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Abstract 

A two-army conflict made up of repeated battles with inter-battle reinforcements is considered. Each 

battle is modelled via Lanchester’s ‘aimed fire’ model and three reinforcement strategies; constant, 

and linearly and quadratically varying (with respect to post-battle troop levels) are investigated. It is 

shown that while a constant reinforcement strategy will always lead to an outright victory via a simple 

partitioning of the two dimensional army strength space, linear reinforcement can lead to stalemate, 

and quadratically varying reinforcement can lead to stalemate, with quasi-periodic and chaotic 

behaviour, and the creation of fractal partitioning of the army strength space. 

 

  



Introduction 

  Lanchester’s equations1 form a very simple mathematical model for warfare and have been applied 

to the study of historic battles2 including the 1994-45 Battle of the Bulge3, the 1940 Battle of Britain4, 

and the 1916 Battle of Jutland5. They have also been applied in other contexts including combat in the 

animal kingdom6 and human evolution7. While Lanchester’s work was arrived independently and 

almost simultaneously by Osipov8, we will continue with the tradition of describing the mathematical 

model using Lanchester’s name. 

 

Lanchester’s equations take two forms. Let us consider two sides, Red and Green, who have forces of 

size R(t) and G(t) respectively. Lanchester’s ‘unaimed fire’ model is of the form 
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
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= −

 . (1) 

In this model the attrition rate of one force is proportional to both its size and the size of the opponent, 

with γ and δ being the rate of fire per combatant of  Red and Green respectively. This model can be 

thought of in terms of the attacking force firing in an unaimed or random way, with the probability of 

a resulting kill thus being proportional to the size of the opponent’s army, who it is assumed do not 

regroup to maintain a constant troop density on the battle field. Such modelling is appropriate for use 

of artillery against infantry, where artillery shells will destroy everything within a given area, and thus 

the attrition rate will be proportional to the number of soldiers per unit area. 

The second form of  Lanchester’s equations is the  ‘aimed fire’ model 
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



= −

= −

  (2) 

where α and β are the number of kills per unit time that each combatant in R and G inflict.  

These models can of course be combined to form a linear sum of aimed and unaimed fire 

components9 and extended to a generalised power law3, 

 

p q

q p

dG
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dR
BR G
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= −

= −

.  (3) 

In what follows in this paper we will focus solely on the aimed fire model (2) with the novel feature 

of considering it as the basis for repeated fixed time period battles with a range in inter-battle 

reinforcement  strategies. 

Lanchester’s ‘aimed fire’ model 

  Given initial troop levels R0 and G0 the aimed fire model (2) can be solved explicitly to give 
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With the time to the end of the battle being given by 
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where if 
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In this last case of ‘mutual destruction’ the time to the conclusion of the battle diverges.  

We note in pasting that form of (6) gives rise to an alternative title for the aimed fire model, namely 

Lanchester’s law of squares, as assuming a battle continues until an outright victory,  the overall 

winner is determined solely by the squares of the sizes of the forces along with the kill rates. 

Constant Inter-battle Reinforcement  

A variant of this model is to assume that instead of a single battle there are a sequence of repeated 

battles in between which reinforcement s are added to each side. We will call this set of battles the 

conflict and we say that the conflict has ended if at the end of a given battle one side’s forces are 

exhausted before reinforcement s can be added. We shall assume that each battle lasts a time T  , 

otherwise the conflict will be concluded at the first battle. If we write the level of Green and Red 

forces at the beginning of the (i+1)th battle to be 
i
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 then 

 
1

C
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where 
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 
and RR and GR  are constant reinforcement  levels which are added to Red and 

Green at the beginning of each new battle. Further, what we will call the kill matrix, K, is of the form. 
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The eigenvalues and eigenvectors of K are 

 ( )exp =    (9) 

and 
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.  (10) 

The fixed point of (7) can be shown to be, 
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 (11) 

and the form of the eigenvalues (9) means that we have a saddle point at A* with separatrices  
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The overall form of the solution of this system is illustrated in Figure 1. The representative trajectories 

drawn are solutions to (7). Trajectories entering the grey and light grey regions indicate the last battle 

in the conflict, by the end of which Red (light grey region) or Green (grey region) will have won an 

outright victory before further reinforcement s can arrive. The separatrix S1 in Figure 1 divides (R,G) 

into two regions. In the region above S1, Green wins, and in the region below Red wins. 

Figure 1 provides commanders with strategy diagram. Thus, for example, if the commander of the 

Green forces determines that he is on the bottom quadrant and is destined for defeat then if he can 

add, as a one off, a significant enough level of reinforcement s before the next battle to move his army 

into the left quadrant then Green will ultimately win. This of course assumes that Red does not change 

her strategy. Further, the earlier Green does this the less forces he will have to add to move quadrant 

and change the overall outcome. This means that if a relatively small number extra reserve troops are 

added early on, they may tip the battle. This is more likely to succeed if the opponent does not notice 

this change until the one-off troop change that she would have to introduce to move quadrant is 

beyond her reserve capabilities.  

