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Abstract—This paper presents an enhanced indoor RGB-D 

simultaneously localisation and mapping (SLAM) system based 

on the integration of plane and point features. A new method 

was proposed to register each point feature to a corresponding 

plane feature and then modify its position accordingly. The 

plane features are parallelly extracted from depth data sources 

and used jointly to solve the camera pose with point features. 

Plane features are stored on the map as the same as point 

features. Both point and plane features are used for backend 

optimisation, where the weights associated with features can be 

dynamically updated. At the same time, the on-plane feature 

points are fixed during the optimisation. The proposed method 

has been tested with open-source benchmarks, including the 

scenarios with or without a structured environment. 

Experiment results demonstrated that the proposed algorithm 

performs better than other widely cited visual SLAM systems in 

some structured environments.   

Keywords—SLAM, Visual SLAM, Geometry Information, 

Plane Feature 

I. INTRODUCTION 

The concept of simultaneous localisation and mapping 
(SLAM) is to estimate the sensor’s location and orientation 
(pose) and construct a map of the surrounding environment 
simultaneously. It has received massive attention during the 
last 20 years and has been applied to various applications, 
including autonomous robots, self-driving, augmented reality, 
and virtual reality[1]. The primary sensors that can implement 
visual SLAM include monocular cameras, stereo cameras and 
RGB-D cameras. In this type of SLAM, point features are 
commonly used to solve robot poses and construct a map that 
describes the environment. Thanks to the increasing 
computational power available over the last decades, many 
visual SLAM algorithms[2] have achieved real-time 
performance. 

While in the field in the presence of structural information, 
there are other geometric features, like lines and planes, that 
can be used, besides point features, to improve the robustness 
and accuracy of visual SLAM systems[3][4][5][6]. One of the 
primary sensors used in a visual SLAM system is an RGB-D 
camera. Apart from RGB images, this type of camera can 
provide a corresponding depth map that reflects the structural 
geometry information of the environment. Because not every 
plane could be detected in the scene, Zhang, Wang, Qi, Liao 
and Wei[7] exploited the detected plane and generated 
supposed planes to add more constraints to the system. But 
they assumed that planes are either parallel or perpendicular 
to each other in the indoor scene. Ma and Cremers[3] 
introduced a direct SLAM that labels each pixel to a plane 
with probabilities. Their work required acceleration from 
GPU devices to achieve real-time performance. Besides, 

Zhang, Liao, Qi and Wang[8] developed a SLAM algorithm 
based on a stereo camera in which plane features were 
generated using the intersecting lines. Li et al. [9] used line 
features to support key point selection in a direct monocular 
SLAM system. A study conducted by Sun, Yuan, Zhang and 
Duan[4] utilised plane-edge fusion and probabilistic plane 
fitting. Li, Yunus, Brasch, Navab, and Tombari[5] decoupled 
the rotation estimation and translation estimation and used 
both plane features and line features. While various degrees of  
success has been achieved, the studies mentioned earlier are 
facing issues such as excessive filter states and over-
parameterised features. Besides, for the aforementioned 
SLAM systems that have already used geometric features, 
they just parallelly add geometric features to the optimisation 
system without discussing the relationship between different 
types of features. This research aims to find an visual SLAM 
system that utilises plane features and explores the 
relationship between different kinds of features. 

This paper proposed a novel approach to the integration of 
indoor plane features with the point-based RGB-D SLAM 
system. Point features are extracted from RGB images in each 
frame, while plane features are extracted from depth images. 
Each point feature is paired with a plane feature, and its 
location is adjusted by considering that the point locates on 
that plane. A cost function is then constructed following the 
constraints of both the plane and point features. The cost 
function is used for optimising the estimated poses from each 
frame and for optimising the joint point-plane bundle 
adjustment as well. During the optimisation, the point features 
that are registered with the plane will be set fixed. The plane 
features are stored on the map as land markers in the same way 
as point features. The main contributions of this paper are 
summarised as follows: 

• Proposing a visual SLAM framework for the indoor 
structural environment, in which a new method to 
combine point and plane features has been proposed. 

• Developing methods for pairing a point with a plane 
feature and adjusting the point’s position by the plane 
feature. 

