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Abstract

Analysis of the full human head in the context of computer vision has been

an ongoing research area for years. While the deep learning community has

witnessed the trend of constructing end-to-end models that solve the problem

in one pass, it is challenging to apply such a procedure to full human heads.

This is because human heads are complicated and have numerous relatively

small components with high-frequency details. For example, in a high-quality

3D scan of a full human head from the Headspace dataset, each ear part only

occupies 1.5% of the total vertices. A method that aims to reconstruct full

3D heads in an end-to-end manner is prone to ignoring the detail of ears.

Therefore, this thesis focuses on the analysis of small components of the

full human head individually but approaches each in an end-to-end training

manner. The details of these three main contributions of the three individual

parts are presented in three separate chapters. The first contribution aims

at reconstructing the underlying 3D ear geometry and colour details given

a monocular RGB image and uses the geometry information to initialise a

model-fitting process that finds 55 3D ear landmarks on raw 3D head scans.

The second contribution employs a similar pipeline but applies it to an eye-

region and eyeball model. The work focuses on building a method that has

the advantages of both the model-based approach and the appearance-based

approach, resulting in an explicit model with state-of-the-art gaze prediction

precision. The final work focuses on the separation of the facial identity and

the facial expression via learning a disentangled representation. We design an

autoencoder that extracts facial identity and facial expression representations

separately. Finally, we overview our contributions and the prospects of the

future applications that are enabled by them.
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1
Introduction

Understanding and reconstructing the full human head in the context of

computer vision and graphics has been an active research area for decades.

The recent advancement of deep learning technologies has enabled a learning

methodology that has strong feature extraction abilities, thus deep learning

methods have been one of the most popular, efficient and high performance

tools for analysis of human-related shapes and structures in computer vi-

sion. As a broad and ongoing topic, analysis of the full human head’s shape

and appearance has numerous unsolved problems that are needed to be ad-

dressed. There are a number of components that compose the full human

head, including ears, nose, eyes, mouth, face, eyeballs and cranium. As some

components of human heads are movable, to represent full heads, the varia-

tions introduced by eye gaze, facial expressions and head movement should

be taken into consideration. The nature of human heads implies various dif-

ficulties for solving the problem. For multiple sub-components, one issue as

pointed out by [4, 5] is that methods that learn the full head as a whole

may have less variance to express the sub-parts. Capturing additional vari-

ations challenges the capacity of the learning model and can significantly

reduce the reliability of some methods (e.g. facial expression can make the

face identification task extra difficult).

The ultimate goal of the topic of analysis of the full head is that given a
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very high quality scan of a subject’s head either in 2D or 3D forms, the al-

gorithm is able to extract semantically meaningful properties and alter those

properties. An enormous amount of applications can be enabled by this anal-

ysis. These include medical applications - such as ear reconstruction surgery,

entertainment - such as face reenactment, forensics, the understanding of

human face perception, tiredness detection in autonomous driving, design of

wearables - such as VR/AR headsets and spectacles, biometrics - such as 3D

face recognition, and so on. To define this in the context of this thesis, we ap-

proach analysis by means of analysis-by-synthesis, which aims to understand

the raw inputs by reproducing them via models.

To achieve the ultimate goal, we propose a plan in this thesis and demon-

strate 3 complete sub-parts in 3 technical chapters. We design the plan to be

two-stage, sub-part analysis and part composition. We define sub-part of a

human head as a region of a specific component that is either on the surface

of a head (e.g. ears, nose) or inside the head (e.g. eyeballs). Also, a sub-part

can be overlap, subset or superset to another sub-part, e.g. an eye-region can

be defined to contain the face structure around both eyeballs. We design a

list of sub-parts, such that the union of the sub-parts forms the complete

human head. The stage one is to solve an individual analysis problem for

each sub-part for all the human head sub-parts in the list to be given in the

next paragraph. The stage two is then to combine each single solved model

into the full human head model.

Our proposed first stage contains a list of sub-parts. We categorise the

sub-parts into two categories: bigger/coarse category and smaller/fine cat-

egory. The bigger and coarse sub-parts include full head, face region with

neck and cranial region. The smaller and fine sub-parts include ears, eyes,

eye region, nose, mouth, hair and facial expression. We can model each sin-
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gle sub-part using the most suitable modelling method for it. For example,

we can use model-fitting for ears, deep learning based monocular 3D recon-

struction for eye region and non-rigid iterative closest point for full head.

Our proposed second stage contains two proposed methods for compositing

multiple sub-parts into a full human head model. The first method is to

use the individual sub-part model to replace the original part on a full head

coarse model. However, such method requires sticking the individual model

to the coarse head model, thus we propose a second method that does not

require sticking two models. The second method is to upsample and morph

the original part on a full head coarse model directly. Note that the original

part is extracted so we are still effectively modelling individual sub-parts.

In this thesis, we cover the following sub-parts: ears, eye region with

nose, face and facial expressions for the first stage. For ears, we model

the right ear and mirror the right ear model to produce a model for the

left ear. The model learning process is a deep learning based monocular

3D reconstruction pipeline that learns to find corresponding 3D ear on 2D

images. For eye region with nose, we model the eye region, eyeballs and nose

in a unified model using the similar method compared to the ear work to

produce accurate gaze estimations. Finally, for faces and facial expressions,

we model both simultaneously but separately in 3D. For the second stage, we

fit our 3D ear model to 3D full head scans. Our eye region model can directly

apply to a full head model. Our expression model can be considered as a set

of vertex offsets to the original full head model. We leave the modelling of

cranial region, eyeballs, nose, mouth and hair parts as future works. Also,

for stage two, although we try both composition methods, the final model

is still limited in resolution (only maximum 5000 vertices for the full head

model).
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After drawing the big picture, we now cover more detail about individ-

ual analysis problems. The major part of analysis-by-synthesis is that the

algorithm that synthesises the raw inputs. The choice of the analysis-by-

synthesis method can be diverse. Some traditional methods often use the

model-fitting approach. They construct a model to fit the original data, and

then extract the desired properties from the constructed model. For exam-

ple, a model-fitting approach can have a composition of two PCAs to model

3D face geometry and face textures separately. The two PCAs and a lighting

model can jointly models the appearance of human faces and produce ren-

dered facial images. The model-fitting process then tries to optimise a set of

parameters that controls all three models, such that the finally synthesised

facial image looks as similar as the original facial image. However, using the

model-fitting process as the ‘analysis’ method is often time-consuming and

the fitted model often cannot predict desired properties in high accuracy.

For example, the gaze vectors cannot be accurately obtained with above

whole face model-fitting approach in most cases. In the meantime, recent

works focus on directly predict desired properties (i.e. gaze vectors in this

example) accurately by harnessing the raw feature extraction ability of deep

neural networks. Given the increasing popularity in these ‘direct prediction’

approaches, we argue that having an underlying model still has numerous

advantages. For example, new data samples can be generated by modifying

properties of the model, and other properties (such as skin tones in this ex-

ample) can be obtained along with the desired properties (i.e. gaze vectors

in this example). In a result, as proposed by [6], we use a mixture of the

two approaches to harness advantages of both. In this case, to replace the

model-fitting process, we use deep neural networks to perform the analysis

task to predict a set of model parameters, and we use a model to synthesise
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the original data. Under this setting, we can obtain a fitted model with-

out time-consuming model-fitting process. The obtained model can provide

desired properties with comparable accuracy against ‘direct prediction’ ap-

proaches and all other useful properties from the model. With modifying

certain properties, the obtained model can generate new data samples, too.

For the analysis-by-synthesis methods, the general autoencoder architec-

ture implements this idea and enables an end-to-end complete pipeline that

performs the analysis-by-synthesis task automatically from data without ad-

ditional supervision [7]. The architecture contains two parts, the first part is

called the encoder, which is often a feature extraction module that extracts

some compressed latent representation. The second part is the aforemen-

tioned generator, also known as the decoder, which attempts to synthesise

the input data from the latent representation. These two parts form a com-

plete pipeline that takes raw data as inputs and attempts to generate the

same data as output, where the output can be compared against the input

to improve both system components simultaneously. Deep neural networks

naturally form strong feature extraction modules and are usually used as en-

coders. All the three contributions of our thesis utilise the autoencoder idea

and use a state-of-the-art deep neural network as the encoder.

As discussed earlier, most model-based methods have semantically mean-

ingful latent representations that control certain properties, while most deep

learning methods cannot naturally generate explainable representations be-

cause of the black box property of them. The black box property means that

the neural network acts like a black box when it synthesise raw data from

a set of features without any semantical meanings, and without unveiling

any details of the mapping. A research area that focuses on learning more

explainable representation by learning more independent latent variables has
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become popular recently [8]. Such methods are termed disentangled represen-

tation learning methods. The disentangled representation means that each

of the representation’s variable varies one and only one factor of the synthe-

sised data. For example, the width of the face can be controlled by multiple

features in a trained deep neural network. An ideally disentangled deep neu-

ral network represents the variance of the width of the face using only one

feature (i.e. one number). This will imply a certain level of explainability

and encourage the method to learn a more concise representation [9]. In

general, disentangled methods aim to mitigate the black box property of the

deep neural networks. With this property, the learned deep learning models

can behave more like model-based approaches. We explore this property in

Chapter 5 by attempting to separately generate face identity and expression.

In this thesis, we address the often ignored sub-components including

ears, eyes, eye-region, eye gaze and facial expressions individually, mainly

using the autoencoder architecture, deep learning and model-based methods.

We have done three works that aim to separately analyse either single or a

closely grouped components. The first work focuses on 3D ears. We start

from an augmented ear model that is built from 20 high quality 3D ear

scans [10]. The final algorithm consists of a model that can generate in-

correspondence 3D ear shapes from 2D ear images in-the-wild. An ear in-

the-wild image colour model is also built to colour the 3D ears. We also

extend this system to initialise a fitting of 3D ears to 3D full head raw scans.

Our second work aims at analysing human eyes and gaze directions by using

an eye-region and eyeball model and the same style of training process as

the ear autoencoder. Finally, the third work focuses on modelling 3D face

identity and 3D facial expressions separately when provided with 3D faces

with expressions.
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1.1 Outline

The remainder of this thesis is structured as follows:

1. Chapter 2 reviews all of the essential basic concepts for the theoretical

groundings of all three works described by this thesis. A number of

recent research works are included at the end of each section to give an

overview of the current development of the research areas.

2. Chapter 3 contains the first technical contribution, which is a complete

3D human ear reconstruction system that is end-to-end trainable and

contains a new colour model. It also demonstrates a further model-

fitting application that is initialised with this system.

3. Chapter 4 describes the second technical contribution that models the

eye, eye-region and gaze in a similar approach to the previous chapter.

We build a hybrid method that uses a novel eye-region model and can

provide rich semantically meaningful information, as with model-based

methods, and which has excellent gaze prediction accuracy, as with

appearance-based methods.

4. Chapter 5 describes the third and final technical contribution, which

focuses on 3D face reconstruction with facial expression disentangle-

ment. The method takes a 3D face with expression as input and recon-

structs the 3D neutral face and 3D facial expression separately. It uses

a simple but effective novel mutual information regulariser to improve

disentanglement ability by a large margin.

5. Chapter 6 concludes our contributions, lists applications and limita-

tions, and discusses the prospects for future work.
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2
Literature Review

This chapter will cover all the related work for our three contributions. We

start with fundamental ideas and methods in each section, then introduce

state-of-the-art methods. In the Section 2.1, we introduce the idea of the

autoencoder, which covers the basic concepts and the extended works of the

variational autoencoder (VAE) [11] and the disentangled VAE. The autoen-

coder is the cornerstone architecture design choice for the whole thesis to

achieve the analysis-by-synthesis pipeline and to enable end-to-end train-

ing. The next section, Section 2.2, will cover the fundamentals of the 3D

Morphable Models (3DMM) [12], which is a statistical way of modelling 3D

objects and forms an important part in the pipelines of all three works pre-

sented in this thesis. Finally, in Section 2.3, we show the most relevant recent

works and describe their core ideas concisely.

2.1 Autoencoders

Most of the work presented in this thesis is based on an architecture design

called an autoencoder. It is an unsupervised learning method that learns a

compressed representation of a group of data. In this section, the idea of

the autoencoder architecture will be elaborated in Section 2.1.1. Principal

Component Analysis (PCA) as an autoencoder and one of the autoencoder’s

most popular variants, Variational Autoencoder (VAE), will be introduced in
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Section 2.1.2 and Section 2.1.4 respectively. Meanwhile, the autoencoder has

a close relation with deep learning in recent years, and this will be discussed in

Section 2.1.3. Finally, the literature on disentangled VAEs will be introduced

in Section 2.1.5.

2.1.1 General Interpretation

The autoencoder, firstly proposed by Holyoak et al. [7], describes a process

that analyses the input data by extracting a latent representation, then syn-

theses the input data from that extracted latent representation. As depicted

in Fig. 2.1, an autoencoder has two main components: encoder and decoder.

The latent code is designed to be a latent representation of the input data.

Thus, the encoder is a feature extractor that regresses the latent representa-

tion from the input data, and the decoder is a generator that syntheses the

input data. With appropriate encoders and decoders, the autoencoder can

process various types of data. The data types shown in the figures are ear

images (top), 3D ear and head meshes or point clouds (bottom).

Figure 2.1. General autoencoder architecture.

Baldi [13] formally defines the autoencoder as an architecture that learns

the encoder function Q : Rn → Rk and the decoder function P : Rk → Rn
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jointly, such that:

argmin
Q,P

L (P ◦Q (X) ,X) , (2.1)

where L is the loss function that defines the divergence between original

data X and reconstructed data. An intermediate code vector, i.e. latent

code z, can be obtained by z = Q (X). Such a latent code is a compressed

representation of the original data and can be used to recover the original

data with the decoder function by X̂ = P (z).

2.1.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) can be used to construct 3D object

models and can be used as a decoder in autoencoder architecture to serve as

a linear generator. It is an algorithm that calculates a linear transformation

of data points from one coordinate system to the other. The new coordinate

system’s coordinates have a descending order of variance of their values.

The first facial 3D Morphable Model (3DMM) applies PCA to 3D human

face images. This will be elaborated in Section 2.2. Also, it can be shown

that a linear autoencoder with linear activation functions and squared loss

function can be transformed into PCA [14].

This section presents the mathematical details of PCA. PCA can derive

the linear transformation in two ways: performing the Singular Value De-

composition (SVD) of the observations or computing the eigendecomposition

of the observations’ covariance matrix. Practically, we use a Python mod-

ule named SciPy [15] to calculate the transformation. We expand the SVD

approach as it is the same approach taken by SciPy. Assuming a set of

N observations each has n features, arranged in a matrix X ∈ RN×n, the
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observations are zero-meaned initially:

X′ = X− X̄, (2.2)

where X̄ ∈ Rn is the mean data point of all data samples. The zero-mean

data matrix X′ is then factorised by SVD as:

X′ = USVT , (2.3)

where U ∈ RN×n, S ∈ Rn×n and V ∈ Rn×n, such that US are principal

components and VT are principal axes. Assume it is desired for a dimension

reduction to k dimensions (k < n), the principal axes can be truncated to

first k rows, end up in W ∈ Rk×n. Then to reconstruct the original data from

any principal components i.e. latent code z ∈ Rk×1, the linear transformation

can be formed as:

X̂ = X̄+ zTW. (2.4)

For extracting the latent code of a new observation Xt, the inverse of the

PCA linear transformation in Eq. (2.4) can be applied as:

ẑ = W−1
(
Xt − X̄

)
. (2.5)

Therefore, Eq. (2.5) and Eq. (2.4) forms an encoder and a decoder respec-

tively, then jointly form an autoencoder with latent code z as the contracted

representation with dimension k. It is also effectively a dimension reduction

transformation that reduces the dimension from n to k.
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2.1.3 Autoencoder and Deep Learning

The idea of the autoencoder has an inseparable relation with deep learning

in recent years [8]. When the autoencoder was firstly proposed, both the

encoder and the decoder were implemented with neural networks. When

deep learning introduces neural networks that have much more capacity,

it is natural to apply various deep models to form different autoencoders

for different purposes. Meanwhile, it is possible to use a fixed model-based

decoder instead of a learnable decoder to constrain the learning process and

to improve the trained encoder’s performance [6].

In the 3D deep learning context, a large number of specially-designed deep

neural networks have been proposed for handling various input types. For

point cloud data, the most notable encoder networks are PointNet [16] and

point transformers [17, 18]. For the point cloud decoders, multilayer percep-

trons are the most used networks to produce a fixed-order point set [19, 20].

For mesh data, the literature focuses on exploiting the topology informa-

tion, which jointly defines an undirected graph with the point set. Thus,

Graph Neural Networks (GNNs) are applied for both encoding and decod-

ing [21, 22, 23, 24]. For volume data, the canonical approach is to treat them

as 3D images and use 3D convolution layers to extract features and 3D de-

convolution layers to reconstruct volumes. A notable approach for medical

3D images is V-Net [25], which is an extension to the 2D version U-Net [26].

They apply residual connections between layers from the encoder and the

decoder to provide better context and yield better performance with less

training data. Meanwhile, due to the curse of dimensionality, networks that

process volume data directly can only handle volumes with very limited res-

olutions [27, 28, 29]. Thus, Park et al. [30] propose to use an encoder-less

structure and represent the shape of objects using a neural network predicted
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signed distance field.

Amid all the autoencoder-based 3D deep learning approaches described

above, there is one unique kind that processes and reconstructs 2D images but

provides strong 3D assumptions in intermediate steps. Our work presented

in Chapter 3 and Chapter 4 are based on such an architecture. Tewari et

al. [6] firstly propose this work (named MoFA), which uses a fixed model-

based decoder that differentiably produces a 2D image given the latent code.

This work has been adopted and extended by many other works [31, 32].

2.1.4 Variational Autoencoder (VAE)

Numerous variations to the autoencoder architecture have been proposed

over the last few years, including Sparse Autoencoder that aims to learn

a sparse latent code [33]; Denoising Autoencoder that aims to build a reg-

ularised autoencoder for denoising purpose [34]; Contractive Autoencoder

that adds additional constraints to further improve robustness to noise and

outliers [35] and Variational Autoencoder that constrains the latent code

to follow predefined distribution such that sampling the latent code space

becomes easier [11]. In the following, we closely follow the mathematical

development from the original paper [11] and the tutorial [36]. VAE is used

in Chapter 5 as a basic deep learning pipeline for learning 3D faces and facial

expressions.

A VAE starts by assuming the observed data X to be generated by an

unobserved random variable z. Given that we are interested in learning the
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likelihood of the observed data p (X), we can rearrange the term as:

p (X) =

∫
p (X, z) dz (2.6)

=

∫
p (X | z) p (z) dz. (2.7)

Following the autoencoder design presented earlier, we use a neural network

decoder to approximate the conditional probability distribution, as:

p (X | z,θ) , (2.8)

where θ are the weights of the decoder neural network, and this forward

calculation of the neural network is denoted as pθ to avoid notational clutter.

As for the design of the latent code z, each latent variable is desired to be

independent of each other to better represent each factor that generates the

observed data X. A VAE [11] proposes to solve this issue by assuming the

latent code’s prior as a unit isotropic Gaussian distribution:

p (z) = N (0, I) , (2.9)

where I is an identity matrix. Given Eq. (2.7), our goal for the decoder to

learn optimal weights θ∗ can then be arranged in the Maximum-a-posteriori

(MAP) fashion as:

θ∗ = argmax
θ

∫
pθ (X | z) p (z) dz. (2.10)

Then, the difficulty left for this learning model is that analytically calcu-

lating the integral term is not practically feasible. Given the intuition that

p (X | z) is nearly zero for most of the z since X has a very high dimen-



2.1 Autoencoders 29

sion. VAE [11] proposes to learn another distribution qϕ (z | X) with neural

network of weights ϕ to approximate a z given every observed data sam-

ple. Ideally, the distribution qϕ can approximate the intractable posterior

distribution p (z | X) given high-capacity qϕ. We denote this distribution as

encoder. Given the encoder distribution, we can now calculate the expecta-

tion of the log-likelihood of the decoder distribution Ez∼qϕ [log pθ (X | z)].

Finally, as a cornerstone of the VAE, relating the expectation term and

the data log-likelihood log p (X) bypasses the calculation of the intractable

integral term and enables an end-to-end trainable model by backpropagation.

