance across several metrics, and the BCE loss function was
used to compute the loss since this was suitable for a binary420

classifier. The experiment was repeated over several iterations
with the value of ϵ increasing in increments. The minimum
value for ϵ was zero, and the maximum was equal to the mean
delta in the time series. The increments were in 10% of the
mean delta.425

When ϵ = 0, the loss was equal to the base loss of the net-
work when using the evaluation data. This was 4.95. As ϵ
increased, the loss increased. The final loss for each increment
of ϵ is shown in Figure 5.

When ϵ was equal to the mean delta, 4.55, the loss was 18.72.430

An example of the experiment results for each sliding window
in this iteration is shown in Figure 6. This illustrates that the
loss was significantly higher when using the FGSM attack.

The classifier used in this experiment was binary, using the
labels Buy and Sell. A simple performance metric for this clas-435

sifier is calculating its Accuracy. Accuracy is the ratio between
the correct predictions and the total predictions. The output of
a binary classifier can belong to four classes: True Positives,
True Negatives, False Positives, and False Negatives [41]. Us-
ing these classes, the formula for accuracy can be derived as:440

Accuracy= tp+tn
tp+tn+ f p+ f n

In this experiment, Positives were Buy labels and Negatives
were Sell labels. Using these classes, the values of other com-
mon performance metrics can be calculated.

Recall is accuracy in the Positive class. It is an indication of445

how performant the classifier was at predicting Positive class
instances. Recall = tp

tp+ f n
Precision is the ratio of correctly classified Positive in-

stances, to all instances classified as Positive. It is useful for

measuring the level of misclassification as Positive. Precision450

=
tp

tp+ f p
F-Score is a common metric which is defined as the harmonic

mean of Recall and Precision. FScore = 2 × precision×recall
precision+recall

Four accuracy metrics were used for the attacks in this exper-
iment: Standard Accuracy, Recall, Precision and F-Score. The455

measurements for the FGSM attack showed a dramatic decrease
in accuracy across all metrics. These are shown in Figure 7a.

Accuracy and F-Score are among the most popular metrics
for measuring binary classification performance. However, [41]
found that these metrics display overly optimistic and inflated460

results due to the imbalance issues. The Matthews Correlation
Coefficient (MCC) overcomes this class imbalance issue. The
MCC is a special case of the ϕ (phi) coefficient, which is used
for binary classification problems. It is computed as MCC =

(tp×tn)−( f p× f n)√
(tp+ f p)×(tp+ f n)×(tn+ f p)×(tn+ f n)

and it is claimed to be the only465

binary classification measurement which generates a high score
if a majority of positive and negative instances are correctly
classified [41]. The values of MCC for each iteration of the
FGSM attack are illustrated in Figure 7b.

The real-world impact was demonstrated in a stock trading470

simulation of bought or sold stock based on predictions from
the model. The accumulated profit when evaluating the test data
was recorded for each increment of ϵ, in increments of 10% of
the mean delta. The results are depicted in Figure 8. The final
loss curve is shown in Figure 9. This shows the final financial475

profit from the simulation for each increment of ϵ.

4.2. Single Value Attack

A significant reduction in accuracy was observed for the Sin-
gle Value attack. This was significant as only a single entry in
each sliding window was perturbed. This attack was also pa-480

rameterised with ϵ, representing the amount of price change in
the attack. As only one entry was being perturbed, a higher limit
was chosen for the value of ϵ. This value was still constrained,
so the price movement would be within historical ranges. A
value of two times the standard deviation of the delta of the485

time series was chosen, and this was 10.42 in the dataset.
The loss for each increment of ϵ is shown in Figure 10.
Figure 11 shows the loss for each sliding window when ϵ was

at the highest value.
The accuracy measurements were calculated in the same490

manner as with the FGSM attack. The accuracy, precision, re-
call and F-Score measurements were calculated for each itera-
tion of ϵ. The results are illustrated in Figure 12a.