Linearly Variable Inter-battle Reinforcement  

A more realistic model is to make the reinforcement  level a function of the number of troops 

remaining after the previous battle (ie a function of ( ) ( )cosh sinhi iG R


 


−   for 

Green and of ( ) ( )cosh sinhi iR G


 


−   for Red). We expect this functional form to be 

such that the reinforcement s will be large when the number of troops remaining after the last battle is 

small, and to decrease with increasing soldier levels. A simple linear functional forms for Green and 

Red reinforcement s is given by 
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Where  and R RG R  are the maximum reinforcement  levels for Green and Red and γ and δ are soldier 

level scalings (assumed to be greater than  and R RG R ) above which instead of reinforcement s being 

added to the battlefield they are instead removed . This troop removal scenario will not occur 

provided initial troop levels for Green and Red are assumed to be less than γ and δ respectively. 

This leads directly to a model of the form 
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While mathematically the overall form of (15) is the same as (7) the significant difference is that if 
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both eigenvalues of L will be less than unity and hence the fixed point will be stable. While the fixed 

point and equations of the separatrices can be written down in general terms for (15) they are 

unwieldy and instead we will give solutions for the restricted case where both Red and Green adopt 

the same reinforcement  strategy where 
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In this case   

 L fK=   (19) 

and the eigenvalues and eigenvectors of L are given by 

 ( )expf =    (20) 

and (10) respectively. The fixed point is given by  
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which is stable provided, 

 ln f  −   (22) 

and the separatrices are 
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If, as illustrated in Figure 2, inequality (22) holds and the fixed point is stable then the conflict will 

reach a stalemate, with each side repeatedly adding reinforcement s but failing to reach victory. In 

such a case to achieve an overall conflict victory Green (Red) needs to attempt to move the fixed 

point into the grey (light grey) region of Figure 2. Thus, Red can ensure victory if they can increase 

their maximum reinforcement  levels GR to 
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and similarly, Green can ensure victory if  
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Quadratically Variable Inter-battle Reinforcement s 

A final model is to make the reinforcement  levels vary quadratically with the number of soldiers 

remaining after the previous battle: 
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  (27) 

 

In this model, maximum reinforcement  levels for Green (Red) will be GR (RR) and will occur when 

the troop levels are γ/2 (δ/2) respectively. Around these peaks reinforcement  levels will decrease as 

post battle troop levels increase (as with the linear reinforcement  model), but they will also decrease 

as post battle troop levels decrease. This latter scenario means that for low post-battle troop levels the 

commander may in effect be considering conceding the conflict. 

The system  (26) can be transformed to a pair of linearly coupled logistic maps. However, it is more 

convenient to leave the system expressed in terms of scaled troop levels as 
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where 
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and troop levels gave been scaled via 
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In what follows we investigate the behaviour of (28) for 
' ', [0,1]R RR G   and 

' ' ' '[0, ], [0, ]R RR R G G  .  

We can think of ξ as a ‘power ratio’ of Red to Green, with the numerator (denominator) being the 

product of the root of the kill rate and the maximum reinforcement  levels of the Red (Green) forces. 

As with the constant and linearly varying reinforcement  models we say that a conflict has ended if at 

the end of a given battle one side’s forces are exhausted before reinforcement s can be added. 

Figure 3 shows a representative set of examples of  regions of ( )' ',R G space, with R’ and G’ scaled as 

fractions of  R’R and G’R , which lead to victory for Green (grey regions); a victory for Red (light grey 



regions); or  lead to a stalemate (white regions). In all the plots 
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the model behaves in a way comparable to the constant (7) or linear (13) reinforcement  model, with 

the ( )' ',R G space being divided into simple regions of victory or stalemate. As 
' 'R RR G=   increase 

further the behaviour becomes more interesting. The region of stalemate disappears and is replaced 

with fractal basins of victory as shown in Figures 3(d-f). The fractal nature of these plots is illustrated 

in Figure 3(f) which shows a 10 factor zoom on the centre of Figure 3(e).   Figures 3(g-h) give 

Feigenbaum diagrams for examples of the evolution of the for R’ and G’ as  
' 'R RR G= vary over the 

range [0,1]. The values of 
' 'R RR G=  which do not produce an attractor are those for which, from the 

starting value (R’= R’R , G’=G’R), the system evolves to a Red or Green victory. Figures 3(i-k) give 

examples of attractors as 
' 'R GR R= increases from 0.68 to 0.71 to 0.75. In particular, 3(i), where 

' ' 0.68R GR R= = , gives an example of the existence of a closed invariant curve evolving from the 

period two orbit which exists between approximately 0.58 and 0.67. In figures 3(j) and 3(k) the clear 

vertical and horizontal boundaries on the attractors are formed by the maxima of (28) which occur at 
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Figure 3 provides a particular set of examples for the parameter choices 
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4
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illustrating the range of behaviours which can occur. Figures 4-6 provide summary data over 

( )' ', R RR G = space for 
1 1 3

, ,
4 2 4

 = . Thus Figure 3(c) is represented by one point 

( )' '1.25, 0.75R RR G = = =   on each of Figures 4(a-c). With the point on Figure 4(a) giving the 

fraction of Figure 3(c) shaded grey (Green win); Figure 4(b) the fraction of Figure 3(c) shaded light 

grey (Red) win: and Figure 4(c) the fraction of Figure 3(c) shaded white (stalemate). The broad trends 

illustrated in these figures are twofold. First the dependence of wins for Red and Green on the value 

of 
' 'R RR G= , and the fraction of space that leads to stalemate, both decrease as  increases. 

