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Abstract: Convolutional Neural Network (CNN) has been widely applied in the field of synthetic
aperture radar (SAR) image recognition. Nevertheless, CNN-based recognition methods usually
encounter the problem of poor feature representation ability due to insufficient labeled SAR images. In
addition, the large inner-class variety and high cross-class similarity of SAR images pose a challenge
for classification. To alleviate the problems mentioned above, we propose a novel few-shot learning
(FSL) method for SAR image recognition, which is composed of the multi-feature fusion network
(MFFN) and the weighted distance classifier (WDC). The MFFN is utilized to extract input images’
features, and the WDC outputs the classification results based on these features. The MFFN is
constructed by adding a multi-scale feature fusion module (MsFFM) and a hand-crafted feature
insertion module (HcFIM) to a standard CNN. The feature extraction and representation capability
can be enhanced by inserting the traditional hand-crafted features as auxiliary features. With the
aid of information from different scales of features, targets of the same class can be more easily
aggregated. The weight generation module in WDC is designed to generate category-specific weights
for query images. The WDC distributes these weights along the corresponding Euclidean distance
to tackle the high cross-class similarity problem. In addition, weight generation loss is proposed to
improve recognition performance by guiding the weight generation module. Experimental results on
the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset and the Vehicle and
Aircraft (VA) dataset demonstrate that our proposed method surpasses several typical FSL methods.

Keywords: synthetic aperture radar (SAR); convolutional neural network (CNN); radar target recognition;
few-shot learning

1. Introduction

Thanks to its outstanding penetrating ability, synthetic aperture radar (SAR) has all-
day and all-weather ground imaging ability with high spatial resolution. For a long time,
SAR image recognition has been a research hotspot for obtaining essential information from
targets. The recognition pipeline usually contains two components, a feature extractor and
a classifier. In traditional recognition methods, the feature extractor is used to extract hand-
crafted features, including geometric features [1], transformation features [2], scattering
features [3], etc. However, traditional recognition methods, i.e., the design of these hand-
crafted features, usually rely excessively on expert knowledge and lack the ability to
generalize to novel class targets.

With the progress of deep learning theories in recent years, the convolutional neural
network (CNN) approach has received attention from researchers in the realm of SAR
image recognition because of its excellent automatic feature extraction ability. CNN-
based methods are developed to further improve the recognition performance of SAR
images by using a dual-branch CNN [4], using DenseNet and feature reuse strategy [5],
combining CNN with support vector machine (SVM) [6], or fusing multi-size convolution
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kernels [7]. In addition, CNN-based methods have made further progress in several specific
SAR-related tasks, such as target detection [8], image segmentation [9,10], and more.
Nevertheless, CNN is a data-driven algorithm that requires numerous high-quality labeled
images to train the model. Due to this limitation, CNN usually suffers from problems
with overfitting due to insufficient training samples, which may degrade the recognition
accuracy of the CNN model.

In practice, it is arduous and time-consuming to obtain enormous labeled SAR images
due to speckle noise and background clutter. Normally, there are only a few dozen labeled
images or less in each category. Under this circumstance, the recognition accuracy of
CNN drops substantially [11,12]. In order to tackle this issue, researchers have proposed
several methods, such as training set augmentation, transferring knowledge from other
domains, designing networks with fewer parameters, and others. For instance, Ding et al.
proposed augmenting the training set using three strategies: translation, adding speckle
noise, and pose synthesis [13]. In [14], the authors propose transferring knowledge from
the simulated data domain to alleviate the problem of insufficient training samples for SAR
images. Zhao et al. propose a novel network architecture that replaces the convolution
layers with highway-units to make it possible to train a deeper network using limited SAR
images [15]. Zhang et al. adopt the pruning and knowledge distillation strategy to build
a lightweight CNN while maintaining high recognition accuracy [16]. Even though the
above-mentioned methods have achieved great success with limited training SAR images,
the training process needs dozens of training samples per class to ensure that the model
can achieve satisfactory performance.

Therefore, few-shot learning (FSL) has attracted interest from researchers. FSL first
uses plentiful labeled images from base categories to train the model, then generalizes the
prior knowledge to novel categories [17]. With very limited labeled samples (normally one
or five per class) from novel categories as reference information, FSL can recognize the
unlabeled samples from novel categories [18].

Common FSL frameworks can be divided into two stages: feature extraction and
classification. According to the framework, FSL methods first use the feature extraction
network (e.g., CNN) to map samples into the feature space with lower dimensions. In
the feature space, targets from the same class tend to aggregate and stay closer, whereas
samples from different categories are usually far apart. In the classification stage, FSL
methods use different metric functions to measure the similarity between samples in the
feature space [19]. Researchers have applied FSL to the SAR target recognition problem. For
instance, Tang et al. improved the recognition accuracy and reduced the time consumption
of Siamese Networks [20]. Yang et al. combined the graph neural network (GNN) with the
relation network to describe the relationship between query samples and support samples,
which increases the recognition accuracy for SAR few-shot recognition tasks [21].

There are two specific special characteristics of SAR images: their large inner-class
variety, and their high cross-class similarity [22]. The large inner-class variety means that
targets of the same class can be very different in appearance due to the high angle sensitivity
of SAR images [23]. In addition, high cross-class similarity means that targets from different
categories can have quite similar appearances [24]. These characteristics may result in
confusion in the feature space for targets from different categories, which poses challenges
for the classification stage of certain FSL methods because they make decisions based on the
distance between samples. Such methods include Siamese and the prototypical networks.

Meanwhile, the number of labeled SAR images from base classes is far lower than
from the optical dataset, which leads to less prior knowledge that can be generalized into
novel class recognition tasks. Therefore, combining other types of features with CNN
features to enrich prior knowledge can be useful. Hand-crafted features have been widely
used in SAR image classification, and have good robustness and stability. Researchers have
combined hand-crafted features with CNN features to improve performance, although few
have been applied to FSL tasks. Both the appropriate hand-crafted features and the fusion
strategy should be chosen carefully.
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To tackle the aforementioned problems mentioned and improve recognition perfor-
mance with limited labeled SAR images, we propose a novel few-shot SAR image recog-
nition method in this article. First, we introduce a hand-crafted feature insertion module
(HcFIM) to combine CNN features with hand-crafted features to accumulate more prior
knowledge in the training stage of FSL. Here, we select the histogram of oriented gradient
(HOG) feature for combination, with the HOG features representing the edge and local
information of targets, which complements the CNN features. In HcFIM, we introduce the
weight concatenation method to fuse two types of features. To alleviate the large inner-
class variety, we design a multi-scale feature fusion module (MsFFM) for aggregating the
information from features with different scales. With the aid of information from different
layers, targets of the same class can be more easily aggregated and different targets with
high similarity can be identified more effectively. Finally, we propose a weighted distance
classifier (WDC) to tackle the problem of high cross-class similarity. The weight-generation
module in WDC takes the concatenation result of query images and prototypes as input and
outputs the category-specific weights for query images. By distributing these weights on
the Euclidean distance, the inter-class distance and separability between different categories
in the embedding space can be increased. In addition, we design the weight-generation
loss to supervise the weight generation module in the training process, as these generated
weights should represent the difference between query images and prototypes.

In general, the contributions of our proposed method can be summarized as follows:

(1) In order to mitigate performance deterioration problems caused by insufficient la-
beled data, we combine CNN features with traditional hand-crafted features in a
hand-crafted feature insertion module (HcFIM). The HcFIM introduces a weighted
concatenation method to combine these two types of features, enhancing the expres-
sion capability and robustness of CNN features.

(2) We design a multi-scale feature fusion module (MsFFM) to combine the information
from features with different scales. MsFFM has a tree-like architecture designed
for fusing the local edge information from the lower levels of CNN and the global
semantic information from the higher levels of CNN in a cascade fashion. With
the aid of information from different layers, targets of the same class can be more
easily aggregated and different targets with high similarity can be identified more
effectively. The MsFFM and the HcFIM are combined with the CNN backbone to form
the multi-feature fusion network (MFFN) as the feature extractor of our method.

