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Ruilong Li2 · Shuangwei Liu2

Abstract Person re-identification (re-ID) is an exceed-

ingly significant branch in the field of computer vision,

especially for video surveillance. It is still a challenge

to obtain more labeled training data and use them rea-

sonably for more precise matching, though the per-

son re-ID performance has been improved significantly.

In order to solve this challenge, this study proposes a

semi-supervised learning algorithm for data augmenta-

tion, the style-transfer-generated data as an extra class

(STGDEC), which is aided by the Cycle-Consistent Ad-

versarial Networks (CycleGANs) in generating extra

unlabeled training data. Specifically, the algorithm firstly

trains the CycleGANs and Deep Convolutional Gener-

ative Adversarial Networks (DCGANs) so as to gener-

ate large amounts of unlabeled data. Secondly, we pro-

pose a recognition model that depends on what kind

of label distribution the generated samples are. Finally,

this paper proposes a deformed loss function, the label

smoothing and only extra class regularization (LSOECR),
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which is the combination of the Label Smoothing Regu-

larization for Outliers (LSRO) and the additional added

class. Comprehensive experiments based on the STGDEC

are conducted, and these results show that the pro-

posed algorithm gains a significant improvement over

the ID-discriminative embedding (IDE) baseline, the

Basel.+LSRO and state-of-the-art approaches of per-

son re-ID in many cases.

Keywords Person re-identification · Generative

adversarial network · Data augmentation · Semi-

supervised learning · Convolutional neural network

1 Introduction

The intelligent video analysis method based on per-

son re-identification (re-ID) [39] recently has become
a research hotspot in the field of computer vision. In

this task, pedestrian images undergo intensive changes

in appearance and background frequently. Due to im-

portant applications of person re-ID in security and

monitoring, it has received extensive attention from

academia and industry. Person re-ID, a cross-camera

retrieval task [41], which aims to verify a probe per-

son’s identity in image sequences captured by cameras

that are orientated in different directions at different

times. These algorithms essentially study the similarity

measurements and the pedestrian features between the

learned features, which are robust and view-invariant

to the monitoring camera changes.

Due to the rapid development of the usability of a

large amount of datasets and deep learning, the perfor-

mance of person re-ID has been improved significantly.

The majority of the proposed person re-ID algorithms

[1,4,16,21,28,33] conduct supervised learning on small

set of labeled training datasets. Since the target do-

main might differ from the small and practical training
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Fig. 1 Overview of the proposed semi-supervised learning framework. The training data are divided into three classes: 1)
The original real training data is assigned the classical label distribution, i.e., the ground-truth label distribution; 2) The
data generated by DCGANs is assigned LSRO label distribution; 3) The data generated by CycleGANs is assigned M+1 label
distribution, where M represents the total number of pedestrian identities in the real training data domain.

dataset significantly, applying these well-trained mod-

els directly to a real-world scene with a massive net-

work of cameras can result in performance degradation.

Therefore, incremental optimization in practical appli-

cations is crucial to obtaining the excellent performance

of person re-ID algorithms. Nevertheless, marking large

amounts of online monitoring videos to support super-

vised learning is often expensive and impractical. How

to obtain and utilize the rich unmarked data reasonably

is a challenging and practical issue.

In order to solve this issue, some semi-supervised

algorithms [40,10] are proposed to generate artificial

sample data through Generative Adversarial Networks

(GANs) [9] and assign reasonable label distribution to

the unlabeled data for regularization. Furthermore, there

is also a proposed semi-supervised person re-ID frame-

work [34] that uses some extra unlabeled images and

only a small part of labeled samples. In general, the

performance of these algorithms are not satisfactory.

On the other hand, some unsupervised algorithms [41,

15] to measure the similarity between different sam-

ples and extract view-invariant features in unmarked

datasets are proposed. These unsupervised algorithms

usually perform poorly without strong supervised ad-

justment and optimization. An unsupervised algorithm

which is cross-dataset transfer learning [22] has been

proposed recently in addition to these unsupervised al-

gorithms used in an individual dataset, which uses a

dictionary learning mechanism from a marked source

dataset to another unmarked target dataset to transfer

the view-invariance representation of one person’s ap-

pearance, and achieves much better performance than

some of the unsupervised algorithms used in an individ-

ual dataset. Nevertheless, the performance of the meth-

ods mentioned above is still far lower than that of the

supervised learning approaches.

In this paper, we propose a semi-supervised learn-

ing algorithm, named the style-transfer-generated data

as an extra class (STGDEC), to enable high person re-

ID performance with unmarked datasets generated by

Cycle-Consistent Adversarial Networks (CycleGANs)

[42]. Unlike the above semi-supervised methods, which

generate unlabeled datasets only based on the GANs or

Deep Convolutional Generative Adversarial Networks

(DCGANs) [23], this paper tries to learn and integrate

with the samples generated by DCGANs and Cycle-

GANs in the steps shown in the leftmost column of Fig.