Start with the log-likelihood of the data distribution:

log p (X) = Ez∼qϕ(z|X) [log p (X)] (p (X) does not depend on z) (2.11)

= Ez

[
log

pθ (X | z) p (z)
p (z | X)

]
(2.12)

= Ez

[
log

(
pθ (X | z) p (z)

p (z | X)

qϕ (z | X)

qϕ (z | X)

)]
(2.13)

= Ez

[
log pθ (X | z) + log

p (z)

qϕ (z | X)
+ log

qϕ (z | X)

p (z | X)

]
(2.14)

= Ez

[
log pθ (X | z)− log

qϕ (z | X)

p (z)
+ log

qϕ (z | X)

p (z | X)

]
(2.15)

= Ez [log pθ (X | z)]− Ez

[
log

qϕ (z | X)

p (z)

]
+ Ez

[
log

qϕ (z | X)

p (z | X)

]
(2.16)

= Ez [log pθ (X | z)]−KL (qϕ (z | X) ∥ p (z))

+ KL (qϕ (z | X) ∥ p (z | X)) , (2.17)

where KL (P (y) ∥ Q (y)) is the Kullback–Leibler (KL) divergence between

distributions P and Q, defined as:

KL (P (y) ∥ Q (y)) = Ey∼P

[
log

P (y)

Q (y)

]
. (2.18)
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After the above derivations, it ends up in three terms, and the data log-

likelihood log p (X) is related to the expectation Ez∼qϕ [log pθ (X | z)]. Our

objective is then:

θ∗,ϕ∗ = argmax
θ,ϕ

log p (X) . (2.19)

However, there is still an intractable distribution p (z | X) in the equation.

Since all KL divergences are greater than or equal to zero, we eliminate the

second KL divergence term that contains the intractable distribution, and

optimise a lower bound for the data log-likelihood instead. However, in the

ideal situation that the encoder distribution qϕ is close enough to the true

posterior p (z | X), the second KL divergence term is nearly zero, we are

effectively optimising the data log-likelihood directly again. The remaining

two terms can be further interpreted. The expectation term Ez [log pθ (X | z)]

can be seen as the reconstruction objective as it maximises the likelihood of

the generated data. The KL term KL (qϕ (z | X) ∥ p (z)) makes the encoder

distribution similar to its prior.

To fit the above objective in the neural network training context, several

amendments have to be applied. Firstly, most of the modern deep networks

are trained using the backpropagation algorithm, which implies that the

whole forward process has to be differentiable. Our encoder network produces

a probability distribution of the latent code z instead of the latent code

directly. Thus, the reparameterisation trick [11, 37] is applied to get z in a

differentiable manner. The Gaussian distribution version is demonstrated.

Let z ∼ qϕ (z | X) = N (µ,σ2),

z = µ+ σϵ, where ϵ ∼ N (0, I) . (2.20)

Secondly, most deep networks are trained with gradient descent, which



2.1 Autoencoders 31

implies the goal has to be a loss function to be minimised. We can then

derive the Evidence Lower Bound (ELBO) function:

ELBO = −Ez [log pθ (X | z)] + KL (qϕ (z | X) ∥ p (z)) . (2.21)

Thirdly, the commonly used training scheme, minibatch gradient descent,

allows a small subset of the data to be trained on each pass. That implies

inefficiency in calculating the full expectation term. Thus, the current data

and corresponding z are used to estimate the expectation term. It can then

be simplified to log pθ (X | z). This is reasonable since minibatch sampling is

applied already. In practice, this term is further simplified to a deterministic

version, i.e. predict X̂ directly. Then the commonly used loss functions by

deep learning, e.g. L1 loss, mean squared error loss, can be directly used.

The KL term remains unmodified.

2.1.5 Disentangled VAE

As a specialisation of the variational autoencoder, the disentangled VAE aims

to learn a more structured and more concise latent code, such that each latent

variable aims to represents a distinctive feature of both the input data and the

generated data. We formally define the terminology disentanglement first,

then introduce a number of important papers in this field and finally layout

the mathematical background for the disentangled VAE. A basic assumption

made by all the disentangled VAEs introduced in this section is that no

labels related to each factor are provided, thus the learning completes in an

unsupervised manner.

With the purpose of learning a better representation, disentanglement is

defined as a desired property for each learned latent unit to represent the vari-
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ance of a single generative factor and be irrelevant to other latent units [38].

The research on disentangled autoencoders can be dated back to 1992 by

Schmidhuber [39]. Lots of recent works focus on learning a disentangled rep-

resentation too. For example, Desjardins et al. [40] propose to use a variant

of a Boltzmann machine for disentanglement. Makhzani et al. propose an

adversarial autoencoder [41] and a PixelGAN autoencoder [42], both target

at learning a disentangled latent representation via focusing on more about

the relation between the representation and the generated data. In the mean-

time, due to the increasing popularity of the Generative Adversarial Network

(GAN), some disentanglement works focus on building a disentangled gener-

ative model via GAN [43, 44]. Some ideas that are applied to GANs are also

applicable to VAEs since they are two related approaches to the generative

model.

To expand more on disentanglement in the context of the VAE, we start

from a simple yet very effective method, β-VAE [45], followed by some further

works that are inspired by this paper and aim at building a better objective

function by decomposition of the original weighted ELBO loss [9, 46]. The

weighted ELBO introduced by the β-VAE method is shown as follows:

β-VAE-ELBO = −Ez [log pθ (X | z)] + βKL (qϕ (z | X) ∥ p (z)) , (2.22)

where the hyperparameter β is a factor multiplied by the KL loss function

and balances the trade-off between latent code disentanglement with recon-

struction quality and latent code capacity. In the β-VAE context, β is always

set to a real number that is greater than 1 to add importance to the KL term

during the network training process. This will result in a better disentangled

latent code and compromised reconstruction accuracy. Further works aim

to ameliorate the trade-off by decomposition of the KL loss function and
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applying weights on individual decomposed terms to achieve the same dis-

entanglement quality with less compromising on reconstruction quality. The

authors of β-VAE argue that the added scalar β is a Lagrangian multiplier

that is under the KKT condition [47, 48]. They also show that the KL loss

term encourages more conditional independence in the encoder conditional

distribution qϕ (z | X). Jointly with the reconstruction loss, applying a β

that is greater than one can lead to a more efficient representation. Given

the assumption that the objects are generated given some factors that have

a lower dimension than the latent code, the authors hypothesised that the

representation learned under such a setting has a better quality of disentan-

glement.

Based on the analysis made by β-VAE, two further works aim to de-

compose the KL term and encourage the method to have more conditional

independence in the encoder distribution solely [9, 46]. Kim and Mnih [9]

propose the FactorVAE to optimise a latent code independence directly, and

Chen et al. [46] propose the β-TCVAE to decompose the KL loss into three

terms to apply weights individually. They also decompose the KL loss in two

different ways. Both are illustrated in this section.

FactorVAE decomposes the KL loss into two terms: i) the mutual infor-

mation between the input data and the latent code, and ii) the KL divergence

between the latent code distribution and its prior distribution. The detailed

decomposition [42] of the expectation of the KL term w.r.t. observed data
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distribution is shown as follows:

Epdata(x) [KL (qϕ (z | X) ∥ p (z))] (2.23)

= Epdata(x)

[
Eqϕ(z|X)

[
log

qϕ (z | X)

p (z)

]]
by definition

(2.24)

= Epdata(x)

[
Eqϕ(z|X)

[
log

qϕ (z | X)

qϕ (z)

qϕ (z)

p (z)

]]
(2.25)

= Epdata(x)

[
Eqϕ(z|X)

[
log

qϕ (z | X)

qϕ (z)
+ log

qϕ (z)

p (z)

]]
(2.26)

= Epdata(x) [KL (qϕ (z | X) ∥ qϕ (z))] +

Epdata(x)

[
Eqϕ(z)

[
log

qϕ (z)

p (z)

]]
(2.27)

= Iqϕ (X; z) + Epdata(x)

[
Eqϕ(z)

[
log

qϕ (z)

p (z)

]]
(2.28)

= Iqϕ (X; z) + Eqϕ(z,X)

[
log

qϕ (z)

p (z)

]
(2.29)

= Iqϕ (X; z) + Eqϕ(z)

[
qϕ (z)

p (z)

]
(2.30)

= Iqϕ (X; z) + KL (qϕ (z) ∥ p (z)) . (2.31)

With this decomposition, the expectation of the KL term over all the ob-

served data is then divided into two terms: the mutual information term

and the KL term. Mutual information can be interpreted as the common

information contained in both random variables. The term in this equation

represents the common information between observed data distribution and

the latent code distribution predicted by the encoder network. The second

term represents the KL divergence between the aggregated posterior distribu-

tion of the encoder and the predefined latent code prior. The term aggregated

posterior distribution is defined as in [41]. After this is incorporated into the

loss function, the first term penalises the amount of information contained
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in the latent code about the observed data, therefore worsening the recon-

struction quality if too much weight is put on this term [42]. Meanwhile,

the second term pushes the encoder distribution towards factor distribution.

This makes the individual latent code independent of each other, thus achiev-

ing disentanglement [9]. However, in β-VAE, the added weighting β penalises

both terms at the same time. Thus, Kim and Mnih [9] propose to penalise the

second term solely by adding an additional loss function to the original KL

loss function. Since the calculation of the aggregated posterior distribution

of the encoder qϕ (z) requires going through the whole dataset and is practi-

cally inapplicable, the authors use the density ratio trick [49, 50] to mitigate

this issue. This algorithm trains a classifier/discriminator neural network D

to learn the distribution over the training time of the main VAE. The added

loss function component directly predicts a loss of the total correlation of

individual latent code as:

TC (z) = KL (qϕ (z) ∥ q̄ϕ (z)) (2.32)

= Eqϕ(z)

[
qϕ (z)

q̄ϕ (z)

]
(2.33)

≈ Eqϕ(z)

[
log

D (z)

1−D (z)

]
, (2.34)

where the discriminator network D is trained to predict whether the input

latent code is a sample from qϕ rather than q̄ϕ.

There are some disputes about whether penalising the mutual information

term is helpful for the overall disentanglement since it can encourage learning

a more concise latent code [43, 46, 51]. We find that penalising the term can

lead to a more concise latent code and is especially useful under the situation

where multiple observations are mapped to a single latent code [51]. Details

are in Chapter 5.
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The other work, β-TCVAE [46] decomposes the KL term in a different

way, where three terms are decomposed as i) index-code mutual information;

ii) total correlation, and iii) dimension-wise KL. Authors additionally assume

that an integer n ∈ {1 · · ·N} is randomly assigned to each observed data

point from N total observations. Further on that, the authors define that:

qϕ (z | n) = qϕ (z | Xn) (2.35)

qϕ (z, n) = qϕ (z | n) p (n) (2.36)

=
1

N
qϕ (z | n) . (2.37)

The decomposition of the expectation of the KL term w.r.t. data distri-

bution from the ELBO loss function is then shown as follows:

Ep(n) [KL (qϕ (z | X) ∥ p (z))] (2.38)

=Ep(n)

[
Eqϕ(z|n)

[
log

qϕ (z | n)
p (z)

]]
(2.39)

=Eqϕ(z,n)

[
log qϕ (z | n)− log p (z) + log

qϕ (z)

qϕ (z)
+ log

∏
j

qϕ (zj)− log
∏
j

qϕ (zj)

]
(2.40)

=Eqϕ(z,n)

[
log

qϕ (z | n)
qϕ (z)

]
+ Eqϕ(z)

[
log

qϕ (z)∏
j qϕ (zj)

]
+ Eqϕ(z)

[∑
j

log
qϕ (zj)

p (zj)

]
(2.41)

=Eqϕ(z,n)

[
log

qϕ (z, n)

qϕ (z) p (n)

]
+ Eqϕ(z)

[
log

qϕ (z)∏
j qϕ (zj)

]
+ Eqϕ(z)

[∑
j

log
qϕ (zj)

p (zj)

]
(2.42)

=Iqϕ (z;n) + KL(qϕ (z) ∥
∏
j

qϕ (zj)) +
∑
j

KL (qϕ (zj) ∥ p (zj)) . (2.43)

The first mutual information term Iqϕ is identical to the mutual information
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term in Eq. (2.31), which represents how much data information is stored

in the latent code. The first KL term is the same as the added loss func-

tion in FactorVAE in Eq. (2.32), which is a total correlation term. Both

FactorVAE and β-TCVAE argue that putting more weights on this term en-

courages independence among each variable of the latent code thus is more

effective in achieving disentanglement. The second KL term is a dimension-

wise KL which sums the KL divergence between each latent variable and its

factor prior. This loss prevents individual latent variables’ distributions from

diverging away from the assumed prior distributions.

The β-TCVAE also has one difficulty of calculating the aggregated poste-

rior distribution qϕ(z). A recent work takes another approach to calculate this

term, namely Minibatch-Weighted Sampling [46]. Let BM = {n1, · · · , nM}

be a size-M minibatch. Then p(BM) = (1/N)M . Denoting r(XM | n) as

the probability of a minibatch sample that given a datapoint n, the rest

are sampled from p(n). The method aims to obtain the expectation of the

aggregated posterior distribution by:

Eqϕ(z) [log qϕ (z)] (2.44)

=Eqϕ(z,n)

[
logEn′∼p(n) [qϕ (qϕ (z | n′))]

]
(2.45)

=Eqϕ(z,n)

[
logEp(BM )

[
1

M

M∑
m=1

qϕ (z | nm)

]]
(2.46)

≥Eqϕ(z)

[
logEr(BM |n)

[
p (BM)

r (BM | n)
1

M

M∑
m=1

qϕ (z|nm)

]]
(2.47)

=Eqϕ(z)

[
logEr(BM |n)

[
1

NM

M∑
m=1

qϕ (z | nm)

]]
(2.48)

=
1

M

M∑
i=1

[
log

M∑
j=1

qϕ (z (ni) | nj)− log (NM)

]
. (2.49)
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With this sampling-based estimator, all three terms can be calculated indi-

vidually.

To sum up the relations between the two disentangled VAEs, both of

them decompose the KL loss function into smaller pieces and weigh them

differently. Both put a great emphasis on the total correlation term and argue

that the term is the key to disentanglement. Our work in Chapter 5 is inspired

by this decomposition and uses the mutual information term between the

input and the latent code as an additional regulariser in order to disentangle

face identity and facial expression. We also use the minibatch weighted

sampling technique to estimate our regulariser.

2.1.6 VAE Information-based Methods

There are a number of works that implement information-theoretic ideas into

their VAE-based architecture; for example, the Variational Information Bot-

tleneck (VIB) proposed by Alemi et al. [52]. Starting from the information

bottleneck idea firstly proposed by Tishby et al. [53], Alemi et al. propose to

optimise the information bottleneck using deep neural networks. This results

in a similar autoencoder architecture to the VAE.

The information bottleneck, an idea that has lots of connections with

VAE, has an objective function formulated as follows:

JIB = argmin
p(z|X)

(I (X | z)− βI (z | X)) , (2.50)

where the first and the second mutual information term aim to achieve

better accuracy and better compression respectively. The scalar β is a La-

grangian multiplier that balances the two mutual information term. Minimis-

ing them jointly aims to find the perfect balance of accuracy and compression
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for the model that estimates p (z | X).

One of the main terms in information theory related to VAEs is the

mutual information between the input and the latent code. However, ana-

lytically calculating this term requires a forward pass of the encoder network

on the entire dataset for every backpropagation. This is undesirable since it

can increase the training time prohibitively. InfoGAN [43] uses Monte Carlo

simulation to estimate a lower bound for the mutual information term di-

rectly. Kim et al. [9] and Zhang et al. [54] use the density ratio trick [49, 50]

by introducing a discriminator. InfoVAE [55] obtains unbiased samples of

the latent code by running a forward pass of decoder and encoder [56], and

proposes to use other divergences such as the Jensen-Shannon divergence.

In our work, we use Minibatch Weighted Sampling (MWS), used in beta-

TCVAE [46], to obtain a direct estimate of the aggregated prior without

additional hyper-parameters or networks.

2.2 3D Morphable Model (3DMM)

The 3D Morphable Model (3DMM) was firstly proposed by Blanz and Vet-

ter [12] to build a statistical model for 200 registered 3D face meshes and

their textures. The idea of a linear 3DMM that is built with Principal Com-

ponent Analysis (PCA) will be discussed in this section. A review of the face

and eye 3DMMs (e.g. multilinear 3DMM [57]) will be discussed at the end

of the section.

The idea of the 3DMM is to use significantly fewer parameters to represent

the variation in human faces. The initial approach uses a PCA to perform

dimension reduction on the registered 3D face vertices where all vertices of

two 3D faces are paired. The reconstruction is then the inverse transform
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process of the PCA. Let S ∈ R3N×1 be the 3D face point cloud with N

vertices, and T ∈ R3N×1 be the colour for each vertex in S. Denote the

mean of the vertices and the colours as S̄ and T̄. The original paper presents

the reconstruction as:

S = S̄+Usαs (2.51)

T = T̄+Utαt, (2.52)

where αs ∈ RMs×1 and αt ∈ RMt×1 are Ms and Mt parameters for shape and

texture respectively. Also, Us ∈ R3N×M and Ut ∈ R3N×M are the learned

principal components generated by the PCA algorithm.

2.2.1 Face and Eyes 3D Morphable Model (3DMM)

Face 3DMMs were introduced more than two decades ago by Blanz and

Vetter [12] and perhaps is the most widely employed technique in recent sta-

tistical 3D face modelling applications. Such 3DMMs model a linear or non-

linear 3D facial space using a latent representation that can be constructed

in a number of different ways. Examples include PCA [3, 58, 59, 60, 61],

dictionary learning [62], wavelet decomposition [63], Gaussian mixture mod-

els [64] and neural nets [31]. Apart from general face 3DMMs, there are

several approaches that bring more focus to eyeball modelling. Bérard et

al. were the first to build a parametric model of eyeballs. The quality of this

eye model is high, but the reconstruction process is semi-automatic. Wood

et al. [65, 66] attempt to build an eye-region model of the single eye and

use model fitting to estimate gaze. Ploumpis et al. [61] propose a method

for building a complete head morphable model that includes eyeballs. The

eye-region modelling is similar to the approach of Wood et al. and is blended
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into the head model.

Amongst the publicly-available 3DMMs, we choose the FLAME [3] model

to build our eye-region model since it has both eyeballs and can form a

minimal eye-region model for both eyes. It is PCA-based, and it reconstructs

faces via linear combinations. Thus, it does not require additional training

and is both fast and stable in the training process. We use a masked FLAME

3DMM to form the model-based decoder to reconstruct 3D eye-region meshes.

2.3 End-to-end 3D Human-related Object Re-

construction

2.3.1 2D-to-2D Face Reconstruction

Numerous reconstruction methods have been proposed, and they generally

fall into three categories: generative, regression and generative-regression

hybrid. Generative methods focus on generating a 3D model to fit the target

data [67, 68, 69, 70, 71]. The approaches proposed by Wood et al. [65]

and Ploumpis et al. [61] both fall into this category. Regression methods,

recently popular due to deep learning advances, focus on regressing the model

parameters directly via deep networks [72, 73, 74, 75, 76, 77]. The third

category was firstly proposed by Tewari et al. [6], and adopted by many other

works [31, 21, 78, 32]. This approach usually trains a joint autoencoder model

that encodes the model parameters via the regression method, decodes the

regressed model parameters, and reconstructs the original input. Finally, the

reconstructed output is compared with the input data to form an autoencoder

end-to-end learning model. Specifically, if the input data are in the format

of an image, a differentiable renderer is employed to render images from the
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reconstructed 3D meshes while maintaining an end-to-end trainable network.

All of the mentioned face autoencoders focus on full-face reconstruction and

use only a mesh surface to model the eyeball, and the appearance of different

gaze directions is not present or modelled via texture.

2.3.2 In-the-wild Ear Image Dataset

Numerous in-the-wild ear image datasets are built for various purposes. Here

we focus on Collection A from the In-the-wild Ear Database (ITWE-A) since

it has 55 manually-marked landmarks. All the landmarks have semantic

meaning, as shown in Figure 3.1 (1). This dataset contains 500 images in its

training set and 105 images in its test set, where each image is captured in the

wild and contains a clear ear. The dataset has a large variation in-ear colours,

as is the nature of in-the-wild images, and it even contains several grayscale

images. Traditional 3DMM colour models, such as that of the Basel Face

Model 09 (BFM09) [12], often fail to generate a highly-similar appearance

to the input. However, the in-the-wild ear colour model proposed here can

cover such colour variance since it models directly from the in-the-wild images

themselves.

2.3.3 Parametric Ear Models

An Active Appearance Model (AAM), a parametric ear model built by Zhou

and Zaferiou, is a linear model that aims to model the 2D ear’s shape and

colour simultaneously [79]. A 3D Morphable Model (3DMM) is a closely-

related model that models objects’ shapes and colours in 3D instead of 2D.

Blanz and Vetter first propose a 3D Morphable Model (3DMM) for human

faces [12], which builds a linear system that allows different 3D face meshes

to be described by 199 shape parameters. Similarly, Dai et al. [80] propose a
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3D morphable model for the human ear named the York Ear Model (YEM),

also based on a linear system but with 499 parameters. Here, we utilise

this ear 3DMM for its strong 3D ear shape prior. Meanwhile, the reduced

dimension of the parameters allows the neural network to perform a much

easier regression task using 499 shape parameters rather than 21333 raw

vertex parameters.