(3) Because the high inter-class similarity within SAR images poses a challenge for few-
shot recognition, we design a weighted distance classifier (WDC) to improve the
recognition process of the prototypical network. The weight generation module in
WDC consists of a multi-layer neural network, which is designed to generate suitable
category-specific weights for query images in a data-driven way. By distributing
these weights on the Euclidean distance, the inter-class distance and separability
between different categories in the embedding space can be increased. In addition,
weight generation loss is proposed to improve recognition performance by effectively
facilitating the weight generation module.

The structure of our paper is organized as follows. Related works on few-shot learning
are briefly reviewed in Section 2. Section 3 describes our proposed method in detail. We
discuss the results of our experiments on the MSTAR and VA datasets in Sections 4 and 5.
Finally, we conclude this article in Section 6.

2. Related Works
2.1. Few-Shot Learning Methods

With the development of hardware and deep learning theories, CNN-based methods
have become widely used in computer vision tasks represented by image classification.
Starting with AlexNet in 2012 [25], many different CNN backbone structures have been
proposed to improve recognition accuracy. VGG uses smaller convolution kernels with a
size of 3× 3, which makes it possible to construct a deep network for large-scale image
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recognition tasks [26]. By adding residual learning blocks, ResNet solves the degradation
problem as the network grows deeper [27]. In addition these structural modifications,
other mechanisms have been developed to improve image classification performance. The
attention mechanism has been adopted to help CNN focus more on specific areas to obtain
more information about targets and suppress irrelevant information. For instance, SE-Net
(squeeze-and-excitation network), proposed by Hu et al., improves recognition accuracy by
refining the information between different channels of feature maps [28].

Due to the overfitting problem, CNN-based methods usually fail when there are no
sufficient labeled images for training. Therefore, FSL has attracted growing interest from
researchers in recent years. Most mainstream FSL methods use a two-stage framework
involving feature extraction and classification. In the feature extraction stage, FSL methods
first use the feature extraction network (e.g., CNN) to map the image sample into the
embedding space with lower dimensions. In the embedding space, the closer the samples
are, the more likely they are to belong to the same class. In the classification stage, prediction
results can be obtained by applying different metric functions to calculate the similarity
between samples, such as L1 distance, cosine similarity, Euclidean distance, and learnable
metric function. Siamese networks [29] and matching networks [30] both take an image
pair as input; in these networks, the similarity between the paired images is obtained by
calculating the L1 distance and the cosine similarity, respectively. To avoid comparing the
similarity one by one, a prototypical network [31] first calculates the prototype of each class
using an inner-class averaging operation, after which unknown samples can be classified
into the category corresponding to the prototype with the smallest Euclidean distance to
themselves. The relation network [32] replaces the distance-based similarity measurement
strategy with a learnable relation module which can automatically learn a suitable metric
function in the training process. In addition to optimizing the metric function, several
methods have proposed optimizing the feature extraction network for better performance.
For instance, few-shot embedding adaptation transformer (FEAT) [33] modifies the feature
extraction network by adding a self-attention mechanism to CNN, allowing it construct a
task-specific feature space.

2.2. Few-Shot Learning in SAR Image Recognition

Most existing few-shot learning methods for SAR images can be divided into metric-
based, optimized-based, and generative-based methods. Metric-based methods aim to
find an appropriate embedding space and a metric function to measure the similarity
between samples in the embedding space. Wang et al. replaced the typical CNN structure
with a convolutional bidirectional long short-term memory (Conv-BiLSTM) network to
extract features with azimuth robustness [34]. Because GNN has strong feature extraction
ability and can effectively describe the relationship between samples, Yang et al. utilized
graph neural networks (GNN) to obtain the relationship between query instances and each
prototype [21]. Yue et al. proposed a feature-matching classifier (FMC) for SAR image
classification which uses a learnable CNN to measure the similarity between query images
and each prototype [11]. In order to tackle the problem caused by large depression angle
variation, Yang et al. designed an inference network based on a multi-layer graph attention
network to serve as the metric function and output the prediction results [35]. Optimization-
based methods focus on learning a suitable parameter initialization or updating strategy
to quickly generalize prior knowledge to recognize targets from unseen categories. For
instance, an optimization-based meta-learning framework, MSAR [36], is proposed for
learning parameter initialization for SAR FSL tasks. MSAR introduced three transfer
learning strategies to exploit prior knowledge, and used a task mining strategy to emphasize
the harder tasks. Generative-based methods concentrate on generating SAR-like images
to enrich the training set with the aim of alleviating the overfitting problem caused by
insufficient training samples.

Even though the above-mentioned methods have obtained great results on the few-
shot SAR image recognition problem, several researchers have applied methods to SAR
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images after making adjustments on the basis of methods designed for optical images,
ignoring the differences between SAR images and optical images, such as the large inner-
class variety and high cross-class similarity of SAR images. Works cited in [35] provide
solutions for the high cross-class similarity of SAR images by taking the graph attention
network as the metric function. Different from the GNN-based method, we propose a novel
metric function solution, i.e., using WDC to calculate the weighted distance in the feature
space between query samples and prototypes, which is more intuitive and understandable.
In addition, aiming to address large inner-class variety problems, we first modify the
feature extraction process by adopting MsFFM to fuse fine-grained local features from
lower levels and global semantic features from higher levels. By fusing features containing
different information, targets from the same category can be better aggregated.

2.3. Combining of CNN Features and Traditional Hand-Crafted Features

Thanks to their ability to automatically extract features from big data, CNNs have
been widely used by researchers in SAR image recognition tasks and have achieved great
success. Nevertheless, the features extracted by a CNN are not very explainable, which
makes the CNN model akin to an opaque “black box” model. In addition, most CNN-based
recognition methods disregard traditional hand-crafted features, which have long been
widely used in traditional SAR image recognition methods. These traditional hand-crafted
features are designed by experienced experts and have better reliability and interpretability.
Therefore, many researchers have considered combining hand-crafted features with the
abstract features of CNNs for better feature representation of SAR images.

To improve the detection accuracy of traditional methods and confer better inter-
pretability on CNN features, Zheng et al. proposed a multi-feature SAR target detection
method [1]. This method first extracts geometric features of SAR images, then concate-
nates them with features directly captured via CNN. This multi-feature method achieves
better accuracy and recall on the Sentinel-1 dataset than ones only using CNN features or
geometric features. The Gabor filter has multi-orientation properties and good direction
selection characteristics, and is compatible with the orientation-sensitive characteristic of
SAR images. Inspired by this, Yu et al. initialized the inception module of GoogLeNet with
multi-scaled and multi-orientated Gabor filters [37]. With 20% of the MSTAR training im-
ages used for training, the end-to-end model was able to achieve 90% recognition accuracy,
which is significantly better than other comparable schemes. Other than geometric features,
researchers have combined CNN features with attributed scattering center (ASC) features
extracted from the complex data of SAR images. In order to promote better performance
under the Extended Operating Conditions (EOCs) of the MSTAR dataset, a novel feature
fusion framework named FEC was proposed by Zhang et al. in [38]. The complex data of
SAR images is fed as the input of FEC to obtain ASCs, which are further used to construct
a visual word bag. Then FEC uses the K-means algorithm to convert visual word bags
into feature vectors. Finally, the discrimination correlation analysis (DCA) algorithm is
adopted to fuse the CNN features and ASCs features for classification. This framework
achieves over 99% recognition accuracy under SOCs and EOCs of the MSTAR dataset. Li
et al. divided the SAR target by using the geometric scattering types of ASCs to learn
the component information [39]. Combining the component information with the global
information obtained by CNN can enhance the feature description ability and make the
feature more robust. The above approaches fully illustrate that the fusion of CNN features
and traditional hand-crafted features is feasible and effective. However, the ASC features
are extracted from the complex data of SAR images, which means that they have certain
limitations in applications, especially when complex domain data are unavailable.