• Based on the point-plane relationships, we proposed a 
novel approach enabling both point and plane features 
to participate in the optimisation process  

A series of experiments have been carried out on the open-
source benchmarks[10][11]. Results were evaluated in terms 
of the errors of camera trajectory, and they show that the 
proposed method could achieve better performance than state-
of-the-art algorithms in an environment with structure 
features. 



The remainder of this paper is organised as follows. 
Section Ⅱ overviews the related works of visual SLAM 
systems that utilise structural information. Section Ⅲ outlines 
the proposed methods used in this study, followed by the 
presentation of the experimental results in Section IV. The 
paper concludes with a discussion of the experiment results, 
current limitations, and future research. 

II. RELATED WORKS 

There has been a growing interest in introducing planes as 
a kind of feature to visual SLAM in the indoor environment. 
For example, Gee, Chekhlov, Mayol-Cuevas, and Calway  
[12] discovered the state space for plane features in a filter-
based SLAM system. The introduction of planes would reduce 
the number of points’ states. Kim and Coltin[13] introduce the 
orthogonal plane into the linear Kalman Filter SLAM system 
as well. Servant, Marchand, Houlier and Marchal [14] applied 
planes in the Extended Kalman Filter (EKF) SLAM. But the 
filter-based SLAM system requires a large number of states, 
and it fails to handle the long-term drift errors well. Recently, 
a variant of the filter-based SLAM was proposed [15], which 
is based on data fusion of light detecting and ranging sensor 
(LiDAR), inertial measurement units (IMU), and Cameras. 
The plane landmarks are extracted from the LiDAR pipeline 
and tracked as a member of status. In addition to the large 
number of state spaces, the multiple sensors’ calibration 
accuracy could also affect their work, as they concluded. 

In the way of graph-based SLAM, [3][4][5][6] used plane 
features in their studies. Sun, Yuan, Zhang and Duan[4] 
introduced probability to avoid the noise influence in fitting a 
plane. Trevor, Rogers and Christensen[6] used both plane and 
line features. Li, Yunus, Brasch, Navab, and Tombari[5] 
decoupled translation and rotation in estimating the camera 
pose. Ma and Cremers [3] extracted planes from RGB-D 
images and then used the expectation-maximisation (EM) 
framework to decide if a pixel belongs to a detected plane. The 
EM frame provides a soft approach to associating a point with 
a plane compared with a hard label. To avoid the singularities 
of the plane representation, they forced the angle of the plane 

feature to fall into . In addition, the system would still 
suffer from the changing illumination problem as it is an 
extension of directly SLAM. Besides, their work needs work 

with a GPU support machine to accelerate probability 
computation. That means it would be hard to be implemented 
on the mobile platform. The SALM system introduced by 
Hsiao, Westman and Kaess[18] detected small planes from 
RGB-D data and merged them into larger planes. A modified 
point-to-plane Iterative closest point (ICP) algorithm was used 
to estimate frame pose by considering photometric, geometric, 
and plane matching errors. Due to the high computational cost, 
their algorithm also needs to run on a GPU to reach a near real-
time performance. Furthermore, the communal problem of the 
above studies is they all used the over-parameterised Hessian 
form to represent the Plane feature. In the meantime, the [16] 

and [17] define a plane with plane azimuth , plane elevation 

 and the distance  from the origin to the plane norm. But 
the azimuth and elevation way also need to be transformed to 
Hessian form during the optimisation procedure. In addition, 
the radian representation suffers from noise, which usually 
fluctuates largely and results in failed plane association [17]. 
In addition to the detected points and planes,  the SALM 
system developed by Zhang, Wang, Qi, Liao and Wei[7] can 
generate some supposed planes by utilising the edge of the 
detected real planes. The contours of the real planes are used 
as the first criterion for associating the plane features, 
followed by associating planes with an angle threshold of 30 
degrees. Their algorithm works under the assumption that 
planes are either perpendicular or parallel to each other in the 
scene. However, the planes do not necessarily support this 
assumption except the floor, ceiling, and walls. In the recent 
work by Zhang et al.[8], a visual SLAM system was 
introduced, which detects planes from stereo camera based on 
a novel plane detecting algorithm. It is capable of estimating 
planes based on the intersecting lines. However, as they 
concluded, the inaccurately estimated plane features still exist 
and remains a big challenge to their system.  

