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Abstract

• The research reported in this thesis is motivated by the goal of using math-

ematical models to better understand the within-herd disease dynamics of

Bovine tuberculosis (BTB) in UK cattle.

• This led to the development of new Bayesian methods and tools, including

an open-source software package for Bayesian data analysis. In particular,

those applicable to Discrete-state-space Partially Observed Markov Processes

(DPOMP models).

• These were applied to the problem of model and parameter inference for a

sample of individual herds selected from UK BTB surveillance records.

• Those findings led to the alternative models and methods utilised in the penul-

timate chapter, where we present a large scale, system-of-herds model and re-

port novel parameter estimates for BTB. The latter include those that relate

to disease detection; regional background risk; and farmer behaviour (specif-

ically, the trading of live cattle).

• The work goes beyond previous, similar published research in three ways: it

incorporates individual herd records, not just aggregated data; it includes

formal methods of model assessment; that work is (partially) extended to

systems comprising up to thousands of herds.
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Chapter 1

Introduction

“The movement of events is often as wayward and incomprehensible

as the course of human thought, and this is why we ascribe to chance

whatever belies our calculation.”

-Pericles

Summary

• The research reported in this thesis is motivated by the goal of using math-

ematical models to better understand the within-herd disease dynamics of

Bovine tuberculosis (BTB) in UK cattle.

• This led to development and application of methodology and software for

statistical inference for such models and in particular for Discrete-state-space

Partially Observed Markov Processes (DPOMP models).

• This brief introductory chapter begins by providing background information

concerning this primary motivation. It then describes the overall aims and

objectives, and outlines the structure of the remainder of the main text.

38



1.1 Problem statement and motivation

“Scientific findings indicate that the rising incidence of disease can be

reversed, and geographical spread contained, by the rigid application of

cattle-based control measures alone.”

- Professor John Bourne, Chairman of the [UK] Independent Scientific

Group on Cattle Tb [13]

1.1.1 Background

Bovine tuberculosis (BTB) is a bacterial infectious disease caused byMycobacterium

bovis, which for the benefit of the uninitiated is a slow-growing, nonchromogenic

acid fast bacillus [14]. It affects cattle and a wide range of other mammals including

humans, badgers, deer, goats and pigs. The primary routes of infection are through

the respiratory and gastrointestinal tracts. There is no test that can reliably deduce

the route by which an animal was infected, though this is sometimes indicated post-

mortem by the presence of lesions in specific internal organs. In terms of financial

losses BTB has been reported to account annually for an estimated USD 3 billion

globally, of which approximately USD 130 million was attributed to the UK in

c.2006 [14, 15].

BTB in cattle is an endemic disease that presents significant [statistical] mod-

elling challenges, in part because the nature of transmission is poorly defined. Other

sources of uncertainty include trade; other extraneous factors such as the possible

presence of wildlife reservoirs; and the aforementioned (i.e. ‘slow-growing’) long

generation time associated with M. Bovis –approximately 16 to 20 hours [16]. The

latter complicates the task of clearly identifying patterns of infection due to the time

elapsed between exposure and [at least indirectly] observable indicators of disease,

such as ‘shedding’ [17, 18].

The control of BTB is an interesting and often controversial topic. However

it is important to note that the ‘controversy’ surrounding BTB does not appear

to be related any significant discord in the scientific community, at least concern-

ing the overall importance of wildlife reservoirs (and by extension, the relevance of

measures such as badger culling). On the contrary, while much about the nature

and role of inter-species transmission (in both directions) remains unknown, intra-

species (cattle-to-cattle) transmission is generally accepted to be far more common.
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In his report to the Secretary of State for Environment, Food and Rural Affairs in

2007 (as quoted at the top of this chapter) Professor John Bourne of the Indepen-

dent Scientific Group on Cattle TB noted the implications of this fact with respect

to control measures: those that target cattle-to-cattle transmission, alone, would

likely be sufficient to systematically reduce BTB incidence on UK cattle farms.

This implies, at the least, that the dynamics of BTB cannot be adequately ad-

dressed without considering how cattle-to-cattle transmission (and relevant control

measures) feature in the problem.

1.1.2 Modelling within-herd BTB dynamics

Within-herd BTB transmission is the most obvious form of cattle-to-cattle trans-

mission, since herds are usually managed so as to keep them largely isolated from

one another. An important exception is inadvertent import/export (domestically

and otherwise) of disease through trade. Nevertheless the primary focus of ini-

tial chapters is within-herd transmission, with consideration of external sources of

infection (and related farmer behaviour) postponed until Chapter 7.

The difficulties associated with statistical analysis of within-herd transmission of

BTB (i.e. the sources of uncertainty noted above) are evidenced by the wide range

of estimates reported for important epidemiological parameters like the ‘latent’

period [17, 2, 15]. This is discussed further in Chapter 6. Details of the models

and methods developed to address this problem are also described in subsequent

chapters. For now, key aspects of the broad approach adopted throughout are

illustrated in Figure 1.1. The image is easily recognisable as a (somewhat) standard

epidemiological model.

The rates that govern state transitions in the model, which we can think of as

the migration of individuals between ‘compartments’, are shown as mathematical

expressions (between the boxes) that depend on the numbers of individuals in each

state, and are given for each type of transition, or ‘event’ (this overall process is

referred to throughout as ‘migration’). The rates are also partially determined by

‘model parameters’, represented by letters of the Greek alphabet. For example the

‘contact’ parameter is denoted by β and influences the rate of new infections.

A useful application of Bayesian inference (see Chapter 2) is to estimate, or

infer, [the likely distribution of] such model parameters from data. For example, if

we ignore the possibility of extraneous migration (other than the presumed removal
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of test-positive animals – not shown) then we could ‘fit’ the illustrated model using

within-herd BTB ‘surveillance’ data. Then, in as far as the model is adequate, the

inferred parameters could be said to characterise within-herd BTB dynamics.

S E T I
βSI γ1E γ2I

Figure 1.1: Compartmental modelling. The Susceptible-Exposed-Test sensitive-

Infectious (SETI, also referred to as the ‘SORI’ [2]) model is one of a number of

similar compartmental models proposed for BTB. Conceptualised as a continuous-

time, discrete state-space model, individuals transition in sequence between states

according to specified event rates. The states correspond to: susceptible to the dis-

ease S; exposed but neither infectious or detectable by available diagnostic tests E;

test-sensitive but not yet infectious T ; and infectious I. Furthermore, model state-

space is the vector describing the numbers of individuals in each state {S,E, T, I}.

1.1.3 Study design

In contrast to standard experimental design, that typically poses a specific scientific

question of data that we intend to collect, the nature of observational studies leads

to a more general question:

‘What interesting scientific question[s] can be addressed, given the data

that are already available?’

The design of such a study is thus emergent, beyond the need to evaluate the data;

clean it; and process it for statistical inference. Another important consideration is

the selection of appropriate models and methods. For example, the broad approach

adopted in this thesis is referred to as Bayesian data analysis [19, 11].

The overall objectives that have been identified for this project, including how

they relate to specific portions of the thesis, are laid out in the next section. The

[observational] data available primarily consists of BTB surveillance records that

(purportedly) include the number of tests, positive reactors (i.e. animals that are

test positive for BTB) herd size and other certain other pertinent information. The

initial aims for the project include fitting models such as the one shown in Figure 1.1
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to data on individual herds, which to the best of our knowledge this has not yet been

done by others who have analysed this data. One benefit of analysing individual

herds is that it ought to allow a more detailed characterisation of the disease process

compared with less fine-grained epidemiological modelling approaches that have

been utilised to date to analyse the same or similar data [17, 2, 15].

1.2 Aims and objectives

We now enumerate the specific aims of this work and explain the layout of the

thesis.

The key aims and objectives are:

1. To characterise within-herd BTB dynamics in UK cattle herds using the avail-

able data. In the first instance, to carry out Bayesian parameter inference

based on conventional epidemiological models for a selection of individual

herds.

2. To extend (1) to the problem of multi-model inference; to discover which mod-

els best fit the data, and formally evaluate those results using the appropriate

Bayesian methods.

3. Ultimately, to apply the findings of (1) and (2) towards to a large-scale system-

of-herds model, up to and including national level (i.e. many thousands of

herds).

4. Building on the above to develop [Bayesian] tools and methods that are of

potential value to the wider scientific community.

The extent to which any of these aims were met is summarised in the concluding

chapter of the thesis. However the first and second are at least addressed directly

in Chapter 6. The third, in Chapter 7. The last is arguably addressed in two

different senses, first by the algorithms and Bayesian workflow presented in Chap-

ters 3 and 4. Secondly by the implementation of those methods as an open-source

software package, as discussed in Chapter 5. Both those units of work rely heavily

on the methods and concepts introduced in Chapter 2.
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1.3 Thesis structure

The organisation of the thesis is informed (to some extent) by the way the project

itself was planned and executed, with the selection, development, and implemen-

tation of methods covered in early chapters, and the application of those methods

to the motivating problem covered in later ones. This is summarised visually in

Figure 1.2.

C1 Introduction

C2 Background: methods

C3 Hybrid algorithms

C4 & C5 Bayesian workflow and software package

C6 Within-herd BTB dynamics

C7 Alternative within-herd model

Application

Development

Implementation

A fresh approach

Figure 1.2: Thesis structure. This overview essentially represents the original plan

w.r.t. to the initial chapters. Additional work was conducted as a result of the

findings presented up to Chapter 6, as laid out in a subsequent chapter.

Chapter 2 introduces key underlying methods and notation relied on throughout,

covering both development of stochastic models for disease transmission and a wide

range of approaches and specific methods for statistical inference that can and have

been applied to such models.

Chapter 3 introduces two novel methods for statistical inference that derive

their strengths through combination of distinct approaches to inference normally

considered separately. The following chapter incorporates them with the concept
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of Bayesian Workflows. This is intended to ensure robust analysis of available data

by detecting potential pitfalls and enabling the practitioner to correct them.

In Chapter 5 a software package is introduced that enables users to define,

simulate and perform inference on a wide range of stochastic models using a simple

syntax and interface. This package provides access to a wide range of inference

methods introduced in previous chapters and can be used to implement the Bayesian

Workflow described in Chapter 4.

The computational and inferential limits of these methods are tested in Chap-

ter 6 through application to data sets describing within-herd BTB testing data from

UK cattle farms. In response to the computational challenges encountered, Chap-

ter 7 introduces inference for a more tractable model formulation of within-herd

BTB dynamics and applies this to data at regional scale. Finally Chapter 8 reviews

achievements and lessons learned and suggests avenues for further research.
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Chapter 2

Background: methods

“The combination of Bayes and Markov Chain Monte Carlo has been

called ‘arguably the most powerful mechanism ever created for processing

data and knowledge”’

- Sharon Bertsch McGrayne [20]

Summary

• This chapter introduces key concepts and notation used throughout the thesis.

• It presents the algorithms that are applied and further developed to obtain

the results and new models and methods presented in later chapters.

• It introduces DPOMP models of within-herd disease dynamics in UK cattle

herds and methods for Bayesian inference applicable to such models.

• Finally, it shows relationships between such methods and highlights those

directly relevant to the generalised implementations (i.e. software packages),

produced throughout the course of the project, and described in Chapter 5.
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Overview

The purpose of this chapter is to introduce the concepts and notation required to

motivate and understand the technical developments and applications presented

later in this thesis (See Figure 2.1 for an overview). Section §2.1 introduces key

concepts, terminology and notation used in dynamic epidemiological modelling of

disease transmission. Section §2.2 introduces relevant material on stochastic pro-

cesses. The Bayesian framework for single-model inference is described in §2.3.
However, the greater part of the chapter is devoted to a description of a wide range

of computational approaches to sampling algorithms used to implement Bayesian

inference in practice (see §2.4). Finally in Section §2.5 describe how the Bayesian

framework is readily extensible to multi-model inference and show how some of the

algorithms introduced in §2.4 enable implementation of this.

2.1 Introduction: epidemiological modelling

Using the canonical example of the Kermack-McKendrick SIR model [3] this section

introduces the key ideas of pathogen transmission and the dynamics of progression

through discrete disease states. Together with the concepts stochastic process mod-

els introduced in §2.2 –which provide a mathematical foundation for the dynamics

of the models introduced in this section– these ideas provide the basis for epidemi-

ological applications of the Bayesian framework for statistical inference (see §2.3)
described in the latter sections of this chapter and beyond.

2.1.1 Key concepts in compartmental modelling

Models like the standard susceptible-infectious-recovered (SIR) model depicted in

Figure 2.2 are easily recognisable due to their ubiquity in science and statistics.

They are sometimes referred to using the general term ‘compartmental models,

or else as state-space models (SSM) especially within population modelling and

ecology [21, 22, 23]. In a discrete SSM, individuals are said to take one of n

discrete state values and transition between them, according to the mathematical

(e.g. probabilistic) statements, which are therefore held to govern dynamics within

the modelled system.
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§2.1 Disease dynamics §2.2 Stochastic processes

§2.3 Bayesian framework

incl. model selection (§2.5)

§2.4 Sampling algorithms

C3 Hybrid algorithms

C4 Bayesian workflow

C5 Software packages

C6 Within-herd BTB dynamics

C7 Alternative within-herd model

‘Model’a Dynamics

Purposeb

Development: new methods

Contribution to toolkit for scientific discovery

Routine implementation

Applications

aimplemented as deterministic or (as here) stochastic process
bi.e. functional purpose – the technical motivation here.

Figure 2.1: Key concepts and their relation to thesis. This chapter begins

with a brief introduction to the class of epidemiological state-space-models consid-

ered throughout the thesis, along with the stochastic processes used to simulate

them. Next Bayesian inference and the algorithms used to implement are intro-

duces. Together these provide the foundational basis for the methods and applied

problems considered later in the thesis.

Deterministic vs. stochastic models

Model ‘dynamics’ is used throughout simply to refer to the time-evolution of the

system. In other words, the change in the overall system state, over time. In

mathematical terms this could be described for the SIR model using a set of ordinary
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S I R
βSI γI

Figure 2.2: Example of an epidemiological state-space model. The

susceptible-infectious-recovered, or SIR, model [3]. The rate quantities given here

can be interpreted in different ways –probabilistic or deterministic– but in either

sense they are mathematical expressions that govern the time-evolution of the sys-

tem. For example, in a discrete-state-space models individuals take only one value

of a discrete set of states {S, I, R}. Allowed transition between states (arrows)

occur according to rates determined by the system state-space vector (S, I, R) rep-

resenting the numbers of individuals in these states at a given time and model

parameters. Here the parameter β is the transmission or contact rate and γ is the

recovery rate.

differential equations:
dS

dt
= −βSI (2.1)

dI

dt
= βSI − γI (2.2)

dR

dt
= γI (2.3)

This is a deterministic representation of the model. Alternatively, model dynam-

ics may be expressed in probabilistic terms – a ‘stochastic’ model (i.e. with a

probabilistic element). For example, this can be achieved by developing stochastic

differential equations through the addition of so-called noise terms to the system

of equations. In the Euler discretisation of the above equations with time step ∆t

these noise terms would be proportional to i.i.d. Gaussian random variables (one

for each time-step) with mean zero and variance ∆t. The (tricky) limit as ∆t→ 0

leads to the formal definition of stochastic differential equations. An alternative

probabilistic approach, that is perhaps more intuitive, are discrete-state stochastic

models that count individuals in a finite number of states (or compartments) and

define the probabilities that individuals make a transition from one state to another.

These models can be in discrete or continuous time and are described in detail in

§2.2.
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Discrete vs continuous time models

Finally, time-evolution of a system can be modeled on the basis of discrete-time

intervals (e.g. a Markov model) or else represented in continuous-time (e.g. Markov

process). The Markov property (see box) is widely used throughout this thesis and

within the field of Bayesian inference more generally; as in ‘Markov chain Monte

Carlo’ (see §2.4.1). However, it is important to note that non-Markovian models

are also possible, and often more parsimonious e.g. than a Markovian model with

expanded state space. An example of a non-Markovian model is the stochastic

process described in §2.2.3 that was used by [24] in conjunction with an SIR model

to analyse the behaviour of social media users. The same is true of the ‘STR’ model

that is utilised to good effect in the penultimate chapter of this thesis.

Markov property: When the evolution of a modelled system is dependent

only on the ‘current’ state, as opposed to past states or even the entire

history of the system, it is said to be Markovian (or ‘memoryless’).

2.1.2 Modelling ‘latent’ infection (SEIR)

The SIR model depicted in Figure 2.2 can be arbitrarily adapted or extended to

include any number of states and state-transition possibilities. This is useful for

representing a diverse range of real-world systems, which naturally includes many

different varieties of epidemiological model. One of the most well known –the SEIR

model as depicted in Figure 2.3– extends the standard SIR model to include an

‘exposed’ state. It is typically intended to represent a latent non-infectious phase

of disease, where ‘latent’ simply means ‘unobserved’. The precise meaning implied

by this usage (i.e. in an epidemiological modelling context, e.g. this section of the

chapter) is similar to the way it is used in clinical epidemiological literature to mean

‘asymptomatic’. However, note that this usage is subtly distinct from the way it

is used to describe the concept of ‘latent processes’ in applied statistics (see e.g.

section §2.3.2, of this chapter) where it is used to mean unobserved.

Latency and reinfection in standard epidemiological models

Standard epidemiological models that account for a latent non-infectious period,

typically assume that individuals within the [‘exposed’] state are no longer suscep-
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S E I R
βSI γ1E γ2I

Figure 2.3: The susceptible-exposed-infectious-recovered SEIR model. An

extension of the basic SIR model, which accounts for an ‘exposed’ state to represent

a latent, non-infectious phase of disease. As before, individuals can assume one of a

discrete set of states {S,E, I, R}, and transition between states proceed according

to the specified rates that depend on the numbers of individuals in each state,

denoted (S,E, I, R).

tible to infection. This precludes the possibility of reinfection, where by latently

infected individuals are still susceptible to [further] infection.

Of course, the simpler (no-reinfection) assumption may provide an adequate

representation of disease dynamics even in situations where we believe there is

(possibly widespread, or ‘endemic’) latent infection with the possibility of reinfection

(such as BTB, or the COVID-19 virus [6]). We can rationalise this choice by

interpreting the ‘exposed’ state to reflect only individuals who have been sufficiently

‘exposed’ such that their chances of progressing to clinical disease [in the reasonably

near-term future] is fairly high, rather than to account for all primary infections.

This working definition lies somewhere beyond clinical usage of the phrase ‘latently

infected’, which refers specifically and more simply to the presence of a pathogen

without indication1.

Note that the implicit assumptions involved in the standard no-reinfection mod-

elling approach could conceivably give rise to situations where a population (e.g.

a cattle herd) with some clinically-latent infection, is judged to be totally free of

infection. To more accurately model such a case, we might prefer instead to assign

a small but non-zero probability to the outcome that one or more ‘susceptible’ (but

in truth latently infected) individuals may eventually progress to clinical disease

and infectiousness 2.

In summary, under the standardly used modelling approach there is a trade-off

between capturing the true extent of infection, and the need to adequately account

for the possibility of reinfection in clinically latent individuals who might otherwise

1See: https://www.merriam-webster.com/dictionary/latent.
2NB. this is intended as a thought experiment on the basis of intuitive reasoning – not a claim

to the effect that the methodological approach is sound.
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be high unlikely to progress to symptomatic infection (i.e. infectiousness, essen-

tially). This fact motivates the consideration of alternative modelling approaches

in Chapters 6 and 7.

2.1.3 Epidemiological modelling data

Epidemiological data sets vary greatly in their nature and characteristics. A key

characteristic of the epidemiological models considered here is that they tend to rely

on longitudinal data: where many observations of the same variable(s) are made

over time. Here we focus in particular on the nature of observations times and the

reliability of the data recorded.

Informative and uninformative timing of observations

The timing of observations can be informative (e.g. a patient who initiates contact

with medical services), or uninformative (e.g. a scheduled appointment). Such

information can be related to the SIR and SIR-like models, where informative ob-

servation times refer to cases where transition times are observed. For example,

contact with medical services can be interpreted as a good proxy for the time of

onset of recovery in cases where subsequent transmission can be ignored [8]. On

the other hand data associated with uninformative observation times, such as a

population-wide diagnostic screening carried out at fixed intervals (see the applied

example of [4]) still provide valuable information e.g. on the number of individuals

that are infected (actually we observe test positive cases, see below) at a given time.

Our treatment of DPOMPs allows for both informative and uninformative obser-

vation times though we are mainly focused on the latter. For example, a partially

observed Hawkes process is used to describe a model with uninformative observation

times. Note that in this thesis at least, the term latent Hawkes processes is used to

distinguish similar models that rely on informative observation times instead (see

Chapter 7).

The ‘observation model’

Other notable features of epidemiological models can derive from the nature of

the observation, diagnostic test or other data sources. In the work presented here

all such considerations are usually encapsulated within a single mathematical con-
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struct, referred to as the ‘observation [likelihood] model’ in Bayesian statistics. De-

pending on the situation, these properties may be expressed as distinctive e.g. prob-

abilistic measures (such as standard error, sensitivity and specificity) conditional on

the ‘true’ system state, as represented within the model. As such, observation mod-

els described herein (and elsewhere) are associated with a probability distribution,

e.g. the Binomial. In those cases the observation model is essentially defined by the

probability density function associated with that distribution (and parametrised by

the ‘true’ model state). This is only a cursory explanation for the characterisation

(i.e. modelling) of what is also sometimes referred to as the observation process in

Bayesian statistics. The pertinent details are given for each model in due course.

2.2 Stochastic processes

In the previous section we introduced the concept of epidemiological models and

data, with particular emphasis on aspects relevant to later chapters. In this section

we introduce the mathematical concept of stochastic processes, that define the ‘dy-

namics’ of the model i.e. that describes how to run the model forwards in time to

produce outputs. This will complete the definition of the process model framework

used in this thesis. However, what will remain to state is the Bayesian statistical

framework and methods laid out in §2.3 and §2.4 respectively, for eventual applica-

tion to the BTB data set (as addressed directly in the penultimate two chapters). Of

necessity, only a narrow selection of stochastic processes are addressed here; those

directly pertinent to the aforementioned work. We begin with a brief introduction

to the general concept, before moving on to some more specific examples.

Introduction: stochastic process models

Stochastic, or random, processes3 can be intuitively understood as probabilistic

mathematical models that describe the time-evolution of a random phenomenon,

such as a biological or biochemical process [25]. More formally, they are defined

as an ensemble of random variables X = {Xt : t ∈ T} on a common probability

space, where the set T can be discrete or continuous [26]. In many (perhaps most)

practical applications T is said to be one-dimensional and used to represent time.

3https://en.wikipedia.org/wiki/Stochastic process
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The scope of this section is limited to introducing the specific process models

pertinent to this work, since the topic of stochastic processes is too vast to provide

even a brief general overview. In each model presented the index set T = (t0, tN ]

is one-dimensional, continuous and used to represent time. For practical reasons

tN usually corresponds to the final observation time (for a given realisation or set

of observations). The initial time, t0, may be known (e.g. the time of the first

observation) or else treated as an unknown parameter for the purposes of inference

– this is discussed further in §2.4.

2.2.1 Poisson point processes

The Poisson [point] process4 has different forms and interpretations, but is often

interpreted as a counting process – a random process that describes the number

and distribution of points (or ‘events’) in a given time interval. The model is so-

named because the number of points that occur in the unit-interval, i.e. (0, 1], is a

(discrete) Poisson random variable |X| ∼ Pois(λ) where |X| is used to denote the

cardinality of set X. Somewhat equivalently, |X| is the counting process associated

with X and its probability mass function is given by:

p(|X| = k) =
λke−λ

k!
(2.4)

The single parameter λ is also known as the ‘rate’ parameter, owing to the fact that

E(|X|) = λ. In informal terms, we would expect to observe roughly λ events per

unit-time interval.

However it is more useful in this instance to consider the continuous random

variable that represents the inter-event time ∆t, and is exponentially distributed

with probability density function:

p(∆t = δt) = λe−λδt (2.5)

These definitions are based on the standard (or homogeneous) Poisson process in

which λ is held to be constant over time. They can however, be extended to

situations where λ(t) is given as function of time. Such models are typically referred

to as inhomogeneous (or nonhomogeneous) Poisson processes.

4https://en.wikipedia.org/wiki/Poisson point process
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2.2.2 Inhomogeneous Poisson processes

A inhomogeneous Poisson point process5 can be intuitively understood as a Poisson

process with rate λ(t) such that it varies over time. More formally it is defined as

a Poisson point process where parameter λ(t) is a location-dependent function and

t is a d-dimensional point located in T . In this case the expected number on points

in T is given by:

E(|X|) =
∫
T

λ(t)dt (2.6)

with probability mass function:

p(|X| = k) =
E(|X|)ke−E(|X|)

k!
(2.7)

Inhomogeneous Poisson processes are a useful extension to the homogeneous model,

because many real-world phenomena, from natural [e.g. biological] processes to

financial markets, exhibit time-varying behaviour. In the case of epidemics within

small populations it seems realistic, for example, to intuit that the rate at which new

infections occur depends (at least partially) on the disease status of the underlying

population, e.g. the present number of infectious individuals.

All of the relevant models presented in this thesis (i.e. those that incorporate

nonhomogeneous-Poisson processes) are formulated on this basis, such that λ is a

‘step-wise’ function of the underlying system state rather than a continuous func-

tion of time. That is, rate parameters are held constant between events, with the

benefit that the approach used to compute (2.5) for the homogeneous model, re-

mains applicable in this case too6. In view of this, it would arguably be more correct

to write the rate function as λ(η) where η denotes the current system state [for any

given time t]. However in order to maintain consistency with the descriptions al-

ready provided a subscript is used henceforth such that (where applicable) the rate

function is written as λη(t). Note also that the Markov (‘memoryless’) property

is preserved since the time-evolution of the system depends only on the ‘current’

system state at any given time t and not on past events.

Another useful natural extension to the standard univariate Poisson process in-

troduced in §2.2.1 are multivariate models, which allow for two or more types of

5https://en.wikipedia.org/wiki/Poisson point process#Inhomogeneous Poisson point process
6An important caveat is that ‘event’ here is taken to mean any change in the underlying system

state, whether or not it is an aspect of the model that happens to be governed by Poisson-like

dynamics. The point lacks context here, but becomes more relevant in later chapters
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possible event. These can be understood as a set of coupled7 [interacting] processes,

with separately defined rate parameters (or functions) for each event type. Such

models can be used to represent more complicated systems, such as chemical reac-

tions or epidemics, where they are judged to be comprised of two or more underlying

processes – infection and recovery, for example. In such cases, the probability den-

sity associated with the inter-event time is given (for all event types) instead by:

p(∆t = δt) = Re−Rδt (2.8)

R =
∑
ξ∈Ξ

λξ (2.9)

where each λξ corresponds to a given event type ξ ∈ Ξ.

2.2.3 Hawkes’ self-exciting process

Another stochastic process model of interest to work presented in latter sections

of the thesis, are ‘self-exciting’ Hawkes processes [27, 28]. These are so-described

because of their defining property: each event (temporarily) increases rate at which

new events occur. They are therefore another useful tool that can be productively

applied to systems which exhibit time-variant or ‘clustered’ behaviour, such as

market events, social media activity, earthquakes and epidemics. A more generalised

description which incorporates Hawkes and Cox stochastic process models with

‘Poisson noise’8 has also been proposed for applications within numerical finance

and related fields as the ‘dynamic contagion process’ [29].

The event rate of a Hawkes process can be written as:

λ(t) = µ+
∑
tξ<t

ν(t− tξ) (2.10)

with an exponential kernel function chosen for ν, such as:

ν(τ) = αe−βτ (2.11)

where α is a scalar and β parametrises a time-dependent exponential decay that

characterises the impact of past events on the event rate at a given time t. This

7I.e. they are ‘coupled’ by their joint dependence on the overall system state.
8Also known as: https://en.wikipedia.org/wiki/Shot noise
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model is non-Markovian; the time-evolution of the system at any given time t

depends on the entire history of the system up to that time. The probability

density associated with a given realisation x is written as:

p(X = x) =

|x|∏
i=1

λ(ti)e
−

∫
T λ(t)dt (2.12)

where i indexes the ith event in x. This is a somewhat generic formulation, and

the feasibility of directly computing (2.12) can depend greatly on the choice of ker-

nel function ν. It was noted from the literature, that exponential kernel functions

seem to be quite often preferred, presumably for their mathematical simplicity and

convenience. At least, compared to another (slightly less) popular choice – power

law distributions9. Here we choose the relatively simple exponential ‘parametrisa-

tion’ (as they are sometimes referred to) given in (2.11) for the work presented in

Chapter 7 of this thesis.

Hawkes processes within finite populations

While Hawkes processes provide an interesting alternative to inhomogeneous Pois-

son processes, for situations where event times are thought to be clustered – it

is not immediately obvious that they are applicable to finite (especially small)

populations. This is because –unlike the inhomogeneous Poisson process example

described above– the event rate is unaffected by the system state, including the

total size of the population, or any given sub-population. In simple terms, the total

number of infected individuals within an epidemiological model, for example, would

not be bound by the total number of [susceptible] individuals available to infect.

However Rizoiu et al., [24] propose a method of overcoming this problem, with a

generalisation of the Hawkes process for models with finite populations of size N ,

in which the event rate is defined instead by:

λH(t) =

(
1− Nt

N

)µ+
∑
tξ<t

ν(t− tξ)

 (2.13)

where Nt is the associated counting process, such that when Nt = N the event

rate is zero. They also demonstrate application to an epidemiological model by

analysing overdispersed, or ‘viral’, social media data using an SIR model.

9https://en.wikipedia.org/wiki/Power law
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2.2.4 Simulation of stochastic processes

Here we discuss the practical endeavour of sampling from the corresponding statis-

tical distributions defined by the stochastic processes described above; in simpler

terms, the simulation of stochastic processes. Algorithms that permit such sim-

ulations can provide both a convenient way to conduct exploratory analysis, and

numerically ‘solve’ (i.e. integrate) models. They are also a powerful tool for statis-

tical inference10 and as a source of simulated observational data. For example, the

latter is one means by which methods and algorithms were validated throughout the

course of this work. As with previous sections, the methods described are limited

in scope to the two classes of stochastic process that are directly pertinent to the

work presented in later chapters.

Simulation of inhomogeneous Poisson processes

Step-wise inhomogeneous Poisson processes of the kind described above can be eas-

ily simulated using the using the Doob-Gillespie direct method algorithm which was

developed for exact simulation of coupled processes to model chemical reactions [30].

Let X denote a process of the form given in §2.2.2 distributed according to

f(X = x) (2.7) and assume that we wish to sample f (i.e. simulate) to obtain

a single realisation of the model denoted by x. For the sake of simplicity, it is

assumed (for now) that any model parameters (e.g. θ = {β, γ} for the SIR example

illustrated in Figure 2.2) are known constants. Finally let ηic represent the state

of the system at t = 0 (also referred to as the ‘initial condition’). Algorithm 1 can

then be applied to obtain a single realisation of the model denoted by x up to any

chosen tmax which is distributed according to the desired probability density.

As noted above our interpretation of sampling from the initial state density µ

depends somewhat on circumstance. One approach in epidemiological modelling,

which has already been briefly discussed, is to assume that epidemics are seeded

by a single infectious individual at some unknown time, represented by a random

variable – i.e. an element of parameter vector θ. Different approaches may be called

for when disease spread is believed to be endemic, or else with other population

modelling problems that typically arise within ecology. Since the examples used

10Since an intuitive and well known guiding principal of random sampling generally is that

where we cannot sample directly, the optimal choice of proposal distribution is as similar to the

target distribution as practicalities will allow.

57



Algorithm 1 Doob-Gillespie direct method algorithm (DGA)

Require: θ, ηic, tmax

Set η ← ηic, t = 0

loop

Evaluate (2.8), i.e. compute rate vector r = λη(t).

Sample (2.5), i.e. determine the next event time: tξ = t − ln(u)∑
r

where u ∼
U(0, 1].

if tξ < tmax then

Choose event type ξ with pr(ξ) =
rξ∑
r

Append the event to the trajectory: x← xξ and set t← tξ

else

return x

end if

end loop

here are all epidemiological we treat µ in the manner described above.

Simulation of Hawkes processes

There are also methods available for exact simulation of Hawkes processes [31, 32].

For the purpose of exposition, and to aid in the construction of a general framework,

we can consider a relatively straightforward algorithmic approach referred to as

‘thinning’ [33]. As with the previous example the parametrisation of the model

(which may vary according to the precise implementation) is denoted simply by the

vector θ but for simplicity it is assumed that the model is univariate such that x is

a vector of arrival times (events). Any event history prior to t = 0 is disregarded.

The broad approach described for Algorithm 2 can also be regarded as a more

general framework that incorporates both algorithms, since it is precisely equivalent

to the DGA in the special case of a multivariate model, in which rate parity ensures

that the acceptance probability will always evaluate to pa = 1. Sample realisations

of both types of process are illustrated in Figure 2.4.
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Algorithm 2 Thinning algorithm for Hawkes processes

Require: θ, tmax

Set t = 0

loop

Evaluate (2.10) and set upper bound λ∗ = λ(t)

Sample the (provisional) next event time: tξ = t− ln(u)
λ∗ where u ∼ U(0, 1].

if tξ < tmax then

Set t← tξ

Compute the acceptance probability: pa =
λ(t)
λ∗

Append the event time to x← tξ with probability pa (else reject)

else

return x

end if

end loop

(a) DGA simulation (SIR model). (b) Univariate Hawkes process.

Figure 2.4: Sample realisations produced using Algorithms 1 and 2. The parameter

sets used were θ = {0.1, 0.002} and θ = {0.1, 0.002} respectively.

2.3 Bayesian inference

Hitherto in this chapter, we have laid out fundamental methodological concepts

that inform the construction of models throughout the thesis. The rest of it is

devoted to the methods that allow for their utilisation in the analysis of data. First

we describe the broad statistical framework that allows us to use models to learn

from data; a task more formally referred to as inference. Among other things, this

provides necessary context for the inference methods described subsequently, in §2.4
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and elsewhere throughout the remainder of the thesis.

Frameworks for statistical inference are typically organised according to the

overall mathematical approach taken. For example:

1. Maximum Likelihood Estimation (MLE)

2. Bayesian inference

3. Approximate Bayesian Computation (i.e. distance-based measures)

In general, the objective of all forms of statistical inference –which includes frequen-

tist approaches to hypothesis testing, familiar to most because of their widespread

usage in practical scientific applications– is to infer the properties of an underlying

population, or probability distribution. The section begins with a general introduc-

tion, which contextualises the Bayesian approach described here by comparing it

with a well-known application of frequentist statistical inference. Section §2.3.2
goes on to develop the framework, as it applies to the concepts already introduced

in previous sections of this chapter.

2.3.1 Introduction

Bayesian methods are so-called because the distribution of interest is derived ac-

cording to Bayes’ theorem:

P (H|y) = P (y|H)P (H)

P (y)
∝ P (y|H)P (H) (2.14)

The equation applies the rules of conditional probability to describe the probability

(or ‘likelihood’) of an event11. (We note that the familiar canonical definition of

Bayes’ theorem often given in terms of {A,B} instead of {H, y}.) This highlights

an important feature of Bayesian thinking: probabilities are used to describe the

degree of belief in a given outcome.

The quantity P (y|H) is referred to as the likelihood function, because it describes

how likely H is given y. It often has an implicit dependence on some underlying

model. Note that the marginal likelihood, denoted P (y), is the same for all H. This

leads to the proportional quantity on the RHS of the equation.

11See https://en.wikipedia.org/wiki/Bayes’ theorem for a more complete definition.
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An example: scientific hypothesis testing

Consider an illustrative example, in which {H, y} is used to represent a hypothesis,

and (new) evidence, or ‘data’ in conversational terms. In this context, (2.14) can

be parsed as describing the degree of conviction in our beliefs about H –expressed

as a probability– after accounting for y. This is referred to in Bayesian statistics

as the posterior probability distribution.

Similarly, P (H) is used to denote our beliefs before accounting for the new

evidence, y. More formally, P (H) is the prior probability distribution.

H could also be used to represent [at least] two hypotheses. In standardly used

[frequentist] approaches to hypothesis testing then, we would usually label these

{H0, H1}, and only choose to reject H0 in favour of H1 when the p-value exceeds

some given confidence level, say 0.95.

In contrast, the conventional approach within Bayesian statistics is to compute

the ratio of posterior probabilities P (H1|y)/P (H0|y), referred to as the Bayes fac-

tor. Interpretation of Bayes’ factors is discussed in due course but it is essentially

the same as for common frequentist approaches. We ‘reject’ H0 in favour of H1

(or at least, say that the evidence in favour of H1 is ‘strong’) when the Bayes fac-

tor exceeds a predetermined level, say 10 (according to the Kass-Raftery scale of

interpretation [1]).

Beyond standard hypothesis testing

However, H could equally well represent competing hypotheses arbitrarily labelled

{H1, ..., Hn} and we could disregard the acceptance/rejection step altogether. For

example, if we are interested in P (H|y) merely as a mathematical expression of our

beliefs (as opposed to a binary decision-making tool). Practical examples of y might

include the outcomes of an experiment, or a longitudinal data set of observations

y = {y1, ..., yn} from a non-experimental setting. It is the latter that is of primary

relevance here and throughout the thesis.

A short note on notation The symbol P (...) has been used here to represent

probability mass functions, since we are notionally dealing with discrete set of values

(i.e. hypotheses). However H could instead represent our beliefs about the distri-

bution of a continuous [random] variable, such as the average height of children in

a school. In that case, the posterior probability is a continuous distribution and it

is conventional to denote a probability density function as π(...) instead. In practice
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though, consistency is preferable to strict adherence, in the case of models which

incorporate both continuous and discrete probability distributions. Almost with-

out exception, the main target (i.e. posterior) probability distributions of interest

considered through out this thesis, are functions of a vector of random variables

(parameters) on a finite-dimensional subset of Euclidean space. Accordingly, the

symbol π is used henceforth to denote both density and mass functions alike.

2.3.2 Bayesian framework

Bayesian methods are useful for working with large or complex scientific data sets,

because the laws of conditional probability allow models to be extended to ac-

commodate almost arbitrarily complicated features, in order to represent a given

dynamic [e.g. natural] system. In general such models are sometimes known by the

evocative term ‘scientific domain models’, particularly in the practical context of

software engineering12. This highlights an important benefit of the general frame-

work for Bayesian inference in practice: it is amenable to bespoke model definitions

and other situations, for which standard, e.g. frequentist, methods may be less well

suited. This section therefore builds on the framework loosely described above,

introducing the concept of parameter inference. First, an illustrative example of

a relevant model is introduced using an abstract notion of the [stochastic process]

model laid out in §2.2.2.

A generic stochastic process model for Bayesian inference

Bayesian models that incorporate stochastic processes like those briefly described

in §2.2 are fairly common across a range of scientific applications, where completely

observing the process of interest is difficult or impossible. In such cases the dynamics

of the system can be thought of as comprising a hidden (or ‘latent’13) part (or

process) and an observed one. This class of model are often known as hidden Markov

12For example, see Chris Rackaukas’ talk on Domain Models with Integrated Machine Learning

at the 2019 JuliaCon in Baltimore. Also, Michael Betancourt’s lecture series ‘Efficient Bayesian

inference with Hamiltonian Monte Carlo’, delivered at the Machine Learning Summer School in

Iceland in 2014 – both available on YouTube.
13Note (once again but in reverse) that this use of the term is distinct from the way it is used in

the context of epidemiological modelling to refer to a state or phase of disease which asymptomatic

or otherwise undetectable.
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models (HMM) and partially observed Markov processes, for discrete and continuous

[e.g. -time] models respectively. In either case, latent and observation processes are

treated as random variables, distributed according to probability distributions. For

example:

X|(Θ = θ) ∼ fθ(x) (2.15)

Y |(X = x,Θ = θ) ∼ gθ(y|x) (2.16)

where x represents the latent process; y the observed process (or data) and ‘∼’
means ‘distributed according to’. The latent process is sometimes known as the

signal process, depending on context14. The probability densities associated with

each are labelled fθ and gθ. When y represents a dataset of observations it is

convenient to refer to the latter simply as the observation model, since it describes

the probability distribution of those observations y [conditional on x]. Finally, the

subscripts denote the fact that either or both may be parametrised. For example

f is parametrised by θ = {β, γ} for the SIR example given in 2.2.

