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Abstract

Despite improvements in technology and increasingly strict legislation, road

transport remains a key source of air quality pollutants. Accurate emission

estimates are important for informing policy to combat the deleterious effects of

exhaust species on human health. A key advantage of vehicle emission remote

sensing is it can rapidly measure and characterise hundreds of thousands of

vehicles. However, to fully realise the potential of remote sensing and gain

a comprehensive assessment of emissions, new developments in calculating

emission factors are needed. A recurring theme of this thesis is the calculation

of emission-engine power models, which allow remote sensing to be used to

address more facets of vehicle emissions than it is typically able. A method is

developed to calculate distance-specific emission factors, which is validated

using portable emission measurement system data. Distance-specific emissions

can be compared with other measurement techniques and legislation, and can

be used in emission inventory development. A remote sensing-based inventory

is directly compared to the UK National Atmospheric Emissions Inventory,

achieving excellent carbon balance (within 1%) but revealing that NOx emis-

sions may be being under-reported by up to 32% at a national level. Remote

sensing data are also combined with a large driving activity database to address

the effects of driver behaviour and challenge the COPERT approach for emis-

sion factor calculation. A robust statistical framework is used to assess emission

deterioration, and it is shown that older gasoline cars show a skewed rate of

deterioration whereas modern gasoline and diesel emissions are well controlled.

A key conclusion is the importance of the differences between manufacturers,

which are significant for individual vehicles, for emission deterioration, and in

inventory development. This analysis shows that accounting for manufacturers

in inventory calculations results in a 13.4% range in total NOx emissions, an

influence not currently reflected in European emission inventories.
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Chapter 1. Introduction

1.1 Road Transport: Setting the Scene

In the UK, road vehicles and the roads upon which they drive could be described

as ubiquitous. Urban centres are dominated by the presence of roads, with many

of our homes, workplaces and recreational spaces connected and surrounded by

them. At the end of September 2021 there were 39.2 million licensed vehicles

in Great Britain, the majority (81.6%) being passenger cars[4]. For context,

the estimated population of Great Britain in 2020 was around 65 million[5],

meaning there are around 60 road vehicles per 100 people.

Transport is necessary to meet the needs of modern humans, and road

transport is particularly useful for the transportation of both passengers and

freight. Road transport uniquely offers travellers the ability to travel long

distances, carrying cargo, and with near-total control over their scheduling,

journey origin and destination. By comparison, active transport methods —

most commonly walking and cycling — leave travellers exposed to the weather,

have limited space for cargo, are restricted by fitness levels, and unavoidably

can’t transport people as far as powered vehicles. Air, sea and rail are restricted

to stations or ports and specific scheduling times, and private ownership of

their respective vehicles by the majority of the population is economically and

practically unfeasible.

While undeniably useful, an over-reliance on road transport is not without

detractors. Building cities without alternatives can disadvantage those unable

to drive, such as the young, the elderly, and the disabled. Roads can be unsafe,

particularly for vulnerable people; the UK Department for Transport repor-

ted 119,850 casualties on UK roads in 2021, 24,540 of which were killed or

seriously injured[6]. Use of private road transport over active transport is sug-

gested to have a damaging effect on mental health, physical health and social

cohesion[7–9]. Road transport is a major contributor to greenhouse gas (GHG)

emissions and, by extension, climate change; in 2019 transport was the largest

emitting sector of UK GHG emissions (27% of the UK total), with 91% of its
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emissions coming from road transport[10]. The focus of this thesis, however, is

on other emission species with more local scale effects — what may be termed

“air quality” pollutants.

Since road vehicles switched from manual power from humans or beasts of

burden to the internal combustion engine (Subsection 1.2.1), road transport

has emitted a myriad of tailpipe emissions that are deleterious to human

health. Before “smokeless fuels” were legislated for, the sooty emissions of

coal-burning road transport were much more visible to the naked eye. Cleaning

up the visible pollution was far from the end of the story, however, as when one

pollutant was dealt with through improvements in technology and legislation

(Subsection 1.3.3), another would emerge as a new target. The soot and sulphur

dioxide emissions of the 1940s gave way to a focus on carbon monoxide and

lead emissions in the 1960s, which have since been superseded in the 2000s by

oxides of nitrogen and a collection of particulate-phase emissions[11].

Road transport is far from the only source of combustion emissions, but it is

arguably uniquely challenging to understand. Fossil-fuel power stations are

also combustion sources, but they are much fewer in number, static, and highly

regulated. Road transport is almost the complete opposite, and its associated

challenges are effectively all knock-on effects of its aforementioned advantages;

the road transport sector represents millions of independent privately owned

mobile consumer products which move unpredictably in space and time. Each

of the 39.2 million road vehicles in the UK represents a unique emission source,

with even nominally identical vehicles (burning the same fuel in the same

sized engine built by the same manufacturer) likely varying in emissions due to

driving conditions, ambient conditions, driver behaviour, levels of maintenance,

and so on.

Traditionally, road transport emissions have been estimated using data

from a small number of vehicles to act as representatives of the whole fleet

(Subsection 1.3.3). While not without merit, this approach is likely to miss

the aforementioned distribution in a road transport fleet’s emissions. This
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thesis sets out to extract new information from vehicle emission remote sensing,

which can measure thousands of vehicles relatively quickly, although is limited

to capturing very brief “snapshots” of their journeys (Section 1.4). A key goal

of this work is to gain a comprehensive understanding of emission behaviour

despite this limitation.

This chapter serves as an introduction to three key background areas to

this thesis and the subject of road transport emissions more widely. The chem-

istry of road transport emissions is first discussed in Section 1.2, followed by

the legislation surrounding air quality and road transport type approval in

Section 1.3, and finally a description of vehicle emission remote sensing is

provided in Section 1.4. Section 1.5 and Section 1.6 will then outline the thesis

objectives, structure and approach.

1.2 Chemistry of Road Transport Pollutants

1.2.1 Products of the Internal Combustion Engine

In the UK, the majority of road vehicles are powered by internal combustion

engines fuelled by either diesel or gasoline (also called “petrol”). Both of

these fuels are composed of mixtures of hydrocarbons, with gasoline being

composed of more volatile, shorter-chain hydrocarbons (C5–C10) and diesel less

volatile, longer-chain hydrocarbons (C10–C15). Regardless of the fuel type, road

transport internal combustion engines operate in superficially similar ways —

air is drawn into a cylinder, compressed with fuel, and the mixture is ignited

which moves a piston. This drives the crankshaft and induces motion in the

vehicle. The spent mixture of combustion products is the exhaust and is driven

out of the engine, ready for the cycle to repeat.

The key difference between gasoline and diesel engines is related to how

combustion is physically achieved. Gasoline is first mixed with air, compressed,

and then ignited using a spark plug, with the amount of air “throttled” to
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control the fuel-air ratio. Conversely, diesel is injected into already compressed,

non-throttled air, the heat of which causes it to spontaneously ignite. Diesel

engines have a higher “compression ratio” (the ratio of the volume of the cylin-

der at its maximum and minimum), which generates a greater twisting force

(“torque”) on the drive shaft. This, combined with the lack of throttling, means

diesel engines are considered more efficient and are employed for heavier, load-

bearing vehicles like light commercial vehicles (vans), heavy-goods vehicles,

and agricultural equipment like tractors, although there are many diesel pas-

senger cars in the UK and Europe. Gasoline is typically only used to fuel lighter

vehicles that carry smaller loads, such as motorbikes and passenger cars.

The differences between gasoline and diesel combustion engines are behind

the differences in the exhaust composition in the differently fuelled vehicles.

In general, these differences are related to diesel engines running hotter, at

higher pressures, and “lean” (i.e., having an excess of air), as well as injecting

fuel rather than pre-mixing it with air. These different conditions can effect

both the formation of emissions inside of the engine and the efficacy of exhaust

after-treatment systems (Subsection 1.2.2). The chemical underpinnings of

combustion emissions and their mitigation will now be discussed.

In chemistry, “combustion” refers to a category of exothermic redox chem-

ical reactions between a fuel and an oxidant. “Fuels” are simply materials

capable of releasing chemical energy by being burned, and an “oxidant” (or “ox-

idising agent”) is a chemical that can accept the electrons of another substance.

In combustion, the oxidising agent is commonly just atmospheric oxygen, O2,

in the air. An example equation for the complete combustion of the simplest

saturated alkane, methane (CH4), is given in Equation 1.1. In complete com-

bustion — where there is sufficient oxygen to fully consume the fuels — the

only products are carbon dioxide, CO2, and water vapour, H2O.

CH4 + 2 O2 CO2 + 2 H2O (1.1)

Carbon dioxide is a colourless, odourless, non-toxic and non-harmful gas
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which exists naturally as a trace gas in the Earth’s atmosphere. While not seen

as an air quality gas, CO2 is an important climate gas which contributes to

climate change. In the context of remote sensing, measurement of CO2 is still

vital to understand air quality emissions; all other pollutants are expressed in a

ratio to CO2, and these ratios are then used to calculate emission factors. This

is discussed later in Chapter 2.

With insufficient oxygen, incomplete combustion occurs. This is undesirable

as it produces less overall energy, as well as carbon monoxide (CO, Equation 1.2)

and/or smoke (C, Equation 1.3).

CH4 +
3
2

O2 CO + 2 H2O (1.2)

CH4 +
1
2

O2 C + H2O (1.3)

Carbon monoxide is another oxide of carbon, and takes the form of a col-

ourless, odourless, and tasteless gas. Unlike many other road transport air

quality pollutants, CO is not an irritant. Instead, it is both acutely and chron-

ically poisonous through binding with haemoglobin in the blood, forming

carboxyhaemoglobin. Carboxyhaemoglobin is incapable of bonding with oxy-

gen, depriving cells within the body of oxygen and causing them to die. The

UK National Health Service likens the symptoms of mild carbon monoxide

poisoning to the flu or food poisoning. Symptoms of severe poisoning include

intoxication and loss of consciousness followed by death[12]. Carbon monoxide

also has an important role in the formation of tropospheric ozone, O3, which

comes with its own health effects (Subsection 1.2.3). Road transport was once

the largest source of carbon monoxide in the United Kingdom, particularly

from gasoline vehicles; the excess amounts of air in diesel engines promotes full

combustion to CO2. However, increasingly strict emissions regulations have

caused carbon monoxide emissions to fall 95% between 1990 and 2017. Larger

sources of CO are now seen to be residential and stationary combustion[13].

Smoke, given in Equation 1.3 as C, is a carbonaceous solid-phase emission

sometimes also referred to as “soot”, “smoke” or “black carbon”. In emission

28



Chapter 1. Introduction

science, it is categorised as “particulate matter” (PM). Unlike the other pollut-

ants mentioned so far, particulate matter — often abbreviated to “PM” — is

not a discrete chemical species. Instead, it can be described as the sum of solid

and liquid-phase particles in air, which include a combination of organic and

inorganic chemical species of varying size, composition and origin. It has been

demonstrated that particulate air pollution is associated with the development

of cardiovascular diseases and lung cancer[14–16].

Particulate matter emissions are between six- to ten-times as high from

diesel vehicles when compared to gasoline vehicles[17]. This is due to diesel

fuel being injected rather than mixed, creating heterogeneous fuel-air mixtures.

Fuel-dense pockets are not as exposed to air, leading to incomplete combustion

and formation of black carbon which is emitted in the vehicle exhaust. While

this carbon forms the bulk of diesel exhaust particulate, it also contains a soluble

organic fraction (comprised of oil, unburnt fuel, and combustion by-products)

and an inorganic fraction (metals)[17].

Another important emission is that of hydrocarbons (often abbreviated to

“HC”). Hydrocarbons in exhausts are the emissions of unburnt or partially burnt

fuel leaving the vehicle primarily through the tailpipe (although evaporative

non-tailpipe “running-loss” emissions also occur). Much like particulate matter,

“HC” isn’t just one chemical species but instead refers to thousands of alkanes,

alkenes, aromatics, and other hydrocarbons. Like NOx, hydrocarbons play an

important role in O3 formation, and can cause respiratory irritation and cancer.

Unlike NOx, HC is higher in gasoline vehicles; the smaller-chain hydrocarbons

in the lighter gasoline fuel are more volatile so more readily evaporate than the

heavier diesel equivalents.

The preceding chemistry assumes a lack of elements other than hydrogen,

oxygen and carbon in an engine, but this is practically untrue. Composing

78% of the Earth’s atmosphere, nitrogen gas is unavoidably present in the

fuel-air mixture in a combustion engine. The presence of nitrogen leads to

the formation of nitrogen oxide (NO), which is described using the extended
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Zeldovich mechanism (Equation 1.4), a series of reactions in which molecular

nitrogen, oxygen and hydroxyl radicals react to give NO[18].

N2 + O NO + N

N + O2 NO + O

N + OH NO + H

(1.4)

Nitrogen dioxide, NO2, can also be formed in combustion engines (Equa-

tion 1.5), though much of it is a secondary product which will be discussed

later (Subsection 1.2.3).

NO + HO2 NO2 + OH (1.5)

NO is odourless and colourless, whereas NO2 is pungent and reddish-brown.

Both are toxic gases, although the toxicity of NO2 is around five times as

great[17]. Collectively, NO and NO2 are referred to as NOx, and act as an irritant,

lower the body’s resistance to respiratory disease, and play an important role in

the formation of tropospheric O3 and secondary PM (Subsection 1.2.3). Oxides

of nitrogen are key targets for legislation in the UK and Europe; NO2 has

limits set for ambient air (Subsection 1.3.1) and NOx emission limits form part

of the road vehicle type approval process (Subsection 1.3.3). In 2019, 33%

of the UK’s NOx emissions came from road transport, especially from diesel

vehicles. Diesel engines emit considerably more NOx than gasoline engines; the

higher operating temperatures of and excess oxygen in the cylinder promotes

its formation. While road transport remains an important source of NOx in the

UK and Europe, it is important to mention that, since 1990, NOx emissions from

road transport have decreased in the UK by 78%, owing to stricter legislation

on newer vehicles (Subsection 1.3.3)[19].

Another element which can be present in fuel is sulphur, the combustion

product of which is sulphur dioxide (SO2). SO2 has health effects — irritating

the nose and throat — and can react with water and oxygen in the atmosphere,

producing H2SO4. The mechanism for the latter is provided in Equation 1.6.
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Dilute H2SO4, alongside its nitrogen analogue HNO3, is a component of acid

rain which can damage both the natural and built environment. However, it

is important to mention that, in the United Kingdom, legislation has meant

fuel is now effectively sulphur-free. This severely cut SO2 emissions from the

transport sector by 91% from 1990 to 2017[20], and SO2 is therefore not a focus

of this thesis.
S + O2 SO2

SO2 + H2O H2SO3

2 H2SO3 + O2 2 H2SO4

(1.6)

1.2.2 Emission Control Technology

To mitigate the emission of the harmful species discussed in Subsection 1.2.1,

vehicle manufacturers employ a range of different technologies. At first these

technologies focused on adapting the conditions *within* the engine. For ex-

ample, one relatively early method developed for controlling NOx in diesel

vehicles was exhaust gas recirculation (EGR). An EGR system simply reintroud-

ces some of the exhaust gas back into the cylinder, reducing its maximum

temperature and therefore the amount of NOx formed. This works due to

exhaust gas having a higher specific heat capacity than air. While it is known

that EGR is an effective method for reducing NOx emissions, the lower amounts

of oxygen in the cylinder can increase the amount of incomplete combustion,

leading to more CO, PM and HC emissions[21–23].

As emission legislation became increasingly more strict (Subsection 1.3.3),

engine-based interventions stopped being sufficient. As the unwanted by-

products of combustion — NOx, CO, particulates, etc. — and the evaporative

emissions of volatile organic compounds are effectively inevitable side effects of

fundamental chemical and physical processes, there are limited actions that can

be taken within the engine itself to prevent their formation. Instead, vehicle

manufacturers employ a series of “after-treatment” technologies which aim to

destroy, convert or otherwise capture emissions after the engine but before they
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exit the vehicle tailpipe. This is known as “after-treatment”.

Perhaps the most well-known after-treatment systems are catalytic convert-

ers. In chemistry, “catalysis” is the process by which the rate of a chemical

reaction is modified by the presence of a substance not consumed by the re-

action — the “catalyst”. Initially, road transport manufacturers relied on the

two-way (or “oxidation”) catalytic converter to meet emission regulations[24].

Both gasoline and diesel vehicles were equipped with these catalysts, which

were designed to simultaneously oxidise harmful carbon monoxide and un-

burnt hydrocarbons to the less harmful carbon dioxide and, in the latter case,

water (Equation 1.7, where hydrocarbons are represented by CH2).

2 CO + O2 2 CO2

CH2 + O2 CO2 + H2O
(1.7)

Two-way catalysts were effective at their stated purpose, but were not-

ably unable to deal with NOx emissions. The two-way catalyst was therefore

superseded by the three-way catalyst (TWC), which shared the objectives of

oxidising the carbon-containing species but also reducing oxides of nitrogen

(Equation 1.8)[24].

2 NO + 2 CO N2 + 2 CO2

2 NO + 2 H2 2 H2O + N2

3 NO + CH2 CO2 + H2O +
3
2

N2

(1.8)

While effective in their implementation in gasoline vehicles, three-way

catalysts are known to give rise to an additional air quality pollutant. The

TWC is designed to reduce NO to N2, but it can be further reduced to result in

the formation of ammonia, NH3 (Equation 1.9). Ammonia plays an important

role in a lot of environmental issues such as acidification, nitrification, and

eutrophication, as well as acting as a precursor to secondary PM[25].

2 NO + 2 CO + 3 H2 3 NH3 + 2 CO2 (1.9)
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Figure 1.1: The efficiency of a three-way catalyst by air-fuel ratio. There is a “goldilocks”

operating window found around the stochiometric ratio of air to fuel where three-way

catalysts operate the most efficiently for all three species. Diagram adapted from

Umicore Automotive Catalysts [26].

Three-way catalysts both reduce and oxidise species, processes that can be at

odds with one another. Figure 1.1 visualises this; in rich conditions (low air) the

reduction of NOx is promoted but the oxidation of CO and hydrocarbons is poor,

whereas in lean conditions (excess air) the oxidation of CO and hydrocarbons

is rapid but the reduction of NOx rapidly drops off. Three-way catalysts are

therefore not used in diesel vehicles, which tend to run lean.

Instead, diesel vehicles use a combination of the diesel oxidation catalyst

(DOC) and an additional NOx control system. Much like other oxidation

catalysts discussed, DOCs serve to oxidise carbon monoxide and hydrocarbons

(as well as the soluble organic fraction of diesel particulate) to carbon dioxide

and water. NO can also be oxidised to NO2, which does not reduce overall

NOx emissions but can increase the efficiency of NOx control after-treatment

systems.

One common NOx control system is the lean NOx trap (LNT), which operates

by adsorbing NOx under lean conditions and periodically removing it under

rich conditions. The chemistry of an LNT is outlined in Wang et al. [27], but
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is reproduced here. In the lean periods, NO is oxidised to produce NO2 and

adsorbed to an oxide surface as nitrate ions, given in Equation 1.10.

NO +
1
2

O2 NO2

BaCO3 + 2 NO2 Ba(NO3)2

(1.10)

Under the periodic rich conditions, the barium nitrate is released from the

trap and decomposes into barium oxide and nitrogen dioxide. The reduction

of NO2 by any of the reducing agents available in the exhaust (CO, HC, or

H2) is catalysed, and the barium carbonate used in Equation 1.10 is reformed

through reaction with CO2. These steps are laid out in Equation 1.11, where

the reducing agent is given as CO.

Ba(NO3)2 BaO + 2 NO2

2 NO2 + 2 CO Pt/Rh N2 + 2 CO2

BaO + CO2 BaCO3

(1.11)

An alternative (or, in some cases, complementary) NOx control system in

diesel engines is the selective catalytic reduction system (SCR). SCR systems

use a reductant — commonly ammonia (NH3) or urea (CO(NH2)2) — to reduce

NO and NO2 to N2. The three reaction pathways for this — purely NO, purely

NO2, and a combination of both NO and NO2— are provided in Equation 1.12.

The combination reaction is the fastest of the three.

2 NO + 2 NH3 +
1
2

O2 2 N2 + 3 H2O

NO2 + 2 NH3 +
1
2

O2
3
2

N2 + 3 H2O

NO + NO2 + 2 NH3 2 N2 + 3 H2O

(1.12)

SCR technology is neither new nor settled technology, being reviewed in the

literature as early as 1996 and as recently as 2019[28,29]. Unlike the reduction

systems in three-way catalysts, SCR systems are unaffected by the presence

of oxygen, making them suitable for use in diesel engines. However, SCR-

equipped diesel vehicles can undergo “ammonia slip” in which unreacted NH3
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is emitted from the tailpipe. Therefore, much like TWC-equipped gasoline

vehicles, newer (Euro 6+) diesel vehicles can be a source of vehicular NH3
[30,31].

The final element of the diesel after-treatment system to be discussed is the

diesel particulate filter (DPF). A DPF is a structure through which the exhaust

gas travels and to which the particulate matter adsorbs. This is a different

approach to the catalytic systems (e.g., TWC, DOC, SCR) which chemically

convert their target pollutants to something less harmful; the particulates still

exist, just trapped on the filter. DPFs therefore have an upper capacity after

which they need regenerating, which is achieved by burning off the particulate.

This can be “passive regeneration” during extended high engine load conditions

— commonly motorway driving — or “active regeneration” where a control

unit forces an increase in exhaust temperature when the DPF reaches a certain

capacity. If neither of these regeneration methods are allowed to happen (for

example, if a diesel passenger car almost exclusively operates in stop/start

urban driving conditions), DPFs need to be manually cleaned or replaced.

This subsection has outlined several after-treatment strategies which vehicle

manufacturers employ to reduce emissions and meet increasingly stringent

emissions legislation (Subsection 1.3.3). While these methods are common

and effective, they increase the cost, weight and complexity of combustion-

powered road vehicles. The added expense of topping up SCR reductants or

cleaning DPFs lead some fleet owners to pursue “DPF deletion” or use SCR

“cheat devices” to bypass their vehicles’ after-treatment systems. Furthermore,

the chemistry promoted by the catalytic systems gives rise to additional air

quality pollutants, such as ammonia.

1.2.3 Secondary and Non-Exhaust Pollutants

Not all air quality pollutants from road transport are products of combustion,

or chemistry promoted by after-treatment systems. This subsection outlines

air quality pollutants that are not emitted from a vehicle tailpipe, but instead
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react in the atmosphere or are emitted from elsewhere. While this thesis is

focused primarily on the direct tailpipe emissions of road transport vehicles, it

is important to briefly mention these pollutants to fully contextualise how road

transport contributes to poor air quality.

As previously mentioned, NOx is the collective term for both NO and NO2.

The largest fraction of NOx is nitrogen oxide, followed by secondary NO2, with

the smallest fraction being primary NO2. Secondary means that it isn’t produced

in an engine, but rather by reactions between NO and O3 in the atmosphere. NO

and NO2 exist in an equilibrium in the atmosphere, described by the Leighton

relationship (Equation 1.13). NO2 is photolysed into atomic oxygen, which

quickly reacts to form ozone. Ozone molecules can react with nitrogen oxide to

produce molecular oxygen and nitrogen dioxide again. Together these reactions

form a null cycle, producing no net production or loss of the involved species.

The ratio of NO to NO2 depends on the intensity of sunlight (required in the

first step) and the concentration of ozone (required in the third).

NO2
hv NO + O

O + O2 + M O3 + M

O3 + NO NO2 + O2

(1.13)

Another key secondary pollutant is tropospheric ozone, formed from reac-

tions of primary pollutants and other species present in the atmopshere, such

as those described in Equation 1.13. However, Equation 1.13 does not provide

a complete picture — being a null cycle, no net production or destruction

would occur if these reactions were all that occurred. In reality there are many

competing reactions. The production of tropospheric ozone is complex and

nonlinear, but a simplified summary of the photochemistry of ozone in “dirty

air” is provided in Equation 1.14, where “VOC” refers to “volatile organic

compounds” and “oVOC” their oxidation products (e.g., carbonyls).

VOC + 4 O2 ( + NOx + OH) oVOC + 2 O3 + H2O ( + NOx + OH) (1.14)
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Ozone is a pale blue gas with a pungent smell. Stratospheric ozone is

formed as a natural part of the atmospheric chemistry of Earth, and is essential

for sustaining animal and plant life as it absorbs much of the ultra-violet

(UV) radiation emitted by the sun. Tropospheric ozone, on the other hand, is

primarily anthropogenic in origin and is far less desirable. Ground-level O3 is

harmful to breathe, causing respiratory damage, reduced lung function and

increased mortality. It also has additional economic impacts through crop loss.

Earlier, particulate matter was discussed in the context of incomplete com-

bustion of fuel, particularly diesel fuel, producing primary “soot” emissions. It

was also mentioned that NOx and NH3 emissions can promote the formation of

secondary PM in the atmosphere. Road transport also produces a third category

of PM referred to as “non-exhaust” PM which arises from friction rather than

chemistry. The main contributors to non-exhaust PM are brake wear (resulting

from the action of a brake pad on a rotating mechanism), tyre and road surface

wear (the action of a vehicle’s tyre on the road surface), and resuspension (dust

on the road being resuspended by the action of tyres on the road or by turbu-

lence caused by the vehicle). It is estimated that, due to the success of DPFs,

non-exhaust PM now exceeds exhaust PM in the UK[32]. Non-exhaust PM is

also unique among all of the pollutants discussed in this chapter as it would

remain an issue even if the entire road transport fleet completely electrified[33].

1.2.4 Summary of Road Transport Pollutants

Air pollutants resulting from road transport are summarised in Table 1.1.

This includes pollutants arising from combustion and evaporative processes

(Subsection 1.2.1), catalytic processes (Subsection 1.2.2), secondary reactions in

the atmosphere and non-exhaust sources (Subsection 1.2.3).
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Pollutant Description

CO2 Carbon

Dioxide

Formed from complete combustion. Not an air quality gas, but

contributes to climate change.

CO Carbon

Monoxide

Formed from incomplete combustion. Acutely/chronically poisonous.

Higher in gasoline engines — less oxygen to promote complete

combustion.

NOx Nitrogen

Oxides

Formed from the reaction of N2 and O2. Combination of NO and NO2.

Respiratory irritant and toxin. Contributes to O3 and secondary PM

formation. Higher in diesel engines — more oxygen and higher

temperature.

HC Hydro-

carbons

Unburnt/partially burnt fuel. Thousands of chemically distinct

hydrocarbons. Respiratory irritant and carcinogen. Contributes to O3

formation. Higher in gasoline engines — more volatile fuel.

NH3 Ammonia Formed in three-way catalysts by over-reducing NOx (gasoline) and

slips from SCR systems (diesel). Contributes to acidification,

nitrification, eutrophication and secondary PM formation. Higher in

gasoline engines.

O3 Ozone Secondary pollutant, formed from reactions of HC and NOx.

Respiratory irritant, reduces lung function, destroys plant life.

PM Particulate

Matter

Mixtures of solid- and liquid-phase chemical compounds in the

atmosphere. Cause/exacerbate respiratory and cardiovascular disease.

Carcinogenic. Primary: Formed from incomplete combustion. Higher

in diesel engines — heterogenous air-fuel mixture. Secondary: Formed

in the atmosphere from primary NOx and NH3 emissions.

Non-Exhaust: Formed from abrasive action on breaks/tyres/road, or

resuspended from road surface.

Table 1.1: A summary of key pollutants resulting from road transport.
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1.3 Road Transport and Air Quality Legislation

1.3.1 Air Quality Limits

As previously discussed, poor air quality has a negative effect on public health,

acting as a risk factor for cardiovascular diseases, respiratory diseases and can-

cer. The World Health Organisation (WHO) takes the stance that air pollution

is a global health risk on the same scale as unhealthy diets and smoking[34]. It

is therefore in the interest of governments to legislate for better air to mitigate

the health effects and their knock-on economic consequences.

To assist in developing legislation, the WHO sets out air quality guidelines.

These are expressed as upper limits for specific pollutants — PM, O3, NO2, SO2

and CO — over some averaging period (e.g., annual, daily, hourly, etc.). Varying

averaging periods allows for long-term and short-term exposure to be legislated

separately. Recently, the WHO released their 2021 guidelines[34] which signific-

antly reduced guidelines for PM and NO2, and introduced new guidelines for

O3, NO2 and CO. These limits are tabulated in Table 1.2, alongside the relative

changes between the 2005 and 2021 guidelines.

The WHO is an organisation of scientists and medical professionals; the

limits it suggests are not necessarily feasible economically or technologically

for any given country. Furthermore, while they are designed to aid in defining

legislative limits for air quality pollutants, they themselves are not legally

binding and governing bodies are free to set whichever limits they think are

appropriate for their own circumstances. The UK’s air quality objectives are set

out by the Department for Environment, Food & Rural Affairs (Defra)[35] and

are also tabulated in Table 1.2. The UK’s limits are higher than even the 2005

iteration of the WHO guidelines for PM2.5, PM10 and SO2, and are higher than

the newest guidelines for NO2.

Naturally, air quality limits are set in response to more than just road

transport. Countries can exceed their limits due to other anthropogenic activity
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WHO Guidelines

Pollutant Unit Averaging UK 2021 2005 Change

PM2.5 µgm−3 Annual 25 5 10 -50%

24-hour — 15 25 -40%

PM10 µgm−3 Annual 40 15 20 -25%

24-hour 50 45 50 -10%

O3 µgm−3 Peak season — 60 — New

8-hour 100 100 100 ±0%

NO2 µgm−3 Annual 40 10 40 -75%

24-hour — 25 — New

1-hour 200 200 200 ±0%

SO2 µgm−3 24-hour 125 40 20 +100%

1-hour 350 — — —

15-minute 266 — — —

10-minute — 500 500 ±0%

CO mgm−3 24-hour — 4 — New

8-hour 10 10 — New

1-hour — 35 — New

15-minute — 100 — New

Table 1.2: UK National air quality objectives[35], alongside the World Health Organisa-

tion (WHO) air quality guidelines (2005 and 2021)[34,36]. “Peak season” is defined as

the “average of daily maximum 8-hour mean O3 concentration in the six consecutive

months with the highest six-month running- average O3 concentrations”. WHO value

table adapted from Breeze Technologies [37].
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(e.g., other modes of transport, industry, agriculture, etc.) or unavoidable

meteorological processes transporting pollution from elsewhere. Indeed, it has

already been discussed that the road transport sector in the UK is of diminishing

importance for CO and SO2 emissions. However, it continues to dominate the

issue of NOx emissions, which in turn influences the ambient concentrations of

the secondary pollutants O3 and PM[19].

1.3.2 Emission Factors and Inventory Development

An “emission inventory” attempts to account for all pollutants emitted into the

atmosphere, usually for a given location. The UK inventory is referred to as the

National Atmospheric Emissions Inventory, often abbreviated to the “NAEI”[38].

It is funded by the UK Department for Business, Energy and Industrial Strategy

(BEIS), the UK Department for Environment, Food and Rural Affairs (Defra),

the Scottish and Welsh Governments and the Northern Ireland Department of

Agriculture, Environment and Rural Affairs (DAERA). Emission inventories are

required to meet international obligations; for example, data from the UK NAEI

is presented to the United Nations Economic Commission for Europe (UNECE),

United Nations Framework Convention on Climate Change (UNFCCC), and

the European Union. Furthermore, inventories are essential for air quality

modelling to understand trends in pollutant concentrations.

