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Abstract
Artificial intelligence (AI) has emerged as a powerful tool to resolve real-world problems and 

has gained tremendous attention due to its applications in various fields. In recent years, AI 

techniques have also been employed in water treatment and desalination to optimize the process 

and to offer practical solutions to water pollution and water scarcity. Applications of AI is also 

expected to reduce the operational expenditures of the water treatment process by decreasing the 

cost and optimizing chemicals usage. This review summarizes various AI techniques and their 

applications in water treatment with a focus on the adsorption of pollutants. Numerous AI 

models have successfully predicted the performance of different adsorbents for the removal of 

numerous pollutants from water. This review also highlighted some challenges and research gap 

concerning applications of AI in water treatment. Despite several advantages offered by AI, there 

some limitations that hindered the widespread applications of these techniques in real water 

treatment. The availability and selection of data, poor reproducibility, less evidence of 

applications in real water treatment are some key challenges that need to be addressed. 

Recommendations are made to ensure the successful applications of AI in future water-related 

technologies. This review is beneficial for environmental researchers, engineers, students, and all 

stakeholders in the water industry. 

Keywords: Artificial intelligence; Water treatment; Adsorption; Machine learning; Water 

pollution; Clean water
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1. Introduction

Access to clean drinking water is the grand challenge of the modern era and a prime component 

of the UN sustainable development goals (SDGs) [1]. On the other hand, water pollution caused 

by rapid industrialization and population growth has emerged as a grand environmental 

challenge in recent years [2,3]. Treatment and reuse of wastewater offer a unique opportunity to 

address both these challenges. Tremendous progress has been made in the past few decades 

towards the development of novel efficient, and cost-effective techniques for the removal of 

various pollutants from wastewater [4–8]. The applications of various optimization and 

modelling tools have also gained considerable attention in recent times for assessing 

performance and improving efficiency.

Artificial intelligence (AI) is the core and well-known branch of computer science that deals with 

building smart systems and resolves problems in a manner comparable to the human intelligence 

system.  The primary motive of AI applications to a system is to enhance computer functions that 

are relevant to human knowledge, such as learning, problems solving, reasoning and perception 

[9]. AI is a fast-growing field and having real-world applications in diverse fields such as 

healthcare, smart cities and transportation, e-commerce, finance, and academia [10]. AI is further 

classified into machine learning, deep learning and data analytics. These techniques are mainly 

used for intelligent decision-making, blockchain, cloud computing, the internet of things and the 

fourth industrial revolution (Industry 4.0) [11]. AI is booming mainly due to its unique features 

to learn and adapt a system based on historical data and to make a decision. AI's significance is 

rising incessantly with time due to the integration of AI-based systems with intelligence, 

adaptability and intentionality in their proposed algorithms [12].



4

AI systems are applicable to almost all interdisciplinary fields, and they have played their 

potential role in various applications for optimization, classification, regression, and forecasting. 

AI tools are sometimes used in combination with experimental design techniques such as 

response surface methodology (RSM) to further enhance the precision of optimal solution 

prediction.

The application of AI is emerging in water treatment to overcome the complications of 

traditional methods. In the current era, water industries are investing in artificial intelligence, and 

according to market research, this investment is expected to reach $6.3 billion by 2030 [13]. 

Similarly, AI is expected to save 20 to 30 % of operational expenditures by decreasing the cost 

and optimizing the usage of the chemical in water treatment [14]. The applications of AI in water 

treatment have made the process easy due to its modest implementation, flexibility, 

generalization, and design simplicity. The commonly used AI techniques in water treatment are 

Recurrent Neural Network (RNN), Convoluted Neural Network (CNN), Decision Tree (DT), 

Feed Forward Back-Propagation Neural Network (FFBPNN), and Adaptive Network Based 

Fuzzy Inference System (ANFIS). The applications of several hybrid techniques such as ANN-

GA, MLP-ANN, ANN-PSO, PSO-GA, Back Propagation (BP)-ANN, Feed Forward Back 

Propagation (FFBP-ANN), AND Support Vector Regression (SVR)-GA have also been studied 

in water treatment. The availability of data is the main challenge in applications, as AI needs 

sufficient historical data to predict future outcomes and offer improvement in the system. 

Various studies demonstrated the successful applications of different AI tools for the modelling 

and optimization of the water treatment process, such as pollutants removal from water [15,16]. 

However, still, various hurdles hinder the application of AI in water purification. This review 

provides a critical analysis of different AI tools used for assessing the performance of the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/response-surface-methodology
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adsorption process employed for the removal of metals, dyes, organic compounds, nutrients, 

pharmaceuticals, drugs, pesticides, and personal care products (PCPs) from the water. The input 

variables that affect the process performance are also described, and the parameters that assess 

the efficiency of AI models are also discussed. Finally, the significant challenges in the 

widespread applications of AI in water treatment and recommendations for future research are 

also provided. 

2. AI techniques

The most commonly employed AI-based techniques for water treatment are shown in Fig. 1. 

These techniques are extensively used to manage wastewater treatment operations, water reuse, 

water-saving and cost reduction through prediction, diagnosis, assessment and simulation [16].

Fig. 1. Classification of AI techniques

2.1.  k-Nearest Neighbor (k-NN)
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k-NN is a simple machine learning technique used for regression and classification. k-NN save 

all the existing data and perform classification on new data points on the basis of similarity [17]. 

For example, consider a classification problem having two categories W and Z, as shown in Fig. 

2. If a new data point occurred, having a placement issue with W and Z category, the new data 

point should be placed in a suitable category based on calculating Euclidean distance. Therefore, 

the new point will be added to category Z that have the maximum number of neighbours. k-NN 

is the most commonly used technique used for classification problem.

Fig. 2. An example k-NN technique before and after a classification problem

2.2.  Decision Tree (DT)

DT technique is mainly used by AI experts for classification and regression problems. The core 

purpose of DT is to generate a training model used for class prediction by including “learning 

simple decision rules”. It follows a tree structure in which each tree has a node that represents the 

attribute or feature of the data, the edge represents the probable answers to a problem, and the 

leaf node denotes the real output or class label [18]. This technique is mostly favoured because 

of its high accuracy and easy implementation. As depicted in Fig. 3, the process may result in 
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many possible solutions. In a DT technique, all features of a problem are considered from root to 

leaf node in order to detect the optimal solution based on defined conditions.

Fig. 3. DT architecture 

2.3.  Random Forest (RF)

RF is used for both classification and regression problems. Just like the forest, more decision 

trees means that robust will be the RF. It creates DTs on data samples, and then make a 

prediction on each DT and lastly, choose the optimal solution based on the voting mechanism 

[19]. The benefit of using RF is that it decreases the overfitting of the DTs by averaging their 

result. As shown in Fig. 4; the random samples from a given dataset are chosen, and a decision 

tree is built for each sample. Then, the result of each decision tree is obtained. The next step is to 

perform the voting process for each predicted result and decide the most voted predicted result as 

a final result. 
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Fig. 4. Typical architecture and working procedure of RF technique

2.4.  Artificial Neural Networks (ANNs)

ANNs are the statistical models that are built based on biological human brain neuron to perform 

parallel and complex computations. It is used mainly for pattern recognition problems to execute 

modelling and processing nonlinear relationships between the inputs and outputs in a parallel 

manner. In ANNs, the neuron represents a node, and the activation functions such as sigmoid and 

hyperbolic are used to perform nonlinear computation [20]. ANNs includes weights between 

neurons (nodes) that can be changed with respect to a machine learning algorithm by using a 

suitable cost function to learn from the observed data in order to improve the model. ANNs 

consists of many layers in which the first layer represents an input layer, the last layer represents 

the output layer, and the layers present between the first and last layers are the hidden layers. An 

increase in the number of hidden layers can build complex models that can be trained to improve 

the performance of ANNs [21]. Fig. 5 shows a simple architecture of ANNs, including the input 

layer (a, b, c…n), two hidden layers (hidden layer 1 and 2), and the output layers (a, b…. n). The 

subtypes of ANNs are discussed below.
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Fig. 5. A basic ANNs with four layers: an input layer, two hidden layers and an output layer

2.4.1. Fuzzy Neural Network (FNN)

FNN is an AI technique developed from the grouping of two fields, fuzzy logic and neural 

network. FNN detects parameters of a fuzzy system, including fuzzy sets and fuzzy rules, by 

manipulating the approximation techniques from neural networks. FNN is mainly used for 

pattern recognition, regression and density estimation in a condition where no mathematical 

model exists for a specified problem [22].