2.3.4 2D Ear Detection

Ear detection or localisation in 2D images is a task to find the region of

interest bounding the ear from images of the human head that contain ears,

for example, profile-view portraits. It is a vital preprocessing step in the 3D

ear reconstruction pipeline. Object detection has been studied for decades,

and there exists a number of algorithms that specifically perform the 2D ear

detection task. Zhou and Zaferiou [1] use the histogram of oriented gradients

with a support vector machine (HoG+SVM) to predict a rectangular region

of interest. Emeršič et al. [81] and Bizjak et al. [82] propose deep learn-

ing methods to tackle the 2D ear detection task by predicting a pixel-level

segmentation of the 2D ear image directly.

2.3.5 2D Ear Landmark Localisation

2D ear landmark localisation aims to find specific key points on 2D ear im-

ages. It is an intuitive method of quantitative evaluation of this work where

the shape and alignment of the reconstructed 3D ear mesh can be evaluated

precisely. In 2D face landmark localisation, numerous approaches obtain

2D landmarks by reconstructing 3D models first [83, 84, 85]. Being able to

achieve competitive results against a specialised 2D landmark predictor is

necessary for the success of a 3D dense ear reconstruction algorithm. Zhou
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and Zaferiou’s approach comes with the ITWE-A dataset and is considered

as a baseline. They use Scale Invariant Feature Transform (SIFT) features

and an AAM model to predict 2D landmarks [1]. Hansley and Segundo [86]

propose a CNN-based approach to regress 2D landmarks directly, and they

also evaluate the ITWE-A dataset. Their approach proposes two CNNs that

both predict the same set of landmarks but with different strengths. The first

CNN has a better generalisation ability for different ear poses. The resulting

landmarks of the first CNN are used to normalise the ear image. The second

CNN predicts improved normalised ear images based on the results of the

first CNN.

2.3.6 3D-to-3D Face Reconstruction

A 3D-to-3D autoencoder based method means that it uses an encoder to

extract the latent representation from the input 3D face and a decoder to

reconstruct the original input 3D face. Most current 3D face datasets use

3D meshes to represent their 3D face scans. A 3D mesh comprises a point

cloud and a mesh topology. Depending on whether mesh topology infor-

mation is utilised, encoder networks fall into two categories: (i) networks

that process unordered point cloud data (e.g. PointNet [16], PCT [17]), and

(ii) Graph Convolutional Networks (GCN) [87], which process sets of points

with a predefined mesh topology (i.e. meshes). Recent GCN-based meth-

ods [22, 21, 23, 24] can only train on registered single datasets, however with

PointNet, Liu et al. [88] train on combined multiple datasets with different

topologies without point correspondence, which is a significant step towards

reducing the limitations in the type of input data employed. We choose to

employ an intermediate solution, such as [89], which uses registered point

clouds only on single datasets and achieves better reconstruction and expres-
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sion disentanglement results without topology information. Noting recent

successes of transformer networks [90] in computer vision tasks [91], we use an

open-sourced approach that applies this architecture to point cloud data (the

Point Cloud Transformer (PCT) [17]) as our encoder for the work presented

in Chapter 5. The advantage of avoiding using the topology information is

that it allows more flexibility in the form of the input data. With a topology,

all the vertices connected by the topology are required to be in certain order,

and the number of vertices has to be fixed. While using point clouds as input

data, those constrains exist no more. However, in our approach, we still use

a fixed amount of vertices and fixed order. Although the backbone network

enables processing vertices of different orders and amounts.

2.3.7 Disentangled 3D Facial Expression Modelling

3DMMs initially focus on modelling the variance over different identities of

people, e.g. Basel Face Model 2009 (BFM09) [58], but latterly have added

additional expression models to better model real faces that possibly ap-

pear with expressions. A number of works [59, 92, 21] model expression by

modelling datasets that contain faces with expression, resulting in a set of

identity-expression mixture coefficients. On the other hand, a number of

models use separate coefficients for identity and expression [93, 3, 88, 94].

However, all aforementioned methods in this subsection do not explicitly

disentangle identity and expression and the two disentangling works that are

most related to us, [95] and [54], both use the GCN (Graph Convolutional

Network, [87]) as their encoder. Note that some of the methods build separate

models for identity and expression, however they are not built to explicitly

separate identity and expression features given an input that contains a face

with facial expression.
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To achieve facial expression disentanglement, the way in which identities

and expressions are combined has to be defined. In the context of mod-

elling identity and expression in two separate sets of coefficients, Egger et

al. [96] classify the combination of identity model and expression model into

three categories: additive, multiplicative and nonlinear models. Zhang et

al. [54] use the additive assumption where expressions are represented in a

blendshape that each vertex’s coordinates can be directly added to the corre-

sponding neutral face vertex’s coordinates. Jiang et al. [95] use the nonlinear

model way that feeds both identity and expression latent code to a deep neu-

ral network and synthesises the final expression faces directly, which is the

approach that we follow in our proposed method.

Jiang et al. [95] employ two networks, one removing identity and one re-

moving expression from the input face, thus expecting the synthesised face

to be the average face. They also synthesise the original face by a fusion net-

work that combines the results from the identity remover and the expression

remover. Zhang et al. [54] achieved the previous state-of-the-art in 3D facial

expression disentanglement results prior to our work [51]. They propose to

add an objective that suggests independence between the identity latent code

and the expression latent code by utilising a discriminator similar to that of

Kim and Mnih [9].

2.4 Conclusion

In this section, we conclude the relevant literature reviewed in this chapter

and address the gaps in the current literature. In this chapter, we firstly

review the core technologies in machine learning and deep learning used in

this thesis. We cover the basic concepts and theories of the learning-based
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methods that aim to improve a model by observing the data. Then we

focused on a more specific subset of the machine learning area that focuses

on building a pipeline to learn automatically from the data without manual

annotations. Then we cover the 3D morphable model and other individual

technologies that are used in implementing the algorithms covered by this

thesis. Finally, we review the recent literature that is the most relevant to

our proposed methods.

For the end-to-end 3D reconstruction tasks using autoencoders, there has

been a debate as to whether the encoders are needed. For some generation

tasks, designing an encoder is not necessary and can require a large capac-

ity model that is potentially unimplementable in practice. DeepSDF [30]

addresses this issue by proposing an encoder-less auto-decoder architecture.

Generative Adversarial Networks (GANs) [56] propose to use a discriminator

network instead of the encoder to train the generator/decoder. For example,

for the face generation task, an enormous number of GAN-based methods

are proposed, few representatives are included [97, 98, 99, 100, 101, 102].

For generating realistic samples, there are gaps between current methods,

too. For generating 3D data like point clouds, a multilayer perceptron-based

decoder is sufficient for reasonable scales of the data. However, for generating

2D data like images, there is a trade-off between using a model-based decoder

to explicitly model the 2D image generation process and using GANs to gen-

erate implicitly and directly. While a GAN is able to generate photo-realistic

photos directly, it loses the advantages of the model-based decoders where

more controls are obtained over properties such as rendering properties. A

model-based decoder can explicitly vary semantically meaningful properties,

such as lighting directions, face poses, texture materials and more. How-

ever, model-based decoders generate images that are less realistic compared
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to those generated by GANs. We address the control issue in Chapter 5 by

disentangling the implicit method’s parameters.

Similar to the realistic 2D image generation, the gap between model-based

methods and implicit methods has been addressed more and more in recent

years. Model-based methods have the advantage of possessing manageable

and explainable properties. However, under most circumstances, they fail

to compete with the implicit methods implemented with deep learning tech-

nologies in terms of the prediction accuracy of specific tasks. We address this

trade-off in Chapter 4 and attempt to build a hybrid method that has both

advantages.
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3
Human Ear Reconstruction Autoencoder

3.1 Introduction

In recent years, 3D face modelling and 3D face reconstruction from monoc-

ular images have drawn increasing attention. Especially with deep learning

methods, 3D face reconstruction models are empowered to have more com-

plexity and better feature extraction ability. However, as an important part

of the human head, the human ear has received significantly less attention.

Our 3D ear reconstruction approach establishes a dense correspondence be-

tween 2D ear input image pixels and 3D vertices of a 3D Morphable Model

(3DMM) of the ear, thus enabling both 2D and 3D ear landmark localisation.

Furthermore, 3D ear recognition is enabled [1, 103, 104] using the 3D shape

encoding provided by the fitted 3DMM. In addition, we perform extensive

experiments on the Headspace dataset [105, 106] by utilising our Human Ear

Reconstruction Autoencoder, or HERA (pronounced ‘hearer’) system, as an

initialisation to a 3D model fitting problem.

A detailed 3D ear reconstruction can be crucial to building a high-quality

3D model of the human head [107, 10, 61, 106]. In this context, it is desir-

able to model the ears as separate entities and then fuse them to the head.

The reason is that it is difficult to control the spatially high-frequency as-

pects of the ear (such as the skin folds) with parameters that simultaneously
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control the whole head shape in a global optimisation. Such a 3DMM head

fitting optimisation is better at capturing the low-frequency shape varia-

tions (i.e. relatively large components with relatively small local variations,

e.g. face shape and cranial shape) across an aligned dataset of some shape

class.

A number of applications are possible with the detailed ear shape mod-

elled by a fitted ear 3DMM. This includes the design of ear wear (headphones,

earphones, hearing aids), eye wear (since eye wear frames usually require ear

support) and other head wear used in virtual and augmented reality appli-

cations.

(a) (b) (c)

Figure 3.1. (a) 55 landmarks and their semantics from ITWE-A dataset [1] (b)
Rendered densely corresponded coloured 3D ear mesh projected onto the original
image (c) Original image marked with predicted landmarks.

Most modern approaches for 3D face or 3D ear reconstruction from monoc-

ular images fall into three categories: generation based, regression based and

the combination of both [6]. Generation-based methods require a parametric

model for the 3D object and 3D landmarks to optimise a set of parameters

for optimal alignment between projected 3D models and 2D landmarks. For

3D ear reconstructions, two approaches can be found in literature [80, 1].

Both are traditional generation-based methods that utilises model-fitting or
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Active Appearance Model (AAM) to fit either a 3D or a 2D ear model to the

ear images to localise 55 ear landmarks. Regression-based methods usually

utilise neural networks to regress a parametric model’s parameters directly, as

proposed by [108, 109] for 3D face reconstruction. Generation-based methods

are often more computationally costly, due to their non-convex optimisation

criteria and the requirement for landmarks. Regression-based methods re-

quire ground truth parameters to be provided, which is only accessible when

using synthetic data [108]. Otherwise other 3D reconstruction algorithms

are required to obtain ground truth parameters beforehand [83]. There-

fore, Tewari et al. proposed an unsupervised 3D face reconstruction method

named Model-based Face Autoencoder (MoFA) that combines both gener-

ation and regression based methods. This aims to mitigate the negative

aspects of the two categories of method, by using an autoencoder composed

of a regression-based encoder and a generation-based decoder [6]. However,

there are no regression-based or autoencoder structured approaches for 3D

ear reconstruction in the literature. Whether this unsupervised autoencoder

approach can tackle the complexity of the ear structure remains an open

question that we address here.

The core idea of the unsupervised learning approach is to synthesise simi-

lar colour images from original colour input images in a differentiable manner.

For such an approach, a parametric ear model is needed. Dai et al. propose a

3D Morphable Model (3DMM) of the ear, named the York Ear Model (YEM,

[80, 10]). Its 3D ear mesh has 7111 vertex coordinates, so 21333 vertex pa-

rameters, reduced to 499 shape parameters using PCA. However, to enable

unsupervised learning, the 3D ear meshes require colour/texture, which is

not included in the YEM model. Furthermore, we perform 3D model fitting

of the ear model to the raw 3D head scans to enable further understanding of
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such a small portion of the overall 3D head mesh. Such 3D model fitting is a

challenging task since a small model is fitted to a large object. However, we

mitigate this problem by employing the HERA system to provide a strong

initialisation of the ear model, thereby making the whole model fitting both

more robust and efficient.

In this context, we present a Human Ear Reconstruction Autoencoder

(HERA) system, with the following contributions:

• A 3D ear reconstruction method that is trained in a completely end-

to-end way, using in-the-wild monocular colour 2D images of the ear,

and can potentially be trained unsupervised.

• An in-the-wild ear color model that colors the 3D ear mesh to minimise

its difference from the associated 2D ear image in appearance.

• Evaluations that demonstrate that our proposed model is able to pre-

dict a colored 3D ear mesh in dense correspondence with other fitted

models e.g. Fig. 3.1 (b), and 2D landmarks e.g. Fig. 3.1 (c).

• A set of 55 3D ear landmarks for the 3D head meshes in the Headspace

dataset [106], which is generated by fitting the HERA-initialised York

Ear Model to the raw 3D head meshes and transferring landmarks from

the YEM model to the Headspace data. This has great utility when

fitting full head models to Headspace data.

3.2 The HERA system

Our HERA system (Human Ear Reconstruction Autoencoder) employs an

autoencoder structure that takes right ear images as input and generates

synthetic images. Where left ears are mirrored to right ears in the first stage
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Figure 3.2. Overview of the HERA autoencoder architecture. The encoder is
the ResNet-18 CNN predicting intermediate code vectors that are then fed to the
decoder. The decoder is comprised of: (1) the YEM ear shape model and our in-
the-wild ear colour model; (2) PyTorch3D [2] that renders images with ear shapes
and colours in a differentiable way. We use a photometric (pixel) loss with an
optional additional landmark loss for faster convergence and better accuracy.

of preprocessing. The autoencoder is trained by minimising the difference

between input images and the final synthesised images. An illustration of

our end-to-end architecture is shown in Fig. 3.2. The encoder is a CNN

predicting intermediate code vectors that are then fed to the decoder, where

coloured 3D ear meshes are reconstructed and rendered into 2D images. The

decoder is comprised of: (i) the YEM ear shape model and our in-the-wild

ear colour model that reconstructs ear shapes and ear colors respectively;

(ii) PyTorch3D [2] that renders images with ear shapes and colours in a

differentiable way. The comparison of the input and synthesised images is

implemented by a combination of loss functions and regularisers. The essen-

tial loss function is a photometric loss where mean square error is calculated

for every pair of corresponded pixels from both input images and synthesised

images, with an additional landmark loss that can be included for both faster

convergence time and better accuracy. The whole autoencoder structure is

designed to be differentiable, so it can be trained in an end-to-end manner.

Each part of the architecture (i.e. encoder CNN, ear 3DMM, scaled orthog-
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onal projection and loss functions) is differentiable by default, thereby using

a differentiable renderer to render 3D meshes with textures to 2D images for

making the whole architecture differentiable. The core part of the decoder is

described in Section 3.2.1. The whole end-to-end trainable architecture and

the necessary training methods are then described in Section 3.2.5.

3.2.1 3D Morphable Model of the Ear

The decoder comprises an ear shape model derived from the York Ear Model

(YEM), an ear colour model, and a 3D-to-2D projection model. The YEM

shape parameters αs can be reconstructed to an 3D ear vertex coordinate

vector S ∈ RN×3 where N is the number of vertices in a single 3D ear mesh.

The colour parameters αc are then reconstructed to a vertex colour vector

C ∈ RN×3 to colour each vertex. The pose parameters p are used in the pro-

jection model that aligns 3D ear meshes with 2D ears’ pixels. Note that we

assume the shape and the in-the-wild colour are independent, thus the shape

and the colour models are built separately. Even they have potential correla-

tions, the two separate models can still capture the correlations individually

and does not affect the correctness of the finally synthesised images.

Ear Shape Model

For the ear geometric information modelling, we employ the YEM model [80]

to perform reconstruction. It is constructed from 500 3D ear meshes and

thus provides a strong statistical prior. The 3D ear vertex coordinate vector

(i.e. 3D ear shape) S is reconstructed from shape parameter vector βS by:

S = Ŝ (βs) = vec−1(S̄+Usβs), (3.1)
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where S̄ ∈ R3N is the mean ear shape, Us ∈ R3N×499 are the principal

components of ear shape variation and the resulting 3N -vector is reshaped

into aN×3 matrix by the operator vec−1(.) such that each row of S represents

a vertex coordinate in 3D space.

The 3D-to-2D projection model that we used is the Scaled Orthogonal

Projection (SOP ). Note that we make this SOP assumption because no

camera parameters are available to the in-the-wild ear images, and most ears

in the dataset images are relatively far from the camera, further minimise the

effect of using the scaled orthogonal projection against the full perspective

projection. Given the 3D ear shape S from Eq. (3.1) and similarity trans-

form parameters p = (r,T, f)T comprising rotation, translation and scale

respectively, this projection function, V, is defined as:

V = V̂ (S,p) = fPoR̂ (r)S+T, Po =

1 0 0

0 1 0

 (3.2)

where V ∈ RN×2 are the projected 2D ear vertices, Po is the orthogonal

projection matrix and R̂(r) is a function that returns the rotation matrix

from r ∈ R3, axis rotation angles in x, y and z axis respectively (i.e. az-

imuth, elevation and roll). Since scaled-orthogonal projection is used, V

provides sufficient geometric information for the differentiable renderer and

no additional camera parameters are needed.

In addition, 2D landmarks can be extracted from the projected vertices

V by manually selecting 55 semantically corresponding vertices. Thus we

can define a vector of 2D landmarks of a projected ear shape V as:

Xi = V (L) , (3.3)
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where Xi ∈ R55×2 are the landmark’s image coordinates indexed by L in the

projected ear vertices V.

In-the-wild Ear Colour Model

The decoder in our architecture requires the 3D ear meshes to be coloured to

generate plausible synthetic ear images. However, the YEM model contains

an ear shape model only. To solve this problem, we build an in-the-wild ear

colour model using PCA whitening.

Firstly, for each ear image of the 500 images from the training set of the

ITWE-A dataset, a set of whitened ear shape model αs and ear pose pa-

rameters p is fitted using a non-linear optimiser (L-BFGS-B implemented

by SciPy package [15]) to minimise 2D landmark distances. Using the recon-

struction Equations 3.1 ∼ 3.3, the optimisation criterion E0 can be formed

as follows:

X̂ (αs,p) = V̂
(
Ŝ (α̂ (αs)) ,p

)
, (3.4)

E0 (αs,p,Xgt) =
1

NL

∥∥∥(X̂ (αs,p)
)
(L)−Xgt

∥∥∥
2
, (3.5)

where X̂ is the whole reconstruction and projection function and α̂ (αs) =

βs generates shape parameters from whitened parameters αs (described in

Section 3.2.3). Also, NL = 55 is a constant representing the number of

landmarks and Xgt ∈ R55×2 are the ground truth 2D landmarks provided by

the ITWE-A dataset.An illustration of the definitions of all 55 ear landmarks

can be found in Fig. 3.1 (a).

After shape fitting, the colour for each vertex is obtained by selecting

the corresponding 2D pixel colour. This process generates 500 vertex colour

vectors, which can then be used to build the in-the-wild ear colour model
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Mean Colour

Figure 3.3. The HERA in-the-wild ear colour model. The mean colour and first
5 parameters ± standard deviations (SD) are shown. The mean 3D ear mesh is
used.

using PCA whitening. The colour vector length is 40 which covers 86.6% of

the colour variation. This is set at a moderate value to allow our system to

implicitly ignore some occlusions (e.g. hair and ear piercings). The HERA

colour model is shown in Fig. 3.3.

The reconstruction of the vertex colour vector C is:

C = Ĉ (αc) = C̄+Ucαc, (3.6)

where αc ∈ R40×1 is the colour parameter vector. C̄ is average vertex colour

vector, Uc is vertex colour variance component matrix and both are calcu-

lated by the PCA whitening algorithm.
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3.2.2 Intermediate Code Vector

The intermediate code vector

v = (p,αs,αc)
T (3.7)

connects the encoder and the decoder and has semantic meaning, where

p = (r,T, f)T defines the similarity transform (pose plus scale) of the 3D

ear mesh. The vector r ∈ R3 is the azimuth, elevation and roll that maps

to the rotation matrix through the function R̂ (r) : R3 → R3×3. T ∈ R2×1

defines the translation in x-axis and y-axis. Translation in the z-axis is not

necessary, since scaled orthogonal projection is used. Note that f defines the

3D mesh’s scale and αs ∈ R40×1 are the PCA-whitened shape parameters

that will generate the shape parameters βs ∈ R499×1 employed by the YEM

3DMM. αc ∈ R40×1 are the colour parameters for our in-the-wild ear colour

model.