As it is impractical to measure every source of a pollutant at all times,

generic emission factors are used when developing an emissions inventory.

Emission factors are values which relate the quantity of a pollutant emission

with an activity related to its release (Equation 1.15). For example, in road

transport an emission factor may be expressed in units of g km−1, which is to

say the grams of a pollutant (the emission) emitted per kilometre the vehicle

has driven (the activity).

Emission = Activity ×Factor (1.15)

In Europe and the UK, the air quality community typically sources emission
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factors from two modelling approaches; COPERT (the Computer Programme

to calculate Emissions from Road Transport)[39,40] and HBEFA (the Handbook

for Emission Factors)[41], both overseen by the ERMES (European Research for

Mobile Emission Sources) Group[42]. Franco et al. [43] describes the different

applications of the two approaches; COPERT is a “speed-dependent” approach

(utilising speed-emission curves) which is relied upon by many European coun-

tries when reporting their national inventories of emissions, whereas HBEFA

uses a “traffic-situation” approach which — due to requiring a deeper know-

ledge of local-scale traffic — is mainly used at smaller scales (i.e., individual

road links rather than national inventories). Brown et al. [44] outlines the

approach for the UK NAEI which — like many European countries — relies

on the COPERT approach for emission factors alongside guidance from the

EMEP/EEA (European Monitoring and Evaluation Programme/European En-

vironment Agency) Emission Inventory Guidebook[45].

1.3.3 Type Approval Legislation & Emission Standards

Since 1992, all new road vehicles in the UK and Europe must meet certain

emission standards. Meeting the relevant “Euro standard” is part of a vehicle’s

type approval process. The Euro standards for passenger cars are provided in

Table 1.3, and the history and context behind these values will be discussed

below.

In 1992, the Euro 1 legislation came into effect. At this stage, diesel and

gasoline cars had near-identical emission standards, with the only difference

being the additional limit on particulate matter for diesel cars. As well as the

written limits, unleaded petrol and catalytic converters became compulsory.

Four years later, the Euro 2 standards defined different limits for gasoline and

diesel vehicles. To be tested against these type approval limits, manufacturers

produce pre-production cars which are effectively identical to the final product

to be put to market. For fairness, these pre-production cars undertake fixed
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Distance-Specific Emission (g km−1)

Fuel Stage Date CO HC+NOx HC NOx PM

Gasoline Euro 1 07/1992 2.72 0.97 — — —

Euro 2 01/1996 2.20 0.50 — — —

Euro 3 01/2000 2.30 — 0.20 0.15 —

Euro 4 01/2005 1.00 — 0.10 0.08 —

Euro 5 09/2009 1.00 — 0.10 0.06 0.0045

Euro 6 09/2014 1.00 — 0.10 0.06 0.0045

Diesel Euro 1 07/1992 2.72 0.97 — — 0.1400

Euro 2 01/1996 1.00 0.70 — — 0.0800

Euro 3 01/2000 0.64 0.56 — 0.50 0.0500

Euro 4 01/2005 0.50 0.30 — 0.25 0.0250

Euro 5 09/2009 0.50 0.23 — 0.18 0.0045

Euro 6 09/2014 0.50 0.17 — 0.08 0.0045

Table 1.3: European emission standards for passenger cars in g km−1.

“drive cycles” on chassis dynamometers, also known as “rolling roads” — labor-

atory instruments designed to simulate driving in a controlled environment. At

the time, the drive cycle used was the ECE+EUDC cycle[46]. This involved four

repetitions of an urban cycle (meant to model typical driving in a European city)

followed by one “extra-urban” cycle (accounting for more aggressive driving).

Under the Euro 1 and 2 standards, vehicles were allowed to idle for 40

seconds at the beginning of the test before emission sampling started. One

of the key changes brought with the Euro 3 legislation was the removal of

this idling period, capturing so-called “cold-start” emissions. The cold-start

procedure was referred to as the “New European Drive Cycle” (NEDC), which is

visualised in Figure 1.2. As well as introducing the NEDC, the Euro 3 legislation

of 2000 further reduced CO and PM emissions, added separate NOx limits for

diesel cars, and added separate HC and NOx limits for gasoline cars.

Over the next nine years, the Euro 4 and 5 standards continued to introduce

increasingly strict limits on NOx, CO, HC and PM for gasoline and diesel
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Figure 1.2: The New European Drive Cycle (NEDC, top) and World Harmonised Light

Vehicle Test Procedure (WLTP, bottom).

cars. Euro 5, for the first time, also included a PM standard for gasoline cars.

Furthermore, to mitigate the effects of very fine particulate emissions, Euro 5

introduced a particle number (PN) limit of 6× 1011 km−1 for diesel cars. The

increasingly stringent PM emission limits led to the mass adoption of the diesel

particulate filter (DPF) in all diesel cars under the Euro 5 legislation, although

there were some early Euro 4 adopters.

The most recent set of standards are the Euro 6 standards which broadly

focus on reducing diesel emissions, with the NOx limit dropping by roughly

60% to just 0.08 g km−1. Importantly, the various stages of Euro 6 legislation

brought significant changes to the way type approval was carried out[47]. Euro

6 legislation was set out in stages — Euro 6a through Euro 6d — with each step
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introducing new legislation:

• Euro 6a was the first version, and effectively set out the standard limits

and the start date of 1 September 2014.

• Euro 6b came into force in 2014, when new vehicles began needing to

meet the Euro 6 standard. Furthermore, the particulate limits for both

gasoline and diesel engines dropped to 0.0045 g km−1.

• Euro 6c was introduced in 2017, which included two key changes. First,

the particle number limit imposed on diesel vehicles under Euro 5 legisla-

tion was introduced to gasoline vehicles. This led to the adoption of the

Gasoline Particle Filter — a similar technology to the Diesel equivalent

that has been shown to effectively control gasoline PM emissions[48–50].

Secondly, and perhaps more significantly, Euro 6c replaced the NEDC

with the World Harmonised Light Vehicle Test Procedure (WLTP), which

is also visualised in Figure 1.2. This new drive cycle was meant to be more

reflective of real-world driving, addressing criticism that the NEDC covers

too limited a range of driving conditions to represent actual driving[51,52].

• Euro 6d-TEMP was valid between 2018 and 2020, and arguably intro-

duced Euro 6’s most significant change to the type approval process;

for the first time, a “real-world” element was added in the form of the

Real World Driving (RDE) emissions test. The pre-production cars are

driven on public roads with Portable Emission Measurement Systems

(PEMS) measuring NOx and PM emissions, PEMS being an “on-board”

measurement technique where instrumentation is carried inside a vehicle.

Euro 6d-TEMP legislated a so-called “conformity factor” of 2.1 for the

standards, effectively increasing the 0.08 g km−1 limit to 0.168 g km−1

for the RDE test. This was to allow manufacturers time to adjust to the

change in the type approval procedure.
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• Euro 6d is the current emission standard in the UK and Europe. The key

change introduced was the compliance factor of the RDE test dropping

from 110% to 50%.

Euro 6 will not be the final emission standard in Europe. As part of the

European Green Deal, the European Commission has already set out intentions

for Euro 7 legislation that will be even more stringent than Euro 6d[53–55].

Three options are being considered, all expressed as revisions to existing Euro

6 legislation: 1) a “narrow revision” to simplify and standardise standards and

testing, 2) a “wide revision” to introduce even more stringent limits and begin

legislating new pollutants (e.g., NH3, non-CO2 greenhouse gas emissions, etc.),

and 3) a “comprehensive revision” to begin real-world emission monitoring

over a vehicle’s lifetime. At the time of writing, the Euro 7 initiative has received

68 published articles of feedback, with the three biggest sources being business

associations (23), individual companies or businesses (16) and public authorities

(9)[56]. The non-governmental federation “Transport & Environment” has raised

concerns about manufacturer groups opposition to Euro 7 proposals, referring

to Euro 7 as “last opportunity to introduce stricter emissions standards to

reduce toxic emissions from internal combustion engines”[57,58]. Indeed, it is

commonly assumed that Euro 7 will be the final Euro emission standard before

internal combustion engines begin to be phased out entirely.

While pollutants like CO, HC and PM have been broadly below the emis-

sion standards set out for them, NOx emissions are understood to exceed the

type approval limits in the real world[59]. Vehicles exceeding type limits has

significant public health impacts, including premature deaths in Europe[60–62].

46



Chapter 1. Introduction

1.4 Vehicle Emission Remote Sensing

1.4.1 A Brief History of Remote Sensing

Vehicle Emission Remote Sensing (commonly abbreviated to either “RS” or

“VERS”) was invented by researchers at the University of Denver in 1987 with a

grant from the Colorado Office of Energy Conservation[63]. The earliest publicly

available reference to remote sensing technology was in Stedman et al. [64],

a report to the Colorado Office of Energy Conservation, in which the authors

describe the device in the context of its original funded purpose — to save

fuel by identifying gasoline vehicles with high CO tailpipe emissions. Indeed,

the name of the original “remote sensing device” (RSD) made no reference

to air quality, being named the “Fuel Efficiency Automobile Test” (or FEAT)

instrument.

“This device is the first of its kind in the world and has opened the

way to monitoring a large number of “in-use” vehicles for excessive

carbon monoxide emissions, which provides a direct relationship to the

vehicle’s energy efficiency, conveniently and economically.”[64]

In 1989 the first two FEAT articles in academic journals were published.

Writing in Environmental Science & Technology, Donald H. Stedman — the

project lead on the development of the FEAT instrument — reflected on remote

sensing’s role in clean air policy, and invited readers to consider how it may

play into enforcement strategies. He also noted the observation that emissions

from the studied fleet are dominated by small proportion of gross polluters — a

recurring theme in remote sensing literature to this day[65]. The second article,

Bishop et al. [66], is the first comprehensive description of the operation of the

FEAT, and concludes by stating that “[the authors] believe that the basic concept

is sound and that it is feasible to expand the sensor to monitor additional species

such as hydrocarbons, formaldehyde, and nitrogen oxides.”[66] — a prediction that

would later come true.
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In the late 1980s and early 1990s, the FEAT instrument was only capable

of measuring CO2 and CO using IR spectroscopy. Despite this limitation, over

100,000 measurements were taken using the FEAT device and used to comment

on the success of then-recent legislation[67] and on the capability of RS to be an

effective surveillance tool to identify high-emitting vehicles[68] — to list two

examples. By 1992, the IR technology in the RSD had been upgraded to be able

to measure unburnt hydrocarbon emissions[69]. One of the earlier applications

of the HC capabilities was the FEAT’s use in Mexico City, where vastly higher

CO and HC emissions than had been seen in North America and Europe were

observed[70].

In 1993, a patent was awarded to Donald Stedman and Gary Bishop for an

“Apparatus for remote analysis of vehicle emissions”, with the abstract begin-

ning “A gas analysis device for the remote detecting, measuring and recording of NOx,

CO, CO2, HC and H2O levels from the exhaust of moving motor vehicles”[71]. NO

was the next pollutant to be added to the FEAT system, being the first pollutant

to be measured using ultraviolet rather than infrared spectroscopy[72,73]. At

that time it was assumed that NO represented the majority of oxides present in

NOx, so it wasn’t until later that a separate NO2 channel was also included when

primary NO2 emissions were raised as a concern[74]. UV channels were also ad-

ded to the FEAT to measure SO2 and NH3, further increasing its capabilities[75].

In the present day, the FEAT instrument is no longer the only cross-road,

laser-based RSD. The company Envirotest were the first to commercialise the

technology, and were then acquired by OPUS Group in 2014[76]. The OPUS

AccuScan RSD is, in practice, very similar to the FEAT — although it possesses

some key differences discussed in Subsection 1.4.2. Other commercially avail-

able RSDs are available; the EDAR system has been developed since 2009 which

uses a ‘top-down’ approach to measure emissions rather than cross-road[77,78].

The top-down EDAR system is not a focus of this thesis, although its potential

applications related to the contained work are briefly discussed in Chapter 2.
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1.4.2 RSD Instrumentation: Principles and Practicalities

A vehicle emission remote sensing device (RSD) is not a singular instrument,

but instead a collection of at least three key modules working in tandem - ultra-

violet and infrared spectrometers used to measure concentrations of exhaust

pollutants, speed-acceleration bars used to capture the instantaneous driving

condition of the vehicle’s being measured, and number plate cameras for photo-

graphing vehicle number plates. These modules all feed information to and are

controlled by a field computer. A schematic of the set-up of a cross-road RSD is

provided in Figure 1.3.

The underlying physical and chemical principles of cross-road RSDs have

been described extensively in the literature, most often by the inventors of the

FEAT instrument. A thorough review of the physical principles and individual

instrumentation underpinning the FEAT instrument, many of which also apply

to the OPUS instrument, is provided in Burgard et al. [79], but a brief overview

is provided here.

CO2, CO, and HC are measured using non-dispersive infra-red (NDIR) spec-

troscopy. While scanning IR spectrometers (such as those found as bench-top in-

struments in chemistry laboratories) are expensive, complex, and non-portable,

NDIR sensors are cheap, simple and lightweight. NDIR sensors involve IR

light shining from a lamp into a detector, passing through filters to isolate

wavelengths corresponding to specific target gases. In the FEAT instrument IR

light is focused across a road and, on entry to the detector, is refocused onto a

spinning mirror, which sweeps the light across four IR detectors. The passband

filters on these detectors filter for the following wavelengths: 2150 cm−1 for CO,

2350 cm−1 for CO2, 2970 cm−1 for HC (specifically targeting the C H stretch),

and 2600 cm−1 for the IR reference.

The reference wavelength was chosen as it was in the same range as the

pollutant wavelengths while being a wavelength where no pollutant should

absorb. As HC emissions are mixtures of hundreds of different hydrocarbons
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Figure 1.3: A schematic setup of the key modules of a roadside vehicle emission remote

sensing device (RSD), for both the commercially available OPUS RSD (top) and the

original Denver FEAT instrument (bottom).
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the measurement is approximate and misses around half of hydrocarbons

in the exhaust, so a scaling factor of 2 is applied[80]. The Beer-Lambert law

(Equation 1.16) can be used to calculate the concentration of the target gas,

c, using the intensity of light detected by the filtered light, I , the reference

intensity, I0, the molecular absorption coefficient of the gas, ε, and the path

length, l.

εcl = log
(I0
I

)
(1.16)

NO concentrations are not measured using NDIR as the fundamental ab-

sorption band of NO, 1800 cm−1, overlaps with the absorption of water vapour,

which is also present in the exhaust and air. Instead, NO — along with NO2,

SO2 and NH3— are measured using disperse ultraviolet (UV) spectroscopy. The

UV and IR lights are collinear, so need to be split upon reaching the detector

module of the RSD. While the IR is directed into the aforementioned spinning

mirror, the UV light is focused onto the end of a quartz UV fibre bundle which

— in the FEAT instrument — are coupled to two spectrometers: one to measure

NO, SO2 and NH3 at the spectral range of 200–226 nm, and one to measure NO2

between 430 and 447 nm. Until very recently, the OPUS RSDs only had one UV

channel for measuring NOx and NH3, but the recent AccuScan RSD 5500 does

include a second just for measuring NO2 similar to the FEAT instrument[81].

Despite the slight differences in the spectroscopic approaches used by the FEAT

and OPUS instruments, evidence from the literature suggests that the resulting

data are comparable[82].

As well as measuring gaseous species, the OPUS RSD also measures particu-

late matter. Light is scattered or absorbed by particles in a vehicle’s exhaust, so

light opacity is used as a proxy for PM emissions. The UV absorbance at 248

nm is considered as there are limited responses from NOx and other gaseous

species at this wavelength. Opacity can be calculated by comparing the amount

of light returning at this wavelength to the amount detected at the CO2, CO and

HC detection wavelengths. This opacity-based method is best suited for meas-
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urements of high-emitting vehicles (such as pre-DPF diesel vehicles), as for

“cleaner” vehicles the opacity readings are likely to fall within the instrument

noise[83].

The speed-acceleration bars for both the FEAT and OPUS instruments are

simple optical triggers. Passing vehicles blocking and unblocking the lasers as

they pass allows the RSD computers to calculate vehicle speed and acceleration.

These are important measurements for estimating the power demand on an

engine, which usefully correlates with emissions better than speed or accelera-

tion alone. Commonly, a metric known as vehicle specific power (VSP) is used,

which is defined as the sum of the power demands on a vehicle (acceleration,

drag, rolling resitance, gradient climbing, etc.) divided by the vehicle’s mass[84].

The calculation and application of VSP is discussed more in Chapter 2.

The camera photographs number plates, which can be cross referenced with

vehicle databases to obtain technical information about the passing vehicles.

In the UK, technical information can be sourced from the UK Driver and

Vehicle Licensing Agency (DVLA) and the Society of Motor Manufacturers and

Traders Motor Vehicle Registration Information System (MVRIS), but sources

and quantity of technical information will vary internationally. For the data

used in this thesis, the commercial supplier CDL Vehicle Information Services

Ltd. was used[85]. Vehicle technical information is vital to distinguish between

different vehicle classifications (e.g., vehicle type, fuel type, and engine size). It

also enables one of the greatest strengths of remote sensing as a method, which

is considering a vehicle fleet on a very granular level (individual manufacturers,

body types, years of manufacture, after-treatment technologies, etc.).

Figure 1.3 illustrates the similarities and differences between the practical

deployment of the FEAT and OPUS RSDs. While the layout of the RSD mod-

ules is broadly similar, a key difference lies in the arrangement of the light

sources and detectors. The Denver FEAT instrument places the UV/IR source

and optical speed/acceleration bar source on the opposite side of the road

to the detectors/spectrometers, whereas the OPUS RSD houses both source
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and detector in one unit with the light being deflected back by mirrors. This

means that the OPUS path length is effectively double that of the FEAT, which

increases the signal-to-noise ratio and is suggested to potentially improve the

accuracy of exhaust measurements[82]. The differing arrangements also mean

that the FEAT instrument needs powering on both sides of the road, whereas

the OPUS only requires a single power source on the curbside. The schematic

in Figure 1.3 also simplifies the reality of the four FEAT modules; there are

more individual units in the FEAT which need to be individually connected

with communication and power cables. Conversely, the schematic accurately

represents the OPUS system, where each of the modules are housed in one unit

each which only need to be connected via communication cable to the control

computer. Practically speaking, the differences between the systems mean that

the OPUS RSD is easier to transport and faster, simpler and safer to deploy.

Site selection is an important consideration and limitation for the deploy-

ment of a remote sensing device. Cross-road RSDs can only work on single

lanes of traffic. Setting up on a common single carriageway — with two lanes,

one for each direction of travel — may lead to unlawful blocking of public

roads, particularly in the UK where roads are broadly narrower compared to

the US where RS was first invented. RSD operators therefore rely on road fea-

tures such as pedestrian refuges or hatched road markings in the middle of the

carriageway to non-obstructively deploy the “roadside” units of the RSD (FEAT

sources/OPUS mirrors). Remote sensing also requires engines to be under load

to produce a measurable exhaust plume. Site choices which optimise for these

conditions include set-ups on motorway slip roads, on roundabout exits, after

security gates or after speed limit increases, all of which are situations in which

drivers are encouraged or required to accelerate. Remote sensing can also be de-

scribed as “fair weather” technology as rain, snow, and fog cause light scattering

which drastically decrease the number of valid emission measurements[86].

While RSD operators must be thoughtful when choosing measurement sites

and days for the above reasons, the portability of remote sensing is one of its
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key advantages. If a particular fleet is of interest — for example, the taxi fleet of

a specific city — an RSD can be deployed in the city’s urban centre and measure

the actual taxi fleet under the conditions in which they are actually driven.

If operators are interested in heavy-duty vehicle emissions, their RSD can be

deployed in industrial estates or shipping ports. The FEAT instrument has even

been adapted to measure high-exhaust heavy-duty road vehicles, snowmobiles,

locomotives and aeroplanes, all of which are illustrated in Burgard et al. [79].

1.4.3 Common Applications of Remote Sensing

Before the commercialisation and wider adoption of remote sensing technology,

the entirety of RS literature came from the Stedman group at the University of

Denver. Some of this has been referenced in Subsection 1.4.1, and the earliest

applications of the FEAT thoroughly reviewed in Burgard et al. [79]. This

section intends to explore more recent applications of remote sensing, both

from Denver and internationally.

Emission Factor Development

Remote sensing typically reports emissions as either ratios to CO2 or, more

commonly, fuel-specific (g kg−1) emission factors. Due to having no access to

the tailpipe, distance-specific (g km−1) emission factors are more difficult to es-

timate. This is a disadvantage of remote sensing as a technique as it sets it apart

from other methods (chassis dynamometers, PEMS) and the COPERT/HBEFA

approaches for emission factor calculation. This is more thoroughly discussed

in Chapter 2. Regardless, numerous studies present emission factors for others

to use[31,87], including studies presented in this thesis (Appendix C).

As remote sensing measurements are instantaneous snapshot measurements

of vehicle emissions, a natural question is how many are required to be rep-

resentative of a given vehicle category. Chen et al. [88] uses Monte Carlo

simulations to attempt to set a threshold, arriving at 200 measurements being
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able to represent the mean emission rate for Euro 4+ diesel cars, and 300-800

being needed to also approximate the variance. In reality, there is considerable

variation in the literature, with Smit et al. [89] presenting emissions data for

vehicle categories with as few as 3 remote sensing observations.

Fleet Surveillance

Remote sensing has been conducted since the late 1980s, meaning that there

is a wealth of RS measurements in existence up until the present day. Several

studies undertake what may be termed “fleet surveillance” — examining long-

term trends in vehicle fleets, both in composition and emissions. The University

of Denver is particularly capable of this kind of analysis[90,91], with Bishop

[91] examining three decades worth of emissions measurements. The Denver

group has also published extensive fleet surveillance studies on Heavy-Duty

vehicles[92–97].

In Europe, the CONOX project set out to pool European RS data into a

centralised database which, similar to the FEAT databse, allows for long-term

fleet surveillance[98,99]. Chen et al. [59] used the CONOX database to analyse

light commercial vehicle (LCV) emissions trends alongside changing emission

legislation. In the UK, Carslaw et al. [100] noted a substantial downward trend

in primary NO2 emissions from road transport. Smit et al. [89] summarises

a decade worth of remote sensing in Australia, noting stabilising NOx and

PM emissions from vehicles in the Australian fleet. A common theme across

the American, European and Australian studies is the unprecedentedly large

amounts of data spanning many years of measurement campaigns, the likes

of which would be nearly impossible to replicate with in-lab or on-board

techniques.

Historic measurements also allow remote sensing to directly address how

emissions respond to “hot topic” issues in the road transport sector. A contem-

porary example is the after-effects of dieselgate. While it would be challenging

to do enough lab-based or on-board measurements to identify the fleet-wide
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implications of post-dieselgate hardware and software fixes, two RS studies

— Grange et al. [101] and Bishop [102] — were able to directly compare large

samples of pre- and post-repair diesel vehicle emissions. Being able to examine

different in-use fleets permitted the studies to come to different conclusions

(36% vs 83% reductions in fuel-specific NOx in Europe vs the US, respect-

ively) which may have been hidden if only a small number of “representative”

vehicles were studied using PEMS, for example. An earlier example is Bishop

and Stedman [103], where the Denver group examine the impact of the 2008

global recession on US light-duty vehicle emissions.

Long-term monitoring of the same fleet also allows for emission deteriora-

tion to be examined[104–106], which is more thoroughly discussed in Chapter 5.

Influences on Emissions

As already mentioned, a common variable with an influence on emissions

is vehicle specific power (VSP)[84,107]. This is common in much of the road

transport emission science literature, but very frequently used in remote sensing

literature in particular to capture the instantaneous driving condition of a

vehicle. Additionally, the variation in RS measurement sites/conditions coupled

with its large sample sizes of vehicles allows the technique to comment on a

myriad of other influences on vehicle emissions. Of particular interest may be

those that are difficult to replicate in a laboratory — for example, some Denver

studies on the effects of altitude[92,108].

Remote sensing measurements are taken under true ambient conditions,

similar to PEMS measurements but dissimilar to in-lab, climate controlled

chassis dynamometer studies. RS has therefore been a useful tool to examine

extremes of temperature and their effects on emissions. Bishop et al. [109]

examined heavy-duty vehicle emissions in the US using remote sensing and

noted a roughly 25% increase in NOx between spring and winter. Grange et al.

[110] examined light-duty vehicles in Europe and suggested 38% more NOx

may have been emitted in Europe than was predicted by in-lab test cycles owing
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to temperature dependence.

Remote sensing is also uniquely suited to identifying the real-world emission

differences between vehicle manufacturers. The literature commonly references

differences between manufacturers[31,83,101,110–112], and the quantification of

these differences is a common theme in this thesis (Chapter 2, Chapter 4 and

Chapter 5).

Fleet Screening

RS as a technique has the potential to screen passing vehicles to identify “high-

emitters” — the small proportion of individual vehicles that contribute dis-

proportionately high amounts to total fleet emissions. This may not be as

straightforward as it first seems; instantaneous emission measurements from

passing vehicles are not the same as their average emissions (which remote sens-

ing doesn’t have access to), and the easiest solution of setting a high threshold

may fail to detect high-emitters. As part of their review of remote sensing in

Hong Kong, Huang et al. [113] suggests a three-point strategy for high-emitter

detection; measurements only under moderate speed/acceleration, a threshold

“safely” above the emissions of normal vehicles, and at least two high emission

flags (from using two RSDs sequentially, for example). Even then they note

that, in Hong Kong, this strategy only consistently worked for gasoline vehicles,

with a high number of false flags for diesel vehicles. There are a number of

alternative methods presented in the literature that use more robust — and

complex — statistical methods for high-emitter detection[114–116]

Despite the concerns expressed in the literature, in practice there has been

success at using a high threshold to identify real-world high emitters by the

OPUS group. A recent example was a 2019 campaign in Spain, where OPUS

Remote Sensing Europe successfully identified NOx emission “cheats” in the

HGV fleet, with the police on hand to immediately investigate. The investiga-

tion noted 15% of the measured fleet were using SCR-overriding cheat devices,

leading to arrests and other legal action[117].
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Fleet screening includes more than just identifying high NOx emitters.

Gautam et al. [118] determines thresholds for identifying compromised/re-

moved diesel particulate filters using remote sensing, and Bishop et al. [119]

outlines a screening method for running-loss hydrocarbon emissions. Regard-

less of the specific feature being screened for, all screening studies exploit the

rapid, “live” measurements of vehicles to quickly identify vehicles of interest.

1.5 Thesis Aims, Objectives and Structure

The overall aim of this thesis is to develop novel methods for the analysis of

vehicle emissions remote sensing data, allowing for new insight into road trans-

port emissions. Much of these methods focus on the exploitation of an exhaust

emission-engine power relationship to “map” remote sensing emissions data

onto real-world driving activity data. To demonstrate and validate the methods

outlined in this thesis, large data sets of hundreds of thousands of remote

sensing observations were used, collected with both the University of Denver

FEAT instrument[120] and the commercially available OPUS RSD5000[76]. In

some cases, outputs were directly validated or challenged with the use of non-

remote sensing data, such as the UK National Atmospheric Emissions Inventory

or independent PEMS data. Specific objectives for each chapter are outlined

below.

Chapter 2 presents the development of a method to calculate distance-

specific (g km−1) emission factors from remote sensing data through modelling

instantaneous fuel consumption using a physics-based estimate of engine power.

The method is validated through an initial application to portable emission

measurement system (PEMS) data, with good correlation between measured

and modelled distance-specific CO2 emissions. The chapter also presents a

brief investigation into manufacturer-specific emissions, which is expanded

upon in Chapter 4.
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Chapter 3 demonstrates the approach outlined in Chapter 2 used to model

NOx emissions over a very large data set of real-world driving data from mul-

tiple drivers and driving conditions. The synthesis of a large data set of real-

world emissions data from remote sensing and an extensive data set of driving

data allows for comprehensive assessment of emissions. This chapter uses the

resulting data set to explore the significance of two local-scale influences on

emissions: the variability of the speed-emission relationship with road speed

limit, and the potential effect of individual driver behaviour.

In Chapter 4, a large UK-based remote sensing data set, UK government

activity data and the approach outlined in Chapter 2 are used to calculate a

bottom-up estimate of CO2 and NOx emissions for the UK. The calculated values

are then used to directly challenge the UK National Atmospheric Emissions

Inventory. Good carbon balance is achieved, validating this approach further,

but NOx is found to be underestimated in the UK NAEI — particularly in urban

areas. Furthermore, a potentially significant manufacturer effect not currently

directly accounted for in emissions inventories is identified.

Chapter 5 presents a combination of remote sensing data and measured

mileage information from MOT tests, which are used to statistically analyse

the deterioration of emissions. Quantile regression is employed to understand

the skewed nature of emissions deterioration, and reveals distinct patterns

of deterioration between gasoline and diesel passenger cars. The difference

between manufacturers are also once again highlighted, illustrating variable

levels of control over NOx emissions between them.

Chapter 6 summarises and contextualises the presented work, and discusses

potential future directions in this area of research.

As Chapter 2, Chapter 4 and Chapter 5 are all heavily based on peer-

reviewed journal publications, they are written in a way that can be read

independently without reference to other chapters in this thesis. Chapter 3 is

unpublished work and, while it can be read as an individual study, it is best

considered an extension or application of Chapter 2.
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1.6 Data & Software

Each of the results chapters of this thesis use vehicle emission remote sensing

data obtained by researchers at the University of York and at Ricardo Energy

& Environment. As more data were made available over time, numbers of

observations are inconsistent between chapters. Results chapters were written

in the following order, with the number of remote sensing observations available

increasing with each: Chapter 2, Chapter 4, Chapter 5, Chapter 3.

All analysis contained within this thesis was conducted using the R program-

ming language[121] in the RStudio integrated development environment[122].

Most commonly the tidyverse suite of packages was employed[123], but

for large data sets (most notably in Chapter 3) the data.table package

was used[124]. All data visualisations in this thesis were produced using the

ggplot2 package[125] and a handful of extension packages[126–131], with some

visual refinement performed in the vector graphics editor Inkscape[132]. Ink-

scape was also used to illustrate all graphical abstracts at the beginning of

chapters.

Statistical modelling was undertaken using the “base” R stats package[121],

the tidymodels suite of packages[133], as well as the following specialist pack-

ages: generalised additive models were fit using mgcv[134]. Decision trees were

fit using rpart[135]. Quantile regression models were fit using quantreg[136].

Statistical summary tables found in the “methods and materials” sections of

Chapter 2, Chapter 4 and Chapter 5 were generated using the gt[137] and

gtsummary[138] packages.

