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Abstract

Text matching is a task of comparing two texts to identify their relationship. It is an

important component of a variety of natural language processing (NLP) tasks. Recently,

neural networks provide a new paradigm for text matching. In this thesis, we seek to

improve text matching in the following two perspectives: (1) text representation and (2)

text interaction.

Tree-Structured Long Short-Term Memory (TreeLSTM) has shown its effectiveness in

text representation. To further improve the expressive power of TreeLSTM, we propose

two new text representation models: TreeLSTM with Tag-aware Hypernetwork (TagHy-

perTreeLSTM) and Tag-Enhanced Dynamic Compositional Neural Network (TE_DCNN),

respectively. These two models are both devised to alleviate the inability of distinguishing

different syntactic compositions of standard TreeLSTM with the aid of Part-of-Speech

(POS) tags. TagHyperTreeLSTM contains two separate TreeLSTMs, a tag-aware hypernet-

work TreeLSTM to generate parameters of the sentence encoder TreeLSTM dynamically,

and a sentence encoder TreeLSTM to generate the final sentence representation. TE_DCNN

shares similar framework with TagHyperTreeLSTM, but it extends the standard TreeLSTM

with binarized constituency tree to a novel structure, named ARTreeLSTM with general

constituency tree in which non-leaf nodes can have any number of child nodes.

In addition, the ability of capturing matching features between two texts is of great sig-

nificance for improving text matching performance. Two new interaction-based matching

models are proposed in this thesis: Multi-Level Compare-Aggregate model (MLCA) and



Multi-Level Matching Network (MMN). MLCA matches each word in one text against the

other text at three different levels of granularity – word level (word-by-word matching),

phrase level (word-by-phrase matching) and sentence level (word-by-sentence matching).

MMN utilises multiple levels of word representations such as word embedding, contextu-

alized word representation, to obtain multiple word level matching results for final text

level matching decision.

In summary, this thesis proposes four novel neural network based models for text match-

ing. As text matching is a fundamental operation in various NLP tasks and applications

including paraphrase identification, natural language inference, machine comprehension,

information retrieval and so on, we believe that models presented in this thesis would

promote the performance of the above NLP tasks and applications containing text matching.

Moreover, text representation models described in this thesis would also be helpful for

some other NLP applications such as text classification.
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Chapter 1

Introduction

1.1 Overview of Text Matching

Natural language is filled with ambiguity, e.g., a certain meaning can be associated

with several different word expressions and a single word can have multiple meanings,

which makes it incredibly difficult for a machine to accurately determine the intended

meaning of text or voice data. The ability for a computer to read and comprehend

human language, i.e., Natural Language Processing (NLP), is a significant research area

in Artificial Intelligence (AI). A wide spectrum of applications need high level of natural

language understanding, including information retrieval [35, 36], recommender systems

[161, 153], machine translation [26, 113], question answering [137, 144], etc.

Text matching aiming to identify the relationship between two texts is a fundamental

operation in a variety of NLP tasks and applications including paraphrase identification,

natural language inference, machine comprehension, information retrieval and answer

selection. Specifically, in paraphrase identification [145], text matching is used to recognize

whether two texts have the same meaning. In natural language inference [7], text matching

is utilised to identify the logical relationship between a hypothesis sentence and a premise

1



sentence. In answer selection [133], text matching is used to judge whether a candidate

answer sentence is related to a question. In machine comprehension [94], text matching is

used to extract the best answer span for a given question from a matched paragraph. In

information retrieval [81], text matching is employed to find the most relevant text to a

given query. Table 1.1 gives examples of three different text matching tasks.

Table 1.1 Examples of three different text matching tasks. S is the source sentence. For

paraphrase identification, “+” denotes a paraphrase of S, “-” otherwise. For natural

language inference, E, C and N mean entailment, contradiction and neutral, respectively.

For answer selection, A+ is an answer of question Q, A− otherwise.

Paraphrase Identification:

S: How do I learn English step by step?

+: What is step by step guide to learn English?

-: How to learn Chinese step by step?

Natural Language Inference:

S: A dog jumping over a beam.

N: An animal is outdoors.

C: An animal is lying down.

E: An animal is jumping.

Answer Selection:

Q: What is the meaning of the plus-minus sign?

A+: It indicates a value that can be of either sign.

A−: The sign is normally pronounced plus or minus.

1.2 Deep Neural Networks for Text Matching

Text matching is a challenging problem due to the following two factors. Firstly, natural

language is filled with ambiguity, making it incredibly difficult for a computer to accurately
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recognize its intended meaning. For example, different expressions may represent the

same meaning, e.g., words “grapefruit”, “pomelo” and “shaddock” refer to the same fruit.

Similarly, the same word may have different meanings, e.g., word “apple” may refer to

a fruit or a brand in different contexts. Secondly, the order of words in a text is of great

importance for text matching. For example, phrase pairs “in all” and “all in” are exactly the

same for a matching model which takes no order information into consideration. However,

they are totally different in meaning.

Traditional text matching models mainly involves two steps. The first step is to extract

discriminative features. The second step is to determine the relationship between two

texts based on features from the first step through learning [24, 115, 95, 42, 62, 11]. The

performances of traditional text matching models heavily rely on the features extracted.

However, these features are devised manually for a specific task, thus the generalization

ability of traditional text matching models is limited.

Deep neural networks have made astonishing progress in the field of artificial intelli-

gence in the past decade, providing a powerful new tool for natural language modeling. A

deep neural network involves a collection of neurons which are organized in layers. The

layered structure makes deep neural network models have the ability of taking raw data as

input and learn features in higher levels gradually. Recently, the research on text matching

has shifted from traditional text matching models to deep neural network based models.

Deep neural network based text matching models have two advantages. Firstly, deep neural

network based text matching models can extract features from raw data directly, which

avoids the process of designing features manually. Moreover, since the feature extraction

process is a part of the model, a deep neural network based text matching model can be

easily applied to various text matching tasks. Secondly, combining with word embedding

technique [79, 78], deep neural network based text matching models can eliminate word

level ambiguity effectively.

3



Existing deep neural network based text matching models can be generally partitioned

into two types, i.e., representation-based models and interaction-based models, respectively.

The representation-based models encode two texts into two representation vectors inde-

pendently by using deep neural networks such as recurrent neural networks (RNNs) [20],

convolutional neural networks (CNNs) [92], recursive neural networks (RecNNs) [59] and

self-attention based neural networks [104]. Then a matching function is used to aggregate

the above two representation vectors into a fixed-size vector. Finally, a classifier network

is used to obtain the final matching decision. Recursive neural networks have achieved

impressive results for text representation on several downstream NLP tasks including text

matching, due to its ability of obtaining the structural information of a sentence explicitly.

To further enhance the expressive power of existing RecNNs, this thesis proposes two

text representations models (Chapter 3 and Chapter 4) which can distinguish different

compositions. By contrast, the interaction-based models aim to capture direct match-

ing features and two texts are interacted before obtaining the final text representations.

This includes matching-aggregation models [87, 15, 55], attentive representation models

[74, 119], dependent reading models [100, 32] and other models over interaction matrix

[86, 45, 34]. In this thesis, we focus on matching-aggregation framework where smaller

units such as words in two texts are matched firstly. We propose two new models for text

matching under this framework (Chapter 5 and Chapter 6).

1.3 Thesis Motivation and Contributions

This thesis aims to improve text matching in the following two perspectives: (1) text

representation: to enhance the expressive power of tree-structured neural networks by

dynamic composition, and (2) text interaction: to extract more matching information by

performing matching at multiple levels of granularity and using multiple levels of word

representations.

4



Recursive neural networks (RecNNs) or tree-structured neural networks learn sentence

representation by exploiting syntactic structures. Based on the pre-obtained syntactic parse

tree, a RecNN model converts each word at a leaf node of the tree to a representation vector,

and then uses a composition function to compose word/phrase pairs to get representations

of the intermediate nodes in the tree. Finally, the representation of the root node is

viewed as a representation of the sentence. However, a major limitation is that all kinds

of compositions share the same parameters in a RecNN model, neglecting the fact that

different syntactic compositions exist which require different parameters for the RecNN

model to handle precisely.

To further enhance the expressive power of RecNN models, we propose two new

dynamic composition models for text representation: TreeLSTM with Tag-aware Hypernet-

work (TagHyperTreeLSTM) and Tag-Enhanced Dynamic Compositional Neural Network

(TE_DCNN). These two models are both devised to alleviate the inability of distinguishing

different syntactic compositions of standard TreeLSTM with the aid of Part-of-Speech

tags. TagHyperTreeLSTM consists of two separate TreeLSTMs, a tag-aware hypernetwork

TreeLSTM to generate parameters of the sentence encoder TreeLSTM dynamically, and a

sentence encoder TreeLSTM to generate the final sentence representation. The TE_DCNN

model shares similar framework with the TagHyperTreeLSTM, but it extends the standard

TreeLSTM with binarized constituency tree to ARTreeLSTM with general constituency

tree in which each non-leaf node can have any number of child nodes.

In addition to performing text matching based on semantic representation vectors of

texts, another way is to let smaller units (e.g., words) in two texts interact or match firstly.

Then the matching results of these small units are aggregated for final matching decision.

This is called the matching-aggregation or compare-aggregate framework. Although exist-

ing matching-aggregation based models have made impressive progress in text matching,

there is still room for further improvement.
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One limitation of previous works is that they mainly focus on matching at single

granularity, i.e., word level, without considering matching at other levels of granularity

such as word-by-phrase, word-by-sentence matching and so on. In this thesis, we propose

Multi-Level Compare-Aggregate model (MLCA) which conducts matching at different

granularities. MLCA matches each word in one text against the other text at three different

levels of granularity, i.e., word level (word-by-word matching), phrase level (word-by-

phrase matching) and sentence level (word-by-sentence matching).

Another limitation of previous models is that only the final representations of words

are used to obtain the word level matching results for text level matching decision without

considering other levels of word representations. To alleviate this limitation, we propose

Multi-Level Matching Network (MMN), which utilises multiple levels of word representa-

tions such as word embedding and contextualized word representation, to obtain multiple

word level matching results for final text level matching decision.

1.4 Organization

The rest of this thesis is structured as follows: related works are presented in Chapter

2. Two proposed representation-based models TagHyperTreeLSTM and TE_DCNN are

presented in Chapter 3 and Chapter 4, respectively. The other two interaction-based models

MLCA and MMN are described in Chapter 5 and Chapter 6, respectively. Finally, Chapter

7 concludes this thesis and future work.

1.5 Publications

The work of this thesis is supported by the following four research papers:
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2. Chunlin Xu, Zhiwei Lin, Shengli Wu, and Hui Wang. "Multi-Level Matching

Networks for Text Matching." In Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 949-952. 2019.

(Chapter 6)

3. Chunlin Xu, Hui Wang, Shengli Wu, Zhiwei Lin. "TreeLSTM with tag-aware

hypernetwork for sentence representation." Neurocomputing, Volume 434, pp. 11-20,

2021. (Chapter 3)

4. Tag-Enhanced Dynamic Compositional Neural Network over Arbitrary Tree Struc-

ture for Sentence Representation (accepted by Journal - Expert System with Applications,

Elsevier B.V.) (Chapter 4)
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Chapter 2

Literature Review

In this chapter, we firstly introduce three widely used deep neural networks, i.e., recurrent

neural networks (RNNs), convolutional neural networks (CNNs) and recursive neural

networks (RecNNs). Then, a detailed literature review on deep neural network based text

matching models is presented.

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [30] allow the output from previous timestep to be

used as the input to the current timestep. The idea behind RNNs is to make use of sequential

information and is suitable for modeling sequence data such as audio, video, time-series,

and text. RNNs conduct the same work at each timestep and the output of current timestep

is dependent on its previous timestep.
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2.1.1 Simple RNN

Figure 2.1 introduces a simple RNN [30] and its unfolding in time. Unfolding means to

spread out the network for the entire sequence. Taking a sequence of text with 10 words

as an example, the RNN will be unfolded into a network with 10 layers and each layer

corresponds to a single word.

Fig. 2.1 Illustration of a simple RNN and its unfolding in time.

The mathematic representation of a simple RNN unit is as follows:

ht = f (Uxt +Wht−1) (2.1)

ot = g(Vht) (2.2)

where xt is the input vector at timestep t. Taking x0 as an example, it could be the

representation vector for the first element in inputs. ht is the hidden state at timestep

t which is obtained based on current input xt and previous hidden state ht−1. f is an

activation function which is usually a non-linear function such as ReLU, tanh or Sigmoid.

U,W and V are parameter matrice to be learned. ot indicates the output vector at timestep

t which depends on a specific task, and g is an activation function. For example, if the task

9



is next word prediction for a sentence, then the activation function g would be softmax

function and ot = softmax(Vht) would be a list of probabilities for all words in vocabulary.

2.1.2 Bidirectional RNN

Simple RNN has limitations as current state can only read previous inputs but not future

inputs. Bidirectional Recurrent Neural Network (BRNN) [99] can read a sequence of data

in both forward and backward directions. In other words, both forward and backward

states information can be read by the output layer of BRNN at the same time. BRNN is

particularly helpful when the contextual information of the input is needed.

Figure 2.2 gives an illustration of a BRNN which contains two hidden layers at each

timestep t, for computing forward states and backward states, respectively. A simple

BRNN unit can be defined as the following equations:

h f
t = f (U f xt +W f h f

t−1 +a f ) (2.3)

hb
t = f (Ubxt +Wbhb

t−1 +ab) (2.4)

ot = g(V[h f
t ,hb

t ]+ c) (2.5)

where h f
t denotes hidden state of the forward direction at timestep t and hb

t is the hidden

state of the backward direction. ot denotes the output at timestep t which is generated

based on the combination of the above two hidden states. U f ,Ub,W f ,Wb,V,a f ,ab and c

are parameters to be learned. f and g are two activation functions.
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Fig. 2.2 Illustration of a bidirectional RNN.

2.1.3 Long Short-Term Memory Unit

Although simple RNN can theoretically make use of sequences with arbitrary length, it

can solely look back a few timesteps due to the gradient vanishing and exploding problems

[3], so it can not capture the long-term dependencies from very long sequences. Thus, the

long short-term memory (LSTM) unit [44] was devised to alleviate the above limitation.

Figure 2.3 gives the inner structure of a LSTM unit. LSTM uses a memory cell to

store information throughout the processing of the sequence, and three gates to control

information in and out of the memory cell. The transition functions of LSTM are defined

as follows:

it = σ(Wi[xt ;ht−1]+bi) (2.6)
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Fig. 2.3 Architecture of an LSTM unit

ft = σ(W f [xt ;ht−1]+b f ) (2.7)

c̃t = tanh(Wc[xt ;ht−1]+bc) (2.8)

ot = σ(Wo[xt ;ht−1]+bo) (2.9)

ct = ft⊙ ct−1 + it⊙ c̃t (2.10)

ht = ot⊙ tanh(ct) (2.11)

where xt is the input vector at timestep t. ht and ht−1 denote the hidden states at timestep t

and t−1, respectively. it , ft , ot and ct are input gate, forget gate, output gate and cell state

at timestep t, respectively. Wi,W f ,Wo,Wc,bi,b f ,bo,bc are trainable parameters.
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2.2 Recursive Neural Networks

Recursive neural networks (RecNNs) or tree-structured neural networks are a kind of

artificial neural networks which utilise the same set of parameters recursively over a

structured input.

2.2.1 Vanilla RecNN

The idea of RecNNs for NLP is to train a deep neural network with a syntactic tree

structure [90] that can be employed to model phrases and sentences. The simplest member

of RecNNs is the vanilla RecNN [110], in which the representation vector of the parent

node is computed by weighted linear combination of the representation vectors of its child

nodes.