1. Firstly, we apply the DCGANs and CycleGANs mod-

els to generate unlabeled datasets to extend the origi-

nal training data. Secondly, a recognition model is pro-

posed that depends on what type of label distribution

the generated samples are. Finally, this paper proposes

a novel deformed loss function, the label smoothing and

only extra class regularization (LSOECR), which is the

combination of the Label Smoothing Regularization for

Outliers (LSRO) and the additional added class.

Comparative experiments on the Market-1501 [38]

dataset and the DukeMTMC-reID [40] dataset indicate

that the proposed STGDEC performs much better than

the Basel.+LSRO [40] and some other semi-supervised

algorithms. Meanwhile, the STGDEC performs consid-

erable or even better than, to some extent, some of

the state-of-the-art supervised methods using the exact

same datasets. The main contributions can be summa-

rized as follows:

1. This paper proposes a semi-supervised learning al-

gorithm for data augmentation, the style-transfer-

generated data as an extra class (STGDEC), which
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Semi-supervised learning for person re-identification based on style-transfer-generated data by CycleGANs 3

Fig. 2 Illustration of a DCGANs framework which contains
a generator and a discriminator. Both of the generator and
discriminator are consist of convolutional neural networks.

is aided by CycleGANs in generating extra unmarked

training data.

2. This study proposes a recognition model that de-

pends on the label distribution of the generated

samples.

3. This research proposes a deformed loss function, the

label smoothing and only extra class regularization

(LSOECR), which is the combination of the LSRO

and the additional added class.

2 Related work

For the person re-ID task, we review the existing works

related to the GANs, supervised learning and semi-

supervised learning in this section.

2.1 Generative adversarial network

In [9], Goodfellow et al. first propose the GANs so as

to obtain the generated samples and understand the

neural networks in depth. After that, DCGANs (shown

in Fig. 2) is proposed by Radford et al. [23] to intro-

duce techniques for case of improving the stability of

training. GANs have been applied widely in many fields

recently, especially for image generation [23]. In recent

years, GANs also have been used in the fields of style

transfer [8], image-to-image translation [11,42,17] and

cross-domain image generation [27]. Among these ar-

eas, image-to-image translation has received a lot of

attention. Isola et al. [11] learn to map from an in-

put image to an output image by using conditional

GANs to perform image-to-image translation. Never-

theless, paired training samples are difficult to obtain

required in quite a few tasks [42]. In order to overcome

this problem, Liu and Tuzel [17] introduce the coupled

generative adversarial network (CoGAN), which is used

to learn the joint distribution of multi-domain images.

Also, the work [42] proposes a similar framework, the

X Y

G

F

X
D

Y
D

Fig. 3 Illustration of a CycleGANs framework which con-
tains two mapping functions G : X → Y and F : Y → X,
and associated adversarial discriminators DX and DY .

CycleGANs (shown in Fig. 3), which uses cycle consis-

tency loss and aims to overcome the unpaired image-

to-image translation task. Unlike most of previous algo-

rithms that primarily consider the quality of generated

images, this paper directly uses the combination of the

style-transfer-generated samples and the images gener-

ated by DCGANs so as to improve the person re-ID

performance.

2.2 Supervised person re-ID

Most of the proposed person re-ID algorithms are su-

pervised algorithms based on either deep learning [1,4,

33], metric learning [21,28] or invariant feature learning

[16]. Among them, the deep learning based algorithm

of person re-ID tasks has been particularly popular re-

cently. Meanwhile, the performance reported is gener-

ally superior to conventional methods [36,14] which are

not using deep learning. Nevertheless, labeling lots of

online monitoring videos to perform supervised learning

is often expensive and unpractical in the practical ap-

plication of person re-ID methods in a massive network

of cameras, as described in [22].

2.3 Semi-supervised person re-ID

The semi-supervised learning uses both marked and un-

marked samples to strengthen the performance of a

learning task which is driven by the practical signif-

icance for learning cheaper, better and faster feature

representations. It is reasonably easy to obtain plenty

of unmarked samples in many practical applications,

such as pedestrian detection and image segmentation.

The goal of semi-supervised learning is to train mod-

els that can predict future unseen test data more ac-

curately than models that only learned from labeled

training data.

Some semi-supervised methods of person re-ID have

been proposed. Figueira et al. [7] propose the multi-
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feature semi-supervised learning approach to adderss

the learning-based and appearance-based person re-ID

issue jointly. In order to learn two paired dictionar-

ies from both marked and unmarked data jointly in

the training stage, Liu et al. [18] introduce the semi-

supervised paired dictionary learning algorithm. In a

semi-supervised setting, Yang et al. [35] propose the

technology of multi-kernel embedding within a learn-

ing framework of self-training subspace for the person

re-ID tasks, which effectually handles the nonlinearity

in the appearance of a person and explores the sup-

plementary information shared between multi-kernels.

Nevertheless, these algorithms which are not based on

deep learning simply cope with small-scale datasets.