The typesetting for this thesis was done with LATEX using the Overleaf cloud-

based LATEX editor (www.overleaf.com).
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Chapter 2

Absolute Emission Estimates from

Remote Sensing Data
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2.1 Abstract

Vehicle emission remote sensing has the potential to provide detailed emissions

information at a highly disaggregated level owing to the ability to measure

thousands of vehicles in a single day. Fundamentally, remote sensing provides

a direct measure of the molar volume ratio of a pollutant to carbon dioxide,

from which fuel-specific emissions factors can readily be calculated. However,

vehicle emissions are more commonly expressed in emission per unit distance

travelled, e.g., grams per km or mile. To express vehicle emission remote

sensing data in this way requires an estimate of the fuel consumption at the time

of the emission measurement. In this chapter, an approach is developed based

on vehicle specific power that uses commonly measured or easily obtainable

vehicle information such as vehicle speed, acceleration and mass. The method is

tested against 55 independent comprehensive PEMS measurements for Euro 5

and 6 gasoline and diesel vehicles over a wide range of driving conditions,

and is applied to individual vehicle model types to quantify distance-specific

emission factors. The method will be appropriate for application to larger

vehicle emission remote sensing databases, thus extending real-world distance-

specific vehicle emissions information.
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2.2 Introduction

Road vehicle emissions contribute significantly to a wide range of air pollution

problems, particularly in urban areas. The European Environment Agency

estimates that in 2017 86% of its monitoring stations which reported NO2

concentrations above the World Health Organisation Air Quality Guidelines

were traffic stations[139]. Important primary combustion products from vehicles

include NOx (NO + NO2) and particulate matter (PM). Additionally, emissions

of NOx act as an ozone (O3) precursor and are an important contributor to

secondary particulate formation. Emissions of these species have been shown

to have considerable deleterious effects on human health[16,140,141], with pre-

mature deaths in Europe having been attributed to poor air quality owing to

exceedance of road transport type approval tests[60–62]. Recently, Schraufnagel

et al. [142] suggested that air pollution could deal chronic damage to potentially

every organ in the human body.

Robust emissions data are required to ensure that policies aiming to mitigate

air pollution are effective. In the case of road vehicle emissions, robust quanti-

fication poses considerable challenges. Vehicle emissions vary by manufacturer,

vehicle model, emission standard, engine size, fuel type and many other factors.

Even nominally identical vehicles which share all these characteristics can

vary in their mileage, their levels of maintenance, driver behaviour, the added

weight of their passengers and cargo, the auxiliary systems being employed,

and the ambient conditions in which they are driven. With tens of millions

of road vehicles in the United Kingdom alone, it is challenging to robustly

quantify the contribution of road transport to air quality.

In recent years there has been an increased focus on emissions under “real-

world” conditions in addition to laboratory-based quantification. Historically,

testing vehicles for type approval regulations has been solely conducted under

controlled laboratory conditions on chassis dynamometers over drive cycles

such as the New European Driving Cycle (NEDC). Originally introduced in
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1996, the NEDC is criticised for poorly reflecting real driving conditions. To

replace the NEDC, the Worldwide Harmonised Light Vehicles Test Procedure

(WLTP) was introduced in Europe starting in 2017, which is more representative

of real-world driving, alongside the Real Drive Emissions (RDE) test. The RDE

test is conducted on roads in real traffic, with vehicles being measured with

Portable Emission Measuring Systems (PEMS) undergoing a specified variety

of driving conditions (urban, rural, and motorway)[143].

Remote sensing is in many ways complementary to PEMS. PEMS has some

clear benefits: the full journey of a single vehicle can be measured under almost

any driving condition — idling in traffic through to motorway driving. However,

it can be expensive and time consuming to measure a large number of vehicles

in this way and capture important variations due to ambient conditions, vehicle

age profiles and the potential effects of vehicle deterioration. Moreover, it is also

challenging to measure a broad range of vehicle types, including urban buses

and the wide range of heavy duty diesel vehicles (HDV) that exist. The growing

databases of PEMS measurements are strongly dominated by measurements of

passenger cars.

On the other hand, vehicle emission remote sensing cannot measure an

entire drive cycle; only measuring a snapshot of a given vehicle’s journey (the

average of 10 to 25 instantaneous measurements of an exhaust plume within

0.5 s of a vehicle’s passing[111]). Nevertheless, an important advantage of remote

sensing comes from the much larger sample size measured in a short space of

time, full fleet coverage with little selection bias, and the unobtrusive nature of

remote sensing. Applications of the technique have included the instantaneous

identification of potential high-emitters[113,117] and investigations into longer

term trends in fleet emissions[90,144]. Remote sensing data has also been used

to analyse real-world conditions which can influence vehicle emissions, two

examples being altitude[108] and ambient temperature[110].

A key limitation of remote sensing in terms of emission factor development,

however, is that only a molar ratio of a pollutant to CO2 is measured. This is a
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consequence of measuring in a dispersing plume in the atmosphere rather than

measuring emissions directly at the tailpipe. The concentrations of pollutants

in a plume may change as it dilutes, but their ratios to CO2 should remain the

same for unreactive pollutants[145]. With a few basic assumptions about the

combustion of hydrocarbon fuels, it is straightforward to calculate fuel-specific

emission factors, most commonly expressed as grams of emission per kilogram

of fuel burnt[79].

Fuel-specific emission factors have been argued to vary less with engine load

than distance-specific equivalents[145,146]. Lee and Frey [147] went as far to

suggest that remote sensing site-specific fuel-specific emission factors could be

representative of area-wide emission rates if the distribution of vehicle specific

power (VSP) values were similar between the measurement site and routes

in the area of interest. However, the vehicle emissions type approval process

and emission factors used in the development of emissions inventories instead

express emissions as distance-specific factors, i.e., grams per mile or kilometre.

Previous studies have already attempted to calculate distance-specific emis-

sion factors from remote sensing data. Carslaw et al. [148] used UK emission

factor estimates of CO2 in g km−1 and measured NOx to CO2 ratios to calculate

NOx g km−1 emission factors; a major assumption being how accurate and

representative the CO2 estimates are. Similarly, Bernard et al. [149] combined

average fuel-specific emission factors, the carbon content of fuel, and distance-

specific CO2 emission factors estimated based on type-approval information

contained in number plate information, augmented by the reported consumer

fuel economy average experience in real-world conditions. The authors note

that this method is to be used with caution due to the real-world variance of

CO2 g km−1 values not reflected in the type-approval values.

More commonly, fuel consumption is used directly to transform fuel-specific

emission factors into distance-specific emission factors. In some cases, the

approach relies on preexisting measurements of fuel consumption. Andrés

Aguilar-Gómez et al. [150] estimated fuel consumption based on fuel economy
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data-bases available from maintenance programs in Mexico where their study

took place, and Zhou et al. [151] relied on fuel consumption information

derived from an earlier PEMS study by Wang et al. [152]. A natural drawback

of methods such as these is the restriction of remote sensing to locations where

these external data sets exist and are publicly available.

Other studies have chosen to model fuel consumption based on roadside

measurements. For example, Chan and Ning [153] used work presented by

Tong et al. [154] to model fuel consumption based on instantaneous vehicle

speed. Later, Zhou et al. [155] modelled fuel consumption based on both

binned vehicle specific power (VSP) and vehicle speed to better reflect real-

world driving conditions, with each binned fuel consumption value adjusted

by vehicle mass. Only four vehicles were used in the fuel economy testing to

feed into this model, however, limiting its applicability.

The primary aim of this work is the development and validation of a method

to estimate the instantaneous fuel consumption of a vehicle measured using

remote sensing, which can then be used to estimate distance-specific emission

factors. To estimate fuel consumption, vehicle specific power (VSP) is first

estimated using curbside measurements and vehicle technical data, and is

then used to model fuel consumption through relationships established using

the Passenger Car and Heavy Duty Emission Model (PHEM). The calculated

distance-specific emission factors are compared to PEMS data of 55 Euro 5 and

6 passenger cars and light duty vans. The comparison is made between the

emissions of NOx measured over a real-world driving test (similar to an RDE

test) and emissions derived using the emissions model based on remote sensing

data.

In order to demonstrate the methods in this work, certain assumptions have

been made — for example relating to the power demands on vehicle engines, or

the molecular formula of fuel. The methods are sufficiently modular such that

if more specific values are known or if alternative assumptions are preferred,

they can be used in the place of those assumptions presented here.

66



Chapter 2. Absolute Emission Estimates from Remote Sensing Data

2.3 Materials and Methods

2.3.1 Calculation of Vehicle Power

The aim of the emissions model is to estimate the instantaneous fuel consump-

tion of a vehicle at the time the remote sensing measurement is made. The

approach is based on the estimate of the vehicle power demand at a particular

point in time coinciding with when a remote sensing measurement is made.

To calculate VSP[84], it is necessary to sum the power demands for a vehicle,

given in Equation 2.1. In practice, this is the sum of the power to accelerate the

vehicle (Paccel), to overcome rolling resistance from the road (Proll), to overcome

air resistance (Pair), to climb the road gradient (Pgrad) and to operate auxili-

ary devices (Paux), accounting for power losses in the transmission through

multiplication by an adjustment factor (Ftrans).

Ptotal =
(
Paccel + Proll + Pair + Pgrad

)
×Ftrans + Paux (2.1)

The total vehicle power demand (in Watts) is given by Equation 2.2. The

terms used in Equation 2.2 and subsequent equations are defined in Table 2.1.

Ptotal =

mkg × a× 1.04︸           ︷︷           ︸
Paccel

+

Proll︷       ︸︸       ︷
R0 +R1 × v+0.5×Cd ×A× ρ × v2︸                   ︷︷                   ︸

Pair

+

Pgrad︷            ︸︸            ︷
mkg × g ×Grad


× 1.08︸︷︷︸

Ftrans

×v +

Paux︷︸︸︷
2500 (2.2)

To arrive at Equation 2.2, the following assumptions were made: the power

to accelerate rotational accelerated mass is equivalent to 4% of the power for

translational accelerated mass; the power losses in the transmission are equal

to 8% of the power at the driven wheels; and the power demand of auxiliaries

is taken to be a fixed value of 2.5 kW[98,156]. g is taken to be 9.81 m s-2 and ρ to

be 1.2 kg m-3, the density of air at 20 ◦C and 1 atm of pressure. To calculate
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Term Definition Unit

VSP Vehicle Specific Power kW t−1

FCgx Fuel Consumption g x-1 (x ∈ {h, km})

EFgx Emission Factor g x-1 (x ∈ {kg, s, km})

mx Vehicle Mass, including loading x (x ∈ {kg, t})

a Vehicle Acceleration m s−2

v Vehicle Speed m s−1

Cd Aerodynamic Drag Coefficient –

A Frontal Surface Area m2

ρ Density of Air kg m-3

R0, R1 Road Load Coefficients N, N (m s−1)−1

g Acceleration due to Gravity m s−2

Grad Altitude / Distance Travelled –

rP Ratio of Species “P” to CO2 –

MWP Molecular Weight of Species “P” g mol-1

Q Exhaust Flow Rate L s-1

Vm Molar Volume of Gas L

nP Amount of Gas “P” mol

Table 2.1: Definitions of terms in Chapter 2, including units.

VSP in kW t−1, Equation 2.2 is divided by mass to arrive at Equation 2.3.

V SP =
2500 +

(
R0 × v +R1 × v2 +Cd ×A× 0.5× ρ × v3

)
× 1.08

mt × 1000
+ v × 1.08× (1.04× a+ g ×Grad) (2.3)

Coefficients R0, R1 and CdA are provided in Table 2.2 on a per-vehicle seg-

ment basis, as well as for average cars, vans and both cars and vans. These

coefficients are average values taken from the test data base used for the Hand-

book Emission Factors for Road Transport (HBEFA) v3.3. The segmentation
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used is that of the European Commission [157], with vehicle segments defined

to group vehicles with similar characteristics together and make the analysis

tractable. Vehicle segments are each given letters and names, with A corres-

ponding to minis, B small cars, C medium-sized cars, D large cars, E executive

cars, F luxury cars and J sports utility vehicles. VanI-III refer to increasing

sizes of van. Segmentation is inexact, being based on factors such as price and

accessories as well as vehicle size and shape; in principle, no segmentation is

required, but it is especially useful for grouping vehicles with similar drag

coefficients, where there is an absence of individual vehicle measured values of

Cd.

2.3.2 Modelling Instantaneous Fuel Consumption

The Passenger Car and Heavy Duty Emission Model (PHEM) simulates fuel

consumption and emissions from vehicles in any driving situation based on

engine maps and vehicle longitudinal dynamics simulation[156]. PHEM is

able to model fuel consumption values over a range of driving conditions.

For the purposes of estimating the fuel consumption of vehicles measured by

remote sensing, it provides relationships between fuel consumption and engine

power. This relationship can be normalised by dividing through both variables

by vehicle mass, effectively creating a relationship between normalised fuel

consumption in (g h−1) t−1 and VSP. VSP can therefore be converted to fuel

consumption using Equation 2.4, where β0,1 are the dimensionless parameters

of the linear relationship. These parameters are provided in Table 2.2 on a

per-vehicle segment basis, as well as for average cars, vans and both cars and

vans. Specifically, these parameters were determined from characteristic fuel

flow curves for different engines calculated using the HBEFA 3.3 test data base

and the Common Artemis Driving Cycle (CADC)[98,156,158].

FCgh = (β1 ×V SP + β0)×mt (2.4)
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Diesel Gasoline

Segment R0 R1 CdA β1 β0 R0 R1 CdA β1 β0

A+B 120 0.77 0.537 208 159 106 0.67 0.538 236 545

C 151 0.93 0.617 206 217 139 0.85 0.618 225 554

D 166 1.02 0.665 200 208 154 0.94 0.689 219 558

E+F+J 204 1.18 0.915 199 272 175 1.01 0.810 217 601

VanI 122 0.73 0.529 216 92 106 0.67 0.538 236 545

VanII 152 0.89 0.765 217 81 145 0.84 0.853 236 327

VanIII 213 1.24 1.307 220 85 198 1.14 1.158 234 209

Avg Car 157 0.95 0.660 204 221 127 0.78 0.598 229 552

Avg Van 174 1.02 0.965 218 87 114 0.71 0.601 236 501

Avg All 158 0.96 0.690 206 199 127 0.78 0.598 229 550

Table 2.2: Generic coefficients (R0, R1, CdA) and dimensionless parameters (β0,1) to

be used in Equation 2.3 and Equation 2.4. The coefficients are average values taken

from the test data base used for the Handbook Emission Factors for Road Transport

(HBEFA) v3.3. The parameters were determined from characteristic fuel flow curves

for different engines calculated using PHEM, again using the HBEFA 3.3 test data base

and the Common Artemis Driving Cycle (CADC)[98,156,158].

A consequence of using a linear equation such as Equation 2.4 to model fuel

consumption are negative modelled fuel consumption values, which are set to

zero. These negative estimates of fuel consumption arise from negative power

conditions resulting from the engagement of the mechanical braking system of

a vehicle, so have no physical basis[98]. Using Equation 2.5 fuel consumption

can be converted from grams per hour driven to grams per kilometre travelled

through division by vehicle speed in kilometres per hour.

FCgkm =
FCgh
v × 3.6

(2.5)
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Using modelled instantaneous fuel consumption from Equation 2.4 and

Equation 2.5–Equation 2.8 allow for the calculation of emission factors by

combination with remote sensing data. First, fuel-specific emission factors are

calculated using pollutant ratios through Equation 2.6, where P corresponds

to the pollutant being measured (NOx, CO2, HC, etc.). The denominator of

this equation is the sum of all carbon containing exhaust pollutants multiplied

by the molecular weight of a generic fuel with the formula CH2 (MWfuel is

therefore 14 g mol-1). rHC is multiplied by six as HC is taken to be C3H6

(containing three carbons), and approximately half of HC in exhausts isn’t

visible to the RSD[80]. A more complete derivation of Equation 2.6 is outlined

in Bernard et al. [149].

EFgkg =
rP ×MWP

(1 + rCO + 6rHC)×
(
MWf uel/1000

) (2.6)

Fuel-specific emission factors from Equation 2.6 can then be combined with

the modelled fuel consumption from Equation 2.4 and Equation 2.5 to calculate

instantaneous emissions (g s−1) and instantaneous distance-specific emissions

(g km−1) using Equation 2.7 and Equation 2.8.

EFgs = EFgkg ×
FCgh

3,600,000
(2.7)

EFgkm = EFgkg ×
FCgkm
1000

(2.8)

Modelling fuel consumption is not necessary for PEMS data. As PEMS

instruments report the flow rate of the exhaust, it is straightforward to calculate

emission factors. Equation 2.9 demonstrates a method to calculate instant-

aneous emissions, and Equation 2.10 a transformation from instantaneous

emissions to instantaneous distance-specific emission factors. Vm is taken to be

24.1 L (molar volume at a temperature of 20 ◦C and pressure of 1 atm).

EFgs =
Q
Vm
×nP ×MWP (2.9)
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EFgkm =
EFgs × 1000

v
(2.10)

2.3.3 Journey Average Emission Factors

For a vehicle completing a drive cycle of a known distance, the average distance-

specific emission factor can be determined from a 1Hz PEMS data set via the

sum of all instantaneous emissions divided by the distance covered in the

journey in kilometres, shown in Equation 2.11.

EFgkm =

∑
EFgs

total distance
(2.11)

While Equation 2.8 is a simple way to calculate instantaneous distance-

specific (g km−1) emission factors, there are potential issues with these factors

being biased due to remote sensing typically measuring vehicles under load.

Large parts of journeys taken by vehicles, particularly in urban centres, may

involve idling and braking — conditions in which remote sensing is not suited

to measure.

To overcome this issue, relationships between instantaneous emissions

(g s−1) and VSP may be determined from remote sensing and then, in principle,

used to predict emissions over any drive cycle where VSP can be estimated.

Generalised Additive Models (GAMs) can be used for this purpose. GAMs offer

several advantages in this respect in that they are ‘data-driven’ and handle

non-linear relationships between variables. GAMs relating NOx g s−1 to VSP

were fitted using the gam() function in the mgcv R package[134] using remote

sensing data constrained to positive, i.e., non-zero NOx g s−1 values. The default

parameters of the gam() function were used throughout. In this study the drive

cycle used to predict emissions over is taken from a PEMS study, described

further in Subsection 2.3.4.

Predicting instantaneous emissions (g s−1) corresponding to VSP values

outside of the range of measured VSPs requires extrapolation of the GAM,
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which can lead to unreliable predictions. For this reason, GAMs are only

fitted using a VSP range between 0 and the 99th percentile of remote sensing

VSPs, and then only used to predict over elements of the on-road drive cycle

within the same VSP ranges. For elements of the drive cycle above the 99th

percentile of the remote sensing data, the emissions and distance covered were

disregarded in calculations, effectively truncating the drive cycle as a whole,

to ensure a like-for-like comparison. With larger remote sensing data sets that

cover a greater range of VSPs, truncating drive cycles should not be necessary.

2.3.4 Portable Emissions Measurement System Data

The UK Department for Transport, prompted by the Volkswagen emissions

scandal, started an investigation into commonly used diesel vehicles in 2015[159].

The Vehicle Emissions Testing Programme focused on three different types of

measurements. First, in-lab testing using variations of the New European

Driving Cycle (NEDC). Second, track testing using PEMS instrumentation,

attempting to replicate the NEDC as close as possible, and third, on-road

testing on a test route approximating the then-not fully defined Real Driving

Emissions (RDE) test, including urban, rural and motorway driving. The third

data set is used in this study.

After being augmented with the similar Vehicle Market Surveillance Unit

Programme in 2017, the full PEMS data set contained 19 Euro 5 diesel cars, 17

Euro 6 diesel cars, 14 Euro 6 gasoline cars, 4 Euro 5 diesel vans and a single

Euro 6 diesel van, for a total of 55 vehicles in total[160]. Vehicles were tested

only once for an average of 95 minutes, with the shortest test being 90 minutes

and the longest 106 minutes. The PEMS equipment was validated against a

laboratory emissions measurement system. More detailed information about

the ways the PEMS tests were conducted is available from the UK Department

for Transport and UK Driver Vehicle Standards Agency web pages[159,160].

The effect of applying a time offset to the PEMS data was considered to
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check whether any time synchronisation between between variables such as

CO2, NOx, vehicle speed and acceleration was necessary. A range of time

offsets were applied to seek the best agreement between the PEMS CO2 and

that predicted by the developed method. The agreement between PEMS and

modelled data was judged using the correlation coefficient, r, and the root mean

squared error (RMSE); seeking maxima and minima, respectively. Additionally,

the application of a rolling mean of 3 to 5 seconds to the data was considered

to reduce the effect of any time offsets. However, the best overall agreement

was found by not applying time offsets for the data sets considered.

The DfT route can be split into urban, rural and motorway driving by

changes in the speed profile of the vehicle as it continues through its journey,

mainly changes in maximum speeds and frequency of braking. Each vehicle is

driven over a similar trip, so an example for just one is provided in Figure 2.1.

The PEMS data sets already include the majority of required variables for the

calculation of instantaneous fuel consumption, but some required additional

processing. Vehicle speed was estimated based on the measured distance

throughout the test. An on-board GPS provided second-by-second altitude in

metres. A cubic smoothing spline was fitted using the default parameters of the

smooth.spline() function of the R stats package[121] to remove noise from

the GPS altitude signal, and was divided by the second-to-second difference in

distance to derive the road gradient. Acceleration was taken to be the second-

by-second difference in the speed of the vehicle. Ratios of pollutants to CO2

required for Equation 2.6 were calculated using the instantaneous measured

concentrations of each in %/ppm.

The PEMS data set provided measurements of carbon monoxide, CO2, water

vapour, NOx (NO and NO2), but did not provide measurements for total hydro-

carbons. This means that the HC:CO2 ratio in Equation 2.6 is omitted from the

final calculations. This omission is likely to have a negligible effect on calculated

emissions for diesel vehicles due to their low emissions of hydrocarbons[17],

and studies have shown that even the newest gasoline vehicles emit little HC

74



Chapter 2. Absolute Emission Estimates from Remote Sensing Data

Figure 2.1: The speed profile of one of the passenger cars undergoing the Department

for Transport’s on-road test. The journey has been partitioned into motorway, urban

and rural based on clear changes in the speed profile, including maximum speeds and

frequency of braking.

relative to other carbon-containing pollutants[152].

The only variables that could not be estimated from the PEMS data sets

were the masses of the vehicles, their vehicle segments and the road load

and aerodynamic drag coefficients. Masses and vehicle segments were found

using online research tools intended for car buyers, such as the Parker’s Car

Guides, with each mass having 150 kg added to approximate the added weight

of the driver and PEMS instrumentation. The coefficients, alongside the B0,1

parameters, were taken from the data outlined in Table 2.2 on a per-segment

basis.

Two sets of emission factors were then calculated. First, Equation 2.3–

Equation 2.8 were applied to the PEMS data set to calculate emission factors

through modelling fuel consumption. Second, Equation 2.9 and Equation 2.10
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were applied to calculate emission factors including the fuel consumption

data contained within the PEMS data set. These two sets of emission factors

facilitate comparisons and therefore validations of the fuel consumption model.

To do so, GAMs were fitted to create smooth trends in CO2 emission factors

according to both the PEMS and modelled fuel consumption values through

both speed and VSP values. Owing to the additional asymptotic effect of low

speed values on distance-specific emission factors (i.e., as speed tends towards

0, fuel consumption per unit distance and therefore emissions per unit distance

tend towards infinity) very low speeds are filtered out for the distance-specific

emissions analysis. In practice this meant that these models used data which

corresponded to VSP values of 0 to 30 kW t−1 for both GAMs, speeds of 0 to

111 km h−1 for the g s−1 GAM and speeds of 5 to 111 km h−1 for the g km−1

GAM.

Equation 2.11 was also applied to each vehicle in the PEMS data set for

comparisons with distance-specific emission factors calculated from the remote

sensing data set. These g km−1 factors were calculated for the journey as a

whole as well as the individual urban, rural and motorway components.

2.3.5 Remote Sensing Data

To demonstrate an application of the distance-specific emission factor calcula-

tion methods outlined in Equation 2.3–Equation 2.8, remote sensing data were

used. The data was acquired using the Fuel Efficiency Automobile Test (FEAT)

instrument, the remote sensing (RS) device developed by the University of Den-

ver. Its principles of operation have been described in detail elsewhere[79,145],

but a brief overview is provided here.

The FEAT instrument consists of a UV/IR light source and detector for

the measurement of exhaust gases, a set of laser-based speed bars for the

measurement of speed and acceleration, a camera for photographing number

plates, and a control computer. On the curbside is positioned the UV/IR
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detector and the detecting speed bar, with the light source and emitting speed

bar positioned directly opposite across a single lane carriageway. Pollutants

in the exhaust plumes of passing vehicles interact with the collinear beam of

IR and UV light produced by the source, permitting the measurement of CO,

CO2, hydrocarbons (HC), SO2, NH3, NO, and NO2. Based on the blocking

and unblocking of the two parallel lasers, the speed bars allow for the speed

and acceleration of the vehicle to be calculated. Number plate photographs

are cross referenced with vehicle databases to obtain further vehicle technical

information, in this case obtained from a commercial supplier (CDL Vehicle

Information Services Limited)[85].

The remote sensing data set combines data from measurement campaigns

in two UK cities, York and London, conducted in 2017 and early 2018, with

earlier measurements made in 2012/2013[87,100]. The data set consists of 37,421

measurements of Euro 5 and 6 light duty vehicles. The number of relevant

measurements contained within the remote sensing data set are summarised in

Table 2.3 alongside some statistical information pertaining to VSP, speed and

road gradients.

Equation 2.3–Equation 2.8 were applied to the remote sensing data set to

calculate emission factors. As the model is designed to be used with remote

sensing data, its application is straightforward as most of the variables are

already present in the data set. The mass of vehicles measured using remote

sensing is also unknown but is estimated by adding 150 kg to the unladen

weight of the vehicle, which is provided in the vehicle technical data.

One omission in the remote sensing data used is a lack of market segment

information. The light commercial vehicles can be segmented into VI-III by

their weight, but for passenger cars this is not possible. For passenger cars,

segmentation was achieved with simple regression tree modelling based on

the manually assigned market segments of the vehicles in the PEMS data set.

Figure 2.2 shows the distributions of the vehicle frontal surface area (approx-

imated simply through multiplying vehicle height times width) and mass for
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Characteristic Diesel LCV Diesel PC Gasoline PC

# Measurements 9,958 16,613 10,732

# Manufacturers 22 41 47

(w/ ≥100 measurements) 11 21 22

VSP (kW/t) 4.46 (5.45) 4.99 (5.93) 5.30 (5.83)

Speed (km/h) 22.25 (15.83) 22.95 (15.70) 21.12 (15.52)

Acceleration (km/h/s) 0.59 (2.09) 0.95 (2.26) 1.15 (2.36)

Gradient (alt/dist) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)

Euro standard

Euro 5 8,652 (87%) 12,808 (77%) 7,488 (70%)

Euro 6 1,306 (13%) 3,805 (23%) 3,244 (30%)

Table 2.3: A statistical summary of the vehicle emission remote sensing data, split into

diesel light commercial vehicles (LCV) and diesel and gasoline passenger cars (PC).

The FEAT data set contains measurements of vehicles with different Euro standard

and different vehicle types (e.g., HDVs and hybrid vehicles), which are not used in this

study.

each passenger car vehicle segment in the UK Department for Transport PEMS

data set. While vehicle dimensions are commonly available in remote sensing

data sets, in this case the same online research tools used to find the vehicle

segments and masses were used to determine width and height. Also shown is

a simple decision tree for the segmentation of vehicles fit using the rpart R

package, which utilises the Classification and Regression Trees (CART) algorithm

to fit decision trees[135].

The decision tree presented in Figure 2.2 is based on a relatively small set of

vehicles, albeit vehicles chosen for their high market share, so may be further

refined by the addition of more vehicle data. However, it does demonstrate that

partitioning vehicles into market segments is viable with a relatively simplistic

method and, as discussed previously, the availability of aerodynamic drag
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Figure 2.2: Box plots showing the range of surface areas and masses for each passenger

car segment present in the UK Department for Transport PEMS data set, with a simple

decision tree which could be used for the segmentation of passenger cars based on curb

weights (mass, in tonnes) and frontal surface areas (area, in m2). Note that there are no

E- or F-Segment vehicles in the PEMS data set, reflective of their niche status in the UK

fleet.

coefficients for individual vehicles would largely avoid the need to consider

vehicle segments anyway.

One of the benefits of using vehicle emissions remote sensing data for es-

timating aggregate (e.g., Euro standard, fuel type, vehicle model) emissions is

that an uncertainty can be calculated. When aggregating the g kg−1 emissions

derived directly from individual vehicle emission measurements, the 95% con-

fidence interval in the mean can be calculated. To account for the non-normal

nature of vehicle emissions distributions, the 95% confidence interval is ro-

bustly estimated using bootstrap re-sampling approaches using the openair R
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package[161]. The calculated uncertainties encompass many sources of variation

including the uncertainty of the measurement itself but also issues related to

the sampling conditions, such as sample size, ambient conditions and variation

in vehicle dynamics remain.

The estimated uncertainties also provide a guide to whether two populations

are statistically different from one another. For example, when considering the

differences between individual vehicle manufacturer or vehicle models, the

uncertainty helps to determine whether there is evidence or not for clear differ-

ences in the emission performance of vehicles. Such information is difficult to

determine using PEMS as uncertainty information is rarely provided.

Uncertainty estimates can also be derived through GAM models relating

the VSP to the emissions of NOx. In this case, the estimated uncertainty in the

GAM itself can be used to express an emissions uncertainty when applied to

drive cycles over which predictions are made. The benefit of this approach

is that where the original data have poor coverage, e.g., owing to a lack of

measurements over high VSP conditions, the corresponding uncertainty estim-

ated as part of the GAM development will also be higher. Consequently, the

uncertainty in the prediction of emissions over different drive cycles will reflect

the coverage of the original measurement data.

While this analysis does not explicitly include hybrid vehicles, the remote

sensing measurements do provide insight into their operation. A vehicle plume

is only considered valid if there is a measurement of CO2. The absence of valid

CO2 plumes provides some indication of whether a hybrid vehicle was using

an internal combustion engine or not. The data suggest that for all hybrid

passenger cars, 27% of the measurements do not have a valid CO2 plume,

compared with only 2% of conventional vehicle measurements of CO2. The

data suggests that hybrid vehicles operate in battery mode approximately 25%

of the time based on the remote sensing measurements. In principle it would be

possible therefore to apply the methods developed in this study to a proportion

of hybrid vehicle measurements only where there is a valid plume measurement
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and assume zero emission otherwise.

2.4 Results and Discussion

2.4.1 Validation with a PEMS Data Set

Vehicle emission factors are typically not expressed at an individual vehicle

model level but are aggregated in some way. For example, COPERT’s emission

factors separate passenger cars by Euro standard, fuel type and broad engine

size. For simplicity, the vehicles studied were aggregated into three categories:

Euro 5 diesel, Euro 6 diesel and Euro 6 gasoline (there being no Euro 5 gasoline

vehicles in the PEMS data set). GAMs of the two sets of emission factors calcu-

lated using the PEMS data set are overlaid in Figure 2.3, with the lines labelled

“PEMS” showing the factors calculated using Equation 2.9 & Equation 2.10 and

“Modelled” showing the factors calculated using modelled fuel consumption

detailed in Equation 2.3-Equation 2.8.

CO2 emissions in g km−1 are shown as a speed-emission curve. In general,

the emission factors calculated from the modelled fuel consumption data corres-

pond well with those calculated from the PEMS fuel consumption, particularly

in the case of the Euro 6 diesel vehicles. When using both curves to predict

over a sequence of speeds from 5 to 110 km h−1, the RMSE values between the

two sets of predicted values was 28.2 (Euro 5 Diesel), 11.6 (Euro 6 Diesel) and

50.4 (Euro 6 Gasoline). The modelled values in the Euro 5 diesel and Euro 6

gasoline vehicles show some underestimation at lower speeds, though the gap

rapidly shrinks and is closed by around 15 km h−1 in both cases; indeed the

RMSE values drop to 18.5 and 14.3 respectively when only 15 to 110 km h−1

values are predicted over. There is slight underestimation at higher speeds seen

in the Euro 5 diesel also.