2.4.2. Convoluted Neural Network (CNN)

CNN is a commonly used class of ANNs that utilize the convolution as an alternative to general 

matrix multiplication in at least one of their layers and generally known as the feed-forward 

neural network (FFNN) [23]. CNN is mainly used for image/video recognition and classification, 

financial time series and natural language processing. Three basic concepts that are used for 

CNN are “local sparse connections amongst consecutive layers, weight sharing and pooling” 

[24]. The first two concepts are used for reducing the number of training parameters, and pooling 
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is using for feature size reduction [25]. The typical architecture of CNN is presented in Fig. 6. 

CNN is composed of two parts: the hidden layers (convolutional and pooling layers), responsible 

for complex feature extraction, and the classification layers (fully connected and output layers), 

which is responsible for giving the decision based on parameter learned from the previous layers.

Fig. 6. Basic CNN architecture

2.4.3. Deep Neural Network (DNN)

DNN includes multiple hidden layers along with input and output layers [23,26], as shown in 

Fig. 7. DNN is commonly used for learning complex models and high dimensional data process 

with the inclusion of more hidden layers and neurons. However, DNN needs additional 

computing resources and upsurge training difficulties. As compared to other ANNs, DNN 

provides the best performance if the datasets have enough data [27].

Fig. 7. Common DNN with three input layers, four hidden layers, and two output layers
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2.4.4. Recurrent Neural Network (RNN)

RNN is like other ANNs except that it has an additional memory-state to the neurons to share the 

same parameters. RNN is an FFNN in which the information is transferred from the input layer 

to the output layer. It saves the output of a specific layer and connecting back to the input for the 

purpose to predict the output. RNN uses their internal state (memory) to process sequences of 

inputs with variable-length. The commonly used RNN is long short-term memory (LSTM) that 

has three gates (the input, output and forger gate) to calculate the hidden state [28]. A simple 

example of RNN is shown in Fig. 8, where nodes in various layers of the neural network are 

compressed to create RNN of a single layer. The parameters in the proposed RNN are X, Y and 

Z.

Fig. 8. A typical RNN architecture

2.5. Support Vector Machine (SVM)

SVM is a renowned AI-based technique that is used for solving classification and regression 

problems. It needs labelled training data for each category to identify the next step. The basic 

concept of SVM is to map the input vector into a high dimensional feature space. The mapping is 
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obtained through different kernel functions such as linear, polynomial and radial basis functions, 

while the function selection is based on datasets [29]. The main purpose of SVM is to 

differentiate the two classes in the feature space to increase the margin between classes by 

drawing a hyperplane (as shown in Fig. 9). SVM is mainly used in pattern recognition problems. 

For example, Fig. 9 represents the classification of SVM consisting of two classes linear 

separable via hyperplane. Each class include one support-vector.

Fig. 9. An example of SVM classification with a linear hyperplane

2.6. Self-Organizing Map (SOM)

SOM is the commonly used AI technique of ANN models. SOM consists of input and output 

layers. The output layer is also called a feature map or map layer. SOM is mainly used for data 

clustering and dimensionality reduction, as shown in Fig. 10. Weights are directly assigned to 

the output layer, and every SOM is assigned a weight vector with a similar dimension as the 

input space. Dimensionality reduction helps to reduce the input variables in a dataset because 

more features create difficulty in predictive modelling and make it more challenging [30].
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Fig. 10. SOM dimensionality reduction

2.7. Genetic Algorithm (GA)

GA is a heuristic-based search algorithm that acts on a population of possible solutions similar to 

the biological mechanism of population genetics and selection. It uses a recursive process to 

achieve the best solution through multiple solutions. In GA, all the possible solutions are 

encoded as a gene that consists of characters in the form of strings from some alphabets. The 

new solutions are generated through mutation from the members of the present population, and 

finally, via mating, two solutions are combined to form a new solution. This algorithm is mainly 

used to search space for potential solutions and to find the best one by solving a problem [31]. 

2.8. Particle Swarm Optimization (PSO)

PSO is a commonly used AI-based technique for optimization problems due to its iteration 

mechanism to improve the solution related to a given quality measure. In PSO, the particles are 

moving around the search space by considering the velocity and position of the particle. In 

search space, each particle movement is inclined towards the best-known position, and its 

position and velocity are updated with time [32].  Every particle is searching for the best position 

in the search space by changing the velocity according to the defined rule [33]. Table 1 depicts 
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the overall defined techniques with their usage domain, advantages, and limitations for each 

technique.
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Table 1. Commonly used AI techniques, their application, advantages and limitations

AI techniques Applications Advantages Limitations

k-NN Regression, classification  Distance function selection is flexible
 Implementation is easy

 Distance calculations make it 
computationally expensive

 Memory intensive

DT Regression, classification  Easy to understand, and data 
classification is simple

 Used for both continuous and discrete 
data

 Capable of choosing the utmost 
discriminatory feature

 Having instability and overfitting

RF Regression, classification  Good for large scale datasets
 Instability is low compared to DT
 Lessen the overfitting of DT

 Not suitable for imbalanced datasets
 Having low training speed

ANN Regression, classification  Fast prediction
 Good for arbitrary function 

approximation
 Good for high dimensional datasets

 Computationally expensive, and it is 
hard to interpret the trained models

SVM Pattern recognition, regression, 
classification

 Good for high dimensional datasets
 Good for linear and nonlinear separable 

datasets

 Hard to train due to large datasets and 
computationally expensive

 Not suitable for noisier datasets because 
of the overfitting problem

SOM Clustering  Good for high dimensional datasets
 Simple to understand due to its 

mapping mechanism

 Computationally expensive in case of 
large maps due to more training data
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GA Clustering, regression, classification  Provide more than one solution
 Deep domain knowledge is not required
 Support multi-objective optimization
 Good for discrete and continuous 

problems

 Difficult to implement
 Computationally expensive and time-

consuming
 Fitness function is not defined clearly

PSO Clustering, regression, classification  Simple to use 
 Easy to implement
 Strong to control parameters 
 Parallel computation
 Computational efficacy compared to 

other heuristic optimization techniques

 Need a mathematical background for 
evaluation

 Difficult to define the initial design 
parameters

ANN

FNN Pattern recognition, regression,
classification

 No need for a mathematical model
 Easy to implement and interpret

 Not able to learn
 Theoretical knowledge is necessary
 Computationally expensive 

CNN Regression, classification, segmentation  Good and accurate results
 Good speed because it works in parallel
 Capable of extracting important 

features

 Computationally expensive 
 Complex architecture

DNN Regression, classification  Good towards nonlinear data
 Fast prediction after training
 Work well with more data points

 Blackbox behavior
 Computationally expensive 
 Require more training data

RNN Regression, classification  Good for time series prediction
 Good for sequence prediction problems
 Process inputs of any length can be 

used

 Require more data
 Training is difficult
 Computationally expensive 
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2.9. AI hybrid techniques