Disregarding the latter for now (i.e. assume that θ is known) it is self-evident

that:

π(x|y) = π(x)π(y|x)
π(y)

=
fθ(x)gθ(y|x)

π(y)
(2.17)

Parameter inference

In order to perform statistical inference where θ is unknown, however, we must

express knowledge about θ probabilistically. In other words we must derive an al-

ternative expression for (2.17) that does incorporate θ. To do so recall that the

variable x represents the time-evolution of a stochastic process (described in §2.2)
chosen so as to mathematically accommodate our possible15 beliefs about an un-

derlying [e.g. biological] process. As above, y can be used to denote a set of

longitudinal16 measurements, at intervals indexed by 1, ..., n. Let θ denote a vec-

tor of (unknown) random variables which govern the behaviour of the system, as

described above.

14See https://en.wikipedia.org/wiki/Signal processing#Statistical.
15Though tautological, it is still noteworthy that the model can do nothing to inform our beliefs

concerning situations or scenarios outwith the constraints (or assumptions) of the model, since we

have by-definition deemed them impossible. This is an inescapable limitation; it must instead be

accounted for in any interpretation of the results from an analysis.
16Taken over time.
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The goal is to discover the joint [posterior] distribution of θ and x, based on

measurements from a real-life system. That can be written as:

π(θ, x|y) = π(θ)π(x|θ)π(y1:n|x, θ)
π(y1:n)

(2.18)

where π(θ) is the prior probability density; the marginal likelihood π(y1:n) serves as

a normalising constant – leading to the RHS of equation (2.14); and the remaining

terms are defined by:

π(x|θ) = fθ(x) =
n∏

i=1

fθ(xi|xi−1) (2.19)

π(y1:n|x, θ) = gθ(y1:n|x) =
n∏

i=1

gθ(yi|x) (2.20)

where the equivalence implied in (2.20) is derived by the chain rule on the assump-

tion that observations are statistically independent given x [10].

Note that in some situations for practical reasons it make senses to partition x

on intervals defined by the time of each observation, with the first segment written

as x1, the second as x2 and so on.

Model notation and interpretation

The precise definitions of f and g depend on the underlying model. For example

in the case of the stochastic process described in §2.2.2 the precise definition of

(2.19) is given by (2.7). Their interpretation in the text, meanwhile, is somewhat

dependent on context. The former can be notionally regarded in the algorithms

described as either the likelihood function, or else as a simulation protocol. In

other words, per context it can be understood as either a method for computing

the likelihood of a given x, or else drawing a random sample (‘simulation’) from that

same probability distribution. For now the observation model, g, is left undefined

but its computation is typically trivial, and dominated by the challenge of sampling

efficiently from f , in the inference schemes described in the next section. Similar

considerations apply to the observation model though g is a function that computes

the likelihood of a given y, conditional on an also given x. Again, depending on

context it could also be a distribution we wish to sample from, conditional on the

same. In casual terms, we may wish to simulate a set of observations data (e.g. for

testing and verification), given a known value of x.
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2.4 Sampling methods

As we have seen, Bayesian statistics provides a broad framework for inference –

the objective of which is to infer the properties of (equivalently) an underlying

population; probability distribution; or random variable. This has been partially

illustrated using the general concept of stochastic processes, as described above.

The purpose of this section is to show how that framework can be implemented in

practice, and the focus is on computational methods that allow samples to be drawn

from the posterior. In particular, we consider three approaches to this problem:

1. Data-augmented Markov chain Monte Carlo (DA-MCMC)

2. Sequential Monte Carlo (SMC)

3. Quasi Monte Carlo (QMC)

where ‘Monte Carlo’ is a commonly used term for methods that rely on random

sampling. In most practical settings actual random numbers are not available, thus

we simulate them using an algorithm that generates pseudorandom numbers. The

section begins with a basic introduction to MCMC, and in particular the Metropolis-

Hastings algorithm, aspects of which are also relevant to each of the methods applied

in later chapters. It goes on to describe the selected methods, organised according

to the three broad classes noted above.

The first two classes of method for [Bayesian] inference described, are data aug-

mented (DA) MCMC and sequential Monte Carlo (SMC). Standard implementa-

tions of these algorithms are conceptually quite distinct. For example methods

that rely on SMC combine a sequential sampling step with a resampling step over a

population of ‘particles’ [34]. Each particle represents distinct system trajectory –

an entire realisation (i.e. ‘simulation’) of the model. For this reason they are some-

times placed within one of four broad classes of method applicable to stochastic

epidemiological models referred to as being simulation based [35]. In this taxon-

omy, the other three are given as DA; approximation based methods; and Martin-

gale methods [36, 8, 37, 38, 39]. Approximation based and Martingale approaches

are not directly addressed in this thesis. The three types of method that are ad-

dressed fall under either simulation-based (SMC and QMC) or data-augmentation

(DA-MCMC). Only an overview of these three classes is provided, since with rare

exception only these methods are employed throughout.
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Algorithm Class Kernel Type Section

Metropolis-Hastings MCMC n/a Rejection sampler §2.4.1
Data-augmented MCMC DA-MCMC Generic Rejection sampler §2.4.2
Model based proposal (MBP) Seq. IS n/a Importance sampler §2.4.2
MBP-MCMC DA-MCMC MBP Rejection sampler §2.4.2
Particle filter SMC n/a Importance sampler §2.4.3
Particle MCMC MCMC SMC Rejection sampler §2.4.3
SMC2 IBIS SMC Importance sampler §2.4.3
Quasi Monte Carlo QMC n/a Importance sampler §2.4.4

Table 2.1: Overview of the inference methods addressed in this section. The ‘kernel’

in MCMC rejection sampling schemes is the method used to generate new proposals

based on the current sample. It plays a similar role in iterative batch importance

samplers ; a collection of particles is perturbed by using the kernel to propose new

ones during the mutation step. These features are described in more detail in due

course. For now, note that many of the algorithms and methodological concepts

are interrelated; this is better illustrated in Figure 2.5.

Metropolis-Hastings

Data-augmented MCMC

MBP-MCMC Model-based-proposal

Particle filter

Particle MCMC SMC2

Quasi Monte Carlo

DA-MCMC SMC QMC

Figure 2.5: Algorithm dependency map. The diagram shows how [subsets of] the

methods and algorithms introduced throughout this section interrelate. An arrow

from a to b indicates that a provides a modular component of, or methodological

basis for, algorithm b. The same broad principle is extended in Chapter 4 to provide

the basis for two new algorithms.
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The second part of the section covers useful sundry methods for performance

and diagnostics that are directly relatable to MCMC but that also have a direct

bearing on the algorithm introduced in §3.3. The section and chapter conclude

with an overview of methods for multi-model inference (i.e. inference with multiple

candidate models) and a brief summary, in §2.5 and §2.6 respectively.

2.4.1 Introduction to MCMC

As with standard Monte Carlo methods, Markov chain Monte Carlo17 is a class

of algorithms designed for drawing samples from a probability distribution. Unlike

standard methods, that rely on the statistical independence of samples, MCMC al-

gorithms are designed to produce a sequence of correlated samples which nonetheless

has the target (i.e. posterior) distribution as its equilibrium distribution.

Similar to use of the term in §2.1, Markov chains are so-called, because the

ith sample xi is contingent only on the previous sample xi−1. As an interesting

aside, MCMC algorithms can also be placed within the class of stochastic pro-

cesses referred to as ‘random-walks’18. More meaningfully, MCMC also belongs to

a class of random sampling algorithm known as ‘rejection samplers’, because not

all [proposed] samples are accepted. In fact, it is essentially this step that ensures

the Markov chain will reliably converge on the target distribution, though the effi-

ciency with which it does so may vary according to circumstance, as discussed in

due course.

A proper treatment of Markov chains would, among other things, enumerate

and explain important mathematical properties, such as irreducibility ; aperiodic-

ity ; and detailed balance which are required to ensure that the samples generated

are distributed (asymptotically) according to the target density. By contrast the

remainder of this section focuses on their practical application here, mostly by ex-

position of a simple example. We then move on to a more advanced class of MCMC

algorithm which is more directly applicable, in §2.4.2
17See https://en.wikipedia.org/wiki/Markov chain Monte Carlo
18This is interesting only in that it demonstrates the broad nature and ubiquity of the termi-

nology and concepts invoked, such as ‘stochastic process’. It is not particularly useful in this case

to regard MCMC as a stochastic process, at least in the narrow sense of the Bayesian framework

established in §2.3.2.
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Example: the Metropolis-Hastings algorithm

The canonical example of MCMC, is the Metropolis-Hastings algorithm [40]. A

basic implementation is illustrated in Algorithm 3. An important practical feature

of any Metropolis-Hastings implementation, is the choice of transition kernel (or

density) that generates proposed samples based on the current sample. For the

time being though, this concept is treated in abstract terms, and denoted simply as

Xf |Xi = xi ∼ q(xf |xi), where the i
th) sample xi is drawn by making ‘proposals’. Xf

are conditionally distributed according to an arbitrary chosen ‘proposal’ probability

density, denoted q(.).

The proposed samples are accepted (or rejected) with Metropolis-Hastings prob-

ability:

pmh = min

{
1,

π(xf )

π(xi)

q(xi|xf )

q(xf |xi)

}
(2.21)

where the target density is given simply as π(x), and the subscripts are interpretable

as above – i for the ith sample and f for proposed samples. In cases where proposals

are not accepted, the ‘current’ sample value is drawn instead, such that xi+1 = xi.

Note that in practice, a judicious choice of q(.) is symmetrical (e.g. Gaussian) such

that those two terms cancel. Pseudo-code for a basic Metropolis-Hastings algorithm

is given in Algorithm 3.

Algorithm 3 Metropolis-Hastings algorithm

Require: N , q

Choose (arbitrarily) initial sample x1

for i := 1 to N − 1 do

Sample xf ∼ q(xf |xi), u ∼ U(0, 1]

Compute pmh, i.e. evaluate (2.21)

if u < pmh then

Set xi+1 ← xf //accept sample

else

Set xi+1 ← xi //reject

end if

end for

Note: The Metropolis-Hastings acceptance step can be productively applied in

other algorithms, outwith traditional MCMC methods. In some contexts, namely
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that of a transition kernel it is more natural to encapsulate and refer to a given

procedure that incorporates ‘MCMC moves’ (as they are sometimes referred to

in literature19) as a [type of] Markov kernel. For example, the method presented

in §3.2.

The ‘burn-in’ period

As per the pseudo-code given above, Markov chains are initialised at an ‘arbitrarily’

(in practice, quite carefully20) chosen location. An important step not disclosed in

that description is the standard practice of discarding an initial number of samples,

so as to allow the Markov chain to converge on the stationary distribution. This

is commonly referred to as the ‘burn-in’ period (or ‘adaptation period’ in finite-

adaptive MCMC schemes).

2.4.2 Data augmented MCMC

As noted in the introduction to this section, there is an appreciable difference in

the conceptual approach of data-augmented (DA) methods for parameter inference,

and ‘particle’ (SMC) methods, such as the one described in §2.4.3. The latter are

so-called because each particle represents a distinct system trajectory –where such

[trajectory-denoting] variables are labelled throughout as x. Essentially, the purpose

of the algorithm is to integrate over all x for a given theta tuple21, which can be

written as π(x|y, θ).
By contrast, DA methods can be understood by interpreting x as a [random vari-

able which represents a] singular system trajectory, where the goal is to draw sam-

ples from the augmented, joint [posterior] distribution of θ and x, denoted π(x, θ|y).
Accordingly, the acceptance probability equivalent to (2.21) is expressed here in-

stead as:

pmh = min

{
1,

q(θi, xi|θf , xf )π(θf , xf |y)
q(θf , xf |θi, xi)π(θi, xi|y)

}
(2.22)

The purpose of this is to allow the construction of a Markov chain with the joint dis-

tribution of θ and x (i.e. the posterior) as its equilibrium distribution, in essentially

the same way as Algorithm 3 but based on the model defined by (2.18).

19A search for the phrase ”MCMC moves” (inclusive of quotes) yielded 797 results on Google

scholar – conducted in 19th July 2020.
20This apparent contradiction is resolved in due course.
21More accurately, it provides an unbiased estimator: π̂(x|y, θ).
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In a sense, this conceptual approach allows for the formulation of schemes based

more directly on traditional methods such as the basic Metropolis-Hastings algo-

rithm. In this way, parameter inference can be performed without the need for

additional algorithmic ‘components’, such as particle filters. However, as we will

see in due course this advantage must be set against the challenge of generating pro-

posed samples in the typically high-dimensional measure-space22 on which [values

of] x are defined. By illustrative comparison – this is precisely the challenge that

particle filters serve to overcome, albeit at the computational cost of independently

generating (‘simulating’) many distinct values of x.

As noted above, DA schemes employ an additional (i.e. augmented) variable

to represent one or more realisations of a [state] process. For consistency with

the notation already established these augmented variables are labelled here as

x. As per the discussion of Algorithm 5 that follows, recent innovations blur the

distinction between SMC and DA methods a little, by employing sequential ‘partial

simulation’ methods for making proposals within data augmented schemes [4, 35].

Another scheme that combines features from existing SMC and DA methods, which

we refer to as MBP-IBIS, is presented in Chapter 3.

Proposals in data-augmented MCMC

For the purpose of exposition, it is simplest to consider q(θ) and q(x) on an in-

dividual basis for the time being: choosing a proposal distribution for the model

parameters θ is relatively trivial because it is defined on a continuous number space

R|θ|. In practice a simple multivariate Gaussian distribution is a convenient choice

for the latter. This can be improved by adaptively re-parametrising q(θ) based on

the covariance of samples as they are obtained (so as to reflect correlation between

parameters in the target density).

A more pressing challenge for the construction of efficient DA-MCMC schemes

lay in choosing an adequate proposal density q(x) for x, which is defined on its own

measure space – denoted where applicable as Ω. In general though, a poor choice for

q(.) is likely to result in inadequate ‘mixing’. That is, the Markov chain may take

an infeasibly long time to converge on its equilibrium distribution. Alternatively

22See https://en.wikipedia.org/wiki/Measure space for a brief but formal definition of ‘measure

space’. Loosely speaking, if x represents a ‘trajectory’ –a sequence of events in continuous time–

then the corresponding measure space is a set, which contains all possible trajectories.
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(and equivalently) q must be chosen such that Ω is adequately ‘explored’ in order

to obtain a reliable [posterior] estimate. Some recent innovations –that incorporate

knowledge of model dynamics in a way that could be loosely described as ‘partial

simulation’– have been proposed to accomplish this. One such method, applicable

to the stochastic process model given in §2.2.2, is described in Algorithm 5.

Generic example

The simplest conceptual implementation of data-augmented MCMC can be consid-

ered as one in which proposals are made to either θ or x, conditional on the other

(i.e. Gibbs sampling [21]). This is not the approach that is generally relied on in

this thesis, but it nonetheless (notionally) allows for correlated (i.e. dependent)

samples to be drawn from the joint distribution of the model parameters and state

process in the form of a Markov chain: {θi, X i} ∼ π(θ, x|y). It therefore serves

to illustrate the basic concept, and is applicable to stochastic processes in general.

Recalling the framework laid out in (2.18) we have:

π(θ, x|y) ∝ π(θ)π(x|θ)π(y|x, θ) = π(θ)fθ(x)gθ(y|x) (2.23)

We shall also allow that the prior density π(θ) is straightforward to compute. In

conjunction with (2.22) we have:

pmh = min

{
1,

q(.)π(θf )fθ(xf )gθ(y|xf )

q(.)π(θi)fθ(xi)gθ(y|xi)

}
(2.24)

where the proposal densities are shortened for brevity and the parametrisation of f

and g (i.e. the model parameters) when applicable may be inferred by the parameter

passed to the function, e.g. fθ(xf ) implies θf . A generic pseudo-code description

based on the Metropolis-Hastings algorithm is provided in Algorithm 4.

DA-MCMC is reasonably straightforward to implement in practice, so long as

new values of x are proposed in a ‘naive’ fashion; that is, without overdue consid-

eration of model dynamics or other other important factors relating to the target

distribution. However while this can be effective in some cases, this naive approach

does not scale well to other types of model. For example [4] demonstrate how the

standard data augmented MCMC method yields highly correlated samples even in

a relatively simple model that has auto regulatory dynamics. Such models lack a

natural upper bound on the number of events that may occur in a single realisation.

This manner of making proposals may be problematic if it leads to poor ‘mixing’
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Algorithm 4 Generic DA-MCMC

Require: N , q

Choose initial sample: {θ1, x1}
for i := 1 to N − 1 do

Sample {θf , xf} ∼ q(θ, x|θi, xi), u ∼ U(0, 1]

Evaluate (2.24) to obtain pmh

if u < pmh then

Set {xi+1, θi+1} ← {xf , θf} //accept sample

else

Set {xi+1, θi+1} ← {xi, θi} //reject
end if

end for

in the algorithm with respect to x. This in turn naturally leads to correspondingly

high auto correlation in the θ samples obtained. In practical terms, the Markov

chain may take a long time to converge.

‘Partial simulation’ methods

The issues described above are motivation for recent improvements to DA methods,

which have also narrowed the distinction with simulation based methods –as briefly

described in the introduction to this section– by incorporating a sequential sampling

(or ‘partial simulation’) step.

For example [4] describe a method for model based proposals (MBP) – sequen-

tially sampling from a proposal distribution constructed based on the discrepancy

between the current and proposed values of θ, that incorporates model dynamics.

Notionally this amounts to ‘partially’ simulating new events and probabilistically

deleting existing ones, and is applicable specifically to the stochastic process model

described in §2.2.1. This method is illustrated with pseudo-code in Algorithm 5,

where f∆ is shorthand for the DGA algorithm parametrised by the Poisson rate

vector θ = r∆.

When combined with an appropriate parameter proposal density (as already

discussed) the MBP algorithm provides a complete (and highly efficient) choice

of q(.) in the form required by Algorithm 4. The advantage of the approach can

be understood by considering that, for a reasonably well-designed model, θ and
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Algorithm 5 Model based proposals (Pooley et al.,)

Require: f , θf , θi, xi, ηic

Set ηf , ηi ← ηic, α← 1

for ξ := 1 to |xi| do
// ‘partial simulation’ step:

Evaluate (2.8) for both systems to obtain rate vectors rf , ri

Compute the partial rate vector r∆ = max {0, rf − ri}
Sample x∆ ∼ f∆(x) using Algorithm 1 where tmax := the ξth event time

Append xf ← x∆ and update ηf

// keep (or delete) the ξth event in xi:

If necessary, update rf using (2.8)

Append xf ← xi,ξ with pkeep = max
{
1,

rf
ri

}
Update ηf , ηi accordingly

end for

x are likely to be strongly correlated – else θ would effectively have no [related]

meaning. It is therefore helpful if appropriate xf can be paired with θf , when

making proposals. This is achieved by accounting for model dynamics, encoded by

f(x). In addition, the MBP algorithm is constructed in a way that gives rise to a

computational convenience, by way of the following equality:

q(xf |θf , θi, xi)π(xf |θf ) = q(xi|θi, θf , xf )π(xi|θi) (2.25)

where q(x|.) is the probability density associated with making a model based pro-

posal. This leads to cancellations in (2.22). When θ proposals are distributed (i.e.

generated) such that q(θf |θi) = q(θi|θf ), we can rewrite that equation as:

pmh = max

{
1,

π(θf )π(y|θf , xf )

π(θi)π(y|θi, xi)

}
(2.26)

and proceed to implement Algorithm 4. An applied example is the method used

for validation and comparison in Section §3.4. The [Julia] software package used to

produce that and others is presented in Chapter 5.

Alternatively, [35] describe a method which also employs a sequential sampling

step and could likewise be interpreted as ‘partial simulation’. In that case the au-

thors simulate a single ‘subject pathway’ (i.e. the trajectory of one individual within

the model) conditional on θ and all other subject pathways. While this is notion-

ally an individual-based model, it is mathematically equivalent to the formulation
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usually preferred when only (partial) population count level data are available, as

in [4] and other examples presented in this thesis.

In summary, both examples [4, 35] illustrate how such methods can be employed

as functional components within other inferential frameworks, such as the one laid

out in Algorithm 4. This is similar, in spirit, to the employment of particle filters

within algorithms such as particle-MCMC and SMC 2, as described in the next

section.

2.4.3 Sequential Monte Carlo

Sequential-Monte Carlo methods (SMC) are another important class of inference

algorithms. Their defining feature is that they combine a sequential sampling step

with a resampling step, in this case over a population of ‘particles’ [34], where

‘sequential sampling’ is often referred to more simply as ‘simulating’. In this de-

scription, each particle represents distinct system trajectory. In relation to the

process models described in §2.2, this involves partitioning x in to n = |y| seg-
ments23 (where |y| is the number of observations). The segments are indexed by

j = 1 : n, and each segment is sampled sequentially from the conditional distri-

bution xj ∼ π(xj|θ, x1:j−1). This is largely a matter of semantics and equivalent

to simply sampling from the probability density otherwise denoted fθ(x). Thus, in

keeping with that same notation – expression (2.19) can be reorganised as:

π(x1:n|θ) = fθ(x1:n) =
n∏

j=1

fθ(xj|x1:j−1) (2.27)

where informally we allow that sampling f(xj|x1:j−1) for j = 1 is equivalent to

simulating x in the manner already described, i.e. we simply simulate the first

segment given some initial condition, known or otherwise.

One benefit of framing the problem in this way, is that it aligns neatly with

treatment of the discrete-time variants of similar models, usually known as hidden

Markov models. This highlights that much of the general framework and methods

laid out for SMC as applied to HMM by [10] are also applicable to Markov processes.

23Or n = |y| − 1 segments, if the first observation time is also taken to be the initial time t0 of

the system trajectory.
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‘Online’ vs ‘offline’ algorithms

A useful feature of many SMC schemes is that they can be implemented as

‘online’ algorithms – see https://en.wikipedia.org/wiki/Online algorithm.

In practical terms: it is not necessary to store the entire history of each

particle in memory. DA schemes by contrast are necessarily constructed

‘offline’; the augmented variable x must always be stored.

Thus, despite the additional computational cost of simulating many dif-

ferent particle trajectories –as opposed to partially simulating just one–

SMC can provide a highly efficient means of integrating over ‘difficult’ high-

dimensional measure spaces Ω, such as those on which fθ(x) is often defined

for stochastic process models.

The resampling step in SMC accentuates the natural efficiency of online

algorithms, by focusing computation on values of x that contribute dispro-

portionately to the posterior mass.

As in the previous section our primary purpose is to estimate the posterior

distribution of a given model of the form described but we first consider SMC

methods in the context of the filtering problem as an intermediate step towards

that goal. That is, we wish to sample sequentially from π(x1:n|y1:n, θ) and estimate

π(y|θ). Accordingly, the remainder of the subsection is used to address the problem

of parameter inference by covering a narrow range of SMC methods, selected for

their relevance to the algorithms and results presented in Chapters 4 and 6.

Resampling methods

Resampling is a topic unto itself, only discussed here briefly. A number

of different approaches are possible and can be combined in modular fash-

ion with particle filters and other SMC procedures that depend on them.

These include multinomial; systematic; stratified; and others [41, 42]. In

the results presented here we used the systematic approach of [43] in ac-

cordance with the advice of [10].

75



Particle filtering

SMC methods which address the filtering problem are usually referred to as particle

filters. That is, we wish to sequentially sample N trajectories (particles) denoted

X i
n ∼ fθ(xn|xn−1) – which we could do by using Algorithm 1, for example. Sampling

fθ(x) directly ensures that there is no need to evaluate (2.27) (which would only

be necessary if we employed a separate proposal density). In a basic particle filter,

this is combined with a weighting and resampling step, which serves to ‘focus’

computation on the particles that contribute most to our knowledge of the target

distribution.

Pseudo-code is given in Algorithm 6, but here we describe each step of the

algorithm, only disregarding the initialisation step for sake of parsimony:

1. We begin by sampling Xj
i ∼ fθ(xi|xi−1).

2. The particles are then (incrementally) weighted according to gθ(yi|xj
i ) and the

average of this quantity recorded.

3. Finally the particles are resampled to obtain a set of equally weighted parti-

cles, and the process is repeated until time n.

In this case, our primary interest in the method is that it provides the unbiased

estimate (2.29) which can then be used to obtain (by the chain rule) an estimate

of π(y|θ) ∝ π(θ|y) as per (2.28) and (2.32).

π̂(y|θ) =
n∏

i=1

π̂(yi|θ) (2.28)

π̂(yi|θ) =
1

N

N∑
j=1

gθ(yi|xj
i ) (2.29)

The most straightforward (but sometimes inefficient) way to exploit this for the

purpose of parameter inference is to employ particle filters as a modular component

within traditional sampling schemes like the example given in Algorithm 7.

Finally, in the description given for Algorithm 6 we have allowed for the sake of

brevity that resampling occurs at every step. However in practice [10] recommend

to only resample when a given criteria is met, such as by comparing the effective

sample size (ESS) with a predetermined threshold:

ESS =
1∑
W 2

(2.30)
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Algorithm 6 Standard SMC (‘particle filter’)

Require: N , f , g, q

Choose initial sample: {θ1, x1}
Sample X i

1 ∼ µθ(x1) and set wi ← gθ(y1|X i
1)

Compute the normalised weights: W i
1 ∝ wi

for j := 2 to n do

Resample {W i
j−1, X

i
j−1} to obtain N equally weighted particles.

Iterate particles: sample X i
j ∼ fθ(xj|x1:j−1)

Set wi ← gθ(yj|xj) and compute the normalised weights: W i
j

end for

Optionally resample {W i
n, X

i
n} to obtain X̄ i

n ∼ π̂(x|y, θ)

where W are the normalised particle weights. This ensures that we only resample

when the variance of the particle weights is large enough to justify doing so, thus

avoiding unnecessary degeneracy. It is also the approach used where reference is

made to ‘resampling criteria’ in Algorithms 8 and 9.

Example: particle-MCMC

In a similar way to Algorithm 5, particle filters provide a convenient modular com-

ponent for inclusion within sampling schemes, leading to frameworks that are the-

oretically robust and easy to implement. MCMC methods are a popular and con-

venient choice, i.e. particle MCMC [34]. This is demonstrated using the already

familiar Metropolis-Hastings algorithm in Algorithm 7. In this case the acceptance

probability can be more simply expressed as:

pmh = max

{
1,

q(θi|θf )π(θf |y)
q(θf |θi)π(θi|y)

}
(2.31)

and computed based on the estimates obtained by (2.28). Recalling that by simple

application of Bayes’ theorem:

π(θ|y) = π(θ)π(y|θ)
π(y)

∝ π(θ)π(y|θ) (2.32)

we can thus evaluate (2.31) without consideration of π(y) in the same way as before.

Likewise, selection of a symmetric distribution (such as a multivariate uniform or

Gaussian) for proposal density q provides the additional convenience that q(θi|θf ) =
q(θf |θi), thereby allowing the cancellation of those terms in (2.31).
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Algorithm 7 Particle MCMC

Require: N , q

Choose initial sample: θ1

Compute π̂(y|θ1) using Algorithm 6 //i.e. run particle filter

for i := 1 to n− 1 do

Sample θf ∼ q(θ|θi), u ∼ U(0, 1]

Compute π̂(y|θf ) using Algorithm 6

Evaluate pmh as per (2.31)

if pmh > u then

Set θi+1 ← θf

else

Set θi+1 ← θi

end if

end for

Note that: Algorithm 7 is provided for illustrative purposes only. In practice,

and partially due to the nature of problems considered in later chapters, other

more computationally efficient methods were deemed preferable throughout for the

analyses conducted.

Iterative batch importance sampling

We have seen how particle filters can be employed as a modular ‘component’ in an-

other inferential framework (MCMC) to provide a complete algorithm. In that case,

the particle filtering algorithm was nested within a different kind of algorithm – the

Metropolis-Hastings, which is a form of rejection sampling. However, particle filters

can also be employed with importance sampling schemes, including other varieties

of SMC algorithm. In plain terms: a particle filter, within another particle filter.

Chopin et al., [9] demonstrate precisely this approach: the use of particle filters

within the framework of another SMC method to address the parameter inference

problem. The algorithm is appropriately named by the authors as SMC 2. As with

PMCMC, SMC2 employs particle filters in a modular fashion, by embedding them

within a more general framework –in this case, that of the so-called iterative batch

importance sampling (IBIS) method outlined for static models in [44].

The purpose of the ‘inner’ particle filtering procedure is to weight (and ‘mu-
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tate’) a collection of ‘outer’ θ particles24. The weights of the [outer] particle set

is then rebalanced through a resampling step, analogous25 with the same step in

Algorithm 6. A notable feature of the IBIS framework is the ‘mutation’ step, with

the important requirement that m (the Markov kernel) must leave the target dis-

tribution invariant. A novel application of the IBIS framework is described in §3.2,
in which Pooley’s model-based-proposal [partially] fulfils this role, i.e. Algorithm 5

is essentially m in that context. In either case, the requirement is fulfilled [in this

case] by employing a Metropolis-Hastings step to make MCMC moves. In a help-

fully illustrative comparison, courtesy of Chopin himself: MCMC is predicated on

the application of a mutating step (or ‘kernel’) applied to a single ‘particle’, many

times. Here, we are instead applying the same kernel to many particles, but only

a single time26. The broad conceptual approach is illustrated using an example, as

per the pseudo-code and commentary provided with Algorithm 8.

Example: SMC2

The mutation step in the general IBIS framework is easily explained by using the

example of SMC2, as per Algorithm 8. Note that, as per the algorithm’s original

[and far more complete] description [9], new values of θ can be proposed, either inde-

pendently of the ‘current’ particle, or conditionally (similar to the manner already

described for MCMC). The particle filter is then used to compute an estimate of

the marginal likelihoods of the mutated θ particle[s], and evaluate a vector of accep-

tance probabilities (one for each particle) based on the ancestral weights (denoted

α) of the marginal likelihoods computed up to the current time step j:

pimh =
αq,i
j

αi
j

(2.33)

αj = π̂(y1:j|θ) (2.34)

24Depending on one’s background and familiarity with the topic, however, it is perhaps less

confusing to conceive of this idea, by disregarding the ‘inner’ procedure as an SMC scheme al-

together, and instead regarding it merely as a function that computes [an unbiased estimate of]

the marginal density of interest: π̂(x|y, θ) – which is then employed by a singular (alternatively,

‘outer’) SMC procedure.
25As already noted in the discussion of particle filters, it is advisable to only resample when

elected degeneracy criteria are met, such as the one defined by (2.30).
26Please note that this commentary is deliberately simplistic, merely intended to be illustrative.
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where αq,i are the ancestral weights of the proposed particles. Recall the illustrative

comparison provided by the original authors, with the Metropolis-Hastings step, as

used within MCMC: where in the latter N proposals (or ‘mutations’) are applied

to one particle, the mutation step in the IBIS method involves the application of

one [proposed] mutation to N particles.

Algorithm 8 Particle IBIS, i.e. SMC 2

Require: initial parameter samples θi, number of particles p

Set wi ← 1

for j := 1 to n do

Run the particle filter to compute the incremental weights associated with the

jth observation, and obtain X i,p
1:j

Set wi ← wi π̂(yj|θi)
Compute the normalised weights: W i

j ∝ wi

Set αi ← αiwi

if resampling criteria met then

Resample {W i
j , {θi, X

i,p
1:j}} to obtain { 1

N
, {Θ̄i, X̄ i,p

1:j}}
Mutate: mpf{Θ̄i, X̄ i,p

1:j, α
i}

Set wi ← 1, {θi, X i,p
1:j} ← {Θ̄i, X̄ i,p

1:j}
end if

end for

Algorthm output: The output of the algorithm is a set of weighted θ samples

{W i, θi} which can be resampled to obtain unweighted samples, [approximately]

{ 1
N
, Θ̄i} ∼ π(θ|y). The expected value of a given function h can be estimated by:

Ê[h(θ)|y1:n] =
∑

wih(θi)∑
wi

(2.35)

and [44] show that it is consistent and asymptotically normal for all integrable h.

The algorithm makes efficient use of the particle filter (compared to PMCMC) and

also provides an unbiased estimate of the marginal likelihood π(y1:n) which can be

obtained for a trivial amount of additional computation as described in §2.5.
Efficient use of particle filters is also the key motivation for the algorithm de-

scribed in §3.3 which is based on a technique broadly described as quasi-Monte

Carlo, but also inspired by other methods for improving efficiency in MCMC schemes

more directly. The latter are discussed further in §2.4.5.
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2.4.4 Quasi Monte Carlo

The third and final broad class of inference algorithms described in this chapter

are Quasi Monte Carlo (QMC) methods27. They are a class of importance sam-

pling methods which involve the use of deterministic or random (RQMC) somewhat

evenly spaced (low discrepancy, LDS) sequences in place of the pseudorandom num-

bers employed in other Monte Carlo methods [12]. The most basic example can

be imagined as a uniformly spaced ‘grid’ on an d dimensional continuous parame-

ter space. The preferential use of LDS as opposed to uniformly spaced samples is

accounted for by the specific nature of certain problems, but not addressed in any

detail here. Well known examples of deterministic LDS include Latin hypercubes,

Sobol and Halton sequences, the latter of which is seeded from a vector of arbitrarily

chosen prime numbers [45, 46, 47].

QMC schemes can also be randomised, as in the case of Poisson disc sampling28.

This involves randomly sampling with a minimum distance between samples to pre-

vent clustering. An approach which is perhaps more conceptually straightforward

is to add random noise to sample locations in a uniformly spaced grid, sometimes

known as ‘jittered sampling’ [48]. This also has the advantage of being easy to

implement and inexpensive enough to be practical, while allowing for a scalable

degree of ‘jittering’. Some examples of LDS are illustrated in Figure 2.6.

(a) Halton (b) Sobol (c) Jittered

Figure 2.6: Examples of low-discrepancy sequences. The Halton sequence was

initialised with prime sequence {2, 3}.

QMC schemes tend to require that the parameter space of the function being

27https://en.wikipedia.org/wiki/Quasi-Monte Carlo method
28https://en.wikipedia.org/wiki/Supersampling#Poisson disc

81



integrated can be mapped on to the unit hypercube which limits their scope. Un-

like MCMC they suffer from the ‘curse of dimensionality’ [49]. However, at least

compared to standard MCMC, they can still achieve rates of convergence that are

significantly faster [50], and they have become increasingly popular in fields such

as numerical finance for bounded integration problems, even in relatively high di-

mension (e.g. d ≈ 256). Intuitively, QMC can be understood to circumvent certain

issues that may arise with MCMC, particularly when the target distribution is

multi-modal or otherwise difficult to adequately ‘explore’.

However if the target density is concentrated in a relatively small region of the

space then standard importance sampling methods (including QMC) are likely to

waste significant amounts of computation on regions that are of little interest, while

failing to sample sufficiently from those that contribute significantly to the target

density. In other words we may have reintroduced the very problem that MCMC is

used in part to solve! In summary then (and in practice) much appears to depend

on the problem at hand.

Quasi MCMC

QMC can also be combined with MCMC in the broadly same manner; replacement

of standardly used pseudorandom number generators with LDS, for algorithms in-

cluding the Metropolis-Hastings [51]. Randomised-QMC variants and those that

which rely on the use of randomly permuted (i.e shuffled) QMC sequences are also

possible [52, 53]. QMC sequences have also been used to good effect in MCMC

schemes [54] which bear conceptual similarity to methods for improving MCMC

performance known as ‘waste recycling’ discussed in §2.4.5, such as the concept

described by Frenkel in [55]. However the authors note that the benefit of tends to

diminish as the dimensionality of the problem increases. The algorithm introduced

in the next chapter (see §3.3) is somewhat basic compared to some of the advanced

examples cited here, but was nonetheless found to be highly effective for certain

kinds of problem.
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2.4.5 Improving MCMC performance

Having laid out the essentials with respect to relevant Bayesian [single-model] infer-

ence methods for the class of model described, we now discuss other sundry meth-

ods and topics. Namely, performance and validation w.r.t. MCMC algorithms, and

multi-model inference (or model comparison). Here again, all are chosen for their

relevance to later chapters. We now address the first of those topics; improving

MCMC performance. Various methods have been proposed for improving the con-

vergence speed of MCMC, though not all are generally applicable. With respect

to SMC methods for example, some could be rationalised in this case on the basis

that certain computational tasks –like the one illustrated in Algorithm 6– are com-

putationally expensive, but can be more powerful when used sparingly (compared

to standard methods, like Algorithm 7 – better known as particle-MCMC ).

Delayed acceptance

On a similar basis, [56] propose a delayed-acceptance MCMC scheme for models

where the target density can inexpensively estimated based on a subset of the

available data and provide several practical examples from ecology. Intuitively,

the ‘expensive’ full density computation is only carried out when the sample is

reasonably likely to be accepted, by means of this additional step.

Waste recycling

MCMC, and other rejection sampling methods are so-called because not all samples

are accepted. It has also long been noted of MCMC and rejection sampling methods

in general that by discarding information they could justifiably be described as un-

necessarily wasteful in many circumstances, giving rise to a class of similar MCMC

methods, sometimes referred to as ‘waste recycling’ [57]. The intuition that using

only accepted samples is wasteful, leads very naturally to the concept of ‘waste

recycling’ in MCMC; the use of rejected samples to better inform our knowledge of

the target distribution [57, 58, 59].

The benefit of this approach can also be appreciated by considering (as [56] do)

that cases where the acceptance probability is marginal (with respect to u ∼ (0, 1])

are likely to be relatively rare. In other words, a provisional approximation of the

density is likely to lead to the same result (acceptance or rejection) in most cases,
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and furthermore much information is lost in this step. Thus weight can be added

to the power of our statistical estimates by considering the actual likelihood values

computed, rather than simply accepting or rejecting the proposed sample.

Recent work has addressed the theoretical foundations of such methods [60]. It

has also been noted [55] that, while applicable to any [valid] MCMC algorithm,

they may be especially effective in those that utilise multiple proposals in parallel.

As has already been briefly mentioned, this concept has been combined to good

effect with QMC methods by [54] in order to provide more even coverage of the

‘local’ parameter space, similar to the way envisaged by [55]. Some of these ideas

are themselves recycled in Section §3.3, resulting in the development of a novel

algorithm that combines aspects of [randomised-] QMC with SMC.

2.4.6 MCMC Convergence diagnostics

The goal of an MCMC analysis is to construct a Markov chain that has the target

distribution as its equilibrium distribution. In the case of a single chain analysis

we begin with an arbitrarily (but sensibly) chosen sample. In practice it is also

sensible to give care and attention to choosing at least an approximately optimal

proposal density q(.). That is, while an algorithm may be theoretically valid, and

thus guaranteed to converge, the speed at which a Markov chain converges on (or

resolves to) its equilibrium distribution (i.e. the target distribution) depends greatly

on q(.). Assessing whether or not the chain has converged to an acceptable degree is

naturally somewhat challenging, if we do not already know the target distribution

in advance. Visual inspection of the Markov chain for ‘mixing’ may be sufficient to

diagnose problems in some cases but not in all, particularly if the target distribution

is multi-modal and irregular.