3. Methods
3.1. Problem Definition

FSL is proposed to train a classifier that is capable of recognizing targets from novel
categories with very few training samples. According to the requirements of the few-shot
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learning recognition tasks, the dataset should comprise the training set DBase and the test
set DNovel . The images of DBase belong to the base categories, and DNovel consists of images
from novel categories, which are non-intersecting. We use the labeled images from DBase
to optimize our model. The test set DNovel comprises the support set Sn and query set Qn,
which have a shared label space. Generally, images in Sn belong to C different categories,
and each category has K annotated images. In this case, this few-shot recognition task is
defined as a “C-way K-shot” problem and K is usually set to one or five. Qn consists of
unlabeled samples used to assess our model’s performance.

Our method adopts an episodic training mechanism to match the training and testing
process. To be specific, in every training episode we randomly select K images from each
class of training set DBase to build up the training support set Sb. Meanwhile, a certain
number of images from each class are randomly selected to form the training query set Qb.

3.2. Overall Framework

The framework of our proposed few-shot SAR image recognition method is shown in
Figure 1. For better illustration, only a four-way task with one query image is shown in
this figure. In the training process, the model is trained to recognize the images from Qb
based on the knowledge learned from Sb. Thus, the parameters of the few-shot recognition
model can be updated with different Sb and Qb.

Figure 1. The framework of our proposed few-shot SAR image recognition method. The whole
structure can be divided into two parts: the feature extraction network (MFFN) and the weighted
Euclidean distance classifier. Support images are fed into the MFFN to extract features and then
calculate the prototypes c1, c2, c3, c4 by averaging. Query feature vector x1 is extracted by MFFN to
calculate the corresponding Euclidean distance d1, d2, d3, d4. Afterwards, x1 is concatenated with the
prototypes ci, and the concatenation vectors are sent to the weight generation module to calculate
weights w1, w2, w3, w4. Finally, the weighted distances are obtained by multiplying weights with the
Euclidean distance, and the softmax function is adopted to calculate the category probabilities on the
weighted distances.

In each training episode, images from Sb and Qb are first sent into the MFFN, from
which the prototypes of different classes ci can be obtained by performing the intra-class
average operation on support features. The Euclidean distance di between query features
and prototypes can be calculated as well. The MFFN contains a CNN backbone, SE-Net,
MsFFM, and HcFIM, which are described in detail in Section 3.3. Afterwards, query features
are concatenated with each prototype individually and the concatenated features are
provided as the input of the weight generation module to generate category-specific weights
wi. Then, the weighted distance can be obtained by multiplying wi and di. Finally, we
adopt the softmax function on the weighted distance to calculate the category probabilities
for query images. The cross-entropy loss Lc and weight-generated loss Lw are combined
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to train the model jointly, and are minimized through the training process to update
the parameters.

In the testing process, we use images from support set Sn and query set Qn to assess the
effectiveness of our method. Sn and Qn have a shared label space which is non-intersecting
with that of DBase. First, we utilize the trained MFFN to extract the features of images from
Sn and Qn, from which the prototypes of novel categories can be obtained by class-wise
averaging. Next, weights for query images from novel classes are generated by the weight
generation module in WDC. Finally, the softmax function is utilized on the weighted
distance to obtain the classification results of each query image.

3.3. Multi-Feature Fusion Network

Several previous research studies have indicated that features extracted by different
layers contain different and complementary information. For instance, features from
lower layers have more local edge details, while higher-level features include more global
semantic information [40,41]. In addition, because traditional hand-crafted features have
better robustness and interpretability than abstract CNN features, the feature expression
capability can be enhanced by combining these two complementary features. In order to
exploit the complementary information from the multi-scale features and combine CNN
features with traditional hand-crafted features, MFFN is proposed in this article for feature
extraction. As shown in Figure 2, MFFN mainly comprises two modules, the MsFFM
and the HcFIM. The MsFFM is designed to fuse the features with different scales from
each layer of CNN and the HcFIM is adopted for combining modern CNN features with
the traditional hand-crafted features. In addition, the channel attention mechanism is
embedded into the MFFN to optimize the feature expression.

Figure 2. The overall architecture of the MFFN includes the MsFFM and the HcFIM. The channel-
optimized features with different scales Fa1, Fa2, Fa3 are fed into the MsFFM to utilize the complemen-
tary information from different layers. Afterwards, the fused feature FCNN is combined with the
traditional hand-crafted features FT in the HcFIM. Ff use denotes the final output feature of the MFFN.

3.3.1. Channel Attention Module

As shown in Figure 2, the attention mechanism is embedded into the backbone
network, which is utilized to optimize channel-wise information. As a lightweight channel
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attention module, SE-Net is capable of enhancing the feature representations without
decreasing the computational efficiency [28]. Therefore, we employ SE-Net as the attention
mechanism, through which the MFFN can accentuate the features with more essential
information and inhibit classification-irrelevant features. Aided by the attention mechanism,
our model can pay more attention to informative features.

Suppose feature maps Fl ∈ RC×H×W are extracted by the lth layer of the CNN, where
C, H, and W denote the number of channels, height, and width of Fl . The operation process
of SE-Net is shown in Figure 3:

Figure 3. The operation process of the SE-Net. The channel descriptors are first generated by global
average pooling, then the attention values are calculated by the fully-connected layers. Finally, the
channel-refined features can be calculated by performing channel-wise multiplication. ⊗ represents
the channel-wise multiplication operation and σ denotes the sigmoid function.

SE-Net first shrinks the space feature to obtain a feature descriptor by performing
global average pooling. The global pooling feature map can be calculated using (1)

sc = GAP( fc) =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (1)

where fc denotes the feature map from the cth channel. Next, global pooling features
S = [s1, s2, . . . , sC] ∈ RC×1×1 are delivered to the fully-connected layers to calculate the
attention values which reflect the importance of different channels:

U = Sigmoid(FC2(ReLU(FC1(S))) (2)

where FC1(·) and FC2(·) are two fully-connected layers and ReLU(·) and Sigmoid(·) are
ReLU and sigmoid functions, respectively. Finally, the channel-refined feature can be
calculated by performing channel-wise multiplication on U and Fl :

Fal = fAtt(F) = U ⊗ Fl (3)

where ⊗ represents the channel-wise multiplication operation. By assigning weights to
different channels, CNN can place more attention on the essential channels and inhibit the
redundant channels.

3.3.2. Multi-Scale Feature Fusion Module

SAR images from different categories are quite similar, such as T62 and T72. Further-
more, the same SAR targets with different azimuth angles have diverse backscattering
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behaviors, which leads to various patterns in the same category. Therefore, SAR images
have large inner-class variety and high cross-class similarity.

Most typical CNN models only utilize the features extracted by the last layer for
classification, i.e., only single-scale features are adopted as final features. Although the
features can be passed through the whole network layer by layer, shallow ones are likely to
be diluted, resulting in feature loss and decreasing the feature representation capability.
In this case, the local fine-grained features from the lower level of CNN are ignored. As
the network grows deeper, the feature maps’ spatial resolution continuously shrinks and
the feature maps contain more semantic information rather than local edge information.
The lower-level features contain more fine-grained local information, which complements
the higher-level features containing global semantic information. In order to decrease the
feature loss risk and exploit complementary multi-scale information, a cascade tree-like
multi-scale feature fusion module (MsFFM) is designed to fuse the features with different
scales. The overall structure of the MsFFM is shown in Figure 4.

Figure 4. Framework of MsFFM. Features with smaller resolution are upsampled and then provided
as the input to the channel attention block. The channel-optimized upsampled features are added
element-wise to the adjacent features with higher resolution. Finally, we merge the all-upsampled
feature map to further aggregate information, and the tuning block is adopted to refine the fused
multi-scale feature. In this figure, the magenta arrow and green arrow represent the two-times
upsampling operation and four-times upsampling operation, respectively,⊕ denotes the elementwise
sum operation, and FCNN is the feature map after multi-scale fusion.