Figure 2.4 shows a vanilla RecNN applied to a parsed sentence “She studies English”.

e1,e2 and e3 are representation vectors for words “She”, “studies” and “English” in the

sentence, respectively. The RecNN firstly concatenates e1 and e2 to form a representation

vector h1 for the phrase “studies English”:

h1 = tanh(W[e2;e3]+b) (2.12)

After that, the word representation vector e1 and the phrase vector h1 are concatenated to

get a new vector h2 that represents the full sentence “She studies English”.

h2 = tanh(W[e1;h1]+b) (2.13)

W and b are parameters to be trained. The obtained sentence representation vector can be

applied to various NLP tasks including text matching.
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Fig. 2.4 A vanilla RecNN applied to a parsed sentence “She studies English”.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of feed-forward neural network

and have been applied successfully for image processing [63, 53]. Unlike traditional

feed-forward neural network, neurons in CNN can respond to a small part of neurons in

the next layer. Generally, a CNN is usually composed of an input layer, an output layer

and a stack of hidden layers. Each hidden layer is composed of a series of convolutional

and pooling layers.
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2.3.1 Convolutional Layer

While modeling natural language such as texts, a CNN takes as inputs a sequence of word

representation vectors, and then creates representation vectors for all sub-phrases, and

finally aggregates them together for future tasks.

Suppose we have a sequence of text with m words, denoted as (x1,x2, ...,xm), and word

embeddings of these words, denoted as (v1, . . .vm) where vi ∈ Rd , d indicates the length

of each word embedding vector. Then the concatenation of words vi, . . . ,vi+1, . . . ,v j can

be denoted as vi: j. Finally, a convolution operation is used to run over the entire input text

to generate new features. The convolution filter is denoted as W ∈ Rkd where k denotes

the window size of the convolution filter. A feature pi is generated from a sequence of

words within a window xi:i+k−1 by the following equation:

pi = f (vi:i+k−1WT +b) (2.14)

where f is an activation function and b ∈ R denotes the bias term. After the convolution

filter W being applied to each possible text sequence with k words x1:k,x2:k+1, . . . ,xm−k+1:m,

a feature vector is generated as follows:

p = [p1, p2, . . . , pm−k+1] (2.15)

where p ∈ Rm−k+1.

2.3.2 Pooling Layer

Normally, a pooling layer is always used after a convolutional layer in CNNs. The

reasons of using a pooling layer are two-fold: firstly, it provides a fixed-size output,
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which is typically required for further layers such as feed-forward neural network. As

aforementioned, the convolutional output feature vector p has m− k+1 elements that is

dependent on the input size m if the input text is not padded. Therefore, the outputs of the

convolutional layer would be in variable lengths. By using pooling layers [52] the size of

the outputs of the convolutional layer can be fixed, which equals to the number of filters

used. There are several ways of doing pooling such as max-pooling and average-pooling.

Taking max-pooling as an example, it simply takes the maximum element of the output

feature vector p:

p̂ = max [p] (2.16)

For example, if there are 1000 filters, then we will get a 1000-dimensional output after

using max-pooling. Secondly, a pooling layer can reduce the output dimensionality by

keeping the most salient information.

2.4 Neural Networks for Text Matching

Existing neural network based text matching models can be generally partitioned into

two types, i.e., representation-based models and interaction-based models, respectively.

The representation-based models aim to encode two texts to two representation vectors

independently, and there is no interaction between two texts until the corresponding

representations are obtained. The interaction-based models aim to make matching decision

based on direct matching features and two texts are interacted before obtaining final text

representations.
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2.4.1 Representation-based Neural Networks for Text Matching

The main idea of the representation-based models is to encode two texts into two represen-

tation vectors independently using deep neural networks. Figure 2.5 shows the framework

of the representation-based text matching model which is composed of four layers. The

first is the input layer which is used to represent each word in a text into a vector using

bag-of-words [40] or word embedding [79]. The second layer accepts word representation

vectors from the first layer to generate two text representation vectors. The third layer

aggregates the above two text representation vectors into a single vector using a matching

function such as element-wise product. Finally, the aggregated vector is fed into the

final classifier network to make prediction. The text representation layer is the core of

the representation-based model. How to represent text into a vector with rich semantic

information has great impact on the performance of the model.

Fig. 2.5 Illustration of the framework of representation-based text matching model. Va

and Vb are text representations encoded by deep neural networks for text A and text B

respectively. f (Va,Vb) is a matching function that used to aggregate Va and Vb into a single

vector for the final classifier.
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2.4.1.1 Recurrent Neural Networks for Text Representation

Recurrent neural networks (RNNs) are a class of neural architectures which have been

widely used to obtain text representations [126]. Generally, a RNN takes one word from

the text as its input at each timestep and aggregates current word with its previous state.

Then the compositional result over the whole text can be seen as the representation of the

text. Among several variants of the simple RNN [30], the long short-term memory (LSTM)

[44] has become a typical choice for RNNs recently. Benefiting from the well-designed

gate mechanism in LSTM, gradient from distant terms can be delivered to the current term,

thus it has the ability of tackling the gradient vanishing and exploding problem.

Although the complex gate mechanism in LSTM unit is helpful with the express power

of RNNs, it sacrifices the computational efficiency of the models. Thus, how to simplify

computation but keep the capacity of RNN models need to be further explored. One way

is to simplify the inner structure of the LSTM unit. Cho et al. simplified LSTM unit by

removing its cell state and proposed the gated recurrent unit (GRU) with only two gates, a

reset gate to decide how much past information to forget, and an update gate to determine

what new information to add [18]. Lee et al. removed the output gate and the recurrent

non-linearity from LSTM and proposed the recurrent additive network (RAN), which

generates hidden states with linear transformed inputs directly [64]. [151] devised a novel

twin-gated mechanism and proposed the addition-subtraction twin-gated recurrent unit

(ATR) with fewer matrix operations. The twin-gated mechanism can generate two gates

with the same parameters through linear addition and subtraction operation.

Another way is to remove recurrent connections in order to promote parallelism of

RNNs. [9] proposed the quasi-recurrent network (QRNN), which contains two components,

a convolutional component and a pooling component. The convolutional component

computes across both minibatches and spatial dimensions in parallel to get local input

features. And the pooling component allows fully parallel computation across minibatch
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and feature dimensions to obtain global input features. [65] proposed a simple recurrent

unit (SRU) which consists of a light recurrence component and a highway network. The

recurrence component is strengthened via the highway network component. Zhang and

Sennrich made use of ATR [151] and SRU [65] and proposed a lightweight recurrent

network (LRN) with two gates, an input gate to decide how much information from the

current input to add and a forget gate to determine what information from previous hidden

state to forget, respectively.

Besides, to further increase the expressivity of recurrent neural networks, some works

propose to stack multiple recurrent layers on top of each other in a hierarchical manner

to capture hierarchical features [98, 29, 88, 43]. Nie and Bansal [83] proposed a stacked

bidirectional LSTM-RNN with shortcut connections where hidden states from all previous

layers are concatenated so as to make the backpropagation path short. Cellaware stacked

LSTM (CAS-LSTM) [20] utilises both hidden states and cell states from the previous

layer to ensure information flow to be delivered in both horizontal recurrence and vertical

connections. [125] presented a recurrently controlled recurrent network (RCRN) which

learns gating functions using recurrent networks. RCRN consists of two key components,

a controller RNN to control the information flow and compositionality of the listener RNN,

and a listener RNN to generate final output of the model.

2.4.1.2 Recursive Neural Networks for Text Representation

RNN models take a sentence as a flat sequence, without considering the structural infor-

mation of the sentence. In contrast, tree-structured neural networks or recursive neural

networks (RecNNs) take a sentence as a recursive structure [111]. Based on the pre-

obtained syntactic parse tree, a RecNN model converts each word at a leaf node of the tree

to a representation vector, and then uses a composition function to compose word/phrase
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pairs to get representations of the intermediate nodes of the tree. Finally, the representation

of the root node is viewed as a representation of the sentence.

Earlier research on RecNNs mainly focuses on investigating effective composition

functions. Socher et al. [110] firstly proposed the RecNN architecture and used a simple

feed-forward neural network as the composition function of the model. Latterly, some

more complex composition functions such as matrix-vector multiplication [109], tensor

computation [111], TreeGRU [159] and TreeLSTM [117, 160] are proposed to improve

the performance of the basic RecNN. TreeLSTM works in a bottom-up manner, which

means the learned representation of a node is based on its child nodes, without considering

information from higher up in the tree. By analogy with the bidirectional sequential network

such as BiLSTM, bidirectional recursive networks have been proposed [61, 127, 13, 155].

Benefiting from considering the syntactic structure of sentences, RecNNs achieve

impressive performance on many NLP tasks. However, a major limitation of these RecNN

models is that the same composition function is used recursively over the syntactic tree,

thus lacking the ability of distinguishing different syntactic compositions.

To alleviate this problem, a straightforward method is to utilise multiple composition

functions. Socher et al. [108] selected a suitable composition function for each word/phrase

pair according to its syntactic categories. Similarly, Dong et al. [27] introduced AdaRNN,

which adaptively selects composition functions according to tags and child vectors. How-

ever, the predefined composition functions are usually designed manually for some specific

tasks, thus the generalization ability of these models is limited. Recently, researchers

proposed some models which can automatically perform dynamic composition with the

aid of tags [91, 138, 46, 56]. Generally, tags are usually used as supplementary inputs for

RecNNs in these models. For example, Wang et al. [138] and Huang et al. [46] employed

tag embeddings as additional inputs to control the gates of TreeLSTM to conduct dynamic

composition.
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Other works such as [72, 101] took advantage of recent works on dynamic parameter

prediction [39] and proposed to use a hypernetwork to generate parameters for RecNNs

dynamically. DC-TreeLSTM [72] consists of two separate TreeLSTMs with similar

structure but different number of parameters. The smaller TreeLSTM is employed to

calculate weights of the bigger TreeLSTM. The two TreeLSTMs in a DC-TreeLSTM

model share the same input, i.e., word embeddings. Shen et al. [101] proposed TG-

HTreeLSTM, which improves the performance of DC-TreeLSTM by designing a complex

information fusion layer which incorporates tag information and word information for

hypernetwork TreeLSTM.

Finally, some latent tree-structured models have been proposed [148, 21, 75, 142],

which accept only a sequence of words as inputs and learn sentence representation as well

as its syntactic tree jointly from downstream tasks including text matching.

2.4.1.3 Other Neural Networks for Text Representation

The deep semantic structured model (DSSM) [47] is one of the earliest neural network

based text matching model which uses a feed-forward neural network to map a query

and a document to its representation vector. However, DSSM treats its inputs as a bag

of words, which ignores the contextual structures within the input texts. To capture the

contextual structures of the input texts, convolutional neural networks have been used for

text representation [107, 45, 92, 31, 67]. CNN based representation models take as inputs

representation vectors of input words sequentially, and then create representation vectors

for all sub-phrases using a stack of convolution and pooling layers, and finally aggregates

them together to generate a fixed-size representation vector in the final layer.

Recently, self-attention based architectures have been widely investigated in encoding

texts due to their highly parallelizable computation [102, 103, 105, 121, 38, 122, 1].

Among them, the Transformer architecture [130] has attracted extensive attention and has
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made tremendous impact in the field of NLP. A Transformer encoder consists of several

identical layers, and each layer is composed of a multi-head self-attention layer and a

position-wise feed-forward network. Moreover, a positional encoding layer is used to

model the order of the sequence.

In addition, graph neural networks (GNNs) [97] are also used for text representation

[154, 73]. Zhang et al. proposed a sentence-state LSTM (S-LSTM) [154] which investi-

gates a graph RNN for encoding sentences. S-LSTM obtains hidden states for all words

simultaneously at each recurrent step rather than only one word at a time. [73] improved

the performance of S-LSTM by introducing a depth-adaptive mechanism which allows the

model to learn how many computational steps to conduct for different words as required.

2.4.1.4 Matching Function for Vector Aggregation

In spite of text representation component as shown in Figure 2.5, another important

component is the matching function. The matching function is used to aggregate two text

representation vectors into a feature vector which will be fed into the final classifier network

for making matching decision. An appropriate matching function should have the ability of

reflecting the nature of a task and providing sufficient information for the classifier network.

[50] improved the performance of paraphrase identification by using element-wise sum and

absolute element-wise difference as the matching function. Mou et al. [82] concatenated

three matching heuristics including element-wise multiplication, element-wise difference

and concatenation of the two sentence vectors to improve the performance of natural

language inference. Chen et al. [16] modified the heuristic matching function in [82]

by changing element-wise difference to absolute element-wise difference. [92] used a

non-linear tensor layer as the matching function in order to capture more complicated

interactions. [19] proposed a matching function ElBiS which is in bilinear form and can
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express different kinds of element-wise relations including element-wise product, sum,

difference and absolute difference.

2.4.2 Interaction-based Neural Networks for Text Matching

The representation-based models encode two texts separately, therefore, there is no explicit

interaction between two texts until the corresponding representation is obtained. The

interaction-based models have been proposed which aim to capture direct matching features,

and interaction between two texts is permitted before obtaining the final representation of

each text.

2.4.2.1 Matching-Aggregation based Models

A number of recent studies on text matching are under the matching-aggregation or

compare-aggregate framework [135]. Most of these models consist of the following five

layers: input layer, contextual encoding layer, matching layer, aggregation layer and

prediction layer, respectively.

The input layer is to represent words in input texts to the corresponding representation

vectors. The contextual encoding layer encodes the contextual information into word

representations. The matching layer matches smaller units such as words in one text

against the other text. The aggregation layer aggregates all matching results from the

previous layer into a fixed-size vector. Finally, the prediction layer is to make final matching

decision.

Wang and Jiang [136] proposed the mLSTM model for NLI which is the earliest

model under this framework. The mLSTM employs a LSTM to conduct word-by-word

matching sequentially, and at each position, it tries to match the current word in the

hypothesis with an attention-aware representation of the premise. Unlike mLSTM which
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only performs matching from a single direction, BiMPM [139] uses a BiLSTM to encode

the contextual information into each word representations in two texts and then match

them in two directions. Chen et.al. [15] proposed an enhanced sequential inference model

(ESIM) which enhances the comparison approach of comparison layer by calculating

the element-wise difference and product between the contextual representation and the

attention-weighted representation of each word in two texts. Bian et.al. [4] pointed out that

attention mechanism used in pervious matching-aggregation models would introduce noisy

information of irrelevant words. Thus, they proposed a dynamic-clip attention mechanism,

which can help filter irrelevant words by clipping their attention weights to 0. They also

gave two implementations of the dynamic-clip attention mechanism, i.e., K−max (save

the largest k attention weights and set the others to 0) and K− threshold (attention weights

less than k are set to 0), respectively.

To capture more matching information, Tan et.al. [118] introduced a multiway attention

network (MwAN) for text matching, which employs four types of attention functions to

match two texts at word level, including minus attention, concat attention, dot attention

and bilinear attention. Duan et.al. [28] pointed out that the network structures of previous

models are too shallow to model complex relations. They presented an attention fused deep

matching network (AF-DMN), which learns the attention-aware representations for two

texts based on multi-level interactions. [68] proposed a multi-turn inference mechanism

for NLI, which only focuses on a particular matching feature such as element-wise product

and difference at each inference turn. Liu et al. [70] proposed the SAT-LSTMs matching

model, which integrates syntax structure into attention model without using sequence

based attention. [15] improved the ESIM model by explicitly considering syntactic parsing

information of the input text.

Finally, external knowledge bases such as WordNet [80] and ConceptNet [112] have

been used to improve text matching. [14] presented a knowledge-based inference model

(KIM), which enriches the ESIM model [15] by incorporating semantic relation information
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of each word pair in two texts. And the semantic relations such as synonymy, antonymy,

hypernymy, hyponymy and cohyponyms are extracted from WordNet [80]. Jiang et.al. [51]

represented the aforementioned semantic relations in WordNet in the form of distributed

relation features to argument word embedding. [152] adaptively incorporated knowledge

from both WordNet and ConceptNet into neural network using a knowledge absorption

gate.

2.4.2.2 Other Interaction-based Models

In addition to matching-aggregation based models, a number of recent studies on text

matching take full advantage of the interaction matrix between two texts [34]. These

models usually obtain a word-by-word interaction or co-attention matrix between two texts

firstly, and then extract semantic features from the interaction matrix for final matching

decision.