CO2 emissions in g s−1 are shown as a linear power-emission relationship,

which demonstrates the overall concurrence between modelled and PEMS
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Figure 2.3: Generalised additive models (GAM) of CO2 emissions (g s−1 and g km−1)

as functions of both power demand and speed. “PEMS” refers to emission factors

calculated using Equation 2.9 & Equation 2.10 and “Modelled” the factors calculated

using modelled fuel consumption detailed in Equation 2.3-Equation 2.8. All emission

factors were calculated using the UK Department for Transport PEMS data set.

fuel consumption. A shared characteristic in all three of these curves is some

deviation between the methods at higher engine powers, around 40 kW. There

are fewer data at higher engine powers in the PEMS data set which may explain

this observation. The curves were used to predict a sequence of engine powers

from 1 to 70 kW (diesel vehicles) and from 1 to 50 kW (gasoline), giving

RMSE values of 0.293 (Euro 5 Diesel), 0.579 (Euro 6 Diesel) and 0.514 (Euro 6

Gasoline).
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2.4.2 Model Sensitivity

In practice, the application of the methods outlined in Subsection 2.3.1 and Sub-

section 2.3.2 depend on several assumptions concerning the vehicles measured

using remote sensing. There are variables needed by the model for which direct

measurements are not available. The mass of an unladen vehicle is obtainable

from vehicle databases, but the true laden mass of a vehicle is unknown and

will depend on factors such as number of passengers and cargo. The auxiliary

power component is entirely estimated. While vehicle and acceleration can be

measured accurately with speed bars, there will be some uncertainty over the

location that is best suited to make the measurements[82,84].

To examine the sensitivity in emission factors related to the uncertainty

in individual model parameters, a single vehicle was taken from the UK De-

partment for Transport PEMS data set. A single vehicle was judged to be

sufficient for this analysis as it is expected that the sensitivity of the model

will be roughly consistent regardless of the vehicle to which it is being applied.

The chosen vehicle was a D-Segment Euro 6 diesel passenger car, chosen for

having a very good agreement between measured and modelled journey average

CO2 g km−1 values (calculated using Equation 2.11). The model outlined in

Equation 2.3–Equation 2.7 was applied to this vehicle repeatedly to produce 1

Hz CO2 instantaneous (g s−1) emissions, with variations in the following para-

meters: CdA, R0/R1, auxiliary power, acceleration, speed, road gradient and

mass. CdA, R0 and R1 were changed by ± 10%, acceleration by ± 5%, gradient

by ± 20% and speed by ± 2 km h−1. The range in mass is the curb weight (lower)

to the curb weight plus 400 kg (higher). The range in Paux is 250 W (lower) to 3

kW (higher). The impact on journey average CO2 g km−1 values for the vehicle

is visualised in Figure 2.4.

Auxiliary power has been shown to vary considerably in on-road driving[162].

The range of auxiliary powers investigated here (0.25 to 3 kW) induces a large

change in estimated emissions of CO2, particularly in urban driving. This
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Figure 2.4: The percentage uncertainty in the D-Segment Euro 6 diesel passenger

car CO2 g km−1 induced by changes in model parameters. Percentage changes are

relative to the base case, defined as the g km−1 factor determined using correct generic

parameters for a D-segment diesel vehicle, unaltered speed, acceleration and gradient,

curb weight plus 150 kg, and a Paux of 2.5 kW.

behaviour is expected for urban driving conditions where there is a greater

proportion of driving in lower power conditions, meaning that the auxiliary

power accounts for a greater proportion of the total power consumption of the

engine.

Uncertainty in vehicle mass also has a greater effect under urban driving

conditions, which can be understood by the greater amount of acceleration and

deceleration in urban driving. The opposite trend is seen in the air resistance

parameter (Cd), with very little change observed in urban driving conditions.

This behaviour is expected owing to the lower vehicle speeds under urban

driving conditions, with Pair being proportional to the cube of vehicle speed. A

similar but less extreme trend is seen for R0/R1.

A different trend is seen when varying the road gradient — little change is

seen in both urban and motorway conditions, but a large effect is seen in hillier
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rural driving. The overall influence of gradient uncertainty in this analysis is

relatively small compared to other parameters, but it would likely be greater

and therefore more important for vehicle emission measurements taken in

hillier regions.

Focusing on urban-type driving conditions — where vehicle emissions

remote sensing measurements are most commonly made — the variables to

which estimated CO2 emissions are most sensitive are seen to be vehicle mass,

speed, acceleration, and auxiliary power demand.

An alternative way to consider uncertainty rather than the uncertainty of

individual parameters is the misattribution of vehicle segments. Assuming

inaccessibility of market segment information and the use of a decision tree

similar to that which is described in Subsection 2.3.5, there will be unavoidable

misattribution for vehicles that are uncharacteristically heavy or light for their

market segment, or have an atypical frontal area. On an aggregate level this is

not be a cause for concern; conversely this may be of benefit — an atypically

shaped vehicle’s ‘true’ CdA, R0 and R1 values may be closer to those given for

the segment to which it has been incorrectly assigned.

Table 2.4 summarises the effect of both misattributing the segments and

applying the ‘average car’ parameters to the D-Segment vehicle. The greatest

absolute difference, an increase of 22 g km−1, is seen when attributing the

vehicle an E-, F- or J-Segment, effectively assigning it the characteristics of a

larger executive, luxury or sports utility vehicle. The second greatest absolute

difference is a decrease of 12 g km−1 owing to an A-Segment assignment,

assigning the D-Segment vehicle the characteristics of a mini car.

2.4.3 Method Application to Remote Sensing Data

The model was used used to estimate instantaneous emissions using remote

sensing data, which were then directly compared with those of the PEMS data

set. Figure 2.5 illustrates that similar relationships between instantaneous NOx
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Journey Average CO2 (g km−1)

Attributed Emission Absolute Percentage

Segment Factor Difference Change

A/B 123 -12 -8.9%

C 136 +1 +0.7%

D 135 – –

E/F/J 157 +22 +16.3%

Average Car 136 +1 +0.7%

Table 2.4: Journey average CO2 g km−1 values for a chosen Euro 6 diesel D-Segment

passenger car depending on Euro Segment attribution, including deviation from the

correct D-Segment attribution.

emissions and VSP are seen in both remote sensing and PEMS, for example

both showing similarly increasing NOx emissions with engine load.

Figure 2.6 shows journey average distance-specific emission factors from

remote sensing calculated using the GAM fitting methods outlined in Subsec-

tion 2.3.3, and journey average distance-specific emission factors calculated

using PEMS data. To ensure a fair comparison, only vehicles present in both the

PEMS and remote sensing data sets were used in GAM fitting (43 vehicles — 14

Euro 5 diesel cars, 11 Euro 6 diesel cars, 12 Euro 6 gasoline cars, and 4 Euro 5

diesel vans). This corresponds to 7939 remote sensing measurements. For this

purpose, a ‘vehicle’ is defined by its make, engine size, fuel type, Euro standard

and type approval category. Note that, for fairer comparison, the PEMS data set

was constrained to the same VSP range over which the GAMs were fitted.

Overall, there is good agreement between the emission factors from PEMS

and remote sensing for the passenger cars. The error bars showing 95% confid-

ence intervals overlap for all passenger car columns in Figure 2.6. There is a

much larger disparity seen in the emissions of the vans, particularly in urban

driving. This disparity may be a consequence of having relatively few vans
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Figure 2.5: Trends in NOx emissions as a function of vehicle specific power taken from

the whole PEMS and RS data sets. The emissions from PEMS are calculated from 1 Hz

measurements, and those from RS are taken from individual snapshot measurements.

A normalised VSP density of a VSP-based Urban-Rural RDE drive cycle is shown in

light blue, used later in Figure 2.8.

in the PEMS data set, as well as vans likely being heavier (owing to carrying

cargo) in real-world use as opposed to the PEMS RDE test. There are instances

in which the relative order of the driving conditions differs also — in Euro 6

diesel cars, for example, remote sensing suggests that motorway driving has

the lowest emission factor whereas PEMS suggests that it is rural driving.

Journey average NOx g km−1 values can also be calculated for individual

vehicle models, shown in Figure 2.7. In this instance only urban and rural driv-

ing conditions were considered — i.e., similar conditions to those experienced

for the remote sensing measurements. A lack of motorway measurements is

a weakness of cross-road remote sensing as a method, although the top-down

Emission Detection And Reporting system (EDAR) shows promise for use in
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Figure 2.6: Journey average NOx distance-specific emissions for different categories of

vehicle. The RS factors are taken from the predictions of GAMs relating instantaneous

NOx emissions to VSP over a real driving emissions (RDE) drive cycle. The PEMS factors

are the mean journey average distance-specific emission factors from all vehicles in

each of the given categories. Error bars show the 95% confidence interval.

motorway conditions[77,78]. Of the diesel vehicles, the root mean square error

(RMSE) between the PEMS and remote sensing (RS) emission factors varies

from 0.230 (Euro 6 cars) to 0.616 (Euro 5 vans). A low RMSE is not necessarily

expected; each RS emission factor reflects over a hundred individual vehicles

whereas the PEMS data represents single vehicle measurements over a single

drive cycle. Other work has shown significant variance in PEMS emission

measurements for single vehicles tested multiple times, partly due to variance

in testing conditions and procedures[163].

A strength of remote sensing is its ability to measure large numbers of

vehicles non-obtrusively in a short space of time. In practice this means that
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Figure 2.7: A comparison between journey average NOx emissions calculated from RS

and PEMS data. Each point represents a unique manufacturer–engine size combination

with at least 100 measurements in the RS data set. The solid grey line shows the

1:1 relationship. The RS factors are taken from the predictions of GAMs relating

instantaneous NOx emissions to VSP over an urban-rural real driving emissions (RDE)

drive cycle. The PEMS factors are the emission factors for the corresponding vehicle.

The error bars show the 95% confidence interval of the mean for the RS emission

predictions.

even in a relatively modest remote sensing data set there is likely a sufficient

range of measurements over a large enough range of VSPs for GAMs to be fitted

on an individual manufacturer or vehicle basis. Figure 2.8 shows urban-rural

journey average distance-specific emissions from the remote sensing data set

for individual vehicles, with a vehicle defined in the same way as in Figure 2.6

and Figure 2.7. Only vehicles with at least 100 measurements were used to

ensure sufficient data to fit a GAM predicting NOx emissions using VSP.

Figure 2.8 demonstrates the wide variation in individual vehicle emissions

even within a single Euro standard. In the Euro 5 diesel cars category, for

example, the cleanest vehicle is associated with a 0.55 g km−1 emission, 0.79

g km−1 lower than the highest at 1.34 g km−1. Similarly for the Diesel Euro
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Figure 2.8: Distance-specific emissions for different vehicles calculated from RS data

and an urban-rural on-road RDE drive cycle. Vehicles have been anonymised, but

each is taken to be a unique manufacturer-engine size combination with at least 100

measurements. Error bars show the 95% confidence interval. Blue dashed lines show

the mean emission in each vehicle category.

6 Cars category, the cleanest vehicle is at 0.17 g km−1 and the highest at 0.80

g km−1, a range of 0.63 g km−1. The vans show similar variation, both for Euro 5

(0.69–1.93 g km−1) and Euro 6 (0.23–1.32 g km−1). The variation shown in NOx

emissions provides an indication of the extent to which emissions could be re-

duced if “best-in-class” emissions performance was achieved. Furthermore, the

differences observed between vehicle manufacturers provides information that

is useful for understanding the expected variation in NOx emissions resulting

from different vehicle fleet compositions.

2.5 Conclusion

Remote sensing data offers large data sets of road vehicle emission measure-

ments with good fleet coverage and little selection bias. However, without a

measurement of instantaneous fuel consumption it is difficult to transform

fuel-specific to distance-specific emission factors. As the vehicle type approval
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process and emission inventory development both rely on distance-specific

emission factors, this difficulty presents a limitation for the use of remote sens-

ing data. Furthermore, comparisons with other commonly used road transport

emission measurement techniques (chassis dynamometers, PEMS, etc.) are

more limited without expressing emissions in this way.

A method to model fuel consumption from curbside measurements and

vehicle technical data was developed, and is sufficiently general to be applied

to any emission species measured using remote sensing and indeed any point-

sampling measurement method that provides a pollutant to CO2 ratio. In the

current work, a relatively modest data set of remote sensing data was used to

develop and demonstrate the method. However, there has been a considerable

increase in the number of vehicle emission remote sensing data campaigns in

recent years[78,164,165]. Large databases such as these would enable the methods

outlined in this study to be used to calculate distance-specific emissions for a

large range of vehicle models and driving conditions.

Arguably the main benefit of the approach is that it can in principle be

applied to any vehicle drive cycle. This development is of importance for the

analysis of vehicle emission remote sensing data where measurements tend

to be made of vehicles mostly (but not always) under load. The potential to

re-calculate emissions for more representative full drive cycles therefore ad-

dresses the potential issue of remote sensing site selection bias, where measured

emissions would on average be higher than a typical full drive cycle. Indeed,

with the increasing amounts of drive cycle data available, there is the potential

to apply the method to large databases of actual vehicle activity over a large

range of conditions. This is demonstrated in Chapter 3.

A common shortcoming of current remote sensing data sets is a lack of

measurements under high speed and VSP conditions — particularly motorways.

In this study, comparisons between remote sensing and PEMS distance-specific

emissions were primarily carried out using urban and rural driving conditions

to reflect this. This is not to say that motorway conditions cannot be modelled
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using remote sensing (they are in Chapter 4), but the modelling must be done

with an appreciation that the potentially unique behaviour of emissions under

these conditions may not be captured (owing to, for example, the behaviour of

after-treatment technologies under sustained high-speed driving). Regardless,

as remote technology advances and motorway measurements become simpler

and safer to make, this issue will be minimised.

Package Development

The methods outlined in this chapter were developed into an R package for

expedient use. A brief overview of the package is provided in Appendix A.
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3.1 Abstract

While vehicle emission remote sensing can rapidly measure many different

vehicles, it is limited in its journey coverage due to only measuring instant-

aneous, “snapshot” measurements of each vehicle. Journey-wide influences

on emissions — for example, congestion or driver behaviour — are typically

more easily studied using on-board measurement techniques which can cap-

ture a vehicle’s whole journey. Through modelling the fuel consumption of

passing vehicles, instantaneous emissions can be calculated and used to predict

over any driving data for which GPS coordinates are available. In this study,

this approach is demonstrated by modelling Euro 5 diesel passenger car NOx

emissions over a large database of over 100 days of continuous driving under

different speed limits and undertaken by 79 different drivers. This substantial

amount of modelled emission data is then used to reproduce COPERT-style

NOx speed-emission curves which are found to be consistently higher than

the COPERT v5.5 equivalents regardless of driving condition, with an average

underestimation of 0.21 g km−1. Furthermore, the distributions of distance-

specific emissions from different drivers is used to suggest a roughly ±22%

relative percentage range owing to driver behaviour. While potentially im-

portant, comparisons with previous analysis suggest this is secondary to the

distribution of emissions owing to different vehicle manufacturers. Overall, this

study demonstrates the potential for remote sensing to comment on local-scale

emissions, and to both quantify and rank the importance of real-world emission

influences.
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3.2 Introduction

Accurately estimating the emissions from road transport is challenging, yet it is

a key step in introducing constructive air quality policy, developing effective

vehicle technologies, and calculating accurate emissions inventories. To estim-

ate emissions accurately, representative data of real-world driving is needed

to both reflect the true emissions of vehicles in the environments in which

they actually drive, and to understand real-world influences on emissions that

cannot be easily recreated in laboratories such as ambient conditions[110,166–168],

mileage- or age-based deterioration[104,105,169–171], and driver behaviour.

Driver behaviour is particularly difficult to measure. In-lab measurements

will typically use consistent drive cycles (e.g., the New European Driving Cycle,

or the Worldwide Harmonised Light Vehicles Test Procedure) which intrinsic-

ally do not address variations in driver behaviour. “On-road” measurements

such as those taken using Portable Emissions Measurement Systems (PEMS)

are more appropriate, however given their cost and time requirements it would

be prohibitively expensive and time consuming to establish a true distribution

of the behaviour of different drivers under different conditions. Furthermore,

driver behaviour is difficult to isolate from uncontrollable factors like conges-

tion, causing issues with repeatability outside of simulated drives. Regardless

of the complexity of quantifying driver behaviour, it is still a useful thing to

understand. If variations in driver behaviour are significant, “eco-driving”

training or on-board behaviour monitoring tools could make for a cheaper,

easier solution to air quality problems than relying on future advancements in

engine and after-treatment technologies[172–174].

The literature includes several attempts to quantify driver behaviour and

its influence on emissions, commonly focused on modelled emissions over

measured journeys. For example, Zheng et al. [175] combines modelled emis-

sions with survey data which was used to categorise drivers into one of four

categories (aggressive, conservative, confident, and experienced; conservative
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and confident drivers were the lowest emitters). Xu et al. [176] used machine

learning on modelled emission data to show that extended idling, driver age,

and route familiarity were key predictors for CO2 and PM emissions. Huang et

al. [177] used measured data from PEMS with two groups of drivers — “novice”

and “experienced” drivers — and finds no significant difference in NOx or PM

emissions between them, though a large distribution within each group.

Vehicle emission remote sensing measurements are often referred to as

“snapshots” of many vehicles’ individual journeys. This is in contrast to tech-

niques such as PEMS, which are effectively measurements of relatively very

few vehicles’ entire journeys. This makes remote sensing particularly useful for

measuring in-use vehicles in a given fleet, monitoring trends in fleet composi-

tion and emissions, and studying influences on emissions that can be captured

from single roadside measurements (e.g., differences between manufacturers,

engine sizes, ambient conditions, etc.). The instantaneous measurements from

remote sensing are not as useful to understand how emissions are influenced by

different features of a vehicle’s whole journey, such as the the aforementioned

influence of driver behaviour.

In this study, NOx emissions are modelled over a large data base of real

driving data obtained through the use of GPS using the methodology described

in Chapter 2/Davison et al. [1]. The driving data contains approximately

119 continuous days of driving and is conducted by 79 different drivers, and

is therefore considerably larger than the driving data obtained from PEMS

data sets used previously. Indeed, the greater purpose of this chapter is to

demonstrate that the methods in Chapter 2 aren’t limited to standard “real-

driving emissions” drive cycles but can instead estimate emissions over drives

of effectively any length — from small urban “links” of a few hundred metres

to long motorway journeys of hundreds of kilometres. The synthesis of tens of

thousands of remote sensing observations (effectively capturing the distribution

of emissions across the vehicle fleet) and months of driving data (capturing

all common driving conditions) allows for an unprecedentedly comprehensive
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assessment of vehicle emissions, more comprehensive that could be achieved

though any individual measurement technique — including remote sensing

alone.

The specific research aims of this study is to use remote sensing to examine

local-scale emissions on a sub-national scale, bridging the gap between the

individual vehicle measurements remote sensing is known for and the national-

scale emission inventory estimates which will be addressed in Chapter 4. An

interesting feature of the driving data is the inclusion of speed limit data, which

permits a more granular examination of the typical speed-emission curves

employed by systems like COPERT (COmputer Programme to calculate Emis-

sions from Road Transport)[40,44]. Furthermore, the vast numbers of drivers

included in the driving data allows for remote sensing to be in a unique position

to comment on driver behaviour and attempt to quantify the distribution in

real-world NOx emissions it can induce. Neither of these factors are typically

considered in emission factor calculation or inventory development, but using

comprehensive modelled emissions data could provide evidence as to whether

they have significant effects.

3.3 Materials and Methods

3.3.1 Data Sets

Two key data sets form the bulk of the analysis; an instrumented vehicle data

set of driving conditions, and a remote sensing data set of real-world emission

measurements. This section describes both data sets, with their use described

in Subsection 3.3.2.

The instrumented vehicle data set contains 10,255,088 seconds (approx-

imately 119 continuous days) of driving across 12,449 individual journeys

carried out by 79 different drivers over 5 investigation periods between 2003

and 2007. Drivers were based in Leeds and Sheffield in the United Kingdom
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and journeyed predominately within, around and between these two cities. The

data were originally collected as part of the UK External Vehicle Speed Control

(EVSC) project, which reviewed the possible introduction of intelligent speed

adaptation technology in the UK. A more thorough description of EVSC and

the data set is provided in Carsten and Tate [178].

An important feature of this data set is the inclusion of the speed limit in

which the vehicle is driving. This is a more granular and objective way to discuss

driving conditions than a typical urban/rural/motorway split. 20 and 30 mph

roads can safely be considered “urban” driving through cities and towns, with

20 mph zones usually reserved for areas with vulnerable pedestrians or road

users (commonly outside of schools and nurseries). 70 mph is the UK national

speed limit for cars on dual carriageways and motorways, so can be considereFd

“motorway”-style driving. 60 mph is the UK national speed limit for cars on

single carriageways so it, along with 50 mph limits, is often found on open

“rural” roads. 40 mph limits are more ambiguous but commonly represent “out

of town” roads that lead into towns or cities, or slower-moving rural roads.

A vehicle specific power-emission model was fit using 61,887 valid remote

sensing NOx observations of Euro 5 diesel passenger cars obtained using the

OPUS RSD 5000 (n = 46,559, 75%) and Denver FEAT instrument (n = 15,328,

25%). Vehicle technical information such as type approval categories, fuel

types and vehicle types were obtained from the commercial supplier CDL

Vehicle Information Services Ltd.[85]. Diesel vehicles were selected for this

study due to their great impact on air quality, and Euro 5 vehicles were selected

due to being the most common Euro standard observed in the remote sensing

database (Chapter 4, Davison et al. [2]). Euro 5 diesel passenger cars in the

remote sensing data set represent 21 different manufacturer groups (16 of

which feature 100 observations or greater), and collectively had a mean VSP of

7.26 kW t−1, speed of 22.9 mph, and acceleration of 0.68 mph s-1. The mean

cumulative mileage for these vehicles was 111,716 km, based on data from

annual MOT tests made available by CDL. Measurements were taken at 37 sites
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across 14 regions in the UK, with a mean ambient temperature of 15.6 ◦C.

At time of writing, the instrumented vehicle data set is over a decade old

and it is likely that the capabilities of vehicles and design of roads have since

changed. Furthermore, the dates of the instrumented vehicle data (2003–2007)

do not overlap with those of the remote sensing data or even Euro 5 legislation,

which came into effect in 2009. While a more recent driving data set would be

preferable, no recent data similar in scope and size is available. In addition, it is

not expected that the key aims of this study — the comparisons with COPERT

and the examination of driver behaviour — will necessarily be impacted by

the use of older data. Emissions are considered on a bulk level and always

in reference to their relationship with engine power, and not on a fine spatial

scale with reference to individual roads or specific journeys which may have

considerably changed over the last 15 years.

For comparisons with in-use emission factors, COPERT v5.5 speed-emission

curves were obtained from Ntziachristos and Samaras [45]. The COPERT

curves are calculated using Equation 3.1, where EF is some emission factor,

v is a vehicle’s speed, α through η are dimensionless constants, and RF is a

reduction factor. For many diesel passenger cars, RF is equal to 0. COPERT v5.4

introduced a separate category with an RF value of 0.3 for Volkswagen vehicles

that received a software update post-“dieselgate”. This 30% reduction factor

is consistent with evidence from remote sensing, which suggests a 30–36%

reduction factor depending on whether just software or hardware and software

had been updated[101].

EF =
αv2 + βv +γ + δ

v

εv2 + ζv + η
× (1−RF) (3.1)

3.3.2 Data Processing

To model the emissions of the journeys in the instrumented vehicle data set,

the whole data set needed to be converted into a vehicle specific power-based
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drive cycle. To do so, the methods outlined in Chapter 2 were used, which have

been reproduced as Equation 3.2–Equation 3.7.

V SP =
2500 +

(
R0 × v +R1 × v2 +Cd ×A× 0.5× ρ × v3

)
× 1.08

m× 1000

+ v × 1.08× (1.04× a+ g ×Grad) (3.2)

FCgh = (β1 ×V SP + β0)×m (3.3)

EFgs = EFgkg ×
FCgh

3,600,000
(3.4)

EFgs = f (V SP ) (3.5)

EFgkm−inst =
EFgs

vms / 1000
(3.6)

EFgkm−avg =

∑
EFgs

total distance
(3.7)

To calculate VSP from the data set required several intermediate steps.

First, the second-by-second change in each vehicle’s speed was taken to be its

acceleration. Then, a smooth spline was fit to the elevation of each journey

to remove GPS noise, and the second-by-second change in that elevation was

taken to be the road slope. VSP was modelled to represent a ‘generic’ car,

using the following values taken from Chapter 2/Davison et al. [1]: R0 = 157,

R1 = 0.95, CdA = 0.660, β0 = 221, β1 = 204. The vehicle mass, m, was

taken to the average weight of a passenger car in the remote sensing data set,

1.4 tonnes, plus an additional 0.15 kg to estimate the weight of passengers and

cargo. Equation 3.2 could then be used to calculate VSP.

VSP, fuel consumption (FCgh) and instantaneous emissions (EFgs) were

calculated using the Euro 5 diesel remote sensing data set using Equation 3.2–

Equation 3.4. A generalised additive model (GAM) was fit to determine the

relationship between instantaneous NOx emissions and VSP (Equation 3.5),

with analysis of variance (ANOVA) testing showed that VSP was a significant

predictor (P < .05). The fitted GAM was then used to predict NOx emissions

over the vehicle journeys.
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Instantaneous distance-specific (g km−1) emissions were calculated through

division by instantaneous vehicle speed (Equation 3.6). These are useful when

plotting speed-emission curves in Subsection 3.4.2, which are compared to

COPERT speed-emission curves from Ntziachristos and Samaras [45]. Murrells

and Rose [179] employed 6th order polynomial equations to fit speed-emission

curves, shown in Equation 3.8 where EF is some emission factor, v is a vehicle’s

speed, and a through g are dimensionless constants. This approach is recreated

in this analysis.

EF =
a+ bv + cv2 + dv3 + ev4 + f v5 + gv6

v
(3.8)

Journey-average distance-specific emissions were calculated by summing the

instantaneous emissions for a given journey and dividing by the total distance

travelled in that journey (Equation 3.7). To fairly compare the emissions from

individual drivers, journeys were divided into sub-journeys based on speed

limit zones. A sub-journey is classed as a period of time wherein a vehicle was

under a single speed limit for any amount of time. For example, an overall

journey may have started in an urban centre (30 mph limit), progressed onto

a motorway (70 mph) and then returned to urban driving (back to 30 mph).

This journey would have been split into 3 sub-journeys. Having access to speed

limit-based sub journeys allows for journey-average distance-specific emissions

to be calculated for individual speed limits.

3.4 Results and Discussion

3.4.1 Exploratory Speed Limit Analysis

Figure 3.1 visualises the proportions of different speed limits in the data set.

A slight majority (51%) of the driving was under a 30 mph speed limit,

which can be assumed to reflect urban driving. The remaining speed limits in

the data set, in descending order of frequency, are 40, 70, 60, 50 and finally 20
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mph. 20 mph limits can be considered a niche in the overall data set, although

still represent a total of approximately 16 continuous hours of driving. For

comparison, the data for 30 mph limits represent 61 continuous days.

Taking only the driving in which the signposted speed limit was broken

shows an increase in the proportion of 20, 30 and 70 mph, indicating that the

majority of speeding appears to occur under urban and motorway conditions.

Indeed, when considering the proportion of driving under each of these limits,

25.1% of driving done in 20 mph zones was over the signposted limit, 21.2% in

30 mph zones, and 31.0% in 70 mph zones. This percentage in 40, 50, and 60

mph zones was 17.6%, 15.8% and 5.2%, respectively.

Despite representing 51% of driving and 54% of speeding in the data set,

30 mph limits only account for 36% of instantaneous modelled NOx emissions.

This is still a plurality, with 70 mph limits accounting for 30% of NOx emissions,

40 and 60 mph accounting for 14% each, 50 mph 5% and 20 mph the remainder

(< 1%). This owes to the power-NOx relationship used to determine emissions;

the median (and interquartile range) of VSP is 2.12 (0.53–6.17) kW t−1 in the

30 mph zones and 11.62 (5.09–17.02) kW t−1 in the 70 mph zones.

All of vehicle speed, VSP and instantaneous NOx follow a similar pattern,

their median values increasing with the speed limit. Instantaneous distance-

specific NOx shows a different trend, however, decreasing from a median value

of 0.91 g km−1 of NOx at 20 mph to 0.53 g km−1 at 60 mph, before increasing

to 0.70 g km−1 at 70 mph.

3.4.2 Speed-Emission Curves

Speed-emission curves are often used for emission factor development, visu-

alising the trend of distance-specific emissions as a function of vehicle speed.

These commonly possess a “U”-shaped appearance, with emissions being low-

est at middling speeds, higher at high speeds, and highest at low speeds — in

part owing to the asymptotic effect of distance-specific emissions approaching
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Figure 3.1: Exploratory speed limit analysis. Top: a), the frequency of each speed

limit in the data set, b), the frequency of each speed limit when the vehicles were

speeding, and c), the proportion of NOx each speed limit contributed to the overall

sum of instantaneous NOx emissions. 20 mph driving contributed < 1% to each total.

Bottom: The median and interquartile range of vehicle speed, VSP, instantaneous NOx

and instantaneous distance-specific NOx.
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infinity as vehicle speed approaches zero.

There are several potential weaknesses of speed-emission curves that are

worthy of examination, one being that the aforementioned asymptotic effect

means that very low speed driving is often omitted from the curves. The key

weakness, however, is that a vehicle’s speed does not completely capture the

demand on its engine. For example, a vehicle going 30 mph in an urban setting

is driving unimpeded, likely neither accelerating nor decelerating and with

little congestion. However, a vehicle going 30 mph on a motorway is likely

either accelerating up to motorway speeds, decelerating in preparation to leave

the motorway, or experiencing congestion. Furthermore, a vehicle going 30

mph uphill will have a greater power demand on its engine than a vehicle going

30 mph downhill.

Figure 3.2 shows a speed-emission curve at different speed limits, as well

as a curve of all speed limits aggregated together. The slopes follow a similar

overall trend, and display the previously mentioned “U”-shape. There are some

differences revealed when considering vertical slices through the curves. For

example, a Euro 5 diesel vehicle travelling at 30 mph emits 0.70 g km−1 of NOx

in a 30 mph zone, 0.77 g km−1 in a 40 mph zone, 0.82 in 50/60 mph zones and

0.88 in a 70 mph zone. This is a range of 0.17 g km−1 of NOx. The aggregated

curve predicts a value of 0.74 g km−1 of NOx, halfway between the 30 mph and

40 mph values.