We use a three-layer CNN as the backbone network of our proposed method; the
channel-refined SAR feature maps can be represented as Fal = [Fa1, Fa2, Fa3]. First, feature
maps with smaller resolutions are upsampled by the deconvolution method and then
provided as the input to the attention block to refine channel information. The channel-
optimized upsampled features are added elementwise to the adjacent features with higher
resolution. Different scales of features from adjacent layers can be fused successively
through the process. On the right-hand side of Figure 4, we merge all upsampled feature
maps to further aggregate information from different layers in the fusing process. Specifi-
cally, we first perform quadruple upsampling on Fa3, then perform double upsampling on
the fusion maps of Fa2 and Fa3. Finally, all the upsampled feature maps are aggregated via
element-wise sum operation. After each upsampling, we utilize SE-Net to optimize the
channel information in order to enhance the feature representations.
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Even though the fused features reserve the essential information from features of
different scales, the MsFFM unavoidably conserves a few irrelevant features in the fusing
process. Therefore, a tuning block is used to refine the fused features. The tuning block
consists of a convolutional layer with 1× 1 kernels and a global average pooling layer.
Convolutional kernels with a size of 1× 1 are capable of mixing the information from
different channels, through which certain category-related features can be further extracted
for classification; in this way, the recognition performance can be increased. The tuned
features can be produced as

FCNN = GAP(ReLU(Conv(Fs))) (4)

3.3.3. Hand-Crafted Feature Insertion Module

Currently, methods based on CNN are widely applied in SAR target recognition
tasks. One significant advantage of these modern CNN-based methods is the capability
of automatic feature extraction without expert experience. However, features extracted
by CNN are abstract and less explainable, which limits their further application in the
present context due to the high reliability requirements of SAR target recognition tasks.
In addition, the sparseness of labeled SAR images on account of the difficulty of sample
annotations lead to overfitting problems for CNN-based methods, in turn degrading the
recognition performance.

Prior to the wide application of CNN-based methods, many different features were
developed to describe the information in images, including the hu moment feature [42],
gabor feature [43], local binary patterns (LBP) [44], histogram of oriented gradient (HOG),
principal component analysis (PCA) [45], etc. These traditional hand-crafted features are
designed by experienced experts based on mature theories, contributing to their good
interpretability and high robustness. Methods based on these features have achieved
satisfactory accuracy in SAR target recognition tasks. For example, Huang et al. utilized Hu
moment features, scattering center features, and local radar cross section (LRCS) features
to identify the attributes of different types of SAR targets [46]. They adopted the KNN
classifier to recognize different ship targets obtained by Sentinel-1 SAR radar based on
these hand-crafted features. The recognition accuracy of their method is comparable with
the CNN-based method proposed by Wang et al. [47], demonstrating the effectiveness of
hand-crafted features in SAR target recognition tasks.

Generally, the advantage of CNN-based methods is their automatic feature extraction
capability without need for expert experience. However, the recognition performance of
CNN-based methods can become degraded with limited training data due to overfitting
problems. Considering that traditional hand-crafted features have good interpretability
and high robustness, we seek to fuse CNN features and traditional hand-crafted features
with the aim of enhancing the feature extraction capability of CNN-based methods with
limited training data. Because these two types of features have complementary benefits,
CNN features can be optimized and corrected by hand-crafted features under conditions of
limited training sample data, allowing the robustness and representation of CNN features
to be improved.

In order to combine these two types of features, we added a hand-crafted feature
insertion module (HcFIM) to our feature extraction network. As shown in Figure 5, we
adopt the weighted concatenation method proposed by Zhang et al. in [48] to construct the
HcFIM. Considering the disparity in feature dimensions between the two types of features,
the model is mainly optimized for features with higher dimensions. In comparison, the
impact of features with lower dimensions is weakened, which leads to the occurrence
of overfitting. Therefore, the balanced feature dimension is needed to avoid overfitting
occurrences. Specifically, fully-connected layers are adopted to balance the dimension
between the two types of features:

FTo = FC(FT) (5)
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Figure 5. The weighted concatenation method for fusing CNN features FCNN and traditional hand-
crafted features FT . First, a fully-connected layer is adopted to ensure that the dimension of FT

is unified with that of FCNN . Then, we set two learnable weight parameters α and β to reveal the
importance of different features. Finally, the two features are fused by the concatenation operation.

In order to reveal the importance of different features, two learnable parameters α and
β are designed to be the weight coefficient for each feature. We use two extra neurons in our
network to adaptively learn alpha and beta, respectively. In the training process, a softmax
function is adopted to ensure that their sum equals one. These learnable parameters can
reflect the importance of different types of features. During the training process, these two
parameters can be updated through backward propagation together with the whole model.
The weighted concatenation can be represented as Equation (6):

Ff use = Cat(α · FCNN , β · FTo) (6)

where FCNN denotes the multi-scale fused CNN feature and FTo denotes the hand-crafted
feature with the same balanced dimension. After fusing the CNN and hand-crafted features,
Ff use is the output feature of the MFFN, which is utilized for few-shot recognition.

3.4. Weighted Distance Classifier

We adopt the episodic training strategy to correspond the training process with the
testing process. More specifically, we randomly select K images from each class of the
training set DBase to build up the training support set Sb in each training episode. A certain
number of images from each class are randomly chosen to form the training query set Qb.
Suppose xij denotes the ith sample of the jth class from Sb; then, the prototype of the jth
class can be calculated as follows:

cj =
1
M

M

∑
i=1

fϕ

(
xij

)
(7)

where M represents the number of images from the jth class in Sb, fϕ(·) represents the
functional expression of MFFN that can extract input images into a feature vector, and ϕ
represents parameters in the network.

After obtaining the prototype for each category, the Euclidean distance between
query image features and each prototype can be calculated. The lower Euclidean distance
represents the higher similarity with the prototype in the embedding space, which means
this query image has a higher probability of belonging to the class corresponding to
the prototype.

For a given query sample (xi, yi) ∈ Qb, the feature extracted by MFFN can be repre-
sented by fϕ(xi) and the Euclidean distance between fϕ(xi) and one of the prototypes cj
can be calculated as Equation (8):

d
(

fϕ(xi), cj
)
=

∥∥ fϕ(xi)− cj
∥∥2 (8)
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Due to the high cross-class similarity, SAR targets of different categories can be easily
confused in the embedding space, which presents a challenge for classification. To alleviate
this problem, we propose a weighted distance classifier (WDC) to maximize the Euclidean
distance between different classes in the embedding space, which makes instances from
different categories more distinguishable.

As shown on the upper right-hand side of Figure 1, the query feature maps and
prototypes are first concatenated separately, then the concatenation vectors are fed into the
weight generation module to produce the class-specific weights of query images. More
specifically, the weight generation module consists of a convolution layer and two fully-
connected layers, through which we can obtain the weights corresponding to different
categories for query images. The parameters of the weight generation module can be
updated during the training process in a data-driven way. Therefore, it can generate
suitable weights for each query image, which can contribute to increasing the inter-class
separability. Suppose gψ(·) denotes the weight generation module, where ψ represents the
learnable parameters; then, the weight can be calculated as follows:

wij = gψ

(
cat

(
fϕ(xi), cj

))
(9)

where wij is the weight of the input sample xi for class j, and cat(·) denotes the vector
concatenation. Ideally, the generated weights measure the difference between the query
image and each prototype. Specifically, a greater the difference between a query image and
a prototype leads to a higher weight being generated. On the contrary, as the query image
becomes more similar to the corresponding prototype, lower weights are generated. Then,
the weighted Euclidean distance can be calculated by multiplying the Euclidean distance by
the corresponding weights. The weighting operation can increase the inter-class distance
by “pushing” the query feature maps away from the prototypes of other categories. Thus,
the few-shot recognition performance can be improved effectively. Finally, the softmax
classifier is adopted to obtain the probability of xi belonging to class j:

p(yi = j|xi) =
exp

(
−wij · d

(
fϕ(xi), cj

))
∑k exp

(
−wik · d

(
fϕ(xi), ck

)) (10)

3.5. Loss Function

The classification loss and the weight-generation loss are combined to guide the
operation of our proposed method jointly. The classification loss uses the cross-entropy
loss, which is defined as Equation (11):

Lc = −
1
N

N

∑
i=1

logP(yi = j|xi) (11)

where (xi, yi) denote the input sample and the corresponding ground-truth label, respec-
tively, and N represents the number of samples.