Hu et al. [45] proposed the architecture-II (ARC-II) model, which generates the

interaction matrix by concatenating embedding words in two sentences and fed this matrix

into a CNN to obtain semantic features. [86] viewed text matching as an image recognition

problem and proposed the MatchPyramid model. In this model, the matching matrix

containing the similarity information between words is regarded as an image. Different

levels of matching patterns are learned in a hierarchical manner using a CNN. Densely

interactive inference network (DIIN) [34] uses a linear layer to get a dense interaction

tensor between two texts which contains more words interaction information. Yin et al.

[147] proposed the attention-based convolutional neural network (ABCNN) which is also

the first attempt to combine attention and CNNs for NLP task. Yin et al. [146] proposed

MultiGranCNN, which learns representations for a sentence of different granularities

such as words, phrases and sentence. Then the interaction matrix between two texts is
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constructed based on these three different level of representations. Similar with [146], [12]

proposed the MIX model which fuses CNNs at multiple granularities.

Wan et al. [131] proposed the MV-LSTM model, which utilises a BiLSTM to generate

multiple positional sentence representations firstly. The matching degree between two

sentences are computed by aggregating interactions between generated positional sentence

representations. Shen et al. [106] designed a gated relevance network (GRN) to capture

complex semantic interactions, which incorporates bilinear model [116, 49] and single layer

neural network [22] through the gate mechanism. Wan et al. [132] viewed text matching

as a longest common subsequence problem and proposed the Match-SRNN model which

uses a spatial RNN to integrate the local interactions over the word interaction tensor

recursively.

Besides, attentive representation models are also used for text matching [74, 119].

The key to attentive representation models is also to represent texts, but this is quite

different with aforementioned representation-based models. The representation-based

models encode each text separately, while the attentive representation models encode one

text by considering the impact of the other text.

Finally, there are some works based on dependent reading. [96] used two LSTMs with

different parameters to read premise sentences and hypothesis sentences respectively for

natural language inference. The last state of the premise LSTM is used to initialize the cell

state of the hypothesis LSTM. Sha et al. [100] proposed a Re-read LSTM (rLSTM) for

NLI. While processing the hypothesis sentence, rLSTM takes word representations of all

words in premise as its additional inputs. The average of the outputs of rLSTM is used as

the representation of the premise-hypothesis pair to make final matching decision. Ghaeini

et al. [32] improved the performance of rLSTM by exploring dependency aspects of the

premise-hypothesis during both encoding and inference stages.
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2.5 Summary

This chapter firstly introduced some preliminary knowledge of three deep neural network

architectures including recurrent neural networks, convolutional neural networks and

recursive neural networks. Then, a detailed literature review on neural networks for text

matching is presented. Table 2.1 gives a summary of two types of existing neural based

text matching models reviewed in this thesis. The representation-based models focus on

investigating neural architectures with strong expressive power to encode texts into a dense

vector. The interaction-based models aim to construct neural networks with the ability

of capturing more matching features between two texts. The merit of the representation-

based models is that the final representation vectors of texts can be used for other purpose

such as text classification [120], text clustering [134]. Moreover, most of representation-

based models are based on a “Siamese” architecture [10], which have less parameters

and can be trained easily. However, the interaction-based models usually outperform

representation-based models in text matching.
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Chapter 3

TreeLSTM with Tag-Aware

Hypernetwork for Sentence

Representation

This thesis aims to improve text matching in the following two perspectives: text representa-

tion and text interaction. This chapter focuses on investigating effective text representation

model. Specifically, this chapter is to enhance the expressive power of the tree-structured

neural network by introducing a hypernetwork into standard TreeLSTM to perform dy-

namic composition.

3.1 Introduction

Recursive neural networks (RecNNs) or tree-structured neural networks is one type of

neural architecture which learns sentence representation by exploiting syntactic structures.

Based on the pre-obtained syntactic parse tree, a RecNN model converts each word at a

leaf node of the tree to a representation vector, and then uses a composition function to
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compose word/phrase pairs to get representations of the intermediate nodes of the tree.

Finally, the representation of the root node is viewed as a representation of the sentence.

However, a major limitation is that all kinds of compositions share the same parameters

in a RecNN model as shown in Figure 3.1, neglecting the fact that different syntactic

compositions exist which require different parameters for the RecNN model to handle

precisely.

Fig. 3.1 A RecNN model where the parameter θ is shared by different kinds of syntactic

compositions such as verb-noun (VP) composition and determiner-noun (NP) composition.

In order to distinguish different syntactic compositions, some dynamic compositional

models are proposed, in which different composition functions are used for different

compositions. One way of performing dynamic composition is with the aid of POS

tags attached to nodes in the syntactic tree of a sentence [91, 46, 138, 101]. Usually, a

low-dimensional distributed vector is used to represent each tag, namely tag embedding.

Tag embeddings are learned and used together with word embeddings as inputs of the

model. For example, Huang et al. [46] proposed TE-LSTM which takes tag embeddings

as additional inputs to the gate functions of the TreeLSTM. A limitation of this kind of

model is that the learned tag embeddings in these models are too simple to reflect the rich

information that tags provide in different syntactic structures.
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Another way of conducting dynamic composition is to take advantage of hypernetworks

[39] which use a small network (i.e., “hypernetwork”) to generate the weights for a

larger network (i.e., main network). Liu et al. [72] proposed DC-TreeLSTM which is

composed of two separate TreeLSTMs with similar structures but different numbers of

parameters. The smaller TreeLSTM is employed to calculate the weights of the bigger

TreeLSTM. A limitation of DC-TreeLSTM is that the two TreeLSTMs share the same

inputs, i.e., word embeddings, thus, the model can only extract semantic information

and lacks the ability of capturing syntactic information which is useful for dynamic

composition. Although Shen et al. [101] considered syntactic information and improved the

performance of DC-TreeLSTM by incorporating tag information and word information in

the hypernetwork TreeLSTM, tag information is only a supplement to the word information.

However, comparing with words, tags can help the model to distinguish different syntactic

compositions more explicitly. Thus, how to use tags in a more efficient way for dynamic

composition still need to be further explored.

In short, the syntactic information of a sentence has not been fully explored for dynamic

composition in previous studies. To alleviate this limitation, we propose a new model,

TagHyperTreeLSTM, which is composed of a tag-aware hypernetwork and a sentence

encoder. The purposes of the tag-aware hypernetwork are two-fold: (1) to extract much

more syntactic information by encoding some structural information into tag embeddings;

and (2), to dynamically generate parameters for the sentence encoder. Specifically, the

tag-aware hypernetwork is a standard TreeLSTM which only accepts tag embeddings

at each node of a tree, and outputs a new tag representation of the node. Then these

new tag representations, which encode structural information of nodes, will be used to

generate parameters for the sentence encoder to perform dynamic composition. The

sentence encoder is another TreeLSTM which accepts words as inputs and outputs the

final sentence representation. The proposed TagHyperTreeLSTM model is evaluated on

two typical NLP tasks: text classification and text semantic matching. The results show
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that TagHyperTreeLSTM is more expressive than previous models due to its ability of

capturing both semantic and syntactic information.

The contributions of this work can be summarised as follows:

• We propose a new perspective on the usage of tags in a syntactic tree and devise a

novel dynamic compositional model TagHyperTreeLSTM for sentence representa-

tion.

• Experimental results show that the proposed model achieves state-of-the-art per-

formance among tree-structured models on six benchmark datasets with fewer

parameters.

• An elaborate qualitative analysis is presented, giving an intuitive explanation of why

our model works.

3.2 The Model

In this section, we present a novel dynamic compositional neural architecture, named

TagHyperTreeLSTM, which consists of two components, i.e., tag-aware hypernetwork

and sentence encoder. The tag-aware hypernetwork is a standard TreeLSTM which only

accepts tag embeddings as inputs and outputs new tag representation of each node in

a parse tree. The sentence encoder accepts word representations as inputs and outputs

sentence representations. The parameters of sentence encoder are calculated based on the

outputs of tag-aware hypernetwork. Figure 3.2 illustrates the proposed model.

In subsection 3.2.1, the standard TreeLSTM architecture is outlined. Subsection 3.2.2

describes the tag-aware hypernetwork and subsection 3.2.3 presents the sentence encoder.
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3.2.1 TreeLSTM

LSTM is proposed to deal with the vanishing and exploding gradient problems of RNN,

which can capture long-distance dependencies for sequential data due to its well-designed

gate mechanism. TreeLSTM [117] extends LSTM to tree-structured topology and achieves

impressive performance in sentence representation.

For each node j in a binary constituency tree of a sentence, let x j = [x1, . . . ,xde ]
T be an

input vector, hl
j = [hl

1, . . . ,h
l
d]

T and hr
j = [hr

1, . . . ,h
r
d]

T be the hidden states of left child and

right child, respectively. cl
j = [cl

1, . . . ,c
l
d]

T and cr
j = [cr

1, . . . ,c
r
d]

T be the memory cells of

left child and right child, respectively. The composition function of a TreeLSTM unit can

be described as follows:

i j = σ(Wi[x j;hl
j;hc

j]+bi) (3.1)

fl
j = σ(Wl[x j;hl

j;hc
j]+bl) (3.2)

fr
j = σ(Wr[x j;hl

j;hc
j]+br) (3.3)

g j = tanh(Wg[x j;hl
j;hc

j]+bg) (3.4)

o j = σ(Wo[x j;hl
j;hc

j]+bo) (3.5)

c j = fl
j⊙ cl

j + fr
j⊙ cr

j + i j⊙g j (3.6)

h j = o j⊙ tanh(c j) (3.7)

where c j,h j ∈ Rd refer to the memory cell and hidden state of node j. i j, fl
j, f

r
j,o j ∈ Rd

represent input gate, two forgot gates (left child and right child), and output gate, respec-

tively. g j ∈ Rd is the newly composed input for the memory cell. Wi,Wl,Wr,Wg,Wo ∈

Rd×(2d+de) and bi,bl,br,bg,bo ∈ Rd are trainable parameters. [; ] denotes the concate-

nation operation, tanh is the hyperbolic tangent, σ denotes the sigmoid function, and ⊙

represents element-wise multiplication.
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For simplicity, we describe the computation of the hidden state of node j at a high

level with Equation (3.8) to facilitate references later in this chapter, and the detailed

computation refers to Equations (3.1-3.7).

[h j;c j] = TreeLSTM(x j,hl
j,h

r
j,c

l
j,c

r
j) (3.8)

Fig. 3.2 An overview of the TagHyperTreeLSTM. The tag-aware hypernetwork is a s-

tandard TreeLSTM which only accepts tag embeddings as inputs. U denotes parameters

of tag-aware hypernetwork. (ĥ1, . . . , ĥ5) and (ȟ1, . . . , ȟ5) are hidden states of nodes in

tag-aware hypernetwork and sentence encoder, respectively. W(ĥ4) and W(ĥ5) are inter-

mediate hidden vectors computed based on ĥ4 and ĥ5. Parameters of the sentence encoder

at each non-leaf node, i.e., θ1 and θ2, are not static, but are changed dynamically by the

hidden vectors W(ĥ4) and W(ĥ5), respectively, and the detailed computation refers to

subsection 3.2.3

3.2.2 Tag-aware Hypernetwork

In this subsection, the tag-aware hypernetwork in Figure 3.2 is described in detail. It is

a standard TreeLSTM but accepts only tag embeddings as inputs. The purpose of the
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tag-aware hypernetwork is to generate parameters dynamically for the sentence encoder

(the right side of Figure 3.2).

Formally, we denote tag embedding for the tag attached to each node j in a binary

constituency tree as e j = [e1, . . . ,edt ]
T . Then the hidden state ĥ j ∈ Rdt and memory cell

ĉ j ∈ Rdt of node j are defined in the following way. If node j is a leaf node:

[ĥ j; ĉ j] = tanh(Ve j +a) (3.9)

If node j is a non-leaf node:

[ĥ j; ĉ j] = TreeLSTM(e j, ĥl
j, ĥ

r
j, ĉ

l
j, ĉ

r
j) (3.10)

where TreeLSTM refers to Equation (3.8). V ∈ R2dt×dt and a ∈ R2dt are trainable param-

eters. The remaining notation follows Equations (3.1-3.7).

3.2.3 Sentence Encoder

In this subsection, we introduce the sentence encoder (the right side of Figure 3.2) which

is used to compose word/phrase pair recursively over a binary constituency tree.

Formally, we denote sentence as a sequence of words (w1,w2, ...,wm) where m is the

length of the sentence. Word embeddings of the sentence are denoted as (v1, . . .vm) where

vi = [v1, . . . ,vdw ]
T , i ∈ [1,m]. Note that these words are leaf nodes in the constituency tree

generated by a parser. Instead of using word embeddings directly, we firstly use a LSTM

[44] on them, and then use each hidden state and memory cell of the LSTM as inputs for

leaf nodes in the sentence encoder, which is effective for performance improvements on

several NLP tasks [21].
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Thus, for leaf node t, the hidden state h̄t ∈Rdh and memory cell c̄t ∈Rdh are computed

in sequential order, with the corresponding input, i.e., word embedding vt ∈ Rdm by the

following equation:

[h̄t ; c̄t ] = LSTM(h̄t−1, c̄t−1,vt) (3.11)

where h̄t−1 ∈ Rdh and c̄t−1 ∈ Rdh refer to the hidden state and memory cell of LSTM

at (t− 1)th time-step. The hidden state h̄t and memory cell c̄t can be utilised as inputs

to the sentence representation TreeLSTM, with the left (right) child of the target node j

corresponding to the tth word in the input sentence as follows:

[ȟ{l,r}j ; č{l,r}j ] = [h̄t ; c̄t ] (3.12)

Then, for each none-leaf node j, a TreeLSTM with dynamic parameters is used to

obtain its hidden state ȟ j ∈ Rdh and memory cell č j ∈ Rdh as follows:

W(ĥ j) = Wdĥ j +bd (3.13)

ǐ j = σ(W(ĥ j)⊙Wi[ȟl
j; ȟc

j]+W(ĥ j)⊙ b̌i) (3.14)

f̌l
j = σ(W(ĥ j)⊙Wl[ȟl

j; ȟc
j]+W(ĥ j)⊙ b̌l) (3.15)

f̌r
j = σ(W(ĥ j)⊙Wr[ȟl

j; ȟc
j]+W(ĥ j)⊙ b̌r) (3.16)

ǧ j = σ(W(ĥ j)⊙Wg[ȟl
j; ȟc

j]+W(ĥ j)⊙ b̌g) (3.17)

ǒ j = σ(W(ĥ j)⊙Wo[ȟl
j; ȟc

j]+W(ĥ j)⊙ b̌o) (3.18)

č j = f̌l
j⊙ čl

j + f̌r
j⊙ čr

j + ǐ j⊙ ǧ j (3.19)

ȟ j = ǒ j⊙ tanh(č j) (3.20)

where Wd ∈Rdh×dh and bd ∈Rdh are trainable parameters. W(ĥ j)∈Rdh is an intermediate

hidden vector computed based on the output of the tag-aware hypernetwork at node
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j, which modifies the corresponding static parameters Wi,Wl,Wr,Wg,Wo ∈ Rdh×2dh

and b̌i, b̌l, b̌r, b̌g, b̌o ∈ Rdh through linearly scaling each row in the weight matrix. The

remaining notation follows Equations (3.1-3.7). Finally, the hidden state of the root node

ȟroot ∈ Rdh is used as the representation for the given sentence.

3.3 Applications of TagHyperTreeLSTM

This section presents the application of TagHyperTreeLSTM for two typical NLP tasks.

Text classification. Given a sentence s and a pre-defined class set Y , text classification

is to predict a label ŷ ∈ Y for s. A single layer MLP followed by a softmax classifier

is applied on the sentence representation ȟroot to obtain the final predicted probability

distribution of class y given sentence s as follows:

hs = Relu(Wsȟroot +bs) (3.21)

p(y|s) = softmax(Wchs +bc) (3.22)

where hs ∈ Rds is the intermediate feature vector for the softmax classifier. Ws ∈

Rds×dh,bs ∈ Rds,Wc ∈ Rdc×ds,bc ∈ Rdc are trainable parameters.