AI hybrid techniques are a combination of more than one AI technique. Researchers have 

already employed various hybrid techniques in different fields to get the combined advantages of 

individual techniques. Fig. 11 shows four main techniques, GA, PSO, RNN and SVM, that are 

commonly used in combination with other techniques to attain a more accurate result. Some of 

the commonly employed hybrid techniques reported in the literature are GA- Multi Layer 

Perceptron Artificial Neural Network (MLPANN), GA- Radial Basis Function Artificial Neural 

Network (RBANN), GA- Feedforward Neural Network (FNN) , GA- Fuzzy Logic (FL), SVM-

Simulated Annealing (SA), SVM- Adaptive Simulated Annealing Genetic Algorithm (ASAGA), 

ANN-Differential Evolution (DE), ANN-Genetic Algorithm Neural Network(GANN), PSO- 

Wavelet Neural Network (WNN), and PSO-Elman Neural Network (ENN). AI hybrid techniques 

have also gained enormous attention for applications in water treatment [15,16,22]. 
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Fig. 1. AI hybrid techniques

3. Applications of AI tools in water treatment 

Various studies reported the applications of AI techniques for the modelling and optimization of 

the water treatment process, such as pollutants removal from water. Tables 3-5 summarizes the 

commonly used AI techniques employed for the adsorptive removal of metals, dyes, organic 

compounds, nutrients, pharmaceuticals, drugs, pesticides, and PCPs from the water. 

AI techniques were effective in establishing a relationship between variables in water treatment. 

For example, in the adsorption of pollutants, the commonly used input variables are the initial 
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concentration of the pollutant, adsorbent dosage, time, pH, agitation rate and temperature, while 

the output variable is mainly the removal efficiency (%) and the adsorption capacity [34]. The 

results predicted from the models are validated using R2 (coefficient of determination), MSE 

(mean squared error), SSE (sum of squared error) and RMSE (root-mean-square error) values. In 

most cases, the model results were in close agreement with the experimental results. 

Some studies also predicted the simultaneous removal of multi-pollutants from the water with 

the aid of AI [35]. These findings suggest the potential applications of AI in improving the 

efficiency of real water treatment systems. Beside batch adsorption, AI techniques can also be 

employed to predict the removal performance of the adsorbents in column studies [36,37]. 

3.1.  Removal of dyes

Several studies reported the application of AI models to predict and validate the adsorption 

performance of various adsorbents for the removal of dyes (Table 2). Most of the studies 

reported the removal of a single dye; however, some researchers also studied the removal of 

multiple dyes [38–41]. Likewise, tough simulated wastewater is used in most cases, some 

researchers employed real textile wastewater to evaluate the performance of the adsorbent and 

the model used. The R2 values, in most cases, were greater than 0.99 that suggest the 

applicability of AI in evaluating the performance of the adsorption process. 

The removal of methyl orange (MO), crystal violet (CV), methylene blue (MB), sunset yellow 

(SY), malachite green (MG), eosin yellow (EY), auramine O (AO), brilliant green (BG), eosin B 

(EB), acid yellow 41 (AY41), and acid red 57 (AR57) using various adsorbents was successfully 

modelled using the ANN, and the adsorption capacity was in close agreement with the 

experimental values [38–47]. The ANN models were also useful to predict the adsorption 
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performance of the adsorbent for the simultaneous uptake of dyes in a binary and multi-dye 

system [41,47–49].  

3.2.   Removal of heavy metals

The application of AI techniques for evaluating the removal of heavy metals using various 

adsorbents is presented in Table 3. Although some researchers reported the simultaneous 

adsorption of multiple metals from the aqueous phase, most of the studies are focused on single 

metal adsorption [50,51]. The typical inputs variables were pH, adsorbent dosage, initial metal 

concentration, contact time and temperature. In column studies, the effect of internal column 

diameter, flow rate, bed depth of column was also evaluated in addition to the above parameters 

[52].  

The adsorption performance of different adsorbents for the removal of Cr(III), Cr(IV), Cu(II), 

Pb(II), As(III), Zn(II), Cd(II), and Hg(II) by different adsorbents was determined by the using 

various AI tools, mainly ANN [53–61] Some studies also employed the AI tools to assess the 

performance of adsorption for the simultaneous removal of multiple metals from aqueous phase 

[62] 13]. Studies also evaluated the performance of various adsorbents for the removal of dyes in 

a continuous system using AI tools [63]. 

3.3.  Removal of organic compounds, nutrients, pharmaceuticals, drugs, pesticides, and 

PCPs from the aqueous phase

Table 4 summarizes the applications of AI tools for the removal of organic compounds, 

nutrients, pharmaceuticals, drugs, pesticides, and PCPs from the aqueous phase [64–68]. ANN 

was the commonly used model to predict the performance evaluation of the adsorption of these 
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pollutants. A comparison of the experimental and modelling results suggested that the AI models 

can safely predict the adsorption capacity or removal efficiency of the adsorbents. The 

commonly studied organic compounds, nutrients, pharmaceuticals, drugs, pesticides, and PCPs 

are cephalexin, chlorothalonil pesticide, heptachlor, triamterene, chlorophenol (CP), 

paracetamol, phenol, and phosphate [64,65,67,69–73]. Besides batch experiments, the 

performance of various column studies was also evaluated using AI tools [74]. 

The proposed ANN model for the adsorption of MB [75], metals (Pb(II) and Cu(II)) [77], and 

phenol and 3-amino-phenol [76] is presented in Fig. 12 (a-c), while Fig. 12d represents the 

hybrid architecture (ANN-DE) topology employed to assess zinc removal by activated carbon 

[78]. The significant parameters that affect the removal process were used as input variables, 

while the removal efficiency was the output. 

The predicted data versus experimental results for training and testing data for the adsorption of 

dyes is presented in Fig. 13 (a, b) [46]. It is evident from the experimental figure data used and 

the predicted results obtained by the best ANN model are in close agreement. Likewise, Fig. 

13c compares the predicted values generated by Box-Behnken design (BBD) and ANN  the 

models with the experimental values. It is clear that ANN is a more efficient model and 

accurately estimated the experimental values [79]. 
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Fig. 12. Proposed ANN model for the adsorption of (a) MB. Reprinted with permission from 

Ref. [75]. Copyright (2020), The Royal Society of Chemistry, (b) phenol and 3-amino-phenol. 

Reprinted with permission from Ref. [76]. Copyright (2018), Elsevier B.V., (c) metals. Reprinted 

with permission from Ref. [77]. Copyright (2016), Elsevier B.V., (d) architecture of ANN-DE 

implementation topology. Reprinted with permission from Ref. [78]. Copyright (2018), Elsevier 

B.V.,
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Fig. 13. A scatter plot of the ANN predicted versus experimental data of (a) BG, and (b) EB dyes 

simultaneous removal. Reprinted with permission from Ref. [46]. Copyright (2015), Elsevier 

B.V., (c) BBD and ANN predicted vs experimental data for Cu2+ removal. Reprinted with 

permission from Ref. [79]. Copyright (2018), Elsevier B.V.