To overcome the above-discussed challenges, including 
excessive states, plane feature over parameterisation, GPU 
requirements and other issues and efficiently utilise plane 
features and the point-plane relationships, we proposed a 
graph visual SLAM system that can detect plane features, 
parameters plane with three variables, register point feature to 
plane feature, modify point landmark’s location and jointly 

 

Fig. 1. The flow structure of the proposed visual SLAM system, which consists of a tracking module and two mapping modules.  



optimise the camera pose without GPU and Manhattan 
hypothesis. 

III. METHODOLOGY 

Our approach is a graph-based visual SLAM system that 
cooperates with an RGB-D camera to detect point and plane 
features. In each frame, small and isolated planes, which are 
usually seen at an edge, will be removed if they are well 
separated from large planes due to the influence of noise. At 
the same time, the adjacent planes are merged into a large one.  
Each point feature close to a plane is considered on that plane. 
In the map, the point’s location is then modified accordingly. 
When associating two planes, the system considers both the 
plane’s geometric location and the point-plane pair 
attributions. In the tracking part, along with point features, 
plane features are used to estimate and optimise the camera 
pose by constructing a point-plane joint least-square function. 
In addition, all the plane features are also applied to local and 
global backend optimisation. Our modified SLAM system has 
been developed and implemented based on the ORBSLAM2 
framework [19]. 

A. System Overview 

As a graph SLAM system, a tracking module is 
responsible for processing adjacent frames to calculate the 
current camera dynamics. All the features extracted from each 
keyframe and solved dynamics are stored in the mapping 
module, used to construct and maintain the feature map, 
optimise the camera poses and check for loop closure to 
reduce the long-term drift.  

Fig.1 shows the structure of our system, which consists of 
a tracking module and two mapping modules. Since the 
proposed system has been implemented  based on the 
framework provided by ORBSLAM2[19], the main 
modification modules are highlighted with the colour orange. 
The tracking module extracts point features from the 2D 
image data source, and plane features are derived from the 
depth data source. The extracted features are used for pairing 
with map landmarks. Both point and plane features are utilised 
to calculate the motion between two adjacent frames. While 
plane features are not involved in the keyframe detection [19]. 
The plane features are added to the map once a new keyframe 
is detected. After that, the point landmarks are registered to 
nearby plane landmarks, and their locations are modified by 
that plane. During the backend optimisation, both the point 
and plane features are used to construct the optimising 
function jointly. We introduced dynamic weight to adjust their 
contributions. The point features registered with the plane will 
be set fixed in the optimisation process. The joint optimisation 
will be explained in section E. The point and plane features 
are maintained within the entire system life cycle. Each 
module will be described in detail in the following sections. 

B. Plane Feature Extraction and Representation 

Parallel to extracting 2D point features from the RGB data 
source, all the 3D plane features are extracted from the depth 
data source. Each depth frame is segmented by the region 
growing algorithm from the PCL library [20]. Then the 
RANSAC algorithm [21] is applied to each segment to fit a 
plane. Small planes that are close to each other will be merged 
into large planes instead. 

To avoid the singularity issue and over-parameterised 
issue discussed above [3][6][16][17], in this paper, a plane 
feature is represented following the closest point (CP) 

definition [22] that is a point that resides on the plane and is 
closest to the origin. The CP definition only takes three 
variables to describe the plane feature. Then the plane 
representation is defined as:  

Where  is the plane norm vector and  is the distance scalar. 

 represents the closest point which is the product of  and 

, and  is the norm of . 

The corresponding plane transform is performed using the 
equation (3): 

Where the superscript 𝐿 indicates a local frame and 𝑅 

indicates the reference frame. The  stands for the rotation 
matrix rotates from the reference frame to the local frame, and 

 stands for the position of the location frame seen from the 
reference frame [22]. 

C. Point-Plane registration 

In the common way of [3][6][16][17], the plane and line 
features have just been added to the system parallel to the 
point feature. Under the Manhattan assumption, plane features 
may introduce parallel or perpendicular constraints to the 
system. But in most cases, these geometric features serve the 
same function as point features. Usually, the point number is 
typically one to two orders of magnitude higher than the plane 
number, which would overwhelm the plane contributions 
during optimisation. To avoid this and explore more inner 
connections between the point and plane features, the 
proposed system prefers to connect the point feature with the 
plane feature.  

