
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Enhanced Visual SLAM Supported by the

Integration of plane Features for the Indoor

Environment

Bingxin Zi

School of Computing

Ulster University

Belfast, United Kingdom

zi-b@ulster.ac.uk

Haiying Wang

School of Computing

Ulster University

Belfast, United Kingdom

hy.wang@ulster.ac.uk

Jose Santos

School of Computing

Ulster University

Belfast, United Kingdom

ja.santos@ulster.ac.uk

Huiru Zheng

School of Computing

Ulster University

Belfast, United Kingdom

h.zheng@ulster.ac.uk

Abstract—This paper presents an enhanced indoor RGB-D

simultaneously localisation and mapping (SLAM) system based

on the integration of plane and point features. A new method

was proposed to register each point feature to a corresponding

plane feature and then modify its position accordingly. The

plane features are parallelly extracted from depth data sources

and used jointly to solve the camera pose with point features.

Plane features are stored on the map as the same as point

features. Both point and plane features are used for backend

optimisation, where the weights associated with features can be

dynamically updated. At the same time, the on-plane feature

points are fixed during the optimisation. The proposed method

has been tested with open-source benchmarks, including the

scenarios with or without a structured environment.

Experiment results demonstrated that the proposed algorithm

performs better than other widely cited visual SLAM systems in

some structured environments.

Keywords—SLAM, Visual SLAM, Geometry Information,

Plane Feature

I. INTRODUCTION

The concept of simultaneous localisation and mapping
(SLAM) is to estimate the sensor’s location and orientation
(pose) and construct a map of the surrounding environment
simultaneously. It has received massive attention during the
last 20 years and has been applied to various applications,
including autonomous robots, self-driving, augmented reality,
and virtual reality[1]. The primary sensors that can implement
visual SLAM include monocular cameras, stereo cameras and
RGB-D cameras. In this type of SLAM, point features are
commonly used to solve robot poses and construct a map that
describes the environment. Thanks to the increasing
computational power available over the last decades, many
visual SLAM algorithms[2] have achieved real-time
performance.

While in the field in the presence of structural information,
there are other geometric features, like lines and planes, that
can be used, besides point features, to improve the robustness
and accuracy of visual SLAM systems[3][4][5][6]. One of the
primary sensors used in a visual SLAM system is an RGB-D
camera. Apart from RGB images, this type of camera can
provide a corresponding depth map that reflects the structural
geometry information of the environment. Because not every
plane could be detected in the scene, Zhang, Wang, Qi, Liao
and Wei[7] exploited the detected plane and generated
supposed planes to add more constraints to the system. But
they assumed that planes are either parallel or perpendicular
to each other in the indoor scene. Ma and Cremers[3]
introduced a direct SLAM that labels each pixel to a plane
with probabilities. Their work required acceleration from
GPU devices to achieve real-time performance. Besides,

Zhang, Liao, Qi and Wang[8] developed a SLAM algorithm
based on a stereo camera in which plane features were
generated using the intersecting lines. Li et al. [9] used line
features to support key point selection in a direct monocular
SLAM system. A study conducted by Sun, Yuan, Zhang and
Duan[4] utilised plane-edge fusion and probabilistic plane
fitting. Li, Yunus, Brasch, Navab, and Tombari[5] decoupled
the rotation estimation and translation estimation and used
both plane features and line features. While various degrees of
success has been achieved, the studies mentioned earlier are
facing issues such as excessive filter states and over-
parameterised features. Besides, for the aforementioned
SLAM systems that have already used geometric features,
they just parallelly add geometric features to the optimisation
system without discussing the relationship between different
types of features. This research aims to find an visual SLAM
system that utilises plane features and explores the
relationship between different kinds of features.

This paper proposed a novel approach to the integration of
indoor plane features with the point-based RGB-D SLAM
system. Point features are extracted from RGB images in each
frame, while plane features are extracted from depth images.
Each point feature is paired with a plane feature, and its
location is adjusted by considering that the point locates on
that plane. A cost function is then constructed following the
constraints of both the plane and point features. The cost
function is used for optimising the estimated poses from each
frame and for optimising the joint point-plane bundle
adjustment as well. During the optimisation, the point features
that are registered with the plane will be set fixed. The plane
features are stored on the map as land markers in the same way
as point features. The main contributions of this paper are
summarised as follows:

• Proposing a visual SLAM framework for the indoor
structural environment, in which a new method to
combine point and plane features has been proposed.