Formal methods of diagnosing convergence are therefore a vital component of

any rigorous MCMC analysis. The rest of this section describes the Geweke and

Gelman-Rubin diagnostics; the tools implemented for single and multiple chains re-

spectively in the software package presented in Chapter 5. Furthermore, in practice

many issues can be avoided if many chains are run with widely dispersed initial sam-

ples, and that is the approach that has been used throughout this thesis. Therefore

only the Gelman-Rubin test is actually pertinent to the results of later chapters.
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Geweke test of stationarity

The Geweke statistic tests for non-stationarity, by comparing the mean and variance

of component-wide parameter estimates, given as θi for consistency of notation, for

two sections of the Markov chain, denoted here as {α, β}[61, 62]. It is given by:

z =
θ̄i,α − θ̄i,β√

V ar(θi,α) + V ar(θi,β))
(2.36)

A commonly used parametrisation to compute the z statistic is such that, the first

10% of the chain (not including discarded samples from the adaptation period) is

compared the final 50%, or α = 0.1 and β = 0.5. Large differences, i.e. abs(z) > 2,

in the means of the parameters indicate a lack of convergence within at least one

of the segments. This would typically suggest that more samples are required, or

else another problem with the analysis.

Gelman-Rubin diagnostic

The Gelman-Rubin diagnostic is designed to diagnose convergence of two or more

Markov chains by comparing within chain variance to between chain variance [63,

19]. The estimated scale reduction statistic (sometimes referred to as potential scale

reduction factor) is calculated for each parameter in the model.

Let θ̄, W and B be vectors of length P representing the mean of model param-

eters θ, within chain variance between chain variance respectively for M Markov

chains:

W =
1

M

M∑
i=1

σ2
i (2.37)

B =
N

M − 1

M∑
i=1

(θ̂i − θ̂)2 (2.38)

The estimated scale reduction statistic is given by:

R =

√
d+ 3

d+ 1

N − 1

N
+

(
M + 1

MN

B

W

)
(2.39)

where the first quantity on the RHS adjusts for sampling variance, and d is degrees-

of-freedom, estimated using the method of moments. For a valid test of convergence

the Gelman-Rubin requires two or more Markov chains with initial samples that are
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over-dispersed (larger variance) relative to the target distribution. As an aside, this

resolves the earlier noted ‘discrepancy’, concerning the claim that Markov chains

can be initialised from arbitrary locations. In practice, certain choices may impact

the [perceived] validity of a [multi-chain] analysis.

2.5 Inference with multiple models

Thus far we have implicitly assumed that we are dealing with the problem of pa-

rameter inference from a single model perspective. That is, we assume that we

know of an appropriate model and simply wish to fit data to it. However it is not

always the case that we know the appropriate model to fit at the outset, and so the

problem arises of how to select one from the available candidates.

Alternatively, we may simply have use for a quantitative measure of how well

a single model fits some given data. In keeping with the Bayesian framework laid

out in §2.3.2, we can utilise the marginal likelihood, referred to in this context as

the [Bayesian] ‘model evidence’29. For a given model:

π(y) =

∫
π(y1:n|x1:n, θ)π(x1:n|θ)dx1:ndθ (2.40)

In practice it is often convenient to use a log transformation, such as the one used by

Pooley and Marion to compare Bayesian model evidence with alternative measures

of model fit [64]:

−2 lnπ(y) (2.41)

Thus yielding a quantity more relatable to the Akaike information criterion (AIC)

Bayesian information criterion (BIC) and similar statistics:

BIC = k lnn− 2(ln L̂) (2.42)

where this k is the number of free parameters in the model; n could be the sample

size, depending on the type of model; and L̂ is the maximised likelihood value30.

2.5.1 Model selection using model evidence

Extending the essential Bayesian inferential framework to the problem of model se-

lection (or ‘model comparison’) we can derive an expression for the different choices

29https://en.wikipedia.org/wiki/Marginal likelihood#Bayesian model comparison
30Source: https://en.wikipedia.org/wiki/Bayesian information criterion
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of model available:

π(y,Mi) =

∫
π(Mi)π(y1:n|x1:n, θ,Mi)π(x1:n|θ,Mi)dx1:ndθ (2.43)

where Mi is the i
th model chosen and π(Mi) is the corresponding prior distribution,

i.e. the probability of selecting that model. Based on this the Bayes factor provides a

standardised way to directly compare the model evidence for two candidate models:

K1,2 =
p(y|m1)

p(y|m2)
(2.44)

where, according to the scale originally proposed by Jeffreys [65], K1,2 > 10 can be

considered to be strong evidence for favouring model m1 over m2.

log10K K Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

Table 2.2: Bayes factor interpretation, from Kass and Raftery [1].

2.5.2 Estimating the model evidence

Here we describe the main method that was used to estimate the model evidence

[marginal likelihood] for the algorithms that are carried forward to the BTB analysis

presented in Chapter 6. That method concerns SMC algorithms. Techniques appli-

cable to data-augmented MCMC algorithms are also available, including the class of

methods described in §2.4.2 [66, 64], but they are not directly relevant to the results

presented in later chapters and so have not been addressed here. Moreover, comput-

ing the marginal likelihood is a non-trivial (but possible) task in data-augmented

MCMC schemes; with the available methods both difficult to implement and com-

putationally taxing. In practice, deviance information criterion (DIC) is often used

instead, presumably for those reasons. However that approach has been challenged

as being less effective in at least some situations [64]. As discussed in the next chap-

ter, it was ultimately more convenient to adapt the data-augmented [MBP-]MCMC
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method itself, in order to make it amenable to the technique described here, rather

than attempt to solve that particular problem more directly.

Estimating the model evidence using SMC

Directly computing (2.40) is typically just as intractable as directly computing the

posterior distribution of the model parameters (for the class of models described

herein) but note that by simple application of the chain rule:

π(y) = π(y1:n) =
n∏

i=1

π(yi|y1:i−1) (2.45)

where y1:n are a series of n longitudinal observations (i.e. precisely the kind of

data considered here). This is useful because Chopin et al., [44, 9] show how an

unbiased and asymptotically normal estimator of the quantity yi can be computed,

using the SMC2 algorithm, and taking the weighted average of the incremental

particle weights:

π̂(yi) =
1∑
w

n∑
j=1

wjπ̂(yi|y1:i−1, θ
j) (2.46)

where wj is the weight of the jth θ particle and π̂(yi|y1:i−1, θ
j) is the incremental

weight (i.e. the likelihood associated with the ith observation) estimated by means

of a particle filter.

2.6 Summary

The purpose of this chapter was to provide a practical review –rather than a com-

prehensive, or theoretical treatment– of selected fundamental concepts and algo-

rithms, as a prelude to consideration of within-herd disease dynamics in UK cattle

herds. In particular, special attention was given to the methods algorithms that

were used to develop those introduced in the Chapter 3 and used to implement a

robust Bayesian workflow in Chapter 4. A further chapter covers another key out-

put of the project: [somewhat] generalised implementations of selected methods for

Bayesian inference, including many of those that were introduced here. Following

that, a selection of the algorithms, including SMC2 (Algorithm 8) are set against

the problem of parameter and model inference, as it applies to the aforementioned

motivating problem. That is in Chapters 6 and 7.
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Chapter 3

Hybrid Algorithms for inference

“everything is a remix”

- Kirby Ferguson [Everything is a Remix (2015)]

Summary

• This chapter develops two novel Bayesian inference methods for discrete state

space partially observed Markov Processes (DPOMPs) that address weak-

nesses of existing algorithms by creating hybrids that exploit the strengths of

contrasting approaches.

• (1) MBP-IBIS: leverages the efficiency of data-augmentation model-based-

proposals (MBPs - Algorithm 5) as a Markov chain Monte Carlo (MCMC) ker-

nel within Sequential Monte Carlo framework, specifically the Iterated Batch

Importance Sampling (IBIS) algorithm (§2.4.3)

• (2) ARQ-MCMC: combines standard particle-MCMC with adaptive Ran-

domised quasi-Monte Carlo (QMC) sampling. It is more generally applicable

than MBP-IBIS but here is also applied to DPOMP models.

• In MBP-IBIS use of data augmentation aids posterior sampling by preserving

characteristics of state-space trajectories consistent with the data. On the

other hand the SMC methodology of IBIS enables calculation of the model

evidence which is difficult in standard data-augmented MCMC.
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• In contrast ARQ-MCMC inherits such benefits from the SMC toolkit and

addresses the problem of ‘waste recycling’ (see §2.4.5) by better of targeting

computational effort expended on evaluation of the likelihood.

• These algorithms are validated and compared, both against each other and

existing standard algorithms using simulated data scenarios.

• In light of these results we suggest that both have a role to play in the im-

plementation of practical Bayesian workflows for DPOMPs explored in later

chapters.

3.1 Introduction

This chapter describes two novel Bayesian inference algorithms, developed by com-

bining particular strengths of existing approaches described in Chapter 2 and dis-

cussed below. The first, MBP-IBIS leverages the efficiency of data-augmentation

model-based-proposals (MBPs - Algorithm 5) as a Markov chain Monte Carlo

(MCMC) kernel within the Iterated Batch Importance Sampling (IBIS) sequential

Monte Carlo (SMC) framework (§2.4.3). The second algorithm, ARQ-MCMC com-

bines standard particle-MCMC with an adaptive Randomised quasi-Monte Carlo

(QMC) sampling of parameter space and is more generally applicable than MBP-

IBIS which is focused on DPOMPs (this is due to the specific form of model-based

proposals considered). ARQ-MCMC addresses the problem of ‘waste recycling’

(see §2.4.5) by making more efficient use of computational effort in particular by

better targeting effort spent on evaluation of the likelihood (see §3.3).
In Chapter 4 we show how these new algorithms can be used in conjunction

with existing methods to develop robust workflows that build on their contrasting

strengths and weaknesses to address practical difficulties encountered when applying

single- and multi-model Bayesian inference to DPOMPs. In addition, both algo-

rithms address a key difficulty with data-augmented MCMC namely estimating the

model evidence (marginal likelihood the of the model) thus enabling multi-model

inference (see §2.5). As noted in Section §2.5.2, computing the marginal likelihood

is a non-trivial (but possible) task in data-augmented MCMC schemes; with avail-

able methods both difficult to implement and computationally taxing. In practice,

deviance information criteria (DIC) are often used. However, for latent variable
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models there are several definitions of DIC and these have been found to be incon-

sistent and unreliable for assessing the structure of epidemiological DPOMP models

[64].

Bayesian analysis of scientific data requires judicious choice of the prior dis-

tribution π(θ). In practice, a cautious approach may involve repeated analysis of

the same model and data with differently chosen prior distributions, in order to

identify the one that: optimally encapsulates our prior beliefs; decide which is the

most ‘objective’; or merely for the purposes of cross-validation and comparison.

Thus a secondary motivation and benefit of the ARQ-MCMC algorithm is that the

nature of its resampling approach can be used to improve the efficiency of multiple

quasi-independent MCMC analyses, even with differently selected prior distribu-

tions. This is achieved by ‘sharing’ the computational cost of likelihood evaluations

within, and between, different analyses (with possibly different prior distributions).

This includes cases where candidate prior distributions are from a different family

of distribution altogether, including those that are flat and [partially] unbounded

(i.e. ‘improper’).

This chapter focuses on motivating, describing and then testing these new algo-

rithms.

Motivating MBP-IBIS

The contrast between updates, or mutations, in data-augmentation MCMC and

sequential Monte Carlo (SMC) approaches such as IBIS can be described as follows.

In DA-MCMC we mutate a single ‘particle’N times to form aMarkov chain whereas

in IBIS we mutate a collection of N particles a single time [44]. Here mutations

means some stochastic update to the current state (i.e. respectively, perturbing the

state of the Markov chain or the set of particles i.e. parameters) which will then

be accepted or rejected in a way that in some sense guarantees convergence to the

distribution of interest: a Markov kernel.

A key advantage of the IBIS framework is that it provides an inexpensive way

to compute unbiased estimates of the marginal likelihood, which as noted, although

possible in DA-MCMC is non-trivial in terms of both implementation and compu-

tational cost. A particular strength of data augmentation methods including MBPs

is that they naturally preserve the characteristics of state-space trajectories that
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are consistent with the data. In contrast SMC methods are built on forward time

simulations that must be re-weighted to avoid particle degeneracy. The MBP-IBIS

algorithm introduced below is designed to leverage both these advantages to cre-

ate an efficient implementation of Bayesian inference for DPOMPs in an approach

known as particle annealing 1 as per the technique described for [discrete-time]

hidden Markov models by [10].

To summarise, the key motivation is to combine the effectiveness of (MBP)

resampling techniques, whilst mitigating particle degeneracy issues that can arise

within SMC schemes as a result of them. In order to accomplish this, particles are

simulated in the standard fashion but the MBP algorithm is utilised in construction

of a Markov kernel, so as to mitigate degeneracy without the need to fully re-

simulate particles at each iteration – that is, the ‘mutation’ step in IBIS (and

SMC2, for which that is a requirement). MBP-IBIS is therefore an SMC version

of the data-augmentation method – a hybrid of both approaches. We have already

seen how a particle filter can be used as the ‘inner’ procedure within the IBIS

framework: SMC2. Likewise, the MBP algorithm provides an update ‘kernel’ that

can be applied to similar affect within the same overarching framework of Chopin.

Finally, we note that although we describe MBP-IBIS as a hybrid of data-

augmentation and SMC methods, the distinction between ‘online’ and ‘offline’ algo-

rithms, is more useful in terms of implementation and understanding performance.

That is because understanding whether or not the full history of the state variable

needs to be held in memory, conveys useful information about the algorithm’s con-

struction. In this parlance MBP-IBIS transforms the online IBIS into an offline

algorithm via the introduction of data-augmentation MBPs. The MBP-IBIS algo-

rithm is fully described in Section §3.2 bt first we provide background to motivate

the ARQ-MCMC algorithm.

Motivating ARQ-MCMC

Random sampling methods are useful for integrating probability densities (which

we denote here as f(θ) for consistency of notation) when the density can be conve-

niently sampled [estimated] for a given θ-tupple but directly solving (i.e. integrat-

ing) for all θ (i.e. using quadrature to integrate over the entire space) is impractical.

1Described as PAIS-MBP on pp19 of the BEEPmbp user manual as downloaded on 3rd July

2021. See: https://github.com/ScottishCovidResponse/BEEPmbp for the latest version.
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This is often the case when dealing with real-world integration problems, such as

Bayesian inference in the context of scientific domain models. Unfortunately, f(θ)

are often computationally intensive to evaluate e.g. because doing so also involves

solving another difficult integral. In such situations it is usually not practical to

compute an exact value for the density, and we may only be able to obtain an

[unbiased] estimate f̂(θ). Furthermore if the estimate suffers from high variance,

it exacerbates the overarching computational challenge. The motivating problem

for this work are problems that can be solved using particle filters, since they can

be used to estimate the likelihood function for the models in consideration. How-

ever, the underlying motivation can be stated more plainly: integrating reasonably

low (d < 12) dimension f̂(θd) that are computationally intensive to evaluate, in

particular those with possibly high variance.

Alternatively, recall the computational efficiency of particle filters (as ‘online’

algorithms) for solving certain problems. In that context the motivations for the

algorithm can be viewed through the lens of ‘waste recycling’ for [particle-] MCMC,

as discussed in §2.4.5.
The ARQ-MCMC algorithm was developed for Bayesian inference, where f(θ)

defines (i.e. computes) the likelihood function. That is, we wish to use some data,

y, to learn about an underlying population [or probability distribution,] denoted

by θ. For the purposes of this thesis θ represent the parameters of an underlying

disease transmission model (or some other scientific domain model). Recalling the

definition for Bayes’ theorem, we have:

π(θ|y) = π(θ)π(y|θ)
π(y)

∝ π(θ)π(y|θ) (3.1)

π(y|θ) := f(θ) (3.2)

where π(θ) expresses our prior beliefs about the distribution of the model (i.e. func-

tion) parameters, and π(θ|y) is the posterior distribution of the model parameters,

meaning after accounting for y. Note that here we are not explicitly interested in

dependence on latent variables (e.g. describing state-space trajectories in dynamic

models) and assume these are ’integrated out’. The need for such inner integrals

is a principle reason why estimates f̂(θd) are typically subject to high variance.

The proportionality of the posterior likelihood to the product of prior distribution

and the likelihood function, given on the RHS of (3.1), can be exploited to draw
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posterior samples of θ – this is the approach used here.

The use of [approximately] evenly-spaced samples, lattices, or ‘grids’ (visualised

as points in the parameter space) is a well-established technique for estimating in-

tegrals, including probability distributions. The techniques of quasi -Monte Carlo

(QMC) discussed in §2.4.4 provide tools to deterministically generate so-called low-

discrepancy sequences (LDS) as the basis for such grids. Where pseudorandom

numbers are used, the sequences may be referred to as randomised -QMC (see Fig-

ure 2.6 for examples). The adaptive randomised Quasi-Monte-Carlo Markov chain

Monte Carlo ARQ-MCMC algorithm is so called because it relies on MCMC re-

jection sampling to adaptively resample a Randomised QMC sequence. Under this

scheme a quasi Monte Carlo sequence of θs, is ‘resampled’ with f(θ) computed

on-the-run and cached for future use.

ARQ-MCMC is a simple design with a discretised MCMC scheme with an ab-

straction layer consisting of a cache indexed by θ-valued d−tuples. The guiding

principle is to minimise the number (and maximise the usefulness) of calls to a

notionally expensive likelihood function f(θd), or usually estimator functions f̂(θd)

(e.g. particle filters) with high variance. It also utilises all of the information

gleaned from both accepted and rejected samples. Thus the algorithm addresses

the waste recycling problem as it manifests in online particle MCMC (see §2.4.5
for a discussion related to offline MCMC). The adaptive nature of ARQ-MCMC

arises from a simple tunable mechanism that adjusts the density of samples judged

necessary for sufficiently smooth marginal estimates of the posterior distribution.

The benefits of this algorithm diminish rapidly as the dimension d of θd increases

and the probability of revisiting any location (θ-coordinate) becomes more remote.

In practice this means ARQ-MCMC is applicable to models where relatively small

number of parameters d < 12 need to be estimated.

Chapter overview

The remainder of this chapter is organised as follows. The MBP-IBIS algorithm is

described in detail including with pseudo-code in Section §3.2. A simple applied

problem is then used to demonstrate use of the algorithm for both single and multi-

model inference in §3.2. The ARQ-MCMC algorithm is described in detail including

with pseudo-code in Section §3.3. A simple applied problem demonstrates the

utility of the algorithm for Bayesian analysis with multiple prior distributions and
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benefits of the method in cases where estimation of the likelihood is subject to

high variance (§3.3). The chapter concludes with a multi-algorithm validation and

speed comparison and discussion (§3.4). As noted, both algorithms have been

made available (along with others) as a software package described in Chapter 5.

That includes applied examples of the algorithms described here, based on real and

simulated data sets.

3.2 The MBP-IBIS algorithm

MBP-IBIS takes advantage of the model based proposal (MBP) algorithm [4] (Algo-

rithm 5) within an iterative-batch-importance-sampling (IBIS) framework similar

to that used in Algorithm 8, i.e. SMC2 [9]. The MBP method is employed to

construct a Markov kernel for the ‘mutation’ step, and the DGA simulation (Algo-

rithm 1) is used for the iteration step. For comparison, both tasks are performed

within the SMC2 [IBIS] algorithm by a particle filter [9].

Here we define MBP-IBIS algorithm in detail. The pseudo code is shown in Algo-

rithm 9 and each of the steps are described in more detail below.

Algorithm 9 MBP-IBIS

Require: initial parameter samples θi

Set wi ← 1, αi ← π(θi)

for j := 1 to n do

Iterate particles: sample X i
j ∼ fθ(xj|x1:j−1) to obtain {θi, X i

1:j}
Set wi ← wigθ(yj|xj) and compute the normalised weights: W i

j

Set αi ← αiwi

if resampling criteria met then

Resample {W i
j , {θi, X i

1:j}} to obtain { 1
N
, {Θ̄i, X̄ i

1:j}}
Mutate: mκ

mbp{Θ̄i, X̄ i
1:j, α

i}
Set wi ← 1, {θi, X i

1:j} ← {Θ̄i, X̄ i
1:j}

end if

end for
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Steps

As with SMC 2 the algorithm is seeded with a collection of N θ-particles denoted

θi. The steps of the algorithm are then as follows:

1. Simulate: Initial (or next) segments of the trajectory corresponding to θi are

simulated. Note that for the first step we sample X i
1 ∼ µθ(x). However in

accordance with the convention already established for particle filtering µ(.)

is denoted by f(x1|x1:0) in pseudo code.

2. Particle weights: At the end of the time step the probability density func-

tion associated with the observation process gθ is used to compute the incre-

mental weights for each particle in {θi, X i}; update the particle weights wi;

and compute the normalised particle weights W i.

3. Resampling: Assuming that the resampling condition computed according

to (2.30) is satisfied, the particles are resampled in the familiar manner to ob-

tain a set of equally weighted particles: {Θ̄i, X̄ i
1} approximately ∼ π(θ, x1|y1).

4. Mutation: Candidate parameters are sampled from a chosen distribution and

paired with a trajectory generated using the MBP algorithm. The ‘mutated’

particle is then accepted with Metropolis-Hastings probability:

pmh = max
{
1,

αf

αi

}
(3.3)

αf = π(θf )gθf (yt|x
q
1:t) (3.4)

where the ancestral weights denoted by α are computed up to the current

time step t. Repeat for a total of κ times where κ is predetermined and may

be arbitrarily increased as a variance reduction measure.

5. Return to step 1 until t = n.

Outputs

The output of the algorithm is a set of weighted particles {θi, X i} that can be

resampled to obtain an arbitrary number of particles {Θ̄i, X̄ i
1} approximately ∼

π(θ, x1:n|y1:n). As with SMC 2, the expected value of any integrable function h can

be estimated by (2.35).
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Estimating the model evidence

As noted in §2.5, a useful feature of IBIS is that it is possible to obtain an estimate

for the marginal likelihood that is both unbiased and computationally inexpensive.

The corresponding quantity for MBP-IBIS is computed thusly:

π̂(y1:n) =
1∑
w

n∑
j=1

wjπ̂(yi|y1:i−1, x
j
1:i, θ

j) (3.5)

Tuning the algorithm

Use of the MBP algorithm allows us to perturb the particles in a way that leaves

the target distribution invariant, without discarding trajectories that we already to

believe are approximately distributed according to the appropriate marginal distri-

bution. As with other types of particle filter the accuracy of the estimates obtained

increases with N but is sensitive to numerical stability issues with large N . How-

ever smoother estimates can be obtained by increasing the number of iterations

in the mutation step, κ, as illustrated in figure 3.1. This is roughly equivalent

to increasing N in terms of computational cost, but circumvents the stability is-

sue associated with increasing N beyond a certain threshold, and demonstrates a

particular advantage of MBP-IBIS.

Testing the algorithm

Here we test the algorithm for single and multi-model inference, using the model

and data set published by Pooley et al.,in the paper that introduced the MBP

method [4]. This (now familiar) SIS model is illustrated in Figure 3.11. The obser-

vations data consist of five equally spaced (in time) observations of the number of

individuals in the infectious state up to t = 100. The number of individuals is held

constant and the initial state is given as {100, 1} at time t = 0. The observation

model density g is not parameterised by θ in this case, since it is assumed to be

normally distributed with a (known) error of σy = 2, i.e. g(yi) ∼ N (xi, 4).

A number of additional models were also fitted to this data in order to pro-

vide further illustration of the ability if MBP-IBIS to infer model parameters and

as a demonstration of its ability to support the approach to model selection de-

scribed in §2.5. The most elaborate of these, the SEIS model, is depicted along

with estimates of the model evidence for each model in Figure 3.3. The full model
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Figure 3.1: Impact of the MBP mutation step: Sample output from Algo-

rithm 9 illustrating the impact of the number of iterations in the mutation step,

κ = {1, 3, 10} (left to right). The illustrated samples were obtained from a sim-

ulation study, and correspond to the contact rate parameter for the SIS model

illustrated in Figure 3.11b. κ denotes a user-defined parameter used in construc-

tion the Markov kernel and determines the number of model based proposals used

to perturb each particle during the mutation step. It can therefore be tuned to

achieve a desired degree of accuracy at the cost of additional algorithm run time

(see for example Figure 3.13). As before the values used to generate the simulated

data are marked for reference.

specifications are given in the supplementary material but in general the same ob-

servation model was applied to the infectious compartment in each model. Both the

MBP-IBIS and the SMC2 algorithms distinguished between models with dynamics

that clearly do not appear to fit data such as the SIR and one of its derivatives;

the SEIR model (not shown).

However the estimates obtained for the more similar SEIS model (see Fig. 3.3)

were slightly lower, suggesting a better fit with that model. Analysis of these re-

sults indicated that the posterior mode for both the recovery and the extraneous

progression (i.e. E → I) parameters θ2, θ3 was ≈ 0.2. Recalling that inter event

times are distributed exponentially for Poisson-like processes we can interpret this

as the inverse of the average duration spent by any given individual in either com-

partment, e.g. if θn ≈ 0.2 then θ−1
n ≈ 5 units of time. Estimates of the contact

parameter θ1 were, likewise, higher for the SEIS model than those obtained for the

SIS model. Unsurprisingly, the estimates obtained for the latter were far more in

concert with the parameter values used to simulate the original data set (using the

SIS model).

While we were roughly able to infer the duration spent in non-infectious com-
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(a) SMC2 IBIS

N = 6000.

(b) MBP MCMC

NC = 3, NC = 50000.

(c) MBP IBIS

N = 10000, κ = 7.

Figure 3.2: Testing MBP-IBIS algorithm. Marginal model parameter distribu-

tions for SIS model parameters (based on the Pooley data set, see text for details)

for selected algorithms with moderate performance configurations (as reflected by

the variances in the estimates obtained). The first 10000 samples were discarded

from each chain for the MBP MCMC analysis (i.e. the ‘burn in’ period).

partments as ≈ 10 time units, we were unable to distinguish between the correct

dynamics and a more infectious pathogen that involves a significant non-infectious

period. This failure draws attention to the fact that unlike some other measures

of model deviance, consideration of the model evidence alone does not include a

penalty for additional terms. Caution must therefore be applied in its interpreta-

tion with models that are distinguished in this manner; a point that has a direct

bearing on our interpretation of the results presented in Chapter 6.

Note that in practice, we would likely choose the simplest model (i.e. with the

lesser number of free parameters) as our ‘null’ model, and only proceed to reject

it in favour of the complex one (the SEIS in this case) if the Bayes factor met

some predefined threshold, as described in §2.5. Furthermore, it is notable that

the uncertainty in parameter estimates shown in Fig. 3.4 is somewhat larger for

the SEIS than for the SIS model. However our purpose here was to evaluate the

MBP-IBIS algorithm itself, and thus we have directly compared estimates of the

marginal likelihood, or Bayesian model evidence, π(y).
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S E I
θ1SI θ2E

θ3I

(a) SEIS model

(b) Model evidence

Figure 3.3: Estimating Bayesian Model Evidence (i.e. the marginal likelihood,

π(y)) results for the Pooley data set using the method described in §2.5, for the

SMC 2 and MBP-IBIS algorithms. In each case the algorithms produce similar

estimates of π(y). The model that generated the data is highlighted (turquoise

bars). The analysis was sufficient to accurately distinguish between models that

plainly do not fit the pattern of the data such as the SIR and SEIR but estimates

of the model evidence for the similar SEIS model (depicted) were lower, suggesting

a better fit with that model. This is discussed further in the main text.

3.3 The ARQ-MCMC algorithm

In keeping with the generic Bayesian model laid out in the introduction by equa-

tions (3.1) and (3.2), we assume a known [inference] model, including any prior
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(a) Marginal sample densities for the SEIS model.

(b) SIS model.

Figure 3.4: Model assessment. Comparison of marginal importance sample re-

sults for the SEIS and SIS models as fitted to the simulated SIS data set borrowed

from [4].

density function[s] π(θ), and a computable [log] likelihood function f(θ) ∼ π(y|θ).
A comprehensive description of the algorithm is provided in due course, but first

we lay out some of the key modular components and concepts that inform the algo-

rithm’s design in order to illustrate the broad approach. Namely the hypothetical

importance sample; resampling; and the adaptive MCMC kernel that is used to

accomplish that resampling.

Importance sample Γ: We begin by notionally defining an importance sample Γ,

using an appropriate QMC sequence construction in the required dimension d = |θ|.
For the sake of simplicity, let it be a uniform ‘grid’. The number of distinct theta

tuples (the cardinality of Γ) is given by |Γ| = Sd, where S corresponds to S − 1

intervals (for each of the d dimensions) and the intervals are user-defined to allow
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for the scaling of S. Note that the intervals (and thus, the number of samples |Γ|)
may be chosen such that computing f(θ) for each distinct θ-tuple (i.e. for each

sample) in Γ would be impractical.

Resampling kernel: Let q be a ‘proposal density’ of the form q(θb|θa) (more ac-

curately, a mass function) which relates the probability associated with a random

walk, from a to b, on Γ. We now have the basic ingredients for a discretised version

of Algorithm 7, an MCMC rejection sampler. This allows for Γ to be efficiently

resampled, with f(θ) computed ‘on-the-run’. Intuitively, we wish to spread com-

putational effort throughout the posterior mass. Furthermore the goal is already

partially accomplished by virtue of the fact that samples are at least approximately

evenly-spaced.

Adaptive MCMC proposals: Construction of an appropriate proposal density q

is an important design consideration. In this case, an adaptive scheme was devised

with two automatically tunable components. The first is the distance between and

a and b (by the shortest path) which we denote by j. The sampling distribution

of j is uniform and discrete. Its parametrisation is adapted at regular intervals

according to the [target] MCMC proposal acceptance rate. The second is a vector

of probabilistic weights (corresponding to each elements of θ) that are used to

generate the random walk to b. This allowed for the random walk to be scaled in

accordance with estimates of the posterior variances, based on samples obtained up

to a given point. In other words, adaptive MCMC. Both of the adaptive MCMC

parameters are reset after each individual Markov chain, in order to maintain that

aspect of their quasi-independence.

We now lay out a more detailed description of the ARQ-MCMC algorithm, provid-

ing pseudo code in the forms of Algorithms 10 and 11. We also provide a detailed

step-by-step explanation below this. Note that for ease of exposition Algorithm 10

has been simplified by describing just the inner MCMC procedure as a recursive

function with (NMH − 1 steps) that accepts (or initialises) the Γ object; updates;

and returns it along with the parameter samples. Algorithm 11 serves as a simple

intermediate layer (i.e. a ‘wrapper’) for the target function f(θ), and also incorpo-

rates the prior density function π(θ).
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Algorithm 10 Recursive ARQ MCMC procedure

Require: π, f , q, NMH

Require: (Or initialise) Γ

Sample θ1 ∼ Γ

Set p1 ← ϕΓ(θ1) using Algorithm 11

for k := 1 to NMH − 1 do

Sample θf ∼ q(θ|θk), u ∼ U(0, 1]

Set pf ← ϕΓ(θf ) using Algorithm 11

Evaluate pmh =
π(θf )pf
π(θf )pk

if pmh > u then

Set θk+1 ← θf , pk+1 ← pf

else

Set θk+1 ← θk, pk+1 ← pk

end if

end for

return {θ,Γ}

Algorithm 11 Function ϕΓ(θ)

//NB.

// - Γ(θ) is an indexing function on Γ

// - Nf (θ) := the number of times f has been computed for a given θ-tuple.

Require: Γ, π, f , θ

if Nϕ(θ) < ΓL then

Evaluate f̂(θ) := f(θ).

Update wi for i = Γ(θ) according to (3.6)

end if

return π(θ) wi (for i = Γ(θ))
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Symbol Description

Γ Hypothetical importance sample.

θi The ith distinct θ-tupple in Γ.

q MCMC proposal density (or function).

π Prior density function.

f(θ) Likelihood function (or target density).

ϕ Modular component that interfaces f with the MCMC resampler

– see Algorithms 10 and 11.

wi Weight associated with the ith θ-tupple in Γ and given by f̄(θi).

NC Config. property: the number of Markov chains.

NMH Config. property: the number of MCMC [re]samples.

ΓS Config. option: number of samples along each dimension of θ

– i.e. Γ as a unit cube.

ΓI Config. option: manually specify [approximate] sampling intervals

in each dimension – alternative to ΓS.

ΓL Config. option: max number of f computations for any given θ-tupple.

Table 3.1: ARQ-MCMC: commonly used notation

104



Definition 1: mean likelihood f̄(θ)

Assuming that f(θ) yields an unbiased estimate π̂(y|θ), we can reduce the variance

of the estimate obtained (with respect to a single given θ tuple, and up to a given

optional limit) by updating the weight associated with that tuple in Γ. That is,

each time it is [re]computed:

wi =

∑Nf

j=1 fj(θi)

Nf

(3.6)

where wi corresponds to the ith θ-tuple in Γ, and w can thus be regarded as a

sparse vector of weights. The total number of times f has been evaluated for the

ith θ-tuple is (somewhat lazily2) denoted simply as Nf .

Definition 2: approximation of the marginal likelihood

Given Γ, [approximately] evenly spaced samples, from the region[s] of the param-

eter space where E[f(θ)] > 0 by some appreciable margin, we could produce a

piecewise approximation of the integral. That is, if we allow that the MCMC re-

sampling procedure has sufficiently enriched the underlying importance sample, we

could approximate
∫
θ
f(θ) using a simple summation by parts, over Γ. This is on

the intuitive, but somewhat tentative, basis that the (possibly far larger) regions

of the parameter space that have not been sampled, would not have contributed

significantly to our knowledge of the integrand in any case.

Given Γ, [approximately] evenly spaced spaced samples from the a region broadly

covering the posterior mass π(θ|y), we could likewise normalise the weights to ob-

tain a rough (depending on sparsity of coverage in Γ) approximation of the marginal

likelihood:

π̃(y) =

∑
i∈Γ π(θi)wi∑
i∈Γ π(θi)

(3.7)

where wi is the sample mean of the ith θ-tuple in Γ.

2Because superscript i is dropped for convenience, though in actual fact Nf corresponds to

each individual tuple, θi.
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Definition 3: Expectations of a function

Similarly, Γ can be used to approximately estimate the expectations for any θ-valued

function, such as g(θ). Thus:

Ẽ[g(θ)] =

∑
i∈Γ π(θi)wig(θi)∑

i∈Γ π(θi)wi

(3.8)

where wi are again the weights associated with each θ-tuple in Γ. This is some-

what redundant as the MCMC rejection [re]samples that constitute the algorithm’s

primary output for any given analysis provide an easy way to do the same. How-

ever in practice the approach was found to yield more accurate estimates in some

cases. That is, when Γ was sufficiently enriched and in particular when one or more

Markov chains failed to converge, (3.8) was nonetheless found to provide reasonable

approximations of elementary g, with respect to both mean and variance.

Detailed description of algorithm steps

Some abbreviations have been introduced in the description here, with Γ(θ) an

indexing function on Γ; and Nf(θ) shorthand for the number of times f(θ) has

been computed already for a given θ-tuple in Γ. A concise [recursive] example is

illustrated in Algorithm 10 requiring the quantities defined above. The steps of the

algorithm are described in more detail as follows:

1. Let Γ denote an ordered QMC sequence construction in dimension d and

define wi as a sparse vector of weights corresponding to each tuple (do not

compute any, yet).

2. Initialise (sequentially or in parallel) NC Markov chains, indexed by j, at

tuples sampled uniformly from Γ. Compute the initial weights using a particle

filter or some other given estimator f(θi), and update wi, i.e. for the very

first step: j = 1, k = 1. Set wΓ(θ1,1) ←= ϕ(θ1,1), where the Γ(θ) is an indexing

function on Γ. Ignoring the recommended ‘burn-in’ period for the sake of

notational convenience, the number of iterations (and therefore samples) in

each Markov chain is denoted NMH , and indexed by k.

3. For each chain: sample θj,q ∼ q(θ|θj,k−1) from Γ. Note that q is used here to

represent a probability mass function associated with a random-walk proposal,
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as noted above. If Nϕ(θ) < ΓL compute ϕ(θ) (e.g. run Algorithm 6) and

update wi according to (3.6). As a single operation this function is denoted

ϕΓ(θ), and described using pseudo-code, as Algorithm 11.

4. Accept the proposed move with Metropolis-Hastings probability:

pmh =
π(θj,q)wΓ(θj,q)

π(θj,k−1)wΓ(θj,k−1)
(3.9)

or else set θj,k ← θj,k−1.

5. Return to step three and repeat until k = NC (for each chain).

Output

The algorithm yields a weighted importance sample {wi,Θ
i}, and NCNMH rejec-

tion samples from the Markov chains (less the number of samples that are discarded

during the ‘burn in’ period) which are approximately distributed according to the

target density (or distribution) – assuming that the chains have converged suffi-

ciently. Convergence is ‘confirmed’ using the Gelman-Rubin test, but it is impor-

tant to note that this is only an assessment of how well the chains have converged

on the underlying importance sample – not the target distribution itself. Practi-

cal experimentation suggests that even where this degree of ‘convergence’ has not

been achieved (perhaps because the target distribution is highly multi-modal) the

importance sample often still yields reliable estimates, so long as NC is sufficiently

large to ensure at least some coverage of all modes that contribute significantly to

the target distribution.

Estimating the model evidence for Algorithm 10

An approximation scheme based on Definition 2 was partially developed but found

to be inadequate for all but the most trivial of problems. The details have therefore

been relegated to the appendices (A).
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Testing the algorithm

Here we test the ARQ-MCMC algorithm using an example, based on an epidemio-

logical model and a particle filter, and focused on Bayesian analysis with multiple

candidate prior distributions. The SEIR model (see Figure 3.5), was selected as a

canonical example of an epidemiological model and inference problem3. Algorithm 6

allows for the easy construction of artificially difficult (i.e. high variance) problems,

because the number of particles can be arbitrarily reduced to give a sufficiently

‘poor’ result. This allowed in turn for features of the ARQ-MCMC algorithm such

as ‘sample limiting’ (i.e. the optional algorithm configuration parameter ΓL) to be

conveniently explored without resorting to the use of actually difficult problems.

S E I R
θ1SI θ2E θ3I

Figure 3.5: The [density-dependent] SEIR model used for this simulation study.

Bayesian analysis with multiple prior distributions

As noted in the introduction, a cautious approach to Bayesian analysis of scientific

data requires judicious choice of the prior distribution π(θ). In practice, that may

require repeated analysis of the same model and data with different prior distri-

butions, in order to identify the one that optimally encapsulates our prior beliefs;

decide which is judged to be the most ‘objective’ in a given context; or for com-

parison – to understand how the choice of prior distribution affected the posterior

distribution. In this example we show how the [partial] resampling feature of the

alogrithm laid out the in previous section can be used to improve the efficiency

of multiple quasi-independent MCMC analyses, with different prior distributions

– three in this case, as laid out in Table 3.2 – so long as they ‘share’ the same

likelihood function.

It is notionally assumed that selection of the prior distribution for onward analy-

ses is qualitatively informed by the most recent set of results. The software package

3Note that for the same reason, to emphasise the generality of the approach, the standard

notation of epidemiological models has been dropped in favour of a vector of parameters denoted

collectively by θ. For example, the contact rate parameter θ1 is usually denoted by β.
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θ1 θ2 θ3

Analysis 1 Flat and improper

Analysis 2 U(0, 1) U(0, 1) U(0, 1)

Analysis 3 U(0, 1) Γ(10, 0.07) U(0.02, 1)

Table 3.2: Prior distribution chosen for each analysis.

implementation described is organised in this fashion, such that analyses can be

‘daisy-chained’ in this way if so required (though it is not necessary). The MCMC

[re]sample trace plots for each analysis, shown in Figure 3.6, help to illustrate how

each analysis was impacted by the choice of prior distribution. A lack of conver-

gence is evident for the first analysis (confirmed by the Gelman-Rubin convergence

diagnostic, with results provided in an appendix). That instability was resolved

by use of a fairly generically chosen prior distribution, for the second analysis. A

somewhat more informative prior distribution was chosen for the third and final

analysis. We can imagine here that posterior samples obtained for the second anal-

ysis contained implausible values, based on some extraneous knowledge relating to

the average latent period, given by θ−1
2 . We also modify our ‘prior’ beliefs in that

analysis to rule out an average infectious period θ−1
3 of more than 50t, by setting a

lower bound on the prior distribution of θ3 of 1
50
.