Before creating a new keyframe and adding it to the map, 
each candidate point landmark in that new keyframe is paired 
with a plane landmark by calculating the Euclidean distance 
between them. Any candidate point landmark close to a plane 
landmark will be registered to that plane. Once a point-plane 
pair relationship is established, the candidate map point is 
replaced with the intersection point of the vector, which is 
point to the feature point from the origin, and the paired plane. 
In the pose optimisation, local bundle adjustment and global 
bundle adjustment procedures, the point-plane relationships 
indicate that the point should stay on that plane, so these points 
will be set fixed during the optimisation procedure. 

In the case that feature points are located on edges and 
corners, a point belonging to the foreground plane may be 
incorrectly assigned to the background plane due to the 
interruption from sensor noise. To avoid this, the system 
prefers to get rid of the feature points with a high level of 
uncertainty. We selected the feature points from a smooth 
area. That is to say, the depth of a feature point should be close 
to its nearby pixels. So, the depths of each feature point and 
its surrounding patch are checked. Only the points with a tiny 
depth deviation of the surrounding patch will be accepted. In 
this system, the depth deviation threshold is set to 0.05 since 
we observed that the edge and corner point usually have a 
more than 0.1 depth deviation. 



D. Plane feature association and management 

When associating a local frame plane with an existing map 
plane landmark, the plane in the local frame must first be 
transformed to the map frame by Equations (1) − (3). Then 
the following Euclidean residual equation is applied to 
measure the CP distance between the transformed plane and 
the plane landmark. 

Where Πm represents the plane landmark on the map, Π̂𝑚 is 
the transformed plane. 

Besides the naïve plane Euclidean distance, point features 
are also involved in the plane association procedure. After the 
local plane detection, the map points will be transformed into 
the local frame. When the distance from a transformed point 
to a local plane is less than a certain threshold, this map point 
is registered with that local plane. Each point can only be 
registered to one single plane, and their point-plane pair 
relationships are recorded. When a close CP plane pair is 
firstly detected by Equation (4), then their point-plane pairs 
are compared. Ideally, two individual planes should not 
contain any common point features (except the points on plane 
intersection). This kind of measurement could help identify 
two individual but close planes. For example, a photo frame 
hung on a wall. This paper applies a small common point 
feature number threshold of 10 since we observed that most 
individual planes contains less than 10 common points. 

When a new local plane did not associate with any map 
plane landmark under both the Euclidean distance criterion 
and common point-plane pair criterion, it should be 
considered a new plane feature to be added to the feature map. 

E. Pose optimising and Weighted Point-Plane Bundle 

Adjustment 

In the point-based graph SLAM, the pairs of 2D feature 
point observations and 3D map points are used to construct a 
reprojection error function and to estimate the robot motion by 
minimising the error function : 

Where  is the feature point’s 2D observation,  is the 

camera pose,  is the paired 3D map point,  stands for the 

transform function and   represents the camera projection 
function. 

With Equation (1) − (4), the plane error function and the 
joint pose optimisation function could be defined. The plane 
error function is defined as: 

Where  denotes the plane feature detected in the local 

frame,  is the matched plane landmark, and   
represents the plane transform function (3). 

The corresponding joint pose estimation function is 
defined as: 

Where 𝐻𝑢() is the Huber robust kernel.  wp  is the weight of 

point error and 𝑤𝜋 is the weight of plane error. 

The weight of the plane and point could be calculated as:

Where 𝑤𝑝  and 𝑤𝜋  denote the weights associated with the 

point feature’s error 𝐸𝑝  and plane feature’s error 𝐸𝜋 

respectively. 

 Usually, both the point feature and the camera pose are 
adjustable in the optimisation procedures, but in this paper, 
since some point features are considered located on a plane, 
those points are set fixed in the optimisation process to matin 
the “point on the plane” constrains. 

The optimisation process was implemented using the G2O 
library [23]. The optimisation was iterative, and the edges with 
a significant error were removed from the iterations. 

TABLE I.   THE TRAJECTORY EVALUATION RESULTS BETWEEN THE PROPOSED METHOD AND POINT-BASED SLAMS. THE BEST PERFORMANCE IS 

HIGHLIGHTED IN BOLD. THE MARK X INDICATES THE RESULT DOES NOT APPLY TO THEIR ORIGINAL PUBLICATION. 