• Developing methods for pairing a point with a plane
feature and adjusting the point’s position by the plane
feature.

• Based on the point-plane relationships, we proposed a
novel approach enabling both point and plane features
to participate in the optimisation process

A series of experiments have been carried out on the open-
source benchmarks[10][11]. Results were evaluated in terms
of the errors of camera trajectory, and they show that the
proposed method could achieve better performance than state-
of-the-art algorithms in an environment with structure
features.

The remainder of this paper is organised as follows.
Section Ⅱ overviews the related works of visual SLAM
systems that utilise structural information. Section Ⅲ outlines
the proposed methods used in this study, followed by the
presentation of the experimental results in Section IV. The
paper concludes with a discussion of the experiment results,
current limitations, and future research.

II. RELATED WORKS

There has been a growing interest in introducing planes as
a kind of feature to visual SLAM in the indoor environment.
For example, Gee, Chekhlov, Mayol-Cuevas, and Calway
[12] discovered the state space for plane features in a filter-
based SLAM system. The introduction of planes would reduce
the number of points’ states. Kim and Coltin[13] introduce the
orthogonal plane into the linear Kalman Filter SLAM system
as well. Servant, Marchand, Houlier and Marchal [14] applied
planes in the Extended Kalman Filter (EKF) SLAM. But the
filter-based SLAM system requires a large number of states,
and it fails to handle the long-term drift errors well. Recently,
a variant of the filter-based SLAM was proposed [15], which
is based on data fusion of light detecting and ranging sensor
(LiDAR), inertial measurement units (IMU), and Cameras.
The plane landmarks are extracted from the LiDAR pipeline
and tracked as a member of status. In addition to the large
number of state spaces, the multiple sensors’ calibration
accuracy could also affect their work, as they concluded.

In the way of graph-based SLAM, [3][4][5][6] used plane
features in their studies. Sun, Yuan, Zhang and Duan[4]
introduced probability to avoid the noise influence in fitting a
plane. Trevor, Rogers and Christensen[6] used both plane and
line features. Li, Yunus, Brasch, Navab, and Tombari[5]
decoupled translation and rotation in estimating the camera
pose. Ma and Cremers [3] extracted planes from RGB-D
images and then used the expectation-maximisation (EM)
framework to decide if a pixel belongs to a detected plane. The
EM frame provides a soft approach to associating a point with
a plane compared with a hard label. To avoid the singularities
of the plane representation, they forced the angle of the plane

feature to fall into . In addition, the system would still
suffer from the changing illumination problem as it is an
extension of directly SLAM. Besides, their work needs work

with a GPU support machine to accelerate probability
computation. That means it would be hard to be implemented
on the mobile platform. The SALM system introduced by
Hsiao, Westman and Kaess[18] detected small planes from
RGB-D data and merged them into larger planes. A modified
point-to-plane Iterative closest point (ICP) algorithm was used
to estimate frame pose by considering photometric, geometric,
and plane matching errors. Due to the high computational cost,
their algorithm also needs to run on a GPU to reach a near real-
time performance. Furthermore, the communal problem of the
above studies is they all used the over-parameterised Hessian
form to represent the Plane feature. In the meantime, the [16]

and [17] define a plane with plane azimuth , plane elevation

 and the distance from the origin to the plane norm. But
the azimuth and elevation way also need to be transformed to
Hessian form during the optimisation procedure. In addition,
the radian representation suffers from noise, which usually
fluctuates largely and results in failed plane association [17].
In addition to the detected points and planes, the SALM
system developed by Zhang, Wang, Qi, Liao and Wei[7] can
generate some supposed planes by utilising the edge of the
detected real planes. The contours of the real planes are used
as the first criterion for associating the plane features,
followed by associating planes with an angle threshold of 30
degrees. Their algorithm works under the assumption that
planes are either perpendicular or parallel to each other in the
scene. However, the planes do not necessarily support this
assumption except the floor, ceiling, and walls. In the recent
work by Zhang et al.[8], a visual SLAM system was
introduced, which detects planes from stereo camera based on
a novel plane detecting algorithm. It is capable of estimating
planes based on the intersecting lines. However, as they
concluded, the inaccurately estimated plane features still exist
and remains a big challenge to their system.