Text matching. Text matching is to predict the relationship l̂ ∈L between a given

sentence pair s1 and s2 from a pre-defined label set L . Firstly, the same TagHyperTreeL-

STM is used to encode s1 and s2 into two sentence representation vectors ȟroot
s1 , ȟroot

s2 ∈R
dh .

Next, some matching heuristics [82] are used to combine the two sentence vectors together

to generate a intermediate feature vector for the final classifier in the following way:

hst = [ȟroot
s1 , ȟroot

s2 , ȟroot
s1 ⊙ ȟroot

s2 , |ȟroot
s1 − ȟroot

s2 |] (3.23)
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hm = Relu(Wmhst +bm) (3.24)

where hm ∈ Rdm is the intermediate feature vector for the following classifier. Wm ∈

Rdm×4dh,bm ∈ Rdm are trainable parameters. Finally, the probability distribution of label l

given sentence pair s1 and s2 is obtained using a softmax classifier:

p(l|(s1,s2)) = softmax(Wlhm +bl) (3.25)

where Wl ∈ Rdl×dm,bl ∈ Rdl are again trainable parameters. The parameters of the model

are learned to minimise the cross-entropy of the distributions between predicted and true

labels.

3.4 Experiments

3.4.1 Datasets

The proposed model is evaluated on four benchmark datasets for text classification (SST2,

MR, SUBJ, TREC) and two datasets (SICK and SNLI) for text matching:

• SST2: Stanford Sentiment Treebank consisting of movie reviews with positive or

negative label [111].

• MR: The movie reviews with positive or negative label [85].

• SUBJ: Sentences grouped as being either subjective or objective [84].

• TREC: A dataset which groups questions into six different question types [66].

• SICK: A textual entailment dataset with three classes (entailment, neutral, contradic-

tion) [76].
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• SNLI: The stanford natural language inference dataset with three classes (entailment,

neutral, contradiction) [7].

Tabel 3.1 shows statistics of the six datasets used in this work.

Table 3.1 Statistics of six benchmark datasets for two tasks. Train, Dev and Test are the size

of training, validation and test dataset, respectively. CV means 10-fold cross validation is

used. Lavg is the average number of words in sentences. |V | is the size of vocabulary. |T |

is the number of tags. Class is the size of label/class set.

Dataset Train Dev Test Lavg |V| |T| Class

SST2 6920 872 1821 18 15K 73 2

MR 10662 - CV 22 19K 73 2

SUBJ 10000 - CV 21 21K 72 2

TREC 75952 - 500 10 10K 67 6

SICK 4500 500 4927 10 2K 41 3

SNLI 549K 9800 9800 10 36K 72 3

3.4.2 Experimental Setup

For all the datasets, sentences are tokenized and parsed by Stanford PCFG parser1 [60].

Word embeddings are initialized with the 300-dimensional GloVe word vectors [89], and

embeddings of out-of-vocabulary words and tags are initialized by randomly sampling from

the uniform distribution [−0.005,0.005]. Tag embeddings are fine-tuned during training

procedure while word embeddings are fixed. Hidden size for tag-aware hypernetwork and

the dimension of tag embeddings are fine-tuned from [25,50]. Hidden size for sentence

representation TreeLSTM is 100 for all datasets. Batch size is selected from [32,64].

Weights of the model are trained by minimizing the cross-entropy of the training dataset

1https://nlp.stanford.edu/software/lex-parser.shtml
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by the Adadelta [149] optimizer. The initial learning rate is 1. The accuracy metric is used

in this work to measure the performance of the proposed and all comparison models on six

datasets.

3.4.3 Results

Text Classification. The proposed model is compared with two kinds of models, i.e.

tree-structured models and other neural models. Table 3.2 shows test accuracies of the

proposed TagHyperTreeLSTM and all comparison models on four text classification

datasets. Generally, compared with all baseline models, the proposed TagHyperTreeLSTM

achieves superior or competitive performance on all four text classification datasets.

From table 3.2, we can observe that, firstly, compared with previous tree-structured

models, TagHyperTreeLSTM sets a new state of the art on all four datasets - SST2, MR,

SUBJ and TREC with accuracies of 91.2%, 83.7%, 95.2% and 96.0%, respectively.

Secondly, compared with DC-TreeLSTM and TG-HTreeLSTM which are two models

very related to our work, TagHyperTreeLSTM outperforms them on all four datasets.

DC-TreeLSTM is the first work that employs a hypernetwork to generate parameters

dynamically for a TreeLSTM which is responsible for sentence representation. Note that

the hypernetwork and the sentence representation TreeLSTM share the same input (i.e.,

word embeddings) in DC-TreeLSTM. Different from DC-TreeLSTM, the hypernetwork in

our model is based on tag embeddings without using any word information. TagHyper-

TreeLSTM is superior to the DC-TreeLSTM on four datasets SST2, MR, SUBJ and TREC

with 3.4%, 2%, 1.5% and 2.2% improvements, respectively. A possible reason is that tag

information is more useful for distinguishing different syntactic compositions than word

information. Moreover, TagHyperTreeLSTM is slightly better than TG-HTreeLSTM on all

four datasets SST2, MR, SUBJ and TREC with 0.8%, 1.1%, 0.3% and 0.2% improvements,

respectively. TG-HTreeLSTM uses tag information as a supplement to word information
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Table 3.2 Accuracies of previous neural models and proposed model on four different

text classification datasets. The symbol * indicates models that are pre-trained with large

external corpora. The symbol † indicates our implementations.

Model SST2 MR SUBJ TREC

Tree-structured neural models

RecNN [110] 82.4 76.4 91.8 90.2

RNTN [111] 86.4 - - -

AdaMC-RNTN [27] 87.1 - - -

TE-RNN [91] 86.5 77.9 - -

TreeLSTM [117] 88.0 - - -

AdaHT-LSTM [71] 87.8 81.9 94.1 -

TE-LSTM [46] 89.6 82.2 - -

BiTreeLSTM [128] 90.3 94.8

DC-TreeLSTM [72] 87.8 81.7 93.7 93.8

Gumbel Tree-LSTM [21] 90.7 - - -

TG-HTreeLSTM [101] 90.4 82.6 94.9 95.8

Other neural models

CNN [57] 88.1 81.5 93.4 93.6

LSTM [117] 84.9 - - -

BCN + Char + CoVe* [77] 90.3 - - 95.8

byte-mLSTM* [93] 91.8 86.9 94.6

DiSAN [102] - - 94.2 94.2

DARLM [158] - 83.2 94.1 96.0

WSAN [48] - 83.2 94.6 95.0

Transformer† [130] 86.9 80.2 94.1 91.9

star-Transformer† [37] 87.1 80.7 93.6 93.0

Bert*† [25] 90.8 85.8 96.0 96.8

TagHyperTreeLSTM (proposed) 91.2 83.7 95.2 96.0
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and devises a complex information fusion layer for the hypernetwork. Compared with

TG-HTreeLSTM, the proposed model achieves better performance with fewer parameters

thus is more effective and efficient.

Thirdly, compared with other neural models, TagHyperTreeLSTM shows its consis-

tently better performance on four datasets. Althogh Bert achieves better performance than

TagHyperTreeLSTM, it is pre-trained with large external corpora while TagHyperTreeLST-

M do not perform any pre-training. As table 3.2 shows, TagHyperTreeLSTM outperforms

all the models that do not perform pre-training, including recently published transformer

based model such as star-Transformer.

Text Matching. To evaluate the proposed TagHyperTreeLSTM on other NLP tasks, we

also conduct an experiment on text matching. Different from text classification requiring

only one sentence at a time, each example in a text semantic matching dataset consists

of two sentences. In this work, we evaluate the performance of TagHyperTreeLSTM on

SICK and SNLI datasets.

Table 3.3 shows experimental results on SICK dataset. The performance of RNN,

LSTM, RecNN, and RNTN are reported in [7]. The performance of MV-RNN is reported

in [72], and performance of the other models come from respective papers. We can find

that TagHyperTreeLSTM again demonstrates its superior performance compared against

baseline models with an accuracy of 83.9%, and is slightly better than the best baseline

model TG-HTreeLSTM with an improvement of 0.6%. Table 3.4 gives experimental results

on SNLI dataset. For fair comparison, we only consider sentence-encoding based models.

The performance of TagHyperTreeLSTM is on par with the previous tree-structured models.

This comparison shows that TagHyperTreeLSTM is also effective in text sematic matching

task, and has generalization ability in different NLP tasks.
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Table 3.3 Accuracies of previous neural models and proposed model on the SICK dataset.

Model Acc (%)

RNN [7] 72.2

LSTM [7] 77.6

RecNN[8] 74.9

RNTN [8] 76.9

MV-RNN [72] 75.5

DC-TreeLSTM [72] 82.3

TG-HTreeLSTM [101] 83.3

TagHyperTreeLSTM 83.9

Table 3.4 Accuracies of previous neural models and proposed model on the SNLI dataset.

Model Acc (%)

LSTM [7] 80.6

Tree-based CNN [82] 82.1

SPINN-PI [6] 83.2

Gumbel Tree-LSTM [21] 85.6

TagHyperTreeLSTM 85.5
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Table 3.5 Comparison of number of parameters of different models on SST2 dataset.

Model # Params Acc (%)

CNN [57] 360K 88.1

LSTM [117] 316K 84.9

TreeLSTM [117] 317K 88.0

TE-LSTM [46] 919K 89.6

Gumbel Tree-LSTM [21] 1M 90.7

TG-HTreeLSTM [101] 486K 90.4

TagHyperTreeLSTM 418K 91.2

3.4.4 Analysis

3.4.4.1 An Observation on Model Complexity

In this subsection, a comparison of the number of parameters between the proposed TagHy-

perTreeLSTM and some typical neural models on the SST2 dataset is presented in Table

3.5. Firstly, compared with basic TreeLSTM, the performance of TagHyperTreeLSTM is

improved by 3.2%, but the number of parameters are only increased by about 100K. Sec-

ondly, compared with previous models which also use tag information, such as TE-LSTM

and TG-HTreeLSTM, the proposed TagHyperTreeLSTM outperforms them with fewer

parameters. This comparison demonstrates that TagHyperTreeLSTM is more effective and

efficient than previous models.

3.4.4.2 Configuration Study

In this section, we present a configuration study on key modules of the proposed model to

explore their effectiveness. As shown in Table 3.6, if we use word information instead of

tag information as the input of the hypernetwork (the left side of Figure 3.2), the accuracy

of the model drops to 95.6% on TREC dataset and 83.3% on SICK dataset, respectively.
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Table 3.6 A configuration study on key modules of TagHyperTreeLSTM. Test accuracies on

TREC and SICK datasets are reported. word: only use word information in hypernetwork.

word + tag: use both word and tag information in hypernetwork. -LSTM: remove LSTM

layer in sentence encoder.

Model TREC SICK

TagHyperTreeLSTM 96.0 83.9

word 95.6 83.3

word + tag 96.0 84.0

-LSTM 95.2 83.3

A possible reason for this performance degradation is that tag information is more explicit

and useful in distinguishing different syntactic structures than word information. Moreover,

we do not get much improvement (no improvement on TREC dataset and only 0.1%

improvement on SICK dataset) using both word and tag information in the hypernetwork.

This may be because syntactic tags have provided enough information in distinguishing

different syntactic structures, thus the contribution of word information is very limited.

If we remove LSTM layer in sentence encoder (subsection 3.2.3), the accuracy of the

model drops on both datasets with more than 0.5% degradation. Thus, using LSTM to get

contextualized word representations as the inputs of the sentence encoder is crucial for

performance improvement.

3.4.4.3 Qualitative Analysis

As described in previous sections, in order to distinguish different syntactic compositions,

parameters of the sentence encoder at each non-leaf node j are not static, but are changed

dynamically by a latent vector W(ĥ j), which is computed based on the hidden state of the

tag-aware hypernetwork of node j. To get an intuitive understanding on how the latent

vector W(ĥ j) works, we design an experiment to explore behaviours of neurons in W(ĥ j).
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Table 3.7 Some interpretable neurons and the phrases/clauses captured by these neurons.

Symbol + splits the left child and right child of current node.

Node Neurons Child nodes Examples
tags tags

Phrase Level

WHADJP 39th WRB+JJ
how+fast, how+much

how+tall, how+far

WHNP 77th WDT+NN
what+continent, what+year

what+color, what+province

PP

88th IN+NP
in+1913, of+yugoslavia

for+june, in+algeria

95th IN+NP
in+a galon, in+a ton, in+a mile

in+the neuschwanstein castle

NP

65th NNP+NNP
euphrates+river, eiffel+tower

national+forest

15th JJ+NN
acid+rain, compounded+interest

nuclear+power, trivial+pursuit

30th

DT+NN
the+calculator, a+thyroid

a+carcinogen, an+earthquake

NN+NN
fuel+cell, state+flower

yak+milk, spirometer+test

Clause Level SQ

91st

VBZ+NP
is+acid rain

is+john wayne airport

VBP+NP
are+the rocky mountains

are+in the troposphere

VBD+NP
founded+american red cross

invented+the hula hoop

37th VBZ+NP
is+the population of seattle

is+the capital of mongolia
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We randomly sample some sentences on the test set from the TREC dataset. Table 3.7

presents some interpretable neurons and some representative phrases or clauses captured by

these neurons. By analyzing the maximum activation neurons in W(ĥ j) at each non-leaf

node j, we find different neurons focus on capturing different syntactic compositions.

For example, the 65th, 15th and 30th neurons are more sensitive to noun phrases (NP)

compositions, while the 88th and 95th neurons are more sensitive to prepositional phrases

(PP) compositions. Moreover, note that although the 65th, 15th and 30th neurons are

sensitive to the same phrase type i.e., NP, the child node tags of the phrase are quite

different. For example, the 65th neuron is sensitive to noun phrases composed of two

proper nouns (NNP), while the 15th is sensitive to noun phrases composed of an adjective

(JJ) and a noun (NN).

Moreover, neurons with large value in W(ĥ j) are dominated by nodes with specific

syntactic structure or semantic basis which are significant for text classification and text

semantic matching. Figures 3.3 and 3.4 show two examples. In Figure 3.3, the 9th neuron

of W(ĥ j) is sensitive to sentences starting with “Who”, which is crucial for the model to

classify these sentences to the label “HUM”. Figure 3.4 gives an example for text semantic

matching. The 73rd neuron of W(ĥ j) monitors verb phrases such as “running down” and

“standing still" which are more helpful for recognizing the relation between the sentence

pair “A man is standing still” and “A man is running down the road”.

To have a better understanding of how the syntactic and dynamic composition parame-

ters improve the performance, we analyse some examples (see table 3.8) from the SST2

test set where our TagHyperTreeLSTM predicts correctly while TreeLSTM without using

syntactic tags fails. By analyzing the maximum activation of the latent vectorW(ĥ j), we

find that the 10th neuron in W(ĥ j) is sensitive to emotional terms, which can be regarded

as a sentinel, and more attention should be paid in the process of composition. Figure

3.5 gives a visualization of the parser tree and values of the 10th neuron of W(ĥ j) for

sentence “a whole lot foul , freaky and funny .”. We can see that the 10th neuron in
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Fig. 3.3 A visualization of values of the 9th neuron in W(ĥ j) for sentence “Who was

galileo ?”. The color of the square below non-leaf nodes indicates the value of the 9th

neuron of W(ĥ j).

W(ĥ j) has the biggest value at phrase “foul, freaky and funny”, which indicates that the

model has realized that the adjective phrase “foul, freaky and funny” is important for

the final sentiment classification. This suggests TagHyperTreeLSTM has the ability of

distinguishing informative phrases whilst encoding sentence, and the expressive powder of

TagHyperTreeLSTM is better.

3.5 Summary

In this chapter, we have presented a novel dynamic compositional architecture, named

TagHyperTreeLSTM, for learning sentence representation, which has better expressive

power due to its ability of distinguishing different syntactic compositions. The model

consists of two components, i.e., sentence encoder and tag-aware hypernetwork. The

purpose of the tag-aware hypernetwork is to extract syntactic information and to generate

parameters dynamically for the sentence encoder. The sentence encoder is to output the
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(a) A visualization of values of the 73rd neuron in W(ĥ j) for sentence “A

man is standing still ”.