 Proposed Method ORB-SLAM2[19] Elastic-SLAM[24] 

fr3/stf 0.013 0.020 0.013 

fr3/stn 0.011 0.019 0.015 

fr3/ntf 0.047 0.076 0.074 

fr3/ntn 0.020 0.023 0.016 

lr-kt0 0.032 0.026 0.009 

lr-kt1 0.010 0.008 0.009 

lr-kt2 0.014 0.023 0.014 

lr-kt3 0.008 0.022 0.106 

of-kt0 0.034 0.036 X 

of-kt1 0.039 0.047 X 

of-kt2 0.035 0.039 X 

of-kt3 0.021 0.046 X 

 

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download


IV. EXPERIMENTS 

The plane feature is common within manufactured 
environments, including roads, tunnels, walls, ceilings, and 
floors. Our research scenario is focused on the indoor 
environment, so the most common plane feature would be 
floor, wall and ceilings. The experiments were carried out on 
the open-source TUM RGB-D benchmark[10] and ICL-
NUIM benchmark[11]. The TUM benchmark provides 
multiple real-world scenarios and the corresponding ground 
truth obtained by an external motion capture system. In order 
to comprehensively evaluate the system, both structured 
scenarios (fr3/structure_texture_far known as fr3/stf and 
fr3/structure_texture_near known as fr3/stn) and no structured 
scenarios (fr3/nostructure_texture_far known as fr3/ntf and 
fr3/nostructure_text_near_withloop known as fr3/ntn) were 
selected. Since the proposed algorithm was developed based 
on the ORBSLAM2 frame, which could fail to track in the low 
texture area, we did not pick the non-textured scenarios. The 
texture structure scenario has a zig-zag wooden panel 
structure located in the centre of the environment. The sensor 
was moved by half a meter height around that structure. The 
wooden panel was wrapped in a colourful plastic foil to 
provide a strong texture for point features. While in the no 
structure scenario, the camera was facing the floor for the all-
time. The ICL-NUIM dataset is a synthetic dataset that 
provides eight tracks of a living room scene and an office 
room scene, containing several planes that could be utilised. 
Every track (known as lr-kt0 to lr-kt3, of-kt0 to of-kt3) is 
tested.  

The proposed method was compared with other state-of-
the-art SLAM algorithms including ORBSLAM2 [19], 
Elastic-SLAM[24], CPA-SLAM [3], Plane-edge-SLAM [4], 
Planar-SLAM[5], PL-SLAM [25], L-SLAM [13] and 
LPVO[26]. The ORBSLAM2[19] is one of the most popular 
point-based visual graph SLAM. The Elastic-SLAM [24] is a 
frame-to-model tracking SLAM without any backend graph 
optimisation. The CPA-SLAM [3], Plane-edge-SLAM [4], 
and L-SLAM [13]are among the most cited plane related 
visual SLAM in recent years. On the other hand, the PL-
SLAM [25] uses point and line features in their system. And 
LPVO [26] explores both plane features and line features. 
Planar SLAM[5] is a Planar SLAM that utilises point, line and 
plane features, decouples the translation and rotation 
estimation and applies Manhattan constraints if applicable. 

The trajectory evaluation tool EVO [27] calculated the 
absolute pose error  (APE). To alleviate the effect of 
randomness, each trajectory was tested ten times, and the 
mean values were provided. All experiments were carried out 
with an Intel Core i9 CPU(2.90GHz) without GPU 
acceleration. 

V. RESULTS AND DISCUSSION 

We first compared the performance of our approach with 
SLAM systems [19][24], which do not consider geometry 
information, followed by comparisons with state-of-the-art 
Visual SLAMs that utilise geometry information like planar 
features [3][4][5][13] and line features [25][26]. The 
ORBSLAM2 system was implemented along with the 
proposed method, while the results of other SLAM systems 
were taken from their original publications, respectively. 

A. Comparison with Point-based SLAM 

Table Ⅰ. Shows the evaluation results of the proposed 
method and other algorithms without using geometry 
information, i.e., ORB-SLAM2[19], Elastic-SLAM[24]. The 
mark X indicates that the result does not apply to their original 
publication. As illustrated in Table Ⅰ., our proposed method 
outperforms other algorithms in most scenarios. It 
demonstrates the performance gain by introducing geometry 
information and adding more constraints to the pose 
estimation procedure. 