To overcome the above-discussed challenges, including
excessive states, plane feature over parameterisation, GPU
requirements and other issues and efficiently utilise plane
features and the point-plane relationships, we proposed a
graph visual SLAM system that can detect plane features,
parameters plane with three variables, register point feature to
plane feature, modify point landmark’s location and jointly

Fig. 1. The flow structure of the proposed visual SLAM system, which consists of a tracking module and two mapping modules.

optimise the camera pose without GPU and Manhattan
hypothesis.

III. METHODOLOGY

Our approach is a graph-based visual SLAM system that
cooperates with an RGB-D camera to detect point and plane
features. In each frame, small and isolated planes, which are
usually seen at an edge, will be removed if they are well
separated from large planes due to the influence of noise. At
the same time, the adjacent planes are merged into a large one.
Each point feature close to a plane is considered on that plane.
In the map, the point’s location is then modified accordingly.
When associating two planes, the system considers both the
plane’s geometric location and the point-plane pair
attributions. In the tracking part, along with point features,
plane features are used to estimate and optimise the camera
pose by constructing a point-plane joint least-square function.
In addition, all the plane features are also applied to local and
global backend optimisation. Our modified SLAM system has
been developed and implemented based on the ORBSLAM2
framework [19].

A. System Overview

As a graph SLAM system, a tracking module is
responsible for processing adjacent frames to calculate the
current camera dynamics. All the features extracted from each
keyframe and solved dynamics are stored in the mapping
module, used to construct and maintain the feature map,
optimise the camera poses and check for loop closure to
reduce the long-term drift.

Fig.1 shows the structure of our system, which consists of
a tracking module and two mapping modules. Since the
proposed system has been implemented based on the
framework provided by ORBSLAM2[19], the main
modification modules are highlighted with the colour orange.
The tracking module extracts point features from the 2D
image data source, and plane features are derived from the
depth data source. The extracted features are used for pairing
with map landmarks. Both point and plane features are utilised
to calculate the motion between two adjacent frames. While
plane features are not involved in the keyframe detection [19].
The plane features are added to the map once a new keyframe
is detected. After that, the point landmarks are registered to
nearby plane landmarks, and their locations are modified by
that plane. During the backend optimisation, both the point
and plane features are used to construct the optimising
function jointly. We introduced dynamic weight to adjust their
contributions. The point features registered with the plane will
be set fixed in the optimisation process. The joint optimisation
will be explained in section E. The point and plane features
are maintained within the entire system life cycle. Each
module will be described in detail in the following sections.

B. Plane Feature Extraction and Representation

Parallel to extracting 2D point features from the RGB data
source, all the 3D plane features are extracted from the depth
data source. Each depth frame is segmented by the region
growing algorithm from the PCL library [20]. Then the
RANSAC algorithm [21] is applied to each segment to fit a
plane. Small planes that are close to each other will be merged
into large planes instead.

To avoid the singularity issue and over-parameterised
issue discussed above [3][6][16][17], in this paper, a plane
feature is represented following the closest point (CP)

definition [22] that is a point that resides on the plane and is
closest to the origin. The CP definition only takes three
variables to describe the plane feature. Then the plane
representation is defined as:

Where is the plane norm vector and is the distance scalar.

 represents the closest point which is the product of and

, and is the norm of .

The corresponding plane transform is performed using the
equation (3):

Where the superscript 𝐿 indicates a local frame and 𝑅

indicates the reference frame. The stands for the rotation
matrix rotates from the reference frame to the local frame, and

 stands for the position of the location frame seen from the
reference frame [22].

C. Point-Plane registration

In the common way of [3][6][16][17], the plane and line
features have just been added to the system parallel to the
point feature. Under the Manhattan assumption, plane features
may introduce parallel or perpendicular constraints to the
system. But in most cases, these geometric features serve the
same function as point features. Usually, the point number is
typically one to two orders of magnitude higher than the plane
number, which would overwhelm the plane contributions
during optimisation. To avoid this and explore more inner
connections between the point and plane features, the
proposed system prefers to connect the point feature with the
plane feature.