3.2.3 PCA Whitening

To ease the backpropagation process in training, we use PCA whitening to

transfer the YEM ear model parameters into a format that is more favourable

for deep learning frameworks. Firstly, the variances of the parameters can

differ in a very large scale from 8× 103 for the most significant parameter to

5 × 10−7 for the least important parameter. It is difficult to train a neural

network to effectively regress such large variance data. Secondly, the large

number of the parameters increases the neural networks’ training time and

is detrimental to the optimisation process. This could be mitigated by re-

moving the least important parameters. However, this may lose shape and

color information. Therefore, we perform PCA whitening [110] over the full
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set of parameters. PCA whitening aims to generate zero-mean parameters

with reduced dimensions in unit-variance. In our experiment, YEM’s origi-

nal parameters βs of 499 dimensions are transformed to αs of 40 dimensions

while covering 98.1% of the variance associated with the original parameters.

With such method, the ear shape and colour model has an equal number

of parameters. The use of PCA whitening is further justified in the abla-

tion study section that the training time is greatly reduced. Each original

parameter vector βs can be recovered from αs by:

βs = α̂ (αs) = Uwαs, (3.8)

where Uw ∈ R499×40 is a constant matrix. The original parameters’ mean is

not added since they are already zero-mean.

3.2.4 Differentiable Renderer

A differentiable renderer is used for all end-to-end 2D-to-2D pipelines in

this thesis. A renderer in the context of this thesis is a function that takes

a 3D object and various scene settings and generates a 2D image. The

scene settings can include multiple parameters such as camera parameters,

lighting parameters and surface materials [2]. The term differentiable means

the rendering process is differentiable, and the render function has gradients.

Therefore, we can put the differentiable renderer in our end-to-end model

and train all the components as a whole system. In our experiments, we

use the PyTorch3D [2] package to perform differentiable rendering and use a

weak or full perspective camera projection system with an ambient lighting

model.
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3.2.5 Ear Autoencoder

We now discuss the architecture, loss function components and data augmen-

tation employed for the end-to-end training of the HERA system. Note that

our method assumes the ear detector places the ear perfectly in the centre of

the image, thus ignore the scale and translation invariance feature. This can

be potentially added via data augmentation. The existing data augmenta-

tion only covers the variance in ear rotations. Fig. 3.2, shows our architecture

that consists of an encoder, an intermediate code vector, the decoder com-

ponents, the differentiable renderer and the loss for back-propagation. The

encoder is a pre-trained 18-layer residual network (ResNet-18) which is a

CNN that performs well on regression from image data [111]. The adoption

of the ResNet-18 is that ResNet is the most popular backbone network at the

time of experiment, and training data size is limited so the 18 layer version

is empirically more suitable than the mostly adopted 50 layer version. The

practical results show promising performance by the ResNet-18. We use Py-

Torch3D [2] as a differentiable image renderer developed using PyTorch [112].

It is a differentiable function that maps a set of vertex coordinate vector and

vertex colour vector to a 2D image. The encoder Q and decoder W can be

formed as follows:

vpred = Q (Iin,θ) , (3.9)

ST
pred,Cpred = W (vpred) , (3.10)

Ipred = R
(
ST
pred,Cpred

)
, (3.11)

Xpred = ST
pred (L) , (3.12)

where Iin is the input image and θ are the weights of the encoder network

Q. In the decoder W , the predicted 3D mesh (i.e. shape with pose ST
pred
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and colour Cpred) are reconstructed from the predicted intermediate code

vector vpred. The reconstructed 3D mesh is then fed to the differential image

renderer, R(.), to generate the rendered image Ipred. Note that L are the

indices of the 55 ear landmark vertices in the ear shape S and Xpred ∈ R55×2

are the predicted landmarks positions. The ResNet-18 encoder is initialised

using the weights from pretraining on ImageNet [113]. The trained encoder

network can be used for shape and color parameter regression.

Loss Function

We follow established loss function components for unsupervised 3D recon-

struction approaches [6] and employ a combination of four weighted losses

as:

Eloss = λpixEpix (Iin) + λlmElm (Iin,Xgt)

+ λreg1Ereg1 (Iin) + λreg2Ereg2 (Iin) , (3.13)

where λi are the weights for the losses Ei.

Pixel Loss Synthesising an output image and comparing it to the associ-

ated input images is the core idea of the autoencoder architecture. To form

such comparison, the Mean Square Error (MSE) is used on all pixels:

Epix (Iin) = LMSE (R (W (Q (Iin,θ))) , Iin) , (3.14)

where LMSE is a function that calculates the mean square error. A pixel

mask is used to compare the rendered ear region only, since the rendered ear

images have no background.
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Landmark Loss The optional landmark loss is used to speed up the train-

ing process and help the network learn to generate 3D ears with better accu-

racy. Zhou and Zaferiou [1] propose the mean normalised landmark distance

error as their shape model evaluation metric. Note that the ground truth 55

landmarks for each ear image are provided along with their paper. Here, we

employ it as a part of the loss function. It can be formed as:

Elm (Iin,Xgt) =
∥(W (Q (Iin,θ))) (L)−Xgt∥2

DN (Xgt)NL

, (3.15)

where Xgt is the ground truth landmarks and DN (Xgt) is a function that

returns the diagonal pixel length of the ground truth landmarks’ bounding

box. Since this loss is optional, setting λlm = 0 can enable the whole model

to be trained on 2D image data Iin only, making the use of very large-scale

unlabelled training data possible.

Regularisers We constrain the learning process with two weighted reg-

ularisers. The first regulariser is a statistical plausibility regulariser. This

follows the basic assumption of the PCA whitening algorithm that each pa-

rameter has zero mean, and setting the weight of the regularisers to a small

number can encourage the prediction to stay within the model space while

not over-penalise the prediction to be all zeros.

This regulariser is formed by:

Ereg1 (Iin) =
40∑
j=1

αsj +
40∑
j=1

αcj, (3.16)

where αs and αc are ear shape and colour parameters predicted by the

encoder network. Therefore, this penalises the Mahalanobis distance from

the mean shape and colour.
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An additional restriction on the scale parameter f has to be applied for

the model to be successfully trained without landmarks in practice. The

restriction is formed by:

Ereg2 (Iin) =


(0.5− f)2 if f < 0.5

(f − 1.5)2 if f > 1.5

0 otherwise

, (3.17)

Tuning the hyperparameters are non-trivial for such small dataset. We use

a cross validation set to determine an empirically working set of parameters

and use it to train the whole training set. We employ two sets of weights, λ,

depending on whether or not landmark loss is used when training.

• Training with landmarks: λpix = 10, λlm = 1, λreg1 = 5 × 10−2 and

λreg2 = 0

• Training without landmarks: λpix = 2, λlm = 0, λreg1 = 5 × 10−2 and

λreg2 = 100

Dataset Augmentation

We perform data augmentation on the ITWE-A dataset, since it contains

only 500 landmarked ear images, with limited variability of ear rotation. An

ear direction of a 2D ear image is defined by a 2D vector from one of the

ear lobe landmark points to one of the ear helix landmark points. For each

2D ear image, 12 random rotations around its central point are applied such

that the angles between their ear directions and the Y-axis of the original

image are uniformly distributed between −60◦ and 60◦. The augmented ear

image dataset contains 6, 000 images in total. With this augmentation, we

find that the test set landmark error drops significantly.
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3.3 Results

Both quantitative and qualitative evaluation results are discussed in this

section. Quantitative evaluation focuses on comparing landmark fitting ac-

curacy with different approaches, while the qualitative evaluation focuses on

evaluating the visual results of this 3D ear reconstruction algorithm. Further-

more, an ablation study is conducted to analyse the improvements that var-

ious optimisations of this work have proposed, including the PCA whitening

on the YEM model parameters, the statistical plausibility regulariser and the

dataset augmentation. The abbreviation HERA (Human Ear Reconstruction

Autoencoder) represents the final version of this work.

3.3.1 Quantitative Evaluation

The mean normalised landmark distance error proposed by [1] is the main

quantitative evaluation method we applied. It is formed in Eq. (3.15), which

also forms the landmark loss that trains our system. Projecting the 3D ear

meshes’ key points to 2D and comparing them with the ground truth can

assess the accuracy of the 3D reconstruction. There are two approaches

that predict the same set of landmarks using the same dataset in the lit-

erature, therefore comparisons can be formed. Zhou & Zaferiou’s work [1]

is considered as a baseline solution and Hansley & Segundo’s work [86] is a

specifically-designed 2D landmark localisation algorithm that has the lowest

landmark error in the literature. To interpret the landmark error, it is sug-

gested that, for an acceptable prediction of landmarks, the mean normalised

landmark distance error has to be below 0.1 [1]. This is a dimensionless met-

ric that is the ratio of the mean Euclidean pixel error to the diagonal length

of the ear bounding box. As stated in Section 3.2.5, HERA can be trained
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Table 3.1. Normalised landmark distance error statistics on ITWE-A.

Method mean ± std median ≤ 0.1 ≤ 0.06

Zhou & Zaferiou 0.0522± 0.024 0.0453 95% 78%
Hansley & Segundo 0.0393± 0.0169∗ 0.0399∗ 100% 93%
HERA 0.0398± 0.009 0.0391 100% 96.2%
HERA-W/O-AUG-LM 0.0591± 0.014 0.0567 99% 64.7%

∗ Estimated from cumulative error distribution curve.

without landmarks or data augmentation in an unsupervised manner. The

HERA version that uses no landmark loss during training and trains on the

original 500 ear images is named HERA-W/O-AUG-LM.

The HERA system is now compared with Zhou & Zaferiou’s and Hansley

& Segundo’s work regarding the normalised landmark error’s mean, standard

deviation, median and cumulative error distribution (CED) curve evaluated

on the test set of ITWE-A which contains 105 ear images. The numerical

results are shown in Tab. 3.1 and the CED curve is shown in Fig. 3.4. Addi-

tionally, the percentage of predictions that have error less than 0.1 and 0.6

are given in Tab. 3.1.

As shown in Tab. 3.1 and Fig. 3.4, HERA outperforms Zhou & Zaferiou’s

work by a large margin in terms of 2D landmark localisation task. When

compared with Hansley & Segundo’s 2D landmark localisation work, simi-

lar results are shown. This is considered acceptable when comparing a 3D

reconstruction algorithm with a 2D landmark localisation algorithm. Hans-

ley & Segundo’s landmark localiser is comprised of two specifically designed

CNNs for landmark regressions while HERA uses only one CNN to regress

a richer set of information (i.e. pose, 3D model parameters and colour pa-

rameters). Regarding the threshold of 0.1 proposed by [1], both HERA and

Hansley & Segundo’s work are 100% below 0.1, and HERA trained without
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Figure 3.4. Cumulative error distribution curve comparison among different land-
mark detection algorithms and our work

landmarks achieves 99% below 0.1. The CED curves show that, although

HERA-W/O-AUG-LM performs worse than Zhou & Zaferiou’s work in the

error region below around 0.077, our performance is better at the 0.1 error

point. In other words, HERA-W/O-AUG-LM can predict landmarks with

less than 0.1 error more consistently than the baseline.

3.3.2 Qualitative Evaluations

We visually show the 3D reconstruction results on ITWE-A’s test set as qual-

itative evaluations. In Fig. 3.5, three images with large colour variation are

predicted, the top row shows the 2D landmark predictions look reasonable.

The comparison between the top row and the bottom row shows that the

quality of the reconstructed 3D meshes are reasonable in geometric aspect,

while the in-the-wild colour model can reconstruct a large variation of in-

the-wild ear colours even from grayscale images. Readers are encouraged to
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Figure 3.5. Test set prediction results with different ear colours. Top row: original
ear images marked with predicted 2D landmarks. Bottom row: predicted 3D ear
meshes projected onto original ear images.

examine the original papers for a visual comparison [10, 1]. Note that the

reconstruction can still be visially different from the input.

As illustrated in Fig. 3.6, two images with different head poses are selected

for 3D ear reconstruction. The top row shows the results from a near-ideal

head pose (i.e. near-profile face) and the bottom row shows the results from

a large head pose deviation from the ideal (i.e. front facing, tilted head). The

figure shows that HERA works well with different head poses. For the front

facing images, the model predicts the correct horizontal rotation rather than

narrowing the 3D ear mesh’s width to match the 2D image.
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Figure 3.6. Test set prediction results with different head poses. Each row rep-
resents a distinct subject. 1st column: Original uncropped images. 2nd column:
Predicted 3D ear meshes. 3rd column: Predicted 2D landmarks. Ear pose is suc-
cessfully predicted when difficult head pose involves.

Table 3.2. Normalised landmark distance error statistics on ITWE-A for ablation
study.

Method mean ± std median ≤ 0.1 ≤ 0.06

HERA 0.0398± 0.009 0.0391 100% 96.2%
HERA-W/O-WTN 0.0401± 0.009 0.0384 100% 96.2%
HERA-W/O-PIX 0.0392± 0.009 0.0387 100% 96.2%
HERA-W/O-AUG 0.0446± 0.011 0.0437 100% 92.4%
HERA-W/O-AUG-LM 0.0591± 0.014 0.0567 99% 64.7%
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(2)(1) (3)

Figure 3.7. Appearance comparison between the reconstructed 3D ear meshes of
(1) Ground truth input image, (2) HERA and (3) HERA-W/O-PIX (without using
the pixel error). Although the landmark errors are similar, not using pixel error
results in a rendered image with more appearance difference.

3.3.3 Ablation Study

We now study each component’s effect on HERA’s performance and we

evaluate on several system variations including HERA-W/O-WTN (with-

out PCA whitening on 3D ear shape parameters, βs), HERA-W/O-PIX

(without pixel loss), HERA-W/O-AUG (without data augmentation) and

HERA-W/O-AUG-LM (without landmark loss).

The statistics for all variations of ablated HERA are shown, along with

(full) HERA, in Tab. 3.2. When training without PCA whitening on 3D

ear shape parameters and without pixel loss, performance on 2D landmark

localisation is similar to the final proposed method. However, using PCA

whitening balances the parameters for the neural network to predict and

therefore acts as a better underlying design choice. The major contribution

of applying PCA whitening in this work is that it speeds up the training

process by more than 30% per epoch on a GPU. In the meantime, a balanced

design of intermediate code vector with similar variance for each parameter

can benefit the performance of the neural network. The proposed HERA
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(1) (2) (3)

Figure 3.8. 2D landmark localisation comparison between the prediction results of
(1) HERA, (2) HERA-W/O-AUG (without data augmentation) and (3) HERA-
W/O-AUG-LM (without data augmentation or landmark error). Data augmenta-
tion enables better ear rotation prediction and landmark loss is vital to accurate
alignment especially for the ear contour part.

system then takes ∼ 70 seconds to train one epoch on an NVIDIA RTX

2080 and takes ∼ 350 epochs to train the whole network. After training, the

network predicts a single image in 6 ms.

When training without pixel loss, as illustrated in Fig. 3.7, the overall

appearance of the rendered ear image differs from the input ear image espe-

cially for the helix part. Training without pixel loss makes the model focus

on lowering the landmark alignment error regardless of the overall appear-

ance of the ear. Therefore it is necessary to utilise the pixel loss. This set of

figures also illustrates the pose ambiguity of this system caused by orthogo-

nal projection. For a distinct set of ear parameters, there exists two different

rotations that result in the same projected 2D landmarks. In one case, such

as Fig. 3.7 (1), the external auditory canal part of the ear is visible and in

the other case, such as the other rendered images in this chapter, the ex-

ternal auditory canal is covered by itself. This ambiguity may affect further

applications that relate the reconstructed 3D ear and other 3D objects, such

as the 3D head, but a simple 3D registration task can be carried out to solve
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the rotational ambiguity, if required. Restrictions on the rotations during

the training phase can be applied to allow the results to fall into the desired

range.

For training without data augmentation, the 2D landmark localisation

performance drops by a small amount mainly due to its lack of variety in

ear rotation, shown in Fig. 3.8. When training without landmark loss, the

predicted landmark positions are not accurate enough, as shown in Fig. 3.8.

As a result, the reconstructed 3D ears are not accurately aligned with the

2D ears, especially for the outer ear contours.

3.4 3D Ear Landmarking on Headspace

We apply the HERA system on the Headspace dataset [106] of 3D human

head images and thereby equip that dataset with a set of 55 landmarks per

ear and associated confidence values. Thus we demonstrate the high utility

of the HERA system which, due to its inherent 3D reconstruction property,

is able to operate on both 2D and 3D datasets. To localise these 3D ear

landmarks for raw scans of complete human heads, the HERA system is used

to generate an initial set of 3DMM shape and pose parameters, which are

then refined in an optimisation stage. In this section, the Headspace dataset

will be introduced first, followed by the methods applied to obtain 3D ear

landmarks on raw data. Finally, we evaluate our resulting 3D ear landmarks.

Our automatically generated 3D ear landmark set for Headspace has great

utility in full head 3DMM fitting and will be made publicly available, along

with the HERA code repository.
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3.4.1 Object Detection

Object detection is a task that detects a bounding box for specific objects in

an image [114]. We summarise this task in this section because we use it to

extract ear images from full head images. It forms a part of our pipeline for

ear image analysis and is essential to reduce the complexity of the problem by

enabling us to train the system on ear images only. We use YOLO-v3 [115]

as our object detector. It generates ear bounding boxes on full head images,

and the ear images can be fed into the next stage of the pipeline.

3.4.2 Obtaining Correspondence Between Meshes

Obtaining dense point-to-point correspondence is a frequently employed task

to organise raw scans in the same vector space [88]. This task is important

for transforming unordered, variable size point clouds so that they can be

organised and analysed as a whole. The 3D ear model fitting task in Sec. 3.4

is a special case of the correspondence establishment task. Normally the

dataset over which to establish correspondence contains only one type of ob-

ject. While in our task, we are trying to find the correspondence between a

3D ear model and a 3D full head mesh. While numerous methods focus on

finding correspondences between different types of surfaces using traditional

or deep learning techniques [116, 117, 88, 118, 119], we choose to root our cor-

respondence finding method with a traditional iterative approach, Iterative

Closest Points (ICP) [120]. The core idea behind this method is to iter-

atively calculate correspondences and solve rigid transformations, yielding

better correspondences and more accurate transformations over iterations.

We extend this method to jointly solve rigid transformations and model fit-

ting at the same time using a general-purpose nonlinear optimiser named the
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Nelder-Mead method [121].

Our task is highly related to part-to-whole registration task where differ-

ent methods are proposed [5, 4, 122]. Tan et al. [4] propose the first CNN

to tackle local shape deformation problem, therefore achieve the goal of the

part-to-whole registration task. Yang et al. [5] propose a multi-scale method

that can perform mesh deformation in a coarse-to-fine manner, allow regis-

tration of sub-parts. The approach proposed by us is more traditional where

an optimisation pipeline is used but a good initialisation is provided by our

HERA system.

3.4.3 Headspace Dataset

The Headspace dataset [106] is a set of 3D images of full human heads cap-

tured by the 3dMDhead system, which has five 3D cameras for full head

coverage. The data are collected by taking five 3D images of the subject,

which are stitched together into a single 3D image. The subject’s cranial

shape is revealed, as they all wear a close-fitting latex cap. The dataset con-

tains 1519 subjects in total, and 3D facial landmarks are available for 1212 of

them. We apply our method to the 1212 subjects where 3D facial landmarks

are already available. Also, since we render the 3D meshes into 2D images

during our proposed method, we further filter the subjects where a texture

is not publicly available, which results in 1002 subjects. Finally, since we use

a 2D ear detection algorithm to locate the ears in the rendered 2D images, a

further 25 ears are discarded, since no ear was detected. A typical case for

this failure is when the ear region is not imaged and reconstructed correctly,

typically due to occlusion by hair. This can result in missing ear parts in the

reconstructed 3D mesh, causing the 2D ear detection algorithm fail.
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3.4.4 Head Pose Normalisation and 2D Image Render-

ing

The 3D head meshes from the Headspace dataset are in non-standard and

varied poses. In order to consistently produce 2D head images, so that there

is one ear clearly visible and well-posed in each 2D image, 3D pose normal-

isation is the first step. This pose normalisation has four steps. Firstly, the

3D head is rotated such that the face is parallel to the z-plane. To achieve

this, we first define two vectors that form the face plane. The two vectors

are both originating from the lip centre, pointing to left eye corner and right

eye corner respectively. These key points are defined by the provided 52 3D

face landmarks with each Headspace scan. Then, we find an estimate of the

face plane normal using the cross product these two vectors, and finally we

find the rotation matrix Rz between the face plane normal and the z-plane

normal. The second step is to find another rotation matrix to make the face

upright (where the y-axis direction is the upright direction). For the 3D

head, again we use the provided 3D landmarks to get a vector originating

from the chin tip and pointing to the top most point on nose ridge. With

the two vectors, another rotation matrix Ru can be computed to finalise the

head orientation. The third step is to find a translation, T. We define the

face centre as the mean of all 52 face landmarks, the translation T is then

computed to move the face centre to the origin. Finally, we work out a scale

s = 1
2Lf

to normalise the size of all faces, where Lf is the width of the face

calculated using the face landmarks.