However, the Elastic SLAM performs better for the fr3/ntn 
track. In this scenario, the camera was facing the floor the 
whole time. So there was not too much geometry information 
that could be detected, except for the only floor plane. The 
Elastic-SLAM is a dense model-frame SLAM system which 
frequently checks whether there is a global or local closing 
loop in the current frame and uses pixel intensity information 
to optimise the pose results. It may partially explain why it 
could do better when the camera is close to the floor and the 
details of each frame are clearer. However, when the camera 
is away from the floor and the detail information becomes 
coarse, our method can outperform Elastic SLAM, as 
demonstrated in the fr3/ntf sequence.  

While in the synthetic dataset of ICL-NUIM[11], the 
proposed algorithm achieved the best results on more than 
half-tracks. ORBSLAM2 and Elastic-SLAM achieved the 
best results on one track, respectively. The Elastic-SLAM 

TABLE II.   THE TRAJECTORY EVALUATION RESULTS BETWEEN THE PROPOSED METHOD AND SLAMS WITH GEOMETRY INFORMATION. THE BEST 

PERFORMANCE IS HIGHLIGHTED IN BOLD. THE MARK X INDICATES THE RESULT DOES NOT APPLY TO THEIR ORIGINAL PUBLICATION. 

 Proposed 

Method 

PlanarSLAM[5] CPA-

SLAM[3] 

Plane-

edge-

SLAM[4] 

L-SLAM[13] LPVO[26] PL-SLAM[25] 

fr3/stf 0.013 X X 0.014 0.212 0.17 0.009 

fr3/stn 0.011 X X X 0.156 0.11 0.013 

fr3/ntf 0.047 X X X X X fail 

fr3/ntn 0.020 X 0.016 0.015 X X 0.021 

lr-kt0 0.032 0.006 X X 0.012 0.015 0.008 

lr-kt1 0.010 0.015 X X 0.027 0.039 0.010 

lr-kt2 0.014 0.020 X X 0.053 0.034 0.019 

lr-kt3 0.008 0.012 0.028 X 0.143 0.102 0.012 

of-kt0 0.034 0.041 X X 0.020 0.061 0.020 

of-kt1 0.039 0.020 X X 0.015 0.052 0.022 

of-kt2 0.035 0.011 X X 0.026 0.039 0.022 

of-kt3 0.021 0.014 X X 0.011 0.030 0.018 

 

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download


performed better in the lr-kt0 track. It could be because the 
camera was facing the white wall at some frame in those two 
scenes. It is similar to the situation discussed above. While in 
the other office scenes of of-kt1, the blocks on the ceiling and 
floor provide enough point features, which give enough 
constraints for ORBSLAM2. But the proposed method 
achieved a close result as well. 

B. Comparison with SLAM using geometry features 

Table II. shows the evaluation results of the proposed 
methods and other state-of-the-art SLAM algorithms that 
utilise plane features and line features in terms of APE. The 
mark X indicates that the result is not applicable from their 
original publication, and ‘fail’ indicates the SLAM could not 
complete the tracking and mapping job. The fr3/stf sequence 
results show that PL-SLAM performs best while our methods 
reached 2nd place. However, in the sequence of fr3/stn, the 
proposed method performed better than PL-SLAM and 
became the best. In the sequence of fr3/ntf, only the proposed 
method’s results and PL-SLAM’s results are applicable. PL-
SLAM, however, fails to complete the sequence because 
ambiguity was detected[25]. In the last TUM sequence of 
fr3/ntn, CPA-SLAM and Plane-edge-SLAM achieve better 
performance. A close look at the sequence suggests that there 
were not too many plane features but only a floor plane. The 
proposed method could not find extra constraints, while the 
Plane-edge-SLAM could utilise edge information. CPA-
SLAM is a dense direct visual SLAM algorithm that labels 
each RGB-D point with a probability of belonging to a plane. 
As a result, more constraints were added to the CPA-SLAM 
algorithm. It entails a high computational cost which requires 
GPU acceleration.  

While in the synthetic dataset of ICL-NUIM[11], the 
proposed algorithm achieved the best result in three sequences. 
The Planar-SLAM achieved an outstanding result for the first 
living room scene (lr-kt0). As discussed above, the camera 
was facing a white wall in some frames, so there were not too 
many plane features that could be detected. But Planar-SLAM 
also utilised line features, bringing extra constraints to the 
system. The L-SLAM achieved the best result in three office 
scenes of of-kt0, of-kt1 and of-kt3. It could be because, in 
those scenes, the camera captured five planes (front, left and 
right walls, ceiling and floor) in the first frame. A solid MW 
constraint was established initially, which brings extra 
constraints. 