Before creating a new keyframe and adding it to the map,
each candidate point landmark in that new keyframe is paired
with a plane landmark by calculating the Euclidean distance
between them. Any candidate point landmark close to a plane
landmark will be registered to that plane. Once a point-plane
pair relationship is established, the candidate map point is
replaced with the intersection point of the vector, which is
point to the feature point from the origin, and the paired plane.
In the pose optimisation, local bundle adjustment and global
bundle adjustment procedures, the point-plane relationships
indicate that the point should stay on that plane, so these points
will be set fixed during the optimisation procedure.

In the case that feature points are located on edges and
corners, a point belonging to the foreground plane may be
incorrectly assigned to the background plane due to the
interruption from sensor noise. To avoid this, the system
prefers to get rid of the feature points with a high level of
uncertainty. We selected the feature points from a smooth
area. That is to say, the depth of a feature point should be close
to its nearby pixels. So, the depths of each feature point and
its surrounding patch are checked. Only the points with a tiny
depth deviation of the surrounding patch will be accepted. In
this system, the depth deviation threshold is set to 0.05 since
we observed that the edge and corner point usually have a
more than 0.1 depth deviation.

D. Plane feature association and management

When associating a local frame plane with an existing map
plane landmark, the plane in the local frame must first be
transformed to the map frame by Equations (1) − (3). Then
the following Euclidean residual equation is applied to
measure the CP distance between the transformed plane and
the plane landmark.

Where Πm represents the plane landmark on the map, Π̂𝑚 is
the transformed plane.

Besides the naïve plane Euclidean distance, point features
are also involved in the plane association procedure. After the
local plane detection, the map points will be transformed into
the local frame. When the distance from a transformed point
to a local plane is less than a certain threshold, this map point
is registered with that local plane. Each point can only be
registered to one single plane, and their point-plane pair
relationships are recorded. When a close CP plane pair is
firstly detected by Equation (4), then their point-plane pairs
are compared. Ideally, two individual planes should not
contain any common point features (except the points on plane
intersection). This kind of measurement could help identify
two individual but close planes. For example, a photo frame
hung on a wall. This paper applies a small common point
feature number threshold of 10 since we observed that most
individual planes contains less than 10 common points.

When a new local plane did not associate with any map
plane landmark under both the Euclidean distance criterion
and common point-plane pair criterion, it should be
considered a new plane feature to be added to the feature map.

E. Pose optimising and Weighted Point-Plane Bundle

Adjustment

In the point-based graph SLAM, the pairs of 2D feature
point observations and 3D map points are used to construct a
reprojection error function and to estimate the robot motion by
minimising the error function :

Where is the feature point’s 2D observation, is the

camera pose, is the paired 3D map point, stands for the

transform function and represents the camera projection
function.

With Equation (1) − (4), the plane error function and the
joint pose optimisation function could be defined. The plane
error function is defined as:

Where denotes the plane feature detected in the local

frame, is the matched plane landmark, and
represents the plane transform function (3).

The corresponding joint pose estimation function is
defined as:

Where 𝐻𝑢() is the Huber robust kernel. wp is the weight of

point error and 𝑤𝜋 is the weight of plane error.

The weight of the plane and point could be calculated as:

Where 𝑤𝑝 and 𝑤𝜋 denote the weights associated with the

point feature’s error 𝐸𝑝 and plane feature’s error 𝐸𝜋

respectively.

 Usually, both the point feature and the camera pose are
adjustable in the optimisation procedures, but in this paper,
since some point features are considered located on a plane,
those points are set fixed in the optimisation process to matin
the “point on the plane” constrains.

The optimisation process was implemented using the G2O
library [23]. The optimisation was iterative, and the edges with
a significant error were removed from the iterations.

TABLE I. THE TRAJECTORY EVALUATION RESULTS BETWEEN THE PROPOSED METHOD AND POINT-BASED SLAMS. THE BEST PERFORMANCE IS

HIGHLIGHTED IN BOLD. THE MARK X INDICATES THE RESULT DOES NOT APPLY TO THEIR ORIGINAL PUBLICATION.