Denoting a 3D head mesh’s vertices from the dataset as X′ ∈ RN×3 where

N is the number of vertices, we summarise the above steps as applying a

similarity transformation to get a pose-normalised profile-view 3D head mesh
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X′
norm via:

X′
norm = s

(
X′RT

z R
T
u + 1NT

T
)

(3.18)

where 1N is an N-vector of ones. The resulting well-posed 3D head is then

imaged by an orthographic camera, placed at (0, 0,−1)T . The projection

model is the same as used in the HERA system for its simplicity and to align

with the HERA assumption, Po. Then the head is rotated along y-axis by

0.37 radian (21 degrees) to reveal the right ear in a pose that is consistent

with the pose that the HERA system is primarily trained with (i.e. most

of the in-the-wild ear training images have head poses that are close to 20

degrees). Since the HERA system is trained to process right ear images

only, we produce the left ear by y-plane reflection of the 3D head before the

rotation. Finally, we render two images each with 1024 × 1024 pixels using

the orthographic camera model for both ears. An example of the right ear

image and the reflected left image of subject number 3 is shown in Fig. 3.9.

(a) Generated 2D image of the left ear (after
reflection).

(b) Generated 2D image of the right ear.

Figure 3.9. Rendered 2D images from pose normalised 3D head images with both
left and right ears of subject 3
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3.4.5 YOLO ear detection and cropping

Since the HERA system processes 2D ear images, an ear detection is em-

ployed to generate a region-of-interest (ROI) bounding boxes on the rendered

head images. We employ YOLOv3 [115], a general object detection algorithm

for this task. We train the YOLOv3 net using the 500 ear images from the

ITWE-A dataset, the ear detection results show that the model detects right

ears sufficiently well. It only fails to detect 25 images out of 2004 2D head

images (two per Headspace subject). Fig. 3.10a shows the detected ear re-

gion of subject number 3. The major failure reason is because of missing ear

data in the reconstructed 3D head, which is typically due to occluding hair.

3.4.6 Landmark initialisation using the HERA system

The cropped ear images are fed to a trained HERA system, which generates

a set of York Ear Model (YEM) latent parameters to reconstruct the 3D

ears and their pose. For each reconstructed ear and ear pose, we get 55 3D

ear landmarks. Note we use head vertices instead of any points on head

mesh surface to represent 3D ear landmarks, this is acceptable because the

head vertices are relatively dense. There are two problems to solve; i) since

these are vertices on the reconstructed ears instead of the 3D head, we have

to map them to 3D head vertices; ii) the orthographic camera that HERA

employs induces an ambiguity in the distance from the ear to the camera.

Thus we can only use the (x, y) coordinates as reliable landmark locations.

We solve both of these problems with a single solution. Firstly, both the

vertices from the 3D head and the points from the initial 3D ear landmarks

are projected to a 2D plane using the camera projection matrix Po. We

denote the 3D head vertex indices as iX ∈ NN , the 3D head vertices as X′
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and the projected initial 3D ear landmarks as LP =
[
l0 . . . l54

]
. Then, for

each projected landmark lt ∈ LP , we find k nearest-neighbour vertices from

the 3D head and denote their indices as it = it1 . . . i
t
k. Here we essentially find

first k vertices with closest euclidean distance to each projected landmark.

Note that the Euclidean distances are calculated in 2D image plane. Finally,

from that set, we select the index i∗ whose corresponding vertex is the closest

to the camera plane, i.e. has the minimum z-coordinate value:

i∗ = argmin
i

X′ (i) ·
[
0 0 1

]T
. (3.19)

With such a procedure, we effectively select vertices that are closest to the

camera (more likely to be vertices on ears) and ignore vertices that are on

the back of the head. Thus practically reliable initial ear landmarks that

are on ears can be selected. We find that searching for the k = 10 nearest

neighbours works consistently in our Headspace experiments. For datasets

other than Headspace, increasing the value of k can mitigate situation where

the initial landmark predictions are of lower accuracy. Fig. 3.10b shows the

generated initial 3D landmarks on a Headspace subject.

3.4.7 Ear Model Fit Refinement with Iterative Opti-

misation

With the initial ear landmarks on the 3D head, using the initial YEM latent

code and the initial ear pose, we adopt an iterative approach to refine the

fitting of the ear model. Since the 3D data are available, we can perform

fine adjustment of the initialised 3D ear model to the 3D head data directly.

We adopt an iterative 3D model fitting procedure where model parameters,

pose, scale and dense 3D correspondences between the ear model and the
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(a) Detected right ear (b) HERA 3D landmark initialisation

Figure 3.10. Ear detection result and HERA initialisation of subject number 3.

Headspace scan ears are iteratively refined. The algorithm is outlined in

Algorithm 1. The algorithm essentially optimises the ear model and the cor-

Algorithm 1 Iterative optimisation of the ear model

Ensure: R ∈ SO(3)
t← 0
Rt ← 1 ▷ Identity matrix.

Tt ←
[
0 0 0

]T
αt

s ▷ HERA initialised YEM shape parameters.
f t ← 0.0
while t < T do

Xt
e ← f tRtYEM(αt

s) +Tt

Xt
h ← MutualNN

(
Xt

e,Xh

)
▷ Find correspondences.

Rt+1,Tt+1, f t+1,αt+1
s = min

∥∥Xt
e −Xt

h

∥∥2

2
t← t+ 1

end while

respondence between the ear model and the ear of the head scan in turn. The

algorithm’s iteration consists of three steps: i) reconstruct the ear shape and

compute the required similarity transform using initial parameters or opti-

mised parameters from the previous iteration; ii) find the correspondences
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(i.e. mutual nearest neighbours) between the reconstructed and transformed

ear shape and the raw head shape by the mutual nearest neighbour method;

iii) run the nonlinear optimiser to optimise a new set of model and similarity

transform parameters, given the correspondences.The function ‘MutualNN’

takes two point clouds and returns a set of paired vertices such that each

paired vertices A ∈ Xt
e, B ∈ Xh satisfies following conditions:

B ≡ min
B̂∈Xh

∥B̂ − A∥ (3.20)

A ≡ min
Â∈Xt

e

∥Â−B∥. (3.21)

We also expand our method from processing 3D vertices to processing 6D

vertices, by appending a weighted normal to each vertex. The weight is

choosen empirically to balance the numerical values of vertex coordinates

and unit vectors. In our experiments, we empirically choose to iterate the

refinement loop five times for it to finish running in a practically reasonable

time after the algorithm gradually converges (i.e. parameter update becomes

insignificant)..

3.4.8 Evaluation on Headspace data

In this section, we quantitatively evaluate our Headspace results using both

3D model fitting error and reliability of fitted 3D landmarks. Also, we show a

number of qualitative results to illustrate both typical results and worst-case

results.

3D model fitting We evaluate our HERA initialised 3D model fitting

using a modified Chamfer distance between the fitted 3D ear vertices and

the raw 3D head vertices. The key modification is to ignore the vertices
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from the raw 3D head that are far away from the region of interest. This

is implemented by rejecting head-to-ear distances that are larger than the

longest ear-to-head distances. Where head-to-ear distances is defined as:

for all vertices in the head mesh, calculate their shortest distances to the

ear mesh. And vice versa for ear-to-head distances. Details are explained

as follows. We denote fitted 3D ear vertices as X̂e ∈ RNe×3 and raw 3D

head vertices as X ∈ RN×3, where Ne is the number of vertices of the YEM

template and define the distance function from ear to head Dh : X̂e 7→ R

following the usual Euclidean distance as:

Dh (Pe) = min
p∈X
∥Pe − p∥ , (3.22)

where Pe is a vertex from ear vertices X̂e. Then we define the modified

distance function from head to ear De : X 7→ R to reject irrelevant head

vertices (e.g. neck, eye, nose, the other ear, etc.):

De (Ph) =


minp∈X̂e

∥Ph − p∥2 if minp∈X̂e
∥Ph − p∥2

≤ maxq∈X̂e
Dh (q)

0 otherwise,

(3.23)

where Ph is a vertex from head vertices X. Finally, the modified Chamfer

distance Ec between X̂e and X is:

Ec =
1

Ne

∑
p∈X̂e

Dh (p) +
1

N ′

∑
p∈X

De (p) , (3.24)

where N ′ is the number of head vertices below the threshold in Eq. (3.23).

We use the average Ec for all fitted ears as our evaluation metric for 3D ear

model fitting results. To the best of our knowledge, this is the first work on
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HERA Initialisation Refined
mean ± std median mean ± std median

Left Ear 7.27± 2.02 6.84 4.75± 0.78 4.66
Right Ear 7.42± 1.99 7.10 4.76± 0.80 4.66
Total Ear 7.34± 2.00 6.94 4.75± 0.79 4.66

Table 3.3. Chamfer distance result (mm) for left and right ear and both combined.
Comparison between HERA initialisation and iteratively refined results are shown,
too.

ear model fitting to the Headspace dataset. Therefore, in Tab. 3.3, we report

the evaluation results on the HERA initialised model alongside those of the

final fitted model after the 3D refinement optimisation. It is also possible to

use one-way distance to avoid using the modified Chamfer distance, but at

a cost of losing certain amount of information in evaluations.

3D ear landmarks The HERA system allows the Headspace data to

be landmarked with 55 landmarks per ear. We augment these head scan

landmark indices with their residual Euclidean distances from the fitted ear

model, as defined by Eq. (3.22). This effectively provides a reliability mea-

surement for each fitted 3D ear landmark on each fitted ear, enabling further

applications to employ landmark confidence measures. For example, in a

full head model fitting application, ear landmarks may be weighted using a

Gaussian weighting function based on their respective distance errors. Using

Eq. (3.22), but further restricting the function’s domain to the 55 landmarks

on the ear vertices, we report an average landmark Euclidean distance of

1.731mm.

Qualitative evaluation We sort the refined Chamfer distance in ascend-

ing order and select the nearest sample from the ranking at the following



82 Human Ear Reconstruction Autoencoder

percentiles: 0% (best result), 25%, 50% (median result), 75%, 100% (worst

result), and show the examples in Fig. 3.11.

We show one successful example and one failed sample of our iterative

fine fitting step in Fig. 3.12. As shown by the successful example, the initial

HERA prediction is shown on the top-left image and the final fine fitted 3D

landmarks are shown on the top-left image. By comparing the two images,

one can find that although there is a small compromise on the top part of the

ear, the ear contour after fine fitting is much improved compared to the initial

one, especially for the ear lobe area. For the failed example where the raw

data has a significant portion of missing data, the fine-fitting fails to generate

reasonable 3D ear landmarks. Being able to identify such incomplete data

and failed example automatically can be an important future work.

3.5 Conclusion

We have built an end-to-end deep 3D ear reconstruction autoencoder system

that can successfully fit a 3D ear model to a single 2D image, and can poten-

tially be trained unsupervised. Our model reconstructs the 3D ear mesh with

a plausible appearance and accurate dense alignment, as witnessed by the

accurate alignment compared to ground truth landmarks. A comprehensive

evaluation shows that our method achieves state-of-the-art performance in

3D ear reconstruction and alignment. We have shown how this system can

be employed to initialise a model fitting of ears to raw 3D head images and

thereby apply automatic 3D landmarking to those 3D images. We also gen-

erate predicted 3D ear landmarks for almost 2K ears over almost 1K subjects

in the Headspace dataset, with residual fitting errors for confidence weight-

ing estimation, which can support further applications on this dataset, such
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as landmark-guided full head 3DMM fitting. For future work, it is worth-

while to compare the HERA initialised 3D model fitting with part-to-whole

methods to further analyse the approach.
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(a) 0% percentile:
Initial

(b) 0% percentile:
Refined

(c) 25% percentile:
Initial

(d) 25% percentile:
Refined

(e) 50% percentile:
Initial

(f) 50% percentile:
Refined

(g) 75% percentile:
Initial

(h) 75% percentile:
Refined

(i) 100% percentile:
Initial

(j) 100% percentile:
Refined

Figure 3.11. Qualitative results at a variety of percentiles (please zoom in for
detail). Note that for the 0%, 25% and 50% percentiles, the refinement stages
drags the landmarks that are not on the ear onto the ear. Also observe that in
the cases of 25%, 50% and 75%, we see that the refinement makes part of the ear
contour more accurate. At 75%, we see that the ear has a minor missing part,
causing a performance drop, but within reasonable range. Finally at 100% the
ear has a major missing part, causing significant degradation in performance and
subsequently it has the largest Chamfer distance.
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(a) Successful example: Initial (b) Successful example: Refined

(c) Failed example: Initial (d) Failed example: Refined

Figure 3.12. Rendered images from normalised Headspace 3D head with both left
and right ears of subject number 3
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4
Eye-region Reconstruction Autoencoder for

Accurate Gaze Estimation

4.1 Introduction

Human eye gaze has a significant role in the visual understanding of hu-

man intention and has high utility in a variety of important applications; for

example, in domains such as human-computer interaction [123] and virtual

reality [124]. Several previous works have built an eye-region model [65], or

a full head model [61], that can be fitted to given images, which thereby

provides a gaze direction estimation. Also, appearance-based methods that

regress gaze directions directly from RGB input images using deep neural net-

works without the use of 3D shape models have been increasingly popular [8].

We note that, compared to these appearance-based methods, model-based

methods are less competitive in regard to gaze estimation accuracy. This is

because of the deep neural network’s feature extraction and nonlinear fitting

ability. However, most appearance-based gaze estimation methods predict

only a gaze direction (i.e. azimuth-elevation rotational orientation), but no

other information about the 3D geometry of the gaze or the eye-region. Cur-

rent literature has different gaze origin representations (e.g. eyeball centres

or a point on the face), which requires additional effort to make performance

comparisons [125].
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(a) Raw Image (b) Predicted (red) and ground truth
(green) gaze directions

(c) Predicted eye-region model (d) Predicted eye-region model ren-
dered and overlaid on the raw image

Figure 4.1. Active-gaze 3DMM fitting example. (a) Raw input image, (b) pre-
dicted gaze directions (red) compared to ground truth (green), (c) predicted eye
region model, (d) eye region model overlaid on raw input image.
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We propose an end-to-end method that combines both appearance-based

and model-based elements and is trained in an end-to-end manner. Our

method reconstructs the 3D eye-nose region and thereby avoids the highly-

variable mouth-jaw area, so that it can more accurately predict gaze direc-

tion. In order to achieve this, we employ an eyes-and-nose 3D morphable

model (3DMM) and, crucially, we equip this with a geometric vergence model

of gaze. We call this an ‘active-gaze 3DMM’. Specifically, this enables the

combined rotation of the eyeballs for the expression of gaze under certain

geometric constraints, such as coplanarity of the gaze vectors. This ensures

both accurate gaze estimation and that the eyeball positions are consistent

with both the face geometry and head pose. As a result, we can model the

correlations between the face and the left and right eyeballs, without addi-

tional design of the neural network, and we only require face image inputs.

An example of the input and outputs is shown in Fig. 4.1.

Most of the current image-to-image 3D reconstruction methods from

monocular RGB images focus on faces [6, 31]. Typically, their 3D face models

only model the eyeball surface area as part of the face, and the gaze direc-

tions are not explicitly modelled. Our method both takes advantage of the

image-to-image architecture and models the specific eye-region area, design-

ing gaze information into the model. Our results show that predicting both

gaze direction and the eye-region model results in a significant improvement

in gaze estimation accuracy. In summary, our main contributions are:

1. Development of an eye-region 3DMM fitting process that is trained end-

to-end without additional manually-annotated ground truth labels.

2. Development of an active-gaze 3DMM, which equips the regular 3DMM

with a geometric eye vergence model in order to regularise network

training.
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3. Demonstration that the active-gaze 3DMM increases gaze estimation

accuracy and the method’s versatility.

4. Demonstration of our method’s adaptability when only ground truth

3D gaze targets are available, with no access to gaze origin information.

4.2 Proposed method

In this section, the overall architecture will be described first. Then we will

elaborate each component following the order of the whole pipeline. At the

end of each subsection, the outputs and loss function terms relating to the

outputs are presented.

4.2.1 Architecture

As shown in Fig. 4.2, the raw image I is firstly fed to the encoder to regress

eye-region reconstruction parameters zM and eye rotation parameters zE.

The eye-region reconstruction parameters are defined as follows:

zM = (zS, zA, r,T, f)T

where zS are shape parameters, zA are texture parameters, r,T are head

pose parameters describing rotation and translation respectively and f is the

scale factor of the imaging projection.

We use the Swin Transformer [126] as our encoder network, the details

will be elaborated in Section 4.2.2. The eye-region reconstruction parameters

zM are used to reconstruct a textured eye-region 3D mesh, thus providing

predicted 3D eyeball centres as gaze origins (eyeball vertex means), and a

set of 2D projected landmarks for eye-region alignment. We discuss the
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Figure 4.2. Overview of gaze estimation using our active-gaze 3DMM autoencoder.
We employ the tiny version of Swin Transformer for our encoder, which has four
stages. LE stands for Linear Embedding, which is used in stage one only, and
PM, standing for Patch Merging, is used in stages 2−4. ST Block stands for Swin
Transformer block. Red points are in the 3D camera coordinate system, while
blue points are on the 2D image plane. The ‘L’ terms show where the various loss
function components are generated.



4.2 Proposed method 91

eye-region reconstruction in Section 4.2.3. The eye rotation parameters zE

predict the gaze vectors for both eyes. Using the gaze origins and gaze vec-

tors, we employ a geometric vergence model to constrain the gaze directions

of both eyes jointly. This is detailed in Section 4.2.4. Additionally, we use

a differentiable renderer to create a rendered image for autoencoder-based

pixel-wise comparison. The differentiable renderer is introduced earlier in

the Section 3.2.4

4.2.2 Encoder

We employ the state-of-the-art Swin Transformer [126] as our encoder to

regress eye-region features. The input RGB image is divided into non-

overlapping patches by the patch partition module, where each patch is con-

sidered as a token. This is followed by four stages of modified self-attention

computation (i.e. Swin transformer blocks) and we define Di as the number

of repetitive Swin transformer blocks at stage i. We use the Tiny network

structure provided by the authors, whose D1...4 = (2, 2, 6, 2). For the first

stage, the linear embedding module is applied before the transformer blocks,

and for the other three stages, a patch merging module is applied before

each set of transformer blocks to reduce the output dimensionality. These

four stages jointly produce a feature map that is appended by a linear layer

to regress a semantically-meaningful feature vector.

The regressed feature vector is then divided into two parts: eye-region

reconstruction parameters zM and both eyes’ gaze directions zE defined by

azimuth and elevation. The first part of the features is elaborated in Sec-

tion 4.2.3, and the second part, which is used in constructing the geometric

vergence constraints, will be described in Section 4.2.4.
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4.2.3 Eye-region 3D morphable model (3DMM)

Figure 4.3. The mean eye-region mesh, extracted from the FLAME model [3]
and incorporated into our active-gaze 3DMM fitting system, which has rotatable
eyeballs.

In this section, the process of reconstructing and rendering the 3D eye-

region from the eye-region reconstruction parameters zM will be discussed.

The eye-region 3DMM is constructed by selecting the relevant vertices and

their topology from the full head FLAME [3] model. As shown in Fig. 4.3,

both eyeballs, the eye-region and the nose are selected. Eyeballs are used

to model gaze directions, eyeball sizes, and inter-ocular distances. The eye-

region contains 22 landmarks on eyebrows and eye contours, which is used to

model eyeball positions and head poses. A visualisation of the 22 landmarks

can be found in Fig. 4.2 and in Fig. 4.5. We omit the remaining parts of the

FLAME head model, firstly to enable a more compact and efficient learn-

ing process, and secondly since they have much higher variance in features

(e.g. mouth/jaw variations due to speech and/or facial expressions) that are

not relevant to gaze modelling, and may indeed introduce confounding fac-

tors. Notably, the largely rigid nose area, which contains nine landmarks

on the nose ridge and the philtrum area, is added to strengthen the head
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pose prediction. Note that the gap between the eyeball and the eye contour

does not affect the model learning process. We also use the texture model

presented by [127, 128] to enable differentiable rendering of the eye-region

model.