3.4.  Applications of hybrid techniques for the removal of pollutants 

Recently AI hybrid techniques have also emerged as efficient approaches and employed 

extensively in water treatment for predicting the removal of various pollutants [80]. Similarly, 

different AI hybrids and data analytics techniques have been used for water quality analysis, 

process optimization, prediction, and autonomous decision making [81]. The AI hybrid 
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techniques reported in the literature that are employed for the removal of pollutants are MLP-

ANN, ANN-GA, LS-SVM, RSM-GA, ANN-PSO, GANN,  and ANN-DE, FFBP (Feed Forward 

Back Propagation)-ANN, BP-ANN-PSO, and PSO-GA [70,82–85] [86–91]. In general, hybrid 

techniques were more effective in predicting process performance as compared to individual 

techniques. However, still more research work needed to use the combination of different AI 

techniques to predict and improve the performance of various water treatment process. Table 5 

summarizes the applications of AI hybrid techniques for the removal of various pollutants from 

the water. 
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Table 2. Applications of AI for the adsorption of dyes from the aqueous phase

Dye Adsorbent AI technique used Input variables Output variable Model 
validation/Performance
indicators

Reference 

MO Chitosan/Al2O3/Fe3O4 core-
shell composite microsphere

ANN Time and initial 
concentration of 
MO 

Adsorption 
capacity 

R2 = 0.998, MSE = 101.67 [38]

CV
Magnetic activated carbon 
(AC)

ANN Amount of 
magnetic AC 
(MAC), pH, 
initial dye 
concentration, 
time, and 
temperature

Adsorption 
efficiency

R2 = 0.9980, mean absolute 
percentage error (MAPE) 
= 0.38%

[39]

MB Ultrasound-modified chitin 
(UM-chitin)

ANN Initial 
concentration, 
temperature

Adsorption 
capacity

MSE < 0.0003 and R > 
0.9995

[40]

SY Nickel sulfide nanoparticle 
loaded on AC

ANN Contact time, 
adsorbent dosage, 
initial dye 
concentration, 
and pH

Adsorption 
capacity

R2 = 0.99

MSE =0.0003

[42]

MG Copper nanowires loaded on
AC

ANN, GA Contact time, 
adsorbent dosage, 
initial dye 
concentration, 
and pH

Adsorption 
capacity

R2 = 0.9658 

MSE =0.0017

[43]

SY AC prepared from
the wood of the orange tree

ANN Initial dye 
concentration, 
pH, adsorbent 
dosage, 
temperature, and 

Removal 
efficiency

R2 = 0.9966 

MSE = 0.0001

[44]
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sonication time

AR57 Mesoporous carbon-coated 
monolith

ANN pH, initial dye 
concentration, 
and contact time

Removal 
efficiency

R2 = 0.997, 

MSE = 0.9365–6.6529

[45]

EY, CV, AO, and 
MB

 ZnO–nanorods–AC (ZnO–
NR–AC)

ANN Dyes 
concentrations, 
sonication time, 
and amount of 
sorbent

Adsorption 
capacity/Removal 
percentage

MB:

R2 = 0.9853, MSE = 
0.000683

EY:
R2 = 0.999730, MSE = 
0.000014

CV:
R2 = 0.987920, MSE = 
0.000656

AO:
R2 = 0.997093, MSE = 
0.00011 

[47]

Basic Blue 41 
(BB41), Basic Red 
18 (BR18), and 
Basic Red 46 
(BR46)

NiO-MnO2 Nanocomposite ANN Adsorbent dosage 
and initial dye 
concentration

Adsorption 
capacity

R2 = 0.9977 (BB41)

R2 = 0.9955 (BR18)

R2 = 0.9989 (BR46)

[48]

Disulfine blue 
(DB), rhodamine 
B (RB) and 
Chrysoidine G 

Ni doped ferric oxyhydroxide 
FeO(OH) nanowires on AC (Ni 
doped FeO(OH)-NWs–AC)

ANN, RSM Initial dye 
concentration, 
sonication time, 
adsorbent mass, 

Adsorption 
capacity

 CG: [49]
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(CG) and pH R2 = 0.9997, MSE = 0.0055

 RB:

R2 = 0.9999, MSE = 0.0033

DB

R2 = 0. 9996, MSE = 0.0046

MB and CV Zinc(II) oxide nanorods loaded 
on AC (ZnO-NRs-AC) 

ANN, RSM Adsorbent 
dosage, 
concentration, 
and ultrasonic 
time 

Adsorption 
capacity

R2 = 0.9999 

MSE= 0.0753

[92]

Phenol red Gold and titanium dioxide 
nanoparticles loaded on AC 

ANN pH, dye 
concentration, 
sorbent dosage 
and contact time

Removal 
efficiency

Au-NP-AC:

 R2 = 0.9994, 

MSE = 5.66e-05

TiO2-NP-AC:

 R2 = 0.9729, 

MSE = 0.0022

[93]

SY Zinc oxide nanorods loaded on
AC

ANN Initial dye 
concentration, 
pH, contact time, 
and adsorbent 
amount 

Removal 
efficiency

R2 = 0.998, 

MSE = 0.0008

[94]

MB Activated spent tea (AST) ANN Time, adsorbent 
dosage, initial dye 
concentration, 
temperature, and 

Adsorption 
efficiency

R2 = 0.999 [95]
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pH  

Congo Red (CR) Fe2O3 nanoparticles ANN Reaction 
temperature, 
adsorbent dose, 
initial dye 
concentration, 
and pH  

Adsorption 
capacity

R2 = 0.991, MSE = 0.00235 [96]

CV ZnO-NR-AC ANN Sonication time, 
adsorbent doses, 
pH, and initial 
concentration  

Adsorption 
capacity/Removal 
efficiency

R2 = 0.9815, MSE = 
0.000014

[97]

Basic Red (BR) Walnut husk (WH) ANN Temperature, 
contact time, 
initial dye 
concentration, 
adsorbent particle 
size, and pH

Removal 
efficiency

R2 = 0.9991, SSE = 0.2303 [98]

Ethidium bromide 
(EtBr) 

Natural pumice and iron-coated
pumice

ANN Contact time, pH, 
initial EtBr 
concentration, 
and adsorbent 
dose  

Adsorption 
capacity/Removal 
efficiency

R2 = 0.9998, MSE = 0.005 [99]

Methyl violet 2B Soya bean waste ANN pH, dosage, 
contact time, 
initial dye 
concentration, 
temperature, and 
ionic strength  

Adsorption 
capacity

R2 = 0.9946 [100]

SY Neodymium modified ordered 
mesoporous carbon

ANN Adsorbent 
dosage, reaction 
time, and initial 
concentration

Removal 
efficiency

R2 = 0.9832

MSE = 0.0012

[101]
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CV Activated carbon prepared from 
Raphia hookeri seeds

ANN pH, solution 
temperature, time, 
and adsorbent 
dosage   

Adsorption 
capacity

R2 = 0.9950

RMSE = 0.912

[102]

EY and MG Monoliths HKUST-1 MOF ANN Sonication time, 
pH, adsorbent 
mass, and initial 
dye concentration

Removal 
efficiency

MG:
R2 =   0.9974 
MSE=1.75 × 10−5 
EY:
R2 =   0.9963
MSE= 7.43 × 10−5

[103]

CG Copper sulfide nanoparticles 
loaded on AC

RF Initial dye 
concentration, 
adsorbent 
amount, and 
sonication time  

Adsorption 
capacity

R2 = 0.9657

MSE= 0.0021 

[104]
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Table 2. Applications of AI for the adsorption of heavy metals from the aqueous phase

Metal Adsorbent AI technique 
used

Input variables Output variable Model 
validation/Performance
indicators

Reference 

Ni(II) and Co(II) Ultrasound-modified chitin (UM-
chitin)

ANN Initial 
concentration, 
temperature

Adsorption 
capacity

MSE < 0.0003 and R > 
0.9995

[40]

Pb(II), Ni(II) and 
Cu(II)

Date seed derived biochar ANN Temperature, 
initial 
concentration, 
ionic strength, 
solution pH, and 
contact time   

Adsorption 
capacity

R2 = 0.9923, MSE = 1.21 [50]

Cd(II) Immobilized Bacillus subtilis 
beads

ANN Mass of the 
biosorbent, 
column internal 
diameter, flow 
rate, bed depth and 
influent 
concentration of 
metal ions    