 Proposed Method ORB-SLAM2[19] Elastic-SLAM[24]

fr3/stf 0.013 0.020 0.013

fr3/stn 0.011 0.019 0.015

fr3/ntf 0.047 0.076 0.074

fr3/ntn 0.020 0.023 0.016

lr-kt0 0.032 0.026 0.009

lr-kt1 0.010 0.008 0.009

lr-kt2 0.014 0.023 0.014

lr-kt3 0.008 0.022 0.106

of-kt0 0.034 0.036 X

of-kt1 0.039 0.047 X

of-kt2 0.035 0.039 X

of-kt3 0.021 0.046 X

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download

IV. EXPERIMENTS

The plane feature is common within manufactured
environments, including roads, tunnels, walls, ceilings, and
floors. Our research scenario is focused on the indoor
environment, so the most common plane feature would be
floor, wall and ceilings. The experiments were carried out on
the open-source TUM RGB-D benchmark[10] and ICL-
NUIM benchmark[11]. The TUM benchmark provides
multiple real-world scenarios and the corresponding ground
truth obtained by an external motion capture system. In order
to comprehensively evaluate the system, both structured
scenarios (fr3/structure_texture_far known as fr3/stf and
fr3/structure_texture_near known as fr3/stn) and no structured
scenarios (fr3/nostructure_texture_far known as fr3/ntf and
fr3/nostructure_text_near_withloop known as fr3/ntn) were
selected. Since the proposed algorithm was developed based
on the ORBSLAM2 frame, which could fail to track in the low
texture area, we did not pick the non-textured scenarios. The
texture structure scenario has a zig-zag wooden panel
structure located in the centre of the environment. The sensor
was moved by half a meter height around that structure. The
wooden panel was wrapped in a colourful plastic foil to
provide a strong texture for point features. While in the no
structure scenario, the camera was facing the floor for the all-
time. The ICL-NUIM dataset is a synthetic dataset that
provides eight tracks of a living room scene and an office
room scene, containing several planes that could be utilised.
Every track (known as lr-kt0 to lr-kt3, of-kt0 to of-kt3) is
tested.

The proposed method was compared with other state-of-
the-art SLAM algorithms including ORBSLAM2 [19],
Elastic-SLAM[24], CPA-SLAM [3], Plane-edge-SLAM [4],
Planar-SLAM[5], PL-SLAM [25], L-SLAM [13] and
LPVO[26]. The ORBSLAM2[19] is one of the most popular
point-based visual graph SLAM. The Elastic-SLAM [24] is a
frame-to-model tracking SLAM without any backend graph
optimisation. The CPA-SLAM [3], Plane-edge-SLAM [4],
and L-SLAM [13]are among the most cited plane related
visual SLAM in recent years. On the other hand, the PL-
SLAM [25] uses point and line features in their system. And
LPVO [26] explores both plane features and line features.
Planar SLAM[5] is a Planar SLAM that utilises point, line and
plane features, decouples the translation and rotation
estimation and applies Manhattan constraints if applicable.

The trajectory evaluation tool EVO [27] calculated the
absolute pose error (APE). To alleviate the effect of
randomness, each trajectory was tested ten times, and the
mean values were provided. All experiments were carried out
with an Intel Core i9 CPU(2.90GHz) without GPU
acceleration.

V. RESULTS AND DISCUSSION

We first compared the performance of our approach with
SLAM systems [19][24], which do not consider geometry
information, followed by comparisons with state-of-the-art
Visual SLAMs that utilise geometry information like planar
features [3][4][5][13] and line features [25][26]. The
ORBSLAM2 system was implemented along with the
proposed method, while the results of other SLAM systems
were taken from their original publications, respectively.

A. Comparison with Point-based SLAM

Table Ⅰ. Shows the evaluation results of the proposed
method and other algorithms without using geometry
information, i.e., ORB-SLAM2[19], Elastic-SLAM[24]. The
mark X indicates that the result does not apply to their original
publication. As illustrated in Table Ⅰ., our proposed method
outperforms other algorithms in most scenarios. It
demonstrates the performance gain by introducing geometry
information and adding more constraints to the pose
estimation procedure.

However, the Elastic SLAM performs better for the fr3/ntn
track. In this scenario, the camera was facing the floor the
whole time. So there was not too much geometry information
that could be detected, except for the only floor plane. The
Elastic-SLAM is a dense model-frame SLAM system which
frequently checks whether there is a global or local closing
loop in the current frame and uses pixel intensity information
to optimise the pose results. It may partially explain why it
could do better when the camera is close to the floor and the
details of each frame are clearer. However, when the camera
is away from the floor and the detail information becomes
coarse, our method can outperform Elastic SLAM, as
demonstrated in the fr3/ntf sequence.