(b) A visualization of values of the 73rd neuron in W(ĥ j) for sentence “A

man is running down the road ”.

Fig. 3.4 A visualization of values of the 73rd neuron in W(ĥ j) for sentence pair “A man is

running down the road/ A man is standing still”. The color of the square below non-leaf

nodes indicates value of the 73rd neuron in W(ĥ j).
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Table 3.8 Examples from the SST2 test set, where the proposed TagHyperTreeLSTM predicts

correctly while TreeLSTM without using syntactic tags fails. P indicates a predicted label

by TreeLSTM and G indicates gold-standard label.

Sentences G P

don’t waste your money . Negtive Postive

a whole lot foul , freaky and funny . Positive Negtive

the episodic film makes valid points about the depersonalization of
modern life .

Positive Negtive

the whole damn thing is ripe for the jerry springer crowd . Negtive Postive

one scarcely needs the subtitles to enjoy this colorful action farce . Postive Negtive

like old myths and wonder tales spun afresh . Positive Negtive

but it pays a price for its intricate intellectual gamesmanship . Negtive Positive

Fig. 3.5 A visualization of values of the 10th neuron in W(ĥ j) for sentence “a whole lot

foul , freaky and funny .”. The color of the square below non-leaf nodes indicates the value

of the 10th neuron in W(ĥ j).
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final sentence representation. Experimental results on six datasets in two NLP tasks have

demonstrated the superiority and the generalization ability of the proposed model.
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Chapter 4

Tag-Enhanced Dynamic Compositional

Neural Network over Arbitrary Tree

Structure for Sentence Representation

In the previous chapter, we improved the expressive power of the standard TreeLSTM

by performing dynamic composition using a tag-aware hypernetwork. However, exist-

ing dynamic compositional models are based on a binarized constituency tree which is

different from the original constituency tree generated by a parser and cannot obtain the

inherent structural information of a sentence effectively. This chapter extends the standard

TreeLSTM with binarized constituency tree to a novel structure, i.e., ARTreeLSTM, with

general constituency tree in which each non-leaf node can have any number of child nodes.

And then a dynamic compositional model is proposed based on this ARTreeLSTM.
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4.1 Introduction

Recursive neural networks (RecNNs) or tree-structured neural networks have made impres-

sive progress for sentence representation on several downstream NLP tasks [143, 117, 138].

However, a major limitation is that all kinds of syntactic compositions share the same pa-

rameters in RecNN models, neglecting the fact that different compositions require different

composition rules. For example, the adjective-noun composition (e.g., phrase “important

meeting”) is significantly different from the adverb-adjective composition (e.g., phrase

“extremely important”). Thus, some dynamic compositional models have been proposed to

model the diversity of different syntactic compositions [41, 27, 91, 138, 72, 46, 56, 101].

For example, Shen et al. [101] proposed a hypernetwork RecNN which employs Part-of-

Speech (POS) tag information and semantic information of word/phrase jointly as inputs

to generate parameters of different syntactic compositions dynamically, and achieves

impressive performance on text classification and text semantic matching tasks.

In spite of the impressive performance, there are at least two limitations with previous

dynamic compositional models. The first limitation is that existing dynamic compositional

models are based on a binarized constituency tree which is different from the original

constituency tree generated by a parser and cannot obtain the inherent structural information

of a sentence effectively. Figure 4.1 shows a binarized constituency tree and the original

constituency tree for a sentence from the TREC dataset [66]. It is clear that, different from

the binarized constituency tree, the number of child nodes of an inner node of the original

constituency tree is arbitrary. Furthermore, the original constituency tree is more shallow

and so can represent a sentence in a more compact format than its corresponding binarized

tree. In addition, recently proposed TreeNet [17] has also demonstrated the effectiveness of

using the original constituency tree for sentence representation. However, similar to early

RecNN models, TreeNet cannot capture the diversity of different syntactic compositions.
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(b) Binarized constituency tree

Fig. 4.1 Examples of original constituency tree and binarized constituency tree. The

explanations of all tags in the figure is presented in Table 4.1.
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Table 4.1 Explanations of tags in a constituency tree.

Tags Explanations

DT Determiner

IN Preposition

JJ Adjective

NN Noun

NNP Proper Noun

NP Noun Phrases

PP Prepositional Phrases

S Simple Declarative Clause

SBARQ Direct question introduced by a wh-word or a wh-phrase

SQ Inverted yes/no question, or main clause of a wh-question

TO to

VBD Verb, past tense

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

VP Verb Phrase

WDT WH-Determiner

WHADJP WH-Adjective Phrase

WHNP WH-Noun Phrase

WHPP WH-Prepositional Phrase

WRB WH-Adverb
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The second limitation is that previous models only use the tag embedding of the current

phrase while composing the representation of the phrase, which is not reasonable in some

cases. For example, in Figure 4.1 (a), although phrase “Stuart/NNP Hamblen/NNP” and

phrase “the/DT first/JJ singing/NN cowboy/NN” both have the same NP tag, these two

phrases have different internal structure because they vary greatly in size and the tags of

their child nodes are quite different. Therefore, it is not reasonable to guide the composition

of these two phrases solely based on the simple tag embedding of the NP tag. Thus, more

complicated tag representations are needed to obtain structural information. Moreover,

tag representations of child nodes are important for distinguishing different syntactic

compositions.

To alleviate the above two limitations, we firstly propose a variant of LSTM, ARTreeL-

STM, to handle arbitrary tree structure, in which each node within a tree can learn from

its left sibling and right child from left to right and bottom to top direction. Based on

ARTreeLSTM, Tag-Enhanced Dynamic Compositional Neural Network (TE-DCNN) is

proposed for sentence representation learning, which contains two ARTreeLSTMs, i.e.,

tag-level ARTreeLSTM and word-level ARTreeLSTM. The tag-level ARTreeLSTM ac-

cepts original tag embeddings at each node of a constituency tree and outputs the computed

tag representations for the nodes, and then these tag representations will be used to control

the gates of the word-level ARTreeLSTM to conduct dynamic semantic composition.

For word-level ARTreeLSTM, a gate-memory encoder [17] is used to obtain the word

representation of each leaf node in the constituency tree. For each non-leaf nodes, its

representation is based on the states and tag representations of its left sibling and right

child. The representation of the root node is used to represent the entire sentence. To the

best of our knowledge, the proposed TE-DCNN is the first work that has the ability of both

handling arbitrary tree structures such as the original constituency tree and capturing the

richness of compositionality.
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4.2 ARTreeLSTM

LSTM [44] is proposed to deal with the vanishing and exploding gradient problems of

RNN [30], which can capture long-distance dependencies for sequential data due to its

well-designed gate mechanism. Tai et al. [117] and Zhu et al. [160] applied LSTM

unit into tree structures and achieved impressive performance for sentence representation.

Previous dynamic compositional models assume that there are only two child nodes for

non-leaf nodes in TreeLSTM, thus it can only handle a binarized constituency tree which

is different from the original constituency tree generated by a standard parser tool, and

cannot reflect the inherent structure of a sentence effectively. Inspired by TreeNet [17], in

which each inner node can learn from its left sibling and right child, we extend the original

TreeLSTM to ARTreeLSTM to handle the original constituency tree, in which the number

of child nodes of non-leaf nodes is arbitrary. Instead of learning from left and right child

nodes as in TreeLSTM, each node in ARTreeLSTM will learn from its left sibling and

right most child. Child nodes with the same parent node are processed sequentially from

left to right in a recurrent manner, thus the right most child can learn from all its siblings.

Figure 4.2 shows the left sibling and right most child of a node j in two different cases.

For each node j, the left sibling can be seen as its previous state and the right most child

can be viewed as the representation of its descendants.

Figure 4.3 shows the architecture of ARTreeLSTM unit. For each node j in a con-

stituency tree of a sentence, let x j = [x1, . . . ,xde]
T be an input vector, hls

j = [hls
1 , . . . ,h

ls
d ]

T

and hrc
j = [hrc

1 , . . . ,h
rc
d ]

T be the hidden states of left sibling and right most child at node

j, respectively. cls
j = [cls

1 , . . . ,c
ls
d ]

T and crc
j = [crc

1 , . . . ,c
rc
d ]

T be the cell states of left sibling

and right most child of node j, respectively.

Firstly, a new vector z j is created by concatenating x j,hls
j ,h

rc
j where z j = [x1, . . . ,xde ,

hls
1 , . . . ,h

ls
d ,h

rc
1 , . . . ,h

rc
d ]

T . Then the hidden state of each node j in ARTreeLSTM is com-
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(a) node j with multiple child nodes

(b) node j with only one child

Fig. 4.2 Left sibling and right most child of a node j in two different cases. If node j has

multiple child nodes, then the last child is regarded as right most child. Otherwise, the

only child is regarded as right most child.
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Fig. 4.3 Illustration of ARTreeLSTM architecture.

puted by the following equations:

i j = σ(Wiz j +bi) (4.1)

fls
j = σ(Wlsz j +bls) (4.2)

frc
j = σ(Wrcz j +brc) (4.3)

g j = tanh(Wgz j +bg) (4.4)

o j = σ(Woz j +bo) (4.5)

c j = fls
j ⊙ cls

j + frc
j ⊙ crc

j + i j⊙g j (4.6)

h j = o j⊙ tanh(c j) (4.7)

where c j,h j ∈Rd refer to the memory cell and hidden state of node j. i j, fls
j , f

rc
j ,o j ∈Rd rep-

resent input gate, two forgot gates (left sibling and right most child), and output gate, respec-
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tively. g j ∈Rd is the newly composed input for the memory cell. Wi,Wls,Wrc,Wg,Wo ∈

Rd×(2d+de) and bi,bls,brc,bg,bo ∈ Rd are trainable parameters. tanh is the hyperbolic

tangent, σ denotes the sigmoid function, and ⊙ represents element-wise multiplication.

In particular, child nodes with the same parent node are processed sequentially from

left to right. If node j is a leaf node (has no child nodes), a zero vector is employed to

initialize hrc
j and crc

j . If node j is the first child node (has no left sibling), a zero vector is

used to initialize hls
j and cls

j .

For simplicity, we describe the computation of the hidden state of node j at a high

level with Equation (4.8) to facilitate references later in this chapter, and the detailed

computation refers to Equations (4.1-4.7).

h j = ARTreeLSTM(x j,hls
j ,h

rc
j ,c

ls
j ,c

rc
j ) (4.8)

All notations in Equation (4.8) follow Equations (4.1-4.7).

4.3 Model

In this section, a novel dynamic compositional neural architecture, named TE-DCNN

(Tag-Enhanced Dynamic Compositional Neural Network) is presented. The proposed

TE-DCNN contains two separate ARTreeLSTMs: tag-level ARTreeLSTM and word-level

ARTreeLSTM. The tag-level ARTreeLSTM is employed to guide the composition of

word-level ARTreeLSTM which is responsible for constructing sentence representations.

For a node j in the constituency parse tree, instead of using its own tag representation, tag

representations of its left sibling and right most child are jointly used to control the gate

functions of the word-level ARTreeLSTM to perform dynamic composition. Figure 4.4

illustrates the proposed model.
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Fig. 4.4 An overview of TE-DCNN at node j. Tag-level ARTreeLSTM only accepts tag

embeddings as inputs. ĥ j denotes the hidden state at node j in the tag-level ARTreeLSTM,

which is computed based on tag embeddings e j, the hidden states of its right most child

ĥrc
j , and the left sibling ĥls

j . Word-level ARTreeLSTM accepts word representations and

tag representations generated by tag-level ARTreeLSTM as inputs. ȟ j denotes the hidden

state at node j in the word-level ARTreeLSTM which is computed based on its right most

child ȟrc
j , left sibling ȟls

j , the corresponding tag presentations ĥrc
j , and ĥls

j .
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Formally, we denote sentence as a sequence of words (w1,w2, ...,wm) where m de-

notes the length of the sentence. Word embeddings are denoted as (v1, . . .vm) where

vi = [v1, . . . ,vdw ]
T , i ∈ [1,m]. Tag embedding for the tag attached to each node j in the

constituency tree is denoted by e j = [e1, . . . ,edt ]
T . For each word wt (t ∈ [1,m]) within

a sentence, we use a gate-memory encoder [17] onto its word embedding vt and tag

embedding et to obtain a new word representation h̄t by the following equations:

īt = σ(Uvivt +Ueiet +ai) (4.9)

ōt = σ(Uvovt +Ueoet +ao) (4.10)

ḡt = σ(Uvgvt +Ueget +ag) (4.11)

c̄t = īt⊙ ḡt (4.12)

h̄t = ōt⊙ tanh(c̄t) (4.13)

where h̄t , c̄t ∈ Rdh represent the hidden state and memory cell of the gate-memory en-

coder. īt , ōt ∈ Rdh are two gates of the gate-memory encoder. Uvi,Uei,Uvo,Ueo,Uvg,Ueg ∈

Rdh×(dw+dt) and ai,ao,ag ∈ Rdh are trainable parameters. The rest of the notations follow

that of the ARTreeLSTM above. The representation h̄t is used as the input of the word-level

ARTreeLSTM.

Then, the final representation for the input sentence can be obtained in two steps:

First, the tag-level ARTreeLSTM which only accepts tag embeddings as inputs is

employed to obtain the structure-aware tag representations (the right side of Figure 4.4).

Tags are usually represented as low-dimensional tag embeddings in most previous works.

Kim et al. [56] used a TreeLSTM on original tag embeddings to obtain the structure-aware

tag representations which have proven to be more effective than simple tag embeddings.

Similarly, we use a separate ARTreeLSTM to obtain the structure-aware tag representation
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ĥ j ∈ Rdh for each node j in a constituency tree in the following way:

ĥ j = ARTreeLSTM(e j, ĥls
j , ĥ

rc
j , ĉ

ls
j , ĉ

rc
j ) (4.14)

where ARTreeLSTM refers to Equation (4.8). e j ∈ Rdt is tag embedding for the tag

attached to each node j. ĥls
j , ĥ

rc
j , ĉ

ls
j , ĉ

rc
j ∈ Rdh represent the hidden states and memory

cells of the left sibling and the right most child at the j-th node, respectively. The new

tag representation ĥ j will be used to control the gates of the word-level ARTreeLSTM to

conduct dynamic composition.

Second, the word-level ARTreeLSTM (the left side of Figure 4.4) which accepts

word representations as inputs is used to obtain the final sentence representation. Note

that for each non-leaf nodes, its representation is computed based on the states and tag

representations of its left sibling and right most child. Let ȟls
j = [ȟls

1 , . . . , ȟ
ls
dh
]T , čls

j =

[čls
1 , . . . , č

ls
dh
]T , ȟrc

j = [ȟrc
1 , . . . , ȟ

rc
dh
]T , črc

j = [črc
1 , . . . , č

rc
dh
]T be the hidden states and memory

cells of left sibling and right most child of the j-th node in the word-level ARTreeLSTM,

respectively. h̄ j = [h̄1, . . . , h̄dh]
T is the input vector at the j-th node, which is a zero vector

at non-leaf node and word representation vector computed by Equations (4.9-4.13) at

leaf nodes. ĥls
j = [ĥls

1 , . . . , ĥ
ls
dh
]T , ĥrc

j = [ĥrc
1 , . . . , ĥ

rc
dh
]T are the tag representations of the left

sibling and right most child at node j, which are computed by Equation (4.14). Vectors

p j ∈R5dh and q j ∈R3dh are created by concatenating (h̄ j, ȟls
j , ȟ

rc
j , ĥ

ls
j , ĥ

ls
j ) and (h̄ j, ȟls

j , ȟ
rc
j ),

respectively. The hidden state of each node j in word-level ARTreeLSTM is defined by

the following equation:

ǐ j = σ(Vip j + ri) (4.15)

f̌ls
j = σ(Vlsp j + rls) (4.16)

f̌rc
j = σ(Vrcp j + rrc) (4.17)

ǧ j = tanh(Vgq j + rg) (4.18)
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ǒ j = σ(Vop j + ro) (4.19)

č j = f̌ls
j ⊙ čls

j + f̌rc
j ⊙ črc

j + ǐ j⊙ ǧ j (4.20)

ȟ j = ǒ j⊙ tanh(č j) (4.21)

where ȟ j, č j ∈ Rdh refer to the hidden state and memory cell of node j in the word-

level ARTreeLSTM. Vi,Vls,Vrc,Vo ∈ Rdh×5dh,Vg ∈ Rdh×3dh and ri,rls,rrc,rg,ro ∈ Rdh

are learned parameters. The remaining notation follows Equations (4.1-4.7). Finally,

the hidden state of the root node ȟroot ∈ Rdh is used as the representation for the given

sentence.