Removal 
efficiency

R2 = 0.99

RMSE = 0.2289

[52]

Cu(II) Pumice ANN Contact time, 
adsorbent dosage, 
initial pH, and 
temperature       

Removal 
efficiency

R2 = 0.999

RMSE = 1.122 × 10−5

[53]

Cr(III) Commercial Resins ANN pH, adsorbent 
dosage, initial 
metal 
concentration, 
contact time, and 
temperature   

Removal 
efficiency

R2 = 0.99

MSE = 0.006162

[54]

Cr(VI) Clay-based adsorbents ANFIS (Adaptive 
network based 

Contact time, 
temperature, metal 

Removal 
efficiency

Clay/Fe3O4 [55]



31

fuzzy inference 
system)

concentration, pH, 
and adsorbent 
dose

R2 = 0.9997

MSE= 1.288E-06

Cu(II) Gundelia tournefortii (GT) ANN Temperature, 
initial 
concentration, pH, 
contact time, and 
adsorbent dosage 

Biosorption 
capacity

R2 = 0.995

MSE = 1.6868 × 10−6

[56]

Cu(II) Sugar beet shreds ANN pH of the inlet 
solution, initial 
concentration of 
Cu(II) ions, and 
adsorbent dose

Adsorption 
capacity

Sum of squared errors (SSer) 
=7.8 ×10-4

R2 =0.9998

[57]

Pb(II) Carboxylate-functionalized 
walnut shell (CFWS)

ANN Contact time, 
adsorbent dosage, 
initial 
concentration, and 
pH 

Adsorption 
efficiency

R2 =0.9915 [58]

As(III) Bacillus thuringiensis strain WS3 ANN Contact time, 
As(III) 
concentration, 
temperature, pH,  
and adsorbent 
dosage  

Adsorption 
capacity

R2 = 0.9959

MSE= 0.3462

[59]

Cd(II) Spirulina (Arthospira) Platensis, 
Spirulina (Arthospira) indica, 
and Spirulina (Arthrospira) 
maxima  

ANN pH, agitation 
speed, biosorbant 
dosage, and initial 
concentration   

Removal 
efficiency

R2 = 0.965 (Spirulina 
(Arthospira) maxima) 

R2 = 0.967 (Spirulina 
(Arthospira) platensis 

R2 = 0.9955 (Spirulina 
(Arthospira) indica

[60]

Hg(II) Sargassum Bevanom algae ANN Sorbent dose, 
contact time, pH, 
and initial 

Removal 
efficiency

R2 =0.994 [61]
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concentration of 
mercury   

Cu(II), Zn(II), 
Ni(II) and Cd(II)

Bone char ANN Initial metal 
concentrations 
metals

Adsorption 
capacity

R2 > 0.96

Modeling error = 8.01 to 
45.8%

[62]

Zn(II) Pongamia oil cake (Pongamia 
pinnata)

ANN Batch:

Adsorbent dosage 
temperature, and 
pH 

Continuous mode:

Bed height, Zn(II) 
concentration, and 
flowrate

Removal 
efficiency

Batch:

R = 0.994

MSE = 0.02275

Continuous mode: 

R = 0.994

MSE = 0.001216

[63]

Pb(II) and Cu(II) Nanocomposites of rice straw and 
Fe3O4 nanoparticles

ANN Removal time, 
initial ion 
concentration, and   
adsorbent dosage

Removal 
efficiency

Pb(II):
 
R2 = 0.9905

RMSE = 0.95

Cu(II):

R2 = 0.9632

RMSE= 1.87

[77]

Cu(II) Pottery sludge ANN pH, initial Cu(II) 
concentration, 
contact time, and 
temperature     

Removal 
percentage

MSE = 0.06819 [79]

Cd(II) and Co(II) ZnO-NRs-AC ANN Adsorbent dosage, 
dye 
concentrations, 
and ultrasonic 

Adsorption 
capacity

R2 = 0. 0.9999

MSE= 0.0753

[92]



33

time

Fe(III) Ignimbrite ANN Particle size, flow 
rate, bed depth, 
initial 
concentration of 
Fe(III), sorption 
time, and pH  

Adsorption 
capacity

R2 = 0.980

RMSE= 0.65

[105]

Zn(II), Cu(II) Bone char ANN Operating time, 
bed length, feed 
flow, feed 
concentration, 
ionic radius, 
electronegativity, 
and molecular 
weight 

Ct,i/C0,i of the 
breakthrough 
curve

R2 > 0.99 

Mean error = 0.98 to 174%

[106]

Pb(II) Deep eutectic solvents 
functionalized CNTs

ANN Initial Pb(II) 
concentration, 
contact time, 
adsorbent dosage, 
and pH 

Removal 

efficiency

R2 = 0.9956

MSE = 1.66 × 10−4

[107]

Pb(II) Copper oxide nanoparticle-loaded 
AC (CuO-NP-AC)

ANN Irradiation time, 
amount of 
adsorbent and 
ultrasound, pH, 
and Pb(II) ions 
concentration

   

Removal 
efficiency

R2 = 0.99970

MSE = 0.00098

[108]

Cr(VI) NiO nanoparticles ANN pH, contact time, 
amount of 
adsorbent, and 
initial Cr(VI) 
concertation   

Removal 
efficiency

R2 = 0.93 [109]
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Co(II) and Ni(II) Carboxymethyl chitosan-bounded 
Fe3O4 nanoparticles

ANN Adsorbent mass, 
initial 
concentration of 
metal ions, contact 
time, and pH 

Adsorption 
capacity

Ni(II):

R2 = 0.9702

MSE = 4.3256

Co(II):

R2 = 0.9673

MSE = 4.4664

[110]

Ni(II), Pb(II), and 
Cd(II)

Itaconic acid grafted poly(vinyl) 
alcohol encapsulated wood pulp 
(IA-g-PVA-en-WP)

ANN Contact time, 
biosorbent dose, 
and metal 
concentration 

Removal 
efficiency

R 2 = 0.997 (Cd(II)), 0.998 
(Pb(II)), and 0.995 (Ni(II))

MSE = 0.003479377 
(Cd(II)), 0.003830969 
(Pb(II)), and 0.002372617 
(Ni(II))

[111]

Pb(II) Gundelia tournefortii ANN Contact time, 
biosorbent dosage, 
initial pH, and 
temperature, and 
initial Pb(II) ion 
concentration   

Adsorption 
capacity

R2= 0.998

MSE = 0.000867

MRE = 0.000501

[112]

As(III) and As(V) Botryococcus braunii ANN Initial arsenic 
concentration, 
contact time, 
inoculum size 
(%v/v), and pH 

 

Removal 
efficiency

As(III):

R2 = 0.9998 

MSE = 2.859E − 05

As(V):

R2 = 0.9984 

MSE = 1.697E – 05

[113]
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Pb(II) Coffee grounds ANN pH values Adsorption 
capacity

R2 = 0.97 [114]

Cr(VI) Magnetic Calcium Ferrite 
nanoparticles (CaFe2O4)

ANN Contact time, 
initial Cr(VI) ion 
concentration, 
adsorbent dosage, 
and pH  

Adsorption 
capacity

R2 = 0.984

MSE = 0.00161

[115]

Zn(II) Hazelnut shell ANN Adsorbent dosage, 
initial 
concentration, 
temperature, 
contact time and 
initial pH

Adsorption 
capacity

R2 = 1

RMSE=0.0029

[116]

Pb(II) Rice wastes, hyacinth roots, neem 
leaves and coconut shells

ANN Contact time, 
adsorbent dosages, 
initial Pb(II) ion 
concentration, and 
Initial pH  

Removal 
efficiency

MSE = 2.186620

R = 0.985341

[117]

Cu(II) Flax meal (oil extraction with 
supercritical CO2)