Speed-emission curves from COPERT are provided, plotted in the range of

10–130 km h−1 (roughly 6–81 mph) as directed by Ntziachristos and Samaras

[45]. It is visibly apparent that the COPERT curves are lower than than the

remote sensing curves for all speed limits, with an average difference of 0.21

g km−1 between the “no software update” (solid) COPERT and aggregated

remote sensing curves. The difference between the curves tend to decrease

at higher vehicle speeds; at 6mph (the lowest suggested speed for COPERT)

the COPERT curve predicts emissions of 1.00 g km−1 (-0.60 g km−1/-60%

compared to the remote sensing curve) but by 30 mph the difference has
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Figure 3.2: Top: Density functions of vehicle speed on roads under different speed

limits. Bottom: Speed-emission curves for instantaneous distance-specific NOx of Euro

5 diesel passenger cars as a function of vehicle speed. Curves are given on a per-speed

limit basis, as well as all speed limits aggregated (“All”). A sixth-order polynomial

fit was employed (Equation 3.8), as in Murrells and Rose [179]. Also visualised are

COPERT v5.5 curves for Euro 5 diesel passenger cars, both with (dashed) and without

(solid) a 30% reduction factor to reflect post-dieselgate VW software updates[45].
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dropeed to -0.19 g km−1/-26%. The difference then reaches a local minima

at 41 mph (-0.15 g km−1/-24%), increases slightly to a local maxima at 57

mph (-0.17 g km−1/-26%) and is at its lowest at 79 mph (-0.09 g km−1/-9%).

A literature search reveals a limited number of studies and technical reports

across different version of COPERT that suggest that COPERT has historic-

ally underestimated NOx emissions when compared to real-world emissions

measurements[180–185].

There may be many reasons for this disparity. For example, in-lab meas-

urements that feed into COPERT’s emission factor calculations are commonly

conducted at 20-30 ◦C[51,110]. As stated in Subsection 3.3.1, the average temper-

ature at which the remote sensing measurements were conducted was 15.6 ◦C.

Grange et al. [110] used 300,000 light-duty vehicle remote sensing measure-

ments to explore the significance of temperature on NOx emissions, and noted

a “low temperature penalty” — NOx emissions from light-duty diesel vehicles

were higher at lower temperatures. The authors provided multipliers to ap-

ply to non-temperature adjusted NOx emission data, such as the COPERT

speed-emission curve. With the appropriate factor (×1.2) applied, the average

difference between the uplifted COPERT curve and aggregated remote sensing

curve drops to -0.084 g km−1. At 6 mph the difference is -0.40 g km−1 (-34%)

and at 30 mph -0.082 g km−1 (-11%), but by 70 mph the difference is effectively

zero (to 3 decimal places). Another possibility may be emission deterioration of

in-use passenger cars, which is a more complicated effect discussed in greater

depth in Chapter 5.

An important insight from this analysis is that the greatest deviations

between remote sensing and COPERT distance-specific emissions occur for

low-speed driving, which can be interpreted as urban driving. While 6 mph

is well below any signposted speed limit on UK roads, slow driving such as

this is not uncommon in built-up, congested urban areas; for context, 6 mph

represents the 15th percentile of speed in the instrumented vehicle data set.

This is significant from an air quality and public health perspective, as built-up
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urban areas almost by definition have a high density of people frequenting

them who will be exposed to emissions. While accounting for temperature does

close the gap between the COPERT and remote sensing curves, a significant

34% difference remains at the lowest vehicle speeds. This may be an intrinsic

weakness of speed-emission curves more generally; they break down at the

lowest speeds, despite an understanding of congested, low-speed conditions

being particularly valuable from an air quality exposure perspective.

3.4.3 Journey-Average Emissions and Driver Behaviour

Journey-average emission factors were calculated for each sub-journey in the

data set using Equation 3.7. An asymptotic effect is once again seen; as the total

distance covered in the journey tends toward zero the overall emission factor

tends towards infinity. The result of this is the calculation of unexpectedly

high distance-specific emission factors for journeys where particularly short

distances were covered (for example, a journey entirely comprised of moving

slowly through traffic) and lower emission factors for long motorway journeys.

This effect is visualised in Figure 3.3.

To avoid the extremely high values biasing results, very quick (≤ 2 minutes)

and short (≤ 100 metres) sub-journeys were removed, leaving 24,931 distance-

specific NOx emission values between 0.24 and 11.6 g km−1. The lower quartile

was 0.67 g km−1, the median 0.82 g km−1 and the upper quartile 0.99 g km−1.

Disaggregating to different speed limits, the median and interquartile ranges

for the distance-specific NOx factors were 0.88 (0.75–1.05) for 30 mph, 0.76

(0.60–0.94) for 40 mph, 0.69 (0.59–0.80) for 50 mph, 0.64 (0.57–0.74) for 60

mph and 0.76 (0.68–0.88) for 70 mph.

Having access to a high number of distance-specific emission factors allows

for the influence of different driving conditions on emissions to be identified,

such as the previously discussed issue of driver behaviour. The data set in this

study contains real driving data for 79 different drivers, and the distributions
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Figure 3.3: Distance specific NOx (g km−1) as a function of total journey distance. All

journeys are over 2 minutes in duration and at least 100 metres in length. Left: Both

axes on a linear scale, showing the asymptotic effect. Right: Both axes on logarithmic

scales, more clearly indicating NOx emission distribution as a function of journey

length.

of their modelled distance-specific NOx emissions may allow for the effect of

behaviour to be quantified.

Figure 3.4 visualises the distributions of distance-specific NOx emissions for

each driver under each speed limit. Only drivers with at least 50 journeys under

each speed limit are considered (all drivers regardless of their total numbers of

journeys are visualised in Appendix B). The most apparent observation is that

the whiskers of the boxplots for effectively all drivers are wide and overlap with

one another. This is to be expected; drivers won’t always drive consistently — a

driver may drive more aggressively if they are running late, for example — and

driving conditions (e.g., congestion) and journey characteristics (e.g., journey

length) could vary radically between different journeys performed by the same

driver.

Driver behaviour is difficult to isolate from external driving conditions. For
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Figure 3.4: Distributions of journey-average distance-specific (g km−1) NOx emissions.

Each boxplot represents an individual driver with 50 or greater journeys under the

given speed limit. The hinges of each boxplot represent the first and third quartiles, and

the hinges represent the largest/lowest value no greater than 1.5 times the interquartile

range from the nearest hinge. Data beyond the whiskers are visualised as individual

points. The vertical ribbons visualise the median and interquartile range of the whole

speed limit. 68 observations greater than 3 g km−1 are not visualised.
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example, a driver committed to “eco-driving” may still have higher journey-

average emissions than a more aggressive driver if they happen to be travelling

in more congested areas. Instead of full distributions, the median emission

could instead be considered. The median is chosen over the mean to not be as

influenced by the possible presence of atypically high emission factors owing

to different journey lengths/times, as previously discussed, as well as “one-off”

poor journeys a driver may have had. The range of median distance-specific

NOx emissions is 0.70–1.11 g km−1 for 30 mph driving, 0.54–1.12 g km−1 for

40 mph, 0.58–0.81 g km−1 for 50 mph, 0.57–0.80 g km−1 for 60 mph and 0.67–

1.01 g km−1 for 70 mph. The range in values is the greatest in 40 mph zones,

followed by 30 mph, 70 mph and finally 50 & 60 mph. This does suggest that

there is some appreciable difference between drivers when it comes to emissions,

particularly in urban areas.

Due to the large size of this data set, comment can be made as to whether

drivers are consistently high emitting across multiple driving conditions. To

assess this, drivers’ median distance-specific NOx emissions for each speed

limit were taken and their correlation coefficients calculated. Only drivers with

10 or greater journeys under both speed limit conditions being correlated were

considered for this analysis. However, not all of the 79 drivers had undertaken

10 or greater journeys under each speed limit. The number of drivers with at

least 10 journeys under each speed limit are listed here: 30mph – all 79 drivers,

40 mph – 75 drivers, 50 mph – 49 drivers, 60 mph – 59 drivers, and 70 mph – 58

drivers. Table 3.1 shows correlation matrices using both the Pearson correlation

(r) and Spearman’s rank correlation (ρ) of the driver’s median distance-specific

NOx emissions between the different speed limits.

Due to the many other factors which influence journey-average emissions,

very high correlation coefficients are not expected. Still, the mean correlation

coefficients between the different speed limits for both correlation methods

(r = 0.37, ρ = 0.42) do indicate a moderate positive correlation. This suggests

that a high-emitting driver in an urban area is somewhat likely to be a higher-
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r 30 40 50 60 70

30 — 0.39 0.17 0.44 0.44

40 0.39 — 0.29 0.49 0.61

50 0.17 0.29 — 0.18 0.30

60 0.44 0.49 0.18 — 0.40

70 0.44 0.61 0.30 0.40 —

(a) Pearson

ρ 30 40 50 60 70

30 — 0.53 0.22 0.47 0.45

40 0.53 — 0.27 0.51 0.74

50 0.22 0.27 — 0.30 0.29

60 0.47 0.51 0.30 — 0.46

70 0.45 0.74 0.29 0.46 —

(b) Spearman (rank)

Table 3.1: Correlation matrices of median distance-specific NOx emissions from the

same drivers under different speed limits. Both the the pearson coefficient, r, and the

spearman coefficient, ρ, are shown.

emitting driver on a motorway, and vice-versa. This reinforces the likelihood of

a driver behaviour effect; under one kind of driving condition/speed limit it

is possible a high emitting driver may unfortunately drive in predominantly

congested areas, but it is unlikely that a driver is consistently experiencing

congestion regardless of whether they are undertaking urban, rural or motorway

driving.

The results from this section suggest that there is a driver behaviour effect,

but it is important to put this effect in context. For example, at the end of

Chapter 2, it was demonstrated that the range in distance-specific NOx emis-

sions from the studied Euro 5 diesel passenger cars on urban-rural journeys was

0.55-1.34 g km−1. This corresponds to a roughly ±42% relative percentage range.

Conversely, the relative percentage ranges for the median distance-specific emis-

sions of different drivers average at ±22%. This appears to highlight that driver

behaviour is a lower importance influence on emissions when compared to the

difference between manufacturers.
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3.5 Conclusion

Remote sensing is often used to examine real-world influences on emissions

that are challenging to replicate in a laboratory, but only measuring “snap-

shots” of vehicle journeys limits the kinds of influences it can comment upon.

Chapter 2 presented a method for calculating distance-specific emission factors

using power-emission relationships from remote sensing and driving data from

portable emission measurement system (PEMS) studies. The stated objective

was to calculate emission factors that could be directly compared with those

from commonly used on-road or in-lab measurement techniques, or used for

inventory development. This chapter demonstrates that these methods are not

restricted to use with short drive cycles or PEMS routes, but can be used flexibly

with large driving databases of effectively any size. This enhances the ability

for remote sensing to address sub-national, local-scale emissions.

The comprehensive modelled emission data allowed for the reproduction

of COPERT-style speed-emission curves. The main benefit of this is the use

of extensive real-world emissions data to critique the COPERT methodology

that many European countries rely upon to calculate their emission inventories.

There appears to be limited evidence that speed-emission curves vary drastically

between different driving conditions, represented here as different speed limit

zones. However, real Euro 5 NOx emissions are demonstrated to be higher

than predicted by COPERT v5.5, although adjusting for temperature closes the

gap somewhat (reducing the average difference between the curves from -0.21

to -0.084 g km−1). The apparent effect of ambient temperature reinforces the

utility of local-scale emission measurements to refine international emission

estimates like those used in COPERT.

Remote sensing data cannot usually easily comment on driver behaviour, but

the diversity of drivers in the modelled data set allowed it to be considered. A

key advantage of remote sensing data is also demonstrated in that the same data

sets can address the relative importance of multiple influencing factors. In this
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case, driver behaviour is suggested to be a second-order influence, around half

as important as the differences between different vehicle manufacturers. Being

able to rank influences in this way allows researchers to prioritise targeting the

key sources of uncertainty in their emission estimates, and for policymakers to

create effective strategies for road transport emission mitigation.
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4.1 Abstract

Road vehicles make important contributions to a wide range of pollutant emis-

sions from street level to global scales. The quantification of emissions from

road vehicles is, however, highly challenging given the number of individual

sources involved and the myriad factors that influence emissions such as fuel

type, emission standard and driving behaviour. In this work, highly detailed

and comprehensive vehicle emission remote sensing measurements made under

real driving conditions were used to develop new bottom-up inventories that

can be compared to official national inventory totals. It was found that total

UK passenger car and light duty van emissions of nitrogen oxides (NOx) are

underestimated by 24–32%, and up to 47% in urban areas, compared with the

UK national inventory, despite agreement within 1.5% for total fuel used. Emis-

sions of NOx at a country level are also shown to vary considerably depending

on the mix of vehicle manufacturers in the fleet. Adopting the on-road mix of

vehicle manufacturers for six European countries results in up to 13.4% range

in total emissions of NOx. Accounting for manufacturer-specific fleets at a

country level could have a significant impact on emission estimates of NOx and

other pollutants across European countries, which are not currently reflected

in emission inventories.
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4.2 Introduction

Emission inventories are an important component of the management of air

pollution and provide essential input to air quality models. Emission invent-

ories are required and used at a range of scales from single sources and road

sections through to quantifying national total emissions. At the local scale,

estimating the emissions along individual road links is required to understand

near-road exposures to air pollution. Equally, at a national scale, establish-

ing total emissions is required to meet international obligations, such as the

European National Emission Ceiling Directive (NECD)[186]. The accuracy of

emission inventories is of central importance for many issues but in practice is

difficult to establish.

The road transport sector is arguably a uniquely challenging sector for

which to estimate emissions. In the UK alone, there are millions of individual

vehicles that move in both space and time, representing a wide range of fuel

types, emission standards, vehicle classes and technologies. Even nominally

identical vehicles may behave differently based on driver behaviour, vehicle

mileage and levels of maintenance[104,175]. Moreover, environmental conditions,

such as the influence of ambient temperature, can also have an effect on road

vehicle emissions[110,166].

Of particular recent interest has been the emission of NOx from road trans-

port vehicles. Given the wide ranging impacts of NOx emissions into the

atmosphere, it is important that emission estimates are robust and representat-

ive of the region being considered. In Europe over the past decade there has

been a substantial focus on how road vehicle emissions of NOx contribute to

ambient nitrogen dioxide (NO2) concentrations, which have often exceeded

ambient air quality limits[144]. Emissions of NOx also play a central role in

the formation of O3 and PM2.5, both of which are important pollutants from a

direct health impact perspective and in terms of wider environmental damage.

Extensive evidence of considerable differences between emissions measured
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in the laboratory for type approval purposes and real driving emissions has

also been widely reported and is well-established[149,187]. However, the in-

corporation of increasingly available real driving emissions data to emission

inventories has not been as extensive.

In the UK, the National Atmospheric Emissions Inventory (NAEI) is the

primary inventory that categorises the emissions of many greenhouse gases and

air quality pollutants. It covers multiple sectors, including industry, agriculture,

land-use, energy generation, and transport[38]. In 2019, the NAEI indicated that

the transport sector was responsible for 54% of the UK’s NOx emissions, with

33% coming from road transport[19]. The NAEI forms the basis of reporting

total UK emissions as part of the National Emissions Ceiling Directive[186], as

well as providing input to local and regional scale air quality models. It is

important therefore that the inventory accurately represents the emissions from

sectors such as road transport.

Like many European emission inventories, the UK NAEI relies heavily on

the COPERT (COmputer Programme to calculate Emissions from Road Trans-

port) emission factor approach for estimating road transport emissions[40,44],

based on recommendations from the European Monitoring and Evaluation

Programme (EMEP)/European Environment Agency (EEA) Emission Inventory

Guidebook[45]. Initially, emission factor development was based entirely on

laboratory measurements. More recently, portable emissions measurement

systems (PEMS) have been incorporated into emission factor development. The

2019 EMEP/EEA guidebook notes that a combination of laboratory and on-

board measurements are now typically used for emission factor development,

with other methods such as vehicle emission remote sensing and tunnel studies

being used for validation purposes. Indeed, the literature encompasses studies

which have used PEMS[184,188], vehicle emission remote sensing[189,190] and

even aircraft-based flux measurements[185] to independently validate emission

inventory estimates.

Measuring relatively few vehicles using laboratory or on-board measure-
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ment techniques such as PEMS can provide detailed single vehicle emissions

information, but it is challenging to measure many vehicles using these methods

due to cost and time constraints. It is known that emissions can vary signific-

antly by vehicle manufacturer and model, but currently no account is taken of

these differences in emission factor or inventory development[149]. Choosing a

representative sample of a country’s vehicle fleet from which to derive emission

factors is therefore a potentially important issue. The advantage of remote

sensing over other methods are the large sample sizes and comprehensive fleet

coverage, which provides a better representation of in-use vehicle fleets.

A focus on the UK over other European countries for inventory verification

is advantageous given that Great Britain is an island. In countries such as Ger-

many, France and Belgium, gasoline and diesel fuel sold may not be used within

the country itself, leading to some uncertainty in the allocation of fuel use (and

hence emissions) to a specific country. Conversely, in the UK close to 100% of

road transport fuel sold is used in the UK. This means that robust comparisons

can be made between so-called ‘bottom-up’ and ‘top-down’ inventory methods.

Specifically, there is high certainty in the top-down calculations that rely on

total fuel sales data.

The primary focus of this work is to exploit the comprehensive fleet coverage

provided by vehicle emission remote sensing to develop highly detailed and

comprehensive bottom-up NOx, CO and NH3 emissions estimates at a UK scale

for light duty vehicles. This aim is achieved through calculating distance-

specific emission factors and making direct comparisons with the 2018 UK

inventory. Additionally, calculations are made of CO2 emissions to enable a

direct comparison with fuel use statistics and provide a means of verifying the

methods developed.

A specific focus is to estimate NOx emissions, which have persistently been

thought to be underestimated, and provide a national level quantification of

total emissions. Finally, for the first time, the influence of different vehicle

manufacturer fleet mixes is considered, which can be determined from remote
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sensing data. By considering different measured vehicle manufacturer pro-

portions in other European countries, it is established how these contrasting

manufacturer proportions affect total emissions of NOx and CO2.

4.3 Materials and Methods

4.3.1 Vehicle Emission Remote Sensing

The development of and operating principles behind vehicle emission remote

sensing has been described in considerable detail in the literature[79,145], but is

summarised here. A remote sensing device (RSD) consists of a UV/IR source,

multiple detectors, optical speed-acceleration bars and a number plate camera.

A RSD is deployed such that vehicles drive past the set-up unimpeded, with the

concentrations of gases in their exhaust plumes and their speed and acceleration

being measured remotely via open path spectroscopy. Spectrometry is achieved

using a collinear beam of IR and UV light which, after being absorbed by

exhaust plumes, is separated into its two components within the detector.

Non-dispersive infrared detectors measure CO, CO2, hydrocarbons (HC) and

a background reference. The UV component passes through a quartz fibre

bundle and is used to measure NH3, NO and NO2.

One hundred measurements are taken in half a second for each vehicle

plume exhaust when the rear of the vehicle is detected. From these measure-

ments the ratio of a pollutant to CO2 is calculated, from which fuel-specific

(g kg−1) emission factors can be calculated. The further transformation from

fuel-specific to distance-specific (g km−1) emission factors is described in detail

in Chapter 2 and briefly in Subsection 4.3.2.

Vehicle number plates are recorded alongside emission and speed measure-

ments and are used to obtain vehicle technical data, such as engine size, fuel

type, Euro standard and vehicle manufacturer. In this study, the data were ob-

tained from CDL Vehicle Information Services Ltd., a commercial supplier[85].
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CDL retrieved the data from the Driver and Vehicle Licensing Agency and

the Society of Motor Manufacturers and Traders Motor Vehicle Registration

Information System. Data relating to the total mileage of each vehicle at its last

annual technical inspection test was also obtained through CDL for vehicles

greater than three years old.

Vehicle emission measurements were conducted between 2017 and 2020

at 37 sites across 14 regions in the United Kingdom using two remote sensing

instruments — the majority with the Opus AccuScan RSD 5000[191], supple-

mented with data from the University of Denver Fuel Efficiency Automobile

Test (FEAT) instrument[120]. A total of 304,039 measurements were collected of

Euro 2–6 vehicles in three key classes of Light Duty Vehicles (LDV): diesel light

commercial vehicles (LCVs) and diesel and gasoline passenger cars (PCs). A

statistical summary of the data set is provided in Table 4.1.

4.3.2 Calculating Distance-Specific Emission Factors

The calculation of distance-specific (g km−1) emission factors is required for

the ‘bottom-up’ approach to estimating total UK emissions. The vehicle power-

based approach used has been previously developed and evaluated[1,30], but

is briefly outlined here. The principal steps include (i) the development of a

vehicle power-based method to calculate g km−1 emissions from remote sensing

data, (ii) development of relationships that enable the prediction of emissions

over any 1-Hz drive cycle and (iii) the application of the g km−1 emissions to

a UK national scale. Because vehicle emission remote sensing measurements

tend to be made under higher engine load conditions than full drive cycle

averages, their direct use would tend to overestimate mean exhaust emissions.

The method provides a way in which to estimate emissions for typical real-

world drive cycles that may have lower average engine loads, e.g., for typical

urban driving.

A physics-based approach to calculating vehicle power is used, accounting
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Characteristic Diesel LCV Diesel PC Gasoline PC

# of Measurements 55,018 113,554 135,467

# of Manufacturers 34 51 61

(with ≥ 100 Measurements) 16 34 39

VSP1 (kW t−1) 5.1 (7.4) 6.3 (8.1) 5.9 (7.5)

Speed1 (km h−1) 34.2 (10.1) 35.2 (10.1) 35.0 (9.9)

Acceleration1 (km h−1 s-1) 0.99 (2.25) 1.16 (2.40) 1.02 (2.29)

Temperature1 (◦C) 13.9 (5.1) 14.9 (5.3) 14.9 (5.2)

Mileage1 (1000 km) 169.2 (102.1) 147.2 (105.7) 112.3 (72.9)

Euro standard2

Euro 2 290 (0.5%) 488 (0.4%) 3,191 (2.4%)

Euro 3 3,912 (7.1%) 9,222 (8.1%) 23,272 (17%)

Euro 4 11,472 (21%) 22,743 (20%) 33,946 (25%)

Euro 5 27,985 (51%) 45,900 (40%) 39,691 (29%)

Euro 6 11,359 (21%) 35,201 (31%) 35,367 (26%)

Remote Sensing Device2

Opus RSD 5000 47,140 (86%) 99,294 (87%) 118,379 (87%)

Denver FEAT 7,878 (14%) 14,260 (13%) 17,088 (13%)

Table 4.1: A statistical summary of the vehicle emission remote sensing data, split

into diesel light commercial vehicles (LCV) and diesel and gasoline passenger cars

(PC). Statistics presented: 1Mean (Standard deviation); 2Number of measurements

(Percentage of the column total).

for all the main forces acting on a vehicle. First, instantaneous vehicle power

is calculated as the total power to accelerate the vehicle, to overcome the road

gradient, to resist both rolling and air resistance and to power auxiliary devices,

adjusted for losses in the transmission. Vehicle specific power (VSP) is calcu-

lated as the instantaneous power divided by the vehicle mass (assumed to be

the curb weight plus 150 kg to account for the weight of the driver, passengers

and cargo). As none of the road load or aerodynamic drag coefficients were

known, generic values taken from Chapter 2 were used. Fuel consumption is
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straightforwardly calculated from VSP using a linear model relating VSP to fuel

consumption using the Passenger Car and Heavy Duty Emissions Model[156].

As the parameters were based on Euro 5 and 6 vehicles, a 5% penalty was

applied to Euro 2–4 vehicles to account for poorer fuel efficiency. Fuel-specific

emission factors in g kg−1 can then be combined with fuel consumption in

kg s−1 to produce instantaneous emission values (g s−1).

Relationships between emissions in g s−1 and VSP for vehicles with different

fuel types, vehicle types, Euro standards and pollutant species were established

using Generalised Additive Models (GAMs), which are flexible enough to con-

sider non-linear relationships between variables. The mgcv R package[134] was

used to fit the models. These models were used to predict emissions for 1 Hz

drive cycles from PEMS tests obtained from the UK Department for Transport

(DfT)[159]. The PEMS data contained a total of 4,243 km of real-world driving

over 58 PEMS routes which included urban, rural and motorway portions. The

maximum VSP value across these drive cycles was 37.2 kW t−1 (equal to the

99.2 percentile VSP value of the remote sensing measurements), and GAMs

were fit between 0 and 40 kW t−1. Emissions from negative VSP conditions

were assumed to be zero. The approach is flexible enough that it can be applied

to any 1-Hz drive cycle for which VSP is available or can be calculated.

With 1 Hz modelled instantaneous emissions, distance-specific emission

factors (g km−1) can be calculated as the total of all instantaneous emissions

divided by the total distance. The distance-specific emission factor used for the

total UK emissions estimation was the mean of all the distance-specific factors

from each of the 58 real-world drive cycles. Factors were calculated separately

for each of the urban, rural and motorway conditions. The next step is to apply

these emission factors to the corresponding driving activity data in the UK,

thus providing a means of estimating total UK emissions.
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Figure 4.1: A flowchart showing the estimation of total UK LDV emissions using

remote sensing (RS), using activity data sourced from, i), the UK Department for

Transport, partitioned using RS observations, and ii), National Atmospheric Emissions

Inventory fleet composition assumptions.

4.3.3 Estimating Total UK Emissions

A flowchart of the methods used to calculate total UK emissions in this chapter

is provided in Figure 4.1.

Distance-specific emission factors for each vehicle type were used to calcu-

late a bottom-up estimate of total UK emissions through multiplication with

UK-wide mileage data. Estimates of the total distance travelled by UK pas-

senger cars and light commercial vehicles per annum were obtained from a

publicly available government database[192]. These activity data were obtained

by the UK Department for Transport using a national network of around 180

automatic traffic counters, which used recorded physical properties of vehicles

to segment these into vehicle types (passenger cars, vans, etc.). In order to

apportion these vehicle mileage data into different fuel types, information

available in the remote sensing data, such as average mileages by fuel type, was

used, as provided in Table 4.1.
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The vehicle mileages are already apportioned into urban, rural and mo-

torway driving conditions, but not by fuel type or Euro standard. The data

in Table 4.1 indicates that there is a 1:1.32 ratio of recorded mileage between

gasoline and diesel passenger cars, but a 1.11:1 ratio of number of measure-

ments. The number of measurements provides a direct measure of vehicle

km driven under urban conditions, where remote sensing measurements are

typically made. In other words, diesel vehicles drive further on an overall

UK level compared with gasoline vehicles, but gasoline vehicles drive further

than diesel vehicles in urban areas. The rural and motorway portions were

adjusted proportionally such that the sum of the urban, rural and motorway

portions summed to the total annual mileage reported in UK statistics. Only

0.71% of light commercial vehicles measured were gasoline, which have not

been explicitly considered given their low numbers and minor contribution

to emissions. However, overall LCV mileage data was reduced by this small

amount to apply to diesel LCVs only.

Apportionment into Euro standards is straightforward, simply applying the

ratio between the five Euro standards for each of the three vehicle categories

— Diesel PC, Gasoline PC and Diesel LCV — given in Table 4.1. The fully

apportioned mileages are provided in Table 4.2. To calculate UK totals for

the exhaust pollutants, the g km−1 emission factors for each combination of

pollutant species, vehicle category, Euro standard and driving condition (urban,

rural or motorway) were multiplied by the corresponding apportioned mileage.

While emission inventories themselves are often not reported with associated

uncertainties, the estimates presented here are provided alongside the 95%

confidence interval calculated from the original g kg−1 measurements.

The estimated UK totals can be directly compared with the NAEI. The

comparison can be expressed through the use of a ratio between the bottom-up

estimated emission and the emission reported in the NAEI, here labelled F.

The value of F is therefore also the factor by which one would multiply the

emission reported in the NAEI to arrive at the emission estimated using the
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Annual UK Mileage (billion km)

Gasoline Diesel

VT ES Urban Rural Mway Total Urban Rural Mway Total

PC 2 1.89 1.78 0.57 4.24 0.28 0.43 0.22 0.93

3 13.41 12.61 4.03 30.05 5.76 8.62 4.53 18.91

4 19.72 18.54 5.93 44.19 14.22 21.28 11.19 46.68

5 22.88 21.51 6.88 51.26 28.43 42.55 22.38 93.36

6 20.51 19.28 6.17 45.96 22.03 32.98 17.34 72.36

All 78.41 73.72 23.59 175.71 70.72 105.85 55.67 232.24

LCV 2 — — — — 0.13 0.19 0.08 0.41

3 — — — — 1.90 2.69 1.19 5.78

4 — — — — 5.63 7.95 3.52 17.10

5 — — — — 13.68 19.30 8.56 41.53

6 — — — — 5.63 7.95 3.52 17.10

All — — — — 26.98 38.07 16.89 81.93

Table 4.2: Annual UK passenger car (PC) and light commercial vehicle (LCV) mileage

in billions of kilometers, rounded to two decimal places and dissagregated based on

driving conditions and Euro standard (ES). The complete totals for each light-duty

vehicle type (roughly 410 bn & 82 bn km for passenger cars and light commercial veh-

ciles, respectively) is taken from Department for Transport quarterly traffic estimates

(TRA25). Apportionment is based on fleet composition information obtained during

vehicle emission remote sensing campaigns.

125



Chapter 4. Verification of a National Atmospheric Emission Inventory

vehicle emission remote sensing data. F = 1 would mean that these two values

were the same, F > 1 would mean the emission is under-reported in the NAEI

and F < 1 would mean that the emission is over-reported.

Any disparity between the bottom-up remote sensing emission estimates

and the NAEI reported values could be due to differences in emission factors

and/or differences in fleet composition assumptions. While the focus of this

study is on estimates using activity data partitioned using remote sensing

observations, a second set of estimates are also made using the NAEI’s fleet

composition assumptions. This allows for a like-for-like comparison with

identical activity data, which helps examine if disparities in emission estimates

are sourced from differences in emission factors or in source activity.

The NAEI reports air quality pollutant sources from four driving conditions,

those being urban, rural, motorway, and a separate cold start contribution.

In common with most emission inventories, the increased emissions of some

pollutants after engine start are considered as separate emissions from hot,

stabilised emissions. For some pollutants, such as CO and hydrocarbons, the

cold start emissions can be substantial. In the NAEI, cold start emissions are

only considered in urban areas and reflect the estimated number of trips.

The potential importance of cold start emissions raises the question about

the extent to which vehicle emission remote sensing includes a cold start

contribution. Given the vast majority of emission measurements are made

in urban areas, it might be expected that remote sensing data would include

some fraction of elevated emissions due to cold starts. However, for gasoline

vehicles, the three-way catalyst reaches effective operating temperature (called

‘light-off’) within 1 to 2 minutes of the engine starting[193]. This means that

it is highly unlikely that remote sensing measurements include a significant

proportion of cold start emissions given the proximity required of a cold start

to the measurement location. Therefore, when urban comparisons are made,

the estimates are compared with both the urban value from the NAEI and a

combination of the urban and cold start contributions.
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The NAEI is required to report road transport emissions of CO2 from fossil

fuels only, so the figures reported do not include the additional presence of

bio-fuels. Assuming that diesel in the UK contains up to 3.7% bio-diesel and

gasoline up to 4.6% bio-ethanol[194], an adjustment factor can be calculated

through the multiplication of the bio-/fossil-fuel ratio by the ratio of fuel CO2

emissions (kg) per litre of the bio-fuel and fossil fuel (1.52/2.31 for gasoline,

2.36/2.69 for diesel)[195]. The adjustments are therefore 1.032 for gasoline and

1.034 for diesel, and are used to uplift the reported NAEI CO2 values.