4.4 Applications of TE-DCNN

This section describes the applications of TE-DCNN for two typical NLP tasks.

Text classification. Given a sentence s and a pre-defined class set Y , text classification

is to predict a label ŷ ∈ Y for s. A softmax classifier is applied directly on the sentence

representation ȟroot ∈Rdh in this work. The final predicted probability distribution of class

y given sentence s is defined as follows:

p(y|s) = softmax(Wcȟroot +bc) (4.22)

where Wc ∈ Rdc×dh,bc ∈ Rd
c are trainable parameters, dc is the size of class set Y .

Text matching. Text matching is to predict the relationship l̂ ∈L between a given

sentence pair s1 and s2 from a pre-defined label set L . Firstly, the same TE-DCNN is

used to encode s1 and s2 into two sentence representation vectors ȟroot
s1 , ȟroot

s2 ∈ Rdh . Next,

some matching heuristics [82] are used to combine the two sentence vectors together in
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the following way:

hst = [ȟroot
s1 , ȟroot

s2 , ȟroot
s1 ⊙ ȟroot

s2 , |ȟroot
s1 − ȟroot

s2 |] (4.23)

Then, a single layer network is applied on the above concatenated vector hst :

hm = Relu(Wmhst +bm) (4.24)

where hm ∈ Rdm is the intermediate feature vector for the following classifier. Wm ∈

Rdm×4dh,bm ∈ Rd
m are trainable parameters. Finally, the probability distribution of label l

given sentence pair s1 and s2 is obtained using a softmax classifier:

p(l|(s1,s2)) = softmax(Wlhm +bl) (4.25)

where Wl ∈ Rdl×dm,bl ∈ Rdl are again trainable parameters. The parameters of the model

are learned to minimise the cross-entropy of the distributions between predicted and true

label.

4.5 Experiments

4.5.1 Datasets

The proposed model are evaluated on three benchmarks for text classification (MR, SUBJ,

TREC) and one dataset (SICK) for text semantic matching:

• MR: The movie reviews with positive or negative label [85].

• SUBJ: Sentences grouped as being either subjective or objective [84].

• TREC: A dataset which groups questions into six different question types [66].
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• SICK: A textual entailment dataset with three classes (entailment, neutral, contradic-

tion) [76].

Tabel 4.2 shows the detailed statistics about the above four datasets.

Table 4.2 Statistics of four benchmark datasets for two tasks. Train, Dev and Test are the

size of train, validation and test dataset, respectively. CV means 10-fold cross validation

is used. Lavg is the average number of words in sentences. |V | is the size of vocabulary.

|T | is the number of tags. Class is the size of label/class set.

Dataset Train Dev Test Lavg |V| |T| Class

MR 10662 - CV 22 19K 73 2

SUBJ 10000 - CV 21 21K 72 2

TREC 75952 - 500 10 10K 67 6

SICK 4500 500 4927 10 2K 41 3

4.5.2 Experimental Setup

In all experiments, sentences in datasets are tokenized and parsed by Stanford PCFG

parser1 [60]. Word embeddings are initialized with the 300-dimensional GloVe word

vectors [89], and out-of-vocabulary words are randomly sampled from the uniform dis-

tribution [−0.05,0.05]. Tag embeddings are initialized by the normal distribution [0,1].

Tag embeddings are fine-tuned during training procedure while word embeddings are

fixed. Hidden size for ARTreeLSTMs is fine-tuned from [100,200,300]. The dimension

of tag embedding is selected from [20,25]. Batch size is selected from [32,64]. Weights of

the model are trained by minimizing the cross-entropy of the training dataset by Adam

optimizer [58] and learning rate is fine-tuned in the range of [1e−2,1e−3]. The accuracy

1https://nlp.stanford.edu/software/lex-parser.shtml
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metric is used in this work to measure the performance of the proposed and all comparison

models on four datasets and two tasks, and the results of all comparison models come from

respective papers.

4.5.3 Results

Text Classification. The proposed TE-DCNN is compared with two types of models. The

first is RecNN based models which are based on tree structure, and the other is non-RecNN

based models. Tables 4.3 and 4.4 show the test accuracy of the proposed TE-DCNN and

comparison models on each dataset.

Comparison with RecNN based Models. We classified RecNN based models into

two categories: Non-dynamic models and dynamic compositional models. Non-dynamic

models are RecNN based models that share the same parameters for all kinds of syntactic

compositions, while dynamic compositional models can distinguish different syntactic

compositions. Table 4.3 shows test accuracies of the proposed TE-DCNN and previous

RecNN based models. Firstly, compared with all previous RecNN based models, TE-

DCNN achieves superior or competitive performance on all three text classification datasets.

Moreover, it sets a new state of the art among RecNN based models on two out of three

datasets - MR and TREC with accuracies of 84.1% and 97%, respectively. Specifically, the

proposed TE-DCNN outperforms the best non-dynamic model and dynamic compositional

model on MR dataset by a margin of 0.5% and 0.3%; and on TREC dataset by a margin

of 0.9% and 0.8%, respectively. Secondly, the proposed model is superior to dynamic

compositional models ignoring tag information (i.e., AdaHT-LSTM, iTLSTM, DC-RecNN

and DC-TreeLSTM) on all three datasets MR, SUBJ and TREC with 2.4%, 0.6% and 3.2%

improvements, respectively. The consistency suggests these improvements are due to the

usage of tag information which is helpful for composing sentence representation. Thirdly,

compared with five dynamic models leveraging tag information (i.e., TE-RNN, TE-LSTM,
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Table 4.3 Accuracies of previous RecNN based models and the proposed TE-DCNN on

three text classification datasets.

Model MR SUBJ TREC

Non-Dynamic Models

RecNN [110] 76.4 91.8 90.2

TreeLSTM [117] 81.2 93.2 93.6

BiTreeLSTM [128] - - 94.8

TreeNet [17] 83.6 95.9 96.1

Dynamic Compositional Models

AdaHT-LSTM [71] 81.9 94.1 -

iTLSTM [69] 82.5 94.5 -

DC-RecNN [72] 80.2 93.5 91.2

DC-TreeLSTM [72] 81.7 93.7 93.8

TE-RNN [91] 77.9 - -

TE-LSTM [46] 82.2 - -

TG-HRecNN [101] 80.9 93.7 93.6

TG-HTreeLSTM [101] 82.6 94.9 95.8

SATA TreeLSTM[56] 83.8 95.4 96.2

TE-DCNN (proposed) 84.1 95.1 97.0
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TG-HRecNN, TG-HTreeLSTM and SATA Tree-LSTM), TE-DCNN outperforms these

models on MR and TREC datasets by a margin of 0.3% and 0.8%, respectively, and

achieves competitive performance with the state-of-the-art model SATA Tree-LSTM on

SUBJ dataset.

Table 4.4 Accuracies of Non-RecNN based models and the proposed TE-DCNN on three

text classification datasets. The symbol * indicates models which are pre-trained with

large external corpora.

Model MR SUBJ TREC

CNN [57] 81.5 93.4 93.6

BLSTM-2DCNN [157] 82.3 94.0 96.1

byte-mLSTM* [93] 86.9 94.6 -

BCN + Char + CoVe* [77] - - 95.8

DARLM [158] 83.2 94.1 96.0

3W-CNN [156] 82.3 93.5 -

WSAN [48] 83.2 94.6 95.0

TE-DCNN (proposed) 84.1 95.1 97.0

Comparison with Non-RecNN based Models. Table 4.4 shows a comparison with

some non-RecNN based models on three text classification datasets. We observe that

the proposed TE-DCNN has consistently strong performance on three datasets, and it

outperforms all comparison models in this group on SUBJ and TREC datasets by a margin

of 0.5% and 0.9%, respectively. Although byte-mLSTM achieves the state-of-the-art

performance on MR dataset with an accuracy of 86.9%, better than TE-DCNN with an

accuracy of 84.1%, it is pre-trained with large external corpora while TE-DCNN do not

perform any pre-train procedure.

Text Matching. To evaluate the proposed TE-DCNN on other NLP tasks, we also

conducted an experiment on text semantic matching task. Different from text classification
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Table 4.5 Accuracies of previous RecNN based models and the proposed TE-DCNN on the

SICK dataset.

Model SICK

Non-Dynamic Models

RecNN[110] 74.9

MV-RNN [109] 75.5

RNTN [111] 76.9

TreeLSTM [117] 77.5

Dynamic Compositional Models

DC-RecNN [72] 80.2

DC-TreeLSTM [72] 82.3

TG-HRecNN [101] 77.5

TG-HTreeLSTM [101] 83.3

TE-DCNN (proposed) 83.4
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which works by classifying one sentence at a time, text semantic matching works by

comparing two sentences at a time. Therefore, in a text classification dataset, a sample

is a single sentence whereas in a text semantic matching dataset, a sample is a pair of

sentences.Text semantic matching experiments were conducted on the SICK [76] dataset,

and the experimental results are shown in Table 4.5. The results of TreeNet and SATA

TreeLSTM come from our implementation while results of other comparison models come

from respective papers. We can see that TE-DCNN has again demonstrated its superior

performance compared against the previous RecNN based models. Specifically, TE-DCNN

outperforms all compared non-dynamic models by a margin of 1.2% and is slightly better

than previous dynamic compositional models with 0.1% improvements. This comparison

shows that TE-DCNN is also effective in text sematic matching task, and has generalization

ability in different NLP tasks.

4.5.4 Ablation Study

This section presents an ablation study on key modules of the proposed TE-DCNN to

explore their effectiveness. An ablation study refers to removing some components or

modules of the model and seeing how that affects performance. We focus on two modules,

the ARTreeLSTM and tag representations. TREC dataset is used in this experiment, and

the target module is replaced with other candidates while keeping the other settings fixed.

In the first case, the ARTreeLSTM is replaced with a basic TreeLSTM. In the second case,

we do not employ any tag information in the model.

The experimental results are shown in figure 4.5. As the chart shows, TE-DCNN

outperforms the other two options we considered. Specially, if we do not use any tag infor-

mation in TE-DCNN, the accuracy of the model drops to 95.6%, with 1.4% performance

degradation. A possible reason for this performance degradation is that the model cannot

distinguish different syntactic compositions while neglecting tag information, because tag
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representations are used to control the gates of the word-level ARTreeLSTM to conduct

dynamic composition in TE-DCNN. If we replace ARTreeLSTM with a basic TreeLSTM

in TE-DCNN, the accuracy of the model drops to 96.1%, with 0.9% performance degrada-

tion. Possible reason for this performance degradation is because basic TreeLSTM can

only handle a binarized constituency tree which is different from the original constituency

tree. In contrast, ARTreeLSTM can handle the original constituency tree of a sentence,

thus can capture the inherent structural information of a sentence effectively and have

better expressive power than a basic TreeLSTM.

Fig. 4.5 An ablation study on key modules of TE-DCNN. Test accuracies on TREC dataset

is reported. TreeLSTM: TreeLSTM is used instead of ARTreeLSTM in TE-DCNN. w/o

tags: Tag information is not used.

4.5.5 Error Analysis

In this section, we analyze the predictions of the proposed TE-DCNN model and

another two state-of-the-art models, TreeNet [17] and SATA Tree-LSTM [56]. SATA

TreeLSTM and our model are dynamic compositional models while TreeNet is a non-
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dynamic model. Table 4.6 gives a breakdown of accuracy for classes on test sets of TREC

and SICK datasets. We observe that, for TREC dataset, the proposed TE-DCNN matches

the other two models on all classes. For SICK dataset, most of our gains stem from Neutral,

while most losses come from Entailment pairs. Figure 4.6 presents the distribution of errors

of our TE-DCNN and other two models on SICK dataset. There are six types of error in

total. We can see that the most frequent error type of the proposed model is E→N which

means our model tend to classify an Entailment sentence pair Neutral. While the most

frequent type of error of TreeNet and SATA TreeLSTM is N→E. For all the three models,

the least frequent error type is E→C. Moreover, in most cases, dynamic compositional

models such as SATA TreeLSTM and the propsoed TE-DCNN have smaller error rate than

non-dynamic model TreeNet except N→C.

Table 4.7 shows some example wins and losses of the proposed TE-DCNN compared to

other models on SICK dataset. Examples 1 and 2 are cases where the proposed TE-DCNN

is correct while both TreeNet and SATA TreeLSTM are incorrect. In these two examples,

both sentences contain phrases that are either the same or highly lexically related (e.g., “a

dog", “toddler/baby" and “a toy/a ball"). Our TE-DCNN correctly favors Neutral in these

cases, while TreeNet and SATA TreeLSTM prefer to Entailment. Due to this characteristic

of TE-DCNN, it fails in Examples 3 and 4 while TreeNet and SATA TreeLSTM succeed.

Examples 5 and 6 are cases where the proposed TE-DCNN and SATA TreeLSTM are

correct and TreeNet is incorrect. In these two examples, the key point to predict correctly

is to conclude that “a white and brown dog/no white and brown dog" and “no girl/one girl"

are contradictions. A possible reason for the success of TE-DCNN and SATA TreeLSTM
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Table 4.6 Breakdown of accuracy with respect to classes on TREC and SICK test sets.

TE-DCNN is the proposed model while TreeNet [17] and SATA TreeLSTM [56] are two

previously developed models with state-of-the-art performance (see Tables 4.3 and 4.5).

Datasets Class TreeNet SATA TreeLSTM TE-DCNN

TREC

NUM 94.7 95.6 96.5
HUM 98.5 98.5 98.5
ENTY 89.4 93.6 93.6
LOC 95.1 96.3 97.5

DESC 96.4 97.8 98.6
ABBR 88.9 88.9 98.6
Overall 96.1 96.2 97.0

SICK

Entailment 84 84.9 77.9
Neutral 81.8 82.2 86.2

Contradiction 78.4 85.3 83.3
Overall 82.1 83.3 83.4

Fig. 4.6 Distribution of errors on SICK dataset. C, N and E refer to Contradiction, Neutral

and Entailment, respectively. C→N means the true label is Contradiction while the

prediction is Neutral. and so on.
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in these two cases is that these two models conduct dynamic composition with the aid of

syntactic tags, so they can find the differences between above two phrase pairs easily.

4.6 Summary

This chapter presented a novel dynamic compositional model based on tree structure

for sentence representation. A newly introduced ARTreeLSTM is employed to handle

the original constituency tree firstly, in which an inner node can have arbitrary child

nodes. Then a tag-level ARTreeLSTM and a word-level ARTreeLSTM are jointly used for

sentence representation. Experimental results on four datasets and two NLP tasks have

shown the superiority and the generalization ability of the proposed model.
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Chapter 5

Multi-Level Compare-Aggregate Model

for Text Matching

As aforementioned, this thesis aims to improve text matching in two perspectives: (1)

text representation: to generate informative text representation, and (2) text interaction:

to capture more interactive features between two texts. In Chapter 3 and Chapter 4,

we focused on the first perspective, i.e., text representation, and proposed two new text

representation models. In this chapter, we focus on another perspective, i.e., text interaction.

Specially, to extract more matching information, this chapter propose to perform matching

at multiple levels of granularity.

5.1 Introduction

Text matching is important for many NLP tasks and has attracted wide attention. Recent

studies have achieved very promising results under the matching-aggregation or compare-

aggregate framework, where smaller units (e.g., words) in two texts are matched firstly,

and then the matching results of these small units are aggregated into a fixed-size vector
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for final matching decision. Although matching-aggregation based models have made

impressive progress in text matching, there is still room for further improvement. Previous

works mainly focus on matching at word level [135, 96, 87, 15], without considering

matching at other levels such as word-by-phrase, word-by-sentence matching and so on.