While in the synthetic dataset of ICL-NUIM[11], the
proposed algorithm achieved the best results on more than
half-tracks. ORBSLAM2 and Elastic-SLAM achieved the
best results on one track, respectively. The Elastic-SLAM

TABLE II. THE TRAJECTORY EVALUATION RESULTS BETWEEN THE PROPOSED METHOD AND SLAMS WITH GEOMETRY INFORMATION. THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLD. THE MARK X INDICATES THE RESULT DOES NOT APPLY TO THEIR ORIGINAL PUBLICATION.

 Proposed

Method

PlanarSLAM[5] CPA-

SLAM[3]

Plane-

edge-

SLAM[4]

L-SLAM[13] LPVO[26] PL-SLAM[25]

fr3/stf 0.013 X X 0.014 0.212 0.17 0.009

fr3/stn 0.011 X X X 0.156 0.11 0.013

fr3/ntf 0.047 X X X X X fail

fr3/ntn 0.020 X 0.016 0.015 X X 0.021

lr-kt0 0.032 0.006 X X 0.012 0.015 0.008

lr-kt1 0.010 0.015 X X 0.027 0.039 0.010

lr-kt2 0.014 0.020 X X 0.053 0.034 0.019

lr-kt3 0.008 0.012 0.028 X 0.143 0.102 0.012

of-kt0 0.034 0.041 X X 0.020 0.061 0.020

of-kt1 0.039 0.020 X X 0.015 0.052 0.022

of-kt2 0.035 0.011 X X 0.026 0.039 0.022

of-kt3 0.021 0.014 X X 0.011 0.030 0.018

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download

performed better in the lr-kt0 track. It could be because the
camera was facing the white wall at some frame in those two
scenes. It is similar to the situation discussed above. While in
the other office scenes of of-kt1, the blocks on the ceiling and
floor provide enough point features, which give enough
constraints for ORBSLAM2. But the proposed method
achieved a close result as well.

B. Comparison with SLAM using geometry features

Table II. shows the evaluation results of the proposed
methods and other state-of-the-art SLAM algorithms that
utilise plane features and line features in terms of APE. The
mark X indicates that the result is not applicable from their
original publication, and ‘fail’ indicates the SLAM could not
complete the tracking and mapping job. The fr3/stf sequence
results show that PL-SLAM performs best while our methods
reached 2nd place. However, in the sequence of fr3/stn, the
proposed method performed better than PL-SLAM and
became the best. In the sequence of fr3/ntf, only the proposed
method’s results and PL-SLAM’s results are applicable. PL-
SLAM, however, fails to complete the sequence because
ambiguity was detected[25]. In the last TUM sequence of
fr3/ntn, CPA-SLAM and Plane-edge-SLAM achieve better
performance. A close look at the sequence suggests that there
were not too many plane features but only a floor plane. The
proposed method could not find extra constraints, while the
Plane-edge-SLAM could utilise edge information. CPA-
SLAM is a dense direct visual SLAM algorithm that labels
each RGB-D point with a probability of belonging to a plane.
As a result, more constraints were added to the CPA-SLAM
algorithm. It entails a high computational cost which requires
GPU acceleration.

While in the synthetic dataset of ICL-NUIM[11], the
proposed algorithm achieved the best result in three sequences.
The Planar-SLAM achieved an outstanding result for the first
living room scene (lr-kt0). As discussed above, the camera
was facing a white wall in some frames, so there were not too
many plane features that could be detected. But Planar-SLAM
also utilised line features, bringing extra constraints to the
system. The L-SLAM achieved the best result in three office
scenes of of-kt0, of-kt1 and of-kt3. It could be because, in
those scenes, the camera captured five planes (front, left and
right walls, ceiling and floor) in the first frame. A solid MW
constraint was established initially, which brings extra
constraints.

C. Plane Feature Error Analysis

 Table Ⅲ. demonstrates the point and plane feature's error
analysis during pose optimisation and bundle adjustments. In
this paper, the plane is represented by CP points, and the errors

of CP points are converted to pixel errors for the convenience
of comparison. As shown in column 1 and column 3, it is
obvious that the plane features’ error is much less than the
point feature’s error. While at the same time, the number of
planes is much less than the number of points. It led the
contribution of the plane easily overwhelmed by the points.
As discussed above, the proposed method's points on a plane
were set fixed during the optimisation procedures. It brings the
consequence that those fixed points could have a larger error
than the normal points. But, If a feature point is very close to
a plane. It is more reasonable that that point locates on that
plane rather than floating in the air. Fixing those points on a
plane could help avoid falling to the local minimum in the
optimisation procedure. For those reasons, the higher error of
fixed points is accepted in the proposed method.