Inference results: Here we provide an overview of the adapted samples, and the

computation expended to obtain them. The posterior samples obtained for each

analysis are shown by the joint marginal densities given in Figure 3.7. In conjunction

with the traceplots, they help to illustrate how the results of the analyses were

impacted by the progressive selection of more informative prior distributions. This

is especially true of the contact rate parameter θ1, which can be seen to converge

more on the ‘true’ (i.e. simulation) value. In truth, the simulated observation data

merely represent a [mapping of a] random sample conditional on those values (the

‘simulation’). In other words, they are only (at best) an approximate guide to

the true expectations of the posterior distribution. Thus the benefit –the extent

to which the results become ‘more accurate’– is largely a result of the subjective

approach; using our prior knowledge (or beliefs) to inform the selection of prior

distributions. The design of the algorithm merely seeks to facilitate this uniquely

Bayesian workflow in as efficient a manner as possible.

Computation: Finally, the computation plots given in Figure 3.8 illustrate how
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(a) Analysis one: flat and improper prior distribution.

(b) Analysis two: uniform prior distribution.

(c) Analysis three: mixed uniform and Gamma prior distribution.

Figure 3.6: MCMC traceplots for the first example. The values used to simulate

the underlying ‘observational’ data have been marked for reference. As indicated by

the plots, the first analysis failed to converge due to a lack of identifiability in the

second parameter θ2. The selection of still a not very informative uniform prior (in

particular U(0, 1) for θ2) for the second analysis was sufficient to allow convergence.

However we suppose, for the purpose of illustration in the third analysis, that our

prior knowledge of the average latent period θ−1
2 is such that we can choose a more

informative prior distribution for that parameter only, Γ(10, 0.007). In order to

make the scenario more realistic the latter was parametised such that E(θ2) = 0.07

(i.e. slightly different from the true value used in the simulation of 0.065).

the algorithm became progressively more efficient – i.e. required fewer calls to the
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(a) Analysis one: flat and improper prior distribution.

(b) Analysis two: uniform prior distribution.

(c) Analysis three: mixed uniform and Gamma prior distribution.

Figure 3.7: Marginal MCMC [re]sample densities – contact rate θ1 = β; progression

(to infectiousness) parameter γ = θ2, etc.

particle filter used to estimate the likelihood function, denoted f(θ).

Computational impact of sample limiting

It is reasonable to assume that the quantity yielded by (3.6) is asymptotically nor-

mal, when is derived from an unbiased estimator (e.g. when estimated by a particle

filter). It therefore also makes sense to limit the maximum number of evaluations

Nϕ to some predetermined quantity ΓL. This automatically ‘throttles back’ the

computation for regions that have already been sufficiently sampled (or computed

once where ϕ provides an exact or sufficiently accurate result). The concept illus-
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Figure 3.8: Computation required for analysis one, two and three (L-R). Stated

in terms of the number of calls to the likelihood function, f(θ), required. Each

analysis consisted of five Markov chains, each yielding 5 x 104 resamples.

trated using an example in Figure 3.9. Note that the underlying importance sample

Γ can be ‘recycled’ for each chain, such that each iteration (i.e. each Markov chain)

requires less computation. However the key benefit of initialising many different

[over-dispersed] chains is retained; one is reasonably assured of good ‘coverage’ of

the parameter space, with respect to the posterior mass.

High-variance problems

The ‘smoothing’ impact of sample limiting is demonstrated (for another example,

see Figure 3.2) in Figure 3.10. In this example the number of particles used in the

particle filtering procedure was constrained to simulate a high-variance problem in

low dimension (d = 2). The impact of progressively increasing the sample limit,

from one to seven, can be seen in the densities arranged from left to right. At

least in this case, that impact is actually not in terms of providing a more accurate

approximation of the expectations (i.e. mean average) – all three are approximately

the same in that regard. Instead the algorithm acts to distribute additional com-

putational resources to the periphery of the posterior mass, providing progressively

better resolution in the tails.
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(a) f(θ) calls. (b) Γ exploration (ΓL = 10).

Figure 3.9: Computation plots for ARQ MCMC (Algorithm 10). The figure on the

LHS illustrates the function calls required for a three chain analysis compared to

a standard implementation of PMCMC, Algorithm 7 (parameters {ΓS = 50,ΓL =

5}). The figure on the RHS is based on the same analysis except that ΓL = 10

was used to provide a better visual contrast. It illustrates exploration of the model

parameter space and demonstrates the ‘throttling’ effect of the ΓL parameter. The

brighter, yellow region indicates the bulk of the posterior mass and is visible as a

cross section through the regions of lower density.

Figure 3.10: Sample output from Algorithm 10 illustrating the impact of (left to

right) ΓL = {1, 3, 7}. The results are marginal distributions for the contact rate

(i.e. infection) parameter in the model considered in Figure 3.11b, with comparable

results given in Figure 3.12. The parametrisation of the algorithm was as follows:

NMC = 5; NMH = 50000; ΓS = 30 and ΓL as noted. The value used in the original

simulation [4] has been marked for reference.
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3.4 Comparative Performance

The algorithms and implementations presented here were validated by comparison

with the method described by [4] (Algorithm 5) – for the same problem and data

set described in that paper (and used to demonstrate the MBP-IBIS algorithm in

the last section). An illustration of that model, and a typical realisation, is given in

Figure 3.11. It is similar to the SIR but incorporates autoregulatory dynamics with

the result that there is no natural upper bound on the cardinality of the process

vector |x| (for a given time period). As a test problem, this is straightforward to

set up but computationally challenging. This makes it useful as a test problem, in

lieu of the similar but more complex models considered in Chapter 6, for which no

published results are directly comparable. Multiple analyses were run for different

configurations with comparisons given below, but first sample output for selected

analyses are shown in Figure 3.12.

S I
θ1SI

θ2I

(a) SIS model

(b) Realised exampled (Algorithm 1)

Figure 3.11: Benchmark inference problem used to evaluate algorithm per-

formance. (a) The SIS model is intended to represent the dynamics of infectious

diseases which do not confer long-lasting immunity. (b) stochastic realisation sim-

ulated using Algorithm 1 (see Chapter 2) and the same parameters used by [4]

of θ = {β := 0.003, γ := 0.1}. The simulated observations data reported by the

authors of that paper are marked for comparison.
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(a) MBP MCMC (b) ARQ MCMC (c) MBP-IBIS

Figure 3.12: Cross-algorithm validation. Samples results for Algorithm 10 and

Algorithm 9, compared with results based on the methods and results of [4] for

comparison and validation. The parametrisation used for the latter (essentially Al-

gorithm 4) was {NMC = 10; NMH = 50000}. The first 1
5
of samples were discarded.

The ARQ MCMC parameters were {NMC = 10; NMH = 50000} with the same

‘burn-in’ period as the first.
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3.4.1 Performance evaluation

A straightforward and informal comparison of performance was made, based on em-

pirical analysis of the algorithms’ results for the aforementioned problem – i.e. the

methods, model and dataset from [4]. The SMC2 method (Algorithm 8) was used

to provide an additional baseline for comparison, and in fact broadly outperformed

both MBP-IBIS and ARQ-MCMC according to the predetermined performance

measure; the average normalised error for the posterior expectation values of the

model parameters, E(θ). The true value was estimated based on one thousand

runs of the comparatively straightforward MBP-MCMC algorithm, repeated twice

to ensure the consistency of the result. Those results are illustrated in Figure 3.13.

Figure 3.13: Speed test. Comparison of algorithm run time (in seconds) and the

mean adjusted error for estimates of E(θ) for the problem illustrated in Figure 3.11b.

It is important to acknowledge that this analysis was limited in scope, as only a

single narrow class of problem has been considered. Furthermore, comparisons that

rely on benchmarking unavoidably incorporate extraneous factors, such as hardware

and language implementation. In terms of overall speed and accuracy the experi-

mental results suggested that SMC2 (Algorithm 8, labelled as ‘pibis’ in Figure 3.13)

was the most efficient for the simple problem considered; namely estimating E(θ).

This also proved to be the case for the results presented in Chapter 6. However, the

variance reduction features of Algorithm 10 also proved to be useful for applications

in Chapter 6 and those features are not clearly revealed by a focus on the posterior

expectation alone. In slightly informal terms, the algorithm’s design allows for good
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resolution in the tails of target distribution, leading to smoother marginal sample

densities.

3.5 Software implementation

Both algorithms are implemented (and published) in the software package intro-

duced in Chapter 5 for the Julia programming language.

3.6 Discussion

By applying the principles of modular construction [11] to algorithm development,

we have utilised a number of distinct methodological concepts in the construction

of two new algorithms for Bayesian inference: MBP-IBIS and ARQ-MCMC. These

were tested on applications chosen to demonstrate key features and potential, as well

as being compared with each other and established algorithms in terms of accuracy

and speed. Both algorithms are applied to inference problems in Chapters 5 and 6.

They are also jointly compatible with the Bayesian inference modular workflow

introduced in the next chapter having been developed in conjunction with that

work. We conclude this chapter by discussing each algorithm in the context of

the available computational tools for Bayesian inference, highlighting their relative

strengths, weaknesses and potential for further development.

3.6.1 MBP-IBIS

The MBP-IBIS algorithm incorporates two highly efficient but somewhat different

approaches to inference that have been recently devised for application to similar

types of model. Intuitively, such a proposition lends itself to a tantalising prospect;

‘the best of both worlds’. However while the algorithm yields an inexpensive es-

timate of the marginal likelihood, that optimistic view overlooks the sacrifice of

‘online’ computational efficiency necessary to implement data-augmented schemes.

The overhead related to the latter perhaps explains why the SMC2 was found to

outperform this and all other algorithms for the (admittedly narrow) evaluation

reported above. However it is known that SMC techniques are ineffective for cer-

tain problems, and we can thus speculate that there may be some for which the
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MBP-IBIS algorithm may outperform it. In (slightly enthusiastic) layman’s terms,

perhaps for ‘tricky’ double-integrals, where solving the inner integral is difficult with

standard SMC techniques, but where the same does not apply to the outer one. As

it was, the SIS-model test problem [4] was selected ‘blind’ on the basis that it is

conceptually simple but [conveniently scalable to be] computationally challenging.

3.6.2 ARQ-MCMC

The second algorithm, ARQ-MCMC addresses the problem that motivates ‘waste

recycling’ techniques (see §2.4.5) by combining adaptive particle-MCMC with ran-

domised, quasi-Monte Carlo (QMC) and is more generally applicable than MBP-

IBIS. Despite its generality, the algorithm described here was developed specifically

for use in conjunction with an ‘inner’ particle filtering procedure, in order to leverage

the latter algorithm’s efficiency as an ‘online’ algorithm for certain types of inference

problem. It was found to perform reasonably well against other algorithms –and

outperform standard particle MCMC by some margin– for low dimensional prob-

lems, particularly for problems where the posterior mass had low variance relative

to the sample interval.

In general, its most useful feature was found to be the scalability of its variance-

reduction potential. In plainer terms, it provides a way to focus computational

resources more evenly, and out to the ‘tails’ of the target distribution, which led to

‘smooth’ [marginal density] estimates – even though it is not particularly efficient

for the scale and dimension of model ultimately required for the motivating prob-

lem considered in Chapter 6. In summary, ARQ-MCMC proved useful (and reliably

consistent) as a validation tool, and also provided the first meaningful results ob-

tained during the course of the project that were based on actual BTB surveillance

data.

We conclude this chapter by discussing some of the algorithm’s features in more

detail, and highlight ideas for future work:

Computing the marginal likelihood

A simple method for approximating the marginal likelihood denoted by convention

as π(y), was presented in §2.5. Despite the crudeness of the approach, it was

found to give results surprisingly close to that of the SMC2 algorithm for very
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low dimensional problems (d < 4). That approximation might have been improved

for other problems with a modest amount of effort. For example, it was noted

that MCMC tends to (naturally) weight the importance sample such that remote

regions of the target distribution are neglected (except perhaps for the initial ‘burn-

in’ samples). Even sparse stratified sampling of these remote (but non-zero) density

regions, combined with a more sophisticated and finely-grained (i.e. integration by

parts) approach would likely have extended the usefulness of the algorithm in this

regard, and with perhaps only a very modest amount of additional computational

cost. However, this remains the subject of future work. In particular the SMC2

provided a more efficient means of estimating (rather than approximating) the

model evidence, such that any additional effort expended on this feature would not

have contributed directly to the goals of the project.

Adaptive [harmonic] intervals

As noted above, the algorithm and implementation was found to be a generally

useful ‘workhorse’ throughout the course of this project. More precisely, while the

suitability and effectiveness of approaches (i.e. algorithms) for conducting Bayesian

inference often seem to depend largely on the nature of the problem, the ARQ-

MCMC algorithm tended to produce reliable results regardless – though its run-

time was still affected by the nature and difficulty of the underlying problem. One

obvious exception to this surprisingly general usefulness lay in the necessity to pre-

determine the [approximate] interval width between samples. This design decision,

or requirement, seemed entirely justified in the early stages of development. In

many conceivable circumstances, the decision can be wholly informed by a priori

knowledge of the problem and parameter space, and the desired resolution in terms

of the marginal estimates obtained. For example, given a parameter that repre-

sents time duration (or a linear transformation thereof) we would usually be able

to grasp these details from our understanding of the phenomena being modelled.

In the context of a chemical reaction taking a few minutes, one-second intervals,

may seem naturally appropriate. For the initial infection time of the in an epidemic

lasting many months, days (or longer) would probably seem to be intuitively more

appropriate for most people.

Nonetheless the ‘desirable resolution’ of estimates (i.e. optimal choice of in-

terval) could more simply (at least, from the user’s perspective, especially given
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limited a priori knowledge) be stated in terms of the variance of the estimates.

That would allow for intervals to be adaptively rescaled based on samples obtained

up to a given point. In other words, the ‘unit cube’ could be adaptively rescaled,

such that the posterior mass is approximately concentrated in a cube containing

nd sample nodes. This could naively be accomplished by simply stopping the algo-

rithm intermittently and rescaling the intervals accordingly – effectively, by running

the algorithm twice; with intervals used for the second run scaled according to the

ratio between the variance of samples obtained by the first run and the initially

chosen interval widths. However that would require that the samples obtained in

the first run be discarded, and fit poorly in a framework which is largely focused

on minimising waste (w.r.t. computation).

It would therefore be more fitting to construct an adaptive rescaling technique

so as to encourage harmonic resonances between the initial QMC sequence (largely

defined by the interval width), and the next [i.e. adapted] one. In that way, at least

some of the computation expended during the ‘first’ (notional) run could be reused.

As a plain illustrative example, consider a single parameter in which the interval

was either doubled or halved, according to some adaptive rule. In the first case,

half of the samples would still be centred on a valid node, and thus could be reused.

In the latter, all of the samples would be centred on a valid node, and the MCMC

resampler would silently ‘fill in the gaps’, in accordance with its normal operation.

This could enhance the general usefulness of the algorithm because it would require

only an initial guess on the user’s part as to the appropriate sample width. It would

also provide an automated mechanism to further reduce the effective dimension of

the underlying problem – and perhaps make the algorithm suitable for problems in

higher dimension than was originally intended.

Alternative rules for sample limiting

We have addressed the sample limiting feature of the algorithm, and proposed

that it may be useful for circumstances where the target integrand is an estimator

with only minimal accuracy, or equivalently, high variance. However we have only

addressed one form of limiting rule – the one implemented within DiscretePOMP.jl.

That rule is intended to ensure that samples are computed, up to the predefined

limit as soon as possible, as opposed to say, every nth time a given θ-tuple is sampled

from Γ.
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In particular, we experimented with one minor adaptive rule change which

proved to be useful in some situations. Crudely speaking, if it is detected that

a Markov chain is ‘stuck’, i.e. it has lingered on a given sample for an unusually

long period, we may wish to spend one additional function call to ensure that it is

not aberrant behaviour in the algorithm, likely induced by ‘locking in’ an unusually

high sample error for a given θ-tuple. Likewise, if a given tuple is rejected n times

(without being accepted even once) we might reasonably conclude that it is located

in a dense posterior region (to have been visited n times) and that it is worth an

additional function call to insure against essentially the same scenario in reverse.

We also note that another option for controlling the flow of computational re-

sources is the targeted acceptance rate, implicitly used to adaptively regulate pro-

posal ‘distance’. That is, a lower targeted rate will allow that remote [w.r.t. proba-

bility density] posterior regions are probed more, and more often. We contend that

combining the targeted acceptance rate with different varieties of sample limiting

rule, provides a flexible and intuitive tool set for users with specific computational

requirements. For example, those who wish to estimate the posterior expectations

of a function g(θ), whose value is only significant for θ corresponding to remote

regions of the posterior distribution – sometimes referred to in practical settings

simply as ‘tail-risk’. In such a case, we would probably wish to spread computation

evenly, in a wide envelope around the posterior mass, rather concentrate it on the

densest regions.

We could envisage a different scenario based on the particle filter example de-

scribed. As already noted, that method is an ‘online’ and thus highly efficient and

scalable in terms of accuracy. However if the number of ‘particles’ were limited, say

by the amount of physical memory available for a particularly complex problem,

that constraint could conceivably be overcome in the manner described here.

Alternatively, deliberately choosing an artificially low number of particles could

serve to [further] concentrate computation on the posterior mass, in combination

with an appropriately chosen limiting rule. In fact this would emulate, somewhat,

another technique for improving accuracy in MCMC, as considered in [56] for similar

[i.e. population-]models, and known as ‘delayed acceptance’. This is only applicable

when an alternative ‘cheaper’ means of evaluating the acceptance probability is

available. In contrast to the approach used here, in delayed-acceptance MCMC

those preliminary means are used to estimate the acceptance probability, with a
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full evaluation computed only when it is deemed worthy (i.e. reasonably likely to

be accepted).

3.6.3 Conclusion

We conclude by noting that a ‘good’ algorithm in practice is one that best fits

the user’s specific need. Outwith spectacularly efficient (e.g. analytical) solutions,

this may be largely a matter of directing finite computational resources in the best

possible way, according to that need. We hope that the methods and open-source

implementations we have described here can be of use towards that end, and be

improved upon in due course (in the ways suggested herein or otherwise).
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Chapter 4

Implementing Bayesian workflow

for DPOMP models

“The idea of modular construction goes against a long-term tradition

in the statistical literature where whole models were given names and

a new name was given every time a slight change to an existing model

was proposed. Naming model modules rather than whole models makes it

easier to see connections between seemingly different models and adapt

them to the specific requirements of the given analysis project.”

- Gelman et al., [11]

Summary

• Discrete-state-space Partially Observed Markov Processes (DPOMP models)

are a notable subclass of mathematical and statistical models, often referred

to by the more general term ‘compartmental’ models in applied settings such

as epidemiology. The Susceptible-Infectious-Recovered, SIR, model is a well

known example.

• Bayesian statistics provides an extensible framework for parameter and model

inference (or ‘model comparison’) well suited to scientific domain models (in-

cluding applications of DPOMPs). For example, allowing, in addition to the

primary data used for the analysis, incorporation of findings, beliefs and com-

monly accepted scientific knowledge about the system under study as the

‘prior distribution’. The collection of data itself can be characterised using a
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statistical observation model allowing for arbitrary complexity and intrinsic

uncertainty.

• Recent work towards an integrated, principled Bayesian workflow [11, 67, 68]

provides a rigorous framework for full Bayesian analysis of scientific data,

including parameter and model inference. Tools such as Stan facilitate con-

venient implementation for some classes of models, notably those based on

ordinary differential equations (ODEs).

• However implementing a principled Bayesian workflow for other, more compli-

cated classes of scientific domain model is challenging for a variety of reasons.

In the case of DPOMPs specifically, estimating the posterior density involves

integrating over the parameter and measure space of the underlying stochastic

process model (i.e. solving a ‘double integral’) and can be computationally

expensive. The required methods can also be work intensive to implement

due to their complexity, even in feature rich languages such as R and Julia.

• Here we collate algorithms and tools towards the implementation of a scientifi-

cally rigorous, computationally efficient (and eventually, automated) Bayesian

workflow for the generic class of DPOMP model described herein.

• To enable this we introduce two novel inference algorithms aimed at overcom-

ing common difficulties encountered in application of Bayesian inference for

DPOMPs.

4.1 Introduction

This chapter first provides brief overviews of Discrete-state-space Partially Ob-

served Markov Process (DPOMP) models, and Bayesian inference in the context of

DPOMPs, before moving on to the recent topic of principled workflows for Bayesian

data analysis. Having laid out these essential concepts, the rest of the chapter is

given over to describing the algorithms and other statistical tools necessary for im-

plementation of a multi-phased workflow for Bayesian analysis of DPOMP-modelled

data. In particular, we introduce two novel inference algorithms that aid applica-

tion of Bayesian inference for DPOMPs and showcase them via exemplar Bayesian

workflows.
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Discrete-state-space Partially Observed Markov Processes

Discrete-state-space Partially Observed, Markov Processes (DPOMPs) are

an important subclass of state-space-model known as ‘compartmental’ models. The

canonical example of which from epidemiology, the susceptible-infectious-recovered,

or SIR model, is depicted in Figure 4.1. For DPOMPs, the model is said to have

a discrete-state-space because individuals take one of n discrete states with

stochastic transition events governing their time evolution. In other words (un-

like an ODE) the number of individuals in a given state at a given time is both a

discrete quantity and a random variable. Equivalently, the complete system state at

any given time can be described by a vector of integers e.g. describing the numbers

of individuals in each state.

A standard way to construct such models involves a coupled Poisson point pro-

cesses to represent [the distribution of event times of] X. These are typically dis-

tributed according to rate parameters that depend only on the system state at a

given time and not its prior history. Another way of saying this is that the random

variable X is a Markovian [stochastic] continuous time process.

S I R
βSI γI

Figure 4.1: Exemplar compartmental model. This figure depicts the

susceptible-infectious-recovered, or SIR, model [3], in which individuals may only

exist in three states: susceptible to the disease S; infectious I; and recovered (and

no longer infectious or susceptible) R. For this population-level representation of

the SIR model rates are defined in terms of the state-space vector describing the

numbers of individuals in each state {S, I, R}, at a given time, that can be inter-

preted as probabilistic or deterministic. They govern time-evolution of the system

by describing the rate at which individuals from one state transition into other

states. Permitted transitions are shown by arrows between states, showing e.g.

that the R state is a terminal state and no backward transitions are allowed.

Finally for DPOMPs the system is also said to be partially observed. More

precisely, the system state as it is [partially] observed and the ‘true’ underlying

(or modelled) system state are treated as distinct but one-way dependent random
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variables:

X|(Θ = θ) ∼ fθ(x) (4.1)

Y |(X = x,Θ = θ) ∼ gθ(y|x) (4.2)

where X represents the complete time evolution of the system and Y the corre-

sponding observations data respectively. They are also sometimes referred to as

the signal process and the observation process. They are distributed according to

probability densities functionally denoted as fθ(x) and gθ(y|x), where θ denotes

a vector of model parameters. Typically different components of θ determine the

signal and observation processes.

Bayesian inference

In the context of DPOMP models and many others besides, the term ‘Bayesian

inference’ principally refers to the formulation and computation of probability den-

sities of the form:

π(θ, x|y) = π(θ)π(x|θ)π(y|x, θ)
π(y)

(4.3)

where π(θ, x|y) is the posterior distribution; π(θ) is the prior distribution; and π(y)

is the marginal likelihood. As already effectively noted, the likelihood of the signal

process π(x|θ) and observation [model] likelihood π(y|x, θ) are given by:

π(x|θ) = fθ(x) (4.4)

π(y|x, θ) = gθ(y|x) (4.5)

These identities and description of Bayesian inference tacitly assume that we are

concerned with only a single model. However they can also be extended for the

purpose of model comparison. This is covered in §4.5.

Workflows for Bayesian data analysis

As noted Bayesian data analysis includes but is not limited to Bayesian inference.

It also includes (initial) model choice, construction and validation. Recent work

towards a principled workflow for Bayesian data analysis [11, 67, 68] provides a

rigorous framework for scientific research based on Bayesian methods, principally

studies that depend on parameter and model inference. This framework can be
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easily understood by considering the structure of the workflow described by Gelman

et al., [11], which consists of three broad phases:

1. Model construction

2. Bayesian inference

3. Model checking and validation.

For simplicity this workflow can be considered initially in the context of parameter

inference based on a single model, with formal model comparison added as a fourth

stage when needed, or indeed as an extension of phase 3. Although a form of

Bayesian inference in its own right, model inference is also a natural form of model

validation in that it provides formal metrics that allow us to understand how well

(or badly) each competing model fits the data.

Key benefits of Bayesian workflows for scientific research derive firstly in the

intrinsic transparency that results from utilisation of a well defined workflow. This

facilitates more convenient reproduction of analyses, especially where standardised

software tools are available and (well organised) code, and ideally data, is shared

openly. Perhaps most importantly, structuring studies in ways that are broadly con-

sistent and standardised where possible, reduces the cognitive burden of attempting

to understand a scientific study for readers. In this case, formal convergence di-

agnostics and other well-established metrics such as ‘Bayes factors’ can (loosely

speaking) play the role that Normality tests and p-values do in Frequentist statis-

tics. That is as commonly understood markers of statistical strength and quality,

that aid transparency and rigour.

Implementing Bayesian workflow for DPOMP models

Bayesian workflow are more easily realised through use of standardised software

implementations when feasible. Tools such as Stan1 facilitate the convenient im-

plementation of integrated workflows for Bayesian data analysis for some classes

of models, such as those based on ordinary differential equations (ODEs). How-

ever, due to their relatively complexity, DPOMP models are harder to analyse us-

ing standardised software tools. More precisely, the underlying stochastic process

model gives rise to a nested integral that increases the computational complexity

1https://mc-stan.org/
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of the problem. This places them somewhat beyond the typical capabilities of soft-

ware packages designed for standard Bayesian computation, and can also lead to

computational difficulties. The main contribution of this chapter is therefore the

development of computational statistical tools that overcome such problems while

issues of software implementation addressed in Chapter 5.

The rest of this chapter deals directly with implementation of Bayesian work-

flow and challenges incumbent to the case of DPOMP models detailing each of

the three phases: 1) model construction; 2) Bayesian parameter inference; and 3)

model checking and validation. These are discussed without regard to any specific

realisation of a DPOMP model, however, an example workflow based on analysis

of real epidemiological data is provided in the next chapter.

4.2 Phase one: model construction

As noted by [11], initial selection of models and methods is usually guided by pre-

existing approaches in the relevant literature e.g. a mathematical model from a

published case study. Initially selected models can then be refined to accommodate

additional (or fewer) features and complexity, as guided by information obtained

from Bayesian parameter inference (phase 2) and model checking and validation

(phase 3). This section addresses only the immediate technical considerations and

steps involved in defining a DPOMP model. A more complete and generalised

treatment of model formulation in the context of principled Bayesian workflows is

given by [67].

We begin by noting that the generic class of DPOMP model covered herein is

completely described by the following:

• A state vector: specifying the number of individuals in each of N possible

states/compartments individuals can occupy within the model, e.g. {S, I, R}.

• An initial condition: in simple cases, this is the model’s state vector at some

designated (possibly unknown) initial time t0 (Other cases discussed below).

• A set Ξ of |Ξ| possible event types

• Transition matrix: a mapping between event types and the resulting changes

in state-vector. Typically, it can be represented as an |Ξ| by N matrix.
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• The event rate function: a map between the model parameters and state

vector, and the rates at which the |Ξ| possible events can occur.

• Observation model: statistical distribution of the observed data conditional

on the underlying (not directly observable) system state.

As per the identities laid out in the introduction, partially observed Markov processes

can be interpreted as statistical models comprised of two random variables, X, Y

with the latter conditionally distributed on the former. In most applicable cases the

observations data y are longitudinal. In other words, observations are assumed to

be made at different points in the temporal evolution of the focal real-world system.

It is therefore often convenient to partition x, hereafter referred to as the system

trajectory [variable,] on the same temporal basis as y. Hence, we have:

π(x1:n|θ) =
i∏

1:n

fθ(xi|xi−1) (4.6)

π(y1:n|x1:n, θ) =
i∏

1:n

gθ(yi|xi) (4.7)

Here fθ(xi|xi−1) is the distribution under the model of the state of the system xi

at time ti conditional on it being xi−1 at time ti−1.Assuming access to a suitable

simulation protocol (the Doob-Gillespie algorithm in this case) we can sample fθ(xi)

on a sequential basis, conditional on xi−1. This is particularly useful for the purpose

of inference (as discussed in the previous chapter w.r.t. SMC methods).

4.2.1 Initial condition

The above notation implies dependence on initial conditions; initial model state x0

and corresponding time t0. Dependent on the available data and assumptions the

modeller is willing to make, these may be estimated via Bayesian inference (phase

2). In some cases, it may be appropriate to designate an initial time, e.g. the first

observation, and sample the initial state of the model from a given distribution.

In others it may seem reasonable to do the reverse and assume that x0 is known

but that t0 is not. For example, we might assume that an epidemic began with the

introduction of one infected individual, but that the time of that introduction t0

is unknown. For simplicity and notational convenience we disregard the specifics

and assume that an appropriate distribution for sampling the initial condition (and
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computing the corresponding probability density) has been defined. This is written

as:

X0|(Θ = θ) ∼ fθ(x0) (4.8)

with the corresponding probability density written as:

π(x0|θ) = fθ(x0) (4.9)

Note that any possibly unknown parametrisation of fθ(x0) can be accounted for

by introducing an element to the vector of the model parameters θ. Likewise, the

initial time t0 can be similarly accounted for.

4.2.2 Event rates

Given an initial condition (x0, t0), time-evolution of the modelled system is governed

thereafter by a set of coupled inhomogenous Poisson point process (IHPP) with the

number of processes corresponding to the number of event types. Inter-event times

are exponentially distributed with the rate set by the sum of all event rates. Each

event type occurs at a rate which varies according to the state of the system updated

by the successively selected events. The corresponding probability density is written

as:

p(∆t = δt) = Re−Rδt (4.10)

R =
∑
ξ∈Ξ

λξ (4.11)

where each rate λξ corresponds to a given event type ξ ∈ Ξ and Ξ is the set of all

possible event types. R is the total rate for all event types combined. When com-

puting these quantities in practice, each λ may be regarded as a separate function

that maps (i.e. computes) the rate for the corresponding event type based on model

parameters θ and the ‘current’ (or immediately preceding) state of the model. This

simple but extensible framework allows for arbitrary numbers of event types with

possibly complicated definitions.

Transition matrix

The simplest way to describe event-driven migration within a model is by using a

|Ξ| by N matrix where the cardinality of Ξ gives the number of possible event types
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and N is the length of the model’s discrete state vector. More complex mechanics

(such as sampling a new state vector from a given distribution based on the event

type) are not addressed here but could nevertheless be easily accommodated within

generalised descriptions of DPOMP models by interpreting this step as a [possibly

stochastic] function for computing [sampling] new model states.

4.2.3 Observation model

For the purpose of implementing a Bayesian workflow for DPOMPs, the observation

model serves two vital purposes:

1. enabling computation of the probability density associated with a given ob-

servation yi: π(yi|xi, θ) = gθ(yi|xi) and also given xi.

2. allowing sampling of theoretical observation values given some notional system

state, x: Y |(X = x,Θ = θ) ∼ gθ(y|x).

Thus the observation model is a statistical distribution from which we wish to both

draw samples and compute the probability density associated with given values (and

notional system states). As a simple example, we might assume that individuals

with a given state S have probability p of being observed. In other words:

π(yi|xi, θ) = gθ(yi|xi) ∼ Bin(NS, p) (4.12)

where NS is the number of individuals in state S at the time that observation yi

is taken. Drawing samples in this way is invoked for the purposes of ‘predictive

checking’ as discussed in due course.

4.3 Phase two: Bayesian inference

The second phase of the workflow is Bayesian inference i.e., the formulation and

computation of posterior probability densities, stated again here for convenience as:

π(θ, x|y) = π(θ)π(x|θ)π(y|x, θ)
π(y)

∝ π(θ)π(x|θ)π(y|x, θ) (4.13)

where the terms and notation are the same as that laid out in §2.3. Note the

expression on the RHS (where ∝ means ‘proportional to’) which can be exploited
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for the purposes of parameter inference without the need to compute the marginal

likelihood π(y) (algorithms for inference are discussed in §2.4). Here we briefly

discuss the prior distribution π(θ), before discussing algorithms for sampling from

the posterior. Note that formulation of the observation and process models was

discussed under phase one.

4.3.1 Adding prior information

The prior distribution π(θ) provides a formal approach to incorporating into the

analysis previous findings, beliefs and commonly accepted scientific knowledge about

the system of interest. The selection of an appropriate prior distribution is there-

fore an important step in any Bayesian analysis. Much like the choice of model

structure, selection of an appropriate prior distribution can be an iterative and

multi-phased process. One approach is to begin with only a weakly informative

prior and progress to a more informative one as our understanding of the problem

develops.

4.3.2 Sampling the posterior: algorithm design

As discussed in Chapter 2, directly computing (4.13) tends to infeasible for DPOMPs.

A standard approach to Bayesian computation generally is to use random sampling

(or ‘Monte Carlo’) methods to estimate the posterior distribution instead. This is

also referred to (in this context) as ‘numerical integration’. There are a number

of important design choices and options to consider when constructing appropriate

algorithms. Firstly, most standard approaches to such pseudo random sampling

fall into one of two classes: rejection sampling algorithms, and importance sam-

pling algorithms. Another practical but equally important design choice is mode

of computation. ‘Online’ algorithms are those in which the full system trajectory

is not held in memory, greatly reducing memory requirements and increasing speed

of computation, at least per sample. In contrast ‘offline’ algorithms, retain the full

system history, which whilst slower, is less restrictive in terms of algorithm design.

The additional computational cost can more than offset the cost of ‘offline’ compu-

tation if the enhanced features of the algorithm enable more efficient sampling of

the posterior e.g. in generating less correlated samples.

The four specific algorithms for inference that we consider here are selected to
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give an even coverage of this variety, albeit one that is far from comprehensive. Each

pairwise combination of importance/rejection sampling and online/offline computa-

tional mode is represented. The first two are established methods from the literature

(also described in Chapter 2). They are SMC2 (an online importance sampler) and

model-based-proposal (MBP-) MCMC (an offline rejection sampler). The second

two algorithms are the ones introduced in Chapter 3, and were constructed by re-

combining certain methods and concepts described in Chapter 2, as summarised in

Figure 4.2. Much like SMC2, the MBP-IBIS (offline IS) algorithm can be under-

stood as a version of a technique called iterative-batch-importance sampling (IBIS)

proposed by [44]. The ARQ-MCMC (online RS) can be understood as a version

of standard [adaptive] particle-MCMC combined with [randomised] quasi-Monte

Carlo (QMC). The algorithms and their features are summarised in Table 4.1.

Iterative batch importance sampling

MBP-IBIS

Model-based-proposal

Quasi Monte Carlo

ARQ-MCMC

E.g. particle filter

MCMC

Figure 4.2: Algorithm dependency map. The diagram illustrates the key

methodological concepts that provide the basis for the two novel algorithms intro-

duced in Chapter 3 and employed in this chapter to implement a practical Bayesian

workflow for DPOMP models. An arrow from a to b indicates that a provides a

modular component of, or methodological basis for, algorithm b.

4.3.3 Sampling the posterior: algorithm performance

Understanding which of the four algorithms shown in Table 4.1 is ‘best’ for use with

DPOMP models is difficult and it seems likely to be problem dependent. To be-

gin to address such questions, an informal performance evaluation was conducted,

based on a simulated inference problem described in [4], with the results reported

in the last chapter (§3.4). A visual summary of the results is recapped in Figure 4.3

for the reader’s convenience. Recall that the best performing algorithms tending
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Algorithm Mode Class Type Chapter 2

MBP-MCMC Offline DA-MCMC Rejection sampler §2.4.2
SMC2 Online IBIS Importance sampler §2.4.3
MBP-IBIS Offline IBIS Importance sampler

ARQ-MCMC Online P-MCMC Rejection sampler

Table 4.1: Algorithm features. Overview of the inference methods considered

here, in terms of characterisation as on- or off-line, and importance or rejection

sampling.

towards the bottom left (more accurate / faster) and the worst towards the top

right (less accurate / slower). It is important to stress that these results are based

on only a single simple inference problem, albeit one chosen to represent a compu-

tationally challenge scenario. They are therefore not necessarily representative of

the algorithms’ capabilities more generally. In particular, the ARQ-MCMC algo-

rithm is particularly well suited to problems in low dimension (with |θ| = 2 in this

case). Notwithstanding these caveats, the SMC2 algorithm (labelled as ‘pibis’ for

particle-IBIS in the figure) was the best performing of all algorithms.

All four algorithms were evaluated based on the same generalised implementa-

tion presented in the next chapter. Generalised implementation imposes software

design constraints to enable handling of many (at least slightly) distinctive problems

and scenarios in order to be useful at scale. To assess the performance impact of

such constraints, a customised implementation of the MBP-MCMC algorithm was

therefore included (labelled ‘custom’). Although it had the same notional config-

uration and was comparable in terms of accuracy, the customised implementation

had an average recorded run time of less than 1/3 that of the generalised imple-

mentation.

4.3.4 Sampling the posterior: multi-algorithm workflows

While some (or all) of the named algorithms may be particularly effective for certain

classes of problem, it is not necessary, or even perhaps advisable, to use only a single

algorithm to obtain estimates.

Here we argue that given all methods have different strengths and weaknesses,
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Figure 4.3: Algorithm performance. Comparison of algorithm run time (in

seconds) and the mean adjusted error for estimates of E(θ) for the performance

evaluation reported in §3.4. Some algorithms permit configurations that trade ac-

curacy for computational effort and a number of approximately optimal configura-

tions were used; hence some algorithms have two or three separate markers. The

‘custom’ marker is explained in the main text (in this section). See §3.4 for other

details of the analysis.

they can be combined as distinct modules of the same analysis (or ‘sub-workflow’)

e.g. for the purposes of independent cross-validation. For example, the two im-

portance sampling algorithms yield an inexpensive and unbiased estimate of the

marginal likelihood π(y) which is important for formal model assessment and com-

parison (discussed in §4.5). The estimates obtained could subsequently be cross-

validated by comparison with the results of an MCMC analysis, w.r.t. parameter

estimates (i.e. rather than the marginal likelihood, which is difficult to estimate if

not completely intractable using MCMC). A simple but robust chain of validation

could then be completed with a standard test of convergence for MCMC, such as the

Gelman-Rubin diagnostic. An illustration of such a workflow is given in Figure 4.4.

4.4 Phase three: model validation

The third and final phase of the [single-model] workflow pertains to ‘model checking’

– assessing the suitability of the model for describing the observations data, y. This
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Primary analysis: IBIS

Validation analysis: MCMC

Compare: E(θ)

Compute: π(y)

Convergence diagnostic

Figure 4.4: Multi-algorithm workflow. Schematic depictiobn of a two-algorithm

inference workflow for DPOMP models. In this case the choice of IBIS algorithm

corresponds to SMC2 or MBP-IBIS, and MBP-MCMC or ARQ-MCMC for the

MCMC validation algorithm.

is distinct from any validation carried out as part of the inference analysis itself as

described in the last section. Here assume that inference has been carried out

and reliable posterior samples have been obtained. Three somewhat distinct and

generally applicable aspects of validation are now described: Simulated inference;

Prior predictive and Posterior predictive checking.

4.4.1 Simulated inference

Simulated inference involves applying inference algorithms to observations simu-

lated from a known data generating mechanism (i.e. from a known process and

observation model with known parameters). This allows assessment of the ability

of inference methods to recover estimates for (the known) model parameters. Fur-

thermore this can be extended to validating model inference and observational or

experimental study design by assessing how much and what type of data are needed

to conduct reliable inference.