In the past few years, some deep learning based algo-

rithms of semi-supervised person re-ID have been pro-

posed. In [19], Liu et al. design a simple but efficient

learning algorithm, which only replaces the last fully

connected layer of the CNN with the presented Trans-

ductive Centroid Projection (TCP) module. Meanwhile,

they introduce a new large-scale dataset called Per-

son Tracker Re-Identification dataset (PT-ReID) as un-

marked data. Xin et al. [34] introduce a semi-supervised

algorithm for a person re-ID task that enable to use

multiple CNN models and both marked and unmarked

training data to improve the person re-ID performance.

The works of semi-supervised person re-ID mentioned

above primarily concentrate on how to use enough un-

marked samples with available marked samples to im-

prove the person re-ID performance as obtaining train-

ing labels is expensive. After the emergence of GANs

[9], the research branch of semi-supervised learning has

turned to exploring GANs-generated images [25]. Also,

exploring how to apply the generated images to person

re-ID has become a prominent research topic. Huang

et al. [10] propose a virtual label named Multi-pseudo

Regularized Label (MpRL) and assign this label to the

generated samples, which are able to used to supple-

ment real training samples to train a deep neural net-

work in the semi-supervised mannner. Ding et al. first

[5] propose the semi-supervised method, which employs

pseudo-marking by considering the complicated rela-

tionships between marked and unmarked training data

in feature space. Zheng et al. [40] introduce the LSRO

method that uses the uniform label distribution for the

unmarked data to regularize the neural network train-

ing in the person re-ID task. All of the literature men-

tioned above use GANs to generate artificial labeled

training samples in the feature space. Therefore, we use

the existing training samples directly in this paper for

generating unmarked samples by GANs, and incorpo-

rate unmarked data generated by GANs alongside with

the real data available in the marked datasets. In ad-

dition, we demonstrate that the generated samples are

able to help improve the performance of the discrimi-

native model by assigning the pre-determined label dis-

tribution.

3 The proposed algorithm

In this section, this paper introduces the proposed semi-

supervised framework in detail for the person re-ID

task. Firstly, we briefly look back at the virtual label

LSRO [40] which is the state of the art. Secondly, the

STGDEC algorithm is introduced in the model, mean-

while, the deformed LSOECR is illustrated. Finally, we

present three training strategies based on the proposed

STGDEC model. The framework of semi-supervised learn-

ing for the person re-ID task is demonstrated in Fig. 1.

3.1 The review of the LSRO algorithm for the person

re-ID task

The design of the LSRO method is inspired from the

Label Smoothing Regularization (LSR) [26] method,

which assigns relatively low-value weights to the non-

ground-truth categories instead of 0 and assigns small

confidence to the ground-truth label. LSRO assumes

that all of the generated data do not fall into any ex-

isting classes and assigns uniform label distribution to

each of them to avoid model over-fitting. Specifically,

for a real training image X, the cross-entropy loss LR

can be defined as follows:

LR = −
M∑

m=1

q(m) log(p(Ym)), (1)

where M represents the total number of the predefined

training classes, that is, the number of the pedestrian

identities in the real training data domain in the per-

son re-ID task. m belongs to {1, 2, ...,M} is the m-th

training class and Ym represents the output of the m-

th predefined training category. p(Ym) ∈ (0, 1) denotes

the softmax predictive probability of X which belongs

to the predefined training category m and q(m) rep-

resents the ground-truth label distribution. Assuming

that n is the ground-truth category label of X, q(m)

and p(Ym) can be respectively given by the two follow-

ing equations:

q(m) =

{
1 m = n

0 m 6= n
, (2)

p(Ym) =
eYm∑M
i=1 e

Yi

. (3)
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Semi-supervised learning for person re-identification based on style-transfer-generated data by CycleGANs 5

Fig. 4 The label distributions of a real sample and a generated sample. The real data (a) is assigned the ground-truth label,
i.e., the classical label distribution. For a generated sample, one-hot (b) assigns each unmarked sample a dynamic class label
in each training epoch. LSRO (c) uses a uniform label distribution. All-in-one (d) treats all unmarked images belong to a new
class. (e) the label distribution proposed in this work.

By removing the 0 terms in Eq. (1), i.e., merely

considering the ground-truth term, the loss LR can be

redefined as follows:

LR = − log(p(Yn)). (4)

Given the generated image g, its uniform label dis-

tribution qgLSRO(m) can be formulated as:

qgLSRO(m) =
1

M
. (5)

Therefore, the cross-entropy loss of the LSRO method

for the generated image g can be defined as:

Lg
LSRO = − 1

M

M∑
m=1

log(p(Ym)). (6)

3.2 The proposed STGDEC algorithm for the person

re-ID task

The proposed STGDEC algorithm is to be applied to

setting visual labels on the generated samples in order

to merge the unlabeled samples into the network. Nev-

ertheless, unlike the LSRO method, we do not assign

uniform label distribution to all the generated data, in-

stead, we set uniform label distribution and all-in-one

label distribution (shown in Fig. 4) to the generated

data by DCGANs (images shown in Fig. 5) and Cycle-

GANs (images from DukeMTMC-reID to Market-1501

or from Market-1501 to DukeTMTC-reID are shown

in Fig. 6 and Fig. 7 respectively) respectively. For the

sake of convenience, we simply abbreviate the data gen-

erated by DCGANs as D-images and the samples gen-

erated by CycleGANs as C-images.