D. The point on the plane constrains

Fig. 2 provides examples of the mapping difference
between the proposed method and the ORBSLAM2 in ICL-
NUIM living room sequences. The maps show that in our
proposed method, the feature points have usually been
constrained on a plane if it is close to that plane, as the red box
indicates. While in the ORBSLAM2, the point based system
ignores the point-plane relationships. As the red box indicates,
some feature points are isolated and far away from the planes.
It is often unreasonable for the planes such as exterior walls,
ceilings and floors since feature points should not appear
outside the room.

VI. CONCLUSION

This paper proposes an RGB-D visual SLAM system that
utilises the point-on-plane relationship. The point-plane
constraints were exploited to adjust the valid point features’
locations. Along with point features, plane features were
involved in solving the camera pose for each frame. A joint
point-plane cost function wSas applied to optimise the pose
estimation locally and globally. During the optimisation
procedure, the position was marked fixed for the point features
registered with a plane. The proposed method was tested in
two open-source RGB-D SLAM datasets, and it achieved
better performance than the widely cited state-of-the-art open-
source SLAM point only algorithms in most scenarios.
Compared with other recent SLAM algorithms that utilised
geometry features, the proposed algorithm showed
competitive results in some scenarios with rich plane features.
The mapping results demonstrated that the proposed method
would generate a more reasonable map that constraints some
points on a plane. The proposed work can provide a novel

TABLE III. THE POINT ERROR AND PLANE ERROR IN POSE OPTIMIZATION AND BUNDLE ADJUSTMENT

 Pose Optimization Bundle Adjustment

 Avg Point Error

in pixel

Avg Point

Number

Avg Plane

Error in pixel

Avg Plane

Number

Avg Point Error

in pixel

Avg Point

Number

Avg Plane

Error in pixel

Avg Plane

Number

lr/kt0 26.7 351.3 1.8 2.7 1.8 3495.5 2.8 4154.7

lr/kt1 18.0 272.1 9.5 3.1 1.2 3026.7 1.8 1701.2

lr/kt2 26.2 377.8 5.0 3.4 1.6 6834.9 3.5 2079.0

lr/kt3 29.6 303.2 6.9 3.0 1.8 1452.2 4.0 1500.0

of/kt0 35.6 369.6 3.0 3.8 1.1 10425.5 3.0 8882.9

of/kt1 26.1 348.4 2.8 2.7 1.6 496.7 3.4 1708.8

of/kt2 30.4 387.7 4.8 3.9 1.9 3591.6 3.7 2256.9

of/kt3 23.0 333.9 3.4 2.7 2.0 1553.8 3.6 1738.8

view for integrating the point and plane features. Since the
proposed system has been implemented based on the
ORBSLAM2 system, the proposed approach still faces some
limitations. For example, the system needs to detect enough
point features to initial the map construction. In the future, we
would like to enable the system to work along with plane
features and line features and extend the work to get involved

with other sensors like LiDAR and explore the fusion of both
LiDAR and camera.

REFERENCES

 [1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J.

Neira, I. Reid, and J. J. Leonard, “Past, present, and future of
simultaneous localisation and mapping: Toward the robust-

perception age,” IEEE Transactions on robotics, vol. 32, no. 6, pp.

(a) Map difference on li-kt0

(b) Map difference on li-kt1

(c) Map difference on li-kt2

(d) Map difference on li-kt3

Fig. 2. The constructed maps of the proposed method and ORBSLAM2 in ICL-NUIM living room sequences. For each row, the image at the left

represents the mapping result of the proposed method. The image at the right reprsents the mapping result of ORBSLAM2. The map is composed

of point features and plane features.

1309–1332, 2016.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small

AR workspaces,” in Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2007,

pp. 1–10.

[3] C. K. J. S. Lingni Ma and D. Cremers, “CPA-SLAM: Consistent

plane-model alignment for direct RGB-D SLAM,” in 2016 IEEE

International Conference on Robotics and Automation (ICRA),
2016, pp. 1285–1291.