4.3.4 Effects of Vehicle Fleet Composition

To investigate the importance of different fleet compositions in European coun-

tries, data from the CONOX project were analysed, which provides a data-

base of European vehicle emission remote sensing measurements[98]. These

data provide over 700,000 remote sensing measurements for the UK, Sweden,

Switzerland, Belgium, France and Spain. The data usefully contain informa-

tion on the breakdown of different manufacturers and vehicle models, which

can be used to consider the effects on NOx emissions due to different national

fleet mixes. An advantage of these data is that they provide a direct, on-road

measurement of the vehicle fleet, which accounts for the vehicle km driven by

vehicles made by different manufacturers. These data are considered more rep-

resentative of in-use vehicle fleets than, for example, statistics on new vehicle

sales, which would not reflect actual distances travelled by different vehicle

types. The data do show strong country-specific characteristics. For example,

France is dominated by Renault and Peugeot-Citroen, Sweden by Volkswagen

and Volvo, and Switzerland by Volkswagen and, to a lesser extent, Daimler and

BMW (Figure 4.2).

The total emissions of CO2 and NOx based on UK mileage data for Euro

5 and Euro 6 diesel passenger cars are considered, but using the fleet mix

for each country. In this respect, the analysis addresses the question of ‘how
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Figure 4.2: Treemaps showing the eight most popular manufacturer groups for Euro 5

and 6 diesel passenger cars in the six European countries contained within the CONOX

remote sensing database. The area of each rectangle in relation to the overall square

reflects the share of the fleet that the corresponding manufacturing group represents.

Manufacturers are divided into engine sizes, labelled in cubic centimeters. Treemaps

were visualised using the treemapify R package[126].

would UK emissions of NOx change if the UK had the fleet of France, Spain,

Belgium, Switzerland or Sweden?’ The calculations keep the vehicle km the

same between fuel type used and Euro standard, i.e., that of the UK, and

simply considers different proportions of manufacturer families according to

the fleets in other countries. Manufacturer and engine size-specific emission

factors were developed for this purpose using the UK-based data set outlined

in Subsection 4.3.1, using the same method as outlined in Subsection 4.3.2.
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4.4 Results and Discussion

4.4.1 Total UK Light Duty Vehicle Emissions

The body of this chapter centres around emissions of NOx and CO2. Information

for CO and NH3, as well as emission factors for all four species, are provided in

Appendix C.

The relationship between VSP and emission rate in g s−1 for NOx and CO2 is

shown in Figure 4.3, based on the GAMs developed from the vehicle emission

remote sensing data for each fuel type, vehicle type, and Euro standard. ANOVA

testing of fitted GAMs confirmed the significance (P < .05) of VSP in modelling

both CO2 and NOx in all three vehicle categories for all five Euro standards

considered. Most of the relationships shown in Figure 4.3 are close to linear,

particularly for CO2, which highlights the benefit of expressing emissions

as a function of vehicle power demand rather than vehicle speed. Indeed,

an inherent problem with speed-dependent emission factors is that as the

speed tends to zero, the emissions tend to infinity, which means fitting a

model through the data is difficult. Some relationships are non-linear; this is

particularly noticeable in the Euro 6 diesel LCV NOx emission curve which

appears to level off at around 20 kW t−1. This can likely be attributed to

modern after-treatment technologies effectively controlling NOx emissions at

high engine power conditions.

All predicted CO2 and NOx emissions and their associated F values (the ratio

between the bottom-up estimate and the reported NAEI value) are tabulated in

Table 4.3. Key values and implications are described here.

An important first step is to establish whether there is carbon / energy

balance for the detailed bottom-up approach to estimate CO2 at a national

scale. The total estimated emissions from this method were 91.3 ± 0.9 Mt

CO2. This value is very similar to the NAEI value of 90.0 Mt, giving an F

value equal to 1.01. The similarity extends when considering the two fuel
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Carbon Dioxide / CO2 Nitrogen Oxides / NOx

Category Conditions Pred. (Mt) F Pred. (kt) F

All LDV All 91.3 ± 0.9 1.01 280 ± 6.3 1.24–1.32

Urban 40.3 ± 0.4 1.17 103 ± 2.4 1.22–1.47

Rural 34.6 ± 0.3 0.92 115 ± 2.5 1.27

Motorway 16.4 ± 0.2 0.93 62.6 ± 1.3 1.21

Gasoline PC All 35.2 ± 0.30 1.00 29.5 ± 1.5 1.82–1.95

Urban 19.3 ± 0.2 1.23 15.0 ± 0.7 1.94–2.24

Rural 11.9 ± 0.1 0.84 10.7 ± 0.5 1.71

Motorway 4.01 ± 0.03 0.75 3.81 ± 0.2 1.77

Diesel LDV All 56.1 ± 0.61 1.02 251 ± 5.0 1.19–1.27

Urban 21.1 ± 0.2 1.12 87.8 ± 1.7 1.15–1.38

Rural 22.6 ± 0.2 0.96 104 ± 2.0 1.24

Motorway 12.4 ± 0.1 1.01 58.8 ± 1.1 1.18

Diesel PC All 40.4 ± 0.4 1.14 169 ± 2.9 1.44–1.54

Urban 15.0 ± 1.2 1.22 57.7 ± 1.5 1.22–1.46

Rural 16.1 ± 1.1 1.07 70.0 ± 1.6 1.55

Motorway 9.21 ± 1.1 1.15 41.7 ± 1.6 1.64

Diesel LCV All 15.7 ± 0.2 0.81 81.2 ± 2.0 0.88–0.94

Urban 5.99 ± 0.09 0.92 30.2 ± 0.7 1.03–1.26

Rural 6.48 ± 0.10 0.76 34.0 ± 0.8 0.88

Motorway 3.20 ± 0.05 0.74 17.0 ± 0.4 0.70

Table 4.3: Bottom-up vehicle emission remote sensing CO2 and NOx predictions for

different vehicle categories and driving conditions, pred, and the ratio between the

bottom-up estimate and the reported NAEI value, F. The urban and total driving

condition ratios are given as a range, reflecting the difference between calculations

using just hot urban emissions from the NAEI and a combination of hot urban and

cold start emissions.
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Figure 4.3: Generalised Additive Models (GAMs) fit using data from vehicle emission

remote sensing relating vehicle CO2 and NOx g s−1 to VSP, coloured by Euro standard

and faceted into three light duty vehicle categories. The shading shows the standard

error of the GAM fit.

types independently — gasoline vehicles were shown to have an F value of

1.00 and diesel vehicles 1.02. When considering diesel passenger cars and light

commercial vehicles separately, however, divergence from the NAEI is apparent,

with the passenger cars having an associated F of 1.14 and the LCVs 0.81. The

bottom-up calculations therefore suggest a different allocation of diesel fuel

use (or CO2 emissions) than is suggested by the NAEI, although the sum of

passenger car and light commercial vehicle CO2 is in good agreement. It should

be noted that the comparison for gasoline is considered more robust than for

diesel fuel because almost all gasoline use in the UK (97%) is for passenger

cars, whereas diesel fuel is used in a wide range of vehicle types including

passenger cars, light commercial vehicles, buses and other heavy duty vehicles,
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which introduces some uncertainty in the allocation between diesel-fuelled

vehicles[196].

With respect to NOx, the total UK estimates were 280 ± 6.3 kt NOx. On

a UK scale, the NAEI underestimates NOx emissions, with F between 1.24

and 1.32 depending on whether cold start emissions are included or excluded,

respectively. These comparisons can be made at a more disaggregated level

by considering the vehicle categories individually. Estimated gasoline PC

emissions were higher than those reported in the NAEI, with NOx emissions

of 29.5 ± 1.5 kt (1.82 < F < 1.95). The NOx predictions for light duty diesel

vehicles were similarly under-reported in the NAEI, being 251 ± 5.0 kt NOx

(1.19 < F < 1.27). Of this diesel total, passenger cars contribute 169 ± 2.9

kt NOx (1.44 < F < 1.54) and light commercial vehicles 81.2 ± 2.0 kt NOx

(0.88 < F < 0.94).

The comparison between the NAEI and the bottom-up remote sensing data

estimations is made on a fully disaggregate level, including vehicle category

and driving condition, in Figure 4.4. This analysis shows broad consistency

between the the bottom-up estimates and NAEI reported values for CO2, with

F values between 0.77 to 1.27. Conversely, NOx is shown to have F values

between 0.70 to 2.24, with some important variability depending on driving

conditions (urban, rural or motorway).

A specific interest is the quantification of NOx emissions in urban areas

where exposures to elevated concentrations of NO2 are greatest. In total, the

NAEI reports 84.0 kt NOx from light duty vehicle activity in urban areas and

from cold start emissions, with 70.1 kt coming from just urban emissions.

Conversely, the new bottom-up estimates suggest total urban NOx emissions

of 103 ± 2.5 kt, a difference of 19 kt including cold start emissions or 32.9 kt

excluding them. These results suggest the NAEI may be under-reporting urban

emissions by 22–47%. As discussed previously, it is considered the remote

sensing measurements comprise a very low proportion of enhanced emissions

due to cold start effects. For this reason, the underestimate in urban NOx
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Figure 4.4: Total UK estimates for CO2 and NOx using vehicle emission remote sensing,

in comparison with the 2018 emissions reported in the national inventory. F values,

representing the ratio between the bottom-up estimate and the reported NAEI value,

are provided. Urban bottom-up estimates are compared with both hot urban emissions

from the NAEI and a combination of hot urban and cold start emissions, shown

connected by a grey horizontal line. Error bars show the 95% confidence intervals

projected from the fuel-specific (g kg−1) emission factors. The grey diagonal line shows

a 1:1 relationship.

emissions is considered to be closer to 47% than 22%.

It is important to consider the underlying reasons behind the disparity

between the bottom-up estimates and the values reported in the NAEI, which

could be associated with vehicle fleet assumptions and/or the emission factors.

The bottom-up emissions were re-calculated based on the fleet composition

assumptions used in the NAEI[19,197] and the NAEI allocations of gasoline and

diesel fuel use in urban areas. The NAEI assumed a newer vehicle fleet com-

pared with the observation-based values used for the bottom-up calculations.

Using these NAEI assumptions resulted in UK-wide light duty vehicle emissions
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with F values of 1.05 for CO2 and 1.06–1.13 for NOx, or 1.19 and 1.05–1.26 in

only urban areas. However, there were some significant disparities on a disag-

gregated level when using NAEI fleet assumptions, for example, with F = 1.20

for gasoline CO2 (compared with F = 1.00 using the bottom-up methods). These

results strongly suggest that the use of the observation-based fleet information

in the bottom-up emission calculations provide much better explanation of

total UK emissions. On this basis, much of the discrepancy between the NAEI

and the bottom-up methods is associated with vehicle fleet and vehicle activity

assumptions rather than the emission factors. Nevertheless, even adopting the

NAEI vehicle fleet assumptions still results in up to a 26% underestimate of

NOx emissions compared with the bottom-up calculation in urban areas.

4.4.2 Influence of Vehicle Fleet Composition

An inherent benefit of vehicle emission remote sensing data for use in emission

factor and emission inventory development is the comprehensive coverage of a

wide range of vehicle manufacturers and models, which is difficult to achieve

through laboratory or PEMS studies owing to the large number of vehicles that

would need to be tested. Vehicle fleets can vary from smaller city-wide to larger

country-wide scales. For example, some cities may tend to have a higher than

average proportion of vehicles from a certain manufacturer (e.g., taxis or local

government vehicles).

Figure 4.5 provides an example of the variation in NOx emissions between

different manufacturer groups and engine sizes, revealing the considerable

differences from the mean levels of emissions for each engine size (visualised

as diamonds) and vehicle category (horizontal lines). In this case, manufacturer

‘families’ have been used, which groups similar engine types across different

manufacturers[149]. For example, the Volkswagen group (VWG) consists of

Volkswagen, Audi, Skoda and Seat. With large databases of vehicle emission

remote sensing data, it is possible to disaggregate the data further. For example,
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Figure 4.5: Distance-specific CO2 and NOx emissions (g km−1) for Euro 6 light duty

vehicles. Each dot represents a unique manufacturer group-engine size combination,

with size proportional to the number of observations included in its calculation. The

diamonds represent the weighted mean for each engine size, and the horizontal lines

the weighted mean for each vehicle category (Diesel Light Commercial Vehicle, Diesel

Passenger Car, Gasoline Passenger Car).

account can be taken of mandatory and voluntary software and hardware fixes

applied to certain VWG vehicles following the dieselgate scandal, which have

had an appreciable effect on reducing NOx emissions from certain vehicle

models; reducing emissions between 30 to 36%[101].

Emission factor models used throughout Europe do not account for man-

ufacturer level differences in emissions and instead provide generic factors,

e.g., for Euro 5 diesel passenger cars below 2.0 litre engine capacity. However,

it is clear from Figure 4.5 that there can be large differences in emissions of
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Figure 4.6: Total CO2 and NOx emissions from Euro 5 & 6 diesel passenger cars using

UK activity data and the relative fleet composition of the UK and five other European

countries. Estimations were made using manufacturer group and engine size-specific

distance-specific emission factors. Each of the non-UK fleet compositions are shown

relative to the UK fleet. The error bars correspond to the 95% confidence interval. Also

provided are the average Euro 5 & 6 diesel car engine size.

NOx between different manufacturers and vehicle models. Such differences

would not be important if vehicle fleets were uniformly mixed throughout

Europe. However, there are considerable differences between the compositions

of vehicle fleets across different countries, which could have important effects

on country-level emissions of different pollutants.

The results of the fleet composition analysis are shown in Figure 4.6 and

demonstrate the impact of considering manufacturer-specific emissions rep-

resentative of fleets in other countries. For example, estimates of NOx from

a French-like fleet of diesel cars are 7.9% higher than a UK-like fleet, despite

the fact that CO2 emission estimates decrease by 12.7%. Conversely, the NOx

estimate of a Swedish fleet mix is 5.5% lower despite a 1.2% increase in CO2.

In general, Figure 4.6 highlights an overall trade-off at a country fleet level

between CO2 and NOx in that as CO2 emissions decrease, emissions of NOx
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tend to increase. The higher emissions of NOx for a French fleet is attributable

to two main factors. First, a higher proportion of small diesel engined passenger

cars, which tend to have higher NOx emissions (see Figure 4.5). In the CONOX

database the average diesel passenger car engine size in the French fleet is

1695 cm3, compared with 2152 cm3 in Switzerland. Larger diesel-engined

vehicles tend to use selective catalytic reduction for NOx control, which has

been shown to be a more effective approach when compared with lean NOx

traps[198]. Second, France has a higher proportion of manufacturers such as

Renault that tend to have higher in-use emissions of NOx compared with most

other manufacturers[149].

4.5 Conclusion

With an appropriate methodology to model fuel consumption, vehicle emission

remote sensing data can be used to calculate representative distance-based

emission factors for a country’s road transport fleet. Comparisons between

emissions calculated using remote sensing and emissions inventories can lead to

insightful observations and critiques of commonly used inventory development

approaches, such as COPERT. For example, this study has shown that NOx may

be under-reported in the UK National Atmospheric Emissions Inventory by up

to 47% in urban areas.

The size of remote sensing data sets allows for emissions to be considered

on a more granular level than other approaches. This means that challenges to

a national inventory can extend to what is not currently considered in calcula-

tions. This work highlights a significant effect between different manufacturers,

which manifested in a 13.4% range in calculated NOx emissions in the UK’s

Euro 5 & 6 diesel passenger car fleet purely by adopting the manufacturer

compositions of different European countries. This “manufacturer effect” is not

currently reflected in emission factors or inventories. This finding highlights

the potential benefits of considering the fine details of vehicle fleets when at-
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tempting to estimate emissions. Given the growing amount of detailed vehicle

emission remote sensing data available in Europe and elsewhere[83,149,165,199],

the methods adopted in the current work could be used in many other countries.

At a country level, increases or decreases in total NOx emissions from current

assumptions will likely have several implications. First, it would directly affect

the evaluation of urban exposures to concentrations of NO2, with potential

impacts on meeting European Directive annual mean limits of 40 µgm−3.

Second, a country-level change in estimated NOx emissions of around 10%

compared with current assumptions would have wider air quality implications;

especially for regional air quality modelling activities.

As well as influencing national-scale emissions, the effect of different manu-

facturers may also be important on a much more local scale. The manufacturer

composition of a country is not uniform, and likely varies with wealth, culture

and local geography. It will also be influenced by the preferences of businesses

operating their own private fleets, such as taxi and delivery companies or pub-

lic transport operators. A lack of an appreciation for the differences between

manufacturers will affect the ability of local authorities to implement effective

road transport emission mitigation strategies.
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5.1 Abstract

Modern gasoline and diesel vehicles are equipped with highly effective emis-

sion control systems that result in low emissions of pollutants such as nitrogen

oxides (NOx) when new. However, with increasing age or mileage, the emis-

sions performance of vehicles can deteriorate over time, leading to increased

emissions. In this work comprehensive vehicle emission remote sensing meas-

urements collected over a wide range of conditions is used, together with indi-

vidual vehicle measured mileage to quantify vehicle emissions deterioration.

A quantile regression modelling approach is used to provide a more complete

understanding of the distribution of deterioration effects that is not captured

by considering mean changes over time. The approach accounts for factors

such as driving conditions and ambient temperature, as well as determining

whether deterioration affects whole populations of vehicles or a smaller subset

of them. Accounting for these factors, it was found that for most pollutants

the rate of deterioration of emissions from pre-Euro 5 gasoline passenger cars

is highly skewed. Between 5% and 10% of pre-Euro 5 gasoline passenger cars

have emissions similar to a Euro 5 diesel car, suggesting that policies should be

developed to accelerate their removal from the fleet. Furthermore, evidence is

presented that there are differences between vehicle manufacturers in the way

emissions of NOx deteriorate.
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5.2 Introduction

Worldwide, progressively more stringent vehicle emissions legislation has been

developed to reduce the emissions of many important air pollutants from road

vehicles. These developments have resulted in increasingly more sophisticated

technologies being used to reduce emissions. The introduction and refinement

of technologies such as the three way catalyst, particle filters and selective cata-

lytic reduction (SCR) systems have led to considerable reductions in emission

species such as nitrogen oxides (NOx) and particulate matter[200–202]. While

much of the focus of vehicle emission measurements is on newer vehicles with

improved emission control technology, it is imperative to quantify the change

in emissions from vehicles over their full lifetime, which can exceed 20 years.

As a vehicle is driven, changes in emission behaviour can occur due to wear of

engines, deterioration of emissions control systems and after-treatment techno-

logies such as catalysts and particle filters. Moreover, with increasingly complex

and sophisticated after-treatment technologies being adopted, it is important

to ensure their effective performance throughout the lifetime of the vehicle.

In Europe, the legislation for the most recently regulated vehicles (Euro

6) specifies “Manufacturers’ obligations”, among which include an obligation

that any technologies which limit tailpipe and evaporative emissions are ef-

fective “throughout the normal life of the vehicles under normal conditions

of use”[47,203]. It is stipulated that, a), in-service conformity testing eligibility

continues until a vehicle is either 5 years old or has driven 100,000 km, and

b), manufacturers must conduct pollution control system durability tests to

over 160,000 km of driving. Recently, the Consortium for ultra Low Vehicle

Emissions (CLOVE) has suggested bringing future Euro 7 legislation in-line

with US Tier 3, which defines a “normal life” for a vehicle as either 15 years or

150,000 miles (roughly 240,000 km)[55,204].

Emission factors and inventories recognise that emissions deterioration

occurs and attempt to provide pragmatic approaches to account for such deteri-
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oration. In Europe, the joint European Monitoring and Evaluation Programme

(EMEP)/European Environment Agency (EEA) air pollutant emission inventory

guidebook 2019 details the use of correction factors to account for emission

deterioration due to vehicle age[45]. Importantly, deterioration factors are only

applied to gasoline vehicles and it is assumed that the carbon monoxide (CO),

nitrogen oxides (NOx) and hydrocarbon emissions of Euro 3 and later gasol-

ine cars and light commercial vehicles stop deteriorating at 160,000 km. The

Handbook Emission Factors for Road Transport (HBEFA) version 4.1 updated

its deterioration factors for CO, NOx and hydrocarbon emissions[205] based

on vehicle emission remote sensing data from the large European CONOX

database[99]. The updated deterioration functions cover Euro 1 through to

projected Euro 7 diesel and gasoline light duty vehicles within a mileage range

of 0 to 200,000 km. They report that NOx emissions are less than 1.5 times

higher for all Euro standards of diesel vehicles at 200,000 km compared to

50,000 km. Gasoline vehicles, however, are found to be over 3 times as high for

Euro 3 and 2.5 times as high for Euro 5, though the ratio for Euro 6 vehicles is

only around 1.25.

Emission deterioration functions are typically based on a limited number

of chassis dynamometer tests in a limited range of mileages[45,206]. An un-

avoidable aspect of in-lab and even on-board methods (e.g., Portable Emission

Measurement Systems (PEMS)) is a small sample size owing to the time and

cost requirements to measure a vehicle. Furthermore, these methods are typ-

ically used to measure newer vehicles, so there are sparse data for older or

higher mileage vehicle emissions. Using these methods to get a broad sample of

vehicles of different model years, meeting different Euro standards, and from

different manufacturers, would be prohibitively expensive and time consuming.

Vehicle emission remote sensing has the potential to overcome some of

these issues. The non-selective, real-world nature of remote sensing ensures

that, with a sufficiently large sample size, the full spectrum of age, mileage

and emission deterioration of a fleet will be captured. Furthermore, with the

142



Chapter 5. Gasoline and Diesel Passenger Car Emissions Deterioration

large data sets obtained using remote sensing, multivariate statistical analysis

can be conducted to isolate the effect of deterioration from other influences

such as driving characteristics (e.g., instantaneous engine power) or ambient

conditions. Indeed, much of the literature on emission deterioration focuses

on the use of vehicle emission remote sensing[104,105,169–171,207], although a

smaller number of studies using other methods such as PEMS[208,209] and

chassis dynamometers[210–212] do feature. An important limitation of many of

these remote sensing studies is that individual vehicle mileage is not available,

leading to vehicle age being a frequent proxy. For example, in Borken-Kleefeld

and Chen [169] and Chen and Borken-Kleefeld [170] the difference between the

year of measurement and the year of first registration is taken to be a vehicle’s

age, which is then used to estimate mileage using statistics from the Swiss

government.

Deterioration factors as used in emission factor development generally

provide fleet-average linear relationships to correct an emission from a vehicle

when assumed to be new. However, these factors do not capture potentially im-

portant information on the nature of deterioration, such as whether all vehicles

tend to deteriorate similarly over time or whether the changes are dominated

by significant deterioration from relatively few vehicles. These considerations

are important from a policy perspective because different responses might be

required depending on the nature of emissions deterioration. For example, it

is arguably more efficient and cost effective to identify and fix (or remove) a

small population of high emitters than it is to deal with a large population of

vehicles that deteriorate by a more modest amount. To understand these issues,

there is a need to consider large populations of vehicles and to establish the full

distribution of effects rather than a mean response.

In this study, comprehensive vehicle emission remote sensing data are

paired with measured vehicle mileage from individual vehicles using data from

annual passenger car technical inspections. These paired data are used to study

the deterioration of emissions from passenger cars, as well as consider the
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appropriateness of vehicle age as a mileage proxy. This study uses measured

mileage data from 197,000 gasoline and diesel passenger cars. The nature of

any deterioration effects on emissions is complex and is not fully described

by simple relationships that relate mileage and emissions. Therefore, this

study adopts a quantile regression approach to consider the entire conditional

distribution of effects. This approach allows for the control of other factors

such as vehicle driving conditions and ambient temperature which also affect

measured emissions. Finally, with large sample sizes available, manufacturer

effects on how emissions deteriorate with mileage are considered.

5.3 Materials and Methods

5.3.1 Vehicle Emission Remote Sensing

The principles of vehicle emission remote sensing have been described in extens-

ive detail elsewhere[79,145], so only a short summary is provided here. Remote

sensing is a non-obtrusive, curbside method for measuring real-world vehicle

emissions. A remote sensing device is typically deployed to be as unobstructive

as possible, ensuring vehicles can drive through the set-up unimpeded. As a

vehicle drives through, each individual module of the remote sensing device

simultaneously activates. These are an ultraviolet/infrared (UV/IR) source

and detector to measure exhaust emissions, optical speed-acceleration bars

to capture instantaneous driving conditions, a camera to photograph number

plates, and sensors to record ambient conditions such as temperature, pressure

and relative humidity. As the triggering of all these modules is achieved in

just a fraction of a second, remote sensing observations are often referred to as

‘snapshots’ of a vehicle’s journey.

Spectrometry is achieved with a collinear beam of IR and UV light. Car-

bon monoxide (CO), carbon dioxide (CO2), hydrocarbons and a background

reference are measured using the IR component, and ammonia (NH3), nitrogen
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oxide (NO) and nitrogen dioxide (NO2) by the UV component. 100 measure-

ments are taken of each plume in just half a second. Pollutant concentrations

are typically given as a ratio to CO2, which is assumed to remain constant as

the plume disperses. These ratios can be used to calculate fuel-specific (g kg−1)

emissions[79].

The photographed vehicle number plates can be cross-referenced with

vehicle technical databases to obtain key information about the measured

vehicles, such as fuel type, emissions standards and manufacturers. In this

study, technical information was sourced from the Driver and Vehicle Licensing

Agency and the Society of Motor Manufacturers and Traders Motor Vehicle Re-

gistration Information System. These data were obtained from the commercial

supplier CDL Vehicle Information Services Ltd.[85].

An important aspect of the current work is the use of measured mileage

information. While vehicle age is readily available, it is not an ideal metric

for emissions deterioration. Data relating to the total mileage of each vehicle

at its last annual “MOT” test was obtained through CDL for vehicles greater

than three years old. Vehicles younger than three years do not require an

annual technical inspection in the UK. As a result, the proportion of mileage

information available for Euro 6 vehicles (introduced in 2016) is lower than

that for older Euro standards (24% of Euro 6 observations have associated

mileage information, compared to 63–76% for Euro 3–5). The date at which the

mileage information is available and the emissions measurement date could be

up to 12 months different, i.e., the measured mileages available would tend to

underestimate the actual mileage at the time the emissions measurements were

made.

Vehicle emission measurements were conducted between 2017 and 2020

at 39 sites across 14 regions in the United Kingdom mainly using the Opus

AccuScan RSD 5000[76], augmented with a relatively small number of measure-

ments using the Denver FEAT instrument[63]. Previous literature has shown

good agreement between the two remote sensing devices, so the combination of
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these data sets is appropriate[82]. Of interest to this study are measurements

of diesel passenger cars or gasoline passenger cars. 197,000 of these measure-

ments include mileage data from annual technical inspection “MOT” tests[100]

and are therefore relevant to this study. Note that these are not 197,000 unique

vehicles; available number plate data shows that around 13% of vehicles in the

data set were measured twice, 4% three times, and 3% four or more times.

A statistical summary of these measurements is provided in Table 5.1. The

speed ranges reflect that remote sensing is typically conducted in urban condi-

tions, but this is not likely to be of detriment to the objectives of this study; it

is unlikely that deterioration patterns would meaningfully differ under rural,

motorway or any other driving conditions. Measurements being taken in urban

areas may mean that a small proportion include cold start emissions, though

this is unlikely as exhaust after-treatment technologies tend to reach effect-

ive operating temperatures in a few minutes[193]. The majority of emission

measurements can therefore be assumed to be of hot, stabilised emissions.

5.3.2 Statistical Methods

While ordinary least squares (OLS) linear regression may provide some insight

into emission deterioration, it is intuitively likely that different vehicles de-

teriorate at different rates. An important question to address is whether it is

the case that there is a general deterioration in the emissions performance of

all vehicles or whether there is a smaller population of much higher emitters

that have a disproportionate effect. For this reason, a quantile regression-based

approach was used, which can account for the full distribution of responses

and not just the mean response that is considered by OLS.

Linear quantile regression can be understood in analogue to linear OLS

regression; while an OLS regression line minimizes the sum of the squared

differences between it and the data, a quantile regression line ensures that

some proportion of the data are below and above it. For example, the quantile
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Characteristic Euro 3 Euro 4 Euro 5 Euro 6

Gasoline Passenger Cars

# Measurements 22,952 36,327 38,855 10,776

# Manufacturer Groups 23 23 20 20

(with ≥ 100 Measurements) 18 18 15 13

Vehicle & Ambient Characteristics 1

VSP (kW t−1) 7.61 ±7.65 7.80 ±7.07 8.12 ±6.88 8.96 ±5.08

Speed (km h−1) 36.4 ±9.2 36.6 ±9.3 37.0 ±9.5 38.4 ±9.4

Acceleration (km h−1 s−1) 0.96 ±2.33 0.99 ±2.19 1.02 ±2.15 1.07 ±1.66

Ambient Temp. (K) 287.9 ±5.4 288.1 ±5.2 288.2 ±5.2 288.2 ±4.8

Cumulative Mileage (104 km) 15.7 ±6.9 12.2 ±5.6 7.1 ±3.9 4.6 ±2.5

Vehicle Age (years) 14.4 ±1.6 10.4 ±1.8 6.0 ±1.9 4.1 ±1.0

Remote Sensing Device 2

OPUS RSD 5000 20,387 (89%) 33,236 (91%) 36,181 (93%) 10,501 (97%)

Denver FEAT 2,565 (11%) 3,091 (8.5%) 2,674 (6.9%) 275 (2.6%)

Diesel Passenger Cars

# Measurements 9,143 24,030 44,442 10,475

# Manufacturer Groups 22 22 21 18

(with ≥ 100 Measurements) 14 17 16 12

Vehicle & Ambient Characteristics 1

VSP (kW t−1) 8.26 ±8.38 8.09 ±7.70 8.23 ±7.56 8.72 ±6.14

Speed (km h−1) 36.3 ±9.4 36.5 ±9.8 36.6 ±9.8 37.1 ±9.8

Acceleration (km h−1 s−1) 1.06 ±2.38 1.07 ±2.26 1.14 ±2.27 1.19 ±1.79

Ambient Temp. (K) 288.2 ±5.5 288.1 ±5.4 287.9 ±5.2 287.8 ±4.9

Cumulative Mileage (104 km) 24 ±13 19 ±10 11 ±7 7 ±5

Vehicle Age (years) 14.0 ±1.5 10.2 ±1.8 5.7 ±1.8 3.9 ±1.2

Remote Sensing Device 2

OPUS RSD 5000 8,223 (90%) 21,894 (91%) 40,692 (92%) 10,146 (97%)

Denver FEAT 920 (10%) 2,136 (8.9%) 3,750 (8.4%) 329 (3.1%)

Table 5.1: A statistical summary of the vehicle emission remote sensing data, split

into diesel and gasoline passenger cars. Statistics provided are only for measurements

with an associated mileage value. Statistics presented: 1Mean (Standard deviation);

2Number of measurements (Percentage of the column total).
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regression line for the median (τ = .50) ensures that half of the data are above

it and half below. For the 75th percentile (τ = .75), 75% of the data would be

found below the line and 25% would be above. A more thorough description of

quantile regression can be found in Appendix D.

In this study, quantile regression — using the quantreg R package[136] — is

used to explore the relationship, a), between vehicle age, AGE, and cumulative

vehicle mileage, MIL and, b), between cumulative vehicle mileage and fuel-

specific (g kg−1) emissions. In the former case, a second-order polynomial was

used. This is given in Equation 5.1, where µ̂ (τ | AGE) represents the predicted

quantile of vehicle mileage.