For a real training image X, which is assigned a

ground-truth label distribution, the cross-entropy loss

LR is equal to Eq. (1). For a D-image, which is as-

signed a uniform label distribution, the cross-entropy

loss Lg
LSRO is the same as Eq. (6). For C-images, we

apply the all-in-one label distribution to all of them,

i.e., let all the corresponding samples belong to the ad-

ditional M+1 class. The loss Lg
C of a C-image can thus
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6 Shangdong Zhu1 et al.

Fig. 5 Examples of images generated by DCGANs and real
images on the Market-1501 dataset and the DukeMTMC-reID
dataset. The top two rows of (a) and (b) present the pedes-
trian images generated by DCGANs trained on the Market-
1501 and DukeMTMC-reID. The bottom row presents the
real images in the training set.

be defined as follows:

Lg
C = −

M+1∑
m=1

q(m) log(p(Ym)), (7)

where m belongs to {1, 2, ...,M,M + 1}.
Similar to Eq. (4), Eq. (7) can also be simplified as

follows:

Lg
C = − log(p(Yn)). (8)

If we train using the real training data and the C-

images together, the cross-entropy loss Lg
R+C for each

of the images in the dataset is equal to Eq. (7). On the

other hand, if we train with the real training data along-

side with the C-images and D-images, the cross-entropy

loss Lg
R+C+LSRO (i.e., Lg

STGDEC) can be formulated as

follows:

Lg
STGDEC =− (1−K) log(p(Yn))

− K

M + 1

M+1∑
m=1

log(p(Ym)),
(9)

where this system has two types of losses: 1) for each of

the samples in the combination of the real training data

and the C-images, the value of K is 0; 2) for each of

the D-images, the value of K is 1. Additionally, we need

to further explain this training method. For the train-

ing mechanism using mixed data, since the C-images

participate in the training, the number of training data

classes is M + 1 in the first form of loss. Meanwhile, in

the second form of loss, though the number of training

data classes is M as there are only D-images, we still

set M + 1 to accommodate the last classification layer

in the training network.

Fig. 6 Style-transfer-generated samples by CycleGANs from
the DukeMTMC-reID to Market-1501and real images on
the DukeMTMC-reID dataset and the Market-1501 dataset.
Transferred images to the Market-1501 are shown in the sec-
ond row. Images in the first and third rows are real samples
from the DukeMTMC-reID and Market-1501 respectively.

On the basis of the proposed STGDEC algorithm

and the deformed loss LSOECR, we briefly introduce

three training strategies in the next subsection.

3.3 Training strategies

There are three training strategies for applying the pro-

posed STGDEC approach to the experiment. The first

strategy is the training mechanism of combining the

real training data with the C-images. In this strategy,

the real data are assigned the ground-truth label distri-

bution, and the C-images are assigned all-in-one label

distribution. In the second and the third strategies, we

add the D-images and assign uniform label distribution

to all of them based on the training mechanism of com-

bining the real training data with the C-images and

the D-images. Since in [40], DCGANs uses the Market-

1501 (or DukeMTMC-reID) dataset as the training set

to generate samples, that is, the target domain is used

as the training set of DCGANs. Subsequently, since the

person re-ID network is tested on the target domain,

the generated images have a certain degree of similar-

ity with the target domain. Thus, it is reasonable to

assign the LSRO label to the generated samples. How-

ever, the CycleGANs performs style conversion on the

source domain in order to augment the data size of the

target domain. Though the samples generated in this

way have the same style as the target domain, the data

source is from a different dataset. Objectively, the im-

ages generated in this way are almost not similar to that

in the target domain. Therefore, this paper considers

assigning all-in-one label to the C-images. Descriptions

are as follows:
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Fig. 7 Style-transfer-generated samples by CycleGANs
from the Market-1501 dataset to the DukeMTMC-reID
dataset and real images on the Market-1501 dataset and
the DukeMTMC-reID dataset. Transferred images to the
DukeMTMC-reID are shown in the second row. Images in the
first and third rows are real samples from the Market-1501
and DukeMTMC-reID respectively.

3.3.1 STGDEC-I

In this strategy, we extend the original training dataset

by adding C-images which are assigned an all-in-one

label distribution. For fair comparison and approximate

proportion of samples, 12,000 C-images are randomly

selected. We demonstrate that the result of this strategy

in the experiments can be improved compared with that

Basel.+LSRO in Section 4.3.

3.3.2 STGDEC-II

The original training dataset is expanded by adding

12,000 C-images and 12,000 D-images to this strategy.