ANN Solution pH, 
biosorbent dosage, 
and metal ions 
concentration 

Biosorption 
efficiency

R2 = 0.96, MSE = 6.1 × 10−4 [118]

Cd(II) Rice straw ANN, ANFIS pH, initial 
concentration of 
Cd(II), and 
biosorbent dose

Biosorption 
efficiency

ANN

R = 0.99

MSE=92.43

[119]

Cr(VI) Cerium oxide polyaniline 
composite (CeO2/PANI)

ANN Initial 
concentration, 
adsorbent dose, 
contact time,  pH, 
and temperature 

Removal 
percentage

R2 = 0.9943

MSE = 0.012

RMSE =0.009

MAPE = 0.016

[120]



36

AARE = 0.013

Arsenic(V) Adsorbents obtained from 
the Opuntia ficus indica biomass

ANN pH and 
temperature

Removal 
efficiency

R2 = 0.9973

Modeling error (%) =2.54

[121]

Indium(III) AC, multiwalled carbon 
nanotubes (MWCNTs) 
functionalized with OH 
(MWCNT–OH), and MWCNTs 
functionalized with COOH 
(MWCNT–COOH)

ANN, ANIFS Adsorbent type, 
contact time, and 
adsorbent dosage 

Adsorption 
capacity

ANFIS:

 R = 0.9998, 

RMSE = 48,373

ANN:

 R = 0.9831

MSE = 0.0180

[122]

Cr(VI) Date palm fiber ANN Time, biosorbent 
dosage, initial 
concentration of 
Cr(VI), and initial 
pH   

Removal 
efficiency

R2 = 0.9983

MSE = 6.82

[123]

Cu(II) Sawdust from Melia Azedarach 
wood

ANN, ANFIS Adsorbent dosage, 
contact time, pH, 
and initial Cu(II) 
concentration 

Removal 
efficiency

ANN:

R2 = 0.98

MSE= 10.63

ANFIS:

R2 = 0.99

MSE= 0.707 

[124]

Cr(III) Clay ANN Contact time, 
initial ion 
concentration, 
initial solution pH, 

Removal 
efficiency

R2 = 0.9834

MSE= 0.0247

[125]
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and adsorbent 
dosage   

Pb(II) Rice husks treated with nitric acid ANN, feed 
forward back-
propagation 
neural network 
(FFBPNN), 
Levenberg–
Marquardt (L–M)

Contact time, the 
initial 
concentration, and 
the utilized 
biosorbent mass

Adsorption 
capacity

R2 ≈ 0.998 [126]

Zn(II) Rice husks digested with nitric 
acid

ANN Initial 
concentration, 
contact time and 
temperature

Adsorption 
capacity

R2 ≈ 0.9686 [127]

Cd(II) Nano-magnetic walnut shell-rice 
husk

ANN Walnut shell-rice 
husk mixing ratio 
and magnetite 
loading, 
calcination time, 
and calcination 
temperature  

Sorption 
efficiency

R2 = 0.9967 [128]

Cu(II) Biochar derived from rambutan 
(Nephelium lappaceum) peel

ANN, ANFIS Initial Cu(II) ion 
concentration, 
biochar dosage, 
operating 
temperature, and 
contact time  

Adsorption 
efficiency

ANFIS 

R2 = 0.9024

RMSE = 3.29

[129]

Pb(II) and Co(II) Rafsanjan pistachio shell (RPS) FFNN and 
genetic 
programming 
(GP)

pH, Initial 
concentration of 
metal, biosorbent 
dosage, and 
temperature 

Adsorption 
capacity

FFNN:

R2 = 0.9932 (Pb(II),  and 
0.9908 (Co(II))

RMSE = 1.1622 (Pb(II)),  
RMSE = 1.1340 (Co(II))

[130]
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Table 4. Applications of AI for the adsorption of organic compounds, pharmaceuticals, drugs, pesticides, and PCPs from the aqueous 
phase

Pollutant Adsorbent AI technique 
used

Input variables Output 
variable

Model 
validation/Performance
indicators

Reference 

Cephalexin Octenyl Succinic Anhydride 
(OSA) starch

 ANFIS Temperature, initial 
concentration of 
adsorbent, pH, and 
contact time

Adsorption 
capacity 

R2 = 0.9999

RMSE= 3.9 × 10−3

[64]

Chlorothalonil pesticide Activated carbon ANN pH, chlorothalonil
concentration, contact 
time, and adsorbent 
dosage

Adsorption 
capacity

R2= 0.982

MSE=33.9

[65]

Bisphenol A (BPA), 
carbamazepine (CBZ), 
ketoprofen (KTF) and 
tonalide (TND) 

Cross-linked chitosan/zeolite ANN  pH and 
micropollutants (MP) 
concentration

Removal 
efficiency

BPA:

R2 = 0.998

 MSE= 6.91

CBZ:

R2 = 0.993

 MSE= 12.89

KTF:

R2 = 0.997

 MSE= 8.20

TND:

R2 = 0.997

[66]
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 MSE= 10.62

Paracetamol Chemically modified orange 
peel

ANN Contact time, 
temperature, and 
initial concentration

Adsorption 
efficiency

MSE=5.8985 × 10−04 

RMSE=0.0243
R2=0.9958

[67]

Phosphate Nanoscale zero-valent iron 
(nZVI)

ANN Reaction time, 
stirring rate, nZVI 
dosage, initial PO4

3– 
concentration, and pH  

Removal 
efficiency

R2 = 0.976

MSE=1.84

[68]

Heptachlor Fe/Cu nanoparticles ANN Adsorbent dose, pH, 
initial heptachlor 
concentration, stirring 
rate, and contact
time   

Removal 
efficiency

R2= 0.9567

MSE =21.0248

[69]

Triamterene MWCNTs and single-walled 
carbon nanotubes (SWCNTs)

ANN Contact time, initial 
drug concentration, 
amount of adsorbent, 
and temperature   

Adsorption 
capacity/ 
Removal 
efficiency

R2 = 0.980

MSE= 0.002 

[70]

Chlorophenol (CP) Coconut shell carbon (CSC) Radial basis 
function 
network 
(RBFN) and 
multilayer 
perceptron 
network 
(MLPN)

Contact time, CP 
concentration,  
temperature, and pH

Removal 
efficiency

RBFN:

 R2 = 0.96

MSE= 6.03

[71]

Phenol Scoria stone ANN Phenol concentration, 
contact time, and 
adsorbent dosage 

Removal 
efficiency

R2 =0.982686
RMSE= 2.464535

[72]

Phosphate Lime-iron sludge ANN and 
ANFIS

Time, flow rate, and 
bed depth   

Breakthrough 
time and 
Concentration 
ratio (Ct/Co)

Ct/Co = 

R2 = 0.9962 ( ANFIS)

R2 = 0.9968 ( ANN)

[73]

https://www.sciencedirect.com/topics/chemistry/absorbent
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Breakthrough times:

R2 = 1 ( ANFIS)

R2 = 1 ( ANN)

MSE:

 0.0004 (ANN)

0.0001 (ANFIS)

Phenol Activated date palm biochar ANN Time, mass of 
adsorption bed, depth 
of adsorption bed, 
flow rate, and initial 
concentration 

Residual 
concentration 
of the effluent 
phenol and the 
breakthrough 
Ct/Co

R2 = 0.9880

RMSE= 0.0472

[74]

Ortho-cresol Activated date palm biochar ANN Time, mass of 
adsorption bed, depth 
of adsorption bed, 
flow rate, and initial 
concentration

Residual 
concentration 
of the effluent 
ortho-cresol 
and the 
breakthrough 
Ct/Co

R2 = 0.9886

RMSE= 0.0560

[74]

Phenol and 3-amino-
phenol

Composite iron nano-
adsorbent

ANN Phenols 
concentration, pH, 
contact time, 
temperature and the 
quantity of sorbent

Uptake 
effectiveness 

Relative error = ±0.35 to 
3.0 for phenol and 0.35 
to 3.5 
for p-amino-phenol 

[76]

Carbaryl Lemna major biomass ANN Initial concentration, 
pH, biomass dose and 
contact time

Adsorption 
capacity

R2 = 0.921 [131]

Nimesulide and 
paracetamol

AC ANN  Contact time, 
adsorbent dose, 
adsorbent particle 
size, and initial 
concentration 

Adsorption 
capacity

R2 = 0.9989 (imesulide) 
(paracetamol) (R2 = 
0.9985)
MSE = 0.0006

[132]

https://www.sciencedirect.com/topics/chemistry/sorbent
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Ranitidine 
hydrochloride (RH) 

Mung bean husk (MBH) ANN Adsorbent dose, pH, 
and agitation

Adsorption 
efficiency

R2 = 0.9821
RMSE = 0.2292

[133]

Phenol and resorcinol AC, wood charcoal (WC) and 
rice husk ash (RHA). 