We follow the common procedure to reconstruct the 3DMM’s shape S ∈

RN×3 from shape parameters zS and the texture A ∈ R512×512×3 from texture

parameters zA as follows:

S = µS +USzS (4.1)

A = µA +UAzA, (4.2)

where N is the number of vertices in the eye-region shape model, µ{S,A}

and U{S,A} are the mean and principal components provided by the shape

and texture 3DMMs respectively. Then the eye-region shape S is transformed

with rotationR, translation T and scale f to the camera coordination system

by:

S′ = fSRT + 1T, (4.3)

where R ∈ SO (3) is the rotation matrix derived from the rotation r by

Rodrigues’ rotation formula and 1 ∈ RN×1 is the vector of all ones. Finally,

given the camera calibrations are available, we construct a full perspective

projection Π ∈ R3 → R2 to project the eye-region shape in 3D camera space

S′ to image plane, thus obtaining the predicted 2D landmarks L̂ on image

plane. We use a differentiable renderer DR implemented by PyTorch3D [2],

with the same projection model, to form a rendered image Î as:

Î = DR(S′,A,Π) . (4.4)
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Note that all previous works of 3D face reconstruction that involve differen-

tiable rendering assume a Lambertian surface, which is not well-suited to the

eyeball surface due to it’s inherent moisture, which causes specularities. Our

further experiments show that the geometric vergence constraints contribute

the most to gaze estimation accuracy, thus we choose the ambient Phong

lighting model and leave the discussion of more refined eye-region modelling

in our limitations section.

With the reconstructed 3D eye-region, we form the 3D gaze origin loss

function Lo as

Lo = ∥ô− o∥11, (4.5)

where o is a 3D ground truth gaze origin provided by the dataset and ô is

some point derived by the eye-region shape. For example, a predicted eyeball

centre is obtained by averaging all eyeball vertices. With such a design,

our method becomes universally applicable to any gaze origin definition, as

provided by the dataset; for example, both eyeball-centered and face-centered

have been used in the literature. This obviates the conversion step described

by Chen et al. [125] that converts gaze ground truth between datasets using

different gaze representations.

With the projection model, 2D projected landmarks can be obtained,

thus forming the 2D landmark loss function Llm as:

Llm = ∥L̂ − L∥22, (4.6)

where L, the ground truth 2D landmarks, are either provided by the dataset

or generated before training using PyTorch Face Landmark [129] with a pre-

trained MobileNetV2 [130] as the backbone network. The predicted 2D land-

marks L̂ are obtained by projecting selected vertices in the eye-region shape
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S′ onto the image plane via the perspective projection, Π. We employ the

Multi-PIE [131] definition of 68 facial landmarks and select 31 corresponding

points on both the eye-region 3DMM and the input images. We use perspec-

tive projection in this work since the camera parameters are available.

Finally, the pixel loss Lpix for rendered eye-region images is formed as:

Lpix = ∥Î − I∥22. (4.7)

4.2.4 Vergence model

The predicted gaze rotations zE = (rl, rr)
T by the encoder are azimuths

and elevations for both eyes (e.g. rl = (rle, rla)
T ). Two rotation matrices

R{l,r} are derived from the rotation angles by Rodrigues’ rotation formula.

We assume the gaze direction is a vector originating from the centre of the

eyeball, and pointing towards the iris centre. Thus, the gaze vectors for both

eyes are calculated by: gi = Ri

[
0 0 1

]T
, i ∈ {l, r}. They originate from

both eyeballs’ centre o{l,r} respectively. The eyeball rotation matrix is also

applied to the eyeball shapes of the reconstructed 3D eye-region shape to

rotate the eyeballs to produce a plausible appearance.

As shown in Fig. 4.4, we equip our system with geometric constraints that

capture both gazes in one system, such that both of the gazes are mutually

constraining each other, and produce a gaze target t̂. Due to the nature of

human gazes, there are three underlying constraints for this vergence model

and which a single-eye model does not have: i) both gaze vectors are directed

away from the head; ii) the gaze vectors are coplanar; iii) the gaze vectors

intersect at the gaze target t̂, unless they are parallel. These three constraints

can be satisfied during the process of calculating the gaze target t̂, which

is defined as the closest point between the two gaze vectors. We define
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or

ol

gr

gl

t

Kr

Kl

Figure 4.4. The vergence model of gaze for the active-gaze 3DMM, showing eyeball
origins (ol,r), gaze directions (gl,r) and viewing target t in the global camera frame.
In general, the regressed gaze directions are skew and the loss function penalises
this lack of coplanarity.

Ki = oi + kigi, i ∈ {l, r} as the two end points of the shortest segment

connecting left and right gazes. Therefore,

t̂ = (Kl +Kr) /2. (4.8)

Since the shortest segment must be perpendicular to both gaze vectors, we

can derive the shortest distance d as:

d := ∥Kl −Kr∥ = klr (gr × gl) , (4.9)

where kl, kr and klr can be solved by:

[
kl kr klr

]T
=

[
gl −gr gr × gl

]−1

(or − ol) . (4.10)

We design three loss terms based on the underlying constraints of the

geometric vergence model. Firstly, the gaze skew loss, Lskew = d2, encourages

the two gaze vectors to be coplanar. Secondly, the predicted gaze target, t̂,

along with the 3D ground truth target, t, forms a gaze target loss Lt =
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∥∥t̂− t
∥∥1

1
. Finally, a gaze pose loss is given as Lg = ∥zE − rgt∥11, where rgt is

the ground truth eyeball rotation. All of these losses reduce gaze error, while

additionally preventing the catastrophic case of the gaze being directed into

the head.

4.2.5 Complete loss function

In addition to the previously stated loss function terms, we employ a reg-

ulariser on the 3D eye-region shape and texture latent code zS and zA to

encourage the reconstructed eye-region shape and texture predictions to stay

within the model space. The regulariser is defined as follow:

Lreg = ∥zS∥22 + ∥zA∥
2
2 . (4.11)

Finally, all the losses are combined linearly with a weight added to each loss

to balance them in an appropriate trade-off. Thus, the complete loss function

L is :

L = λ1Lpix + λ2Llm + λ3Lo + λ4Lt + λ5Lskew + λ6Lg + λ7Lreg, (4.12)

where λ1 . . . λ7 are the hyperparameter weights required to balance each loss

component.

The loss components can be divided into 3 categories, where each category

reflects one task in the learning process. The three tasks are:

1. eye-region reconstruction with Lpix, Llm and Lreg

2. appearance-based gaze estimation with Lg

3. geometric vergence constraints with Lt, Lo and Lskew
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We will perform ablation studies to analyse the effectiveness of each task

later in this chapter.

4.3 Evaluation

In this section, we introduce the two datasets used to evaluate our work,

demonstrate the details of experiments and show both quantitative and qual-

itative evaluations of our method.

4.3.1 Datasets

Eyediap [132] is a dataset containing videos of 16 subjects looking at various

targets. We use the floating ball target videos where 14 distinct subjects are

participating. A static head pose session and a dynamic head pose session are

recorded for each subject, resulting in 28 sessions of, on average 2701 frames

per session. We use the low-resolution version (640×480) for our experiments.

During training and testing, we utilise all validated frames except for those

that are not detected by the face landmark localisation algorithm. We per-

form cross-subject evaluations on this dataset, using a leave-two-subjects-out

strategy by using two subjects’ both static and dynamic head pose sessions

as the test set, and the remainder as the training set. We effectively train on

∼ 61k frames and test on ∼ 14k frames.

ETH-XGaze [133] is a large-scale dataset covering a large range of head

poses. It collects over one million photos from 110 participants. The eval-

uation on the test set is performed on an online platform provided by the

authors. We use 15 participants as the test set and the remainder as the

training set. We also use the landmarks provided by this dataset to train our

model.
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4.3.2 Implementation details

For our Swin transformer encoder, we use the tiny configuration with the

pretrained weights on ImageNet [134]. Note that it is potential for other

compared methods to use Swin transformer to improve their results. How-

ever, our method only uses a low resolution face image on Eyediap dataset

and that remains one advantage compared to those who uses high resolution

face images or eye images. Re-implement some of the existing work using the

state-of-the-art backbone network can be a potentially meaningful thing to

do in the future. We use the Adam optimiser [135] with learning rate set to

5× 10−5 and weight decay set to 1× 10−4 to train our model for 70 epochs.

The hyperparameters λ1, . . . , λ7 to weight all loss function components are

set to 1, 0.5, 1× 103, 2.5× 103, 5× 102, 1 and 5× 10−2 respectively for the

Eyediap dataset.

4.3.3 Quantitative evaluation

In this section, we compare our results with some previous methods with the

commonly-adopted angular error metric. This error metric measures the an-

gle between the predicted gaze vector and the ground truth gaze vector. We

show our Eyediap results in Tab. 4.1. We also include a baseline which uses

the Swin transformer to regress gaze rotation only. Due to the difficulty of

re-implementation of the appearance-based methods which employ different

subjects in different video session types and over different resolutions, we cau-

tiously show some other approaches’ reported accuracy for reference. Note

that no existing method uses Swin transformer as we do, their choices of back-

bone networks include AlexNet [123], ViT [91, 136], multimodal CNN [137],

customised ResNet [138], bidirectional LSTM [139], multiple VGG-16 net-
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works [140] and multiple dilated CNNs [141].

Method mean ± std median

Appearance-based
Methods

Zhang et al. [123]# 6.76 \
Cheng et al. [136] 5.17 \
Zhang et al. [137] 7.37 \
Sinha et al. [138] 4.62± 2.93 \
Gaze360 [139]# 5.58 \
RT-Gene [140]# 6.30 \

Dilated-Net [141]# 6.57 \
Baseline 5.25± 3.58 4.45

Model-based
Methods

PR-ALR [132]∗ 8.1 \
Wood et al. [65]∗ 9.44 8.63

Ploumpis et al. [61] 8.85 \
Combined Method Ours 4.55± 3.29 3.82

∗ Evaluated on static head pose only. # Converted from face gaze by [125].

Table 4.1. Angle error (◦) on gaze vectors originate from eyeballs compared with
current literature on the Eyediap dataset.

For the more recent ETH-XGaze dataset, we also show our results on the

XGaze dataset and compare with other appearance-based methods.

There are two types of task for gaze vector estimation: i) the gaze origi-

nates from eyes and ii) the gaze originates from faces [125]. While our method

is successful on the eye gaze task, it does not have advantages on accurately

predicting the face gaze. This is due to only one gaze vector being available

and our model takes advantage of the correlations between both gaze vectors

originating from the eyes. However, our method does not require explicit

conversion between the eye gaze task and the face gaze task. Moreover, dur-

ing training our method approaches the ground truth very quickly and we

obtain our results with training for only 20 epochs on 10% of the training

set (approx. 60,000 images) that is randomly sampled every batch.

Furthermore, we conduct partially-supervised experiments where only the
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Method mean std

PureGaze [142] 6.79 \
Zhang et al. [143] 4.50 \
Gaze360 [139] 4.46 \

Zhang et al. [123] 7.38 \
Cai et al. [144] 3.11 \

Ours 5.80 4.95

Table 4.2. Angle error (◦) compared with current literature on the ETH-XGaze
dataset.

ground truth target point in 3D and camera calibrations are provided. This

yields a scenario where no ground truth gaze vectors are available and the

depth ambiguity inherent in 2D (RGB) images can significantly harm the

performance. Our mean angular error on Eyediap is 15.38◦ and the same

error on XGaze is 15.73◦. Although the accuracy is significantly compromised

compared to the full supervision scenario, the method is still able to learn the

gaze directions by locating the 3D gaze targets correctly, while maintaining

an accurate 2D eye-region landmark correspondence.

Lastly, we report our reconstructed model’s quality. Our face patches on

the Eyediap dataset have 96 × 96 pixels, our predicted face landmarks are

filtered manually to remove extreme outliers. The average landmark error

in pixels is 4.84 pixels per landmark. We further normalise pixel landmark

errors by dividing the distance between the left eye’s left corner and the right

eye’s right corner, which results in a proportion of 0.113.

4.3.4 Qualitative evaluation

In this section, we present some qualitative visual results of our method on

the Eyediap dataset. Four different predictions are presented in Fig. 4.5. The
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first row shows a successful example of the static head pose. The second and

the third rows demonstrate the successful examples when different head poses

are present. The final row shows a failure case where an extreme expression

is present. Such expression involves massive morphing of the eye contour

region. Although we have chosen the most expression-invariant parts on the

face to build the eye-region model, expressions involving eyes like this are

still not modelled. Note that the samples on the second and the third rows

are trained with a higher weight (5 times larger) on the pixel loss Lpix. This

results in obtaining a more accurate face area texture. However, due to the

nature of the albedo model we used, the eyeball’s sclera region appears to

be cloudy and in a wrong colour. We consider this to be a trade-off of the

albedo model and gaze estimation accuracy is not adversely affected.

4.4 Ablation studies

We have proposed a sophisticated loss function with a linear combination of

various different loss components. In this section, we perform ablation stud-

ies to determine the effectiveness of each of the three previously described

tasks and analyse the advantages of using the state-of-the-art vision back-

bone network. All ablation study results are presented in Tab. 4.3 and we

now detail each method. We used a randomly fixed subject’s static and dy-

namic head pose sessions as the test set for all ablation experiments for a

fair comparison. First, we construct a baseline model that comprises of only

our vision backbone network (i.e. Swin transformer) which predicts two eye-

ball rotations. It is trained with only the gaze pose loss function Lg, thus it

solves Task 2 only. We denote this experiment as baseline in the table. Then

we construct our system with the vergence model only, i.e. the model solves
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Task 3 only. Since the predicted gaze origins (i.e. eyeball centres) are not

available if no 3D eye-region model is reconstructed, we predict the eyeball

centres directly using the backbone network. This experiment is denoted as

Vergence model in the table. Then we report our proposed method with all

loss terms (i.e. aimed to solve all three tasks simultaneously), denoted as

Ours. Lastly, we swap or remove a specific part in our proposed method

to observe the impact. We remove the loss term Lo to let the model learn

without information about ground truth eyeball positions. This experiment

is denoted as w/o Lo. Finally, we evaluate the improvement in gaze estima-

tion accuracy by employing state-of-the-art vision backbone network Swin

transformer against a former popular vision backbone ResNet-18 [111]. We

denote the experiment of replacing Swin transformer with an 18 layer ResNet

as Ours - ResNet18.

Method mean ± std median

baseline 5.60± 3.28 5.01
Vergence model 4.80± 3.07 4.23

w/o Lo 6.64± 4.92 5.26
Ours - ResNet18 4.94± 3.16 4.34

Ours 4.11± 2.93 3.42

Table 4.3. Angle error (◦) on subject 15 from Eyediap dataset for the ablation
study.

From the results in Tab. 4.3, we can observe that our proposed method

that utilises all the loss components and the Swin transformer performs the

best among all experiments. A vanilla appearance-based method (i.e. base-

line) cannot perform competitively when only low resolution face images are

fed to the network. Our geometric vergence model that utilises gaze direc-

tions from both eyeballs and correlates them contributes hugely towards an
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accurate gaze estimation. However, combining all three tasks performs bet-

ter compared to using only Task 2 or Task 3, thus showing the effectiveness

of our proposed multi-task method.

Our experiments show that the gaze origin loss Lo is vital to the success

of our proposed method. It provides the necessary guidance to both the gaze

direction prediction and the 3D eye-region reconstruction, since the 3D eye

gaze directions and 3D location of the reconstructed 3D eye-region directly

depend on it. Since the ETH-XGaze dataset does not provide ground truth

3D eyeball centres, this partially explains why the results on ETH-XGaze

dataset are not as good as the results on Eyediap dataset.

Finally, we justify our choice of Swin transformer as the backbone net-

work over ResNet-18 [111]. ResNet introduced residual connections to the

CNN architecture making it one of the most popular vision backbone net-

works. Only recently, attention-based networks ViT [91] applied to vision

problems has led to an improvement over CNN-based performance. There is

also literature that focuses on exploiting the attention mechanism provided

by transformers to solve the gaze estimation problem [136]. The Swin trans-

former [126] has proven to be the state-of-the-art transformer-based vision

backbone network to date. We also argue that the attention mechanism is

essential to the gaze estimation task especially when only low resolution im-

ages are provided. Our results further justify our assumptions. Additionally,

we observe similar training times when we employ the smallest architectures

for both ResNet and the Swin transformer, although the Swin transformer

has 28million parameters while ResNet18 has 11million parameters.
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4.5 Limitations and potential societal impact

Due to the datasets employed, our evaluations are conducted under controlled

environments (with camera calibration information, subjects’ head position is

relatively static). Thus, the performance on in-the-wild images is uncertain.

Such images imply three difficulties: lower resolution over the face region,

high variance in subject identity, and lack of camera calibration. The results

have shown that our method inherits the appearance methods’ feature extrac-

tion ability on low resolution frames from the Eyediap dataset. Future work

on providing a larger training set and transforming images to a normalised

camera space can mitigate the remaining two difficulties. Nonetheless, this

method remains highly applicable when a controlled environment and camera

calibration is available.

Differentiable rendering uses only the ambient light model and the Phong

shader. Applying a more sophisticated light model and shader to higher res-

olution eye images to capture more refined details and eye surface reflections

in the training process remains unexplored. Also, building a more sophis-

ticated eyeball model is desirable, it can enable iris modelling, eyeball size

modelling and pupil modelling. A high resolution eyeball model that can be

integrated into the training process and balance different resolutions between

eyeballs and faces is still an unsolved problem.

This system can potentially be used on devices with a front camera to

model users’ faces and gaze targets. Then infer the screen content that the

user is viewing. Thus, this can potentially invoke privacy issues.
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4.6 Conclusion

We presented a novel approach that reconstructs an eye-region model as well

as the gaze direction by utilising the advantages of both appearance-based

methods and model-based methods. Our results show that we achieve state-

of-the-art performance on the gaze estimation task while reconstructing an

eye-region model. Our method attempts to close the gap on gaze estima-

tion task where model-based methods lack the raw feature extraction abil-

ity by utilising the state-of-the-art vision backbone network. Our work can

be further applied to inter-ocular distance prediction, ear-to-ear face region

modelling, and human head modelling with highly accurate gaze estimation.

Our work contributes to human eye-region understanding, human-computer

interaction, wearable devices and virtual reality.
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(a) Raw (b) Prediction (c) Rendered

Figure 4.5. Raw input images, predicted landmarks (blue crosses), predicted gaze
rays (red rays), ground truth gaze rays (green rays) and rendered eye-region model.
First three rows are successful predictions for various head poses and various iden-
tities. The last row shows a failure case where extreme expression is present. Such
expression is not included in the eye-region model space.
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5
Full Head Reconstruction Autoencoder with

Expression Disentanglement

5.1 Introduction

A 3D Morphable Model (3DMM) for human faces was proposed by Blanz

and Vetter [12] more than 20 years ago. Since then, it has gained widespread

use in a wide variety of both 2D and 3D applications. In more recent years,

more non-linear 3D face models have been built that exploit powerful deep

learning techniques. This has allowed more detailed reconstructions from

more compressed latent representations [96]. Initially, models were built

from neutral-expression faces only, but with more comprehensive datasets,

newer approaches have also modelled facial expressions, for more general

applications [93, 3].

A key ability is to disentangle the identity part and the expression part

from any human face input data (see Fig. 5.1), and direct those disentangled

parts into the corresponding model components. Such approaches can be

beneficial for many applications, such as face reenactment and face recogni-

tion. Jiang et al. initiated this topic [95], followed by Zhang et al. with the

previous state-of-the-art [54].

Here, we propose a concise architecture that improves disentanglement

performance with fewer restrictions (i.e. topology information), compared
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Raw Face Predicted Neutral Face Predicted Full Face

Figure 5.1. Disentangling identity from the full expressive face.

to the state-of-the-art [54], and we evaluate the results, such as is given in

Fig. 5.1. To achieve this, we design two variational autoencoders (VAEs) for

identity and expression separately, but are able to train them in an end-to-

end manner without any pre-training. We employ the attention-based point

cloud transformer (PCT) [17] as the encoder. This processes a set of points,

which is unordered and without local neighborhood connectivity information.

In other words, mesh topology is obviated, and we enable training on point

cloud data for disentangled facial expression modelling. We use a point cloud

transformer to process point cloud data instead of viewing the input as mesh

data. In other words, we discard the mesh’s topological information, which

graph neural networks require. However, we still use point clouds with the

same size and order and visualise experiment results with the predefined

topologies. That is, for the input, we assume point-to-point correspondences

are available. Also, for the labels, we assume a corresponded neutral face

to every face with expression is available. We also follow the idea of the

information bottleneck in information theory, using an additional mutual

information regulariser to encourage disentanglement and allow tuning of the

compression of the latent representation. Furthermore, we utilise expression

label information provided by the datasets by employing a conditional VAE

as an upgrade to the proposed method. This enforces more disentangled
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expression information and thereby contributes to the explainability of the

generative model.

In summary, our main contributions are:

1. Incorporation of the point cloud transformer network, removing the

requirement of a known mesh vertex topology, and leveraging the high

performance of attention-based architectures.

2. Use of an information bottleneck on the identity reconstruction sub-

system to encourage improved identity and expression disentanglement

on 3D facial input data.

3. Application of a conditional VAE on top of the proposed method to

further disentangle expression information and build a generator that

generates from semantically meaningful expression latent variables.