Different from the C-images, the D-images are all as-

signed a uniform label distribution. The later experi-

mental result shows that the STGDEC-II strategy also

outperforms the Basel.+LSRO.

3.3.3 STGDEC-III

Similar to the second training strategy, this strategy is

also a combination of C-images and D-images, which

differs from the last strategy only in the number of

D-images, i.e., 24,000. The experimental result of this

strategy demonstrates that the STGDEC algorithm gains

a significant improvement over the ID-discriminative

embedding (IDE) baseline [39], Basel.+LSRO and state-

of-the-art approaches of person re-ID in most cases. Al-

gorithm 1 shows the detailed training process of this

strategy.

Algorithm 1: Detailed training process of the

STGDEC-III strategy: The original training

dataset is expanded by adding 12,000 C-images

and 24,000 D-images to this strategy. All of

the C-images are assigned an all-in-one label

distribution. Different from the C-images, the

D-images are all assigned a uniform label dis-

tribution.
Input: Real data set: R;

C-images: C;
D-images: D;
Incorporated dataset: M = R ∪ C ∪D;
Loss of the real dataset and C-images: Lg

R+C ;

Loss of the D-images: Lg
LSRO.

1 for the number of the training epochs do
2 Shuffle M ;
3 for the number of the training iterations in

every epoch do
4 Set Lg

R+C = 0, Lg
LSRO = 0;

5 Sample minibatch from M → M ′;
6 if M ′

i ∈ R ∪ C then
7 Set K = 0 in the Eq. (9);
8 Calculate loss Lg

R+C ;

9 else
10 Set K = 1 in the Eq. (9);
11 Calculate loss Lg

LSRO;

12 Calculate the final loss Lg
STGDEC ;

13 Backward propagation;
14 Update parameters;

15 final;

4 Experiment

In this section, we use two re-ID datasets (the Market-

1501 dataset and the DukeMTMC-reID dataset) to val-

idate the availability of the proposed STGDEC algo-

rithm, since they are both large-scale datasets and have

fixed test/training split.

4.1 Person re-ID datasets and evaluation metrics

4.1.1 The Market-1501 dataset

The Market-1501 is collected with six cameras in the

open environment of Tsinghua University. The train-

ing set contains 12,936 images and the testing set con-

tains 19,732 images. The training set and the testing set

contain 751 identities and 750 identities respectively. A

total of 1,501 identities are annotated. There are 17.2

images on average for each identity in the training set

and 26.3 images on average for each identity in the test-

ing set. Both of multi-query settings and single-query

settings are applied to this dataset. All of the images

are automatically detected through the deformable part

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Shangdong Zhu1 et al.

model (DPM) [6] algorithm. In this paper, all of the

12,936 automatically detected images in the training set

are used for training the DCGANs to get abundant un-

labeled samples. Furthermore, we randomly select 1,645

training images to train the CycleGANs.

4.1.2 The DukeMTMC-reID dataset

The DukeMTMC-reID dataset is collected with eight

cameras in Duke University, which is in the same for-

mat as Market-1501 dataset. It is a subset of the origi-

nal DukeMTMC dataset [24] for the purpose of image-

based re-recognition. In this paper, we employ a subset

of [24], i.e., the re-ID version benchmark [40], for the

image-based person re-ID task. It contains 1,404 iden-

tities, randomly selecting 702 of them for the training

set (a total of 16,522 images), and then using the re-

maining 702 identities for the testing set. All of the

1,404 identities do not appear in just one camera. In

this testing set, a given query image for every identity

is selected in every camera and the rest of the images

are placed in the gallery. Therefore, for the 702 test-

ing identities, there are 2,228 query images and 17,661

gallery images. In this study, we use this training set

which contains 16,522 images to train the DCGANs

to generate unlabeled images. Moreover, 1,472 training

images are randomly picked to train the CycleGANs

model.

4.1.3 Evaluation protocol

We employ the mean average precision (mAP) and rank-

1 accuracy for evaluating the presented STGDEC algo-

rithm on the DukeMTMC-reID dataset and the Market-
1501 dataset. The rank-i accuracy represents the rate

at which one or more correctly matched images appear

in the top-i ranked images. The mAP value reflects the

overall accuracy and recall rate, thus providing a more

comprehensive evaluation metric.

4.2 Implementation details

4.2.1 CNN baseline model for person re-ID

In this paper, the ResNet-50 model is employed as the

primary structure of the proposed method. The net-

work structure has been applied to evaluating highly

correlated pseudo-labeling methods, such as the one-

hot pseudo label [13], all-in-one [25] and LSRO. The

Matconvnet [32] package is used to implement the net-

work. There are no other changes to the training ar-

chitecture other than replacing the number of neurons

in the final classification layer with the number of the

target identities (703 and 752 for the DukeMTMC-reID

dataset and the Market-1501 dataset, respectively). Be-

fore randomly cropping all images to 224 × 224 pixels

by random horizontal flip, all of the images will be re-

sized to 256 × 256 pixels firstly. In order to prevent

over-fitting, we need to insert one dropout layer before

the last convolutional layer and set the dropout rate for

both of the two datasets to 0.75. We use the Stochastic

Gradient Descent (SGD) algorithm with a momentum

of 0.9 to optimize the entire model. The training is per-

formed for a total of 50 epochs. We set the learning rate

for each convolutional layer to 0.002, which decays to

0.0002 after 40 epochs. During testing, the last fully-

connected layer with 2048-dim activations is extracted

for a 224×224 pixels input image so as to calculate the

similarity between two images for ranking.