4.4.2 Predictive checks

Predictive checking involves sampling (or resampling) the complete model – includ-

ing model parameters, system trajectories and [simulated] ‘observations’ data. The

distribution of simulated observations data can then be compared with real-world

data sets in order to help assess whether typical behaviour in the model is similar to

that observed in the actual system of interest. Prior predictive checks draw param-

eter values from the prior and are aimed at assessing the plausibility of the range

of models included within this space. The idea is to check for regions of parameter
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space that give rise to model outcomes that are impossible or highly implausible

given what we know about the behaviour of the focal system. Posterior predictive

checks involve sampling parameter values from the [estimated] posterior and assess-

ing how well the model under the parameter posterior (i.e. the posterior predictive

distribution) agrees with observed data.

In the case of DPOMP models, resampling the posterior θ-samples (or estimate)

obtained in the second phase of the workflow is a trivial exercise. Likewise for sam-

pling from the prior. The model realisations are obtained by DGA (Algorithm 1).

Applied examples of predictive checking are included with the case study described

in the next chapter.

4.5 Phase four: Model validation

Model validation contrasts with the validation of methods, such as those suggested

for earlier phases of the workflow. In this case the goal is to assess the suitability

of proposed models for the data in question as opposed to, e.g. confirming that

a statistical method has been implemented correctly, or that an algorithm has

converged sufficiently.

The marginal likelihood p(y) provides an empirical measure of how well a single

model fits the data. In keeping with the Bayesian approach, we can also utilise the

marginal likelihood for the problem of model validation and comparison (e.g. see

§2.5). To recap, application of Bayes’ theorem allows us to write an expression for

the different choices of model available, as follows:

π(y,Mi) =

∫
π(Mi)π(y1:n|x1:n, θ,Mi)π(x1:n|θ,Mi)dx1:ndθ (4.14)

where Mi is the i
th model chosen, π(Mi) is the corresponding prior distribution (i.e.

the prior belief in that model), and the observation and process model distributions

show explicit dependence on model structure that was previously implicit). The

Bayes factor provides a standardised way to directly compare these quantities for

two candidate models:

K1,2 =
p(y|m1)

p(y|m2)
(4.15)

where, according to the scale originally proposed by Jeffreys [65], K1,2 > 10 can be

considered to be strong evidence for favouring model m1 over m2.
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log10K K Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

Table 4.2: Bayes factor interpretation, from Kass and Raftery[1].

4.6 Discussion

We followed the broad three-phase structure of the Bayesian workflow laid out

by [11]: model construction; Bayesian inference; and model validation (plus model

comparison). We have described the statistical tools and algorithms necessary for

implementation of a principled Bayesian workflow for DPOMP models. We also

described a multi-algorithm approach that made use of two novel algorithms for

inference introduced in Chapter 3 that, together with the established methods col-

lated in Chapter 2, represent a broad suite of statistical and algorithmic approaches

to the problem. These cover online versus offline and importance sampling versus

rejection sampling algorithms, with each of the four pairwise combinations of those

approaches represented in our analysis.

We note that in practice, the task of conducting a complete Bayesian analysis

is almost always one of iteration and refinement. As such, we would not expect

any such workflow to be executed precisely and exclusively in the order given. For

example, if having executed a complete multi-model inference workflow, we face a

choice between a simplistic poorly fitting model, and an elaborate one that seems

to better fit the data (but perhaps not sufficiently to warrant rejecting the model

according to the Kass-Raftery scale) we might wish to revisit the model construction

phase in order to experiment with one or more hybrids. This iterative approach was

adopted during the course of the work carried out for Chapter 6 concerning within-

herd modelling of BTB dynamics in UK cattle herds and led to development of the

‘simple reinfection’ model introduced in that chapter. Another example concerns

the technique referred to as prior predictive checking. Due to its technical similarity

with posterior predicting checking, both methods were presented here as part of the

third, model validation phase of the workflow. However it seems quite likely that in
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at least some situations, prior predictive checking would be carried out beforehand,

perhaps so as to inform and validate the selection of the prior distribution (and

even model structure) in the first place. A useful and representative illustration

of this ‘tangled [Bayesian] workflow’, as the authors refer to it, is given in a flow

diagram in [11] (see Figure 1 in that paper).

We now conclude with some final remarks on further work towards a more

complete implementation of a principled Bayesian workflow for DPOMP models.

Consistent presentation of results

The temporal order in which a Bayesian workflow has been executed arguably

matters somewhat less than consistency of presentation of results e.g. for the pur-

poses of conducting and publishing scientific research. Consistent treatment lowers

the cognitive burden of understanding the results for others, and thus improves

the transparency and usefulness of published findings. Such considerations should

encompass: practical considerations such as convergence diagnostics and other vali-

dation metrics; the format of results tables; and standardised tools for visualisation,

only some of which have been narrowly addressed here. Others are addressed in

the next chapter. In general we believe that it is advisable to simply follow the

conventions established by the best known and curated open-source tools available

for Bayesian computation, such as Stan, wherever possible. Where we have failed

to do so it is more than likely due to oversight rather than deliberate choice.

Bayesian model averaging

One avenue of investigation not explored in 4.5 is that of Bayesian model averag-

ing [69], which essentially circumvents the problem of model selection altogether by

providing a weighted average across models.

For example, let θα denote some common parameter across models (e.g. the

‘latent period’ in competing disease models). The posterior distribution of θα given

data y is:

π(θα|y) =
n∑

i=1

π(θα|Mi, y)π(Mi|y) (4.16)

where the Mi denotes the i
th of n competing models. This approach is self-evidently

suited only to models that have important quantities in common, in particular
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nested models. However a key advantage is that the terms on the RHS can be

can be derived from the posterior parameter estimates and marginal likelihoods

obtained during earlier phases of the analysis, thus adding substantial value to the

results with only a trivial amount of additional computation required.

Model averaging is especially useful when the goal of an analysis includes predic-

tion (i.e. sampling from the posterior, rather than merely characterising it). This is

because it incorporates model uncertainty in predicted values which, intuitively, is

preferable to simply choosing the ‘best’ model and disregarding model uncertainty

thereafter for that purpose.

Algorithm enhancements

The modular multi-algorithm inference workflow proposed in Figure 4.4 calls for

manual comparison of posterior estimates for the purposes of cross-validation. How-

ever, a computed quantity, such as the Kullback–Leibler divergence would be better,

both because it would avoid the need for subjective interpretation and also because

it would be more conducive to automation. Alternatively, implementing a method

for formal comparison of n independently obtained weighted samples would diminish

the need for an additional validation analysis altogether.

Generalised software implementation

Perhaps the most useful and obvious way to extend this work would be to produce

a generalised software implementation and make it available as an open-source

research tool. That challenge is addressed directly in Chapter 5.
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Chapter 5

Software for Bayesian analysis of

DPOMP-modelled data

“In practice, making code truly open source — in the sense that it can be

run, usefully, by a wide variety of people and on a wide variety of plat-

forms — demands a commitment that few scientists are able to make.

When building scientific software, researchers usually face the choice to

build something that helps answer a specific problem, or to build a more

generalized tool and invest in an effort to build a user community around

it.”

- Professor Steve Easterbrook [70]

Summary

• Bayesian statistics provides an extensible framework for parameter and model

inference that is in many ways ideal for scientific research. For example it al-

lows us to incorporate prior findings, beliefs and commonly accepted scientific

knowledge as the ‘prior distribution’ (of e.g. model parameters). It also allows

us to mathematically characterise the observations process itself, allowing for

arbitrary amounts of complexity and intrinsic uncertainty. In doing so, it

allows that the best possible use can be made of whatever experimental or

observational data are available.

• The previous chapter laid out the definitions and statistical tools required

to implement a multi-phased workflow for discrete-state-space, partially ob-
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served Markov process (DPOMP) models, in line with emergent best practice

in the field of applied Bayesian statistics.

• This chapter describes a generalised software implementation of that work-

flow: an open-source package for Bayesian analysis of DPOMP-modelled data

in Julia, including model definition and validation. The BayesianWorkflows.jl

package is designed specifically for the generic class of DPOMP model de-

scribed in the last chapter and includes automated tools for model construc-

tion; simulation; parameter inference; and model inference (i.e. formal model

comparison) as well as model validation.

• We demonstrate its use by mirroring a case study on Bayesian workflows for

disease transmission data (influenza A, H1N1) as laid out by [5] for ODE-

models in Stan.

5.1 Introduction

The practical work conducted throughout the project has relied on a well-organised

code base, with particular emphasis on the Julia programming language. That in-

cludes at least somewhat-generalised implementations of the algorithms and work-

flows described in previous chapters, including model definition; visualisation; and

diagnostics for Bayesian inference based on the class of model laid out in the

beginning of Chapter 2 – discrete-state-space partially observed Markov-processes

(DPOMPs). In accordance with the principles of open science, this work has been

organised and documented as an open source software package: a Julia package

called BayesianWorkflows.jl1. The remainder of the introduction summarises ex-

isting software provision for Bayesian inference, with emphasis on the general class

of problem considered in previous chapters. The current availability provides mo-

tivation for an additional offering pertinent to DPOMP models specifically. The

rest of the chapter is given over to describing the package itself, including key

functionality and examples.

1Source code and readme: https://github.com/mjb3/BayesianWorkflows.jl
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5.1.1 Existing software provision

It is arguably preferable to use, or at least validate against, established statistical

software tools (and thereby methods) when conducting scientific research, so as to

help assure the accuracy and reproducibility of results. A short review of available

software for Bayesian inference reveals that options for the practical implementation

of inference methods depend largely on the model and task at hand.

More specifically, for problems where the posterior density, including the time-

evolution of the state-space-model, can be expressed using a set of differential

equations – there is generous provision. Well known examples include Stan [71],

JAGS [72], and WinBUGS [73]. Popular tools of this nature can be understood

as stand-alone software; usually declarative statistical programming languages in

their own right that tend to be accompanied by multiple interfaces, ranging from

stand-alone graphical and command-line applications, to software libraries for other

programming languages such as Julia and R. There is also overlapping functionality

available for the latter on a more language-specific basis. For example, the ‘Turing

Language’ 2 – a probabilistic programming library for Bayesian inference in Julia

– includes packages for Hamiltonian MCMC. This is a recently popular sampling

method that is also used in tools like Stan [71, 74].

Software for DPOMP models

For more sophisticated statistical models –in this case, those that imply the need to

solve integrals over the joint parameter and measure space of the model, DPOMP

models– the provision of available software (in any language) is less generalised

and typically therefore more limited. Again though, it depends greatly on the

specific task and methods in contemplation. The simulation of stochastic processes

in general is a widely considered problem, with software implementations that cater

to specific classes of stochastic process and simulation protocols, and also abstract

ones, e.g. [75].

The same is true – at least to an extent – for statistical inference. For DPOMP

models specifically, the available provision tends to be based solely on sequential

Monte Carlo (SMC) techniques though. For example, the pomp [76] package for

R provides access to plug and play approaches including both particle filtering

2https://github.com/TuringLang
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and full particle-MCMC, but not access to more sophisticated sequential methods

such as SMC2, or to data-augmentation methods. We were not able to identify an

equivalent package for Julia, but broadly the same functionality is available by other

means. For example, direct simulation of inhomogeneous Poisson processes (i.e.

Algorithm 1) is available via the Gillespie.jl package3. Similarly, the JuliaPOMPD

library for [discrete-time] ‘partially observed Markov decision processes’ (POMDP)

includes the ParticleFilters.jl package for SMC, which by the algorithm’s design

is just as applicable (at least in theory) to [continuous-time] POMP model-like

problems.

5.1.2 Motivation for BayesianWorkflows.jl

We have briefly noted a few of the better known software tools and packages for

simulation and Bayesian inference. However, the provision for DPOMP models

specifically was found to be too limited to be useful for the task at hand (as consid-

ered more directly in Chapter 6 onwards). In particular, we are not aware of any

generalised provision for efficient parameter inference using DA methods in con-

junction with DPOMP models. At least, none that are widely publicised or used,

though bespoke coded examples can sometimes be found in blogs and tutorials (in

addition to academic sources).

The lack of generalised implementations for DA methods, compared to SMC,

is not particularly surprising though. The modular nature of the latter lends itself

quite well to generalised implementation. In particular, the encapsulated nature of

particle filters is a convenience that can be exploited for this purpose. By contrast,

both the conceptual design and engineering of DA algorithms are naturally more

intertwined with the workings of the inner state-space model. This can be under-

stood by considering that, where a particle filter may yield an unbiased estimate

∝ π̂(θ|y), DA algorithms are characterised by their reliance on a joint density that

includes the augmenting variable x, written herein simply as π(θ, x|y). In crude

terms then, the ‘challenge’ to software provision for advanced Bayesian methods

(DA-based, in particular) is to provide an interface that is simple enough to be

useful in shorthand. That is, without writing excessive amounts of code, scripts, or

long-winded configuration files. But also scalable with regard to the nature of the

augmented variable (or equivalently, the complexity of the state-space model).

3https://github.com/sdwfrost/Gillespie.jl

144



In reality, that challenge has effectively already been met, by the package-

based ecosystems of statistical languages like Julia and R. However even in highly-

engineered feature rich programming environments such as these, custom implemen-

tations require time, or at least advance knowledge of those resources, along with

at least some degree of familiarity with the methods themselves. There may there-

fore be a useful role for somewhat less generalised intermediate solutions; packages

designed to be more accessible to beginners or those with limited time in particular,

while still scalable enough to (hopefully!) be useful in a range of situations.

The package we describe is a modest attempt to provide such with an [almost]

exclusive focus on DPOMP models, albeit only in one language so far. It follows

the principled workflow approach to Bayesian data analysis laid out in the previous

chapter, and relies heavily on the modular construction approach expounded by

Gelman et al., in their paper on Bayesian workflows, and also in the quotation

cited at the top of the last chapter. The quoted passage alluded more to modular

construction in the context of model construction, but the same principles can

be applied to implementation of Bayesian workflows too (much as they were for

algorithm development in the previous chapter). For example, we treat algorithms

as interchangeable modules in the construction of an inference workflow, which is

treated in turn as a largely self-contained module (phase two) in the overarching

data analysis workflow.

In line with the motivating application for the thesis, the package is presented

with a heavy focus on practical examples from epidemiology (e.g. terminology,

predefined models, etc). Likewise for the problem used to demonstrate key features

in this chapter, which mirrors a case study on Bayesian workflows for ODE-based

models of disease transmission [5]. Sample code is provided with the online package

documentation, in addition to the snippets given throughout this section, and in

Appendix B.
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5.2 Case study: models of disease transmission

Here we demonstrate use of the package’s main features with help of a relevant

case study. It is a Bayesian workflow for analysis of an influenza A epidemic at

a British boarding in 1978 by Grinsztajn et al., [5]. That work is based on a

mathematical ODE-based model, coded in R and Stan. As with the workflow

laid out specifically for DPOMP models in the previous chapter, the first phase

is model construction. We begin by describing the observational data and note

the key mathematical definitions of the disease transmission model (the SIR, as

illustrated in Figure 5.1a). We then directly address implementation (i.e. ‘coding’)

of the model for use in subsequent phases of the workflow.

S I R
βSI γI

(a) A standard representation of the susceptible-infectious-recovered

(SIR) model.

birth
Sm Im

death

Sh Ih

θ1Sm
θ2

Sm
Sm+Im

Ih

θ3
Sh

Sh+Ih
Im

θ4Ih

cSm cIm

(b) A more complex two-species example, which incorporates both

disease and population dynamics. It is based on the SIS-model vari-

ant proposed by Ross and MacDonald [77] for modelling Malaria in

humans and mosquitoes.

Figure 5.1: Discrete-state-space models of varying complexity. Different permu-

tations can be used to describe a large variety of different systems. These two

examples illustrate the potential to describe disease dynamics (and the interaction

between demography and disease dynamics) in both single- and multi-host disease

systems. The worked example described in the text is based on the SIR model.
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5.2.1 Data

The data analysed by Grinsztajn et al., come from an influenza (H1N1) outbreak

at a British boarding school in 1978, are publicly available and were downloaded

using the Outbreaks4 package in R. The data consist of daily observations taken

over two weeks, as shown in Table 5.1.

Date In bed Convalescent

1978-01-22 3 0

1978-01-23 8 0

1978-01-24 26 0

1978-01-25 76 0

1978-01-26 225 9

1978-01-27 298 17

1978-01-28 258 105

1978-01-29 233 162

1978-01-30 189 176

1978-01-31 128 166

1978-02-01 68 150

1978-02-02 29 85

1978-02-03 14 47

1978-02-04 4 20

Table 5.1: Data reported from an outbreak of influenza at a British boarding school

in 1978.

The In bed column was interpreted by the authors of the mirrored case study

to be a ‘messy count’ of the number of infectious individuals in an [ODE-based]

SIR model. More precisely, they assumed that the number of students ‘in bed’

is distributed according to a negative binomial ∼ NB(I, ϕ), where I is the true

number of infectious individuals and the a priori unknown parameter ϕ determines

the ‘messiness’ of the count.

4https://github.com/reconverse/outbreaks
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5.2.2 Disease transmission model

A DPOMP model is essentially described by:

1. An event rate function (and transition matrix/function).

2. A function for sampling the initial system state.

3. The observation model (i.e. [log-] likelihood and sampling function).

Event rates and state transition

For the SIR model, with frequency-dependent transmission, the event rates are

given by:

r1 = βSI/N (5.1)

r2 = γI (5.2)

where the infection and recovery rates are labelled r1 and r2 respectively. Note that

this will correspond to their positions in the output [Array] variable when coding

the model. β and γ parametrise the infection and recovery processes. Lastly S, I,

and N , correspond to the number of individuals in the first two compartments, and

the total number of individuals, with R = N − I − S. The matrix that describes

transition between states is given as:

T =

[
−1 1 0

0 −1 1

]
(5.3)

Note that the row vectors are associated with each distinct type of event, and

column vectors relate to the model state-space, i.e. S-I-R, from left-to-right in (5.3).

Initial condition

The initial condition of the model encompasses the initial system state and time.

In this case it is assumed that the epidemic began with single infectious individual

at some unknown time denoted by t0. The complete model parametrisation is given

by θ = {β, γ, ϕ, t0}, where the parameter that has not yet been described, ϕ, is used

to parametrise one of two observation models discussed below.

148



Observation model(s)

The observation model links the observable quantities, in this case the number of

students in bed, with the underlying system state, i.e. the number of individuals

in each compartment. In their case study, Grinsztajn et al assume that the ob-

servable quantity is sampled from the negative binomial distribution. Here this is

parametrised as follows:

ybed ∼ NB(I, ϕ−1) (5.4)

where ybed is the number of students in bed; I is the number of infected individu-

als according to the model; and the unknown parameter ϕ is used to account for

overdispersion in the counting process. The transformation ϕ−1 is a convenience

that will be explained in due course.

Note that this choice of distribution can account for both over-estimates and

under-estimates w.r.t. the true number of infectious individuals, i.e. ybed <> I is

possible. However it can also lead to observations where y > N if the distribution is

not truncated, which is plainly absurd. In addition to truncating the first distribu-

tion according to population size, we also consider a simple alternative observation

model based on the binomial distribution instead.

ybed ∼ B(I, ϕ) (5.5)

This has the virtue that y <= N is guaranteed but precludes the possibility of over-

estimates in the data, which may be unrealistic. The two variations are therefore

compared using formal model comparison methods in §5.5 to establish which is a

better fit for the data at hand.

5.2.3 Coding the model

In order to use the automated workflows provided with the package, users must

first define the model using the Julia language. The package includes a number

of predefined (mostly epidemiological) models including the SIR model, invoked as

follows:
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1 us ing BayesianWorkflows # NB . install the package first

2 # generate model :

3 initial_condition = [100 , 1 , 0 ]

4 model = generate_model ( ”SIR” , initial_condition ; freq_dep=true )

Listing 5.1: Generate a predefined model instance.

Where applicable, predefined models are density-dependent by default so the frequency-

dependent option has been specified for this example instead. In this case it is more

helpful to define the model manually however, so as to provide a more complete

demonstration. We therefore begin by defining a set of constants that relate the

key properties of our model:

1 MODEL_NAME = ”SIR”

2 N_EVENT_TYPES = 2

3 ## model state space :

4 STATE_S = 1

5 STATE_I = 2

6 STATE_R = 3

7 ## model parameters :

8 PRM_BETA = 1

9 PRM_GAMMA = 2

10 PRM_PHI = 3

11 T_ZERO = 4

12 ## observation model parameters :

13 OBS_BEDRIDDEN = 1

14 OBS_CONV = 2

Listing 5.2: Global constants.

Note: not all of these constants are not actually invoked by the code that follows,

but are included anyway for illustration and completeness. The use of constants is

good programming practice because it helps to make code more easily maintainable,

and also more decipherable for human readers (although in general it is probably not

advisable to define redundant ones, as we have done here for the sake of exposition).
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Event rate function

The event rate function operates on a predefined output variable. Note that since

the function’s output variable is predefined (by Julia convention) the function name

has an exclamation mark appended (as in ‘function name!’ ) and operates on the

variable that is passed first. In other words the user’s only responsibility when

defining the custom event rate function, is to populate it with the correct values.

For the SIR model used here this is done as follows:

1 # rate function :

2 function sir_rf ! ( output , parameters : : Vector{Float64 } , population←↩
: : Vector{Int64 })

3 output [ 1 ] = parameters [ PRM_BETA ] ∗ population [ STATE_S ] ∗ ←↩
population [ STATE_I ] / sum ( population )

4 output [ 2 ] = parameters [ PRM_GAMMA ] ∗ population [ STATE_I ]

5 end

Listing 5.3: Rate function for the SIR model. Note arrows(carriage return symbols)

shown on lines 2 and 3 (and latter) denote only the continuation of the line in

question and have no algorithmic or other significance.

The order of event types is arbitrary in theory although it can have performance

implications in practice5. It is however important to note the order that is chosen,

since the position of a given event type in the rate vector corresponds to the ‘event

type’ argument that is passed as an integer to the transition function.

Transition function

The transition function is a user-defined function that relates the occurrence of

events to the actual migration of individuals between compartments (based on the

event type, which is passed as an argument to the function). In this case (and many

others) it is possible to specify migration completely using an Nr by N matrix,

where Nr is the number of distinct types of event. In such cases the software can be

used to automatically generate a transition function based on a transition matrix

5These are not discussed here for reasons of brevity, suffice to say that events of a more frequent

nature (i.e. a usually high rate of occurrence) should be listed first in cases where computational

efficiency is a concern.
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(‘Array’ in this case) using an appropriate model constructor or helper function,

like so:

1 # transition matrix :

2 tm = [−1 1 0 ; 0 −1 1 ]

3 transition = BayesianWorkflows . generate_trans_fn (tm )

Listing 5.4: Transition matrix and function.

where the ‘tm’ variable is given by equation (5.3). Note that for some models it

may be appropriate (or simply more efficient) to incorporate more complex logic in

the transition function. For example we could treat migration as a random variable,

and sample it conditionally on the event type instead 6. In cases such as this, it

is necessary to manually specify the transition function. Examples of manually

specified functions are included online, in the source code repository.

Initial state function

As noted above, the initial condition of the model is defined by an initial time t0

and the initial system state. For reasons that are similar to those noted above for

the transition function, the initial value of the system state variable is treated as a

function rather than a given quantity (as it is assumed to be in this case). In this

instance, we require only a simple function that always returns the same value. It

is convenient to define it in Julia using in-line syntax for brevity:

1 population_size = 763

2 initial_state = [ population_size − 1 , 1 , 0 ]

3 # initial state (in−line ) function :

4 get_initial_state ( parameters : : Vector{Float64 }) = initial_state

Listing 5.5: Transition matrix and function.

The ‘given quantity’ in this case is encoded by the ‘initial state’ variable, and is

returned by the ‘get initial state’ [transition] function. Note that the transition

6A practical example of this is when we have a process that applies globally (and uniformly)

such as births and deaths. In a model with n possible states, it may be more straightforward and

parsimonious to define one event type for e.g. deaths and then sample from n states, than it is to

define n separate event types with one for each individual state.
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function and its argument can be arbitrarily named but that we must use the

correct function signature, even in cases like this where the ‘parameters’ variable

is not actually invoked by the function. The same applies to all other functional

components (or ‘modules’) of the model.

Observation model

In the context of the package, a realised version of the statistical observation model

calls for two functions that are in a sense the inverse of one another. They are the

observation sampling density (more precisely, log-likelihood) and an observation

generating function that permits us to sample from that density.

The first is implemented for the Negative Binomial (i.e. original, but truncated)

observation model as follows:

1 ## resources : nb . install the Distributions pkg first

2 us ing Distributions

3 ## observation log likelihood function :

4 function obs_loglike (y : : Observation , population : : Array{Int64 , 1} ,←↩
parameters : : Vector{Float64 })

5 population [ STATE_I ] == y . val [ OBS_BEDRIDDEN ] == 0 && ( return ←↩
0 . 0 )

6 population [ STATE_I ] == 0 && ( return −Inf )

7 # truncated −ve binomial distribution :

8 dist = truncated ( NegativeBinomial ( population [ STATE_I ] , ←↩
parameters [ PRM_PHI ]ˆ−1) , 0 , population_size )

9 re turn logpdf (dist , y . val [ OBS_BEDRIDDEN ] )

10 end

Listing 5.6: Observation log likelihood function.

where the ‘obs loglike’ function is a relatively simple function that acts as a wrapper

for the definition of the observation model distribution, and a call to the ‘logpdf’

function, both of which depend on the Distributions.jl package. The first two lines

of the function (i.e. lines 5 and 6) ensure that the call to that function is valid by

handling specific scenarios relating to null conditions that would otherwise cause

an exception in the program.

The corresponding sampling function for this observation density is defined

thusly:
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1 function obs_sample ! ( y : : Observation , population : : Array{Int64 , 1} ,←↩
parameters : : Vector{Float64 })

2 i f population [ STATE_I ] > 0

3 dist = truncated ( NegativeBinomial ( population [ STATE_I ] , ←↩
parameters [ PRM_PHI ]ˆ−1) , 0 , population_size )

4 y . val [ OBS_BEDRIDDEN ] = rand ( dist )

5 e l s e

6 y . val [ OBS_BEDRIDDEN ] = 0

7 end

8 y . val [ OBS_CONV ] = population [ STATE_R ]

9 end

Listing 5.7: Observation generating function.

Here we have relied heavily on the Distributions.jl package to implement the model.

Although this is not strictly necessarily, it is convenient for modular construction

of the models, in that both functions can be easily reworked for the alternative,

Binomial observation model. This is accomplished by replacing a single line of code

in each function: we replace the truncated Negative Binomial distribution with a

simple Binomial one. For example:

1 # comment out the −ve binomial obs model

2 # dist = truncated ( NegativeBinomial ( population [ STATE_I ] , ←↩
parameters [ PRM_PHI ]ˆ−1) , 0 , population_size )

3 # replace with binomial obs model :

4 dist = Binomial ( population [ STATE_I ] , parameters [ PRM_PHI ] )

Listing 5.8: Converting to a Binomial model.

Complete model definition

The full model definition is encapsulated within a Julia Type, with the base con-

structor invoked as follows:

1 DPOMPModel ( MODEL_NAME , N_EVENT_TYPES , sir_rf ! , initial_state , ←↩
transition , obs_loglike , obs_sample ! , T_ZERO )

Listing 5.9: Instantiating the model.
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As with the predefined models and alternative constructors, the resulting DPOMP-

Model Type is a mutable object (‘struct’ in the Julia language). In plain terms this

means that the package supports the fully modular construction of models. For

example, different model variants can be generated from the same pool of modular

components, but component modules can also be updated or replaced on an individ-

ual basis as required. That includes predefined models: as per the code sample given

at the top of this section, it would have been possible to generate a predefined SIR

model and simply overwrite components like the observation log-likelihood [func-

tion,] whilst retaining those like the event rate and migration functions. Others,

like the model ‘name’ property, can be updated or not as the user desires.

5.3 Fitting the model

Here we describe the second broad phase of the workflow: how to fit the model

and check the results. For brevity we focus on the first model variant, based on

a truncated Negative Bionomial observation model, with the alternative variant

considered during the model comparison exercise described in §5.5. The purpose of
fitting the model is to produce posterior estimates for the model parameters θ. As

per the explanations given in previous chapters, the posterior distribution is written

as:

π(θ, x|y) = π(θ)π(x|θ)π(y1:n|x, θ)
π(y1:n)

(5.6)

Recall that the marginal likelihood is written as π(y1:n) to indicate that it runs over

n [longitudinal] observations. The task of computing (5.6) is the purview of the

sampling algorithms discussed in due course. We first discuss the prior [probability]

distribution, π(θ).

5.3.1 Prior distribution

Selection of a prior distribution of model parameters, denoted π(θ)– where θ =

β, γ, ϕ, t0 in this case– is an important part of the overall analysis which we revisit

with prior predictive checking in due course. For now though, we closely follow the

prior distribution used by the authors of the original case study. The distributions

and parametrisations reported by those authors are assumed to be independent
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between parameters as follows:

β ∼ N(2, 1) (5.7)

γ ∼ N(0.4, 0.5) (5.8)

ϕ ∼ exp(5) (5.9)

The first two are rate quantities and therefore they are truncated at zero. Likewise,

ϕ−1 is a probabilistic quantity in this variant of the model, and so the lower bound

of ϕ is truncated at one to ensure ϕ−1 < 1. A prior distribution for t0 is not specified

for the ODE-version of the model described in the original case study so a Uniform

distribution was used, bounded on the dates 1978-01-16 to 1978-01-22, inclusive.

The above can be described in Julia as a multivariate statistical distribution, as

follows:

1 beta = truncated ( Normal ( 2 . 0 , 1 . 0 ) , 0 . 0 , Inf )

2 gamma = truncated ( Normal ( 0 . 4 , 0 . 5 ) , 0 . 0 , Inf )

3 phi = truncated ( Exponential ( 5 . 0 ) , 1 . 0 , Inf )

4 t0_lim = [ ”1978−01−16” , ”1978−01−22” ]

5 t0_values = Dates . value . ( Dates . Date . ( t0_lim , ”yyyy−mm−dd” ) )

6 t0 = Uniform ( t0_values . . . )

7 prior = Product ( [ beta , gamma , phi , t0 ] )

Listing 5.10: Prior distribution.

Unlike before, it is necessary to use the Distributions package to define the prior

distribution, since that is the Type required by relevant functions when conducting

an inference analysis (we could have specified the observation model without using

it if we had wanted to).

5.3.2 Selection of sampling algorithm

Implementing workflows for inference (i.e. fitting models to data) is relatively

straightforward once a model has been defined. The default [single-model] inference

workflow (described in §4.3.4) is based on independent inference analyses carried

out using two designated algorithms. The default inference algorithms used in this

workflow are the established methods introduced in Chapter 2: SMC2 and MBP-

MCMC.
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Here we provide code and results for the same essential workflow, but imple-

mented using the algorithms described in Chapter 4 instead. They are:

• Primary: MBP-IBIS

• Validation algorithm: ARQ-MCMC

Note that the second algorithm requires an additional parameter not required for

the others: sample interval. This is discussed in the previous chapter. A number

of optional parameters are also used, some of which are algorithm specific. For

example, n mutations which determines the number of steps in the permutation

step of the MBP-IBIS algorithm. The complete inference workflow is invoked as

follows:

1 # de f i n e sample i n t e r v a l f o r arq mcmc algor i thm

2 sample_interval = [ 0 . 0 5 , 0 . 01 , 0 . 02 , 0 . 5 ]

3 # run ana l y s i s

4 results = run_inference_analysis ( model , prior , y ;

5 primary=BayesianWorkflows . C_ALG_NM_MBPI , n_particles=12000 , ←↩
n_mutations=7, validation=BayesianWorkflows . C_ALG_NM_ARQ , ←↩
sample_interval=sample_interval ( freq_dep ) , n_mcmc_chains=5)

6 tabulate_results ( results )

7 save_to_file ( results , string ( some_file_path , ”/” , model . name ) )

Listing 5.11: Inference analysis.

The results produced can be analysed in a number of different ways, with per-

haps the simplest and most obvious being tabulation, as demonstrated in the code

sample. They can also be saved as CSV files, also as demonstrated. These and

other means of exploring the results are described next.

5.3.3 Checking inference results

As per the description of the [modular] inference workflow given in §4.3.4, results
of the two-part inference analysis are comprised of a weighted importance sample

and posterior samples obtained by [ARQ-] MCMC rejection [re]sampling. The tab-

ulate results function invoked above displays two tables summarising each, with

content similar to Tables 5.2 and 5.3, for the MBP-IBIS and ARQ-MCMC algo-

rithms respectively. A further set of results for the latter are given in Table 5.4.
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θ E[θ] :σ -ln p(y)

1 1.91 0.166 65.2

2 0.719 0.151

3 2.67 0.487

4 722105 0.82

Table 5.2: Summary of parameter estimates (expectations and corresponding stan-

dard deviation, denoted σ) obtained using the MBP-IBIS algorithm. The parame-

ters are listed by their index in θ, i.e. 1 : 4 for θ = β, γ, ϕ, t0. An estimate of the

marginal likelihood is also given, in the form: -ln π̂(y).

θ E[θ] :σ E[f(θ)] :σ R̂ R̂97.5

1 1.9 0.168 1.89 0.14 1 1

2 0.731 0.154 0.72 0.123 1 1

3 2.71 0.495 2.66 0.371 1 1

4 722105 0.867 7.22E+05 0.668 1.01 1.01

Table 5.3: Summary of parameter estimates obtained using the ARQ-MCMC al-

gorithm. The parameters are indexed by θ1:4 = β, γ, ϕ, t0 as before, with similar

notation as for the MBP-IBIS algorithm. In this case the expectations and corre-

sponding standard deviation, correspond to MCMC resamples. The other estimate

given is based on the expectations of the evaluated function, denoted simply in

the table as f(θ), across the entire [sparse] underlying QMC sample Γ. Finally,

the parameter estimates are accompanied by the potential scale reduction factors,

denoted R̂.

The (independently obtained) estimates for the model parameters can be man-

ually checked for similarity using the tables here indicating that the two algorithms

generate essentially the same parameter inferences. The potential scale reduction

factor (i.e. Gelman-Rubin test statistic) denoted as R̂ also provides a means of

validation, because it is a formal test of convergence.

Recall from Chapter 3 that the ARQ-MCMC algorithm provides a way for

computing estimates directly based on the expectations of the evaluated function,

denoted simply in the tables as f(θ). This can be understood as an importance
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sample weighted by MCMC. This is redundant in most cases but can be useful in

situations where one or more Markov chains fail to converge. An example is given

in Table 5.4, based on the same data and algorithm configuration as in Table 5.3.

θ E[θ] :σ E[f(θ)] :σ R̂ R̂97.5

1 1.97 0.565 1.89 0.138 1.33 2.55

2 0.783 0.251 0.712 0.117 1.41 2.42

3 3.69 3.08 2.64 0.345 1.78 7.51

4 7.22E+05 1.24 7.22E+05 0.678 1.18 1.44

Table 5.4: Alternative set of parameter estimates obtained using the ARQ-MCMC

algorithm. In this case not all of the Markov chains fully converged, as indicated

the potential scale reduction factors, R̂ > 1.2. However reasonably accurate esti-

mates were nevertheless obtained using the expectations of the evaluated [likelihood]

function, denoted in the table as f(θ), which is computed from the entire [sparse]

underlying QMC sample Γ.

Visual inspection of the parameter inference results is also possible, notably

single and pairwise marginal density plots. Traceplots can also be produced for the

estimates obtained by MCMC. Examples are given in Figures 5.2 and 5.3, with the

estimates for {β, γ} reported by [5] in their case study marked for reference. Note

that since that package is designed for use within the Julia REPL (command-line

environment) the equivalent plots have been reproduced here using R and GGPlot2

instead.

As a minor aside, the visualisation tools included with the package are native

to the Julia programming language and implemented using UnicodePlots.jl7. Thus,

they can be manipulated in the same way as other plots produced using that pack-

age. For example:

1 import UnicodePlots # NB . install first , us ing Pkg . add

2 p = plot_parameter_heatmap (rs , 1 , 2) )

3 UnicodePlots . xlabel ! ( p , 'new x ax i s l a b e l ' )
4 println (p ) # show plot

Listing 5.12: Example: alter the axis label of a UnicodePlot.

7https://libraries.io/julia/UnicodePlots
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(a) Contact parameter β (b) Recovery parameter γ

(c) Observation parameter ϕ (d) Initial time t0

Figure 5.2: Marginal posterior estimates for model parameters θ = {β, γ, ϕ, t0}
obatained using the MBP-IBIS algorithm. The estimates for {β, γ} reported by [5]

in their case study have been marked for reference.

5.3.4 Predictive checking

As noted above, the results of the inference analysis consist of a weighted impor-

tance sample (which can be resampled) and posterior samples obtained by MCMC

rejection sampling. Either can be utilised for the purpose of full posterior predic-

tive checking. This involves resampling model parameters based on the posterior

estimates obtained, and simulating (in particular) new observations data using the

data generating function defined earlier. The code for carrying this out is given

below.
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(a) Contact parameter β (b) Recovery parameter γ

(c) Observation parameter ϕ (d) Initial time t0

Figure 5.3: MCMC traceplots for model parameters θ = {β, γ, ϕ, t0} based on

samples obtained using the ARQ-MCMC algorithm.

161



1 # nb . ' r e s u l t s ' obtained by c a l l to ' r u n i n f e r e n c e a n a l y s i s ' above

2 model = results . model

3 parameters = resample ( results ; n = 1000)

4 x = gillespie_sim ( model , parameters ; tmax=max_time , num_obs=←↩
n_observations )

5 save_to_file (x , string ( path_out , model . name , ”/ p r ed i c t /” ) ; ←↩
complete_trajectory=f a l s e )

6 plot_observations (x ; plot_index=OBS_BEDRIDDEN )

7 plot_observation_quantiles (x ; plot_index=OBS_BEDRIDDEN )

Listing 5.13: Posterior predictive checks.

The code sample includes a demonstration of how the results obtained can be

passed to two visualisation tools included with the package for this purpose. In

this case, to visualise the number of students in bed over one thousand individually

simulated scenarios. One shows the simulated quantities themselves, the other as

quantiles. Both are replicated in Figure 5.4. The raw observations data from the

original epidemic has been overlayed for comparison with the predictive checks, and

indicate that the posterior predictions produce results that are reasonably similar

to those that were actually observed.

One way to understand the amount of useful information that has been garnered

from the inference analysis, is to compare these to the prior predictive checks

carried out for the next phase of the overall workflow: model checking. That is

because, intuitively, our ability to predict outcomes similar to the observed epidemic

should be at least somewhat improved by the information gained during inference,

assuming that all has gone well.
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(a) Simulated trajectories. (b) Quantiles.

Figure 5.4: Posterior predictive checks: simulated trajectories and percentiles q =

{0.25, 0.5, 0.75} for number of students in bed. The actually observed quantities

are overlayed for comparison.

5.4 Model checking

The third and final phase of the single-model workflow involves further validation

(or ‘checking’) in order to assess the suitability and effectiveness of the model (and

methods) as well as our choice of prior distribution. Specifically, we cover two

simulation-based techniques: prior predictive checking and simulated inference. We

then move directly on to the task of model comparison before a brief summary to

conclude the chapter.

5.4.1 Prior predictive checking

Prior predictive checks are carried out in the same manner as posterior ones, except

that the parameters used to simulate the model are sampled from the prior distri-

bution instead. Among other things, the checks help to ensure that the selection

of prior distribution is appropriate, i.e. that the simulated scenarios are broadly

consistent with our prior beliefs and expectations concerning system behaviour. For

example, the prior predictions shown in Figure 5.5 show a broad range of possible

system trajectories, that are at least somewhat centered on the actual observations.