For example, “UN” stands for “United Nations” and “007” stands for “James Bond”.

Under these circumstances, conducting matching at phrase level would be helpful for

making matching decision.

In this chapter, we propose a multi-level compare-aggregate model (MLCA), which

matches each word in one text against the other text at three different levels, word level

(word-by-word matching), phrase level (word-by-phrase matching) and sentence level

(word-by-sentence matching). Then these three types of matching results are aggregated

for making final matching decision. The contributions of this work include:

• A new multi-level compare-aggregate (MLCA) model is proposed to improve the

performance of original compare-aggregate model by incorporating matching infor-

mation at three levels.

• The model is evaluated on two text matching tasks and experimental results show

that the model outperforms baselines.

5.2 The MLCA Model

Figure 5.1 shows the overall framework of the proposed MLCA model, which has six

layers. The first layer is the input layer, which consists of two matching texts. The second

layer is the word representation layer, which is used to convert each word in either of

the two texts into a semantic vector. The third layer is the contextual encoding layer,

implemented by BiLSTM to encode contextual information into each word representation.

The fourth layer is the matching layer, which is the core part of the model. We conduct
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matching at two directions and three levels (details in Section 5.2.3). The fifth layer is

the aggregation layer, in which all the matching results are aggregated into a fixed-size

vector in each direction by another BiLSTM. And the last layer is the prediction layer – a

multilayer perceptron (MLP) classifier, for decision making.

5.2.1 Word Representation Layer

The purpose of this layer is to convert each word in texts P and Q into a d-dimensional

representation vector, denoted as pi ∈ Rd (i ∈ [1,m]) and q j ∈ Rd ( j ∈ [1,n]), which

consists of a word-level embedding and a character-level embedding. The word-level

embedding is obtained from a pre-trained word vectors. The character-level embedding is

learned using a BiLSTM which takes as inputs characters within a word.

5.2.2 Contextual Encoding Layer

The goal of this layer is to encode the contextual information into each word representation.

The new contextualized representations p1, . . . ,pm and q1, . . . ,qn for words in texts P and

Q are generated using BiLSTM. A BiLSTM is composed of two LSTMs [44], one for

capturing information from the first timestep to the last timestep and the other for capturing

information from the reverse direction. Outputs of two LSTMs are concatenated to obtain

a new representation. The following equations describe this computation (i ∈ [1,m]):

−→
h i = LSTM(

−→
h i−1,pi) (5.1)

←−
h i = LSTM(

←−
h i−1,pi) (5.2)

pi = [
−→
h i;
←−
h i] (5.3)
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where
−→
h i−1 and

←−
h i−1 are the hidden states of LSTM at (i− 1)-th timestep from two

directions, pi ∈ Rl is the input of LSTM at i-th timestep, pi ∈ Rl , l is the dimension of the

word embedding, which is equals to the hidden size of the BiLSTM. Meanwhile, we use

another BiLSTM to encode each q j to a new representation q j.

5.2.3 Matching Layer

In this layer, each word in one text is matched against to the other text. The matching

process is conducted in two directions: match P against Q, and match Q against P, respec-

tively. Furthermore, we perform three types of matching: word-by-word (WW) matching,

word-by-phrase (WP) matching and word-by-sentence (WS) matching, respectively. For

simplicity, we only introduce the matching process in one direction (i.e., P against Q as an

example). The reverse direction is performed in the same manner.

Word-by-Word Matching (WW). For word level matching, the attention weights are

firstly computed as the similarity between words in two texts (i ∈ [1,m], j ∈ [1,n]):

αi j = (pi)
T ·q j (5.4)

where αi j is the similarity between the i-th word pi of text P and j-th word q j of text Q.

Then, for each word in text P, its relevant semantics in text Q are computed based on

attention matrix αi j as follows (i ∈ [1,m]):

p̃i =
n

∑
j=1

exp(αi j)

∑
n
k=1 exp(αik)

q j (5.5)

where p̃i denotes the contents in {q j}n
j=1 related to pi. Then, a vector matching function is

used on each pair of < p̃i,pi > to obtain the word level matching results{tww
i }m

i=1 between

two texts as follows (i ∈ [1,m]):

tww
ip = f (p̃i,pi) (5.6)
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where f is the vector matching function.

Word-by-Phrase Matching (WP). In order to obtain phrase level representations

from text Q, we use a convolutional layer to compose n-grams. A convolution filter

slide over the text like a sliding window. For each window of k words in Q, we then

generate the representation g j ∈ Rl of phrase q j−k+1, . . . ,q j by the following equation

( j ∈ [1,n− k+1]):

g j = tanh(Wgc j +bg) (5.7)

where c j ∈ Rkl is the concatenated embeddings of words q j−k+1, . . . ,q j. Wg ∈ Rl×kl

and bg ∈ Rl are the learnable parameters. For word pi in text P and phrase g j in text

Q, we use the above Equations (5.4-5.5) to obtain p̌i which represents the contents in

{g j}n−k+1
j=1 related to pi. Then the word-by-phrase level matching result is obtained by the

following equation (i ∈ [1,m]):

twp
ip = f (p̌i,pi) (5.8)

where f is the same vector matching function as Equation (5.6).

Word-by-Sentence Matching (WS). Words in a sentence have different importance

for the semantic composition. Therefore, this work uses a self-attention mechanism to

assign an importance weight to each word in a sentence as following equations ( j ∈ [1,n]):

u j = tanh(Wqq j +bq) (5.9)

α j =
exp(u j)

∑
n
k=1 exp(uk)

(5.10)

where Wq ∈ Rl×l and bq ∈ Rl are the learnable parameters. α j denotes the importance

weight for the j-th word in text Q. Then, we compute the weighted sum of all words to

form the sentence representation as follows ( j ∈ [1,n]):

sq =
n

∑
j=1

α jq j (5.11)
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where sq ∈ Rl is the representation vector of text Q. Then the matching results of each

word p in text P against the sentence representation sq of text Q is obtained using the

following equation (i ∈ [1,m]):

tws
ip = f (pi,sq) (5.12)

where f is the same vector matching function as Equation (5.6) and (5.8).

The same procedure is used to obtain these three levels of matching results while

matching Q against P. We use tws
jq , twp

jq and tws
jq ( j ∈ [1,n]) to denote the matching results at

word level, phrase level and sentence level, respectively.

5.2.4 Aggregation and Prediction Layer

To aggregate all the matching results into a fixed-size matching vector, we first concatenate

all three types of matching results, and then feed the concatenated matching results in each

direction into another BiLSTM individually. The last timestep outputs of the BiLSTMs are

utilised as the aggregation results at two directions. The aggregation results for matching

P against Q and matching Q against P are denoted as tp ∈ Rl and tq ∈ Rl , respectively.

Finally, we concatenate tp and tq and then put the concatenated vector into a MLP classifier

which includes a tanh activation and softmax output layer to obtain the final matching

decision.

5.3 Experiments and Results

In this section, the proposed MLCA model is evaluated on two different tasks, i.e., natural

language inference and paraphrase identification, respectively. Details of the datasets and

the settings for experiments are shown in Section 5.3.1 and 5.3.2. In Section 5.3.3, four

different vector matching methods are compared in order to choose the most efficient one
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for the model. Finally, the proposed model is compared with several baseline models on

two benchmark datasets in Sections 5.3.4 and 5.3.5. Ablation studies on our model are

presented in Section 5.3.6.

5.3.1 Dataset

The proposed model is tested on two tasks, i.e., paraphrase identification and natural

language inference. The details of datasets for these two tasks are as follows.

Quora question pair dataset1. It contains over 400K question pairs. A binary anno-

tation is provided for each question pair which indicates whether two questions share the

same meaning or not. The same split ratio is used in our experiments as mentioned in

[139].

Scitail. It is an entailment classification dataset created from science domain, which

contains over 27K examples with entailment label or neutral label. The dataset is composed

of 23K, 1.3K and 2K text pairs for training, validation and testing, respectively.

5.3.2 Experimental Setup

We use the development dataset to select the models for testing. We run 30 epochs each

time and select the best performer on the development dataset as the final model for testing.

Word embeddings are initialized using the 300-dimensional GloVe word vectors [89]. The

window size k for convolution operation in word-by-phrase matching step is set as 2. The

out-of-vocabulary words are initialized randomly within [−0.01,0.01]. Hidden size of all

BiLSTMs of the model is 200. We apply dropout to all layers to avoid over fitting, and

the dropout ratio is 0.1. The weights are learned by minimizing the cross entropy of the

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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training dataset by Adam optimizer [58]. The learning rate is 0.0005 and the batch size is

60 for Quora question pair dataset and 32 for Scitail dataset.

5.3.3 Vector Matching Methods Comparison

In text matching tasks, a vector matching method is usually used to obtain the matching

results between the representation vectors of two texts. Previous research shows that some

simple matching functions based on element-wise operations can work better than standard

neural network and neural tensor network [135]. Recently, some new element-wise based

vector matching methods have been proposed [15, 117], but the effectiveness of these

vector matching methods for text matching have not been systematically investigated. In

this section, we compare four different element-wise based vector matching methods used

in [15, 117, 82]: elemen-twise subtraction (Ele_Sub), element-wise product (Ele_Pro),

concat (Concat) method and heuristic (Heuristic) method. Suppose we have two represen-

tation vectors a⃗ and b⃗, the above four matching methods can be described by the following

equations:

Ele_Sub : s = f(⃗a, b⃗) = a⃗− b⃗ (5.13)

Ele_Pro : s = f(⃗a, b⃗) = a⃗⊙ b⃗ (5.14)

Concat : s = f(⃗a, b⃗) = [⃗a− b⃗,⃗a⊙ b⃗] (5.15)

Heuristic : s = f(⃗a, b⃗) = [⃗a, b⃗,⃗a− b⃗,⃗a⊙ b⃗] (5.16)

In our experiments, the above vector matching methods are used to obtain the matching

results of each word in one text against the other text as described in Equation (5.6), (5.8)

and (5.12). We run the proposed model MLCA with these four vector matching methods

on the Scitail dataset, respectively. Furthermore, we compare the performance of the

above four vector matching methods on another effective text matching model BiMPM2

2https://github.com/zhiguowang/BiMPM
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[139]. We use the above vector matching methods instead of the multiple perspective

cosine matching function originally used in BiMPM. Table 5.1 shows the performances of

BiMPM and MLCA with different vector matching methods. We can see that both MLCA

and BiMPM achieve the best performance with element-wise product.

Table 5.1 Performances of MLCA and BiMPM with different vector matching methods on

the Scitail dataset

Method
Model MLCA BiMPM

Ele_Sub 73.38 77.75

Ele_Pro 77.90 77.89

Concat 75.40 75.16

Heuristic 76.87 76.81

5.3.4 Results on Paraphrase Identification

We compare our model with several baselines shown in Table 5.2. S-CNN and S-LSTM

[140] belong to the representation based model. M-CNN and M-LSTM improve the

performances of S-CNN and S-LSTM by using multiple perspective cosine matching

function [139]. We also compare our MLCA model with several compare-aggregate

based models, such as pt-DECATTword [129], pt-DECATTchar [129], L.D.C [141] and

BiMPM [139]. pt-DECATTword and pt-DECATTchar [129] are variants of another

compare-aggregate model proposed in [87], which are pre-trained on a noisy dataset of

automatically collected question paraphrases. From Table 5.2, we can see that our model

achieves 88.54% accuracy, which outperforms all the baseline models.
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Table 5.2 Performances for paraphrase identification task on the Quora question pair

dataset

Model Accuracy

S-CNN [140] 79.60

M-CNN[139] 81.38

S-LSTM[140] 82.58

M-LSTM[139] 83.21

L.D.C[141] 85.55

BiMPM[139] 88.17

pt-DECATTword[129] 87.54

pt-DECATTchar[129] 88.40

MLCA 88.54

5.3.5 Results on Natural Language Inference

Table 5.3 shows the performances of the proposed MLCA and some baseline models on the

Scitail dataset. Decomposable Attention Model (DecompAtt) [87] and ESIM [15] are two

advanced models under compare-aggregate framework. N-gram is a word overlap baseline

and DGEM is the decomposed graph entailment model proposed in [54]. Comparing with

the two compare-aggregate baselines, i.e., DecompAtt and ESIM, which only conduct

word-by-word matching, the proposed MLCA outperforms them by a large margin over

5%. Moreover, it is slightly better than DGEM with an accuracy of 77.9%.

5.3.6 Ablation Study on Scitail Dataset

In this section, we conduct an ablation on our model to examine the effectiveness of

each major component. Table 5.4 shows the ablation study results on the development

set of Scitail. MLCA-WW, MLCA-WP and MLCA-WS mean remove the word level
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Table 5.3 Performances for natural language inference task on the Scitail dataset

Model Accuracy

Majority[54] 60.3

DecompAtt[87] 72.3

ESIM[15] 70.6

N-gram[54] 70.6

DGEM[54] 77.3

MLCA 77.9

matching, phrase level matching and sentence level matching from the full model MLCA,

respectively. From Table 5.4, we can see that the proposed MLCA model achieves 82.06%

accuracy. If we eliminate any level of the matching from matching layer would hurt the

performance especially word-by-word matching. It shows the effectiveness of matching at

different levels.

Table 5.4 Ablation study results on the development set of Scitail. T(s)/epoch: average

time (second) per epoch

Model Dev Acc T(s)/epoch

MLCA 82.06 39

MLCA -WW 80.29 33

MLCA -WP 81.83 36

MLCA -WS 81.37 37
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5.4 Summary

This chapter presented a novel text matching model (MLCA) which matches each word in

one text against the other text at three levels: word level, phrase level and sentence level.

We evaluate our model on natural language inference and paraphrase identification, and

experimental results show that the proposed model achieves impressive performance on

both tasks due to its ability in matching at different levels. Moreover, we systematically

compared four vector matching methods and found that the element-wise product method

is the best choice.
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Chapter 6

Multi-Level Matching Networks for

Text Matching

This chapter still focuses on improving text matching by constructing neural network with

the ability of capturing matching information between two texts. We focus on matching-

aggregation framework and propose to use multiple levels of word representations such as

word embeddings and contextualized word representations to obtain multiple word level

matching results for final matching decision.

6.1 Introduction

Deep neural networks have been widely applied to text matching in recent years [7, 87,

15] and the existing deep models for text matching can be mainly categorized into two

approaches. The first approach models two texts by encoding each text separately and then

predicts their relationship based on the two extracted representations, taking no account of

interaction between two texts [7, 23]. The second approach aims to capture direct matching

features and two texts are interacted before obtaining the final representation vectors. The
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matching-aggregation or compare-aggregate framework [15, 139, 33] is a kind of model in

line with this approach, in which words in two texts are matched firstly. Then these word

level matching results are aggregated into a fixed-size vector for making final text level

matching decision. Combining with bidirectional long short-term memory (BiLSTM) [44],

previous matching-aggregation based models have achieved state-of-the-art performances

on text matching [139, 15].

However, the problem with matching-aggregation models lies in the fact that previous

models only use the final representations of words to obtain the word level matching results

for text level matching decision without considering other levels of word representations.

For example, the state-of-the-art model ESIM [15], firstly uses the low level pre-trained

word embeddings [89] as inputs to a BiLSTM layer to generate high level contextualized

word representations for representing words and their contextual information. Then an

attention mechanism is employed to conduct word level matching solely based on high

level contextualized word representations without considering low level representations,

which can not capture sufficient information for modeling complex matching relations.

For example, obviously, “I went to London yesterday” and “I went to Beijing yesterday”

have different meanings and they should not be matched. However, because the contextual

information of ‘London’ and ‘Beijing’ are very similar, the high level contextualized

representations of these two words generated by BiLSTM layer will be very close in word

representation space, which may not be sufficient to differentiate the two words, thus

leading to incorrect matching decision. If the low-level word embeddings of these two

words, which may be far from each other in embedding space, are also considered, the

model would be aware of the difference between words ‘London’ and ‘Beijing’, which is

helpful for making correct matching decision. Therefore, it is important to have multiple

levels of matching to capture more matching information, hence yielding correct matching

decision.
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In order to address the above limitation, this work presents a multi-level matching

network (MMN) for text matching, which utilises multiple levels of word representations

to obtain multiple word level matching results for final text level matching decision. In

each matching level, an attention mechanism is firstly used to learn the attention-aware

representation of each word in two texts and to make word level matching at current level.