The MCC value was calculated, and a significant reduction
in accuracy was observed as ϵ was increased. The magnitude495

of the decrease in the MCC value was half the value seen in the
FGSM attack. This is an impressive reduction in accuracy as
only one-thirtieth of the entries were perturbed. The result for
each iteration is shown in Figure 12b.

The profitability was calculated with the same trading simu-500

lations as the FGSM results. However, a large impact on prof-
itability was observed, approximately half the impact of the
FGSM results. This correlates with the results seen in the MCC
calculation. The final monetary loss for each increment of ϵ is
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ϵ (% of mean ∆) Loss

0 (0 %) 4.95
0.91 (20 %) 8.00
1.82 (40 %) 11.21
2.73 (60 %) 14.14
3.64 (80 %) 16.77

4.55 (100 %) 18.72

Figure 5: BCE Loss for FGSM attack for each increment of ϵ

Figure 6: BCE loss for ϵ = mean∆ under FGSM attack

(a) Accuracy Metrics

(b) FGSM MCC

Figure 7: Accuracy Metrics & FGSM MCC

shown in Figure 13. The result from the trading simulation for505

each increment of ϵ is shown in Figure 14.

4.3. Label Flip

The Label Flip attack involved training a classifier with a poi-
soned dataset. The experiment flipped the label of 10% of the
dataset. For evaluation, metrics for a clean dataset and the poi-510

soned dataset were obtained. The attack had a clear impact on
profitability in the trading simulation and caused a significant
increase in the BCE Loss. Minor decreases were found in ac-
curacy and MCC score.

The BCE loss for the clean dataset and poisoned dataset were515

calculated. The loss for the clean dataset was 2.65. This was
different to the base loss for the evasion experiments as the
model was retrained and initialised with random weights and bi-
ases. Using a poisoned dataset increased the loss to 5.8, demon-
strating a substantially reduced performance. This is illustrated520

in Figure 16.
The simulation showed a drastic impact on performance.

The profitability during the trading simulation is shown in Fig-
ure 15. The trading simulation showed a reduction in final profit
of $2748 for the base model to −$915 for the poisoned model.525

This is significant as only 10% of the labels were flipped. Fur-
thermore, this impact was achieved without manipulating the
price of the market. These would make the Label Flip attacks
much more cost-effective than the evasion attacks.

Further, several accuracy metrics were obtained. These are530

shown in Figure 17a. A minor decrease in accuracy was ob-
served between the base and poisoned classifiers. This is in con-
trast to the substantially decreased performance in profitability
and BCE Loss. It is interesting that the results are not fully
correlated. This may be because profitability and loss metrics535

incorporate the magnitude of classification and misclassifica-
tion. They add more weight to very costly or very profitable
predictions. This is in contrast to the accuracy metrics, which
are simply concerned with the correctness of a prediction.

This effect may be encouraged by the methodology. The540

methodology flipped the label of the most unprofitable slid-
ing windows instead of the least accurate. This should create a
classifier where disproportionality underperforms in profitabil-
ity metrics. Finally, it is worth noting that the Label Flip attack
may perform strongly across all metrics in a highly predictive545

model. However, producing a model that accurately predicts
financial time series data is very challenging. The MCC mea-
surement showed a slight decrease in performance between the
base model and the poisoned model. This may be for the same
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Figure 8: FGSM simulated profit for ϵ = mean∆

Figure 9: FGSM Total Profit per iteration of ϵ

reason as the other accuracy metrics. The MCC is shown in550

Figure 17b.

5. Discussion

The results demonstrated a significant performance loss in
each attack and how this can lead to financial loss when used in
financial trading simulations. As these are white-box attacks,555

an attacker would need access to the internals of the neural
network to perform them. However, the existence of insider
threats, malicious employees, network breaches and data theft
mean that this is a legitimate concern.