4.2.2 GANs models

In the experiments, we use the CycleGANs model and

the DCGAN-tensorflow package to generate the un-

marked images from the given training samples in the

initial training set without preprocessing. We adopt

Tensorflow to train the above two models. For fair com-

parison, we also adopt the same setup of the model ar-

chitecture in the above two models. For the DCGANs

model: 1) all of the images are resized to 128 × 128

pixels and randomly flip before training; 2) in order to

obtain stochastic optimization, we use the Adam [12]

algorithm with parameter β1 and β2 (the values of β1
is 0.5 and the value of β2 is 0.99); 3) after 30 epochs,

the training is stopped; 4) the generator takes a 100-

dimensional vector randomly as input; 5) for the later

semi-supervised CNN training, we resize all of the un-
labeled images to 256× 256 pixels. For the CycleGANs

model, the setup is the same as in [42]. The generated

samples are still able to improve performance and reg-

ularize this model, while some of them are far from the

real data distribution. In Section 4.3, we present the

results of experiments. Some of the data generated by

DCGANs (the D-images) are shown in Fig. 5 and Cy-

cleGANs (the C-images) are shown in Fig. 6 and Fig.

7.

4.3 Experimental results

4.3.1 The C-images improve the baseline and the

result outperforms the Basel.+LSRO

As can be seen in Table 1, when 12,000 C-images are

added to the CNN baseline model for training, the pro-

posed STGDEC-I improves the person re-ID baseline on

both two datasets in the single-query way. Compared
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Table 1 Comparison of our results between the Basel., Basel.+LSRO and STGDEC-I on the Market-1501 dataset and the
DukeMTMC-reID dataset in the single-query way.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

Basel. [39] 73.69 51.48 65.22 44.99
Basel.+LSRO [40] 78.06 56.23 67.68 47.13
STGDEC-I (Ours) 78.39 57.02 67.87 48.03

Table 2 Comparison of our results between the Basel., Basel.+LSRO and STGDEC-II on the Market-1501 dataset and the
DukeMTMC-reID dataset in the single-query way.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

Basel. [39] 73.69 51.48 65.22 44.99
Basel.+LSRO [40] 78.06 56.23 67.68 47.13
STGDEC-II (Ours) 78.27 56.83 67.77 47.87

Table 3 Comparison of our results with the published state-of-the-art algorithms on the Market-1501 dataset. All our results
of three training strategies are both in single-query way and multi-query way and shown in bold. Rank-1 and mAP are listed.

Method
Single-query Multi-query

Reference
Rank-1 mAP Rank-1 mAP

BoW+kissme [38] 44.42 20.76 – – 2015 ICCV
MR CNN [29] 45.58 26.11 56.59 32.26 2015 arXiv
FisherNet [33] 48.15 29.94 – – 2017 PR
SL [3] 51.90 26.35 – – 2016 CVPR
S-LSTM [31] – – 61.6 35.3 2016 ECCV
DNS [37] 61.02 35.68 71.56 46.03 2016 CVPR
Gate Reid [30] 65.88 39.55 76.04 48.45 2016 ECCV
SOMAnet [2] 73.87 47.89 81.29 56.98 2018 CVIU
Basel. [39] 73.69 51.48 81.47 63.95 2016 arXiv
MVC Re-ID [34] 75.23 52.63 80.08 59.54 2019 PR
SpindleNet [43] 76.90 – – – 2017 CVPR
Basel.+LSRO [40] 78.06 56.23 85.12 68.52 2017 ICCV
STGDEC-II 78.27 56.83 85.52 69.05 Proposed
STGDEC-I 78.39 57.02 85.67 69.13 Proposed
STGDEC-III 78.57 57.07 86.25 69.49 Proposed

with the Basel. in Table 1, we can see the improvements

of 4.70% (78.39 - 73.69) in rank-1 and 5.54% (57.02

- 51.48) in mAP on the Market-1501 dataset. Mean-

while, it can be seen that the improvements of 2.65%

(67.87 - 65.22) in rank-1 and 3.04% (48.03 - 44.99) in

mAP on the DukeMTMC-reID dataset. These results

show that the added C-images improve the baseline

based on the STGDEC-I strategy. Compared with the

2nd best Basel.+LSRO, there are also improvements of

0.33% (78.36 - 78.06) in rank-1, 0.79% (57.02 - 56.23)

in mAP on the Market-1501 dataset and 0.09% (67.87

- 67.68) in rank-1, 0.9% (48.03 - 47.13) in mAP on the

DukeMTMC-reID dataset. Therefore, these results in-

dicate that the STGDEC-I strategy outperforms the

Basel.+LSRO method, even though the number of the

GANs images used in STGDEC-I is 12,000 less than the

Basel.+LSRO, i.e., only uses half of the GANs images.