[4] Q. Sun, J. Yuan, X. Zhang, and F. Duan, “Plane-Edge-SLAM:
Seamless fusion of planes and edges for SLAM in indoor

environments,” IEEE Transactions on Automation Science and

Engineering, 2020.

[5] Y. Li, R. Yunus, N. Brasch, N. Navab, and F. Tombari, “RGB-D

SLAM with Structural Regularities,” in 2021 IEEE international
conference on Robotics and automation (ICRA), 2021.

[6] A. J. Trevor, J. G. Rogers, and H. I. Christensen, “Planar surface
SLAM with 3D and 2D sensors,” in 2012 IEEE International

Conference on Robotics and Automation, 2012, pp. 3041–3048.

[7] X. Zhang, W. Wang, X. Qi, Z. Liao, and R. Wei, “Point-Plane

SLAM Using Supposed Planes for Indoor Environments,” Sensors,
vol. 19, no. 17, 2019 [Online]. Available:

https://www.mdpi.com/1424-8220/19/17/3795

[8] X. Zhang, Z. Liao, X. Qi, and W. Wang, “Stereo Plane SLAM

Based on Intersecting Lines,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2021.

[9] S.-J. Li, B. Ren, Y. Liu, M.-M. Cheng, D. Frost, and V. A.

Prisacariu, “Direct line guidance odometry,” in 2018 IEEE
international conference on Robotics and automation (ICRA),

2018, pp. 5137–5143.

[10] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,

“A benchmark for the evaluation of RGB-D SLAM systems,” in

2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 573–580.

[11] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A
benchmark for RGB-D visual odometry, 3D reconstruction and

SLAM,” in 2014 IEEE international conference on Robotics and

automation (ICRA), 2014, pp. 1524–1531.

[12] A. P. Gee, D. Chekhlov, W. W. Mayol-Cuevas, and A. Calway,

“Discovering Planes and Collapsing the State Space in Visual
SLAM.,” in BMVC, 2007, pp. 1–10.

[13] P. Kim, B. Coltin, and H. J. Kim, “Linear RGB-D SLAM for
planar environments,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2018, pp. 333–348.

[14] F. Servant, E. Marchand, P. Houlier, and I. Marchal, “Visual

planes-based simultaneous localisation and model refinement for

augmented reality,” in 2008 19th International Conference on
Pattern Recognition, 2008, pp. 1–4.

[15] X. Zuo, Y. Yang, P. Geneva, J. Lv, Y. Liu, G. Huang, and M.
Pollefeys, “Lic-fusion 2.0: Lidar-inertial-camera odometry with

sliding-window plane-feature tracking,” in 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 5112–5119.

[16] Q. Sun, J. Yuan, X. Zhang, and F. Sun, “RGB-D SLAM in Indoor
Environments With STING-Based Plane Feature Extraction,”

IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp.

1071–1082, 2018.

[17] R. Guo, K. Peng, W. Fan, Y. Zhai, and Y. Liu, “Rgb-d slam using

point-plane constraints for indoor environments,” Sensors, vol. 19,
no. 12, p. 2721, 2019.

[18] M. Hsiao, E. Westman, and M. Kaess, “Dense planar-inertial
SLAM with structural constraints,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA), 2018, pp. 6521–

6528.

[19] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam

system for monocular, stereo, and rgb-d cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[20] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in IEEE International Conference on Robotics and

Automation (ICRA), 2011.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no.

6, pp. 381–395, 1981.

[22] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “LIPS: LiDAR-

Inertial 3D Plane SLAM,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2018, pp.
123–130.

[23] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W.
Burgard, “G2O: A general framework for graph optimisation,” in

Robotics and Automation (ICRA), 2011 IEEE International

Conference on, 2011, pp. 3607–3613.

[24] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A.

Davison, “ElasticFusion: Dense SLAM without a pose graph,”
2015.

[25] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, “PL-SLAM: Real-time monocular visual SLAM with

points and lines,” in 2017 IEEE international conference on

robotics and automation (ICRA), 2017, pp. 4503–4508.

[26] P. Kim, B. Coltin, and H. J. Kim, “Low-drift visual odometry in

structured environments by decoupling rotational and translational
motion,” in 2018 IEEE international conference on Robotics and

automation (ICRA), 2018, pp. 7247–7253.

[27] M. Grupp, “evo: Python package for the evaluation of odometry

and SLAM.,” 2017.