It is worth noting that a more finely tuned model could be560

even more affected by attacks. A side experiment was per-
formed, where the FGSM method was applied to the training
data, instead of the validation data. Naturally, the model would
be much more predictive of this data. The initial results showed
that the losses were more than double than those of the original565

model. This is illustrated in Figure 18.
[26] claimed that proactive defences were the most popular

approach. They found that most approaches aimed to prevent
damage as much as possible. Reactive defence approaches pro-
vide protection for a trained neural network, and [14] identi-570

fied several common approaches in the literature. Adding a
specialised detector involved including an attack-detector as
part of the network. This detector would identify adversarial
examples and block them before classification. For example,
[42] studied the statistical properties of adversarial examples575

in order to detect attacks. They demonstrated that many at-
tacks, including the FGSM method, could be detected. For
defences which modify the classifier, [26] and [14] identified
several approaches. Adversarial example thwarting involved

neutralising perturbations in adversarial examples. They found580

several techniques to achieve this, such as data transformation
[43] and noise filtering [44]. Training process modification in-
volves modifying the training data to make the classifier more
resilient to adversarial examples. A common approach was in-
corporating adversarial examples into the training dataset. This585

approach was tested by [23] when studying the FGSM method.
They showed that incorporating adversarial examples into the
training set improved the robustness of the classifier. However,
[33] found that this approach would add robustness against one-
step attacks but would not help with iterative attacks. ML al-590

gorithm modification involves modifying the classifier to draw
more accurate class boundaries, such as applying non-linear
ML algorithms [45]. Network distillation involved reducing
the complexity of the neural network. The technique was orig-
inally used to reduce the size of the network by transferring595

knowledge from a large to a small network. They found that
attacks that relied on networks’ sensitivity were less success-
ful. However, the improvements were quite modest. For exam-
ple, the success rate of an attack from [46] against the popular
MNIST and CIFAR-10 datasets was reduced by 0.5% and 5%,600

respectively. Adversarial detecting involves identifying adver-
sarial examples, often using ML architectures. It differs from
the proactive specialised detector defence as the system for de-
tecting attacks exists outside of the neural network itself [26].

6. Conclusions605

Adversarial examples continue to threaten ML and AI sys-
tems. This work explored FGSM, a novel Single Value and La-
bel Flip attacks against a 1-Dimensional Convolutional Neural
Network. This work focused on the potential impact to the fi-
nancial trading domain. A trading simulation was used to assess610

the impact of the attacks, and we found that all attacks caused
a significant reduction in profitability.

The attacks in the experiment demonstrated that the target
architecture was susceptible to adversarial examples. Further
potential problems arise as the stock market is publicly traded.615

If the price was modified by buying or selling a stock, other
investors could return the stock price to an unwanted value.

Our experiment was performed using twelve years of daily
stock price movements for Google stock. Our future plans
include the use of much more granular data while consider-620

ing 2-Dimensional CNN models. Additionally, there are many
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ϵ (% of 2σ∆) Loss

0 (0 %) 4.95
2.08 (20 %) 5.62
4.17 (40 %) 6.29
6.25 (60 %) 7.05
8.34 (80 %) 7.82

10.42 (100 %) 8.59

Figure 10: BCE Loss for Single Value attack for each increment of ϵ

Figure 11: BCE loss for ϵ = 2ω∆ under Single Value attack

(a) Single Value Attack Accuracy

(b) Single Value Attack MCC

Figure 12: Single Value Attacks for each increment of ϵ

other grey-box and black-box attacks described in the literature
which could be effective against a 1-Dimensional CNN.

In our future work, we plan to study the effects of such
attacks against different Deep Neural Network architectures.625

This would be interesting from an adversarial perspective as
the adversaries would have to produce adversarial examples
across all the channels. Additionally, we aim to explore defen-
sive countermeasures further, such as adversarial training tech-
niques [47–49]and calculate the impact of these attacks again.630

Figure 13: Single Value Total Profit per iteration of ϵ
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