4.3.2 The combination of the C-images and D-images

improve the baseline and the result outperforms the

Basel.+LSRO

As shown in Table 2, we use the STGDEC-II imple-

mentation to demonstrate that the combination of the

C-images and D-images assigned different label distri-

bution improves the person re-ID baseline on both two

datasets in the single-query way. Compared with the

Basel. in Table 2, we can see that by adding 12,000

C-images and 12,000 D-images to both of the above

training sets, the STGDEC-II strategy (improvements

of 4.58% (78.27 - 73.69) in rank-1 and 5.35% (56.83

- 51.48) in mAP on the Market-1501 dataset, 2.55%
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10 Shangdong Zhu1 et al.

Table 4 Comparison of our results with the published state-
of-the-art algorithms on the DukeMTMC-reID dataset. All
our results of three training strategies are both in single-query
way and multi-query way and shown in bold. Rank-1 and
mAP are listed.

Method
Single-query

Reference
Rank-1 mAP

BoW+kissme [38] 25.13 12.17 2015 ICCV
LOMO+XQDA [16] 30.75 17.04 2015 CVPR
MVC Re-ID [34] 55.70 37.80 2019 PR
Basel. [39] 65.22 44.99 2016 arXiv
Basel.+LSRO [40] 67.68 47.13 2017 ICCV
STGDEC-II 67.77 47.87 Proposed
STGDEC-I 67.87 48.03 Proposed
STGDEC-III 69.28 48.42 Proposed

(67.77 - 65.22) in rank-1 and 2.88% (47.87 - 44.99) in

mAP on the DukeMTMC-reID dataset) achieves im-

provements over the baseline. In comparison with the

Basel.+LSRO method, we achieve 0.21% (78.27 - 78.06)

in rank-1 and 0.60% (56.83 - 56.23) improvements in

mAP on the Market-1501 dataset. Meanwhile, we ob-

serve improvements of 0.09% (67.77 - 67.68) in rank-1

and 0.74% (47.87 - 47.13) in mAP on the DukeMTMC-

reID dataset. Although result of this strategy slows only

a small improvement over the Basel.+LSRO, this im-

plementation indicates that this kind of combination

of C-images and D-images helps to enhance the overall

person re-ID performance.

4.3.3 The effects when employing different quantities
of the GANs images

Our goal is to explore how different quantities of GANs

samples affects the person re-ID performance. Since un-

labeled images are readily available, we hope that as

the growing number of unmarked images, the model is

able to learn more common sense. Table 3 shows the

experimental results on the Market-1501 dataset while

using different quantities of GANs images. What we

need to point out is that the quantity of the real train-

ing samples in the Market-1501 dataset is 12,936. By

observing and comparing the results, we draw two con-

clusions. Firstly, adding different quantities of C-images

and D-images can continuously improve the baseline.

Secondly, the optimal performance can be achieved when

12,000 C-images and 24,000 D-images are added into

the STGDEC-III. The reason why the STGDEC-III

strategy achieves the best performance is that this strat-

egy has the best combination of different quantities of

C-images and D-images.

4.3.4 The comparison between three different modes of

the STGDEC

We use three different training strategies in the experi-

ments to present the validity of the proposed STGDEC,

the experimental results on the Market-1501 dataset

and the DukeMTMC-reID dataset are shown in Ta-

ble 3 and Table 4 respectively. It can be seen that by

adding double the D-images to the training dataset, the

STGDEC-III strategy achieves better improvements com-

pared with the STGDEC-II on both of the two datasets.

Though the experiments show that the STGDEC-I achieves

better performance than the STGDEC-II, STGDEC-III

achieves the optimal performance. This is because there

is a more reasonable training data ratio.

4.3.5 Comparison with the state-of-the-art methods

We perform a number of experiments and the results

show that the proposed algorithm achieves better than

many of the existing methods.

Comparison on the Market-1501 dataset: we

can see in Table 3 that the proposed STGDEC-III is

better than all the listed state-of-the-art methods, sur-

passing the second-best Basel.+LSRO by improvements

of 0.54% (78.36 - 78.06) in rank-1 and 0.84% (57.07 -

56.23) in mAP for the single-query mode, 1.13% (86.25

- 85.12) in rank-1 and 0.97% (69.49 - 68.52) in mAP for

the multi-query mode.

Comparison on the DukeMTMC-reID dataset:

as can be seen in Table 4, the performance of our pro-

posed STGDEC-III is higher than all the compared ex-

isting algorithm, surpassing the 2nd best Basel.+LSRO

by 1.6% (69.28 - 67.68) in rank-1 and 1.29% (48.42 -

47.13) in mAP for the single-query mode.