Prior predictive checks can also be compared with posterior ones as a visual

summary of the information gleaned about the system at hand, in terms of our

ability to (hopefully) predict future system behaviour and outcomes. Comparison of

Figures 5.4 and 5.5 suggests that considerable information is added by the posterior
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(a) Simulated trajectories. (b) Quantiles.

Figure 5.5: Prior predictive checks: simulated trajectories and percentiles q =

{0.25, 0.5, 0.75} for number of students in bed. The actually observed quantities

are again overlayed for comparison.

estimates obtained by inference, as revealed by comparison of the interquartile

ranges in particular.

5.4.2 Simulated inference

The final stage of the single-model inference workflow involves the use of simulated

observations data to evaluate the effectiveness of the inference methods used. That

is, their ability to accurately recover the model parameters used to simulate new

observations data. Much like the prior predictive checks, this stage could also be

executed at the beginning of the workflow as pre-validation. However since the

actual process of Bayesian data analysis tends to be iterative and cyclical, the

precise order of steps listed in any given ‘workflow’ is a matter of interpretation in

any case.

Simulated observations can be generated by choosing an arbitrary set of model

parameters, e.g. by sampling from the prior distribution and using the ‘gillespie sim’

function. The simulated observations data can then be accessed for analysis as

follows:
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1 # given a model and p r i o r de f ined as be f o r e :

2 parameters = rand ( prior )

3 x = gillespie_sim ( model , parameters ; tmax=max_time , num_obs=←↩
n_observations )

4 # run ana l y s i s and tabu la t e r e s u l t s :

5 results = run_inference_analysis ( model , prior , x . observations ;

6 primary=BayesianWorkflows . C_ALG_NM_MBPI , n_particles=12000 , ←↩
n_mutations=7)

7 tabulate_results ( results )

Listing 5.14: Simulated inference analysis.

Note: it is advisable to exercise discretion when selecting simulated scenarios for

inference, since not all realisations will be suitable for analysis. In reality, we

repeatedly sampled π(θ) and simulated until we obtained a scenario with more

than 30 observed infections to conduct this part of the analysis.

The parameters randomly selected for this analysis (in the manner described

above) were θ = {1.5505, 0.7227, 1.0618, 722104.54}. The [marginal] posterior es-

timates obtained are summarised in Figure 5.6, with the tabulated summaries re-

ported in Tables 5.5 and 5.6. The results suggest that the algorithm was reasonably

successful in recovering θ as can be seen by comparing them with simulation pa-

rameters marked in Figure 5.6.

θ E[θ] :σ -ln p(y)

1 1.63 0.313 36.9

2 0.772 0.312

3 1.07 0.0752

4 722103 1.78

Table 5.5: Summary of parameter estimates (expectations and corresponding stan-

dard deviation, denoted σ) obtained using the MBP-IBIS algorithm for the simu-

lated validation analysis. The parameters used to simulate the observations data

were θ = β, γ, ϕ, t0 = {1.55, 0.72, 1.06, 722104.5}.
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(a) Contact parameter β (b) Recovery parameter γ

(c) Observation parameter ϕ (d) Initial time t0

Figure 5.6: Marginal posterior estimates for model parameters θ = {β, γ, ϕ, t0}
obtained using the MBP-IBIS algorithm for the simulated validation anal-

ysis. The estimates used to simulate the observations data were θ =

{1.5505, 0.7227, 1.0618, 722104.54} and have been marked for reference.

θ E[θ] :σ E[f(θ)] :σ R̂ R̂97.5

1 1.54 0.82 1.6 0.221 1.21 1.5

2 0.754 0.311 0.788 0.245 1.05 1.09

3 3.11 4.64 1.07 0.0355 1.33 2.23

4 722103 1.75 722103 1.71 1.01 1.03

Table 5.6: Summary of parameter estimates obtained using the ARQ-MCMC algo-

rithm for the simulated validation analysis. The potential scale reduction factors,

denoted R̂, indicate the convergence was marginal.
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5.5 Model comparison

Here we consider both variants of the model in a single analysis, and compare them

using the formal Bayesian approach laid out in the previous chapter. In a sense we

are therefore inferring the structure of the model itself from the data (i.e. ‘model

inference’). The two model variants are respectively the one primarily addressed

above (termed ’model’ below), with observation densities based on the Negative

Binomial distribution, and the plain Binomial distribution (‘model b’). To avoid

repetition it is assumed that both models have been defined in the manner de-

scribed above (see the section on Observation Models). It is similarly assumed

that an appropriate prior distribution has been chosen. In this case for model b

we have replaced the exponential prior distribution of the Negative Binomial obser-

vation parameter with ϕ ∼ U(0.4, 1.0), where ϕ is the probabilistic quantity that

parametrises the corresponding sampling distribution. The inference function is

named and invoked exactly as before. The multi-model workflow is invoked auto-

matically based on the input parameters using a vector of models, thusly:

1 # model b := Binomial [ obse rvat i on ] model

2 # pr i o r b := p r i o r d i s t r i b u t i o n f o r model b

3 models = [ model_b , model ]

4 priors = [ prior_b , prior ]

5 # run ana l y s i s

6 results = run_inference_analysis ( models , priors , y )

7 tabulate_results ( results )

Listing 5.15: Model comparison.

Unlike before, this code sample implies use of the default algorithms and configu-

rations, mainly for the sake of tidyness. However the actual configuration of the

analysis carried out in this case was as before (i.e. for the single-model parameter

inference). Those results are summarised in Table 5.7.

The results suggest that the data provide strong evidence in favour of the model

with observations (specifically, the number of students in bed) distributed according

to the Negative Binomial distribution. The estimated marginal likelihood for that

model is also broadly comparable with the same estimate given in Table 5.2.
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Model -ln p(y) BF

SIRfd nbin 65.0 1.0

SIRfd bin 80.2 0.0

Table 5.7: Results of the model comparison analysis. The models compared were the

same essential [frequency-dependent] SIR model, but different observation models:

Negative Binomial (‘SIRfd nbin’) and plain Binomial (‘SIRfd bin’). In this case,

the difference between the model evidence (given in the form -ln p(y) for ease of

analysis) is very large and the Bayes factors (BF) are hardly necessary in order to

conclude that the first model is a better fit for data.

5.6 Summary

We have described BayesianWorkflows.jl : a package for Bayesian data analysis for

DPOMP models in Julia. The software encompasses much of the learning and work

developed in previous chapters and provides a framework of methods and tools for

application to the motivating problem of the thesis, as addressed in subsequent

chapters. That includes methods for simulation; a suite of algorithms for param-

eter and model inference; and a range of utilities for diagnostics and analysis. In

particular, we have made progress towards a low-cost interface for completely gen-

eralised access to data-augmented methods for DPOMP models, powered by the

feature-rich, functional programming capabilities of the Julia language. To the best

of our knowledge this functionality is novel, since as noted in the introduction the

applicable software packages that are available tend to rely exclusively on SMC

methods. The SIR [state-space] model described here is one of a set of epidemiolog-

ical models (also the Lotka-Voltera predator-prey model) included with the package

as ‘predefined’ examples.

We express our gratitude in advance for bug reports, other feedback, and espe-

cially contributions and improvements to the package itself, from the community

we aim to serve.
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5.6.1 Source code and documentation

The source code8 and online package documentation9 are available on GitHub.

8Source code: https://github.com/mjb3/BayesianWorkflows.jl
9Package documentation: https://mjb3.github.io/BayesianWorkflows.jl/stable/
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Chapter 6

Within-herd parameter estimates

“Infection is increasingly viewed as a continuum of host-pathogen in-

teractions, rather than as the classical binary outcome of active versus

latent TB ... and the understanding of latent infection is being revised

constantly.”

- Skuce et al., [78]

Summary

• This chapter applies selected methods developed in previous chapters to better

quantify the the dynamics of within-herd BTB transmission in UK cattle

herds.

• We present novel estimates for important BTB parameters, obtained using

algorithms, methods and workflows introduced hitherto, with the entirety of

the statistical analysis carried out using the software package introduced in

Chapter 5.

6.1 Introduction

Bovine tuberculosis (BTB) is a bacterial infectious disease caused byMycobacterium

bovis, a slow-growing, nonchromogenic acid fast bacillus [14]. It affects cattle and

other mammals including humans, badgers, deer, goats and pigs. In terms of annual

financial losses, and as indication with respect to the underlying problem, BTB
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has been reported to account for estimated of USD 3 billion globally, of which

approximately USD 130 million was attributed to the UK in c.2006 [14, 15].

Endemic diseases like bTB present significant statistical modelling challenges

due to a number of complicating factors. These include the possible role of exoge-

nous reservoirs of infection, for which there is some scientific evidence, but that also

remain difficult to characterise, even in terms of the nature (let alone magnitude) of

that interaction [79]. The complexity of cattle-to-cattle transmission itself, which

is commonly accepted to be the main route of infection, but may be influenced

by many factors, including within-herd transmission, spatial location of herds, and

live cattle trading [17, 16, 18, 15, 80]. In addition slow replication times associated

with growth of M. Bovis – approximately 16 to 20 hours. These factors combine

to complicate the identification of patterns of infection because a long time may

elapse before the presence of infection becomes evident and cases can arise from

cattle movements, direct cattle-cattle transmission (within or between herd) and

environmental sources.

Furthermore, slow spreading contributes to the highly dispersed (clustered/lo-

calised) nature of outbreaks. These difficulties are further exacerbated by the low

sensitivity of available diagnostics tests used for standard surveillance [15]. The re-

sultant difficulties in analysis are evidenced in part by the large degree of variation

in estimates have been reported in the literature for important epidemiological bTB

parameters, even when notionally based on the same [state-space-]model and data

[2, 15, 17].

Here we address these difficulties through application of Bayesian methods,

workflow and tools presented previous chapters, to directly estimate within-herd

epidemiological parameters and assess a range of plausible model structures for

bTB in UK cattle herds using testing data from observed outbreaks. The key

parameters of interest include: the contact or transmission rate; epidemiological

parameters that govern within host progression of disease, such the pre-infectious

latent period; and the sensitivity and specificity of diagnostic tests. In addition,

variation within (e.g. age strata) and between farms should be quantified.

Previous work

We build on previous work that has developed a range of models to describe within-

herd bTB disease dynamics, with a focus on the UK. In common with this literature
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we adopt a categorical approach where individuals are modelled as passing through

a series of discrete disease states. It is widely accepted that following exposure to

bTB previously susceptible (S state) individuals exhibit a long asymptomatic period

represented as an exposed, or E-state that is non-test sensitive and non-infectious.

Some studies also recognise an additional test-sensitive state to reflect beliefs that at

least some individuals exhibit a detectable immune response, prior to the elevated

shed of bacteria that characterises the infectious I state. The test-sensitive state

is labelled ‘T’ in the representation of the model given in Figure 6.1. Elsewhere it

has been given equivalent treatment but by slightly different terminology, including

the SORI model presented by [2], where ‘O’ and ‘R’ are labelled for ‘occult’ and

‘reactor’ respectively.

S E T I
βSI γ1E γ2I

Figure 6.1: SETI model for bovine TB. It is predicated on a similar basis to that

of the classic SIR model. This variant includes a test-sensitive ‘T’ state, which ac-

counts for a non-infectious phase of disease, in which individuals are deemed to ex-

hibit a [sometimes] detectable immune response to standardly used diagnostic tests.

As before, individuals take a value of the discrete state vector, e.g. {S,E, T, I},
and transition between states according to the given event rates. No recovery ‘R’

state (or removal process) has been accounted for in this version.

As illustrated by such differences in terminology and perhaps driven by the

inherently interdisciplinary nature of the topic, previous modelling studies have

been presented in a variety of ways that make it difficult to compare results. A key

issue is the manner in which models are fitted to data. Many studies use some form

of aggregate data, or other meta-characteristics of observed patterns of disease at the

aggregate level. These are sometimes combined with expert knowledge, assumptions

or constraints, usually justified by reference to a commonly accepted scientific belief.

The underlying fitting procedures also vary widely, from the relatively informal:

“This was achieved [i.e. parameter estimates were obtained] by varying beta

until predicted outputs of reactor rates under simple annual testing regimens

corresponded to those observed in four [cattle-herd ‘history’] data sets” [81],

–and

similar descriptors, such as ‘spreadsheet-model’ [82], to more formal mathematical
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constructs, such as the Approximate Bayesian Computation scheme used by O’Hare

et al.,[17] and Brooks-Pollock et al.,[15].

The latter are more readily comparable with the (full or exact) Bayesian inferen-

tial framework used here. O’Hare et al., use an arbitrary grouping of ten thousand

herds to represent a national system of herds, with migration (e.g. trade) and

other population dynamics. The simulation was used to numerically solve quanti-

ties that are readily comparable with the data set analysed (the same one analysed

here). Those quantities include, for example, the number of reactors who indi-

cated (tested positive) during the first non-clear whole-herd-test. Another recent

set of estimates, that rely on both discrete-time simulation and ABC-SMC meth-

ods, are those published by Brooks-Pollock et al.,[15]. In this case the ‘simulation-

model’ explicitly represented the system of farms in the UK. Posterior estimates of

[frequency-dependent] within-herd epidemiological parameters were also reported

such as contact parameter E(β) = 0.61 (95% CI: 0.05− 1.5). The authors also ex-

plored the likely impact of potential control measures, such as whole-herd culling,

and additional or improved testing.

There is a large degree of variance in the parameter estimates obtained in the lit-

erature. For example, the estimates for the average latent period –which is implicitly

defined by the inferred discrete-state boundaries of the model with respect to the

[continuous] real-world disease process– range considerably in literature. Brooks-

Pollock, Brooks-Pollock et al., [15] estimate the quantity to be 11.1 years. Others,

such as [2] report estimates of as little as two days for the corresponding model (la-

belled SEI and SOR respectively in each paper). The latter provide an estimate for

the SETI/SORI model of ∼275 days, which is more in line with that estimated by

[17]. The precise numbers are not given for the latter, though we do note that the

prior distribution was chosen such that upper bound the entire latent period (in-

cluding the test-sensitive phase) was approximately one year in any case. Judging

by the commentary provided with these papers, the uncertainty surrounding key

parameter values for within-herd modelling of BTB is well recognised. For example:

“There exists considerable uncertainty in the assumed values of key

parameters, in particular the occult period, the scaling of transmission

rates with herd size [83, 84] and the duration of latency between infection

and infectiousness.” [2]

Alternatively, “the natural pathology ... and infectiousness [of BTB] is poorly de-
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fined” [15]. Since the precise definition of these underlying quantities is somewhat

fluid1 –meaning model and data-dependent– this variation is actually not that sur-

prising. However it could indicate that the underlying biological process(es) bear

little relation to the corresponding mathematical constructs that represent them in

epidemiological models of BTB. For example, Brooks-Pollock et al., [15] propose

[possible] heterogeneity of transmission as a possible explanation for the ‘exceed-

ingly long’ estimate they obtained w.r.t. the latent period of 11.1 years (see sup-

plementary materials of [15]). Taken together this provides a strong motivation for

going beyond previous attempts to model within-herd transmission of BTB by:

• Making better use of the available BTB surveillance data, e.g. by incorporat-

ing within-herd [reactor] arrival times as well as count data.

• Employing more robust [i.e. formal Bayesian] approaches to model validation

and comparison.

Exploiting data complexity for better inference

All the examples above rely on model fitting using distance-based approximation

methods, which tend to rely on aggregate measures of disease-spread2. When the

observation measures are discrete (often referred to as ‘count data’), this approach

is sometimes described as: ‘histogram comparison’[85].

Here we adopt an alternative approach that focusses model fitting on individual

herds in order to deal more directly with heterogeneity in the data, making use

of the versatility of Bayesian methods (Chapter 2) to directly infer epidemiological

parameter estimates. This approach preserves more of the information content of

the data and is therefore potentially able to extract more meaningful information

than estimates based on aggregated data. However, it should be noted that this

is also more likely to reveal deficiencies in models. We therefore treat a range of

models (described in § 6.2.1) within a consistent Bayesian framework including the

comparison of structural difference using model evidence. This is in the spirit of the

1Strictly with respect to a statistical modelling paradigm, rather than corresponding clinical

definitions.
2Michael Betancourt of Warwick University commented in a lecture series on Hamiltonian

MCMC https://www.youtube.com/watch?v=pHsuIaPbNbY that a popular approach to dealing

with data sets of challenging size and complexity (‘big data’) is to aggregate them, such that all

individual samples are still used, albeit in aggregated form.
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approach advocated by Betancourt 3 for complicated or scientific domain models,

that can be thought of as using all, or as much as possible, of a ‘slice’ of the data,

instead.

Chapter outline

We first present a series of possible models to describe the within-herd disease dy-

namics of bTB (section §6.2.1). The Bayesian inference framework relevant to fitting

and comparing such models and its implementation is presented in Section §6.2.2.
The BTB data to which these models are applied is described in Section §6.2.3.
Firstly, the data sources used including VetNet are outlined, the main challenges

encountered in their analysis are detailed and approaches for resolving these along

with validation steps are described. Inference methods are then validated in Sec-

tion 6.3 by application to simulated data generated from models described in §6.2.1.
This validation also enables exploration of what inferences might be possible when

using data on outbreaks from individual herds and show that inference is possible,

but that precise parameter estimation requires observation of a sufficiently large

outbreak. However, we also show that in such cases it is possible to correctly

distinguish between different model structures.

Section 6.5 describes application of these models and inference tools to data

from real outbreaks. Finally we present within-herd epidemiological model and pa-

rameter inference results based on selected herds from the VetNet dataset for cases

where significant outbreaks were observed. Inference was conducted for a range of

different models and configurations (e.g. frequency vs. density-dependant). The

results reveal that even when conditioning on herds that experience sizeable out-

breaks there is considerable heterogeneity between herds. The significance of these

results and the potential for future application and extension of the methods pre-

sented is discussed in §6.6. In particular we point to the desirability of hierarchical

approaches that could allow fitting of multiple individual herd models in a way that

allows for the observed heterogeneity in parameters.

3Michael Betancourt of Warwick University in a lecture series on Hamiltonian MCMC:

https://www.youtube.com/watch?v=pHsuIaPbNbY
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6.2 Methods

6.2.1 Within-herd models for bTB dynamics

Here we describe a series of state-space models for within herd dynamics of bTB.

The intent is to unify them with the paradigm and methods for epidemiologi-

cal models laid out in Chapter 2. Specifically, discrete-state-space, partially ob-

served Markov processes (DPOMPs). The mathematical definitions that unify this

paradigm with the event rates denoted for each model are given in §6.2.2. Fol-

lowing an overview of each model and their respective parameterisation we discuss

potential uses and interpretation.

However, first we describe a common observation model which describes how

infected animals are detected for each of the state-space-models presented.

Observation model

In general, the models are parametrised by n = |θ| distinct values in the vector

of unknown model parameters θ that govern the dynamics of the model including

the observations. The observation model (or equivalently, process) is functionally

denoted in the diagrams below by gθ(N), where N is the number of test-sensitive

individuals and varies throughout the course of an outbreak. Furthermore which

disease states are considered to be test-sensitive is model dependent e.g. in Fig-

ure 6.2 both the test sensitive state T and the infectious state I can be detected by

diagnostic tests i.e. N = T + I (for a given type or specification of diagnostic test).

It is assumed that each test type is associated with a probability of detection

listed in the table of parameters for each model, e.g. Table 6.1. Later these will

be inferred along with the other model parameters (as discussed further in §6.2.2).
The number of individuals that test positive is therefore described by the following

Binomial distribution:

gθ(N) = B(N, p∗σT ) (6.1)

where σT is the [inferred] probabilistic quantity that (loosely) represents the sensi-

tivity of test type T . In many cases, not all members of the herd are tested. The

probability of being selected for a test p∗ is introduced to represent the proportion

of the herd that were tested. This may vary from one testing event to the next and

between test types. Such information can be computed directly from the available
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data (see §6.2.3). Note that in the parameter tables SICCT corresponds to the

main test type that occurs in the data: the single intradermal comparative cervical

tuberculin test [86].

Within the models, testing operations are implemented as discrete events in time

where a proportion of the herd is tested with test-postive animals removed. Thus it

is assumed that positive detection of an individual results in removal from the herd

(‘recovery’ in standard epidemiological terms). These assumptions are grounded in

the common practice of ‘culling’ infected animals, though they disregard to some

extent the operational complexity that no doubt surrounds the corresponding real-

world process. For example, in the case of inconclusive tests, or the realistic notion

that commercial considerations, farmer attitudes and risk appetite may influence

e.g. pre-emptive culling.

Test-determined removal models (SEI tdr/SETI tdr)

The test-determined removal model presented in Figure 6.2 is easily recognisable as

an elaboration of the standard SEIR model. A summary of the model’s parameters

is given in Table 6.1. Although each of the models described below share the share

‘test-determined removal’, this one is so-named because it is its only distinguishing

feature. It can be written in frequency or density-dependent form (see Chapter 2).

Figure 6.2 shows the case of density dependent transmission with a test sensitive

state, but each of the four possible configurations (with or without state T and

with density or frequency dependent transmission) are evaluated against the data

for the second set of results presented in §6.5.

S E T I R
βSI γTE γIT

gθ(I)

gθ(T)

Figure 6.2: Test-determined removal (or ‘recovery’) SETI-tdR model. The obser-

vation process is denoted by g, and is a function of both the test sensitivity and the

applicable subpopulation size. The standard epidemiological rates and parameters

are given for the density-dependent configuration of the model. These determine

infection; and progression to test-sensitivity; and to full infectiousness.

177



θi Symbol Description Prior: Ua Ub

1 β Infection (density dependent) 0.0 0.01

1 β Infection (frequency dependent) 0.0 0.1

2 γT Progression to T 0.0 0.1

3 γI Progression to I 0.0 0.1

4 t0 Time of initial onset -360.0 0.0

5 σS SICCT test sensitivity – standard 0.3 1.0

6 σH SICCT test sensitivity – high 0.3 1.0

7 σγ IFNγ test sensitivity 0.3 1.0

Table 6.1: Test-determined removal model parameters.

Reinfection model with ‘super infection’

As discussed in §2.1.2, there is arguably an intrinsic trade-off between accounting for

the full extent of infection [within a population,] and reinfection within commonly

used epidemiological model formulations. Here we speculate that this may provide

a partial explanation for the large amount of variation in estimates for notionally

similar quantities (i.e. estimates of similar epidemiological parameters for BTB)

reported by others, as referenced in that part of the Introduction. In order to test

the supposition, we utilise the model proposed by [6] (and another partially inspired

by it) that accounts for more complex disease dynamics, including reinfection and

also ‘super infection’. While we find this to be an interesting avenue of investigation,

we also note with some regret that the results of that analysis (i.e. as reported

subsequently in this chapter) were mostly inconclusive due to our own error (as

discussed in due course).

With respect to the aforementioned reinfection model, the formulation specified

by equations (6.2) through (6.5) is inspired by that of the full model proposed by

the original authors (including notation). The state space of the model is denoted

by (S,E, Y, Z) for susceptible; exposed; infectious; and recovered. Note that the

latter is distinct from the removed state which is denoted for each of the models by

‘R’.

δS

δt
= ϕ− (1 + p′)ηS − µS (6.2)
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δE

δt
= ηS + qηZ − pηZ − (µ+ γ)E (6.3)

δY

δt
= p′ηS + q′ηZ + pηE − (µ+ δ + α)Y (6.4)

δZ

δt
= δY − (q + q′)ηZ − µZ (6.5)

The notation here is as per Table 6.2. The authors noted that this specification

is somewhat intractable to [direct] mathematical analysis, and therefore used a

simpler construction as the basis for their own analysis.

The original intent in this chapter was to stay with (almost) the full definition of

the model for the discrete-state-space variant employed here. Since we are dealing

in this case with a situation where population demographics are largely known4, we

effectively set those parameters (denoted by {ϕ, µ, α}) = 0. Somewhat equivalently,

we disregard the assumption used by the original authors in their analysis, that the

population size remains constant throughout.

Note: human error led to primary disease transmission being effectively omit-

ted from the model. That is, infectious individuals are (somewhat paradoxically!)

decoupled from the disease transmission process. The model as described here;

depicted as an SSM in Figure 6.3; and its parametrisation as enumerated in Ta-

ble 6.2, are therefore specified according to the results that were actually obtained

(and thus not an accurate reflection of the original author’s model). We acknowl-

edge the error and thank the examiners of the thesis (see Acknowledgements) for

bringing it to our attention.

4Thanks to the corresponding CTS data that was available for this work.
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S E Y Z R
ηS

qηZ

p′ηS

pηE

δY

q′ηZ

gθ(Y)

Figure 6.3: Reinfection model based on that proposed by [6]. It was derived from

the system of equations described by the authors. Note that this model includes

both a ‘recovered’ state (Z), and a ‘removed’ state, R. The observation process is

denoted by g, as before. Progression directly from S → Y is termed ‘super-infection’

by the authors of the original model.

Alternative reinfection model

The final model presented has been devised as a blend of the first two approaches.

That is, it is similar to the standard formulation whilst attempting to nonetheless

account for reinfection as a biological process. In other words, unlike in the standard

model it is assumed here that the presence of individuals in the infectious state

‘excites’ (i.e. increases) the E → I event rate. Equivalently, it reduces the [average]

latent period. This is best illustrated by Figure 6.4 (as before, the model parameters

are also summarised, in Table 6.3).

The results from the corresponding analysis are reported alongside the others

in §6.5.

S E I
βSI γE+(β)κEI

Figure 6.4: Poisson [point] process reinfection model. The compound rate for E → I

incorporates the possibility of reinfection. This is intended to represent the latter

as simply as possible and incorporates only two types of event: infection and pro-

gression, which is excited by reinfectivity.

6.2.2 Bayesian inference

Recall from Chapter 2 that inference for continuous-time SSM can be understood as

partially observed Markov processes where the latent and observation processes are
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θi Symbol Description Prior: Ua Ub

1 η Infection 0.000 0.001

2 δ Recovery 0.000 0.001

3 p′ Super infection 0.0 1.0

4 p Progression 0.0 1.0

5 q Loss of temporary immunity 0.0 1.0

6 q′ Remission 0.0 1.0

7 t0 Time of initial onset -360.0 0.0

8 σS SICCT test sensitivity – standard 0.3 1.0

9 σH SICCT test sensitivity – high 0.3 1.0

10 σγ IFNγ test sensitivity 0.3 1.0

Table 6.2: Reinfection model parameters.

treated as random variables. That is they are distributed according to the following

probability distributions:

X|(Θ = θ) ∼ fθ(x) (6.6)

Y |(X = x,Θ = θ) ∼ gθ(y|x) (6.7)

where x represents the latent process; y the observed process (or data) and ‘∼’
means ‘distributed according to’. The probability densities associated with each

are functionally denoted as fθ and gθ. The first is the one associated with [inhomo-

geneous Poisson point] process described in Chapter 2 and represents the underlying

(process) model of disease dynamics being used for the analysis such as those de-

fined in the previous section. The second is the observation models also defined

in the previous section. For notational simplicity the vector of R-valued model

parameters, θ contains the parameters of both the observation and process models.

Parameter inference

The goal of the initial [single-model] analysis is to infer the joint [posterior] distri-

bution of θ and x, conditional on the data y. The likelihood is written as before,

as:

π(θ, x|y) = π(θ)π(x|θ)π(y1:n|x, θ)
π(y1:n)

(6.8)
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θi Symbol Description Prior: Ua Ub

1 t0 Time of initial onset -360.0 0.0

2 σS SICCT test sensitivity – standard 0.3 1.0

3 σH SICCT test sensitivity – high 0.3 1.0

4 σγ IFNγ test sensitivity 0.3 1.0

5 β Infection 0.0 0.01

6 γ Progression 0.0 0.1

7 κ Reinfection scalar 0.0 10.0

Table 6.3: Alternative reinfection model parameters.

where π(θ) is the prior probability density; π(y1:n) is themarginal likelihood, running

over 1 : n [longitudinal] observations. The remaining terms are defined by:

π(x|θ) = fθ(x) =
n∏

i=1

fθ(xi|xi−1) (6.9)

π(y1:n|x, θ) = gθ(y1:n|x) =
n∏

i=1

gθ(yi|x) (6.10)

Note once again that, for practical reasons, it make sense to partition x at intervals,

so as to align with the each measurement (or ‘observation period’) where yi is the

ith measurement.

The marginal likelihood is obtained by solving the [double] integral:

π(y) =

∫
π(θ)π(y1:n|x1:n, θ)π(x1:n|θ)dx1:ndθ (6.11)

In this case it is solved by application of the chain rule:

π(y) = π(y1:n) =
n∏

i=1

π(yi|y1:i−1) (6.12)

where the quantity π(yi|.) (and by extension π(y)) is estimated using the SMC2

algorithm, as discussed in the section on implementation. The purpose of this

exercise is that the marginal likelihood can be utilised as a measure of model fit, as

discussed next.
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Model comparison

As noted, (6.11) provides an empirical measure of how well a [single] model fits the

data. In keeping with the Bayesian framework laid out in §2.3.2, we can also utilise

the marginal likelihood for the problem of model selection (or ‘model comparison’).

By application of Bayes’ theorem, we write an expression for the different choices

of model available, as follows:

π(y,Mi) =

∫
π(Mi, θ)π(y1:n|x1:n, θ,Mi)π(x1:n|θ,Mi)dx1:ndθ (6.13)

where Mi is the ith model chosen and π(Mi, θ) is the corresponding prior distri-

bution, i.e. including the probability of selecting that model. The Bayes factor

provides a standardised way to directly compare these quantities for two candidate

models:

K1,2 =
p(y|m1)

p(y|m2)
(6.14)

where, according to the scale originally proposed by Jeffreys [65], K1,2 > 10 can be

considered to be strong evidence for favouring model m1 over m2.

log10K K Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

Table 6.4: Bayes factor interpretation, from Kass and Raftery[1].

Bayesian model averaging

One alternative to comparing between models is that of is that of Bayesian model

averaging [69], which essentially circumvents the problem of model selection alto-

gether by providing a weighted average across models.

For example, let θα denote some common parameter across models (e.g. the

‘latent period’ in competing disease models). The posterior distribution of θα given

data y is:

π(θα|y) =
n∑

i=1

π(θα|Mi, y)π(Mi|y) (6.15)

183



where the Mi denotes the i
th of n competing models. This approach is self-evidently

suited only to models that have important quantities in common, in particular

nested models.

We now discuss the implementation of this overarching methodology.

Implementation

The analyses presented in this chapter were carried out in accordance with the

Bayesian workflow already laid out in Chapter 4. The configuration of the workflow

(i.e. the selection of algorithms) that was used for the main results is given in

Figure 6.5. This was found to be the most efficient configuration of the workflow

to implement [of the available options], because the same [model-specific] particle

filter could be used for both the primary and validation analyses. The ‘outer’

construction of both algorithms is completely generalised, such that the particle

filter was the only component that required manual development effort.

Primary analysis: SMC2

Validation analysis: ARQ-MCMC

Compare: E(θ)

Compute: π̂(y)

Convergence diagnostic

Figure 6.5: A depiction of the modular workflow and algorithms utilised for

Bayesian inference in this analysis. (The workflow itself is described in Chapter 4.)

6.2.3 Data

Overview

The data available for analysis consisted of routine and incident-related BTB surveil-

lance data from the VetNet database. In addition records concerning demography

(births; deaths; migration, e.g. trade) were available for [partially] corresponding

records from the CTS database.

When it comes to the task of performing statistical inference, large operational

data sets like VetNet pose distinct challenges compared to those collected under

controlled experimental conditions. Procedures, legislation and even jurisdiction,
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relating to the original collection of the data may be expected to vary with time,

region, and perhaps down to the level of individual personnel who collected/entered

the data originally. Such factors likely account for a certain degree of inconsistency

that was observed in especially the VetNet data set, that has no ready explanation

and usually no obvious systematic solution. This was especially apparent for the

Herd Size column as discussed in §6.2.3.
In general though, constraints imposed by the methods were such that it was

practical to first fit a relatively small number of identified (seemingly) idealised

cases. These are characterised by a reasonably large number of reactors over time,

but also other considerations such as having at least one reliable estimate for the

herd size. The selection criteria used are laid out in more detail in §6.2.3. Another
factor in the selection of data sets to analyse that became evident later, throughout

the course of the work, was the nature of diagnostic testing. In particular, it was

found to be helpful to have two or more distinct variants of diagnostic tests used.

Matters related to testing generally are discussed further in the first subsection.

Many minor data quality issues also proved to be entirely surmountable. For

example, variations in the test codes recorded (used to both inform the test type,

and to provide a guide when sense checking the recorded facts of a given scenario)

were coped with by mapping, where possible. In some cases, it was preferable to

infer the ‘correct’ test code based on the number of animals tested compared as a

ratio of [estimated] herd size. Care had to be taken with the test dates recorded,

since many apparent errors like ‘duplicate’ records were in fact merely herd tests

recorded (and presumably carried out) in partial lots 5. Here again, knowledge of

herd size was important to ensuring that the data made sense, and none of the

scenarios selected defied common sense. In some cases the data merely presented

overwhelming complexity, such that the true order of events was difficult to establish

let alone verify.

Data processing: technical implementation

Data processing was mostly carried out using SQLite on a Linux workstation. The

SQLite.jl package was used to interface with the file-based database held on BioSS’s

secure network drive. This ensured that only the data required for the actual anal-

ysis was queried (i.e. retrieved from the database). Furthermore, since a signif-

5This practice was confirmed verbally by consultation with academics at SRUC.
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icant amount of the initial processing was carried out using SQL, the data were

summarised and mostly cleaned of superfluous data at the point of use. Other

more complex data processing tasks were generally carried out using the Julia pro-

gramming language. That is somewhat outside its primary intended usage as a

mathematical and statistical language, but it is sufficiently feature rich to allow for

control flow-based data processing. Coding in the same language also meant that

the data processing layer was more easily integrated with the main model code that

depended on it.

Testing practices

‘Test’ records within VetNet pertain to the operational business of the surveillance

regime itself, and thus include much that is superfluous, such as ‘breakdowns’ in

herd status that do not relate directly to disease incidence, but may occur as the

result of minor administrative matters. For example, some records in the herd test

table simply appear to indicate that correspondence has been issued to provide

notification that testing is overdue.

The first task was therefore to isolate the records pertinent to diagnostic test-

ing, and group these [test codes] according to perceived overall type, and purpose.

Most of the test records relate to single intradermal comparative cervical tuberculin

(SICCT) testing, with one important exception. All of them are based on the host’s

response to bovine purified protein derivative [86]. The tests types are categorised

as follows:

1. Routine: routine herd SICCT tests, usually marked RHT or WHT for routine-

or whole-herd test, respectively.

2. Trade: also SICCT and, in a sense, routine; the records of most interest are

probably those that pertain to pre-movement testing for the purposes of trade.

3. Risk: conducted based on the perception of elevated disease risk. These in-

clude non-routine trade-related (‘tracing’) tests; ‘contiguous’ testing in herds

local or adjacent to infected herds; and short-interval tests of various kinds,

typically conducted at higher sensitivity than the routine SICCT test.

4. IFG: Interferon-γ blood test. This is used in some circumstances to supple-

ment the above. It is designed to measure a cytokine (whereas the SICCT
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test detects a delayed hypersensitivity reaction) [87].

Interpretation of test type codes (and dates)

The main records of interest in V etNet pertain to two broad types of test, including

the interferon-γ blood test as noted above. The other, the SICCT, is the standardly

used diagnostic, but has two distinct protocols associated with it: two different

sensitivities (interpretations) are used under different circumstances. Together they

are the ‘Routine’ and ‘Risk’ family of test codes, also as noted above. Most Routine

herd tests are recorded in a single row. However some may be conducted over

several days –and correspondingly, recorded over several rows– yet considered a

single herd test. According to the documentation provided with the dataset, there

are two possible scenarios and corresponding sets of [possible] values in the relevant

column, ‘vtPart’ :

1. A ‘complete’ test, indicated by a ‘C’.

2. ‘Partial’ testing carried out over N days, i.e. P1 → ...→ PN−1 → CN .

A number of additional possibilities were discovered in the data itself:

1. Orphaned partial test records, treated as complete tests: PN ≈ C, CN ≈ C.

2. The completion of partial testing marked with ‘C’: P1 → ...→ PN−1 → C.

3. Disordered combinations of the above, e.g. P1 → ...→ C → Px where x < N .

4. Other irregular partial test records, e.g. P1 → P1 → C.

In the end, it was determined that for the purposes of analysis consecutive rows in

the test records table with similar6 dates should simply be grouped, such that this

ambiguity was generally less of a problem.

Spatial data

Interfarm distances were approximated based on the VetNet dataset in conjunction

with the Ordnance Survey National Grid (OSNG) system7. However it eventu-

ally transpired they were not required for (or included in) the results presented

6Less than 14 days difference.
7https://en.wikipedia.org/wiki/Ordnance Survey National Grid
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here. That is because the methods were not found to be workable at scale, i.e. the

problem that essentially provides the motivation for the work presented in Chap-

ter 7. Thus there was little justification in attempting to account for inter-farm

disease transmission in a comprehensive way, that may have called for the further

consideration of spatial data.

Herd size

Somewhat surprisingly population [i.e. herd] size was found to be the most chal-

lenging aspect of data quality to account for. However, it was necessary to obtain

accurate, or at least consistent, estimates of herd size as this has significant impact

on disease dynamics within the models of interest. In the raw VetNet data, the

herd size column was often found to be populated with values that were unrealis-

tically low, or that sometimes conspicuously matched those that merely pertained

to the number of animals actually tested. This was found to be the case even

in records that related to pre-movement testing, where it would seem reasonable

to expect that considerably less than the full herd would usually be subject to a

diagnostic test. In general, there is considerable variance in how herd size at the

time of testing is reported. For some records the vtHerdSize column is populated

in way that corresponds with the routine testing scenarios laid out in the previous

subsection; with the same value used to populate each linked record. This appears

to correspond to a herd test carried out over several days. In other cases the value

apparently reflects a subset of the herd, presumably intended to nonetheless rep-

resent the same underlying scenario. As noted above, this kind of variance (i.e.

pertaining to reporting procedures and data accuracy) was anticipated due to the

nature of the dataset, but it was nevertheless necessary to at least approximate the

herd size with a reasonable degree of accuracy, in order for a meaningful analysis to

proceed. Initially, a simple SQL query was used to compute the average herd size

reported for all8 routine tests over the reported period of interest. These approxi-

mations were found to be mostly reasonable, when a subset were compared using

the validation method described below.

Herd size validation

It is also possible to estimate average herd size over certain periods using CTS data

alone. All births, deaths and migration are recorded, so a running total of the net

8Except private tests, which were found to be unreliable indicators of the true herd size.
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balance converges on the true population size for later records. The principle is

illustrated in Figure 6.6. This is evidently only effective for a subset for records,

since only later estimates are reasonably likely to incorporate records pertinent to

the entire herd. However it was sufficient to provide a degree of comfort, with

respect to the accuracy of the approach described above, i.e. the SQL query. One

complication that limits this approach to being a validation method, is that CTS

records are stored at the ‘holding’ (i.e. farm) level. The pertinent [test] records in

VetNet, however, are given at the herd-level. The implication is that the method

is only valid as a herd-size estimator for holdings that maintain only a single herd.

This can be a complicated distinction to make in some cases. The number of

herds maintained is not directly recorded in either VetNet or CTS. Instead it must

be inferred from corresponding test records, and in any case, could reasonably be

expected to change over time. Otherwise, it might have proved easier to simply

limit the data analysed to single-herd farms for which reasonably complete CTS

records were available.

(a) herd size estimated from CTS movement data.

Figure 6.6: Migration data (transactional records from CTS ) allow for the cal-

culation of a quantity that can be expected to converge over time with the true

[holding-wide] herd size. Though the approach can account for even small fluctu-

ations in the population size over the latter portion of that period, its usefulness

here was mainly as a means to (approximately) corroborate the herd size recorded

in VetNet.