ANN pH, contact time, 
initial concentrations 
of phenol and 
resorcinol, and 
amount of adsorbent
   

Removal 
efficiency

Phenol:
R2 = 0.96
RMSE = 2.4

Resorcinol:
R2 = 0.95
RMSE = 4.5

[134]

Phenol AC ANN pH, contact time, 
temperature, initial 
concentration of 
phenol, and amount 
of adsorbent  

Adsorption 
capacity/ 
Removal 
efficiency

R2 = 0.9998
RMSE = 0.2378

[135]

Phenol Orange peel ash ANN Temperature, stirring 
rate, contact time, 
adsorbents dose, pH, 
and initial 
concentration  

Uptake 
efficiency 

MSE = 0.0006 [136]

Benzene, toluene, ethyl 
benzene and xylene 
(BTEX)

Iron nanoparticles ANN pH, temperature, 
adsorbent dose, initial 
BTEX mixture 
concentration, and 
contact time    

Removal 
efficiency

R2 = 0.97064

MSE: 0.080186

[137]

Phosphate Hydrated ferric oxide-based 
nanocomposite

ANN Adsorbent dosage, 
operating 
temperature, sulfate 
concentration, and 
initial pH   

Removal 
efficiency

R2 = 0.9931

MSE= 0.00105

[138]
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Table 5. Applications of AI hybrid techniques for the adsorption of pollutants from the aqueous phase

Pollutant Adsorbent AI technique used Input variable Output variable Model validation/ 

performance 

indicators

Reference

AY41 and SY SnO2 nanoparticle loaded 

activated carbon

(Principal component 

analysis) PCA- ANN

Dye concentration, 

pH, adsorbent 

dosage, and contact 

time   

Removal 
efficiency

SY:

R2 = 0.99

MSE = 0.53

AY41:

R2 = 0.98 

MSE = 0.79

[41]

BG and EB ZnS nanoparticles loaded AC Multi-layer ANN 

(ML-ANN), RSM

Contact time, 

adsorbent dosage, 

BG concentration, 

EB concentration

Adsorption 
capacity

BG:

R2 = 0.9589, MSE 
= 0.0021

EB:

R2 = 0.9455, MSE 

= 0.0022

[46]

Metals (Cd, Al, 
Co, Cu, Fe, and 
Pb)

Chitosan and Chitosan-

Montmorillonite 

nanocomposite

Multi-layer 

perceptron ANN 

(MLP-ANN), radial 

basis function ANN 

(ANN-RBF), SOS 

algorithm (ANN–

Adsorbent dosage, 

initial pH values, 

and contact time

Removal 
efficiency

Chitosan:

R2 = 0.9527 
(MLPANN), 
0.9643 
(RBFANN)

C. M. 
Nanocomposite:

[51]
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SOS) R2 = 0.9257 
(MLPANN), 
0.9665 
(RBFANN)

MG Chitosan/polyvinyl 

alcohol/zeolite imidazolate 

frameworks membrane 

adsorbents (CPZ)

MLP-ANN pH, initial dye

concentration, and 

adsorbent dose

Removal 
efficiency

R2 = 0.9958

RMSE = 0.01822

[81]

As(III) Cerium oxide 

tetraethylenepentamine 

(CTEPA)

GP (genetic 

programming), LS-

SVM (least square 

support vector 

machine)

Temperature, time, 

concentration, pH 

and dose

Adsorption 
capacity

GP:

R2 = 0.977 

MSE = 0.1068

RMSE = 0.0284

MAPE (mean

absolute 

percentage error) 

=  0.0632

AARE (average 

absolute relative 

error) = 0.0004

LS-SVM:

R2 = 0.905 

MSE =1.423

RMSE = 0.112

MAPE =  0.200

AARE = 0.002

[86]
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Cr(VI) Cupric oxide nanoparticles 

(CuONPs)

ANN-GA Initial 

concentration, pH, 

adsorbent dose, and 

temperature

Removal 
percentage

R2 = 0.99

MSE = 0.21

[87]

As(III) Zn-loaded pinecone biochar RSM-GA (response 

surface model–

genetic algorithm)

As(III) 

concentration, 

EtOH 

concentration, and 

pH

Adsorption 
capacity

R2 = 0.92-0.95

RMSE = 0.28-

0.25

SEP (standard 

error of 

prediction) = 3.17-

2.80

[88]

Cu(II) Reduced graphene oxide-

supported nanoscale zero-

valent iron (nZVI/rGO) 

magnetic nanocomposites

ANN-GA, ANN-

PSO

Temperature, initial 

pH, initial 

concentration and 

contact time

Removal 
efficiency

R2 = 0.9997

MSE = 0.00020

[89]

Cd(II) Natural waste materials (leaves 

of jackfruit, mango and rubber 

plants) 

 GA-ANN Number of sorbent, 

pH, adsorbent 

dosage, time, and 

initial 

concentration

Removal 
efficiency

R =  0.97–0.99 

MSE = 0.98- 

12.16

[91]

MB Zinc sulfide nanoparticles with
AC (ZnS-NPs-AC)

LS-SVM (least 

squares-support 

vector machine), 

ANN, GA

Sonication time, 

MB concentration, 

adsorbent mass, 

and pH  

Adsorption 
capacity 

ANN:

R2 = 0.9984, 
RMSE = 0.00065

[139]
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Basic Red 18 
(BR 18) and 
Basic Blue 
41(BB 41)

CuO–NiO nanocomposite ANN, BP-ANN 

(backpropagation 

neural network)

Dye concentration 

and adsorbent 

dosage

Removal 
efficiency

R2 = 0.9904  (BR 
18)

R2 = 0.9964 
((BB41)

[140]

Acid red 27 Polypyrrole/SrFe12O19/graphene
oxide nanocomposite

ANN-BA (bees-
inspired algorithm)

MLP-ANN 

(multilayer 

perceptron artificial 

neural networks)

Contact time, 

shaking rate, initial 

concentration, pH, 

and adsorbent 

dosage

Adsorption 
efficiency

- [141]

MB Sulfur–nitrogen co-doped 
Fe2O3
nanostructure surface

 ANN-GA
Dye concentration, 

the light dose, pH, 

and dose of the 

nanoparticle 

Removal 
efficiency

R2 = 0.92 [142]

MB Mesoporous rGO/Fe/Co 
nanohybrids

ANN-PSO, ANN-

GA

Initial 

concentration, 

contact time, 

temperature, and 

pH

Adsorption 
capacity

Absolute error = 
0.52

[143]

CV Reduced-graphene-oxide-
supported bimetallic Fe/Ni 
nanoparticles (rGO/Fe/Ni)