Compare to Basel.+LSRO, our model contains two

types of GANs samples and the combination of the

GANs images, not just the semi-supervised algorithm

as the Basel.+LSRO does. It demonstrates the regular-

ization of diverse kinds of GANs data.

4.3.6 Ablation analysis

For the ablation analysis, we assign the opposite label

distribution to the C-images and D-images, which is

different from the label distribution of the real data and

the generated samples in the three training strategies

proposed in this paper. Specifically, we assign the label

type LSRO or all-in-one to the C-images and D-images

in the form of mathematical combination, removing the

assigned label distribution in our model and [40], and

the rest is all cases with the reverse label distribution.

As Shown in Table 5 and 6, all the results of the ablation
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Table 5 Experimental results of STGDEC-II after assigning the opposite label distribution to the C-images and D-images.
Rank-1 and mAP are listed. D represents D-images, C represents C-images, 1.2 represents 12,000, 2.4 represents 24,000.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

D 2.4 All-in-one [40] 76.63 55.12 – –
D 2.4 Pseudo label [40] 75.80 53.03 – –
D 1.2 LSRO+C 1.2 LSRO 77.35 55.92 66.83 46.73
D 1.2 All-in-one+C 1.2 LSRO 76.75 55.23 67.30 46.89
D 1.2 All-in-one+C 1.2 All-in-one 77.51 55.72 67.40 47.05
Basel.+LSRO [40] 78.06 56.23 67.68 47.13
STGDEC-II (ours) 78.27 56.83 67.77 47.87

Table 6 Experimental results of STGDEC-I after assigning the opposite label distribution to the C-images and D-images.
Rank-1 and mAP are listed. D represents D-images, C represents C-images, 1.2 represents 12,000.

Method
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

D 1.2 All-in-one [40] 75.33 52.82 – –
D 1.2 Pseudo label [40] 76.07 53.56 – –
D 1.2 LSRO [40] 76.81 55.32 – –
C 1.2 LSRO 76.91 55.73 66.07 46.25
Basel.+LSRO [40] 78.06 56.23 67.68 47.13
STGDEC-I (ours) 78.39 57.02 67.87 48.03

Table 7 The performance of different models is evaluated on
cross-domain datasets. M→D means that the model is first
trained on the Market-1501 dataset and then tested on the
DukeMTMC-reID dataset. D→M means that the model is
first trained on the DukeMTMC-reID dataset and then tested
on the Market-1501 dataset.

Method
M→D D→M

Rank-1 mAP Rank-1 mAP

Basel. [39] 25.8 12.8 34.4 13.8
Basel.+LSRO [40] 25.7 12.8 35.3 14.1
Baseline [20] 24.4 12.9 34.2 14.5
STGDEC-II (Ours) 26.5 13.4 35.9 14.0

study are not higher than the Basel.+LSRO, and thus

not higher than the experimental results of our method.

This ablation analysis indicates the reasonability and

effectiveness of the label distribution proposed in our

algorithm.

4.3.7 Cross-domain experiments

In order to validate the availability of the proposed

STGDEC algorithm, we also perform comparative cross-

domain experiments on both the Market-1501 dataset

and the DukeMTMC-reID dataset. The cross-domain

experiments on both the above two datasets are that

the model is first trained on the Market-1501 dataset

and then tested on the DukeMTMC-reID dataset, or

first trained on the DukeMTMC-reID dataset and then

tested on the Market-1501 dataset. Compared with the

2nd best person re-ID baseline [20] in Table 7, we can

see the improvements of 0.5% (13.4 - 12.9) in rank-1 and

2.1% (26.5 - 24.4) in mAP on the Market-1501 dataset,

1.7% (35.9 - 34.2) in mAP on the DukeMTMC-reID

dataset. These cross experiments present the availabil-

ity of the proposed STGDEC algorithm.

5 Conclusion

We propose the novel virtual label STGDEC for the

data generated by the DCGANs and the CycleGANs.

Aiming at training with a CNN-based model, we use the

STGDEC to assign virtual label to the C-images and

D-images, which are used to perform semi-supervised

learning. Using a baseline DCGANs model and a base-

line CycleGANs, we present that the imperfect GANs

samples effectually indicate their regularization ability

in the process of training a ResNet-based model. The

ResNet-50 baseline model is is employed as the primary

structure of our model to demonstrate the availability of

the STGDEC algorithm. Experimental results demon-

strate that diverse kinds of generated samples effectu-

ally improve the person re-ID performance based on

the proposed STGDEC. Compare to the second-best

method LSRO, the STGDEC achieves better improve-

ments. Considering the strong ability of GANs and their

derivative models to generate high-quality samples, we

will continuously study how to assign reasonable virtual
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labels to diverse kinds of generated samples for the fu-

ture semi-supervised person re-ID task and apply the

proposed algorithm to other fields.
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