Another option that was considered but not pursued, was to group the VetNet
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records themselves at the holding level, so as to better marry the records in each

database. This crude approach has an obvious limitation however. It would implic-

itly assume the free mixing of individuals between herds. It is obviously plausible,

perhaps even likely, that disease transmission occurs between herds on the same

farm. However in a model this would arguably be better-characterised as a sep-

arate process, from those that drive within-herd disease dynamics – which is the

main focus here. In the end it was not clear that this method would have been

less damaging to the objectivity of the analysis, than the [VetNet data] interpola-

tion approaches used instead, and described below. The CTS validation analyses

–which are essentially based on visual comparison of a trend over time– are given

for each of the ‘individual herd scenarios’ presented in §6.4.

Herd size imputation

Issues with the VetNet data remained following the pre-processing (e.g. [date-

based] grouping) and validation steps described above. The most significant can be

(roughly) categorised as follows:

1. Missing data (i.e. null values) – mostly relating to herd size.

2. Implausibly low herd size values for some records – e.g. the issue described

above, where in reality the ‘herd size’ column merely duplicates the data

in the ‘animals tested’ column – that were not resolved by earlier steps in

pre-processing (primarily the grouping of rows).

Both classes of problem were resolved in essentially the same manner; missing or

suspect values were interpolated based on similar records, and replaced. The first

class of problem was often found to affect tests which are routinely given only

to a few individuals at a time, for example pre or post-movement testing. These

were fairly simple to resolve: the proportion of the herd tested was assumed to be

similar to that of other records of the same type, based on the test-type column

in VetNet. More specifically, it was assumed for cases with missing and certain

types of suspect data, that the proportion of the herd tested for any given test

type matched the average proportion for that type of test. The imputed herd size

value can be understood here as a function of: the number of cattle tested, and

the [imputed] proportion of the herd tested. This step was carried using short SQL
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statements generated by script. The following snippet illustrates the approach for

pre-movement test records specifically:

1 update batch_test_pc

2 set prop = ( select avg ( prop )

3 from batch_test_pc

4 where test_type = 'VE−PRMT '
5 and n_vtHerdsize > n_vtTested )

6 where test_type = 'VE−PRMT '
7 and n_vtHerdsize <= n_vtTested ;

Listing 6.1: Example SQL statement: herd size imputation.

The approach is simplistic, at least compared to methods such as ‘Bayesian simulation’[88],

which involves sampling missing values from the posterior distribution of complete

cases. That might have been preferable particularly if more than one column had

been used to derive the imputed data. However the information encoded by the test

type code column alone was deemed to be sufficient in this case, since it contains

over sixty distinct values pertinent to this situation. In most cases the operational

usage of different codes was found to be evenly distributed enough, that sufficient

samples could be obtained to estimate the average for each individual code. An

exception to this was import-test records, which were grouped for this purpose as

{‘VE-PII’,‘VE-PIO’}. The codes themselves seem to correlate with both the pur-

pose and circumstances in which, e.g. routine herd testing, is carried out. For

example, codes that include the character strings ‘RHT’ and ‘WHT’9, generally

seem to relate to four-yearly and one-yearly herd tests, respectively. It is a useful

distinction for this purpose, because eligibility criteria for the testing of individual

animals may vary according to the surveillance regime, with fewer animals eligible

in areas deemed to be at low risk.

The second broad problem described –implausibly low herd size values– was

more difficult to resolve. In general terms, it was less obvious in some cases that

the data were actually incorrect, rather than just suspect. This was particularly an

issue for interferon-γ blood test records. That is largely because their usage did not

seem to conform to regular patterns of behaviour evident with other types of test

record, reinforced by well-established surveillance regimes. This is unsurprising due

9These stand for ‘Routine’ and ‘Whole’-herd test respectively.
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to their association non-routine surveillance-testing. In the end a compromise had

to be determined, which balanced the need to ensure that the data were plausible,

against the risk of replacing accurate data with crude approximations – in this case

the average herd size, computed as described above. It was therefore decided that

all remaining test records which purportedly recorded both 100% coverage (i.e. the

proportion of the herd tested = 1) and also indicated less than 1
3
of the average

herd size [over time] were actually tested, would be interpolated. This was achieved

simply by recomputing the proportion of the herd tested based on the average herd

size as recorded in other (generally more reliable) test records over the pertinent

time period – somewhat as described at the beginning of this sub-section for pre-

movement test records. A significant number of rows –over fourteen thousand– were

affected by this step, unfortunately indicating that many other problematic records

may exist beyond the chosen threshold of 1
3
.

Summary of limitations

In particular, perusal of the data suggests that we might expect the final analysis

to under-estimate the sensitivity of the interferon-γ test in some cases. That is

because some records are likely to indicate that the whole herd was tested, when in

reality it might have been as low as [slightly more than] a third. The speculation

was reinforced by casual inspection of the data, which appeared to suggest that the

interferon-γ test records may be particularly affected. Overall though, the approach

taken for data processing and validation was conservative, in that adjustments to

the underlying data were only made when judged necessary, and with reasonable

attempts made to cross-validate where possible.

Data selection

Notwithstanding the steps described above, it was still necessary to filter the data

set in order identify cases that were truly suitable for analysis. This is discussed

further in §6.2.3. The general problem of systematic bias introduced by these steps;

the wider implications; and a possible solution, are also discussed further in 7.

It was noted during the early phases of the project, that individual within-herd

analyses were only feasible for reasonably large epidemics. That is, it was only

possible to recover reasonable estimates of key parameters under those conditions.

For intuitive reasons, this was especially the case when only weakly informative
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prior distributions were used. Criteria for case selection were iteratively refined

during the validation phase, with the final set chosen as:

1. At least ten reactors,

2. spread over six or more [positive] herd tests,

3. where [negative] herd test records cover at least the preceding twelve months,

from the first positive test.

It was also found –as demonstrated by the validation analysis illustrated in Fig-

ure 6.7– that better estimates could be obtained when more than one different type

(or configuration) of diagnostic test was used over the course of an epidemic. Ac-

cordingly, the criteria were refined to include only cases where there was at least

one reactor per each of the three tests described at the top of §6.2.3.

6.3 Validation: Testing inference with simulated

scenarios

The applied methods were first validated using simulation methods, i.e. within-

herd epidemics were simulated for different parameter values, and the algorithms

were assessed against their ability to consistently recover the parameter set, based

on only the simulated observation values.

Four variants of the model presented in §6.2.1 were considered for the purposes

of [initially] validating the overall approach. They are:

1. SEI − tdR model, with one diagnostic test.

2. SEI − tdR model, with two diagnostic tests.

3. SETI − tdR model, with one diagnostic test.

4. SETI − tdR model, with two diagnostic tests.

The full results are reported in Appendix C.1. In general the algorithms were

moderately successful in recovering parameters. This was easily evaluated using the

workflow described, since the ARQ-MCMC algorithm (validated using the Gelman-

Rubin convergence diagnostic) provided comfort (or not) for the parameters esti-

mates yielded by the others. That in turn provided at least some support for the
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estimates of the marginal likelihood computed independently by those algorithms

(since they are computed from the same samples).

Inference in the context of multiple types of observation

Aside from the reasonable efficacy of the algorithms, another interesting point of

interest that arose from this work is that the same number of observations (twelve

per scenario) tended to yield higher variance estimates when only one test type was

assumed. A sample from these results is given in Figure 6.7 to illustrate.

That was found to be somewhat counter-intuitive at first, since it increases the

dimensionality of the model without providing extra data [additional observations.]

However it could be rationalised by speculating that it mitigates correlation between

parameters governing the disease process, and those governing the observation one;

a form of ‘triangulation’. Whether that speculation is accurate or not, the findings

were deemed of sufficient strength to prioritise herds that also participated in the

IFNγ blood test trial for analysis.

With respect to the real world application, that choice certainly seemed to make

sense since the reported high sensitivity of the IFNγ test (reinforced by our findings)

provides an otherwise impossible-to-glean glimpse of the ‘true’ disease status of the

herd. Allowing that this happens in reasonably close [temporal] proximity to other,

less sensitive tests – it is intuitive to understand why it would like be very helpful

when it comes to statistical modelling.
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(a) SMC2 comparison.

(b) MBP IBIS comparison.

(c) ARQ MCMC comparison.

Figure 6.7: Comparison of contact rate parameter estimates from the validation

analyses, with one diagnostic test (LHS) and two tests (RHS). The simulation

parameters have been marked for reference. The simulated scenarios suggested

that having more than one type of test is helpful for reducing variance of estimates

for other epidemiological parameters, when test sensitivities are themselves also

[assumed to be] unknown.
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6.4 Results I : inference of within-herd BTB trans-

mission dynamics

Here we demonstrate that Bayesian inference applied to the models and single-

herd BTB data outlined above yields estimates for parameters that characterise

individual herd outbreaks. The results shown here a based on a single outbreak,

Incident one. Results from two further outbreaks are shown in Appendix C. Rate

parameter estimates reported throughout are given w.r.t. days.

6.4.1 Incident one

The first herd analysed was located in Staffordshire with a head count fluctuating

between about seventy and one hundred cattle. Details are given in Figure 6.8.

(a) BTB surveillance data

from VetNet.

(b) herd size estimated from CTS

movement data.

Figure 6.8: The first epidemic is based on an incident recorded in the VetNet

database at a farm in Staffordshire which lasted about two years following a break-

down triggered by a routine whole herd test in 2009. Migration data is based on

corresponding data as recorded in CTS. The latter is also used to corroborate the

approximate herd size at the beginning of each modelled scenario.
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SEIR model parameter estimates

The first set of results are based on the SEIR variant of the test-determined removal

model. The marginal parameter distributions from application of SMC2 to this

data are shown in Figure 6.9. The corresponding results from application of ARQ

MCMC are shown in Figure 6.10. Comparing these figures reveals a high-level of

consistency between these algorithms in the parameter estimates obtained. This is

confirmed by the summary statistics shown on Table 6.5. It is interesting to note

that consistent with earlier analyses [15, 2] there is considerable uncertainty in the

latent period (progression rate E → I).

Figure 6.9: Marginal model parameter distributions for the first VetNet data set

fitted to the SEIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals). θ1 : 4 := contact rate S → E; progression rate E → I;

SICCT test sensitivity; and time of onset of infectiousness in the first affected

individual. All parameter estimates are given w.r.t. days.
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Figure 6.10: Marginal model parameter distributions for the first VetNet data set

fitted to the SEIR model using the ARQ MCMC algorithm with ΓL = {1, 3, 7}
(ΓR = 30). θ1 : 4 := contact rate S → E; progression rate E → I; SICCT test

sensitivity; and time of onset of infectiousness in the first affected individual. All

parameter estimates are given w.r.t. days. The algorithm is much less efficient than

SMC2 but tends to produce consistent results.

Theta iMu iSD

1 1.80E-04 4.50E-05

2 2.00E-01 9.70E-02

3 6.40E-01 9.20E-02

4 2.50E+02 5.60E+01

Table 6.5: Inference summaries for the SMC2 SEIR analysis (incident one). The

model parameters labeled from one to four are as follows: contact parameter S → E;

progression rate E → I; SICCT test sensitivity; and onset of infectiousness in the

first affected individual, also denoted in the main text as t0.
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(a) Twin parameter marginal densities for the SEIR model analysis (ARQ MCMC).

Theta iMu iSD rMu rSD SRE (95%)

1 1.80E-04 5.00E-05 1.80E-04 5.70E-05 1 1

2 2.10E-01 1.10E-01 2.10E-01 1.10E-01 1 1

3 6.30E-01 1.10E-01 6.40E-01 1.10E-01 1 1

4 2.40E+02 -6.70E+01 2.40E+02 7.00E+01 1 1

Table 6.6: Inference summaries for the ARC MCMC SEIR analysis (incident one).

The model parameters labeled from one to four are as follows: contact parameter

S → E; progression rate E → I; SICCT test sensitivity; and onset of infectiousness

in the first affected individual.
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SETIR model parameter estimates

Inferences for the SETIR model are shown in Figure 6.12 and summarised in Ta-

ble 6.7. These results also demonstrate a high level of consistency between the

analyses conducted and between algorithms applied.

Figure 6.12: Marginal model parameter distributions for Incident One set fitted

to the SETIR model using the SMC2 algorithm – first three rows – with N =

{6000, 8000, 10000} (independent proposals) and ARQ MCMC (final row).

6.4.2 Summary

The results presented here demonstrate that it is feasible to use Bayesian infer-

ence for population level (DPOMP) models and operational data describing an

oubreak to estimate key parameters that characterise the within-herd dynamics of

BTB. The results presented for SMC2 and ARQ MCMC show a high-level both

of within-algorithm consistency between different configurations and between algo-

rithms. They also show that it is possible to fit different models to the same data.

In comparing the parameter estimates obtained for the SEIR and SETIR model
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θ E(X) σ

1 0.00021 0.000066

2 0.2 0.099

3 0.17 0.1

4 0.64 0.094

5 240 59

Table 6.7: Inference summaries for the SMC2 SETIR analysis (incident one). The

model parameters, labeled from one to five, are as follows: contact parameter S →
E; progression rate E → T ; progression rate T → I; SICCT test sensitivity; and

onset of infectiousness in the first affected individual.

θ µI σI µR σR PSRF (95%)

1 0.0002 0.000064 0.00022 0.000083 1 1

2 0.21 0.11 0.2 0.11 1 1

3 0.18 0.11 0.18 0.12 1 1

4 0.63 0.091 0.64 0.11 1 1

5 240 -62 240 70 1 1

Table 6.8: Inference summaries for the ARQMCMC SETIR analysis (incident one).

The model parameters are as given in Table 6.7. Importance and rejection sampling

estimates for are denoted by subscript, with µ used as shorthand for E(X).

we also observe a high-level of consistency between the estimates obtained for the

contact parameter S → E, the SICCT test sensitivity; and the time of onset of

infectiousness in the first affected individual. There is less consistency in the latent

period which in the SEIR model is the residence time in the E state given by the

inverse of the rate of progression E → I. The corresponding figure for the SE-

TIR model derived from the residence times in the E and T states is almost twice

as long. However, this is consistent with uncertainty estimates obtained for these

parameters, and moreover as noted earlier is consistent with the highly variable es-

timates for the latent period published in the literature. These results are broadly

confirmed through analysis of the other two incidents described in Appendix C and

that in this case examination of the model evidence (see §C.5) does not provide
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sufficient grounds to distinguish between the two models presented here. Finally,

although the results obtained here are promising it should be noted that they are

derived from data on relatively large outbreaks and therefore may not be repre-

sentative of all herds. Nonetheless in the next section we build on such results by

examining the fits for a larger number of such herds in three geographically distinct

regions.
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6.5 Results II: meta-analysis of herd outbreaks

We now present the main results of the analysis conducted for this chapter. The

preliminary results presented in the previous section and in the appendices (based

on both simulated and real data) suggest that the selected methods are reasonably

effective for solving the models, in at least some cases. The final data set chosen

for analysis contained eighteen distinct herds (although preliminary analyses were

carried out for slightly over one hundred.) These were selected by applying the

criteria laid out earlier in the chapter to farms drawn from three distinct UK regions:

1. Yorkshire (six herds)

2. East of England (four herds)

3. Scotland (eight herds)

Notwithstanding the efficacy of the Bayesian workflow already described for the

purpose of validating the results, additional verification was sought by using mul-

tiple independent runs and configurations. These are presented independently for

the parameter inference results.

6.5.1 Model comparison

We begin with comparison of models (shown in Table 6.9) w.r.t. to each herd and

data set for the models.

These results are reported in full in Appendix D. They are organised by region

but should properly considered as the results of a series of independent analyses;

there is little meaningful comparison to make between herds for this part of the

results (except of course concerning the relative performance of models).

The results show a large degree of variation between herd outbreaks, making it

difficult to reach clear findings. However, this is perhaps not particularly surprising.

The number of herds that could be practically analysed in the time available was

prohibitive, and perhaps clearer indications would have emerged from a larger scale

analysis – that after all is the nature of statistics. Nonetheless we attempt to

summarise the relative strength of evidence for each model. One reason it was

difficult to draw clear conclusions is that it was not always possible to estimate the

model evidence sufficiently accurately. In fact taking a cut-off of Var(BME)≤ 10
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this was achieved in only around a half of all cases for each model except the

SRI-SEIR alternative reinfection model, suggesting some merit in considering the

role of reinfection of models of BTB. In the East of England group evidence was

only calculated accurately for the SRI-SEIR model and once for the TDR-SEYZ

model. Therefore we exclude the East of England group and examine rankings

using model evidence only where Var(BME)≤ 10. Then considering those models

with 1st or 2nd lowest estimated evidence we find that the SETIR model with

density dependence is ranked top overall with the frequency dependent SETIR

variant 2nd. Next highest ranked are jointly the TDR-SEIR frequency dependent

and the SEYZ models. There is little to separate frequency v density dependence

when combined over TDR-SETIR and TDR-SEIR models. However, the SETIR

dynamic (combined across both types of density dependence) is ranked higher than

the alternatives including the SEIR dynamic.

Model code Description

TDR-SEIR (Freq. Dep) Frequency dependent TDR-SEIR

TDR-SETIR (Freq. Dep) Frequency dependent TDR-SETIR

TDR-SEIR (Dens. Dep) Density dependent TDR-SEIR

TDR-SETIR (Dens. Dep) Density dependent TDR-SETIR

TDR-SEYZ Reinfection model

SRI-SEIR Alternative reinfection model

Table 6.9: Enumerated models and configurations, as per §6.2.1.
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6.5.2 Epidemiological parameter estimates

As with the results already reported, several algorithm configurations (and runs)

were used to compute parameter estimates for each of the three herd groups. A full

set of results for all models and herd-groups is presented in Appendix D.2. Here we

present results from the TDR-SETIR models since these were found to be the top

ranked in the analysis above, starting with the latent period and then going on to

explore the other model parameters.

Estimates for the latent period

Estimates for the latent period in the TDR-SETIR model correspond to the tran-

sitions E → T and I → I denoted γ−1
T and γ−1

I respectively. The results show

considerable variation and we note that in all regions (see Figures 6.13, 6.14, 6.15)

the variation under the density dependent model is am order of magnitude or more

larger than under the frequency dependent model, which may provide insight into

the wide range of latent period estimates obtained in the literature.

(a) Frequency-dependent (b) Density-dependent

Figure 6.13: SETIR model estimates for Yorkshire
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(a) Frequency-dependent (b) Density-dependent

Figure 6.14: SETIR model estimates for East of England

(a) Frequency-dependent (b) Density-dependent

Figure 6.15: SETIR model estimates for Scotland
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Testing sensitivities: density dependent TDR-SETIR model

Here we visualise the posterior expectations of the model parameters describing

the probabilistic quantities associated with detection by different diagnostic tests

(and specifications) under the density dependent TDR-SETIR model. They are

denoted by σS and σH for standard and high sensitivity SICCT ‘skin’ tests, and

σγ for the IFN-γ blood test. Also included are estimates the time of introduction

of the disease t0, though it is otherwise treated here as a nuisance (not of primary

interest) parameter. The results again show the huge variation between herds and

between region. In general results from different algorithms produce similar outputs

for each herd (same colours cluster together).

Note that the corresponding variances for these estimates are not reported here

but are available in the appendices for each individual set of results.
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(a) Yorkshire

(b) East England

(c) Scotland

Figure 6.16: Joint marginal parameter expectations under the Density dependent

TDR-SETIR model, Results are shown for Yorkshire group of herds (top), East of

England (middle) and Scotland (bottom)
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6.6 Discussion

The study proceeded roughly as envisaged at the outset: having identified (and

developed) appropriate methods using simulated examples, parameter estimates

were obtained for a range of models and herds. This was initially done for a small

number of herds as a proof of concept (the individual herd scenarios provided in

Appendix C) and then repeated (with iterative minor improvements w.r.t. tech-

nique) for a larger number of herds – again, as envisaged at the outset. However

the number of herds and data sets that could be analysed fell way short of initial

expectations, with only a handful of the thousands available judged suitable for

analysis using these methods. The key constraints were data quality and ‘identi-

fiability’ – in plain terms, there was only sufficient information to provide useful

parameter estimates when the total number of reactors observed for a given herd,

was large enough. In very rough terms, fifteen or more was found to be a ‘good’

number. Below we discuss each aspect of this analysis (inference, models and data)

before summarising lessons learned and outlining possible ways forward.

Inference algorithms

As a well established method, the SMC2 algorithm was deemed especially im-

portant as a baseline for validation and comparison [9]. This was compared with

MBP-IBIS and ARQ MCMC during the validation stage of the analysis, as laid out

in §6.3. Ultimately the two that proved most tractable for the problem –SMC2

(i.e. Algorithm8) and Algorithm 10; the ARQ-MCMC presented in Chapter 4 –

were used to implement the workflow, and produce the results presented in onward

sections. As an interesting aside, this situation was reversed somewhat during the

course of the work presented in Chapter 7, when data-augmented methods proved

to be more tractable for the models considered. Another key benefit of the SMC2

(and MBP-IBIS ) algorithm is that it provides a convenient and computationally

inexpensive estimate of the marginal likelihood. This was used to compute the

Bayes factors for model comparison.

Modelling assumptions

The models used in Chapter 6 necessarily incorporate certain assumptions: within

herd dynamics only, i.e. no (ongoing) external force of infection; introduction via
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single infected individual disease status of any given herd; homogeneous test re-

sponses, e.g. the possibility of immune deficient individuals is ignored. Though

these are strong assumptions, they were judged to be mostly not problematic in the

first instance and have been commonly adopted in earlier studies.

Data quality

A range of minor problems, and one major problem, affecting data quality presented

during the course of the work. In particular, cases were only selected for inclusion

in the final results where herd size could be estimated (or at least, roughly veri-

fied) using transactional CTS data. They were accounted for systematically where

possible, and other efforts were made throughout the study to ensure a [system-

atically] ‘clean’ data set. For example, Scotland became the largest single cohort

in a deliberate effort to isolate extraneous factors that might have introduced (for

want of a better term) ‘noise’. As noted above, it was hoped that the relatively low

incidence of BTB in Scotland would help to ensure this. However the results were

probably the poorer in the end for the lack of BTB incidence, since few observations

translates to higher variance in the posterior distribution, and more difficulty with

convergence in the algorithms.

Lessons learned

Nevertheless, important lessons were learned during the course of the work. The

study served its purpose as a proof of concept. Even though the outcome was not

the desired one, it did reinforce the rationale for the corresponding objectives; by

highlighting the need for a hierarchical approach, and methods that are scalable

beyond a mere handful of herds. It also highlighted that exercises in parameter

inference are likely to be of greater scientific value and interest when combined

with model-inference, so that we understand the extent to which models fit the

data. These observations provide retrospective support for the efforts made the

address that problem, and in particular the key outputs from Chapter 4. The

results presented in §6.5 also have one other minor strength. Where previous work

has focused on (largely approximation-based) aggregate analysis of the overall BTB

system, or farm network – the approach employed here provides at least notionally

independent parameter estimates for each herd, excepting the question of systematic

bias introduced by the way in which the herds were selected for analysis. That is,
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where many others have produced epidemiological parameter estimates for BTB

that conflict greatly with one another, we have managed to produce estimates that

conflict even with themselves! This highlights the importance of, and the need for,

systematic approaches to quantify between-herd variation in BTB dynamics.

Towards a hierarchical, ‘system-of-herds’ model

The ultimate goal of this thesis is to go beyond previous attempts to characterise

such systems for BTB (such as [17]) by incorporating directly inferred within-herd

disease dynamics for a system of comparable size (ten thousand herds in that case).

As discussed, the approach used here here proved computationally and manually

unequal to the scale of this particular ambition. That is not because SMC methods

are intrinsically unsuited to hierarchical methods. On the contrary, [89] describe

a flexible scheme that might have served for this purpose. However it was found

that the algorithms required manual attention with respect to each herd, and were

computationally intensive, with an average herd analysis taking on the order of

30 to 45 minutes(not including manual attention). More importantly, some data

sets were found to be more tractable to analysis than others and in practice it was

convenient to simply discard those that proved ‘difficult’. This is problematic for

a hierarchical analysis because the likelihood is essentially given by the product of

many individual ‘component’ likelihoods – a failure in one analysis essentially ruins

all.

It was therefore anticipated that the further development of this particular ap-

proach would scale probably at most to a few dozen herds in the data set considered,

and that such efforts would be largely without merit. Nevertheless, the knowledge

and familiarity with methods obtained throughout course of the entire project did

provide the foundation for one final (within the bounds of this work) attempt to

solve this problem. That approach and the accompanying analysis, that was suc-

cessfully carried out for approximately county-wide systems of herds comprised of

a few hundred herds, up to region and nation-wide systems comprised of many

thousands, is presented in the next chapter.
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Chapter 7

Alternative within-herd model

“All models are wrong, but some are useful.”

- George Box1

Summary

• Endemic diseases like BTB (and also COVID-19 [90, 91, 92]) present sig-

nificant statistical modelling challenges due to factors such as the possible

presence of extraneous sources of infection; uncertain routes of transmission;

and the highly [statistically] dispersed (or ‘clustered’) nature of localised out-

breaks. This is evidenced in part by the large degree of variation in estimates

that have been reported for important epidemiological BTB parameters by

others, even those that are notionally based on the same compartmental mod-

els and data [2, 15, 17].

• Furthermore our own results reported in the previous chapter tentatively sug-

gest that no single [state-space-]model that was considered in that analysis

(including those that have typically been applied to BTB in the past by oth-

ers) demonstrated a particularly good fit for the data compared to others. At

least, not consistently across different herds.

• Here we consider a different approach; indeed, a different type of stochastic

process altogether, in a revised model where disease transmission is repre-

sented by a single [univariate] process for each herd. A key benefit of this less

1There is some uncertainty surrounding the provenance of this quote but it is usually attributed

to the statistician George Box.
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computationally intensive approach is that it allows us to go beyond the work

presented in the previous chapter, by directly modelling within-herd trans-

mission for systems comprised of thousands of herds, rather than individual

ones, thus adding statistical strength to the estimates that are obtained.

• The herd groups analysed range in size from county-wide (typically in the or-

der of a few hundred herds) up to nation-wide (the whole of Scotland, c.4,500

herds) and the results include estimates for parameters relating the regional

(county-level) background risk rate; trade-related risk; and the detection prob-

abilities associated with various kinds of diagnostic test.

• We develop and apply three variants of hierarchical Bayesian model, and

make substantial progress towards a model and methods capable of estimating

parameters for the entire VetNet/CTS data set, i.e. the full national herd

system (excl. Northern Ireland).

Background

Scientific domain modelling (and in fact, statistical inference generally) can be infor-

mally understood as adding value to the statistical analysis of data, by introducing

‘structure’ to a ‘raw’ data set. That structure can be informed by our pre-existing

knowledge (or more accurately, our beliefs) about the broad shape of some e.g. bi-

ological process or system. Combined with the alchemy of mathematics, our beliefs

about the nature of say an epidemic process, i.e. a pathogen spreading through a

naive population, give rise to [a mathematical identity for] a statistical distribution

that links the data to the model. This is referred to as the posterior distribution

in Bayesian statistics. The ‘added value’ arises from the fact that we need only

fit a handful of observations in order to be able to characterise the entire, mostly

unobserved population (or system) more generally. In other words, we can gain a

significant amount of knowledge from a relatively small amount of data. That is,

assuming that our assumptions (the mathematical manifestation of our beliefs) are

reasonably correct.

An alternative, and in some ways contrary approach, is to assume the opposite:

that we know very little about the pertinent underlying, e.g. biology, and regard

the data somewhat more abstractly as a statistical distribution in the first instance.
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In this case it would perhaps be better described as a statistical signal, since the

BTB surveillance and trading data we are dealing with are longitudinal: recorded

over time.

Of course, this is a false dichotomy in most practical situations2. The approach

adopted here is somewhat analogous to the latter, more abstract way of doing

things; a deliberate decision to focus on the statistical properties of the underlying

empirical data –in particular, the [possibly] overdispersed distribution of reactors

within and between herds– as a way of identifying promising methods and statistical

tools. A key motivating factor was the need to improve upon the results presented

in Chapter 7, in order to construct a hierarchical model that could be used to models

systems comprised of thousands of individual herds. The solution that resulted from

those initial motivating principles is at least simpler than the methods primarily

considered heretofore in the thesis. A single stochastic process is used to model the

entire disease process within each herd (rather than a coupled system of [IHPP]

processes for each herd), and in that sense it could be judged less prescriptive in

terms of the underlying biology. However it could just as accurately be stated that

it is merely an alternative description of the underlying biology. It is a matter of

subjective interpretation.

We now present that work, which can be regarded as an addendum to the

(originally planned) main body of the thesis. We begin by revisiting pertinent

methodology from Chapter 2, in particular Hawkes processes. We then do the

same for the data, which was described more fully in the previous chapter. That

is followed by a description of the model, which is fairly distinct from those used

to obtain the results presented in the previous chapter, as well as materials and

methods, in §7.3 and §7.4 respectively. Details concerning the DA-MCMC algorithm

used to solve the model are provided in §7.4.2. As before, results reported in

this chapter include those based on both simulated and actual BTB surveillance

data, with the latter reported in §7.5. Please note that only a summary of those

results are presented in the main text. The bulk, including the most granular

representations and inference tables, are laid out in Appendix E. Finally, the chapter

concludes with a summary discussion in §7.7, following on to the conclusion of the

thesis itself, in Chapter 8. A visual summary of the chapter is provided in Figure 7.2.

2Quantum physics is the exception that springs to mind here.
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Figure 7.1: Reactor distribution by number of reactors in each herd. This is ex-

ample is for a data set of herds drawn from the East Midlands over a similar time

period. Further details of the corresponding analysis are given in Appendix E. BTB

incidents reported in VetNet are ‘clustered’ (or overdispersed – higher than expected

variance) with most incidents consisting of a single reactor (and many more herds

with none at all) but a handful with more than a dozen. This presents significant

modelling challenges that are discussed in due course.
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§7.1 Introduction

§7.2 Data

§7.3 Model

§7.4 Materials and methods

§7.5 Main analysis

- three models

§7.6 Simulated inference

§7.7 Conclusion

Appx. E

Recap BTB data

Define [three] modelsa

Describe Bayesian framework and algorithm

Application to BTB surveillance data

Validation

Summary of this work

Full results:

Thesis conclusion

aAlternatively, three variations on the same [Hawkes process] model: they are, ho-

mogeneous process model ; hierarchical model with homogeneous disease processes; and

hierarchical model with heterogeneous disease processes. Further details are given in §7.3.

Figure 7.2: Layout of this chapter. It begins with a recapped introduction to

Hawkes processes, other relevant concepts and data in §7.1 and §7.2. Those inform
the construction of three variants on the same essential model: a partially observed,

non-Markovian process model, laid out in §7.3. [Bayesian] methods and materials

are discussed in §7.4. The algorithm that was used to obtain the results is then

described in §7.4.2, with the results themselves reported in §7.6 onwards, for both

simulated and real herds. The chapter concludes with a summary discussion in §7.7.
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7.1 Introduction

Here we provide a brief overview of Hawkes processes and other concepts pertinent

to the work presented in this chapter.

7.1.1 ‘Self-exciting’ Hawkes processes

As noted in §2.2, stochastic epidemiological models can be formulated using point

processes other than the standard inhomoengous Poisson processes that have been

applied thus far in the thesis. The other variant introduced in that section are

‘self-exciting’ Hawkes processes [27]. Note that Hawkes processes are by definition

non-Markovian. That is because the time evolution of the system at any given

time t depends on the entire history of the system up to that time. Here we briefly

discuss the rationale for using them, and also recap the essentials from Chapter 2

to provide a foundation for the [partially observed, non-Markovian process] model

and methods presented later.

Statistical overdispersion

Overdispersion is a [relative] property of data, that relate it to a given statistical

distribution. It is defined by ‘excessive’ variance. That is, variance that is higher

than expected given the assumed distribution. Or equivalently, higher than that

predicted by a given statistical model. We can begin to understand the usefulness

of Hawkes processes for modelling data that, loosely speaking (i.e. without respect

to any specific model) are overdispersed, by considering their application to what

could be described as ‘clustered phenomena’. For example [24] describe a small

(i.e. finite) population model based on an SIR model for analysing social media

data, where such [overdispersed] phenomena are often conversationally described

as ‘viral’ content. Another area where Hawkes have been usefully applied is in

finance. Here again, it is intuitive to consider the stock market as a system that

fluctuates fairly steadily for the most part, but is also prone to occasional flurries of

activity, e.g. a ‘sell-off’, in which the returns for an individual portfolio or else the

system behaviour as a whole could reasonably be described as ‘overdispersed’. Here

again, the concept is a somewhat informal and ambiguous one without reference to

a specific statistical model or distribution though.

Within the field of epidemiology, Hawkes processes have been recently applied
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to the problem of modelling COVID-19 incidence. Similar to the data analysed

here, data from that epidemic exhibit what could be described as overdispersion

in the form of clustered outbreaks of disease [90, 91, 92]. We do not claim that

Hawkes processes are intrinsically a better fit to the data we consider here though,

despite their apparently overdispersed or clustered properties. On the contrary, we

note in §7.7.5 that we have yet to address that vital question by means of formal

model comparison. Furthermore despite being diametrically opposed in one fash-

ion, Markovian and non-Markovian stochastic process models are not necessarily

mutually exclusive in terms of their application here, i.e. it is possible to envisage

a coupled system of mixed-type stochastic processes.

We now recap the essentials of Hawkes processes, and go on to describe how

the concept can be used to model an endemic disease with a relatively stable ‘back-

ground’ latent disease population, in which clustered epidemics of infectious indi-

viduals are nevertheless observed (i.e. BTB).

Definitions

First we recall the underlying mathematical model as it applies here. The ‘event

rate’ of a Hawkes process can be written as:

λ(t) = µ+
∑
tξ<t

ϕ(t− tξ) (7.1)

with an exponential kernel function chosen for ϕ such that:

ϕ(τ) = αβe−βτ (7.2)

where α is a scalar and β parametrises a time-dependent exponential decay that

characterises the impact of past events on the event rate at a given time t.

Hawkes processes within finite populations

Rizoiu et al., [24] provide a generalisation of the Hawkes process for models with

finite populations of size N in which the event rate is defined by:

λH(t) =

(
1− Nt

N

)µ+
∑
tξ<t

ϕ(t− tξ)

 (7.3)
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where Nt is the associated counting process, such that when Nt = N the event

rate is zero. The application in that was the aforementioned SIR model that was

applied to the analysis of social media data.

7.1.2 Partially observed Hawkes processes

N.b. not to be confused with ‘latent Hawkes processes’ The fundamental

modelling concept described in the next section is essentially that of a partially

observed Hawkes process. We note that this is not the same as the concept referred

to elsewhere as ‘latent Hawkes processes’, where some portion of the ‘latent’ process

is directly observed [39]. The distinction can be better understood by invoking

the concept of informative (and uninformative) observation times. In this case,

the BTB surveillance data are largely scheduled and thus observation times are

uninformative. We therefore refer to them as being ‘partially observed’ processes.

This provides continuity with terminology used heretofore in the thesis. More

importantly, it distinguishes them from the (pre-existing) concept of latent Hawkes

processes with informative observation times, as described by others.

7.2 Data

Here we briefly recap the pertinent data and describe the observation model that

was used for the models and analyses presented in due course.

7.2.1 BTB surveillance data

The data analysed are the same as that analysed in Chapter 6: VetNet BTB-

surveillance records and migration data including trade records drawn from CTS.

An important limitation of the analysis conducted for that chapter was the fact that

useful estimates could only be obtained from herds and incidents with a reasonably

large number of reactors. This is problematic as a possible source of selection bias

(but also wasteful because we are throwing away useful data). Other exclusion

criteria included holdings with more than one herd (due to differing levels of gran-

ularity in the data). The frequent occurrence of informal partial herd testing also

led to ad-hoc adjustment or exclusion in some cases due to the difficulty involved

in (manual) interpretation of those records.
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Such a degree of discrimination and manual scrutiny was not feasible in this

case, because the aim was to analyse individual herd records for systems comprised

of thousands of herds. In particular, no exclusions were made based on reactor

count. This eliminated a significant, likely source of systematic bias and allowed

for the inclusion of herds with no reactors. This in turn allowed for those records

to contribute a good deal of statistical strength to the analysis w.r.t. important

parameters relating to background (including trade-related) transmission risk. The

final data selection criteria were determined as follows:

• Herds (and date ranges) with corresponding records in CTS.

• Herds with at least two initial clear herd tests, i.e. so as to exclude cases that

were already in the midst of a BTB-related incident and better characterise

parameters relating to background risk.

• Holdings with more than one recorded herd (for the same reason as before).

These data were analysed in regional subsets of increasing size, with precise details

for each subset given in due course. As before, test records were organised by four

major classifications depending the test code used to record them. They are:

1. Routine: routine herd tests, usually marked RHT or WHT for routine- or

whole-herd test, respectively.

2. Trade: also, in a sense, routine; the records of most interest are probably

those that pertain to pre-movement testing for the purposes of trade.

3. Risk: conducted based on the perception of elevated disease risk. These in-

clude non-routine trade-related (‘tracing’) tests; ‘contiguous’ testing in herds

local or adjacent to infected herds; and short-interval tests of various kinds,

typically conducted at higher sensitivity than the routine SICCT test.

4. IFG: Interferon-γ blood test.

Estimates were obtained for the detection probabilities associated with each, as

reported in due course.
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7.2.2 Observation model

As in Chapter 6, the same observation model was used for all models and scenarios.

It is parametrised by n distinct values in the vector of unknown model parameters

θ; σT is intended to represent a given type (and sensitivity) of diagnostic test.

The observation model (or more correctly, process) is functionally denoted in the

diagrams below by gθ(N) where N is the number of test-sensitive individuals.

σi Symbol Description Prior: Ua Ub

1 σS SICCT test sensitivity – standard 0.3 1.0

2 σH SICCT test sensitivity – high 0.3 1.0

3 σR Risk-induced (variable type) 0.3 1.0

4 σγ IFNγ test sensitivity 0.3 1.0

Table 7.1: Diagnostic test categories.

It is assumed that each test type –they are listed in Table 7.1– is associated

with a given probability of detection. The corresponding statistical distribution is

the Binomial:

gθ(N) = B(N, p∗σT ) (7.4)

where σT is the [inferred] probabilistic quantity intended to represent the sensitivity

of test type T . Not all of the herd may be tested on a given occasion3. Thus, the

quantity p∗ is again used to represent the proportion of the herd that were, i.e. the

probability of being selected for a test to begin with. This is computed directly

from the available data, including the total herd size [in VetNet ] as verified (and

where necessary, inferred) from the corresponding CTS data.

It is a (possibly inadequate4) feature of the model, that the removal of individu-

als who test positive does not directly impact disease dynamics, unlike in Chapter 6.

Thus the observation process does not have to be accounted for in the same way

with respect to the model state space5 in this case.

3At the cost of repetition, it is important to emphasise once again that this does not refer to

cases where herd tests are carried out over multiple dates.
4This is discussed along with a possible remedy in §7.7.
5In some of those cases, it was necessary to sample the removed individuals from the possible

states, i.e. ‘T’ and ‘I’ for the SETIR model.
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7.3 Model

Here we describe a simple state-space model based on the SIR, for an endemic

disease with a relatively stable ‘background’ latent disease population, in which

clustered epidemics of infectious individuals are nevertheless observed (i.e. BTB).

It is depicted in Figure 7.3.

Sh Th Rh

λ(t) g(T)

Figure 7.3: The STR model. The compartments are labelled to provide continuity

with previous chapters. For example, individuals judged to be observable take the

value T of the discrete state vector, e.g. (S, T,R). However unlike in previous

examples, a subscript is used to denote a given herd. Individuals transition only

within their own herd (with inter-herd population dynamics accounted for sepa-

rately). Removal is determined by the observation process itself, similar to the

models described in the previous chapter.

One of the main distinguishing features of the model is that it is intended to

represent systems of herds, rather than individual ones. That is accounted for in

the diagram by the fact that each state (compartment) is indexed by the subscript,

h, e.g. Sh.