In our proposed method, the WDC is designed to generate weights and calculate the
weighted Euclidean distance. In particular, the weight generation module of the WDC
is composed of a learnable multi-layer network, through which we can obtain the class-
specific weights. As we mentioned above, the generated weights should represent the
difference between the query image and each prototype. To be more specific, if a query
image i is quite different from class j, the corresponding weight wij should be larger in
order to make the weighted distance larger, which can increase the separability from other
categories. However, this module cannot produce pertinent weights without a specific loss
function guiding the module. Thereby, the weight-generation loss is designed to guide this
module during the training process, ensuring that the WDC can increase the separability
between different categories. The weight-generation loss can be calculated as follows:
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Lw = − 1
Q

Q

∑
i=1

C

∑
j=1

(−wij) · yi,j (12)

where wij denotes the weight of the ith sample for the jth class. In the training process, the
WDC can generate suitable weights by optimizing Lw, meaning that the inter-class distance
can be increased, which contributes to the improvemed performance of our method. The
joint loss of our proposed method is defined by Equation (13):

L = Lc + λ · Lw (13)

where λ is the balance hyperparameter.

4. Results
4.1. Datasets

Here, we first evaluate our method on the Moving and Stationary Target Acquisition
and Recognition (MSTAR) benchmark dataset. Then, we perform several auxiliary experi-
ments on the Vehicle and Aircraft (VA) dataset to compare the generalization capability of
different methods.

4.1.1. MSTAR Dataset

The MSTAR dataset is a benchmark dataset for SAR image recognition. The images in
the MSTAR dataset were obtained by an imaging radar with a resolution of 0.3 m × 0.3 m.
This dataset includes ten different types of targets, namely, T62, T72, BMP2, BRDM2,
BTR60, BTR70, D7, ZIL131, 2S1, and ZSU234. Figure 6 shows a comparison of SAR and
optical images.

(a) T62 (b) T72 (c) BMP2 (d) BRDM2 (e) BTR60

(f) BTR70 (g) D7 (h) ZIL131 (i) 2S1 (j) ZSU234

Figure 6. The optical and SAR images in the MSTAR dataset.



Remote Sens. 2022, 14, 4583 14 of 28

The size of the images is 64 × 64, and each type of target contains two different
depression angles of 15° and 17°. Table 1 displays the number of targets from each class in
the MSTAR dataset.

Table 1. The number of images from each class in the MSTAR dataset.

Class Depression
Angle No. Depression

Angle No.

T62 15° 273 17° 299
T72 15° 196 17° 232

BMP2 15° 195 17° 233
BRDM2 15° 274 17° 298
BTR60 15° 195 17° 256
BTR70 15° 196 17° 233

D7 15° 274 17° 299
ZIL131 15° 274 17° 299

2S1 15° 274 17° 299
ZSU234 15° 274 17° 299

Total 2425 2747

According to the few-shot problem definition mentioned in Section 3.1, we split the
MSTAR dataset into a training set DBase and test set DNovel . The test set is composed of a
support set Sn and a query set Qn. In this paper, images corresponding to the image types
T62, T72, BRDM2, BTR60, BTR70, and ZIL131 with depression angles of both 15° and 17°
are used to construct the training set. The test set contains the target images of four types
(BMP2, D7, 2S1, and ZSU234). From Table 2, we can see that K labeled images of these four
categories with a depression angle of 17° are randomly selected to construct the support
set. Following the common few-shot settings, K is set to one and five. The query set Qn
contains 1017 target images from these four categories with a depression angle of 15° used
to evaluate the recognition performance of each method.

Table 2. The number of images in the training, support, and query sets of the MSTAR dataset.

Training Set DBase
Test Set DNovel

Support Set Sn Query Set Qn

Class Depression
Angle No. Class Depression

Angle No. Class Depression
Angle No.

T62 15°, 17° 572 BMP2 17° K BMP2 15° 195
T72 15°, 17° 428 D7 17° K D7 15° 274
BRDM2 15°, 17° 572 2S1 17° K 2S1 15° 274
BTR60 15°, 17° 451 ZSU234 17° K ZSU234 15° 274
BTR70 15°, 17° 429
ZIL131 15°, 17° 573

Total 3025 Total 17° 4× K Total 15° 1017

4.1.2. VA Dataset

The images in the VA dataset were obtained using a C-band SAR sensor with a
resolution of 0.5 m × 0.5 m. This dataset includes five types of vehicle targets and two
types of aircraft targets: car, truck, bus, MPV, fire truck, airliner, and helicopter. In this
dataset, the image size of aircraft targets is 128 × 128 and that of vehicle targets is 64 × 64.
We cropped the aircraft images from 128× 128 to 64× 64 for a consistent input size. Table 3
shows the number of different targets in the VA dataset.

Following similar few-shot settings as those for the MSTAR dataset, the VA dataset
is partitioned into a training set DBase and test set DNovel . The test set is composed of a
support set Sn and a query set Qn. Table 4 displays the details of the three sets. The training
set contains car, truck, and helicopter images. From the remaining four categories, one
labeled image from each category is randomly chosen to form the support set. Finally,
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the remaining 139 images are used to construct the query set Qn used to evaluate the
recognition performance of different methods on the VA dataset.

Table 3. The number of images from each class in the VA dataset.

Class Car Truck Bus MPV Fire
Truck Airliner Helicopter Total

No. 35 35 35 35 35 38 70 283

Table 4. The number of images in the training, support and query sets of the VA dataset.

Training Set DBase
Test Set DNovel

Support Set Sn Query Set Qn
Class No. Class No. Class No.

Car 35 Bus 1 Bus 34
Truck 35 MPV 1 MPV 34
Helicopter 70 Fire Truck 1 Fire Truck 34

Airliner 1 Airliner 37

Total 140 Total 4 Total 139

4.2. Implementation Details

The backbone CNN of MFFN includes three convolution modules, each consisting of a
convolution layer, a batch normalization layer, and a max pooling layer. Each convolution
layer contains 64 kernels and the kernel size is 3× 3. The SE-Net comprises a global average
pooling layer and two fully-connected layers, which contain 8 and 64 neurons, respectively.

We resize the input images to 64× 64 uniformly without any other preprocessing,
and our model is trained with no data augmentation. The ADAM optimizer is adopted
to optimize our model in the training process. In order to avoid the local optimum, we
adopt the learning rate decay strategy through the training process. The learning rate is
initialized to 0.001 and attenuated according to Equation (14) every iteration:

new_lr = lr×
(

1− current_iter
max_iter

)0.8
(14)

where current_iter and max_iter represent the current and total number of iterations, re-
spectively, and lr and new_lr denote the current learning rate and the updated learning
rate, respectively.

Because the gradient mainly exists on the edge of the target, the local information
and edge information of targets can be well described by the gradient. The histogram
of oriented gradient (HOG) feature was first designed for human detection [49,50]; later,
scholars applied the HOG feature to the SAR ship classification tasks [51,52]. As a hand-
crafted local feature, the HOG feature contains more edge and shape information, which
can complement the global features extracted by CNN. Therefore, we fuse the HOG and
CNN features in HcFIM to improve recognition accuracy. We discuss the effectiveness of
inserting different hand-crafted features in the following section.

The weight generation module in the WDC comprises two fully-connected layers. The
neuron numbers of these two fully-connected layers are 256 and 1, respectively. In addition,
we use the deconvolution layers as the up-sampling method. We set the kernel size at 4× 4
and the step at two. The channel number is not changed during the up-sampling process.
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4.3. Evaluation Metrics

Accuracy is the main criterion for evaluating the recognition performance of all meth-
ods, and is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

where TP denotes the number of true positives, TN denotes the number of true negatives,
FP denotes the number of false positives, FN denotes the number of false negatives.
The number of correctly classified targets is TP + TN and the total number of targets is
TP + TN + FP + FN.