µ̂ (τ | AGE) = β̂0 + β̂1 (τ) ·AGE + β̂2 (τ) ·AGE2 (5.1)

When examining emissions, four air pollutants are initially explored: ni-

trogen oxides (NOx), carbon monoxide (CO), ammonia (NH3) and particulate

matter (PM, measured by the OPUS remote sensing device using percentage

UV opacity). Note that NH3 is only pertinent to the gasoline vehicles and

Euro 6 diesel vehicles, the latter of which have after-treatment systems that

use SCR systems which can result in emissions of NH3. When fitting models,

multivariate analysis is used to predict fuel-specific emissions using vehicle

mileage and additional covariates with known influences on vehicle emissions.

The key covariate is vehicle specific power, V SP (Equation 5.2), though for

diesel NOx emissions ambient temperature, AT , is also included (Equation 5.3,

[110]). B-splines, denoted using f , are used to smooth these covariates, both set

to 3 degrees of freedom.

An interaction effect with some vehicle category, VC, is also included. The

first category considered is Euro standard, to gain an understanding for the po-

tential differences in deterioration as emission control technology has changed

with legislation. The second category considered is vehicle manufacturer group,

used to to examine the differences in deterioration between the varying techno-
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logies employed by different vehicle manufacturers. In this second case, models

are fit separately for each of Euro 3, 4 and 5; Euro 6 is excluded due to limited

data and range of mileage.

µ̂ (τ |MIL,V SP ,V C) = β̂0,V C (τ) + β̂MIL,VC (τ) ·MIL

+ fV SP ,V C (τ,V SP ) (5.2)

µ̂ (τ |MIL,V SP ,AT ,VC) = β̂0,V C (τ) + β̂MIL,VC (τ) ·MIL

+ fV SP ,V C (τ,V SP )

+ fAT ,VC (τ,AT ) (5.3)

Data processing was carried out using the R programming language[121],

with uncertainties calculated and term significance estimated using bootstrap

resampling. The tidymodels[133,213] collection of R packages was used for

the bootstrapping simulations. The bootstrap() function was used with

100 resamples with the sampling stratified (using the strata argument) by

the relevant interaction term (Euro standard or manufacturer group) and oth-

erwise default parameters. The stratification by the vehicle category ensures

proportionally smaller categories (i.e. Euro 3 or 6 vehicles, or more niche

manufacturers) are well represented in the bootstrap samples.

The “percentile” method was used to calculate 95% confidence intervals

around the coefficients. If the 95% confidence interval of the bootstrapped

mileage coefficients includes 0, the p-value is taken to be less than .05 and the

term (and therefore the vehicle category’s rate of deterioration) is judged to

be insignificant. Furthermore, if the 95% confidence intervals of the difference

between any given terms includes 0, it is taken that they are not significantly

different from one another.
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Figure 5.1: Second-order polynomial quantile regression fits for cumulative vehicle

mileage as a function of vehicle age at the date of their MOT (Equation 5.1), where

τ ∈ {.05, .10, .30, .50, .70, .90, .95, .99}. τ ∈ {.05, .50, .95, .99} are solid and labelled; the

dotted lines represent the unlabelled quantiles. τ = .99 is not shown for the taxis due to

the limited number of observations; the 99th percentile would represent just 5 vehicles.

5.4 Results and Discussion

5.4.1 Mileage and Age Characteristics for Light Duty Vehicles

In this section the potential drawbacks of using vehicle age as a measure of

emissions deterioration are considered, highlighting the benefits of this study’s

use of measured mileage. Second-order polynomial quantile regression fits

for measured cumulative vehicle mileage as a function of vehicle age from the

remote sensing data are shown in Figure 5.1. Diesel London taxis (“black cabs”,

n = 556, 0.5% of the measured diesel passenger car fleet) have unique technical

data relating to their body type so can be treated separately to the rest of the

diesel passenger cars.

There is a clear distinction between the three vehicle types. Gasoline pas-

senger cars are among the oldest of the three categories, but have the lowest

maximum mileage. The maximum age decreases and maximum mileage in-

creases progressing through the gasoline cars, the diesel vehicles, and finally
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the taxis.

The quantile regression fits shown in Figure 5.1 highlight a weakness of

using simple linear regression to derive mileage from vehicle age, in that

it would not fully represent the underlying and significant distribution of

cumulative vehicle mileages of vehicles of the same age. For example, the

average age of a vehicle in the vehicle emission remote sensing data set is

around 8 years. Using a second-order polynomial ordinary least squares (OLS)

model, 8 year-old gasoline passenger cars have driven 98,000 km. This is similar

to the median vehicle according to quantile regression, which has driven 94,300

km (−3.8% of the OLS). However, the lowest mileage 5% of these vehicles have

only driven 41,700 km (−57.4% of the OLS), whereas the 5% highest mileage

have driven 163,000 km (+66.3% of the OLS). The top 1% have driven 206,000

km (+110%). Similarly, an ordinary least squares approach indicates an 8 year-

old diesel non-taxi passenger car has driven 148,000 km. The median vehicle

from quantile regression has driven 136,000 km (−8.1% of the OLS), the bottom

5% have driven 68,100 km (−54.0%), the top 5% 266,000 km (+79.7%), and the

top 1% 383,000 km (+157%).

While it could be argued that the “average” vehicle modelled using ordinary

least squares is similar to the median vehicle modelled using quantile regres-

sion, relying on OLS regression ignores a significant distribution of vehicle

mileage at any given vehicle age. A straightforward assumption that mileage

increases linearly with age is useful in the absence of measured mileage data,

but is not optimal in representing the inherent distributions of mileages that

exist. This is particularly relevant if considering taxi fleets or other commercial

vehicle fleets that may likely have a distinct mileage-age relationship, as clearly

demonstrated in Figure 5.1. Moreover, if high mileage vehicles have emissions

that are significantly different from average-age vehicles, then the estimated

emissions response will also be erroneous.
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Figure 5.2: Fuel-specific emissions (g kg−1) of NOx and PM as a function of vehicle

mileage. The box plots show the distribution of emissions per decile of mileage, with

each decile plotted at its median mileage value. The lowest, highest and middle mileage

deciles are coloured to aid in comparison between panels. The hinges of the boxplots

represent the 25th and and 75th emission percentiles, and the whiskers the 5th and

95th percentiles.

5.4.2 Exploratory Analysis of Emission Deterioration

First, the relationship between vehicle mileage and emissions is explored

without taking account of the influence of other factors such as ambient tem-

perature and engine power demand. The distribution of vehicle NOx, CO, NH3

and PM emissions at different cumulative mileages are given in Figure 5.2 and

Figure 5.3.

These distributions highlight the benefit of a quantile regression-based

approach. The median intensity of emissions from the species typically increase

at higher mileage deciles to various extents, which suggests the presence of
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Figure 5.3: Fuel-specific emissions (g kg−1) of CO and NH3 as a function of vehicle

mileage. The box plots show the distribution of emissions per decile of mileage, with

each decile plotted at its median mileage value. The lowest, highest and middle mileage

deciles are coloured to aid in comparison between panels. The hinges of the boxplots

represent the 25th and and 75th emission percentiles, and the whiskers the 5th and

95th percentiles.

a mileage-based deterioration effect. More relevant for quantile regression,

it also appears that for some species-fuel type combinations the spread of

emission values (seen in both ranges between the 25th and 75th, and the 5th

and 95th percentiles) appears to increase at higher deciles of mileage. This

suggests that the rate of increase in emissions is itself greater at higher emission

quantiles, indicating that an ordinary least squares linear regression may not

fully represent the true range of responses different emitters have to increasing

cumulative mileage.

From this exploratory analysis, it is clear that the species behave distinctively
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from one another with respect to mileage deterioration. The four species, NOx,

PM, CO and NH3, will now be discussed in turn.

NOx emissions show clear differences between the two vehicle types. The

five visualised quantiles of fuel-specific NOx in diesel vehicles all appear to

show a gentle increase from the lowest to highest mileage deciles across all

Euro standards, with the exception of the 95th percentile of Euro 6. The large

interquartile ranges seen in the diesel passenger cars (6.9–19.5 g kg−1 across

all Euro standards) are consistent with the wide range of NOx performance in

diesel vehicles widely reported in the literature[1,83,112,199].

The distributions of the gasoline passenger car NOx emissions differ consid-

erably from the diesel passenger cars and between the Euro standards. Euro 5

and 6 gasoline vehicles show a flat trend across the mileage deciles, and very

small interquartile ranges (2.4–2.7 and 1.8–2.2 g kg−1 respectively). Conversely,

the Euro 3 and 4 gasoline vehicles show relatively larger interquartile ranges

(3.2–8.8 and 2.4–4.0 g kg−1), flatter trends for the lower NOx quantiles and

much steeper trends in the higher NOx quantiles. The differences in the 95th

percentile of fuel-specific NOx between the first and tenth mileage deciles are

+30.5 g kg−1 in Euro 3, +12.3 g kg−1 for Euro 4, +0.7 g kg−1 for Euro 5 and

-0.3 g kg−1 for Euro 6. For comparison, the highest equivalent value for the

diesel vehicles is seen in Euro 3 at +6.11 g kg−1. All of this suggests a small

proportion of high NOx emitters among the Euro 3 and 4 gasoline fleets that

are particularly sensitive to deterioration.

An unavoidable aspect of the data when making comparisons between Euro

standards is that Euro 5 and 6 data are for a much lower range of cumulative

mileage than the Euro 3 and 4 data, owing to the former vehicles being much

younger. It is therefore possible that at higher cumulative mileages that are

present in the remote sensing data set, Euro 5 and 6 gasoline passenger cars may

show similar patterns of deterioration to the Euro 3 and 4 vehicles. However, it

should be noted that there is overlap between the cumulative mileages of the

four gasoline Euro standards. Even up to 135,000 km of cumulative mileage
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(representing the tenth mileage decile of Euro 5 and fifth decile of Euro 3),

the Euro 3 and 4 distributions are widening, suggesting a deterioration effect,

whereas the Euro 5 and 6 distributions remain flat, suggesting well controlled

emissions.

A limited number of recent remote sensing studies focus on particulate

matter emissions[59,89], with Chen et al. [59] noting that black smoke emissions

have been following PM legislation limits, unlike many gaseous tailpipe emis-

sions which have continued to exceed their respective limits. Gautam et al.

[118] notes that measuring exhaust PM close to zero is difficult, and that “the

focus of using [remote sensing] should be to detect failing or missing DPFs

with high confidence.” To this end, Gautam et al. [118] sets a threshold of 1.5

g kg−1 of PM as a flag for a compromised diesel particulate filter (DPF), which is

well outside of the distributions of the DPF-equipped Euro 5 and 6 vehicles in

Figure 5.2. The fuel-specific PM emissions of Euro 5 and 6 diesel passenger cars

appear to be well controlled overall, with a flat trend across mileage deciles at

most PM quantiles. However, there does appear to be evidence of deterioration

at higher quantiles for Euro 3 and 4 vehicles, which were not required to be

equipped with a DPF (although some Euro 4 vehicles were[59]).

Carbon monoxide is generally understood to be well controlled and CO

emissions are typically comfortably below emission limits[214]. Both gasoline

and diesel vehicles appear to show similar trends in Figure 5.3 — the five fuel-

specific CO quantiles all increase at higher mileage deciles, with the difference

between the lowest and highest deciles being greatest at τ = .95, not unlike

the trends seen in Euro 3 and 4 gasoline NOx emissions. The key difference

between the gasoline and diesel passenger cars is the lower absolute emissions

of CO for diesel vehicles, particularly in the older Euro standards.

Recently, more attention has been paid toward ammonia emissions using re-

mote sensing[30,215], including limited analysis on their deterioration[31]. There

is some evidence of the deterioration of ammonia emissions for gasoline vehicles

which is most pronounced in Euro 4 and 5. The gasoline vehicles tend to show
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a relatively low median but high 95th percentile fuel-specific NH3 emission,

reflecting the skewed nature of NH3 emissions seen in Zhang et al. [215]. There

appears to be no significant deterioration effect for the Euro 6 diesel passenger

cars, suggesting that SCR-equipped vehicles are robust as far as NH3 emissions

are concerned.

Statistical modelling has some clear advantages over this sort of exploratory

and visual analysis as it can be difficult to make real-world inferences from

simple statistical tools like box plots. Firstly, there is arbitrariness that often

comes with binning continuous data like vehicle mileage. More importantly, a

key limitation is the inability to easily isolate the influences of other variables

known to be important — in this case the instantaneous driving condition of

the vehicle and ambient conditions. A modelling framework removes some

of this arbitrariness and allows for the control of other covariates, as well as

providing what could be described as a “rate of deterioration” as a function of

vehicle mileage.

5.4.3 Multivariate Statistical Modelling

The introduction of new Euro standards tends to be associated with improve-

ments in emissions control technologies and it is therefore important to consider

how emissions deteriorate within a single Euro standard. Two pollutants were

chosen to be further examined in a multivariate framework; NOx due to being

of significant interest owing to its air pollution impacts, and PM due to the

considerable health effects associated with fine particulate matter.

Deterioration effects over the normal lifetime of a vehicle are first considered,

i.e., after 160,000 km of driving under Euro 6 legislation[47]. The models given

in Equation 5.2 for gasoline NOx and diesel PM and Equation 5.3 for diesel NOx

were fit with τ ∈ {.05, .10, .30, .50, .70, .90, .95} and used to predict emissions at

0 and 160,000 km of cumulative mileage. VSP and ambient temperature were

taken to be 7 kW t−1 and 288 K respectively, equal to the mean value of the

156



Chapter 5. Gasoline and Diesel Passenger Car Emissions Deterioration

Figure 5.4: Plot showing the modelled linear deterioration of passenger cars from

0 to 160,000 km of cumulative mileage (a vehicle’s “normal life” under Euro 6

legislation[47]).

variables in the remote sensing data set. Figure 5.4 presents the predicted

absolute deterioration of the fuel-specific NOx and PM emissions for different

quantiles for gasoline and diesel passenger cars. These values are also tabulated

in Table 5.2.

The highest quantiles of Euro 3 and 4 gasoline vehicles increase by 17.1 and

9.1 g kg−1, respectively. To put these values in context, the mean emissions of

NOx from Euro 3, 4, 5 and 6 passenger cars are 5.3, 2.9, 1.9 and 1.5 g kg−1 for

gasoline and 21.0, 17.1, 15.9 and 8.2 g kg−1 for diesel. This analysis of absolute

deterioration reveals some important characteristics for NOx emissions. First,
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Pollutant Fuel τ Euro 3 Euro 4 Euro 5 Euro 6

NOx Diesel .05 +1.25 +0.52 +0.58 +0.62

.10 +1.79 +0.44 +0.53 +0.72

.30 +2.37 +0.74 +0.71 +1.30

.50 +1.89 +1.34 +1.05 +1.51

.70 +1.37 +1.18 +1.74 +1.13

.90 +0.91 +1.01 +2.94 +1.05

.95 +0.80 +1.59 +3.75 −0.15

Gasoline .05 +0.12 +0.35 +0.72 +0.86

.10 −0.01 +0.19 +0.36 +0.38

.30 +0.15 +0.18 +0.06 +0.16

.50 +0.54 +0.38 +0.06 −0.02

.70 +1.90 +1.02 +0.18 −0.01

.90 +11.5 +5.19 +0.79 +0.08

.95 +17.1 +9.12 +1.41 −0.66

PM Diesel .05 +71.2 +60.1 +10.0 −4.58

.10 +65.7 +45.0 +5.56 +10.5

.30 +65.3 +78.1 +10.5 +21.8

.50 +72.3 +97.3 +10.5 +13.4

.70 +64.2 +108 +25.1 +41.5

.90 +396 +210 +52.5 +29.4

.95 +767 +425 +54.8 +214

Table 5.2: The absolute change in passenger car g kg−1 NOx and mg kg−1 PM as

cumulative mileage increases from 0 to 160,000 km for different emission quantiles,

fuel types, and Euro standards.
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that the rate of deterioration of NOx emissions is greater for a population

of high-emitting gasoline passenger cars compared to diesel passenger cars.

Second, Euro 5 and 6 gasoline passenger cars appear to have much better NOx

control than Euro 3 or 4 vehicles over the same range of cumulative mileage.

The trends in particulate matter for diesel vehicles reveal some interesting

characteristics. For context, Euro 3 legislation did not require the use of a diesel

particulate filters (DPF) whereas Euro 5 onward did. DPF technology became

more widespread for Euro 4 vehicles even though they were not necessary, so

the Euro 4 observations in the remote sensing data will contain a mixture of

DPF and non-DPF-equipped vehicles[59]. The results show that there are small

populations of Euro 3 and Euro 4 diesel passenger cars where there is evidence

of increased emissions of PM due to deterioration. However, Euro 5 and 6

vehicles appear to be well-controlled, suggesting that DPF technology provides

a robust way of controlling particulate emissions over the lifetime of a vehicle.

One benefit of a statistical modelling approach is being able to comment

directly on the magnitude and statistical significance of the rates of deterior-

ation (represented by the models’ mileage coefficients), which can provide a

more comprehensive assessment of deterioration than is shown in Figure 5.4.

The magnitudes and bootstrapped confidence intervals of these rates of deteri-

oration are tabulated in Table 5.3 and Table 5.4, and are briefly discussed below.

When tabulated and presented in-text, deterioration rates are provided with

their 95% confidence interval in parentheses and are expressed in the units of

g kg−1 per 104 km driven for NOx and mg kg−1 per 104 km driven for PM.

Gasoline passenger cars can be considered in two groups. First, Euro 3 and

4 gasoline vehicles show an exponential increase in their rates of deterioration

as a function of τ . All terms are significant with the exception of τ ∈ {.05, .10}

for Euro 3 vehicles. These Euro standards both reach maxima at τ = .95, at 1.06

(0.87–1.3) and 0.57 (0.49–0.67), respectively. Second, the Euro 5 and 6 gasoline

vehicles show a relatively flat trend in rates of deterioration that are almost

all insignificant. At higher quantiles (τ ≥ .50), Euro 5 and 6 are the only Euro

159



Chapter 5. Gasoline and Diesel Passenger Car Emissions Deterioration

τ Euro 3 Euro 4 Euro 5 Euro 6

Diesel Passenger Cars

.05 * 0.075 * 0.032 * 0.037 * 0.037

(0.054–0.12) (0.014–0.047) (0.027–0.058) (0.007–0.065)

.10 * 0.12 * 0.025 * 0.033 * 0.046

(0.08–0.15) (0.013–0.036) (0.019–0.043) (0.019–0.071)

.30 * 0.15 * 0.046 * 0.043 * 0.08

(0.12–0.18) (0.024–0.068) (0.027–0.063) (0.053–0.1)

.50 * 0.12 * 0.087 * 0.063 * 0.094

(0.097–0.15) (0.064–0.11) (0.039–0.093) (0.054–0.12)

.70 * 0.085 * 0.079 * 0.11 * 0.07

(0.053–0.12) (0.048–0.11) (0.07–0.15) (0.0052–0.11)

.90 0.054 * 0.06 * 0.19 0.039

(-0.01–0.12) (0.011–0.12) (0.14–0.24) (-0.11–0.25)

.95 0.021 0.082 * 0.24 -0.012

(-0.085–0.099) (-0.034–0.16) (0.18–0.34) (-0.3–0.22)

Gasoline Passenger Cars

.05 0.0066 * 0.021 * 0.046 * 0.056

(-0.004–0.017) (0.013–0.033) (0.03–0.058) (0.033–0.079)

.10 -0.00046 * 0.012 * 0.024 * 0.024

(-0.006–0.005) (0.005–0.021) (0.013–0.033) (0.011–0.046)

.30 * 0.0099 * 0.011 0.0043 0.0091

(0.005–0.014) (0.008–0.015) (0.000–0.007) (-0.002–0.019)

.50 * 0.034 * 0.023 0.0039 -0.0013

(0.023–0.044) (0.018–0.029) (-0.002–0.010) (-0.013–0.015)

.70 * 0.12 * 0.064 0.013 -0.00076

(0.094–0.14) (0.053–0.073) (-0.003–0.022) (-0.022–0.019)

.90 * 0.71 * 0.32 * 0.052 0.0041

(0.6–0.83) (0.28–0.36) (0.001–0.09) (-0.083–0.081)

.95 * 1.1 * 0.56 * 0.087 -0.034

(0.87–1.3) (0.49–0.67) (0.029–0.17) (-0.19–0.17)

Table 5.3: Mileage coefficients for NOx (g kg-1 per 104 km driven) from the quantile re-

gression emission models. 95% confidence intervals are shown in parentheses beneath

each coefficient. Significant coefficients, for which 0 is not within the 95% confidence

interval, are highlighted with an asterisk (*).
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τ Euro 3 Euro 4 Euro 5 Euro 6

Diesel Passenger Cars

.05 * 4.5 * 3.7 0.7 0.011

(2.9–6.6) (2–5) (-1.6–2) (-4.4–5.9)

.10 * 4.3 * 2.8 0.38 0.87

(2.7–5.9) (2.4–3.9) (-0.87–1.2) (-2.5–3.4)

.30 * 4 * 5.1 * 0.68 1.4

(2.8–5.2) (4.3–5.8) (0.38–1) (-0.055–2.3)

.50 * 4.9 * 6.1 * 0.65 * 0.9

(2.7–6.8) (4.9–7.4) (0.38–0.9) (0.075–1.5)

.70 4.4 * 6.8 * 1.6 * 2.5

(-0.45–8.3) (5–8.6) (1.1–2) (0.83–3.7)

.90 * 25 * 14 * 3.2 2.2

(9.5–41) (7.1–21) (1.2–4.7) (-1.5–8.4)

.95 * 53 * 30 3 12

(27–86) (16–46) (-0.18–6.3) (-0.8–24)

Table 5.4: Mileage coefficients for PM (mg kg-1 per 104 km driven) from the quantile re-

gression emission models. 95% confidence intervals are shown in parentheses beneath

each coefficient. Significant coefficients, for which 0 is not within the 95% cofidence

interval, are highlighted with an asterisk (*).
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standards where the differences are insignificant from one another, confirming

well-controlled emissions for these vehicles.

For NOx emissions from diesel passenger cars there is no consistent pattern

of rates of deterioration changing with τ . The rates of Euro 3, 4 and 6 diesel cars

reach maxima of 0.15 (0.12–0.18) at τ = .30, 0.087 (0.064–0.11) at τ = .50 and

0.094 (0.054–0.12) at τ = .50 respectively, suggesting that the highest emitting

vehicles are not necessarily any more sensitive to mileage-based deterioration

than average emitters. Conversely, the deterioration rates of Euro 5 diesel cars

reach a maxima of 0.24 (0.18–0.34) at τ = .95, with rates increasing roughly

linearly with τ (R2 = .91). This pattern of behaviour is consistent with diesel

passenger cars having a wide range of NOx emissions, but emissions that do

not show evidence of increases with mileage.

Across all four studied Euro standards, the rates of deterioration of diesel

PM emissions possess a slight positive gradient with respect to τ up to τ = .70.

After this point the Euro standards deviate; the deterioration rates of the high

emitting (τ > .70) Euro 3 and 4 vehicles increase rapidly, reaching maxima of

53 (27–86) and 30 (16–46) mg kg−1 respectively, whereas the rates for Euro 5

and 6 remain low. Importantly, all but one of the deterioration rates for Euro

3 and 4 are seen to be significant, whereas the majority of the rates for Euro 5

and 6 are insignificant. This reinforces the insight from Figure 5.4 that the PM

emissions of DPF-equipped vehicles are well controlled.

5.4.4 Vehicle Manufacturer Effects

The differences between the real driving emissions of vehicles from different

manufacturers is well reported[1,2,83,101,110–112], but little has been reported

on the differences in emission deterioration between manufacturers. Gasoline

vehicles are of particular interest in this study due to the evidence of deterior-

ation effects for some Euro standards. The exponential increase in the rate of

deterioration seen in Euro 3 and 4 vehicles may be driven by only certain man-
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ufacturers, for example. Conversely, some manufacturers of gasoline vehicles

may have a significant deterioration effect for Euro 5 and 6 cars, despite no

strong effect being present when considered on a bulk level.

The density functions of the bootstrapped deterioration rates from Equa-

tion 5.2 using vehicle manufacturer group as the interaction effect are visualised

in Figure 5.5. The 8 most common manufacturer groups are shown for each

Euro standard, each with at least 1000 observations. The distribution of cu-

mulative mileage for each of these manufacturers are similar, although not

identical (Figure 5.6).

There are clear differences between gasoline car manufacturers within each

Euro standard. The influence of mileage on NOx emissions from almost all

Euro 5 vehicles is insignificant; the confidence intervals includes 0 for most

manufacturers and values of τ . The only Euro 5 manufacturers with a signific-

ant mileage effect are Ford with 0.0294 and General Motors with 0.0255 g kg−1

NOx per 104 at τ = .50, and General Motors with 0.373 g kg−1 NOx per 104 at

τ = .95. For Euro 3 and 4 manufacturers there is more evidence of diverging

behaviours with some manufacturers demonstrating good NOx control across

a range of quantiles and others showing much stronger deterioration effects,

especially at higher quantiles.

The analysis reveals that the progressive improvement of vehicle technology

through Euro 3 to Euro 6 vehicles demonstrably led to improvements in vehicle

emissions control. This finding is supported by the availability of vehicle-

specific mileage information which shows that at 160,000 km, Euro 5 and Euro

6 gasoline passenger cars have much improved emissions control than Euro 3

and 4 vehicles for the same mileage.

The analysis of emissions deterioration of gasoline passenger cars shows

that there exist small fractions of older vehicles in the fleet (Euro 4 and older)

that have emissions that are similar to Euro 5 diesel cars for NOx. From a policy

perspective, it would be beneficial to target those vehicles for replacement

or scrappage, given that there are relatively few of them. The current work
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Figure 5.5: Density functions of bootstrapped rates of deterioration from multivariate

linear quantile regression fits (τ ∈ {.50, .70, .90, .95}) predicting NOx as a function of

vehicle mileage and vehicle specific power for gasoline passenger car manufacturers

(Equation 5.2). Density functions are normalised per individual function, so their

peak heights should not be directly compared. Manufacturers are ordered by the

magnitude of their 95th percentile deterioration effect. The number of observations

for each manufacturer, n, is shown. x = 0 is indicated with a solid black vertical

line. The median value and the 95% confidence intervals are shown beneath each

density function as circles and horizontal lines, respectively. Distribution functions and

confidence intervals were calculated and visualised using the ggdist R package[127].
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Figure 5.6: Density functions of cumulative mileage for the 8 most common Euro 3, 4

and 5 gasoline passenger car manufacturers in the remote sensing data set.

broadly supports recent Low Emission Zone developments such as the ULEZ

(Ultra Low Emission Zone) in London[216], which prohibits gasoline passenger

cars older than Euro 4 and pre-Euro 6 diesel cars. However, the analysis

suggests that restricting pre-Euro 5 gasoline cars would be advantageous given

the consistently low emissions of Euro 5 and 6 gasoline cars, even with high

mileage.

5.5 Conclusion

The large data sets that can be acquired by vehicle emission remote sensing

measurements provide many opportunities to develop a good understanding

of vehicle emission characteristics. Such data also offers the potential to adopt

more sophisticated analysis approaches that extend beyond simple aggregations

such as mean emissions by Euro standard. By adopting statistical modelling
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approaches, inferences drawn from the data will be stronger, with valuable in-

formation provided on uncertainties. An important advantage of this approach

is that in determining vehicle mileage effects on emissions, other influences

such as ambient temperature and vehicle power demand can be controlled for.

In the current work, the adoption of quantile regression as a technique fits

well with the characteristics of the data being studied. The main benefit is

the determination of whether all vehicles deteriorate similarly with increased

mileage, or whether deterioration is controlled differently by different strata

of a vehicle fleet. For gasoline passenger cars, where deterioration effects are

most apparent, the results show that NOx emission deterioration is significantly

greater in a small population of vehicles.

In contrast to most other studies on vehicle emissions deterioration, the

availability of measured mileage for individual vehicles in the current study is

a considerable benefit, which avoids the use of proxy vehicle age-based data.

For particulate matter, only pre-DPF vehicles show evidence of increasing

emissions at higher mileages, and DPF-equipped vehicles retain effective PM

control even at high mileages. The results also show that while there is evidence

of different deterioration behaviour depending on vehicle manufacturer for

pre-Euro 5 vehicles, post-Euro 4 vehicles show no such evidence.
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6.1 Contribution of Current Work

Vehicle emission remote sensing (RS) is different to the measurement techniques

typically employed for type approval and emission factor development. While

possessing obvious differences, chassis dynamometers and portable emission

measurement systems (PEMS) share a common approach to measuring vehicle

emissions; a whole journey (or drive cycle) is measured for a few representative

vehicles. This approach allows researchers to understand emission behaviour

under effectively any driving condition, from idling in traffic to speeding

down a motorway. Conversely, remote sensing takes an approach to measure a

single snapshot of many vehicles’ journeys (commonly urban journeys). This

allows for an appreciation of the distribution of emission behaviour across

an in-use fleet. In short, chassis dynamometers/PEMS give good journey but

poor fleet coverage, whereas RS gives good fleet but poor journey coverage.

In isolation, none of these methods individually provide a comprehensive

treatment of emissions. Remote sensing is well positioned to capture the

myriad of factors influencing tailpipe emissions across a fleet — different

fuels, emission standards, vehicle types, manufacturers, etc. — but has several

fundamental features which limits its applicability in emission factor and

inventory calculation.

Being restricted to snapshot measurements is a valid criticism of remote

sensing as a technique; a single measurement of a vehicle does not necessarily

represent its average emissions; a momentary high engine-demand condition,

such as a sharp acceleration, during the triggering of the remote sensing device

may lead to the mischaracterisation of a vehicle as “dirty” when it is otherwise

“clean”. Furthermore, being a roadside technique with relatively limited inform-

ation on the vehicles being measured — at least compared to PEMS or in-lab

studies — there are several assumptions that need to be made when working

up remote sensing data (assumptions related to combustion chemistry, fuel

composition, the amount of cargo in a vehicle, etc.). A fundamental aspect of
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remote sensing is that emissions are reported as ratios to CO2 rather than as

absolute emissions in g km−1 as exhaust flow rate cannot be measured.

This thesis set out to overcome several of these limitations of remote sensing

through the development of new approaches in the way RS data is handled. In

the literature, one of the most common ways to report remote sensing data is

average fuel-specific emissions for specific vehicle categories, which may be

fuel types, vehicle types (car, van, bus, etc.), legislative categories like Euro

standards, years of manufacture, vehicle make and model, and so on. In this

work, remote sensing data is instead exploited to fit statistical models to predict

emissions. In Chapter 2, 3 and 4, these are models to predict instantaneous

emissions using vehicle specific power, which are used to predict emissions over

real-world driving data. This approach allows for comprehensive assessments

of emissions — good fleet and journey coverage. In Chapter 5, fuel-specific

emissions are predicted using measured mileage data, with the statistical mod-

elling framework itself allowing for the significance of emission deterioration

to be quantitatively assessed.

The four research chapters of this thesis demonstrate the capability of

remote sensing to assess emissions at different scales when the outlined new

approaches are employed; from individual vehicles, to sub-national/local-scale

emissions, to national estimates, to projected trends across the entire fleet.