ANN-GA, ANN-

PSO, and BBD (Box 

Behnken design)

Initial dye 

concentration, 

initial pH, contact 

time, and 

temperature

Removal 
efficiency

R2 = 0.9998 (BP-
ANN)
Absolute errors: 
5.6 (ANN-GA)
3.5 (ANN-PSO)

12.4 (BBD)

[144]
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Zn(II) Activated carbon derived from 

palm oil kernel shell

Differential 

evolution (DEO) 

embedded neural 

network (ANN-DE)

Initial solution 

concentration,

pH, adsorbent 

dosage, residence 

time, temperature

Removal 
efficiency

R2 = 0.995

RMSE = 0.248

[78]

Cd(II) Inactive and 

living Trichoderma 

viride biomass 

SVR-GA (Support

Vector

Regression- genetic 

algorithm)

pH, biomass 

dosage,

metal 

concentration,

contact time and

temperature

Biosorption
efficiency

R2 = 0.919

MSE = 0.85

[145]

Cr(VI) Activated carbon from Medlar 

seed (Mespilus germanica)

SVR-GA pH, initial 

concentration

of Cr(VI), 

adsorbent

dosage and contact 

time

Removal 
efficiency

R2 = 0.981 [146]

Cd(II) Biowaste materials, jackfruit, 

mango, and rubber leaves 

GA-ANN Adsorbent type, 

bed height, flow 

rate, time, and 

influent 

concentration

Adsorption 
efficiency

R = 0.997-0.999

MSE = 1.470807-
4.238426

[147]

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/trichoderma-viride
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/trichoderma-viride
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4. Challenges and Prospects

AI tools have offered serval advantages over conventional mathematical modelling. It can be 

used to predict the performance of various water treatment process and reduce the experimental 

costs. However, still, there are some limitations that hindered the widespread applications of 

these techniques in real water treatment. 

The major drawback of AI tools such as ANNs is the poor reproducibility due to random weight 

and bias that might result in a locally optimal solution [16,148]. The hybridization of various AI 

tools can also be employed to predict pollutant removal efficiency during the adsorption process. 

Deep learning and deep ANNs are good options for achieving high accuracy and prediction. 

However, it requires a sufficient amount of data for experimental training, testing, finding the 

local minima and overfitting. 

The process performance predicted by AI tools may also deviate from the actual results under 

certain circumstances. For example, a sudden change in operating parameters and water quality 

may result in wrong prediction by AI tools. Efforts must be made to strengthen the prediction of 

AI tools so that they can be employed under various circumstances and can accommodate sudden 

fluctuation in the input variables. Based on the available literature, the AI tools have 

demonstrated tremendous performance for modelling the batch adsorption process with a smaller 

range of data. However, the applications of AI tools in practical wastewater treatment with a 

wide range of data is yet to be explored. 

Another major challenge relevant to AI-based water treatment is the availability and selection of 

data. The water utilities are acquired to generate, collect, process, evaluate and analyze data by 

creating datasets for system optimization and prediction. Special attention must be given to select 

the training data for AI tools, an experimental design technique, as the random data selection is 
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associated with certain drawbacks. However, the experimental design techniques (such as RSM) 

usually require a large input dataset to create an accurate response.

The operational data from real water treatment plants can be used as input for AI models, and the 

removal of pollutants can be predicted more accurately. AI technology could play a critical role 

in sustainable wastewater treatment and can result in a significant reduction in operating cost in 

addition to safeguarding the environment. Besides predicting the water treatment process 

efficiency, AI tools can be used to integrate the whole process of water treatment starting from 

water discharge, transportation, management of sludge, environmental impacts, economy and 

policymaking. Data collection from the various water treatment process is necessary to apply AI 

techniques in the water treatment domain successfully. However, special care should be taken 

while collecting the data to keep data integrity. All the information, such as data sources, 

location, process environment, and dataset ontology, should be listed while reporting the data. 

This information will help researchers, students, and engineers to reuse the data in the various 

experimental domain for future prediction.

AI provides an opportunity for the water industry to optimize and govern water monitoring and 

management. The development of new AI-based algorithms is needed to address certain 

problems in water treatment and management, such as water quality, leakage detection, and 

water process optimization, to provide intelligent decisions. By applying hybrid AI techniques, 

prediction accuracy can be enhanced that leads to a reduction in energy and operational cost. 

A benchmark/framework should be developed to compare various AI-based stand-alone and 

hybrid techniques in the field of water treatment and to suggest the best techniques for 

applications in real treatment processes. 
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5. Conclusion

AI has transformative potentials to revolutionize the wastewater treatment process. This review 

summarized the major AI tools employed in water treatment for the uptake of various pollutants. 

Numerous AI models (both single and hybrid) have successfully predicted the performance of 

different adsorbents for the removal of dyes, metals, organic compounds, pharmaceuticals, drugs, 

pesticides and PCPs from water. Despite several advantages offered by AI tools, there are still 

some shortcoming that needs to be overcome to fully utilize the potential of AI tools in practical 

water treatment applications. Selection of suitable data, applications of hybrid AI tools, and more 

studies at the pilot plant level will be helpful to address these challenges. Regardless of these 

hurdles, the current research progress suggests that AI tools have a bright future in water 

treatment applications.
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Appendix:

List of abbreviations
SDGs: Sustainable Development Goals

PCPs: Personal Care Products 

AI: Artificial Intelligence

ANN: Artificial Neural Network

DT: Decision Tree

MLP: Multi Layer Perceptron

BP: Back Propagation

ANFIS: Adaptive Network based Fuzzy Inference System 

RSM: Response Surface Methodology

RBF: Radial Basis Function 

CNN: Convoluted Neural Network

PSO: Particle Swarm Optimization

GA: Genetic Algorithm

RF: Random Forest

KNNs: k-Nearest Neighbor

SVM: Support Vector Machine

RNN: Recurrent Neural Network

SOM: Self-Organizing Map

FNN: Fuzzy Neural Network

DNN: Deep Neural Network

MLPANN: Multilayer Perceptron Artificial Neural Network

MLP: Multi Layer Perceptron 

MLPN: Multilayer Perceptron Network

FFBP: Feed forward control

FFBP: Feed Forward Neural Network

RBFN: Radial Basis Function Network

GP: Genetic Programming

LM: Levenberg Marquarit

FFBPNN: Feed Forward Back Propagation Neural Network
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ANN-BA: Artificial Neural Network-Bees Inspired Algorithm

LS-SVM: Least Square-Support Vector Machine

GA-SVR: Genetic Algorithm-Support Vector Regression

GA-RSM: Genetic Algorithm-Response Surface Model

GA-MLPANN: Genetic Algorithm -Multi Layer Perceptron Artificial Neural Network 

GA-RBANN: Genetic Algorithm -Radial Basis Function Artificial Neural Network 

GA-FNN: Genetic Algorithm -Feedforward Neural Network 

GA-FL: Genetic Algorithm -Fuzzy Logic 

SVM-SA: Support Vector Machine-Simulated Annealing 

SVM-ASAGA: Support Vector Machine-Adaptive Simulated Annealing Genetic Algorithm 

ANN-DE: Artificial Neural Network-Differential Evolution 

GANN: Genetic Algorithm Neural Network

PSO-WNN: Particle Swarm Optimization-Wavelet Neural Network 

PSO-ENN: Particle Swarm Optimization-Elman Neural Network 

PCA- ANN: Principal Component Analysis-Artificial Neural Network

R2: Coefficient of Determination)

MSE: Mean Squared Error

SSE: Sum of Squared Error

RMSE: Root-Mean-Square Error

MAPE: Mean Absolute Percentage Error

AARE: Average Absolute Relative Error

SEP: Standard Error of Prediction
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