In order to avoid randomness in our experimental results, all the experiments consist
of 20 repetitions and a support set is randomly selected each time.

4.4. Recognition Performance Comparison

We first evaluate the performance of our method on the MSTAR benchmark dataset.
The support set of the MSTAR dataset contains four types of targets, each composed of K
labeled images. Following the typical settings, K is set to one and five in our experiments,
e.g., the experimental setting of the MSTAR dataset is a “4-way 5-shot” and “4-way 1-shot”.
To further verify the effectiveness of our method, we construct comparative experiments
on the VA dataset, although we only perform the “4-way 1-shot” experiment on the VA
dataset due to the limited number of images. The comparison methods are as follows:

(1) Siamese Network. A Siamese network takes an image pair as input and then uses
two share-weighted CNNs to extract features, from which the Siamese network can
measure the similarity between the feature pairs to judge whether they belong to the
same category.

(2) Matching Network. Feature extraction and classifier modules are combined to form
the matching network. The classifier module adopts the cosine metric function to
obtain the similarity score of two feature maps extracted by the feature extraction
module. The matching network uses attention and external memory mechanisms to
accelerate the training process.

(3) Prototypical Network. A prototypical network first uses a standard CNN to extract
image features, then calculates the prototypes for each category using a feature
averaging operation. The softmax function is introduced to classify query images
based on the Euclidean distance between their features and each prototype.

(4) Relation Network. A relation network creates a relation module which can automati-
cally learn a metric function in the training process to measure the similarity between
features and prototypes.

(5) Few-Shot Embedding Adaptation with Transformer (FEAT) utilizes a self-attention
mechanism to modify the feature extraction process, which makes the extracted
features more discriminative and task-specific.

4.4.1. “4-Way 5-Shot” Experiment on the MSTAR Dataset

For the MSTAR dataset, Table 5 displays the “4-way 5-shot” recognition performance
comparison between different methods. Our proposed method achieves 95.91% accuracy,
which outperforms other comparison methods. The average accuracy of the matching
network, Siamese network, prototypical network, and FEAT is 91.58%, 72.49%, 87.80%,
and 81.23%, respectively, all of which obviously underperform our proposed method. This
is because the similarity metric functions of these four comparison methods are distance-
based with fixed parameters, which directly calculate the Euclidean or Cosine distance
between query features and prototypes. In our method, we propose a WDC which contains
a multi-layer neural network to calculate the weights for every query sample. Then, the
weights are distributed to the Euclidean distance to the prototypes. The WDC is capable of
updating the category-specific weights for query samples in the training process, meaning
that the learned weights can compensate for defects of the parameter-fixed Euclidean
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metric. In conjunction with our newly designed weight-generation loss, the weighted
Euclidean distance can effectively decrease the inter-class similarity of SAR images, thereby
improving the recognition accuracy.

Similar to the relation network’s relation module, the weight generation module in the
WDC is a learnable similarity metric function; however, the average accuracy of our method
is superior to the relation network by 15.06%. The first reason for this improvement is that
our method has better feature extraction capability through the help of SE-Net, MsFFM, and
HcFIM. Another reason is that our method combines the outputs of the weight-generation
module with the Euclidean distance. In other words, the self-learning metric function
and the distance-based metric function are combined in the WDC, from which we can
make full use of the advantages of these two metric functions, leading to further improved
recognition performance.

Compared to other methods that only use CNN to extract features for SAR images,
we modify the feature extraction process by adopting SE-Net, MsFFM, and HcFIM. Em-
bedding SE-Net into CNN can make CNN focus more on essential channels and suppress
unnecessary ones. The MsFFM fuses the features of different scales in a tree-like cascade
fashion. Unlike single-scale CNN models, the MsFFM is capable of fusing the features
of different scales from different levels of the CNN. As several traditional hand-crafted
features have achieved good accuracy in SAR target recognition tasks, we introduce the Hc-
FIM to fuse CNN and traditional hand-crafted features in order to improve the robustness
and representation of features.

Figure 7a displays the average confusion matrix of our method on the MSTAR dataset
under the “4-way 5-shot” condition. It can be seen that targets of BMP2 have the highest
average recognition accuracy. The reason for this is that the BMP2’s distinctive features as
an infantry fighting vehicle make it more easy to recognize correctly.

(a) (b) (c)

Figure 7. The average confusion matrix of our proposed method: (a) MSTAR “4-way 5-shot” condi-
tion, (b) MSTAR “4-way 1-shot” condition, (c) VA “4-way 1-shot” condition.

In Figure 8, the t-SNE algorithm is adopted to illustrate the output features extracted
by different methods. Figure 8a–e shows that samples from different categories have quite
similar distances, and the samples from the same category are not aggregated very well,
which indicates that the SAR images have large inner-class variety and high cross-class sim-
ilarity. In Figure 8a,e, many samples from different classes are seriously confused, leading
to poor recognition accuracy. In Figure 8f, the distribution of targets from the same class
is tighter and the cross-class distance is larger, which demonstrates that our method can
enhance the aggregation of the same categories and the separability of different categories.

To provide a more intuitive comparison between our method and the baseline method,
Figure 9 displays the feature maps of 2S1 from different layers. The first row of Figure 9
represents the visualization of features extracted by our method and the second row of
Figure 9 represents the visualization of features extracted by the baseline method. From
Figure 9b–d, we can see that our method is able to obtain more information from the input
image with the help of SE-Net. In addition, Figure 9e represents the output of the MsFFM.
After fusing multi-scale features, the fused feature map contains more local information
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than the feature shown in Figure 9c. The first row of Figure 10 displays all channels in the
first and second convolution layers. Compared with Figure 10c,e, our model focuses more
on the key parts of the target area and places less attention on the background area.

(a) Siamese Network (b) Matching Network (c) Prototypical Network

(d) Relation Network (e) FEAT (f) Ours

Figure 8. The visualization results of different methods on the MSTAR dataset under the
“4-way 5-shot” condition, where (a–e) denote the different comparison methods and (f) denotes
our proposed method.

Table 5. “4-way 5-shot” recognition performance of different methods on the MSTAR dataset.

Methods Min Accuracy (%) Max Accuracy (%) Average Accuracy (%)

Siamese 63.42 83.48 72.49 ± 5.46
FEAT 70.50 89.97 81.23 ± 4.08

Prototypical 75.42 92.14 87.80 ± 4.35
Matching 80.53 94.11 91.58 ± 3.01
Relation 68.93 94.30 80.85 ± 5.84

Ours 93.31 99.21 95.79 ± 1.27
The bold row represents the method with the highest average recognition accuracy.

4.4.2. “4-Way 1-Shot” Experiment on the MSTAR Dataset

From Table 6, it can be seen that the accuracy of our method under the “4-way 1-
shot” condition achieves 92.67%, which is inferior to the “4-way 5-shot” condition by
only 3.24%. Our proposed method achieves the best performance in terms of accuracy
compared with the other methods, which demonstrates that our method can effectively
recognize targets from novel classes with very limited training samples. Distance-based
similarity metric functions with fixed parameters are adopted by the Matching Network,
Siamese Network, Prototypical Network, and FEAT for classification. Therefore, when the
query samples have high cross-class similarity, the recognition accuracy of these methods is
inferior to our method. Compared with other methods, we designed the HcFIM to utilize
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the complementary advantages of CNN features and traditional hand-crafted features,
allowing the feature representations can be enhanced.

(a) (b) (c) (d) (e)

Figure 9. The comparison of feature maps between our model and the baseline model. The first row
shows the feature maps of our method and the second row the feature maps of the baseline method:
(a) the input image of 2S1, (b) the feature maps on the first convolution layer, (c) the feature maps on
the second convolution layer, (d) the feature maps on the third convolution layer, (e) the feature map
after multi-scale feature fusion.

(a) (b) (c) (d) (e)

Figure 10. Feature map comparison between baseline and our proposed model, illustrating: (a) the
input image, (b) the feature maps from the first convolutional layer of our proposed model, (c) the
feature maps from the first convolutional layer of the baseline model, (d) the feature maps from the
second convolutional layer of our proposed model, (e) the feature maps from the first convolutional
layer of the baseline model.