• Chapter 2 first presents the emission-engine power modelling approach,

but effectively concludes with the individual assessment of vehicles —

‘what are the distance-specific emissions of vehicles of a specific fuel type,

Euro standard, engine size, and manufacturer?’ This question can be

answered using chassis dynamometer- or PEMS-based studies, but with

much smaller sample sizes of vehicles. The work in this chapter is a

new approach to calculate comprehensive emission factors from remote

sensing data, which are likely to more accurately reflect real-world fleet

emissions than factors achievable with other approaches.
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• Chapter 3 makes a wider examination of emissions; instead of being

concerned with individual vehicles, the question asked is on broader,

sub-national scale — ‘how does the average diesel passenger car (and

its driver) behave while moving in and around UK cities?’ Tradition-

ally, remote sensing would struggle to provide a thorough answer to this

question; snapshots of journeys do not address how drivers behave when

stuck in traffic, for example. Here, for the first time, an expansive data

set of over 100,000 km of continuous driving was combined with a large

database of over 60,000 RS measurements, allowing for a comprehensive

examination of local-scale emissions. These modelled emissions permit

the assessment of effectively any driving condition, the critique of meth-

odologies like COPERT, and the de-coupling of the effects of different

driver behaviours from the also varying emissions of their individual

vehicles. Driver behaviour was demonstrated to induce a range of NOx

emissions of around ±22%; this suggests that emissions could be partially

mitigated through driver training and/or speed adaptation technology,

which may be cheaper and more straightforward than advances in ex-

haust after-treatment. Potentially more significant was the observation

that COPERT speed-emission curves appear to underestimate NOx emis-

sions — particularly in low-speed conditions — which could have serious

ramifications for inventory development and atmospheric modelling.

• Chapter 4 increases the scale a step further by examining national emis-

sions through, for the first time, constructing a highly detailed remote

sensing-based national emission inventory for light-duty road transport.

Remote sensing data could already construct a top-down fuel-based in-

ventory, but these are more uncertain for nations with land borders and

do not scale nearly as well as bottom-up distance-based inventories. For

the first time, evidence from vehicle emission remote sensing could be

compared, like-for-like, with a national emissions inventory. Excellent
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carbon balance was achieved (within 1% of CO2 when compared to the

NAEI) but NOx was underestimated in the NAEI by 24–32%, or up to

47% in urban areas. An underestimation of NOx in a national inventory

has many important knock-on effects; inventories are used to establish

whether a country is meeting international obligations and are inputs into

air quality models. Inaccuracies in inventories will affect both of these

activities and, ultimately, diminish the ability to create effective strategies

to combat poor air quality.

• Chapter 5 instead considered fleet trends, examining the significance

of emission deterioration with increasing mileage. Remote sensing is

uniquely positioned to examine the distribution of emission deterioration

within a vehicle fleet, adjusted for other emission-influencing covariates.

The work in this chapter indicates that emissions are broadly well con-

trolled in Euro 5 and 6 gasoline and diesel vehicles, even at cumulative

mileages where Euro 3 and 4 emissions had started to deteriorate. How-

ever, a small proportion of pre-Euro 5 gasoline vehicles were revealed to

have higher emissions than modern diesel vehicles, so it is suggested that

these vehicles should be restricted in clean-air zones and their removal

from the fleet be accelerated.

As discussed briefly in Chapter 3, remote sensing can examine the relative

importance of different influences on vehicle emissions. Three key influencing

factors were discussed in this thesis; manufacturers, driver behaviour, and

deterioration. Of these three, the difference between manufacturer groups

is seen to be the most consistently significant. The preliminary results in

Chapter 2 identified relative percentage ranges of between ±42% and ±70%

in distance-specific NOx emissions from Euro 5 and 6 cars and vans. This

manufacturer effect on emissions was shown in Chapter 4 to be significant even

on a national level, inducing a 13.4% range in total emissions of NOx when

considering the different manufacturer fleet compositions of different European
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countries. It even factors into emission deterioration; Chapter 5 shows that

certain manufacturers have much better control over NOx emissions at high

mileages than others. For comparison, driver behaviour could be described as a

second-order influence, with distance-specific NOx emission ranges of around

±22%, and the importance of emission deterioration is shown to vary widely

between different vehicle categories, with little strong evidence of deterioration

identified in the newest (Euro 5+) passenger cars.

The difference between manufacturers is significant at almost all scales at

which road transport emissions are considered. On a per-vehicle scale, the

distribution between different manufacturers can explain how emissions may

differ if all vehicles of a given category were emitting the same as those designed

by the “best-in-class” manufacturer. On a national scale, evidence from this

thesis suggests that the manufacturer composition of a country’s fleet could

have a significant effect on total estimated pollutant emissions in inventories.

This latter point is important as no European emissions inventory currently

takes account of manufacturers. Consequently, it is possible that some countries

are underestimating or overestimating the contribution of their road transport

fleets to their total NOx emissions. This will create downstream issues, such as

affecting urban air quality source apportionment and air quality modelling of

NOx, O3 and secondary PM. Strategies to mitigate this are briefly outlined in

Section 6.2.

6.2 Future Directions

As mentioned in Chapter 1, the most recent WHO guidelines have significantly

decreased suggested air quality limits, with annual limits for NO2 decreasing

from 40 to 5 µgm−3, PM2.5 from 10 to 5 µgm−3, and PM10 from 20 to 15 µgm−3.

Consequently, air quality must continue to improve past where it is today to

mitigate its negative public health impacts. The road transport sector, being an

important source of NOx and PM, must control its emissions better than it is
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presently doing. Remote sensing could continue to have a prominent role in

monitoring the evolution of vehicle emissions, and understanding the sources

of these emissions in greater detail.

This thesis presents new approaches for understanding vehicle emissions

using remote sensing data. The key output of this research is the framework of

expressing remote sensing emission data as a function of engine power, which

can go on to be used to calculate distance-specific emissions, calculate emission

inventories, comment on the influences of driving conditions, and so on. The

applications of this approach extend well beyond the work presented in this

thesis, however.

A natural extension would be the estimation of distance-specific emissions

for species other than those typically measured using remote sensing. Hydrocar-

bon emission analysis was not a feature of this thesis, owing to the uncertainty

surrounding hydrocarbon measurements by remote sensing and their treatment

as bulk hydrocarbons rather than individual chemical species. The co-location

of a remote sensing device and a device better suited for the measurement

of discrete volatile organic species (e.g., an online mass spectrometer) could

allow for distance-specific emission factors of individual hydrocarbon species

to be calculated. Equally, distance-specific particulate emissions could be better

calculated with the co-location of an RSD with a system better suited for PM

measurements (e.g., a condensation particle counter or aethalometer). There is

nothing to limit this method purely to air quality pollutants either — non-CO2

greenhouse gas emissions from road transport could also be quantified, such a

methane and N2O.

The work presented in this thesis focuses entirely on light-duty vehicles —

passenger cars and vans. While light-duty vehicles comprise the majority of

the road transport fleet in the UK, heavy-duty vehicles are still of significant

importance. HGVs, for example, are commercial vehicles which do a large

amount of driving. Buses are few in number, but most commonly operate

in urban areas where passengers and pedestrians will be exposed to their
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emissions. While the same broad approach as in Chapter 2 can likely be

employed, there will be extra work required to estimate emissions from heavy-

duty vehicles. Vehicle weight will likely be a large source of uncertainty; heavy

goods vehicles which could be fully laden with cargo or totally empty, and

buses could have any number of passengers depending on location and time

of day. Furthermore, appropriate drive cycles would have to be sourced as

the real-world behaviour of heavy vehicles will be different to that of light

vehicles. An obvious example of this is buses, which by necessity regularly

come to complete stops for passengers to board and alight.

As previously mentioned, this thesis presents evidence that the variance

in emissions between manufacturers is significant even on a national level,

and that it should start being accounted for in European emission inventory

calculations. This could be achieved in a few ways, all of which could incor-

porate remote sensing as the key technique for data collection. It could be

accomplished through separate emission factors per manufacturer — this thesis

and other remote sensing studies demonstrate that this can be achieved straight-

forwardly. In practice, however, having per-manufacturer factors built-in to

COPERT, HBEFA or other models may be opposed by the manufacturer groups

who are assigned the highest emission factors. As an alternative, focus could

shift to using local data to complement the current COPERT approach for emis-

sion factor development, i.e., measuring the UK fleet to develop UK-specific

emission factors, the French fleet for France, the Spanish fleet for Spain, and so

forth. Vehicle emission remote sensing, with its portability and excellent fleet

coverage, is well suited for the task of cheaply and quickly obtaining country-

specific data. Furthermore, the use of local remote sensing data will also help

capture the effects of other emissions influences which vary with country, such

as ambient temperature.

In Chapter 2 the treatment of hybrid vehicles is briefly discussed, but hybrid

vehicles are not a major focus of this thesis. The remote sensing publication

Farren et al. [31] does address hybrid vehicles, using the proportion of invalid
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remote sensing measurements to identify how often hybrid vehicles are in

battery-on mode (and are therefore not emitting anything from their tailpipes)

at different values of VSP. Utility factors were estimated and then applied to

downscale emission factors to more accurately represent trip-average emissions.

While a useful initial application to hybrid vehicles, there are potential improve-

ments to be made — particularly with respect to distance-specific emissions.

Applying a flat reduction may not be appropriate, as battery-on conditions

are not consistent across different driving conditions. A relationship between

VSP and battery-use percentage may itself have inherent uncertainty, as the

proportion of time a plug-in hybrid vehicle will be using its battery will be

affected by how frequently it is charged. Remote sensing may be able to provide

underpinning evidence on unimpeded urban-type conditions (as in Farren et al.

[31]), but external data sets will be required to understand the battery modes

of hybrid vehicles under different conditions.

Two key targets in this area could be, i), the development of a hybrid

vehicle VSP-based drive cycle which contains battery on/off information, which

could then be straightforwardly predicted over, and/or, ii), a refined VSP-

battery percentage relationship which includes data from rural and motorway

driving (likely from non-RS sources). At time of writing, the UK Government

intends to ban the sale of new petrol and diesel vehicles in 2030 and new

hybrid vehicles from 2035[217]. The importance of accurate estimates of hybrid

vehicle emissions will therefore increase as conventionally powered vehicles are

phased out of road transport fleets. Furthermore, the deterioration of hybrid

vehicles will be an important consideration as, if the last hybrid vehicles are

sold in 2035, hybrid vehicles will likely remain in the UK fleet till the 2050s.

As hybrid vehicles become more popular and a greater number of remote

sensing measurements of hybrid vehicles are made, the framework set out

in Chapter 5 could easily be re-applied to examine the distribution of their

emission deterioration.
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6.3 Closing Thoughts

Air quality is one of the biggest public health issues of the modern age, and

much of the blame can be attributed to the ubiquity of combustion-fuelled

road transport. Despite increasingly strict legislation and improvements in

vehicle technology, health evidence continues to demand that lower and lower

amounts of air quality pollutants be emitted. The future is uncertain with

respect to road transport; at the time of writing, the UK Government appears

to be pushing toward fleet electrification, but this has economic and political

consequences as well as needing a large investment in infrastructure. It is

possible that the world’s issues with road transport will not exclusively be

solved by new technologies, but also with changes to urban planning and

public attitudes to prioritise the use of active and public transport over private

road transport. Regardless of what the future of mass transportation will hold,

for the time being the internal combustion engine isn’t going anywhere — and

vehicle emission remote sensing is in prime position to further understand its

effect on the air we breathe.
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gramsper – An R Package for

Absolute Emission Estimates Using

Remote Sensing

While arguably simple to understand, the method to calculate distance-specific

emission factors from a remote sensing data set is long with much scope for

errors. To streamline the method for other researchers and air quality pro-

fessionals, the gramsper package was developed (named after the common

emissions factor unit prefix of grams per kilogram, second, kilometer, etc.).

This appendix is intended to give a brief demonstration of a gramsper

workflow in R[121] and some of the functionality that it provides. Note that

gramsper is in development so the information in this appendix is subject to

change before public release.
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Style & Scope

gramsper follows the “tidyverse” style guide as closely as possible. It also

makes heavy use of “tidy evaluation” set out in the rlang package[218], mean-

ing that column names given as function arguments are provided unquoted.

These two style choices allow for easy integration with “tidyverse” functions in

magrittr[219] pipelines.

gramsper has been written for use with the OPUS RSD which has been

joined with technical information obtained from the UK “Motor Vehicle Regis-

tration Information System” (MVRIS). Therefore much of its functionality will

not readily work with data from other RSD systems (FEAT, EDAR, etc.) or with

technical data from other countries at time of writing.

Emission Factor Calculations

The main objective of gramsper is to calculate emission factors from remote

sensing data.

The most straightforward emission factor to calculate is the fuel-specific

(g kg−1) factor, as this only requires pollutant concentrations in PPM which

are provided by default in “raw” remote sensing data. calculate_gpkg()

takes a data frame of raw remote sensing data as its only argument and uses

the concentration columns contained within to add g kg−1 columns for CO2,

CO, NO, NO2, HC, and NH3.

More complicated is the calculation of distance-specific (g km−1) factors. To

calculate these emissions, gramsper uses the methods outlined in Chapter 2

and demonstrated in Chapter 3 and Chapter 4. The first step is the cal-

culation of VSP and fuel consumption, which gramsper automates with

calculate_power_fuel(). This function automates the segmentation of

vehicles through the use of the MVRIS technical data, assigns estimates of CdA,

R0 and R1, and uses these to calculate VSP and fuel consumption. Additional
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arguments allow for control over the adjustment of vehicle kerb weight (de-

faulting to +150 kg) and the automatic calculation of instantaneous emissions

(g s−1) for all available fuel-specific emissions in the data set.

The second step to calculating distance-specific emissions is mapping the

instantaneous emissions to a drive cycle using an emission-power generalised

additive model (GAM). This step is achieved with the rs_to_drive_cycle()

function. The key arguments it takes are:

• df: A data frame of remote sensing data which includes estimated instant-

aneous emissions.

• pollutant: A column of instantaenous emissions.

• drive_cycle: A data frame of VSP-based drive cycles. gramsper contains

some in-built drive cycles, including the PEMS cycles from Chapter 2, but

external cycles can also be used. The minimum required of a drive cycle

data frame is a column of VSP values, although any additional data from

the drive cycle will be retained in the function output.

• . . . : Any number of columns from the remote sensing data frame to group

the output by, for example any columns pertaining to Euro Standard, fuel

type, engine size, etc.

• min: The minimum number of measurements required to fit the GAM.

This avoids having to pre-filter remote sensing data to remove niche

vehicle categories (e.g., unpopular manufacturer groups)

Without any grouping columns specified, rs_to_drive_cycle() returns

the drive cycle data augmented with an additional column of predictions for

whatever pollutant has been modelled. With grouping columns specified, the

grouping columns are retained and predictions are made per-group, meaning

that the data frame returned has n times as many rows as the drive cycle data,

where n is the number of unique groups. From this point, users can manually

calculate a distance-specific emission (see Example Workflow below).
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Remote Sensing Utilities

There are numerous other utility functions in gramsper to make using remote

sensing data easier in R. These are not necessarily directly related to emis-

sion factor calculation, but may form part of a complete gramsper workflow.

Examples include:

• cop_create_type(): Adds columns to a remote sensing data frame which

label vehicles with their COPERT assignments. These are more evocative and

easy to work with than some of the MVRIS assignments. For example, a “vehicle

type” of “Car” is easier to understand than a “type approval category” of “M1”.

• estimate_missing(): Sets invalid speed and acceleration measurements

to the average speed and acceleration for the measurement site, and predicts

missing vehicle weights using vehicle volume and engine size. These estimations

allow for value to be extracted from incomplete remote sensing observations.

• summarise_se_curve(): Takes the output of rs_to_drive_cycle() and

returns a COPERT speed-emission curve-style reference table of distance-specific

emission averages at user-defined speed intervals. This is a similar output to

the COPERT-style curve produced in Chapter 3, although uses binned speed

intervals rather than fitting a polynomial model.

• naei_road_airquality(): Uses the rvest[220] package to scrape the NAEI

website for total UK road transport air quality emissions. Its sister function,

naei_road_greenhouse(), scrapes NAEI greenhouse gas emissions. While

not directly related to the use of remote sensing data, more efficient analysis can

be facilitated by having ready access to the most recent official NAEI estimates

(as in Chapter 4).

• Unit conversion functions allow for quick conversions between units. For ex-

ample, kmh_to_ms() will convert vehicle speeds in km h-1 to m s-1.
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Example Workflow

Listing A.1 provides an example workflow for the use of gramsper. In this

case, NOx g km−1 values are calculated over London-based LDV drive cycles

(included in gramsper as cycles_tfl).

Listing A.1: An example gramsper workflow.

1 l i b r a r y ( gramsper )

2 l i b r a r y ( dplyr )

3

4 # read in RS data

5 rs _raw = readRDS ( " r s _ data . rds " )

6

7 # prep data − get COPERT c l a s s e s , recover data ,

8 # c a l c u l a t e VSP , FC and g / s values

9 rs _prepped = rs _raw %>%

10 c a l c u l a t e _gpkg ( ) %>%

11 cop_ create _ type ( ) %>%

12 est imate _missing ( ) %>%

13 c a l c u l a t e _power_ f u e l ( data , ldv _ adj = 150 ,

14 c a l c _ gs = TRUE)

15

16 # map nox g / s values to TFL drive c y c l e s

17 t f l _pred = rs _prepped %>%

18 rs _ to _ drive _ cycle ( dr ive _ cycle = c y c l e s _ t f l ,

19 pol lu tant = NOx_gps ,

20 cop_eu_ class , cop_veh_ type ,

21 min = 200)

22

23 # use dplyr to c a l c u l a t e g /km − sum of predicted

24 # values divide by sum of di s tance covered

25 t f l _gkm = t f l _pred %>%

26 summarise ( nox_gkm = sum( pred , na . rm = T) /

27 sum( d i s t _hz , na . rm = T)
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Supporting Information for

Chapter 3

In Chapter 3, Figure 3.4 and the associated analysis considered drivers who

had performed at least 50 journeys in each speed limit zone. This was chosen

as drivers who had only undertaken a small number of journeys may have

journeys more effected by external influences (e.g., congestion) or transitory

factors (e.g., driver mood/personal circumstance) rather than their individual

consistent driving style. The limit of 50 is somewhat arbitrary, and was chosen

in part due to the appearance in an “elbow” in the trend of relative percentage

range against the chosen journey limit at around a limit of 50 journeys.

The purpose of this appendix is for transparency; all drivers are visualised

regardless of the number of journeys they had taken. Due to the amount of

data being visualised, each speed limit zone is presented in its own figure.
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Figure B.1: Distributions of journey-average distance-specific (g km−1) NOx emissions

in 30 mph speed zones. Each boxplot represents an individual driver, with the intensity

of the line colour proportionate to the number of journeys the driver undertook under

that speed limit.
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Figure B.2: Distributions of journey-average distance-specific (g km−1) NOx emissions

in 40 mph speed zones. Each boxplot represents an individual driver, with the intensity

of the line colour proportionate to the number of journeys the driver undertook under

that speed limit.
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Figure B.3: Distributions of journey-average distance-specific (g km−1) NOx emissions

in 50 mph speed zones. Each boxplot represents an individual driver, with the intensity

of the line colour proportionate to the number of journeys the driver undertook under

that speed limit.
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Figure B.4: Distributions of journey-average distance-specific (g km−1) NOx emissions

in 60 mph speed zones. Each boxplot represents an individual driver, with the intensity

of the line colour proportionate to the number of journeys the driver undertook under

that speed limit.
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Figure B.5: Distributions of journey-average distance-specific (g km−1) NOx emissions

in 70 mph speed zones. Each boxplot represents an individual driver, with the intensity

of the line colour proportionate to the number of journeys the driver undertook under

that speed limit.
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Supporting Information for

Chapter 4

This section provides further research outputs, mainly those originally provided

as the supplementary information of Davison et al. [2], in part including the

carbon monoxide and ammonia estimates. The total UK bottom-up estimates

for these air quality pollutants were 537 ± 25.4 kt CO and 9.1 kt ± 0.5 NH3.

At a UK scale, the NAEI is seen to consistently underestimate these emissions,

with F = 2.86 for CO and F = 2.23 for NH3.

The equivalent visualisations to Figure 4.3 and Figure 4.4 inclusive of CO

and NH3 are provided as Figure C.1 and Figure C.2, respectively. The distance-

based emission factors calculated in this study are provided in Table C.1,

Table C.2, Table C.3 and Table C.4.

The bottom-up approach given in Chapter 4 was first demonstrated in

Farren et al. [30], which focused exclusively on NH3 emissions and where it

was compared with a top-down approach also using vehicle emission remote

sensing data. Excellent agreement was found between the two approaches,

both in terms of carbon balance and estimated total UK NH3 road transport

emissions.
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Figure C.1: Generalised Additive Models (GAMs) relating passenger car CO2, NOx and

CO g s−1 and NH3 mg s−1 to VSP, coloured by Euro classification and faceted into three

light duty vehicle categories. The shading shows the standard error of the GAM fit.
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F = 0.08-0.37

Figure C.2: Total UK estimates for CO2, NOx, CO and NH3 using vehicle emission

remote sensing, in comparison with the 2018 emissions reported in the National

Atmospheric Emissions Inventory. F values, representing the ratio between the VERS

estimate and the reported NAEI value, are provided. Urban VERS estimates are

compared with both hot urban emissions from the NAEI and a combination of hot

urban and cold start emissions, shown connected by a grey horizontal line. Error bars

show the 95% confidence intervals projected from the fuel-specific (g kg−1) emission

factors. The grey diagonal line shows a 1:1 relationship.
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Urban Rural Motorway

ES Low. Avg. High. Low. Avg. High. Low. Avg. High.

Gasoline PC 2 244.5 251.6 258.8 163.8 168.6 173.4 173.1 178.2 183.3

3 257.2 259.8 262.3 169.3 171.0 172.7 177.6 179.4 181.1

4 252.8 254.7 256.5 166.0 167.2 168.4 173.9 175.2 176.4

5 232.6 234.2 235.9 153.2 154.2 155.3 160.8 161.9 163.0

6 239.2 241.1 242.9 157.4 158.6 159.8 165.1 166.4 167.7

Diesel PC 2 202.9 219.8 238.8 144.9 157.1 170.6 157.1 170.2 184.9

3 212.2 216.2 220.1 152.4 155.2 158.0 165.5 168.6 171.6

4 217.0 219.1 221.4 155.4 157.0 158.6 168.7 170.3 172.1

5 208.6 210.1 211.6 149.3 150.4 151.5 162.0 163.1 164.3

6 210.0 211.8 213.7 150.3 151.6 152.9 163.0 164.4 165.9

Diesel LCV 2 206.4 228.8 255.7 156.6 173.6 194.1 173.5 192.4 215.0

3 231.4 237.8 244.6 168.7 173.3 178.3 184.2 189.2 194.7

4 224.6 228.4 232.5 168.5 171.3 174.4 185.9 189.1 192.5

5 215.5 218.0 220.5 167.7 169.7 171.6 187.5 189.6 191.8

6 216.0 220.2 224.3 166.6 169.8 173.0 185.6 189.2 192.8

Table C.1: Distance-based emission factors in g km−1 for carbon dioxide (CO2). “ES”

refers to the Euro Status of the vehicle. The Low. and High. values represent the 95%

confidence interval.
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Urban Rural Motorway

ES Low. Avg. High. Low. Avg. High. Low. Avg. High.

Gasoline PC 2 3.94 4.30 4.73 2.63 2.87 3.16 2.78 3.03 3.34

3 2.77 2.88 2.99 2.15 2.23 2.32 2.40 2.49 2.59

4 2.33 2.40 2.48 1.64 1.69 1.74 1.77 1.82 1.88

5 1.50 1.55 1.60 1.08 1.11 1.15 1.17 1.20 1.24

6 1.21 1.29 1.44 0.78 0.83 0.92 0.81 0.86 0.96

Diesel PC 2 1.03 1.34 1.69 0.81 1.05 1.33 0.91 1.18 1.49

3 0.87 0.97 1.05 0.66 0.74 0.80 0.74 0.82 0.88

4 0.94 0.98 1.01 0.67 0.69 0.72 0.72 0.75 0.77

5 0.81 0.87 0.94 0.60 0.64 0.69 0.66 0.70 0.75

6 0.79 0.82 0.85 0.57 0.59 0.61 0.62 0.64 0.66

Diesel LCV 2 1.11 1.29 1.47 0.73 0.85 0.97 0.77 0.89 1.02

3 1.28 1.38 1.49 0.90 0.97 1.05 0.98 1.05 1.13

4 1.05 1.10 1.17 0.77 0.81 0.86 0.85 0.89 0.94

5 0.95 0.98 1.01 0.74 0.76 0.79 0.83 0.85 0.88

6 0.88 0.91 0.95 0.66 0.69 0.71 0.73 0.76 0.78

Table C.2: Distance-based emission factors in g km−1 for carbon monoxide (CO). “ES”

refers to the Euro Status of the vehicle. The Low. and High. values represent the 95%

confidence interval.
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Urban Rural Motorway

ES Low. Avg. High. Low. Avg. High. Low. Avg. High.

Gasoline PC 2 0.70 0.77 0.84 0.53 0.58 0.63 0.59 0.65 0.70

3 0.36 0.37 0.39 0.27 0.28 0.29 0.29 0.31 0.32

4 0.18 0.19 0.20 0.13 0.14 0.15 0.15 0.15 0.16

5 0.11 0.12 0.12 0.09 0.10 0.10 0.10 0.11 0.11

6 0.10 0.10 0.11 0.08 0.08 0.08 0.08 0.09 0.09

Diesel PC 2 1.15 1.29 1.44 0.89 1.00 1.11 0.99 1.11 1.24

3 1.06 1.09 1.12 0.81 0.83 0.85 0.89 0.92 0.94

4 0.91 0.92 0.94 0.73 0.74 0.76 0.82 0.84 0.85

5 0.94 0.95 0.96 0.76 0.77 0.78 0.85 0.87 0.88

6 0.48 0.49 0.50 0.42 0.43 0.44 0.48 0.49 0.51

Diesel LCV 2 1.12 1.31 1.54 0.91 1.06 1.24 1.02 1.20 1.40

3 1.22 1.27 1.33 0.92 0.96 1.00 1.01 1.06 1.11

4 1.12 1.15 1.18 0.90 0.92 0.95 1.01 1.04 1.07

5 1.32 1.34 1.36 1.05 1.07 1.09 1.18 1.20 1.22

6 0.46 0.48 0.51 0.39 0.42 0.44 0.45 0.48 0.51

Table C.3: Distance-based emission factors in g km−1 and mg km−1 for nitrogen oxides

(NOx). “ES” refers to the Euro Status of the vehicle. The Low. and High. values represent

the 95% confidence interval.

Urban Rural Motorway

ES Low. Avg. High. Low. Avg. High. Low. Avg. High.

Gasoline PC 2 83.71 93.11 106.16 59.78 66.50 75.82 64.78 72.06 82.15

3 70.25 73.16 75.90 54.73 57.00 59.14 61.18 63.72 66.11

4 67.36 70.36 73.17 47.60 49.72 51.70 51.37 53.66 55.80

5 54.48 56.66 59.57 36.35 37.80 39.75 38.35 39.88 41.93

6 42.77 44.48 46.30 28.35 29.48 30.69 29.82 31.02 32.28

Diesel PC 6 0.08 0.94 2.03 0.07 0.77 1.66 0.07 0.88 1.88

Diesel LCV 6 1.34 3.88 7.52 0.87 2.52 4.88 0.91 2.63 5.09

Table C.4: Distance-based emission factors in g km−1 and mg km−1 for ammonia (NH3).

“ES” refers to the Euro Status of the vehicle. The Low. and High. values represent the

95% confidence interval.
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Description of Quantile Regression

for Chapter 5

The purpose of this appendix is to give an more thorough overview of quantile

regression to aid with the interpretation of results in Chapter 5. This text was

originally included in the supplementary information of Davison et al. [3].

Quantile regression can be understood in relation to ordinary least squares

(OLS) regression. An example of an OLS equation is given in Equation D.1. ŷi is

the predicted value of the response variable yi , and xik is the predictor variable

associated with the covariate k, of which there are p. In OLS regression, the β

coefficients are constant.

ŷi = β0 +
p∑
k=1

βk · xik (D.1)

The “best” OLS regression equation is found my minimising a loss function.

This is typically the Mean Squared Error (MSE), found by summing the sqare of

the difference between the real and predicted values of yi , of which there are n,

and dividing through by n. This equation is shown as Equation D.2.

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (D.2)

A generic quantile regression equation is given in Equation D.3. The key

difference between Equation D.3 and Equation D.1 is that the β coefficients are
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now functions of the quantile, τ .

Qτ (ŷi) = β0 (τ) +
p∑
k=1

βk (τ) · xik (D.3)

The “best” quantile regression equation is also found my minimising a loss

function – this time the Median Absolute Deviation (MAD). The MAD function

(Equation D.4) is analogous to the MSE function (Equation D.2), but now has

the addition of a check function, ρτ , defined in Equation D.5, where I is an

indicator function that is equal to 1 if true and 0 if false.

MAD =
1
n

n∑
i=1

ρτ (yi −Qτ(ŷi)) (D.4)

ρτ(u) = |u|{τ · I(u > 0) + (1− τ) · I(u < 0)} (D.5)

To illustrate some use-cases of quantile regression, Figure D.1-Scatter shows

some example data with quantile regression lines fit, τ ∈ {.10, . . . , .90}. Fig-

ure D.1-Model shows the intercept and slope term. In these latter plots, the

intercept and slope terms for the equivalent ordinary least squares regressions,

along with their 95% confidence intervals, are shown as horizontal lines. Three

distinct cases are presented.

• Case A: The points are in a near-perfect 1:1 line, meaning that all of the

fits at different quantiles are effectively the same. This is reflected in the

model plots; in both cases, the points effectively form a straight horizontal

line. In this case, quantile regression is unnecessary - an ordinary least

squares linear regression would explain this relationship adequately.

• Case B: There is still a linear correlation between x and y, but there is

much greater spread in y. The quantile regression fits are therefore nearly

parallel, but are transformed in the y axis. Notice that, in the model

plots, the intercept increases near-linearly with τ , whereas the slope term

remains similar to that seen in Case A. As all of the slope terms are

contained within the confidence interval of the OLS slope term, it can be
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said that the rate at which y increases as a function of x is not significantly

different at different quantiles.

– In emissions science, this would reflect a situation in which the

“high-emitters” of a pollutant are no more or less influenced by some

covariate than the lower or average emitters.

• Case C: The spread in y increases as x increases, giving the quantile

regression lines a fan-like appearance. The model plots are the opposite

of those seen in Case B; the model intercepts are not significantly different

from the OLS, but the slope terms are. In this case, the rate at which y

increases as a function of x would be inadequately explained by an OLS

model.

– In emissions science, this would reflect a situation in which the “high-

emitters” of a pollutant are influenced more by some covariate than

other emitters. This is not to say that the model term will always

increase with τ ; the situation could arise whereby lower emitters is

greatly influenced by Covariate A but not B, while high emitters are

influenced by B but not A.
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Figure D.1: Three data sets to illustrate quantile regression. Case A effectively shows a

1:1 relationship, Case B shows a linear relationship with a wider distribution in the y

axis, and Case C shows an increase in the distribution of y as a function of x. Scatter:

A scatter plot showing the raw data (blue), linear quantile regression fits (black) and

a linear ordinary least squares (OLS) fit (red). Model: Line plots showing quantile

regression model intercept and slope terms as a function of the quantile (black), and the

equivalent ordinary least squares model term estimates and 95% confidence intervals

(red).
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