5.2 Proposed Method

5.2.1 Architecture

Denoting a 3D face point cloud Xi ∈ RM×3 where i ∈ [1. . N ] and M is the

number of points in each 3D face. We assume the dataset is comprised of{
X1,X

id
1 , . . . ,XN ,X

id
N

}
, that means for each 3D face in the dataset, there is

a corresponding identity face (i.e. neutral face). The goal is to reconstruct an

identity face and full (expressive) face independently using their respective

latent representations. We illustrate our architecture in Fig. 5.2.

We separate the whole 3D facial expression modelling system into two

sub-systems: identity (ID) VAE and full-face VAE, sharing the same encoder

and trained simultaneously in an end-to-end manner. We follow the common

VAE structure to build each sub-system in the first place. The point cloud
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Figure 5.2. Overview of the architecture. LBR combines Linear, BatchNorm and
ReLU layers. MLP stands for multi-layer perceptron. Additional conditional VAE
add-ons are marked in red.
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transformer (PCT [17]) is used as our encoder network q (zid, zexp | X, ϕ) with

learned weights ϕ that extracts features from 3D face point clouds, then pre-

dicts two sets of latent code: the identity latent code zid and the expres-

sion latent code zexp. We utilise two separate decoders p
(
X̂id | zid, θid

)
and

p
(
X̂ | zid, zexp, θfull

)
with weights θid and θfull to reconstruct the identity

face and the full face respectively. We cut off the gradient back-propagation

flow for zid from decoder θfull to avoid updating the identity latent code with

respect to errors that contain expression information. This turns the full face

VAE into a conditional VAE [145] that learns to extract an expression latent

representation only. In early experimentation, we employed a unified de-

coder, effectively using a zero-padded full decoder p
(
X̂ | zid, zexp = 0, θfull

)
as our identity decoder. However, we found that the dual-decoder design

achieves better reconstruction and disentanglement results.

Following the common VAE design for loss functions, we utilise recon-

struction losses (Lid and Lrec) and variational loss LKL which will be ex-

plained in Section 5.2.2. In addition to the usual VAE structure, we utilise

only an additional mutual information regularisation function on the iden-

tity latent code Lmi, achieving significant improvement on disentanglement

results compared to the current state of the art. We will explain the choice of

this regulariser in Section 5.2.3, elaborate the two loss functions Lid and Lmi

jointly as an information bottleneck. In Section 5.2.4, the four loss compo-

nents are summed to give the loss function that enables end-to-end training

of our network.
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5.2.2 3D Face VAE

Variational Autoencoder (VAE)

The VAE, firstly proposed by [11], has a goal of maximising the real data

likelihood P (X) by introducing a latent code vector z via:

P (X) =

∫
P (X|z)P (z) dz. (5.1)

Modern approaches use a deep neural network pθ (X | z) to approximate

the distribution P (X | z) and name it decoder network (or generator). Since

the decoder distribution’s posterior pθ (z | X) is intractable, VAE introduces

an encoder network qϕ (z | X) to approximate it. To infer P (X), we start

from the KL divergence between the two conditional distributions:

KL (qϕ (z | X) ∥ P (z | X))

=Ez∼qϕ

[
log

qϕ (z | X)

P (z | X)

]
=− Eqϕ [logP (X | z)]

+KL (qϕ ∥ P (z)) + logP (X) ,

(5.2)

and can be written as:

logP (X) =Eqϕ [logP (X | z)] (5.3)

−KL (qϕ (z | X) ∥ P (z)) (5.4)

−KL (qϕ (z | X) ∥ P (z | X)) . (5.5)

The objective is then to find the ϕ and θ that maximise logP (X). Since the

decoder distribution’s posterior P (z | X) in Eq. (5.5) is intractable and any

KL divergence is greater than or equal to 0, we instead optimise the lower
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bound by ignoring the KL term (i.e. Eq. (5.5)). Result in the final Evidence

lower bound (ELBO) loss function:

ELBO =− Eqϕ [logP (X | z)] (5.6)

+KL (qϕ (z | X) ∥ P (z)) , (5.7)

where qϕ is the encoder, and pθ is the decoder.

Point Cloud Transformer (PCT)

We adopt the point cloud transformer (PCT [17]) as our encoder to extract

a latent code from input data. The PCT is an attention-based [90] network

that processes unordered point sets and employs farthest point sampling

and nearest neighbor search for input embedding. The core component, the

attention module, takes the embedded point cloud inputs, and generates

refined attention features based on global context by connecting all pairs

of point clusters with attention weights. The attention feature is then fed

into MLPs to generate identity and expression latent codes. Our PCT-based

encoder is depicted in the encoder part of Fig. 5.2.

Our Proposed Method

To practically construct VAEs for both the identity sub-system and the full

face sub-system, we have to build variational inference for the latent codes.

Thus we let the encoder output the mean µ and the standard deviation σ of

an isotropic Gaussian distribution N (µ, diag (σ)) that represents the latent

code’s distribution. Then the latent code is sampled from the predicted latent

code distribution. Here we follow the original VAE paper [11] and use the

reparameterisation trick [11] for differentiable sampling. Therefore, the KL
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loss (Eq. (5.7)) from the ELBO loss for both identity and expression latent

code can be formed as:

Lid
KL = KL (qϕ (zid | X) ∥ N (0, I)) (5.8)

Lexp
KL = KL (qϕ (zexp | X) ∥ N (0, I)) (5.9)

LKL =
1

∥zid∥+ ∥zexp∥
(
Lid

KL + Lexp
KL

)
, (5.10)

Meanwhile, it is a common practice to replace the reconstruction term

Eq. (5.6) in the ELBO loss with a loss function that is used in non-variational

deep learning tasks, such as the L1 norm used in [23, 95, 54] or Mean

Squared Error (MSE). We adopt the MSE, and the two reconstruction losses

for identity and full faces are:

Lid = ∥X̂
id
−Xid∥22 and Lrec = ∥X̂−X∥22. (5.11)

By doing so, we ensure the same reconstruction goal with the loss function

that is practically proven to work well with stochastic gradient descent. This

leaves the latent code to be the only variational part that is represented in

distributions. The KL loss can then be seen as a regulariser that pulls them

towards unit isotropic Gaussian distributions.

Additional Experiment: Conditional VAE

Several datasets provide corresponding labels along with their data. Utilising

such information in a generative model can be beneficial for its performance

and explainability. Sohn et al. [145] propose the Conditional Variational

Autoencoder (CVAE), which utilises label information to allow the modelling

of raw data conditioned on it. The main modification to the original VAE
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is to make both the encoder distribution qϕ and the decoder distribution pθ

condition on corresponding labels Y . The ELBO loss function in our setting

for the full face VAE is then modified to:

ELBOcvae = Ez [logP (X | zid, zexp, Yexp)]

−KL (qϕ (zexp | X, Yexp) ∥ P (zexp | Yexp)) , (5.12)

where Yexp is a one-hot encoded expression label multiplied by the expres-

sion’s level, which has the range [0, 1].

As shown in Fig. 5.2 (red parts), we build a CVAE architecture upon

our VAE architecture, by concatenating one-hot labels after the penultimate

fully connected layer in our encoder. The one-hot encoded labels are also

concatenated after the expression latent code, which is then passed to the

full face decoder. With the CVAE, the trained decoder can generate new

samples from given expression labels.

5.2.3 Mutual Information Regulariser

Due to the cost of 3D scans, most of the current 3D face datasets are ob-

tained under specific experimental conditions rather than from in-the-wild.

To increase the number of 3D faces collected, one has to acquire multiple

scans of the same person. In this case, there exists groups of 3D face in-

dices K ⊂ [1. . N ], such that their corresponding 3D faces share the same

corresponded neutral face, i.e. Xk = Xk′ ,∀k, k′ ∈ K. Therefore, the identity

VAE part differs from the traditional VAE in two respects. Firstly, the ID

decoder θid does not reconstruct the original input; rather, it reconstructs an

expression-neutralised input, which has information content that is always

less than or equal to that of the input. Secondly, assuming a single latent
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code, with the identity and the expression parts entangled, the ID decoder

would have to reconstruct the same 3D face identity from different latent

codes. That is, the identity latent code zid would contain information about

expressions on the input face. Thus, we propose an information bottleneck

on the identity latent code, and address both challenges at the same time.

We then modify it to work with a deep VAE model as a combination of a

mutual information regulariser Lmi and the identity reconstruction loss Lid.

It simultaneously encourages the decoder to better reconstruct the identity

face and forces the identity latent code to contain only the information of

the reconstructed neutral faces and, therefore, achieves better identity and

expression disentanglement.

Information Bottleneck

An information bottleneck is an information theory idea proposed by Tishby

et al. [53]. The main idea is to build an objective function that jointly max-

imises the mutual information between the latent code and its reconstruction,

and that minimises the mutual information between the input and the latent

code. Putting more weight on the second of these terms allows for a more

compressed latent representation [52].

In the identity sub-system scenario, the encoder encodes faces with ex-

pressions, which naturally introduces redundant expression information into

the identity latent code, resulting in low compression efficiency. So we pro-

pose to put more weight on compression, jointly with reconstructing neutral

faces, to eliminate expression information contained in the identity latent

code. Also, the information bottleneck does not assume the reconstruction

has to be identical to the input. Thus, to fit the information bottleneck to
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the identity sub-system, the objective can be formulated as:

JIB = −I (Xid; zid) + I (zid;X) , (5.13)

Note that the Lagrangian multiplier in the second term from the original

information bottleneck objective is ignored at this stage, because the weight

of the second term is built into the deep learning framework via hyperpa-

rameters, described later in this section.

To begin with building this objective into the current 3D face VAE sys-

tem, we reformulate the objective JIB’s first term as:

−I (Xid; zid) (5.14)

=−
∫
Xid

∫
zid

p (Xid, zid) log
p (Xid | zid)
p (Xid)

dziddXid (5.15)

=−
∫
Xid

∫
zid

p (Xid, zid) log p (Xid | zid) dziddXid (5.16)

−H (Xid) . (5.17)

The entropy term −H (Xid) of the neutral faces in dataset is a constant

during training so can be ignored. Following the assumption described in

the architecture, we have:

p (Xid, zid) =

∫
X

p (X,Xid, zid) dX (5.18)

=

∫
X

p (zid | X) p (X,Xid) dX. (5.19)

Since X and Xid form a data point in the dataset of size N , we can estimate

p (X,Xid) using the dataset (i.e. empirical data distribution), then further
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derive an empirical lower bound of the mutual information in Eq. (5.14):

−I (Xid; zid) (5.20)

≤ 1

N

N∑
n

−
∫
zid

p (zid | Xn) log p
(
Xid

n | zid
)
dzid (5.21)

≤ 1

N

N∑
n

−Ezid∼qϕ

[
log pθid

(
Xid

n | zid
)]

, (5.22)

where the encoder network qϕ is used to estimate the conditional probability

p (zid | Xn) and the identity decoder network pθid is used to estimate the con-

ditional probability p
(
Xid

n | zid
)
, thus we have the final result in Eq. (5.22).

By comparing with the reconstruction loss in the original ELBO loss in

Eq. (5.6), we note that Eq. (5.22) is an aggregated negative likelihood of

the reconstructed identity faces. In order to take advantage of minibatch

training and stochastic gradient descent, we use mean squared error loss Lid

in Eq. (5.11) to replace the original variational reconstruction loss. Using

stochastic gradient descent to backpropagate from the loss function Lid on a

minibatch basis can be seen as a practically effective way of estimating the

gradient of the aggregated negative likelihood in Eq. (5.22) over the whole

dataset. Thus we encourage better reconstruction of the identity face, by

effectively maximising the mutual information between Xid and zid.

Using the encoder network to estimate the conditional probability p (zid | X)

in second mutual information term in Eq. (5.13), results in the mutual infor-

mation loss Lmi, given as:

Lmi = Iq (zid;X) = EX [KL (qϕ (zid | X) ∥ qϕ (zid))] . (5.23)

However, obtaining the aggregated posterior qϕ (zid) = EX [qϕ (zid | X)] di-
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rectly can be undesirable, since it requires a forward pass of the entire dataset

on the encoder network for each backpropagation [9]. Therefore we applied

the minibatch weighted sampling (MWS) technique proposed by [46], which

was inspired by importance sampling, to estimate qϕ (zid). Suppose we have

a minibatch of {X1, . . . ,XB}, the estimator is formed as:

Eqϕ(zid) [qϕ (zid)] ≈
1

B

B∑
i

[
log

1

NB

B∑
j

qϕ (zid (Xi) | Xj)

]
, (5.24)

where zid (Xi) is a sample from qϕ (zid | Xi).

We have formed an information bottleneck on identity faces, resulting in

the combination of two loss functions Lid and Lmi. However, the original

information bottleneck introduces a Lagrangian multiplier to allow tuning

of the compression level. Since we replaced the variational reconstruction

loss with a MSE loss, both loss functions have to be re-weighted to correctly

balance the training process. Thus we introduce two hyperparameters βid

and βmi for this purpose. To strengthen the information bottleneck, one can

increase βid for better reconstructed identity faces and increase βmi for a

more compressed identity latent code.

5.2.4 Final Loss Function

To balance the reconstruction loss and KL loss, two additional hyperparam-

eters are introduced, resulting in the full loss function:

L = λ1 (Lrec + βidLid) + λ2 (LKL + βmiLmi) . (5.25)

Where we divide four loss components into two groups, balancing them

with λ1 and λ2, then increasing the information bottleneck weights β1 and
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β2 to strengthen its effect.

As there are 4 loss functions in the whole system, choosing the right four

hyperparameters to balance them can be cumbersome. Therefore the tuning

of the weighting parameters is segmented into two phases. The first phase

is to set both βid and βmi to 1, then tune λ1 and λ2 to balance the MSE

loss and KL loss because MSEs are used as reconstruction loss instead of

the variational ones. The second phase is then to increase βid and βmi to

strengthen the information bottleneck. Note that two other 3D facial ex-

pression disentangling works [95, 54] propose to use the same weight on all

identity, expression and full face reconstruction losses, we argue that increase

the weight of the identity reconstruction loss while keeping the rest recon-

struction losses’ weights unchanged can attribute to better disentanglement

results.

Decomposition of the KL term

Kim et al. [9] propose a decomposition of the aggregated KL term (i.e. Eq. (5.4))

in the objective function, shown as follow:

EX [KL (qϕ (z | X) ∥ p (z))] = I (X; z) +KL (qϕ (z) ∥ p (z)) , (5.26)

where qϕ (z) = Epdata(x) [qϕ (z | x)] is the marginal posterior of the encoding

distribution, pdata is the empirical data distribution representing the whole

dataset and I (x; z) is the mutual information between X and z. The mutual

information term represents how much information about the input face is

stored in the latent code z. The KL term represents how close is the dis-

tance between the encoded latent code distribution and the prior distribution

(i.e. multi-variate unit Gaussian in the context).
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A number of publications consider undesired to penalise the mutual in-

formation term in the decomposed KL since it can decrease reconstruction

quality [9, 46]. However, penalising it can be beneficial in the facial expres-

sion disentangling setting since multiple faces are mapped to single neutral

face, forming a many-to-one VAE. Inspired by this, while the publications

penalise more on the second term for better disentanglement, we propose to

add an additional mutual information regulariser on identity latent code to

penalise the information about faces with expression stored in the identity

latent code, therefore achieve less oscillated reconstruction identity faces for

various faces share the same identity.

5.2.5 Implementation Details

PyTorch [146] is used to build the whole system. The encoder PCT uses the

original PCT paper’s architecture on the self-attention module, followed by

fully connected layers that are configured as {1024/256/64/ (∥zid∥+ ∥zexp∥)× 2}.

For decoders, the identity decoder and the full face decoder share the same

architecture: an MLP with 256 hidden neurons. For a fair comparison with

other models that evaluate on the CoMA dataset, we choose latent code sizes

as |zid| = 4 and |zexp| = 4. We select loss function weights based on a cross-

validation set from the training and empirical tuning the values, then train

on the full training set. For the loss function weights, we use λ1 = 6.6×10−2,

λ2 = 3 × 10−3, βid = 10, βmi = 50. The whole system is trained over 300

epochs with the Adam [135] optimiser and we set the learning rate to 5×10−5

with a L2 weight decay [147] set to 10−4 and a learning rate decay of 0.7 for

every 50 epochs. The KL loss and mutual information regulariser weight λ2

decays linearly to 0 over 350 epochs.
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5.3 Evaluation

We now evaluate the performance of our proposed system. First, the two

datasets employed for evaluation purposes are introduced. Second we present

our evaluation metrics. Third, we compare our proposed network with three

state-of-the-art systems. Finally, ablation studies are presented. After pre-

senting the two datasets and the evaluation metrics, we compare our proposed

VAE with three state-of-the-art systems in quantitative evaluations. We then

present an ablation study and, finally, qualitative results for both proposed

VAE (Fig. 5.4 and Fig. 5.5) and conditional VAE (Fig. 5.6 and Fig. 5.7) are

presented. Note that all experiments are based on point clouds only, with

the mesh topology only used for visualisation.

5.3.1 Datasets

CoMA Dataset [21] This contains scans of 12 individuals performing 12

different expressions. For each subject-expression pairing, there is a video

of that person making the desired expression, giving a total of 20, 466 3D

scans in the dataset. All of the 3D face scans are registered with FLAME

topology [3] and are pose normalised. Each 3D scan has 5023 vertices and

9976 triangle faces. We follow the data split scheme proposed by [95] and [21]

that sorts all videos in alphabetical order, and then takes 10 frames for every

100 frames as the test set and train on the reminder.

BU-3DFE [148] This contains 100 individuals each with 6 different ex-

pressions over 4 different expression levels. For each subject, one neutral

scan is performed, resulting in a total of 2, 500 scans. All the 3D faces are

registered to the same topology. Each 3D scan has 5996 vertices and 11753

triangle faces. In order to further normalise the pose, we perform a rigid
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registration of all 100 neutral faces to their mean based on a number of land-

marks. Then for each subject, their 24 expression scans are rigidly registered

with the neutral face based on a number of expression invariant key points.

Finally, following [54], the first 10 subjects are selected as the test set and

the rest are used for training.

5.3.2 Evaluation Metrics

We employ the same evaluation metrics as the most closely related papers [95,

54], namely reconstruction error and disentanglement error (this is exactly

the same error as the decomposition error used in [54]).

Reconstruction Error The fundamental metric for a generative model is

reconstruction error. Since all the vertices are corresponded to the ground

truth, we can use the Average Vertex (Euclidean) Distance (AVD) to measure

the reconstruction quality:

Erec =
1

M

M∑
j

∥∥∥X̂j −Xj

∥∥∥
2
, (5.27)

where M is the number of vertices in a single face.

Disentanglement Error The disentanglement error measures the vari-

ance in the predicted identity faces from the same subject. Given a subset

of the test set that contains various expressions from the subject d denoted

as: {Mi}, the predicted identity faces (i.e. neutral faces) can be generated

by the system, denoted as:
{
Mid

i

}
. Let Md denote the mean face of all

predicted neutral faces for subject d. The disentanglement error can then be
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formulated by:

Edis = STD
({∥∥Mid

ij −Md
j

∥∥
2

})
, (5.28)

where j is the vertex index and STD estimates the standard deviation. Jiang

et al. [95] propose to apply the same error metric on predicted expressions

from different subjects that perform the same expression. We omit this

analysis, because we assume different subjects perform the same expression

in different ways, thus the expression disentanglement error is expected to be

high. However, we use a conditional VAE to further disentangle expression

information.

Jiang et al. [95] propose to perform the same error metric on predicted

expressions from different subjects that perform the same expression. Both

Zhang et al. [54] and this paper omit this error because we use a different

assumption on expressions. Jiang et al. use an average expression as the

ground truth expression for their expression model, while Zhang et al. argue

that different subjects have different ways to express the same expression.

In fact, we find that averaging all the angry expressions in the original BU-

3DFE dataset results in a face that is very close to a neutral face. Therefore,

Zhang et al. construct a unique ground truth expression for each subject.

So unlike identity variance, the expression variance is expected to be greater

than zero. Unlike Zhang et al., we choose to model expression implicitly,

that implies no ground truth expression. Additionally, the identity variance

can measure how accurate the identity is disentangled from the expression

face solely, therefore, along with reasonable reconstruction error, it becomes

a sufficient metric for disentanglement.
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5.3.3 VAE Quantitative Evaluation

Compared Methods We compare our work to a number of 3D face mod-

elling methods based on the autoencoder structure. MeshAE [21] and Spi-

ralNet++ [92] both focus on applying a GCN architecture to 3D-to-3D mesh

reconstruction, regardless of disentanglement. FLAME [3] builds identity

and expression latent representations separately and reconstructs using a

linear system. The two most related works to our proposed system are Jiang

et al. [95] and Zhang et al. [54]. Both of these focus on disentangled fa-

cial expression modelling using GCN architectures and are evaluated using

same metrics. Note that We use the same scale for our heatmap, for visual

comparison with existing methods, please refer to the original papers.