The average confusion matrix of the MSTAR dataset “4-way 1-shot” condition is shown
in Figure 7b. The main difference between Figure 7a,b is the recognition performance for
ZSU234 targets. It can be seen that under the “5-shot” condition, the recognition accuracy of
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our method for ZSU234 is 95.66%, while under the “1-shot” condition this indicator drops
to 80.89%. Under the “1-shot” condition, there are more ZSU234 targets wrongly classified
as 2S1 targets. The reason is that both targets are self-propelled guns with relatively similar
features. As there was only one image of each class in the support set under the “1-shot”
condition, the features extracted were not sufficient, leading to confusion between these
two targets.

4.4.3. “4-Way 1-Shot” Experiment on the VA Dataset

Table 7 displays the results of the “4-way 1-shot” experiments on the VA dataset. Our
proposed method obtains the best performance in terms of average accuracy. Our method
outperforms other comparison methods on both SAR datasets, demonstrating that our
method has better generalization ability. In addition, the training set of the VA dataset
contains fewer images than that of the MSTAR dataset, which means that there is less
prior knowledge that can be transferred from the base categories to the novel categories.
Under this circumstance, our method shows better feature extraction ability with the
help of HcFIM. By introducing hand-crafted features, our method can obtain more vital
information from the training process. From Figure 7c, the bus and the fire truck are prone
to being confused, mainly because both are large vehicles with similar features. The airliner
is the only aircraft target in the test set, and can be easily distinguished from other ground
targetsl thus, the airliner has the highest recognition accuracy among all types of targets in
the test set of the VA dataset.

Table 6. “4-way 1-shot” recognition performance of different methods on the MSTAR dataset.

Methods Min Accuracy (%) Max Accuracy (%) Average
Accuracy (%)

Siamese 57.72 77.09 68.07 ± 5.12
FEAT 70.50 89.97 71.04 ± 8.23

Prototypical 56.44 91.35 74.65 ± 8.43
Matching 60.87 86.43 79.59 ± 7.25
Relation 55.95 83.38 69.19 ± 8.84

Ours 85.94 96.85 91.76 ± 3.40
The bold row represents the method with the highest average recognition accuracy.

Table 7. “4-way 1-shot” recognition performance of different methods on the VA dataset.

Methods Min Accuracy (%) Max Accuracy (%) Average
Accuracy (%)

FEAT 58.74 82.93 73.03 ± 6.36
Siamese 53.15 76.42 69.94 ± 5.86

Prototypical 68.53 82.12 78.07 ± 4.14
Matching 60.84 84.56 73.46 ± 6.24
Relation 58.04 87.80 77.33 ± 6.77

Ours 76.92 90.21 85.28 ± 3.82
The bold row represents the method with the highest average recognition accuracy.

Likewise, the t-SNE algorithm is applied to illustrate the features extracted by different
methods. As shown in Figure 11f, our method has larger inter-class distances and smaller
intra-class distances than the comparison methods shown in Figure 11a–e, meaning that
our method can properly identify more query images than the comparison methods. In
addition, the second row of Figure 10 shows all the channel information of a plane target
from the VA dataset. By comparing the second row of Figure 10b,d with that of Figure 10a,c,
we can see the attention on the background noise degrade. With the addition of SE-Net,
our method can focus more on the vital areas of the plane, e.g., the head of the plane, the
empennage, and the wings.
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(a) Siamese Network (b) Matching Network (c) Prototypical Network

(d) Relation Network (e) FEAT (f) Ours

Figure 11. The visualization result of different methods on the VA dataset under the “4-way 1-shot”
condition, where (a–e) denote different comparison methods and (f) denotes our proposed method.

5. Discussion
5.1. Ablation Study

On the basis of the prototypical network, our proposed method employs four modules
to modify the network structure and classification strategy. First, we embed the SE-Net
attention mechanism between the layers of the CNN to refine the channel-wise information.
Then, the MsFFM is used fuse the multi-scale features extracted by the CNN’s different
layers. We introduce the HcFIM to combine the traditional hand-crafted features and CNN
features to enhance the feature representations for classification. In addition, we design the
WDC strategy to generate appropriate weights, which represent the correlation of query
images and each class. The weighted Euclidean distance is obtained by multiplying the
weights with the corresponding Euclidean distance. Finally, the joint loss function of our
method comprises the classification and the weight-generation losses. In order to analyze
the validity of each module, ablation experiments on the MSTAR dataset wewre performed
20 times under the “4-way 5-shot” setting.

In Figure 12, the prototypical network from [31] is the “baseline” method. It can
be seen that all four modules have better recognition performance than the “baseline”
method in terms of the average accuracy, which demonstrates the effectiveness of our
modules. The WDC with the weight-generation loss function is the most effective module
of our method on the MSTAR dataset. The WDC generates weights for query images
and distributes weights to the Euclidean distance, allowing the separability between
different classes in the embedding space to be increased. In the training process, the
weight-generation loss of our new loss function can effectively guide the WDC module to
increase the inter-class Euclidean distance. With the help of WDC and weight-generation
loss, the recognition accuracy outperforms the baseline model by 8.11%. Because the
SE-Net can distribute weights for different channels of feature maps, the CNN can place
more focus on the informative channels and suppress the unnecessary ones. The MsFFM
successively fuses the features from different layers of the CNN, which can aggregate
information from different scales of features and decrease the feature loss risk. By fusing
modern CNN features and traditional hand-crafted features, the HcFIM can improve the
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feature extraction capability for the CNN under limited training samples, consequently
enhancing the robustness and representation of features. By combining all modules, the
feature extraction ability can be improved and the separability between different categories
can be increased, leading to better performance.

To show the effectiveness of each module on different datasets, we performed an
ablation study on the VA dataset. The orange columns in Figure 12 show the average
results of adding different modules to the baseline method. Similar to the results on the
MSTAR dataset, MsFFM, SE-net, and ‘WDC + new loss’ are the most effective modules.
Among these three modules, the most useful is the MsFFM, which can improve the accuracy
of the baseline model by 4.87%. The remaining two modules have a similar effect on the
increase in recognition accuracy at approximately 4.2%. Even though the HcFIM is not
as valid as other modules, the average accuracy of the HcFIM is nonetheless 2.24% better
than the baseline methods. The average accuracy can be further improved by 84.09% when
combining all modules together.

Figure 12. Results of the ablation study on both datasets.

With the aim of further analyzing the effect of each module, we further refined the
ablation experiments by overlaying different modules onto the baseline method one by one.
The experimental results are shown in Table 8. It can be seen that by adding each module
to the baseline method in turn, the accuracy of the recognition gradually increases, and the
proposed method achieves the best performance when all of the modules are added to the
baseline method.

Table 8. The results of further ablation study on both datasets.

Baseline MsFFM HCFIM WDC + New Loss SE-Net
Average Accuracy (%)

MSTAR Dataset VA Dataset

X 87.80 78.07
X 94.23 82.94
X X 94.35 83.00
X X X 95.18 84.23
X X X X 95.79 84.39

The bold accuracy denots the method with the best recognition performance.

5.2. Influence of Different Concatenation Methods

We adopt the weighted concatenation method proposed by Zhang et al. in [48] to
fuse CNN features and traditional hand-crafted features. As shown in Figure 5, the tradi-
tional hand-crafted features are embedded by fully-connected layers, then two learnable
parameters are used to reveal the weight of different features.
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We compare different feature fusion methods for two types of features in Table 9. The
prototypical network is the baseline method that only utilizes CNN features to recognize the
SAR target. The ‘Concatenation’ method denotes that two types of features are fused by con-
catenation, the ‘Learnable Coefficients’ method stands for the learnable weight coefficients
during training process, and the ‘Feature Embedding’ method represents the embedding
process of traditional hand-crafted features implemented by fully-connected layers.

Table 9. The results of different concatenating schemes for hand-crafted features and CNN features.