Next, a fusion gate is used to combine the attention-aware representation with original

representation of each word for word representation refinement. Then, a BiLSTM encoder

is employed to generate new word representations which will be used as the inputs for next

matching level. The above process is repeated for k times. Finally, the matching results

of k matching levels are aggregated for final decision. The contributions of this work are

summarized as follows:

• A new multi-level matching network (MMN) is proposed for text matching. The

model can capture more matching information by utilising multiple levels of word

representations.

• An attention aware representation fusion (AARF) layer is devised to refine word

representations in each matching level.

• The model is evaluated on two popular benchmarks, SNLI and Scitail. Experimental

results show that the model outperforms state-of-the-art baselines.

6.2 The MMN Model

The overall framework of the proposed MMN model is shown in Figure 6.1. It consists of

five layers:

(1) the input layer for a pair of texts;

(2) the word embedding layer for representing each word in the two texts as a vector;
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(3) the multi-level matching layer whose architecture is shown in Figure 6.2;

(4) the aggregation layer, where matching results from all matching levels are aggregated

into a fixed-size vector;

(5) the prediction layer.

Fig. 6.1 The framework of the proposed MMN.

6.2.1 Word Embedding Layer

Given a pair of texts P = (wp
1 , . . . ,w

p
m) with m words and H = (wh

1, . . . ,w
h
n) with n words,

the purpose of this layer is to convert each word in text P and text H into a d-dimensional

vector denoted as pi ∈ Rd and h j ∈ Rd . The d-dimensional column vector is composed

of two parts: a word-level embedding and a character-level embedding. The word-level

embedding is obtained from a pre-trained word embedding matrix Glove [89]. Then we

feed each character within a word into a BiLSTM, and the last time-step output of the

BiLSTM is used as the character-level embedding, which is the same as [139].
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6.2.2 Multi-level Matching Layer

This layer obtains the matching results based on different levels of word representations.

During the k-th matching level, given the representations of two texts P and H computed

in the previous matching level: (pk
1, . . . ,p

k
m) and (hk

1, . . . ,h
k
n). A word-by-word matching

layer is firstly employed to obtain the word level matching results at current level.

Word-by-Word Matching. To perform word level matching, co-attention matrix

Ak = (αk
i j)m×n between two texts are computed by the following equations:

α
k
i j = pk

i
T ·hk

j (6.1)

where αk
i j indicates the relevance between the i-th word pk

i of text P and j-th word hk
j of

text H, and αk
ji = αk

i j
T otherwise. Next, for each word in one text, the relevant semantics

in the other text is extracted and composed based on the co-attention matrices αk
i j and αk

ji

by the following equations:

pk
i =

n

∑
j=1

exp
(

αk
i j

)
∑

n
r=1 exp

(
αk

ir
)hk

j (6.2)

hk
j =

m

∑
i=1

exp
(

αk
ji

)
∑

m
r=1 exp

(
αk

r j

)pk
i (6.3)

where pk
i and hk

j are the attention-aware representations of pk
i and hk

j, representing the

contents in {hk
j}n

j=1 related to pk
i and the contents in {pk

i }m
i=1 related to hk

j, respectively.

Then we use a vector matching function on each pair of < pk
i ,p

k
i > and < hk

j,h
k
j > to

obtain the word level matching results at current level between two texts.

tp
ki = pk

i ⊙pk
i (6.4)

th
k j = hk

j⊙hk
j (6.5)
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where ⊙ is the element-wise product operation, t p
ki and th

k j are the matching results at k-th

level of matching P against H and matching H against P, respectively.

Attention Aware Representaion Fusion (AARF). This layer is utilised to refine the

word representation vectors. In this work, a fusion gate is used to incorporate the attention-

aware representations into original representations of each word in two texts for word

representation refinement.

Fp = sigmoid(Wp1 pk
i +Wp2pk

i +bp) (6.6)

Fh = sigmoid(Wh1hk
j +Wh2hk

j +bh) (6.7)

p̃k
i = Fp⊙pk

i +(1−Fp)⊙pk
i (6.8)

h̃k
j = Fh⊙hk

j +(1−Fh)⊙hk
j (6.9)

where Wp1,Wp2,Wh1,Wh2 ∈ Rdl×dl and bp,bh ∈ Rdl are the learable parameters of the

fusion gate. ⊙ is the element-wise product operation. p̃k
i , h̃

k
j ∈ Rdl are the refined word

representation vectors after fusion.

BiLSTM Encoder. Next, a BiLSTM encoder layer is employed to encode the con-

textual information into the above refined representation vectors to generate new word

representations.

pk+1
i = BiLSTM(p̃k

i ,p
k+1
i−1 ,p

k+1
i+1 ) (6.10)

hk+1
j = BiLSTM(h̃k

j,h
k+1
j−1,h

k+1
j+1) (6.11)

where pk+1
i ,hk+1

j ∈ Rdl will be used as the inputs for next matching level.

Finally, the matching results from all matching levels are concatenated and used as the

outputs of the multi-level matching layer.

sp
i = [tp

1i; . . . ; tp
ki] (6.12)
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sh
j = [th

1 j; . . . ; th
k j] (6.13)

where sp
i ,s

h
j ∈ Rkdl are the concatenated matching results of matching P against H and

matching H against P, respectively.

6.2.3 Aggregation and Prediction Layer

To aggregate all the matching results into a fixed-size vector, we pass the above concate-

nated matching results into another BiLSTM.

up
i = BiLSTM(sp

i ,u
p
i−1,u

p
i+1) (6.14)

uh
j = BiLSTM(sh

i ,u
h
j−1,u

h
j+1) (6.15)

Then a mean pooling method is used to obtain the fixed-size vectors.

ap =
1
m

m

∑
i=1

up
i (6.16)

ah =
1
n

n

∑
j=1

uh
j (6.17)

Finally, the above fixed-size vectors ap and ah are concatenated and then passed to a MLP

classifier which includes a tanh activation and softmax output layer to obtain the final

prediction.
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6.3 Experiments and Results

6.3.1 Dataset and Experimental Setup

We evaluate our model on two datasets: SNLI [7], and Scitail dataset [54]. SNLI contains

over 570K human annotated sentence pairs, each labeled with one of the following rela-

tionships: entailment, contradiction, neutral. Scitail is constructed from science domain,

which contains about 27K sentence pairs. Unlike the SNLI dataset, Scitail uses only two

labels: entailment, neutral.

In this work, word embeddings are initialized with the 300d GloVe word vectors [89].

The dimensions of the BiLSTM encoders are set as 400 in multi-level matching layer and

600 for aggregation layer. The number of aggregation BiLSTM layers is set as 2. The

number of matching levels is tuned from [1,4]. Batch sizes are 32 for Scitail dataset and

128 for SNLI dataset. The Adam optimizer [58] is used for training, and the initial learning

rate is set as 0.001. To avoid overfitting, we apply dropout to all layers of the model and

the dropout ratio is set as 0.2.

6.3.2 Experimental Results

The accuracy metric is used to evaluate the performance of the proposed MMN and baseline

models on datasets SNLI and Scitail. The performance of all baseline models come from

respective papers.

SNLI. Table 6.1 shows the results of different models on the training and test sets of

SNLI. DecompAtt [87] divides the text matching task into several sub-tasks using soft

attention. BiMPM [139] performs matching at multi-perspective and two directions. ESIM

[15] enhances the local inference procedure and achieves the state-of-the-art performance.

DIIN [34] and CIN[33] are two advanced models based on CNN. From Table 6.1 we
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can see that the proposed MMN achieves an accuracy of 88.2% in the test sets, which

outperforms all the baselines and achieves the state-of-the-art performance.

Table 6.1 Performances on the SNLI dataset

Model Train Test

DecompAtt [87] 89.5 86.3

BiMPM [139] 90.9 87.5

ESIM [15] 92.6 88.0

DIIN [34] 91.2 88.0

CIN[33] 93.2 88.0

MMN 89.3 88.2

Scitail. Table 6.2 shows results of the proposed MMN model and baselines on the

Scitail dataset. DGEM is the decomposed graph entailment model proposed in [54]. HCRN

[124] obtain the attention matrix using the complex-valued inner product (Hermitian

products). CAFE [123] utilises the word level matching results for augmentation of the

base word representation instead of aggregating them for prediction. From Table 6.2

we can see our model MMN outperforms all baselines and achieves the state-of-the-art

performance with an accuracy of 84.8%. Comparing with ESIM which achieves the

state-of-the-art performance on SNLI dataset, the proposed MMN outperforms it by a large

margin over 14%.

6.3.3 Ablation Study

We perform an ablation study on the MMN model to examine the effectiveness of each

major component. Table 6.3 shows the ablation study results on Scitail and SNLI datasets.

First, if we remove the attention aware representation fusion (AARF) layer from the model,

the performance of the model has dropped slightly on two datasets, from 84.8% to 84.24%
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Table 6.2 Performances on the Scitail dataset

Model Accuracy

DecompAtt[87] 72.3

ESIM[15] 70.6

DGEM[54] 77.3

HCRN [124] 80.0

CAFE [123] 83.3

MMN 84.8

on Scitail, and from 88.2% to 87.9% on SNLI. This indicates the AARF layer is helpful for

improving the performance of the model. Second, if we do not use multiple levels of word

representations (only use the final word representations to get word level matching results),

the accuracy drops by over 1% on both datasets. According to the results, all components

are effective for performance improvement.

Table 6.3 Ablation study on Scitail and SNLI datasets

Model Scitail SNLI

MMN 84.8 88.2

- AARF 84.24 87.9

- Multi-level matching 83.34 87.8

6.3.4 Effect of Number of Matching Levels

Figure 6.3 shows the effect of number of matching levels on SNLI and Scitail datasets.

We observe that the optimal performance is 3 matching levels for SNLI. However, the

100



performance of SNLI declines after 3 matching levels. Similarly, Scitail achieves its best

performance at level 2 and then declines after 2 matching levels.

Fig. 6.3 Effect of number of matching levels.

6.4 Summary

In this chapter, we have presented a novel multi-level matching network (MMN) for text

matching, which obtains word level matching results based on multiple levels of word

representations to capture more matching information. The MMN model achieves the state-

of-the-art performance on SNLI and Scitail datasets and demonstrates its effectiveness.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarise the work presented in this thesis, considers its major

contributions, and discusses directions for future work.

7.1 Conclusions

The target of text matching is to identify the relationship between two texts. A variety

of NLP tasks and applications involve text matching such as natural language inference,

paraphrase identification, answer selection and so on. The main work in this thesis is

to develop effective deep neural network models to enhance the performance of text

matching. We have sought for the improvement in the following two perspectives: (1) text

representation: to enhance the express power of tree-structured neural networks by dynamic

composition, and (2) text interaction: to extract more matching information by performing

matching at multiple granular and using multiple levels of word representations.

In Chapter 3, we proposed the TagHyperTreeLSTM model for better text represen-

tation. TagHyperTreeLSTM was devised to alleviate the inability of distinguishing dif-
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ferent syntactic compositions of standard TreeLSTM with the aid of Part-of-Speech tags.

TagHyperTreeLSTM is based on the standard TreeLSTM, which contains two separate

TreeLSTMs, a tag-aware hypernetwork TreeLSTM to generate parameters of the sentence

encoder TreeLSTM dynamically, and a sentence encoder TreeLSTM to generate the final

representation of a sentence. Our experimental results demonstrated that the proposed

model outperforms existing tree-structured neural network models with fewer parame-

ters. Moreover, we have done an elaborate qualitative analysis on the proposed model,

which gives an intuitive explanation of why our model works. Specifically, we explored

behaviours of neurons in the latent vector which is computed based on the hidden state of

the tag-aware hypernetwork. We found that the occurrence of large value neurons in the

latent vector is dominated by nodes with specific syntactic structure or semantic basis.

In Chapter 4, we pointed out that existing dynamic compositional networks are mostly

based on binarized constituency trees which cannot represent the inherent structural infor-

mation of sentences effectively. To fill this research gap, we proposed a new tree-structured

model TE_DCNN for text representation. We firstly introduced a novel LSTM structure,

ARTree-LSTM, which was proposed to handle general constituency trees in which each

inner node can have arbitrary number of child nodes. Based on ARTree-LSTM, a novel

network model, Tag-Enhanced Dynamic Compositional Neural Network (TE-DCNN), was

proposed for sentence representation learning, which contains two ARTree-LSTMs, i.e.,

tag-level ARTree-LSTM and word-level ARTree-LSTM. The tag-level ARTree-LSTM

guides the word-level ARTree-LSTM in conducting dynamic composition. Experimental

results showed that the TE_DCNN model improves the performance of text matching and

text classification tasks on several benchmark datasets.

In addition to performing text matching based on semantic representation vectors of

texts (Chapter 3 and Chapter 4). Another way is using the matching-aggregation framework

which is to let smaller units (e.g., words) in two texts interact or match firstly. Then the
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matching results of these small units are aggregated for final matching decision (Chapter 5

and Chapter 6).

In Chapter 5, we presented the Multi-Level Compare-Aggregate model (MLCA).

Previous works mainly focus on matching at word level, without considering matching

at other levels such as word-by-phrase, word-by-sentence matching and so on, which is

not reasonable under some circumstances. MLCA matches each word in one text against

the other text at three different levels of granularity, word level (word-by-word matching),

phrase level (word-by-phrase matching) and sentence level (word-by-sentence matching).

The experimental results showed that the MLCA model can extract matching information

at multiple granularity and outperform models performing matching at single granularity.

In Chapter 6, we described the Multi-level Matching Network (MMN). A drawback of

existing methods is that word level matching results are based on the high level contextual-

ized word representation only, while other levels of word representations are ignored. Thus,

incorrect matching decisions would be made, when two words have different semantic

meanings but are close in high level contextualized word representation space. To tackle

this issue, our MMN model utilises multiple levels of word representations to obtain multi-

ple word level matching results for final text level matching decision. An attention aware

representation fusion layer was devised to refine word representations in each matching

level. Experimental results demonstrated that the proposed MMN model is effective for

text matching.

As text matching is a vital ingredient for various NLP tasks and applications, we believe

that models presented in this thesis would advance the performance of these tasks and

applications.
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7.2 Future Directions

This thesis is focusing on investigating effective neural architectures for text matching.

This section provides several future directions which have large potential and have not

been resolved well at current stage.

Jointly Learning Sentence Representation and Syntactic Tree The two TreeLSTM

based text representation models in this thesis both rely on syntactic parse trees which

are obtained using Stanford PCFG parser [60]. This causes an extra procedure for data

preparation. Although some recent works propose to learn sentence representation and

its syntactic tree jointly from a downstream task like text classification or text matching

[21, 75, 142], none of them achieve state-of-the-art performance. Moreover, trees they

learned do not conform to the PTB grammar. As such, how to maintain the performance of

the model and ensure the accuracy of the generated syntactic parse tree need to be further

explored.

Knowledge enhanced Text Matching Incorporating external knowledge into neural

network models has been proven meaningful in variety of NLP tasks. Currently, only a few

works tried to use external knowledge to improve text matching performance [14, 51, 152].

All these models use WordNet [80] as external knowledge resource. Other knowledge

resources such as DBpedia1 [2], Freebase 2 [5], YAGO 3 [114] and so on are not well

investigated in text matching.

Long Text Matching Recent research including this thesis mainly focus on matching

two short texts (e.g., sentences). Comparing with short texts, long texts such as web

1https://wiki.dbpedia.org/
2https://developers.google.com/freebase
3https://yago-knowledge.org/
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pages, legal documents or academic articles have more complicated syntactic structures

and contains more information. It is difficult for LSTM or TreeLSTM based representation

models to keep these information in its internal memory. Moreover, as for interaction

based models, attention mechanism used in them may face bottleneck. Therefore, this

remains a highly technical challenge that need to be resolved in the future.
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