Tab. 5.1 gives disentanglement results for several systems. Our baseline,

denoted as ”Ours - No IB” which stands for no Information Bottleneck, sets

βid to 1 and βmi to 0 and obtains a competitive result. Setting βid to 1

means to disable the effect of the information bottleneck. One intermediate

result “Ours - βmi = 0” sets βid = 10 and βmi = 0 shows the effectiveness of

the Lmi solely. Our final proposed method sets βid = 10 and βmi = 50 and

surpasses the current state-of-the-art by a large margin.

Method mean median
FLAME [3] 0.599 0.591
Jiang et al. [95] 0.064 0.062
Zhang et al. [54] 0.019 0.020
Ours - No IB 0.025 0.022
Ours - βmi = 0 0.016 0.013
Ours 0.006 0.005

Table 5.1. Disentanglement result (mm) compared with current literature on
CoMA dataset.

The detailed results of reconstruction error are shown in Tab. 5.2. The
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reconstruction results are divided into two groups, where non-disentangling

methods generally have better reconstruction results. One potential reason

is that disentanglement methods add extra objectives for disentanglement

that act similar to regularisers, which will make reconstruction performance

drop. However, from the results, our model can still achieve competitive

reconstruction results. Furthermore, by comparing the two results of our

model, the performance drop on reconstruction quality introduced by the

mutual information regulariser is a tolerable price to pay for disentanglement.

Method mean ± std median ne mean ± std median

Non-disentanglement
Methods

MeshAE[21] 0.845± 0.994 0.496 \ \
SpiralNet++[92] 0.543± 0.663 0.320 \ \
Ours - No IB 0.614± 0.192 0.594 0.065± 0.021 0.065
Ours - βmi = 0 0.604± 0.183 0.581 0.054± 0.020 0.049

Disentanglement
Methods

FLAME[3] 1.451± 1.649 0.871 \ \
Jiang et al. [95] 1.413± 1.639 1.017 \ \
Zhang et al. [54] 0.665± 0.748 0.434 \ \

Ours 0.663± 0.215 0.643 0.051± 0.021 0.048

Table 5.2. Reconstruction results: Average Vertex Distance (mm) compared with
literature on the CoMA dataset (column 3 and 4). Our methods’ reconstructed
neutral faces AVD (column 5 and 6).

The results for disentanglement error and reconstruction error on the BU-

3DFE dataset are shown in Tab. 5.3. Our approach here employs βid = 1

and βmi = 50 to obtain a better disentanglement result compared to current

state-of-the-art, again with a competitive reconstruction error.

5.3.4 Ablation Studies

The effect of introducing the information bottleneck is now evaluated. In

Fig. 5.3a and Fig. 5.3b, we study the impact of modifying the mutual in-

formation regulariser’s weight βmi ∈ {0, 10, 25, 50, 75, 100} while keep the

identity reconstruction loss weight at fixed values βid ∈ {0, 10}. From the
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Method
Disentanglement Error Reconstruction Error
mean median mean ± std median

FLAME[3] 0.600 0.632 2.596± 2.055 2.055
Jiang et al. [95] 0.611 0.590 2.054± 1.199 1.814
Zhang et al. [54] 0.361 0.327 1.551± 0.924 1.375

Ours 0.328 0.296 1.628± 0.333 1.589

Table 5.3. Disentanglement results (mm) compared with current literature on the
BU-3DFE dataset.

graphs, one can observe that increasing identity loss weight and mutual in-

formation regulariser weight can result in lower disentanglement error and

higher reconstruction error. The increase in reconstruction error is expected

because there exists a fundamental trade-off for the information bottleneck

(IB) between concise representation and good reconstruction power [149].

The mutual information regulariser encourages the first term, while the re-

construction errors encourage the other. Meanwhile, using overly large IB

weights can harm performance. From the graphs, one can observe that given

an identity reconstruction loss is not strongly weighted, the information bot-

tleneck can constrain the necessary information to convey from input to

latent code, resulting in an overly compressed latent representation. There-

fore, it is critical to adjust the information bottleneck to the appropriate

level, which can raise the difficulty in hyperparameter tuning in practice.

Also, another drawback of the system is that the disentanglement error can

have a relatively larger variance. When repetitively training three times

without and with the mutual information regulariser, the variance of dis-

entanglement error raises from 0.0002 to 0.0014. This is because we use

sampling to obtain the mutual information term. Finally, we apply the mesh

topology to the reconstructed point clouds to evaluate mesh quality in regard

to self-intersecting faces (fewer is better). On the CoMA dataset, compared
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Figure 5.3. Mutual information regulariser weights’ impact on: (a) disentangle-
ment error and (b) reconstruction error, CoMA dataset

to the ground truth data, which has 548.60 intersecting faces per mesh, the

reconstructed data has an average of 510.06 intersecting faces per mesh. For

the BU3DFE dataset, the number of intersecting faces per-mesh is 0.012 and

0.020 for ground truth and reconstruction respectively.

Although we obtained the state-of-the-art disentanglement result on BU-

3DFE dataset, the performance on unseen identities in the BU-3DFE dataset

remains challenging, as the information bottleneck is not as effective as when

it is applied to the CoMA dataset. We evaluate the effectiveness of mutual

information loss on BU-3DFE. Raising βmi from 0 to 50 only results in a small

decrease of the disentanglement error from 0.332 to 0.328. The reconstructed

neutral for βmi = 50 has an average vertices distance of 2.264mm, increased

from 2.253mm when βmi = 0. The main reasons for the non-ideal overall

performance on BU-3DFE are: 1) part of the faces are not well registered

with each other, resulting in small pose differences and noise; 2) lack of data

causes difficulties in avoiding overfitting in the current setup, and Lmi on

a smaller dataset is not as effective as on a larger dataset e.g. CoMA; 3)
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Ground Truth

Predicted Full Faces

Error Map

Predicted Identity

Error Map

> 3mm

0mm

Figure 5.4. Visualisation of reconstruction quality on both identity and full face.

each subject contains only 24 faces with expressions, which is insufficient

compared to ∼ 1, 200 per subject in the CoMA dataset; 4) 100 different

identities are present, making it easier to learn the variation of expressions

than identities, thus the neutral AVD is higher.

5.3.5 VAE Qualitative Evaluation

In Fig. 5.4, we demonstrate the reconstruction quality for both identities and

full faces (i.e. with expression). With the information bottleneck applied, the

reconstructed neutral faces have extremely low error.

In Fig. 5.5, we visualise the identity latent code on the model trained

on BU-3DFE dataset by dimension reduction using PCA. We show that the

learned model clusters the latent representation for similar faces.
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Figure 5.5. Scatter plot of PCA-processed identity latent code on BU-3DFE
dataset. The axes represent dimensionally-reduced latent code values. Differ-
ent subjects are marked with their hexadecimal ID and with different colours.

5.3.6 Conditional VAE Evaluation

We also perform evaluations using a conditional VAE on CoMA dataset. A

Support Vector Machine (SVM) is trained and evaluated on the test set to

predict the subject ID from the identity latent code zid and expression latent

code zexp respectively. The accuracy results are 100% and 45.4%, while a

random predictor will give an accuracy of 8.3%. The high accuracy result

from zid shows that the identity latent code contains adequate information

for identities and different identities are trivial to separate. The high accu-

racy result from zexp shows that expression latent code does contain infor-

mation about identity. This is expected, since everyone has a different way

of expressing the same expression, such that the expression latent code en-

codes personalised expressions. To further separate expression information

out of zexp, we utilise dataset labels to train a conditional VAE on top of
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our proposed architecture. The identity recognition results are 100% for the

identity code and 16.0% for the expression latent code. The drop of accu-

racy for expression is mainly because 3 out of 4 expression latent variables

are collapsed to the standard Gaussian distribution, while the remaining one

variable encodes the mouth direction. Visual details are demonstrated in our

qualitative experiments. This reduces the uninterpretable latent variables

from 8 to 5. Our conditional VAE gives a reconstruction error of 0.740mm

and disentanglement error of 0.008mm. It enables the generation of expres-

sions with semantically-meaningful expression labels in exchange for a small

performance drop.

We also perform evaluations using a CVAE using the same hyperparam-

eters as the proposed method on CoMA data. By providing 12 explainable

expression-level variables to the decoder, 3 out of 4 expression latent variables

are collapsed to the standard Gaussian distribution, while the remaining vari-

able encodes mouth direction (visual details in Fig. 5.6). This reduces the

uninterpretable latent variables from 8 to 5. That is 4 uninterpretable vari-

ables for identity, 1 uninterpretable variable and 12 interpretable variables

for expression. Our CVAE gives a reconstruction error of 0.740mm and dis-

entanglement error of 0.008mm. It enables the generation of expressions

with semantic expression labels in exchange for a small performance drop.

In Fig. 5.6, we use the full face decoder part of the conditional VAE to

generate faces directly. The upper row demonstrates the different expressions

generated upon a fixed identity by providing an expression level for selected

expression. We can also control which expression to generate by changing the

corresponding variables. The CoMA dataset only provides one label for the

mouth going to both left and right side, however, the conditional VAE still

captures that information and stores it as one variable in zexp. Given other
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(1) (2) (3) (4) (5)

Same Identity

Same Expression

Figure 5.6. Conditional VAE generated samples. Upper row: same identity, differ-
ent expressions; Lower row: same expression (mouth extreme), different identities.
The expressions generated on the first row are: (1) bare teeth. (2) eyebrow, (3)
lips up, (4) mouth side (left) and (5) mouth side (right)

0 0.25 0.50 0.75 1.0 1.5

Figure 5.7. Conditional VAE generated samples with gradual increasing expression
level on cheeks in expression, while keeping all the rest latent variables fixed.

latent variables are collapsed to a prior, modifying this uninterpretable vari-

able results in (4) and (5) on the first row of Fig. 5.6. The bottom row shows

generating the mouth extreme expression using different identities. Finally,

Fig. 5.7 shows that with the CVAE, one can generate certain expressions

with different levels of intensity.



134 Full Head Autoencoder with Expression Disentanglement

5.4 Future Works

There are a number of potential future works. With the PCT as our encoder,

the network itself is designed to work on point clouds whose vertices are

permutation invariant. As PCT designs its architecture in transformer style,

it can take point cloud inputs that vary in point amounts. This allows for

the potential to combine multiple datasets to counter the issue of lack of

data. Another interesting direction is to remove the restriction that demands

a corresponding neutral face for every face with expression. Finally, the

information bottleneck in this paper has the potential to be further optimised.

Currently, it requires multiple experiments to find the best weights of the

information bottleneck, this process can be potentially optimised as [150]

proposes an optimal boundary for the information bottleneck.

5.5 Conclusion

We demonstrated identity and expression disentanglement, using an intu-

itive structure with an additional information bottleneck on the identity

sub-system. We showed that the information bottleneck can be integrated

with the current VAE training structure by adding an additional mutual

information loss. Future work may include finding the optimal boundary

for optimised weight selection and further increasing the method’s efficiency

for datasets with fewer scans per subject. Our results show that the our

architecture performs better than the current state-of-the-art in term of dis-

entanglement performance. Furthermore, with use of a CVAE, we are able

to generate expressions using expression labels and their corresponding ex-

pression levels.



135

6
Conclusions

In this chapter, we summarise what has been achieved and give general con-

clusions. Finally, we discuss the potential future work, given the work that

has been presented in this thesis.

6.1 Thesis Summary

In this thesis, we firstly present an overview of the field of research of 3D

human-related object reconstruction including ears, eyes, eye regions, faces

and facial expressions. In the literature review chapter, we review all the

techniques and predecessor research works in detail. Then, we present the

three technical works done during the PhD study. Summaries of these are in

the following three subsections.

6.1.1 Human Ear: the HERA System

This work aims at reconstructing the underlying 3D ear geometry and colour

details, given a monocular RGB input image. Modelling of ear shapes is an

important part of human head modelling, yet it has received far less attention

from the computer vision community, when compared to the face modelling.

Inspired by previous work on monocular 3D face reconstruction using an

autoencoder structure to achieve unsupervised learning, we aim to utilise
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such a framework to tackle the 3D ear reconstruction task, where more subtle

and difficult curves and features are present. Our Human Ear Reconstruction

Autoencoder (HERA) system predicts 3D ear poses and shape parameters for

3D ear meshes, without any supervision to these parameters. To make our

approach cover the variance for in-the-wild images, even grayscale images,

we propose an in-the-wild ear colour model. The constructed end-to-end

model is then evaluated both with 2D landmark localisation performance

and the appearance of the reconstructed 3D ears. Furthermore, we predict

3D ear landmarks on raw 3D head scans from the Headspace dataset. Such

prediction is refined by an iterative ear model fitting process, after model

pose and shape initialisation using the HERA system.

6.1.2 Human Gaze and Eye Region: Active-Gaze Mor-

phable Model

Recently, appearance-based methods using deep networks to regress gaze di-

rection directly from raw images have been extremely popular. While most

of these methods focus on network architecture and loss function improve-

ments, we show that adding a 3D shape model to regularise the network

training process can: i) improve gaze estimation accuracy, ii) perform well

with lower resolution inputs and iii) provide a richer understanding of the hu-

man eye-region and its constituent gaze system. Specifically, we use an ‘eyes

plus nose’ 3D morphable model (3DMM) to capture the eye-region 3D geom-

etry and appearance, and we equip this with a geometric vergence model of

gaze to give an ‘active-gaze 3DMM’. Specifically, this enables the combined

rotation of the eyeballs for the expression of gaze under certain geometric

constraints, such as coplanarity of the gaze vectors. This ensures accurate

gaze estimation and eyeball positions that are consistent with both the face
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geometry and head pose. We show that our approach achieves state-of-the-

art results on the Eyediap dataset and extensive ablation studies illustrate

the contribution of each component. We also demonstrate that our method

can learn with only the ground truth gaze target point and the camera pa-

rameters, without access to the ground truth gaze origin points. This widens

the applicability of our approach compared to other methods.

6.1.3 Facial Expression Disentanglement VAE

Learning a disentangled representation is essential to build 3D face models

that accurately capture identity and expression. We propose a novel varia-

tional autoencoder (VAE) framework to disentangle identity and expression

from 3D input faces that have a wide variety of expressions. Specifically,

we design a system that has two decoders: one for neutral-expression faces

(i.e. identity-only faces) and one for the original (expressive) input faces re-

spectively. Crucially, we have an additional mutual-information regulariser

applied on the identity part to solve the issue of imbalanced information over

the expressive input faces and the reconstructed neutral faces. Our evalua-

tions on two public datasets (CoMA and BU-3DFE) show that this model

achieves competitive results on the 3D face reconstruction task and state-

of-the-art results on identity-expression disentanglement. We also show that

by updating to a conditional VAE, we have a system that generates different

levels of expressions from semantically meaningful variables.

6.2 Conclusions

In this thesis, we present various techniques for reconstructing different hu-

man head related objects with various input types and focuses. The initiative
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of the whole research is that when a reconstruction or modelling algorithm

focuses on the whole object (e.g. human head) the details of the smaller ob-

jects (e.g. ears, eyes) on the bigger object can be easily ignored. That is,

if the modelling of the whole head is employed, it is hard to learn the high

frequency details of the ears and eyes. One solution, also the solution we

proposed, is to model each part individually and joint them together to a

composite model. In such way, the task of each model is more designated

and we always have the option to tune each model individually to suit the

needs.

Our proposed methods also diversify the forms of the data that we pro-

cess and generate. For the ear and the eye works, our methods can process

monocular 2D RGB images. For the facial expression work, our method pro-

cesses 3D point cloud data. Both types of data are very common in real

deployment. Standard 2D RGB images probably are the most common data

type that can be obtained easily with mobile phones or webcams. Therefore,

the methods have potential to be deployed to smart phones and home com-

puters to obtain underlying 3D structures of eye-regions and ears. On the

other hand, point cloud is a wildly used data type and can be obtained by

modern mobile phones with a multi-camera system or a Lidar sensor.

There are also some general drawbacks of the proposed methods. Start-

ing from the 2D-to-2D approaches for ear and eyes, where the input data

contains no 3D information, this makes the task fully reliant on the under-

lying 3D model. Meanwhile, the proposed camera model is a depth-unaware

scaled orthogonal projection model. These two factors jointly create more

ambiguities in 3D coordinates such as pose ambiguity and pose-structure

ambiguity similar to [151]. The other issue about the 2D-to-2D approaches

is that although they can train without any supervision, the difficulties of
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training them are much harder than those with landmarks provided. Some-

times additional loss functions have to be employed to prevent the model

from deviating too much [78]. We now consider the 3D-to-3D approach for

facial expressions, where the whole pipeline is more concise, since no 3D-to-

2D conversion is needed. The biggest limitation of this method is that it

suffers from the curse of dimensionality. The current CoMA dataset contains

head meshes with ∼ 5000 vertices, but the real scans of the whole head can

easily exceed 100000 vertices. The increase in the size of the input point

cloud will put extra pressure on both the encoder network and the decoder

network. Also, the experiments are done using registered point clouds. That

is, although the method can process point clouds, there is still the need for it

to learn in a fully unsupervised manner with real world scans. Mitigating this

issue remains a general open question and can potentially be solved in the

future by more cleverly designed networks or by better hardware equipment.

For the backbone networks we employed, we use popular or state-of-the-

art networks at the time of the experiments. However, it is a fast developing

area that we use a different backbone network for each of the three presented

works. The analysis of applying different backbone networks to both our and

other existing works remains unexplored.

6.3 Future Work

In this section, we will discuss the potential future works based on our three

contributions, in order to show the their potential. The technical aspects will

be discussed first, followed by the general direction of such a design choice

of model-based methods. Finally, the potential of a composite model that

contains individual models like those that we proposed will be discussed.
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More Data Types One future work includes extending to more data types

to analyse and synthesise. Since a number of robotic systems have both RGB

camera and depth camera installed [152], they can feed in data with corre-

sponded RGB images and depth images. This provides richer information

than sole RGB images discussed above, such that depth information can be

utilised to better infer the underlying 3D structure. The fusion of both fea-

tures can be an interesting direction to go in 3D reconstruction tasks. Similar

networks have been proposed to fuse both features, but they have not been

applied to any 3D human-related object reconstruction [153]. On the other

hand, volumetric data are not commonly used to create a statistical model

or applied to 3D human-related object reconstruction. Volumetric data has

been extensively used for medical imaging [26], and they have received much

less attention for 3D volumetric reconstruction or statistical modelling of

medical images compared to RGB images or point cloud data.

Better Model The synthesised images or point clouds from the model can

have an implausible appearance, especially for the 2D image methods. Most

of the literature uses a simplistic differentiable renderer where no lighting

model or a simple lighting model is used. This simplifies the task and makes

the deep neural networks easier to train. However, along with the linear

texture model (some focus on realistic texture model, e.g. [32]), the sim-

plistic renderer often synthesises unrealistic images. This situation is worse

given more non-trivial surfaces, such as eyeball surfaces, which are moist

and makes the reflection calculation much harder. Given all these, it makes

improving a model-based generation model’s plausibility an important di-

rection to develop. In terms of plausibility, the end-to-end network-based

generation methods (e.g. GAN) are the state-of-the-art methods for gener-
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ating 2D images in an implicit way nowadays. However, generative models

can still greatly benefit from underlying models to encode more valuable

and versatile information explicitly. All our works explore different ways of

the fusion of modern end-to-end network-based methods and model-based

methods to benefit from both advantages.

Composite Model The ultimate goal of the direction that this thesis pro-

poses is the ability to get a composite model that can represent and manip-

ulate different properties given a high-quality raw scan of the human head,

and has enough detail on every important sub-object. This thesis focuses on

building the sub-objects’ models individually, and leaves the composition as

a future work. Although there is current work that aims to model-fit a com-

plete head with sub-parts [61], we solve a similar problem with deep learning

approaches instead of a model-fitting approach. This has various advantages,

including fast inference time compared to model-fitting, and strong feature

extraction ability that maps the raw features to model parameters directly

with extra information that are of high accuracy, e.g. our active gaze mor-

phable model system. Being able to composite all the sub-models together

is a valuable future research direction.

Fully Unsupervised Learning For the topic of supervised vs. unsu-

pervised learning, our works are enabled to perform unsupervised learning.

However, additional supervision is often required to obtain satisfying results.

In the meantime, under some of the circumstances, a learned model is re-

quired for providing ground truths, thus achieve unsupervised learning. This

can introduce errors and bottlenecks to the unsupervised learning process,

then impair the learning performance. To achieve high performance fully

unsupervised learning for our tasks without any labels either from manual
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work or learned models remains unsolvable. It is of great importance to the

research community if the high performance fully unsupervised learning for

any of our works can be solved in the future.
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