Baseline Concatenation Learnable
Coefficients

Feature
Embedding

Average
Accuracy (%)

X 87.80
X 91.48
X X 92.06
X X 91.86
X X X 92.53

The bold accuracy denots the method with the best recognition performance.

As shown by the average accuracy in Table 9, the hand-crafted features can improve the
recognition accuracy from 87.80% at baseline to 91.48% with the ‘Concatenation’ method,
indicating that the insertion of hand-crafted features can enhance feature representation.
In addition, using the learnable weight coefficients during the concatenation process can
reveal the importance of different features, bringing the recognition accuracy up to 92.06%.
Aligning the dimensions of the hand-crafted features and CNN features through the ‘Fea-
ture Embedding’ method can avoid overfitting caused by dimension imbalance between the
two types of features, increasing the recognition accuracy by 0.38%. Finally, the recognition
accuracy of our proposed method reaches 92.53% after merging all three approaches.

5.3. Influence of Different Hand-Crafted Features

Before CNN entered wide used, many hand-crafted features were utilized in SAR
image recognition tasks, such as the hu moment feature [42], Gabor feature [43], local
binary patterns (LBP) [44], histogram of oriented gradients (HOG), principal component
analysis (PCA) [45], etc.

To verify whether inserting any one type of hand-crafted feature can be helpful, we
performed “4-way 5-shot” experiments on the MSTAR dataset by fusing the above features
with CNN features. From the results shown in Figure 13, it can be seen that the average
recognition accuracy is increased when inserting different hand-crafted features, with the
LBP and HOG features being the most effective. The reason for this is that both the LBP
and HOG features are local features that highlight the edge and shape information of
targets, while the features extracted via CNN represent the global information. Combin-
ing these two complementary features can enhance the discriminative ability of feature
representation, which leads to better recognition accuracy.

5.4. The Hyperparameter in the Loss Function

We combined the classification loss and the weight-generation loss to form the joint
loss function of our method. To be specific, the classification loss Lc uses the cross-entropy
loss function, from which the gap between the prediction results and the truth value can be
measured. During the process of minimizing the classification loss, the feature extraction
ability of the MFFN can be enhanced. The weight-generation loss is designed to supervise
the training process of the weight generation module in the WDC, from which the category-
specific weights for query images can be obtained. According to the form of Equation (13),
we combine these two losses by adding them and use the hyperparameter λ to adjust the
proportion of the two parts in the loss function.

In order to obtain an appropriate λ on the MSTAR and VA datasets, we set λ as 0,
0.1, 1, 10, 100, and 1000, respectively. Then, “4-way 5-shot” experiments were performed
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on the MSTAR dataset and “4-way 1-shot” experiments on the VA dataset. With each λ,
we separately conducted 20 experiments on both datasets. We determined the recogni-
tion performance of our proposed method on both datasets with different λ, as shown
in Figure 14.

Figure 13. The results of inserting different hand-crafted features.

Figure 14. The accuracy of our method under different λ on VA and the MSTAR datasets.

With λ set as 0, the accuracy of our method is 61.54% and 60.49%, respectively, on the
two datasets. Without the weight-generation loss, the weight generation module cannot
be effectively supervised, and thus the weights could not represent the similarity between
query samples and prototypes. In this case, multiplying weights and Euclidean distances
cannot improve class separation, resulting in lower accuracy. In contrast, the recognition
accuracy increases by approximately 20% and 30% on both datasets when λ is set as 0.1,
which demonstrates the effectiveness of the weight-generation loss.

The optimal values of λ on the MSTAR and VA datasets is 1 and 10, respectively.
This is because the MSTAR dataset and the VA dataset are captured by imaging radar
with different work bands and polarization. The image data in these two datasets have
significant differences, which leads to different optimal values of λ. As the VA dataset is
much smaller than the MSTAR dataset, the number of images used for training on the VA
dataset is only about 5% of the MSTAR dataset. Coupled with the fact that the support
set of the VA dataset only contains one image for reference, the recognition performance
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improvement generated by the WDC and the weight-generation loss on the VA dataset
is slightly lower than on the MSTAR dataset. Similarly, for both datasets, the recognition
accuracy first increases and then gradually decreases as the value of λ increases.

The reasons for this trend are as follows: The role of weight-generation loss Lw is to
guide the weight generation module, meaning that the weights can increase the separability
of different classes by “pushing” query samples from the prototypes of other classes. With
higher λ, Lw occupies a higher proportion of the loss function, and the model becomes
biased towards optimizing the weight generation module rather than optimizing the MFFN
and weight generation module together, which decreases the model’s feature extraction
capability and results in a decrease in recognition accuracy.

5.5. Computational Efficiency

In order to discuss the computational efficiency of different few-shot learning methods,
we calculated the FLOPs, parameters, and running time during the testing process. All
algorithms were implemented by PyTorch 1.8.0 and run on an Nvidia GeForce RTX 2080Ti
GPU with 11GB of memory.

Figure 15 compares the number of parameters and FLOPs of all methods. As shown
in the figure, the Siamese network has the largest FLOPs and number of parameters due
to the dual share-weighted CNN structure, which displays the complexity of this method.
The FLOPs of our method, the prototypical network, and FEAT are less than those of the
matching network and relation network. The reason for this is that the former methods
calculate the prototype of each class in order to avoid comparing the similarity of samples
one by one. Our methods have more parameters than any of the other methods except
for the Siamese network. This is because the weight generation module in the WDC is a
neural network, which comprises many parameters. In addition, the MsFFM and HcFIM
contain layers with a large number of parameters, including deconvolution layers and
fully-connected layers.

Figure 15. Comparison of the number of parameters and FLOPs between different methods.

The test times of the different methods with the “4-way 1-shot” settings on the MSTAR
dataset are shown in Figure 16. It can be seen from Figure 16 that the test time of the
Siamese network (2.53 s) and matching network (2.33 s) are obviously longer than that of
our proposed method. This is because they need to measure the similarity between the
input image pairs one by one in order to judge whether or not they belong to the same class,
which makes these methods less efficient. Our method performs the inner-class average
operation on support feature maps to obtain the corresponding prototypes of each class,
thereby expediting this process.

Figure 16 shows that the prototypical network (1.09 s) and FEAT (1.33 s) operate faster
than our proposed method. The reason for this is that we use the WDC to recognize query
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samples, which makes the complexity of the model slightly higher than these two methods.
Despite the fact that it has higher computational complexity, our proposed method achieves
higher recognition accuracy than the other methods on both the MSTAR and VA datasets.

Figure 16. The running time of different methods on the MSTAR dataset.

6. Conclusions

In this article, we have proposed a novel few-shot recognition method for SAR images
based on weighted distance and feature fusion. In order to aggregate targets from the same
category with high diversity, we designed the MsFFM to fuse different scale features in
a cascade fashion. With the help of edge and fine-grained information on targets from
the lower levels of the CNN, the influence of the inner-class variety of SAR images can
be decreased. To alleviate the problem of overfitting induced by the sparseness of labeled
SAR images, we introduced HcFIM, which adopts a weighted concatenation approach
to fuse hand-crafted features and CNN features. The HcFIM fusion process can enhance
the reliability and robustness of the features used for classification. The MsFFM and
HcFIM, together with a three-layer CNN backbone, form the MFFN. The MFFN is used as
the feature extractor to map query and support images into feature vectors, from which
prototypes can be obtained for each class. A WDC is used to avoid inter-class confusion
caused by large cross-class similarities in the classification stage. The WDC first uses
the concatenation features of query vectors and each prototype to generate appropriate
category-specific weights, then multiplies the weights by the Euclidean distance from query
vectors to the prototype of the corresponding class. In addition to the cross-entropy loss,
we use the weight-generation loss in the joint loss function for our proposed method, with
the aim of maximizing the gap between different classes by guiding the weight generation
module. Comparative experiments on the MSTAR and VA datasets demonstrate that the
proposed method is better able to deal with the high inter-class similarity problem in SAR
images than other approaches. In addition, the experimental results highlight that our
proposed method is superior to other comparative few-shot learning methods in terms of
multiple metrics.
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