This is because as  increases the region of ( )' ',R G  space which leads to victory after one battle 

(ie before reinforcement s dependant on the value of   
' 'R RR G=  arrive) increases as ( )tanh  . 

Secondly, and unsurprisingly, as ξ increases, and the overall ‘power’ of Red forces increases relative 

to Green forces, the fraction of victories for Red increases. 

 

Concluding Remarks 

A conflict involving repeated battles with inter-battle reinforcement s is certainly a realistic scenario 

in modern warfare, albeit being modelled here in an idealised way with equi-time battles and fixed 

reinforcement  strategies. Nevertheless, these simplified models reveal a richer behaviour than the 

single battle Lanchester model (2) which simply divides the (R,G) force space Red (Green) victory 

sub-spaces above (below) the separatrix  
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If we move to a constant inter-battle reinforcement  (7) the separatrix shifts to  
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With the addition of linearly varying inter-battle reinforcement s (13) , depending on parameter 

choices the space can be divided by a single separatrix  
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or, if (22) holds, can result in a stalemate. 

Finally, if a quadratic reinforcement  strategy is adopted a wide range of outcomes are possible. These 

range from the division of (R,G) space into two regions via a simple curve; to the existence of a 

stalemate region with periodic, quasi-periodic or chaotic attractors;  to (R,G) space being divided into 

fractal basins. Clearly these last chaotic and fractal scenarios are results of extreme and, one hopes, 

unrealised strategies. But they remain an interesting example of the rich dynamics of Lanchester 

inspired systems. 

In future work we intend to study reinforcement  strategies based on estimations of both own and 

opponent troop levels, and extend to a mixed Lanchester system combining aimed and unaimed fire 

components.     

  



Figures 

 

Figure 1 Phase space diagram corresponding to the constant reinforcement  model (7)  for 

with the form of the inset S1 and outset S2 being given by (12)  Once a trajectory enters the light grey 

region Red will win by the end of the current battle, and once a trajectory enters the grey region Green 

will win by the end of the current battle. Representative trajectories (squares joined with lines) are 

shown. The arrows indicate the direction of the trajectories under iteration. 

If Green or Red forces are in the grey and light grey regions at the beginning of a battle, then by the 

time of the battle’s conclusion Red (light grey region) or Green (grey region) will have won an 

outright victory before further reinforcement s arrive. 

  



 

Figure 2 Phase space diagram corresponding to the linear reinforcement  model (15) where inequality 

(22) holds and all trajectories evolve towards  the stable fixed point of the model (21). The 

separatrices S1 and S2 are given by (23). As for figure 1, if Green or Red forces are in the grey and 

light grey regions at the beginning of a battle, then by the time of the battle’s conclusion Red (light 

grey region) or Green (grey region) will have won an outright victory before further reinforcement s  

arrive. 

  



 





 

 



 

 

 



 



 

 



 

 

 



 

 



 

 



 



 

 

 

Figure 3 Plots (a-f) illustrate regions of scaled space which lead to victory for Green (grey region) or 

Red (light grey region). White regions lead to a stalemate. (a) 
' ' 1

4

R RR G= = ; (b) 
' ' 1

2

R RR G= = ; (c) 

' ' 3

4

R RR G= = (d); 
' ' 4

5

R RR G= = ; (e) 
' ' 1R RR G= = ; (f) zoom into central region of (e), illustrating 

the fractal structure; (g) Feigenbaum diagram for G’ as  
' 'R RR G= varies over the range [0,1]; (h) 

Feigenbaum diagram for R’ as  
' 'R RR G= varies over the range [0,1]. Plots (i-k) illustrate the 

behaviour of attractors in the stalemate region of ( )' ',R G  space.  (i)  
' ' 0.68R GR R= = , (j) 

' ' 0.71R GR R= = , (k) 
' ' 0.75R GR R= = . In all plots 
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 = and 
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Figure 4 Fractions of ( )' '

0 0,R G space (considered over the range 
' ' ' '

0 0[0, ], [0, ]R RR R G G  ) which 

lead to (a) victory for Green; (b) victory for Red; (c) stalemate, as parameters ξ and  
' 'R RR G= are 

varied. For all figures,
1

4
 =  .  Stalemate is assumed if no outright victory has been obtained 

after 100 battles. 

Figure 5 Same as Figure 4 but with 
1

2
 = . 

Figure 6 Same as Figure 4 but with 
3

4
 = . Note the change in colour scale in (c).  
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