C. Plane Feature Error Analysis 

 Table Ⅲ. demonstrates the point and plane feature's error 
analysis during pose optimisation and bundle adjustments. In 
this paper, the plane is represented by CP points, and the errors 

of CP points are converted to pixel errors for the convenience 
of comparison. As shown in column 1 and column 3, it is 
obvious that the plane features’ error is much less than the 
point feature’s error. While at the same time, the number of 
planes is much less than the number of points. It led the 
contribution of the plane easily overwhelmed by the points. 
As discussed above, the proposed method's points on a plane 
were set fixed during the optimisation procedures. It brings the 
consequence that those fixed points could have a larger error 
than the normal points. But, If a feature point is very close to 
a plane. It is more reasonable that that point locates on that 
plane rather than floating in the air. Fixing those points on a 
plane could help avoid falling to the local minimum in the 
optimisation procedure. For those reasons, the higher error of 
fixed points is accepted in the proposed method.  

D. The point on the plane constrains 

Fig. 2 provides examples of the mapping difference 
between the proposed method and the ORBSLAM2 in ICL-
NUIM living room sequences. The maps show that in our 
proposed method, the feature points have usually been 
constrained on a plane if it is close to that plane, as the red box 
indicates. While in the ORBSLAM2, the point based system 
ignores the point-plane relationships. As the red box indicates, 
some feature points are isolated and far away from the planes. 
It is often unreasonable for the planes such as exterior walls, 
ceilings and floors since feature points should not appear 
outside the room.  

VI. CONCLUSION 

This paper proposes an RGB-D visual SLAM system that 
utilises the point-on-plane relationship. The point-plane 
constraints were exploited to adjust the valid point features’ 
locations. Along with point features, plane features were 
involved in solving the camera pose for each frame. A joint 
point-plane cost function wSas applied to optimise the pose 
estimation locally and globally. During the optimisation 
procedure, the position was marked fixed for the point features 
registered with a plane. The proposed method was tested in 
two open-source RGB-D SLAM datasets, and it achieved 
better performance than the widely cited state-of-the-art open-
source SLAM point only algorithms in most scenarios. 
Compared with other recent SLAM algorithms that utilised 
geometry features, the proposed algorithm showed 
competitive results in some scenarios with rich plane features. 
The mapping results demonstrated that the proposed method 
would generate a more reasonable map that constraints some 
points on a plane. The proposed work can provide a novel 

TABLE III.  THE POINT ERROR AND PLANE ERROR IN POSE OPTIMIZATION AND BUNDLE ADJUSTMENT 

 Pose Optimization Bundle Adjustment 

 Avg Point Error 

in pixel  

Avg Point 

Number 

Avg Plane 

Error in pixel 

Avg Plane 

Number 

Avg Point Error 

in pixel 

Avg Point 

Number 

Avg Plane 

Error in pixel 

Avg Plane 

Number 

lr/kt0 26.7 351.3 1.8 2.7 1.8 3495.5 2.8 4154.7 

lr/kt1 18.0 272.1 9.5 3.1 1.2 3026.7 1.8 1701.2 

lr/kt2 26.2 377.8 5.0 3.4 1.6 6834.9 3.5 2079.0 

lr/kt3 29.6 303.2 6.9 3.0 1.8 1452.2 4.0 1500.0 

of/kt0 35.6 369.6 3.0 3.8 1.1 10425.5 3.0 8882.9 

of/kt1 26.1 348.4 2.8 2.7 1.6 496.7 3.4 1708.8 

of/kt2 30.4 387.7 4.8 3.9 1.9 3591.6 3.7 2256.9 

of/kt3 23.0 333.9 3.4 2.7 2.0 1553.8 3.6 1738.8 

 



view for integrating the point and plane features. Since the 
proposed system has been implemented based on the 
ORBSLAM2 system, the proposed approach still faces some 
limitations. For example, the system needs to detect enough 
point features to initial the map construction. In the future, we 
would like to enable the system to work along with plane 
features and line features and extend the work to get involved 

with other sensors like LiDAR and explore the fusion of both 
LiDAR and camera.  
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