We now describe each of the three models. The first is the most basic; a ‘baseline’

for the other two. The latter two (unlike the first) are hierarchical models that

otherwise share the same broad construction as the first, but account for the [latent]

disease process is slightly different ways. That distinction is described in due course.

7.3.1 Basic model variant: homogeneous processes

The first model is the simplest construction, i.e. the model in its simplest form. It

was devised as as little more than a baseline for further development and evaluation

of the model against mostly simulated and some real data. To that end, it was used

in the analysis of several smaller herd groups (∼ 500−2000 herds) and so is included

as the first of three variants.

The rate that governs the disease process for each individual herd is identical
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for all (though it depends only on the history of events for that specific herd).

λ(t) = µ+
∑
tξ<t

ϕ(t− tξ) (7.5)

where ϕ is defined and parametrised by {α, β} as before. A key for the model

parameters (for all three models) is given in Table 7.2, but for now note that all

parameters including µ (that represents the constant ongoing force of infection, or

FOI) are homogeneous for every herd. Thus we refer to this as the ‘homogeneous-

process’ model.

7.3.2 Hierarchical model with homogeneous disease pro-

cesses

The second model elaborates on the first in two ways. Firstly by introducing a

hierarchical structure to the model’s parametrisation; the constant external force of

infection is sampled for each regional cohort from a distribution also parametrised

by θ. That corresponded to county in the main analysis.

Secondly, individual herd population dynamics (alternatively, ‘farmer behaviour’)

are accounted for indirectly by introducing a secondary variable, representing an-

other external force of infection. The parametrisation of that process is not hierar-

chical; rather, it is scaled by the rate of trade observed for that herd (during each

observation period). The complete event rate is thus given by:

λ(t) = µj + TiµT +
∑
tξ<t

ϕ(t− tξ) (7.6)

where µj is the external force of infection for the jth regional cohort ϕ is defined

according to (7.2). The trade-related risk parameter µT is scaled for the ith herd

by the observed trade rate for each distinct period between observations:

Ti =
Cyi

tyi − tyi−1

(7.7)

where Ci is the number of cattle purchased during the ith observation period, and

tyi − tyi−1
is the duration of that period (in days).

It is assumed that the [self-exciting aspect of the] disease process itself is homo-

geneous – parametrised by the same α and β for all herds, irrespective of cohort.
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7.3.3 Hierarchical model with heterogeneous disease pro-

cesses

Finally, the third model has a more hierarchical structure still. That is, the disease

process parameters {α, β} are sampled from distribution for each [minor-] regional

cohort. The model is therefore referred to as having heterogeneous disease processes.

Trade and other aspects of the model are given the same treatment as for the second

model.

Thus, λ(t) is given as per (7.6) but the ϕ component is given by:

ϕ(τ) = αjβje
−βjτ (7.8)

I.e. both α and β are sampled for each geographical region from also inferred

‘parent’ distributions. The (almost) complete parametrisation for each of the three

models is given in Table 7.2. The rest are given in Table 7.1.

θ-type Symbol Description

1 µ[j] External FOI

2 µT Trade-related EFOI

3 α[j] Parametrises the disease process

4 β[j] As above

5 σi Diagnostic test sensitivity

6 Ma Hierarchical: µj ∼ Γ(Ma,Mb)

7 Mb As above

8 Aa Hierarchical: αj ∼ Γ(Aa,Ab)

9 Ab As above

10 Ba Hierarchical: βj ∼ Γ(Aa,Ab)

11 Bb As above

Table 7.2: Partially observed Hawkes model parameters. Where applicable, hierar-

chical parameters µ, α and β are indexed by j for the jth geographical cohort.

In the next section we describe the broad inferential framework that was used

to fit the models to BTB surveillance data; i.e. the results presented in due course.
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7.4 Materials and methods

Recall from Chapter 2 that the inferential framework described there can be (fur-

ther) extended using Bayes’ theorem. In this case we begin with the now familiar

identity for parameter inference for a data-augmented model:

π(θ, x|y) = π(θ)π(x|θ)π(y1:n|x)
π(y1:n)

(7.9)

where the notation is the same as before, although the treatment of the χ-valued

variable x is slightly different, because in this case it represents a singular, rather

than coupled, Hawkes process (one for each herd).

7.4.1 Hierarchical Bayesian model

(7.9) can be extended to represent a hierarchical model as follows:

π(θH , θ, x|y) =
π(θH)π(θ|θH)π(x|θ)π(y1:n|x)

π(y1:n)
(7.10)

where θH can be (informally) referred to as the ‘parent’ distribution; it parametrises

the distributions from which model parameters θ are sampled. Thus by implication

the prior distribution is defined only for θH , and goal is to infer the entire hierarchy

of model parameters represented by {θH , θ}. Note however that this is a simplistic

representation. Not all hierarchical parameters are treated in the same way in the

models used here. For example those associated with test sensitivity are hierarchical

in one sense because they are stratified according to test type. However they are

not sampled from a ‘parent’ distribution in the way described above, as others are.

As before, a key benefit to this [i.e. Bayesian] approach to parameter inference is

that it allows us to characterise the observational data in a manner so as to account

for arbitrary degrees of complexity and intrinsic uncertainty in the observation

process itself.

Likelihood function for multiple Hawkes processes

Extending the definition given in Chapter 2 for univariate Hawkes processes, the

probability density function associated with a system of Nh processes (herds in this

case) can be written as:

π(x|θ) =
Nh∏
i=1

|xi|∏
j=1

λ(tij)e
−

∫
T λ(t)dt (7.11)
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where j indexes the jth event for the ith process. The precise definition of the

rate quantity denoted by λ (and thus the appropriate method for computing it)

depends on the specific parametrisation of the process that is used. In this case

the parametrisation and recursive method described by [33] was used to compute

(7.11), as per the definitions and description given in §2.2.3.

7.4.2 Implementation: DA-MCMC algorithm

The algorithm used to solve (7.9) for each of the three models was data-augmented

MCMC, with a generic description of the technique already given in §2.4.2. As

per that section, the Metropolis-Hastings acceptance probability for a generic DA-

MCMC scheme is given by:

pmh = min

{
1,

q(θi, xi|θf , xf )π(θf , xf |y)
q(θf , xf |θi, xi)π(θi, xi|y)

}
(7.12)

where q is the proposal density. This is the probability density associated with the

modular component of MCMC algorithms often referred to as the ‘kernel’. Recall

from Chapter 2 that in MCMC q(a|b) is the probability associated with proposing

sample a given the ‘current’ sample, b.

Recalling also that the marginal likelihood π(y1:n) in (7.10) cancel when com-

puting the acceptance probability, we can write an expression to compute (7.12) for

the hierarchical Hawkes model as follows:

π(θf , xf |y) = π(θH)π(θf |θH)π(xf |θ)π(y|xf ) (7.13)

where π(θH) is the prior distribution and θH parametrise the sampling distribution

of the model parameters, denoted as always by θ. The precise definition of asso-

ciated densities naturally depends on the choices of sampling distribution, but in

general are trivial to compute. The other terms, the likelihood function and the

observation likelihood, are given by (7.11) and (7.4) respectively and are likewise

reasonably inexpensive to compute, even for systems comprising thousands of herds.

As with many DA-MCMC algorithms and random sampling schemes in gen-

eral (certainly, all those contemplated in this thesis) the most important design

consideration is the choice of proposal density q. A number of different strategies

based on Gibbs sampling were employed, with four major variants and additional

configurable properties.
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An adaptive, multivariate Gaussian distribution was used for parameter propos-

als, in the same manner as in previous chapters.

Another strategy employed throughout involved the partioning of the processes

(or herds) into those with at least one reactor (across the entire time series) and

those without. This allowed for computation (i.e. proposals) to be directed more

towards the former. The primary strategy employed was to propose new x (se-

quentially for each herd) for all herds with observed reactors but only with a given

probability for those with no reactors.

The impact this has in terms of improved mixing (w.r.t. θ) can be rationalised

by considering that herds with e.g. complicated underlying patterns of infection

require a larger number of proposals in order to obtain reasonably good samples.

New x were proposed using a combination of strategies that blended standard

MCMC moves with a technique that can be thought of as ‘seeded’ simulation.

This was motivated by the fact that sampling from the density associated with

the stochastic process, i.e. ‘simulating’, is a naturally efficient approach to random

sampling in this situation. However naively simulating realisations of x without

respect to y led to many samples with no disease history at all (e.g. because the

background/trade rate was too low for a given parametrisation). ‘Seeding’ a single

infection time by sampling from a uniform distribution bounded from t0 to the time

of the first, non-zero observation mitigates this problem.

Finally, varying combinations of proposal types (i.e. θ or x) were employed in

staggered blocks in order to ‘leapfrog’ the joint parameter and process (or ‘measure’)

space, somewhat similar to the manner conceptually described by [55] as discussed

in §2.4.5 on the topic of ‘waste recycling’ in MCMC.
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7.5 Results

We now present the main results of the inference analyses. They are organised as

follows:

1. Case study: Wiltshire (model one only)

2. Model one: homogeneous processes

3. Model two: hierarchical model with homogeneous disease processes

4. Model three: hierarchical model with heterogeneous disease processes

The overall objective of the exercise was to iterate towards a hierarchical model

that is scalable up to a nationwide level, which corresponds to systems comprised

of many thousands of herds. Due to the experimental nature of the models and

methods developed towards that end, there is a joint focus on algorithm perfor-

mance (i.e. convergence) and the estimates obtained. This is most evident from

the meta-analyses provided for each of the three models, where we report key pa-

rameter estimates along side the estimated potential scale reduction factors (i.e.

the Gelman-Rubin convergence diagnostic) in visual summaries.

Among other things, this helps to elucidate the extent of the algorithms scalabil-

ity to models with larger numbers of parameters and herd groups. In that respect,

the algorithm performed reasonably well for the first model across all groups, but

struggled to converge in some other cases, particularly for the third model. These

issues are discussed in due course.

Each of the models was used to analyse multiple herd groups, though only

a subset of the results have been included here (even within most of the meta-

analyses) for practical reasons. The data for each of the reported herd groups are

summarised in a table at the top of the results section for each model.

First though, in order to give a flavour of the individual analyses that comprise

those results, we provide an individual set for Wiltshire as a case study.
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7.5.1 Case study: Wiltshire

We begin with a short summary of the surveillance data recorded in VetNet for the

Wiltshire herd group. Similar summaries are provided for each analysis (i.e. model)

and herd group, in Appendix E.

Summary of surveillance data

Figure 7.4: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire herd group.

Number of herds: 851

Reactor herds: 258

Number of reactors, i.e.

animals: 1801

σi animals +ve

1 4371 478

2 1800 35

3 3901 1225

4 36 63

Figure 7.5: VetNet surveillance data selected for the Wiltshire herd group. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Inference summary for the homogeneous process model

Here we provide a set of parameter estimates for the basic seven-parameter model

for the Wiltshire herd group. A tabulated summary of them is given in Table 7.3.

Multiple independent analyses were carried out for each model and herd group, in

part to identify approximately optimal configurations of the algorithm. The results

reported here were computed from three MCMC chains, each consisting of one

hundred thousand samples (with the first fifth discarded).

θ Mean SD R̂ 97.5

µ 0.00001 0.00000 1.0 1.0

α 0.55900 0.18800 1.0 1.0

β 0.42900 0.25800 1.1 1.3

σS 0.42100 0.11500 1.0 1.1

σH 0.35300 0.09710 1.0 1.0

σR 0.46000 0.07500 1.2 1.5

σγ 0.82600 0.09310 1.0 1.0

Table 7.3: Homogeneous process model parameter inference results for Gwynedd.

Number of herds (reactors) := 1585 (95).

Discussion of the parameter estimates is reserved for the following sections,

since the meta-analyses presented for each model give a better indication of likely

distribution than a single analysis. However the results given in Table 7.3 are

indicative of the fact that the model and algorithm seemed to scale reasonably

well for herd systems of this size, as indicated by the potential scale reduction

factors being mostly R̂< 1.2, though again this is perhaps easier to judge from

the meta-analyses. Finally, marginal distributions for these results are illustrated

in Figure 7.6. They, and also the traceplots given in the appendices, highlight

that the lower bound of the prior distribution for σH may be too low (though not

for σS which is curious). Somewhat in keeping with the commentary provided on

Bayesian workflows in prior chapters (i.e. that they are circular and iterative) this

was amended to be 0.2 for analysis of the two additional models.

We now present the aggregated results for this model, followed by the other two.
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Figure 7.6: Marginal sample densities for Wiltshire.
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7.5.2 Homogeneous process model

Here we present aggregated results for the basic, seven-parameter model. The

analysed data are summarised for each individual herd group listed in Table 7.4.

Herd group No. of Herds Reactor herds Reactors

North east England 1545 40 135

Cheshire 1364 152 955

Oxfordshire 502 35 242

Avon 632 161 737

Dorset 971 196 849

Wiltshire 851 258 1801

Gwynedd 1585 46 95

Gwent 612 204 1816

Powys 1763 571 3298

Table 7.4: Herd groups analysed using the homogeneous process model.

This model was developed as a prototype towards a fully hierarchical Bayesian

model that was anticipated would be necessary to accommodate herd systems com-

prised of hundreds of herds (let alone thousands). As noted in §7.5.1 however,

fitting the model for moderately large herd systems (c.500 to 1,500 herds) proved

reasonably straightforward. That is not to say that the model is a good fit for that

data. That is difficult to judge because the work has not yet been developed suf-

ficiently to employ formal methods of model assessment and comparison. However

the results were encouraging enough to motivate development of the second and

third models. We now report a selection of estimates for each parameter and herd

group.

Parameter inference summary

Here we report estimates for each parameter and herd group. The results are given

in the form of visual summaries that highlight both the mean and standard deviation

of posterior samples (x-axis) and the degree of convergence achieved (y-axis). The

latter is also indicated with markers at the conventionally accepted thresholds of

R̂= 1.1 and 1.2. The sample standard deviations are indicated by the size of the

corresponding marker. The first parameter group, illustrated in Figure 7.7, are the
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three that directly relate to the hidden disease process, denoted by {µ, α, β}. As per
the model description, µ is the background force-of-infection and {α, β} parametrise

the decay kernel of the Hawkes process for every herd. The [expectations of the]

estimates obtained for µ and α are spread fairly evenly w.r.t. their own individual

variances but those obtained for β were bunched, with the exception of Gwynedd

(which had a low number of reactors for its size in any case). This was noted as

possible justification for a partially hierarchical approach to the disease process, in

which α could be preferentially selected for stratification over β. However a fully

hierarchical model was eventually chosen (for the third model) instead.

The second parameter group relates to the observation model, they are the

detection probabilities associated with four diagnostic test categories. They are

illustrated in Figures 7.8 and 7.9. There is a marginal amount of additional consis-

tency in those estimates, compared to the first parameter group. The estimates for

the IFNγ in particular are clustered, with the sample mean around 0.9 and mostly

comparable in terms of variance. The same is true of σH . However the the fact

that the samples are (again) bunched against the lower bound of the prior distribu-

tion on that parameter perhaps renders that result rather less significant. At any

rate, it led (once again) to the selection of a weaker prior distribution still for the

subsequent analysis.
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(a) Constant FOI parameter estimates.

Figure 7.7: Disease process parameter estimates {µ, α, β}.
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(a) Standard sensitivity.

(b) High sensitivity.

Figure 7.8: Diagnostic test sensitivity parameter estimates: SICCT test.
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(a) Risk-related testing.

(b) IFNγ blood test.

Figure 7.9: Diagnostic test sensitivity parameter estimates: other.
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7.5.3 Homogeneous disease process-hierarchical model

The second model introduces a degree of heterogeneity in the form of county-level

background, or external force-of-infection, risk. Another elaboration on background

risk in this model (and the subsequent one) is the introduction of an [external] trade

force-of-infection risk component. The latter is homogeneous w.r.t. the parameter,

µT , across herds but the corresponding component risk scales with the observed

rate of trade. As before, the data analysed are summarised in Table 7.5.

Herd group No. of Herds Reactor herds Reactors

East England 513 13 75

East Midlands 1966 231 1217

North east England 1015 22 103

North west England 3432 190 989

South east England 1393 78 357

Scotland 4510 77 280

Table 7.5: Herd groups analysed using the homogeneous disease process-hierarchical

model.

Parameter inference summary

Mainly for reasons of brevity, we have included a visual summary of inference

results for only a selection of parameters and herd groups from the second analysis.

Unfortunately this effort was less successful than the last, at least in terms of

algorithm convergence, even though the range of herd group sizes (see Table 7.5)

was not excessively large compared to those analysed using using the first model.

It has been our experience throughout that computational problems can arise when

the model in contention is a poor fit for the data. However the fact that the

algorithm converged for the initial model (including simulated versions with two

thousand herds) led to the suspicion that the algorithm was merely inadequate

with respect to the increased dimensionality of model.

The estimates reported here (i.e. in the main text of the chapter) relate exclu-

sively to force-of-infection risk, trade related and regional background. They are

denoted by µT and µi respectively, where i indexes the ith regional cohort. Un-

like the other disease-process related parameters, µ samples did converge across
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Markov chains. At least, for most herd groups as illustrated in Figure 7.10. Those

plots highlight that algorithm conspicuously failed to converge for the largest herd

group, Scotland with c.4,500 herds. However that may also be due in part to very

low incidence of BTB in Scotland generally, leading to paucity of information in

the data. Excluding that herd group (Figure 7.10b) we see that the estimates for

µi are bunched across both regions and herd group with the exception of one out-

lier group in the East Midlands (and discounting one other partial outlier in NW

England that may have simply failed to converge).

As noted before, the results reported here (including the meta-analyses and

in the appendices) represent only a fraction of the analyses that were actually

conducted for this work. However all results were recorded in a SQL database and

analysed to ascertain the veracity of the outlying data point in the East Midlands

group. That analysis is shown in Figure 7.10c. The results suggest that the data

point is indeed valid. The estimates for µT are given in Figure 7.11. They seem

to indicate that trade-related risk varies significantly by herd group (i.e. broad

geographical region). It is also interesting to note that the high-reactor regions

had estimates that were close to opposite ends of the spectrum, since it would

seem to suggest the result is not merely an artefact of correlation with the number

of reactors or general prevalence of BTB in a given region. All other parameter

summaries for this analysis are provided in Appendix E.2.
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(a) All herds

(b) As above, less Scotland and SE England.

(c) East Midlands only

Figure 7.10: Constant FOI parameter estimates.
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Figure 7.11: Trade-related FOI parameter estimates.
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7.5.4 Heterogeneous disease process-hierarchical model

Here we report results from analysis of the third and final model. This model

expands on the hierarchical nature of the last by introducing regional stratification

for {αj, βj} in addition to µj. As per Table 7.6, only three herd groups have been

included. These were among the smaller regional groups, and selected mainly as

computationally efficient test cases.

Herd group No. of Herds Reactor herds Reactors

East England 513 13 75

East Midlands 1966 231 1217

North east England 1015 22 103

Table 7.6: Herd groups analysed using the heterogeneous disease process-

hierarchical model.

Parameter inference summary

The estimates obtained for the third model seemed to indicate that the hierarchical

model was scalable at least to this degree. That is, convergence appeared to be

mostly reasonable for all parameters in contrast to the second set of results. As per

Figure 7.12, the sample mean of estimates for µi for the East Midlands group were

also more consistent than before (recall the outlier from those results in the previous

set of results) and the sample mean for µT is very similar to the one obtained using

the previous model.

A final thing to note about the results is an interesting distinction between the

estimates for the disease process parameters {αj, βj}. The sample means for the

first are evenly spread, where was the first exhibit strong regional correlation. This

is difficult to explain but may indicate hidden correlations within the model, else it

could suggest that β would be more appropriately stratified at the broad regional

level (rather than county as in this case), As before, the parameter estimate sum-

maries not included here are given in the appendices, in E.3. We now move on to a

cursory simulated inference analysis for the purposes of validation, before conclud-

ing with a discussion concerning these results in their entirety and possibilities for

future work.
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Figure 7.12: Constant FOI parameter estimates.
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Figure 7.13: Disease process parameter estimates {αj, βj}.
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7.6 Validation: simulated inference

Here we report the results of an analysis based on simulated observations data that

was carried out as a validation exercise. In particular, to help elucidate the efficacy

and effective scale of the algorithm during its development.

7.6.1 Simulated surveillance data

The data for inference were simulated based on a system of two thousand farms,

with 3168 reactors ‘observed’ in total during the simulated scenario. The parameters

used to produce the simulation have been marked on the appropriate graphs for

reference, e.g. see Figure 7.15.

As per Figure 7.14, the simulated data (this one and other simulations that

were run) are comparably overdispersed in relation to real data, indicating that the

model is an approximately good fit for the data, or at least isn’t obviously a bad

fit for the data.

σn tests +ve

1 2963 565

2 2975 890

3 3003 909

4 3059 804

Figure 7.14: Simulated disease surveillance data intended to (loosely) represent a

subset of the VetNet data set. The model parameters are denoted θ = {µ, α, β, σ1:4}.
Diagnostic test types are labelled σn and organised into four distinct categories

within the model corresponding to: routine; trade-related; risk -induced, e.g. short

interval testing, six-month ‘follow-up’ visits; and the IFN test trial in the real data

set.
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7.6.2 Parameter inference results

The analysis for the simulated study were based on the first iteration of the model.

The parameter estimates obtained closely matched the simulation values, as can be

seen in the marginal densities illustrated in Figure 7.16 in particular.

The algorithm also performed well, with R̂ < 1.02 indicating a strong degree of

consistency across Markov chains (see Table 7.7).

Parameter Simulation Mean SD R̂ 97.5

1: µ 0.0008 0.000822 4.27E-05 1.002 1.003

2: α 0.9 0.896 2.09E-02 1 1.001

3: β 0.12 0.127 3.40E-02 1.018 1.043

4: σ1 0.5 0.476 3.65E-02 1.003 1.005

5: σ2 0.7 0.685 3.47E-02 1.003 1.009

6: σ3 0.8 0.764 2.99E-02 1 1.001

7: σ4 0.85 0.833 2.67E-02 1.011 1.03

Table 7.7: DA-MCMC parameter inference summary for the simulated surveillance

data analysis.

Additional simulation studies are necessary to both advance the design and

further validate the efficacy of the algorithm, especially since the results presented

here concern only the most basic version of the model. That topic and other further

work are discussed in the concluding part of the chapter.
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(a) Trace plots

(b) θ2:3 = {α, β}

Figure 7.15: Parameter inference results for θ = {µ, α, β, σ1:n}. Tests are grouped

by four categories in the model: routine; trade-related; risk -induced, e.g. six-month

‘follow-up’ visits; and the IFN test trial.

(a) θ1:3 = {µ, α, β}

(b) θ4:7 = σ1:4

Figure 7.16: Parameter inference results for θ = {µ, α, β, σ1:n}. Tests are grouped

by four categories in the model: routine; trade-related; risk -induced, e.g. six-month

‘follow-up’ visits; and the IFN test trial.
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7.7 Summary

A key objective of this work was to develop models and methods scalable to systems

comprised of many thousands of herds, in contrast to the results accomplished in

the previous chapter which ran to less than twenty individual herds. Substantial

progress has been made towards this end. We have presented the results of three

separate analyses, each consisting of three or more herd groups which together

comprise thousands of herds.

This was partly due to the construction of the model. Using only a single

stochastic process rather than a coupled set of them to represent each individual

herd led to a model that was more computationally tractable, i.e. easier to solve.

We have also reported tentative estimates for a range of interesting parame-

ters related to BTB, notably external force-of-infection (‘background’) risk; trade-

related risk; and detection probabilities associated with key diagnostic tests. Un-

fortunately those results can only be described as ‘tentative’ because the work was

constrained by the time available and there is much still to do.

Further work

We conclude the chapter by laying out five key areas for further research and de-

velopment of this work:

1. Further simulation study

2. Investigating and further automating the curation of data

3. Algorithm development

4. Model development

5. Tools for formal model assessment and comparison

7.7.1 Simulation studies

The models and algorithm were validated throughout using simulated inference

studies as a natural part of the development process, although only the results for

the basic model have been formally analysed and included in the chapter. This
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was mostly due to constrains on the time available, and also because the mod-

els presented here were considered as works-in-progress rather than models fit for

publication.

In any case, further simulation studies including predictive checks of the kind

described in Chapter 4 are required to advance both model and algorithm develop-

ment.

7.7.2 Automated curation of data

Data quality proved to be a challenge throughout the project, in particular with

regard to the V etNet data. This issue was covered extensively in Chapter 6, and

some additional work was done to automate the curation of data for the work done

in this chapter, in particular w.r.t. the classification of test codes.

However further investigation is required to ascertain whether anomalous (but

worryingly consistent) estimates for the detection probability parameters were the

result of incorrectly classified test codes, or else some other unrecognised pattern

of usage in VetNet that hasn’t yet been accounted for in the processing of records.

7.7.3 Algorithm development

The algorithm performed reasonably well for the first analysis but convergence

became noticeably harder to achieve for certain parameters as stratification (and

therefore dimensionality) in the model increased.

Overall, counties and regions with high incidence of BTB were found to be more

tractable for analysis. That is not particularly surprising, since it is consistent with

the same findings and challenges that led to the necessarily stringent data selection

criteria adopted for the analysis presented in Chapter 6.

However the technique would likely benefit from additional simulation study

and design tweaks oriented around the increasingly hierarchical structure of the

model. For example, w.r.t. parameter proposals, since they are relatively easy to

manipulate and optimise compared to the process variable that encodes the system

trajectory.
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7.7.4 Model development

As noted above the models presented in this chapter were regarded as still in a

state of development at the time this document was being drafted. Recall that a

key avenue of investigation w.r.t. the models presented in this chapter (and the

previous one) relates to the question of reinfection and the role it plays in within-

herd BTB dynamics.

This led to conceptual designs for three further models, one of which was incor-

porated within the analyses carried out for Chapter 6 (the work did not proceed

in the precise order that it is presented here). Each of the models are intended

to account for the possibility of reinfection, and but differ mainly in their precise

treatment of the infection and reinfection processes. For example, there is no di-

rect relation between the onset of infectiousness and disease state in the last model

(7.7.4) which instead accounts for both infection and reinfection as mutually ex-

citing processes. For that reason it is labelled SET (for test-sensitive) rather than

SEI.

Reinfection as a Poisson process

The first model (depicted in Figure 7.17) is the one that was adopted for the analysis

presented in Chapter 6 and referred to as the ‘simple reinfection model’. It is formu-

lated using coupled Poisson [point] processes in the standard manner for DPOMP

models. However unlike the standard formulation of an SEI model, the presence

of individuals in the infectious state is also assumed to ‘excite’ (i.e. increase) the

E → I event rate. Hence, it is still a Poisson process model and accounts for [the

possibility of] reinfection of latently infected individuals in a still Markovian way.

S E I
βSI γE+(β)θEI

Figure 7.17: Poisson [point] process reinfection model. The compound rate for

E → I incorporates the possibility of reinfection.

Reinfection as a Hawkes process

The second proposed model introduces a time-decaying self-excitation component

for the E → I event rate, as an alternative means of accounting for reinfection
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(and is thus non-Markovian). It is a finite population model based on the HawkesN

framework of [24].

S E I
βSI νE[µ+

∑
γ ϕ(t− tγ)]

Figure 7.18: Hawkes process SEI model self-exciting reinfection process E → I.

The model improves (perhaps!) on the models presented in this chapter by directly

accounting for the presence of infectious individuals.

The ‘γ’ summation shown in Figure 7.18 is over all E → I events up to time

t, and the ‘self-exciting’ kernel function ϕ is of a form like the one given by (2.11).

The first term in the E → I event rate equation is given by:

νE = 1− N − E

N
(7.14)

Coupled Hawkes processes

The third model conceived for possible further investigation is the [Hawkes pro-

cess] susceptible-exposed-test sensitive (SET) model. The bivariate event rate is

mutually- (and self-) exciting. The ‘test-sensitive’ state is intended only to repre-

sent immune response and not the (permanent) infectiousness of individuals in that

state. This is indirectly captured by excitation of the S → E event rate by events

up to time t, including those that represent the E → T transition.

S E T
νS[µβ +

∑
ξ ϕβ(t− tξ)] νE[µγ +

∑
ξ ϕγ(t− tξ)]

Figure 7.19: Hawkes process SET model. The model is designated so because

disease state does not have a direct bearing on transmission. In other words the

infectiousness of individuals is not assumed to be dependent on the, e.g. immune

response, which informs diagnostic testing. New infections are instead modelled

as a finite population [of size S] Hawkes (i.e. HawkesN) process. Likewise for the

‘immune response’ transition event E → T .

In this case the summations given in Figure 7.19 are over the entire (bivariate)

event history and the kernel functions ϕβ and ϕγ are (or can be) defined in the
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form:

ϕβ(τ) = βθe−θτ (7.15)

where β and γ are scalars, and θ parametrises exponential decay in the intensity of

both event rates.

The added computational complexity of each of the proposed models compared

to the ones that were applied in this chapter, would perhaps have constrained their

usefulness in that analysis. At least, without further efforts to refine the algorithm.

However the main reason why these three models and other similar ideas were not

pursued was that the effort was deemed to be without merit in the absence of a

formal means for comparing them. This is the final subtopic of further work that

we address here.

7.7.5 Tools for model assessment

Lastly, an important limitation of these methods and results stems from the lack of

tools developed for formal model assessment and comparison. In particular, reliable

(and computationally feasible) methods for computing the marginal likelihood of

the model. While that is a nontrivial task in complicated DA-MCMC schemes of

this kind, the nature of the study and the focus on competing models underscores

the need for them regardless.

Failing that, alternative measures such as BIC or even a distance-based approx-

imation would be easier to implement and at least give a quantitative indication of

model fit. This should therefore probably be considered among the highest priorities

for further development.

To conclude these remarks, the work conducted for this chapter was undertaken

in addition to the main work stream of the project, which revolved around small

population models of a different nature as focused on in Chapter 6. The number

of avenues available for further development and investigation is partly the result

of time constraints but also signifies at least some preliminary success. That is,

the approach seems both scalable, and potentially useful for elucidating the as yet

poorly defined nature of within-herd BTB dynamics and transmission.

251



Chapter 8

Conclusion

“Prediction is difficult, especially about the future.”

- Professor Glenn Marion (and many others!)

Recap: keys aims and objectives

The key objectives of this work were laid out in the introductory chapter as follows:

1. To characterise within-herd BTB dynamics in UK cattle herds using the data

set described in §6.2.3. In the first instance, to carry out Bayesian parameter

inference based on conventional epidemiological models.

2. To extend (1) to the problem of multi-model inference, and investigate which

models best fit the data, including formal evaluation using Bayesian methods.

3. Ultimately, to carry the findings of (2) forward to a large-scale system-of-herds

model, up to and including national level (i.e. many thousands of herds).

4. In synergy with all of the above, and in concert with the aims and ethos of

Biomathematics and Statistics Scotland (BioSS) where the vast majority of

this work was carried out: develop [Bayesian] tools and methods that are of

potential value to the wider scientific community.

The thesis concludes with a review of the extent to which these overarching

objectives were met, ending with a short summary of opportunities for further

research noted throughout and final comments.
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8.1 Epidemiological parameter estimates for BTB

in UK cattle herds

Novel estimates for epidemiological parameters were produced for a range of models,

not withstanding the difficulties presented by the variation of test records, and the

inconsistent reliability of herd size data in VetNet, which appears to have been used

to simply record different (rather than inaccurate) information in many cases.

The estimates include the results presented in Chapter 6 for a modest number of

herds – some one hundred were analysed but only a narrow selection (less than 20)

were carried forward to the results presented in that chapter. That was due in part

to computational difficulties that were frequently encountered (i.e. the algorithms

failed to adequately converge). In hindsight those difficulties might have been al-

leviated by paying more careful attention to prior selection [11]. In particular, the

selection of prior distributions that were more informative and realistic w.r.t. actual

BTB scenarios recorded in the data. The reliance on weakly-informative priors was

borne of a desire to take an approach to scientific study that was cautious and con-

servative. In hindsight this may have reflected a failure to ‘think like a Bayesian’.

This was an important lesson and key takeaway in terms of personal development.

The [SMC] methods applied did prove effective in some cases (and convenient

to implement) but the above considerations and certain other constraints mitigated

against extending that work to a larger number of herds. Namely the cost, in

terms of both computation and the amount of manual curation of data required (as

discussed in the conclusion of that chapter). That goal was advanced instead by the

hierarchical ‘system-of-herds’ model developed in Chapter 7. The latter work was

in a sense less complete than the results accomplished in the previous chapter, with

respect to the consideration of different models and in particular formal methods for

assessing them. However the BTB parameter estimates obtained went beyond the

previous results by characterising extraneous [regional] background risk and trade-

related risk, in addition to the within-herd disease process. This was possible due

to the scale of the analysis (up to thousands of herds) which also added a degree

of statistical strength compared to the results based on individual herd records

presented in Chapter 6. Extending the scale of the analysis was nominated as an

objective in its own right for this very reason (see §8.3).
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8.2 Model inference

The second objective was also addressed in Chapter 6: the evaluation of different

models for characterising within-herd BTB dynamics. This aspect of the work raised

many interesting and nuanced considerations that were unforeseen, such as the im-

portance of reinfection and the fluid definition of latency (similar but not quite the

same as clinical latency, or without symptoms). By extension, the latter implies

shifting definitions of concepts such as a ‘false positive’, when considering the ‘true’

underlying [discrete] disease status of an individual within a modelling paradigm.

Ultimately though, no single model was singled out as being a uniquely good fit,

and that is perhaps unsurprising given the limited scalability of the method. Sim-

ply put, the number of herds analysed was too low to reveal any useful findings,

and the stringent selection criteria necessarily applied to the data very likely in-

troduced a degree of systematic bias. Nevertheless a number of distinctive models

and individual [herd] data sets were successfully evaluated using formal Bayesian

methods. In summary, this goal was accomplished in a technical sense, even if the

results were somewhat underwhelming in terms of scientific findings.

8.3 Large scale ‘system-of-herds’ model

The [hierarchical] model and methods used in Chapter 7 allowed for a more exten-

sive analysis, in terms of the number herds but also the hitherto (in this project)

intractable problems of interest, in particular the role of farmer behaviour (i.e. cat-

tle trading) in BTB incidence. Parameter estimates were provided relating to that

and other quantities of interest, ranging from localised ongoing forces-of-infection

to those that can be loosely interpreted as the sensitivity of several diagnostic tests

(notwithstanding the equally fluid definition of a ‘true positive’ within a discrete

state-space modelling paradigm).

The geographically stratified parameters in particular provide a useful example

of ‘transformed data’ as envisaged by the originators of the project: a way to

indirectly compare localised BTB risk for different geographical regions. In theory

that is a potentially more useful indicator than the raw data alone (e.g. case

numbers). That is because the latter does not distinguish (and account for) within-

herd dynamics relative to other extraneous factors.

Unfortunately, the model and method were conceived too late in the project
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to fully explore their potential. Only three models were given consideration, all

of which use the same essential parametrisation of the Hawkes process, though

others are available. Furthermore the methods learned and developed during the

first phase of the project for computing the marginal likelihood (i.e. for model

comparison) were not well suited to the [DA-MCMC] algorithmic approach. That

rendered the model-inference aspect of the analysis beyond reach, if only for lack of

time. That is somewhat disappointing given that the other aspects of the approach

seemed to work well, indicating that the model may be a reasonably good fit for

this data. It would have been interesting to further explore to extent to which that

is true (i.e. compared to others models) using other Bayesian methods too, such as

simulation study (i.e. predictive checks).

8.4 The development of Bayesian tools and meth-

ods

Finally, the fourth objective was addressed by the work presented in Chapters 3

through 5. The algorithms presented in Chapter 3 demonstrate how the principles of

modular construction can be used to understand, codify and identify opportunities

for the further development of algorithms. The ‘modules’ in this case were the

essential methods and concepts introduced as background material in Chapter 2.

The same broad approach was taken with the Bayesian workflow implemented

in Chapter 4, which situated the algorithms developed in the previous chapter,

as working modules in a complete Bayesian data analysis. All of this work is

implemented in a practical sense by the software package introduced in Chapter 5.

The primary motivation for the latter was application to the analysis presented in

Chapter 6. Publication of the software as an open-source package that is available

for others to use was judged to be worthy of the time and effort that was spent doing

it. However, as Easterbrook intones in the quotation cited at the top of that chapter,

making truly useful open-source software requires effort on the part of authors in

order to build a user community around it (and also developing for a wide variety of

platforms). Whilst that kind of commitment is beyond the means of a lone student,

the knowledge and experience gained during development and documentation of

the package proved useful in the immediate aftermath of the COVID-19 pandemic

(which occurred towards the end of the project). That was when an opportunity
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arose to contribute software (in the form of another Julia package 1) to a project

organised as part of the Scottish COVID-19 Response Consortium (SCRC) – which

certainly would come close to fulfilling Easterbrook’s stringent criteria.

Furthermore the decision to publish the methods developed as a software pack-

age (rather than merely sharing code) enhances the reproducability of the applied

methods and results presented in this thesis. There is therefore at least a chance

that the package could be of use to others investigating this particular problem who

wish to do so. It was certainly deemed worthy of the effort in that regard.

Future research opportunities

The methods presented in Chapter 3, in particular the ARQ-MCMC algorithm,

could be extended in several ways discussed in that chapter. That algorithm in

particular proved to be a useful and somewhat generalised ‘workhorse’ for solving

problems in cases where other algorithms struggled to converge. For example,

particle filters with excessively high variance. Essentially, only one key aspect

challenges it more general usefulness: the need to select appropriate (i.e. problem

specific) sampling intervals.

As discussed in 3.6.2, that problem is notionally easy to solve: adaptively (i.e.

automatically) adjusted sampling intervals. Intuitively, the ideal interval has much

to do with the variance of the target distribution itself, such that it can be related

‘adaptively’ to the algorithm and samples as they are obtained. However this

elementary strategy must be balanced against the overarching motivation and ‘waste

recycling’ paradigm of the algorithm. Arbitrarily adapting sampling intervals would

be wasteful. The obvious solution noted in that chapter are adaptive harmonic

[sampling] intervals. In plain terms, choosing (or ‘adapting’) new intervals in a way

that ‘overlaps’, so as to deliberately reuse old sampling coordinates on a systematic

basis.

Making the algorithm more generally useful would also greatly enhance the

case for further developing the software implementation presented in Chapter 5,

alongside other features that have been noted but not yet implemented, such as

Bayesian model averaging (see the conclusion of Chapter 4).

Finally the work presented in Chapter 7 on Hawkes processes stands some-

1‘Data pipeline API’ [Julia] docs: https://fairdatapipeline.github.io/DataPipeline.jl/stable/
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what alone and unfinished, at least compared to earlier chapters. For example the

Bayesian model averaging technique could be quite easily implemented for the soft-

ware and methods presented in the earlier, originally planned chapters. By contrast

methods for estimating the marginal likelihood on which that and other model val-

idation techniques depend have not yet been developed for the work presented in

Chapter 7.

A key aim of that chapter was to assess the scalability of the approach. Given

the promising results (easily scalable to thousands, rather than dozens, of herds

on commodity hardware) potentially suitable methods for estimating the marginal

likelihood (such as [93]) warrant further investigation for purposes of model vali-

dation in that chapter. That is because doing so would permit more robust (and

therefore more interesting) investigations of within-herd BTB dynamics directly,

since competing models could be formally compared (or else estimates obtained

from a range of models, in the case of Bayesian model averaging).

Summary and final comments

The model and parameter estimates for BTB presented in this thesis represent

novel findings in terms of the methods applied to obtain them, even if interesting

questions such as the role of reinfection and long-term latent infection in within-

herd dynamics remain unresolved. Advancing the overarching model and methods

developed in Chapter 7 (in particular towards formal model assessment) is one way

in which those matters could be immediately further investigated.

The project did lead to a more developed understanding of Bayesian data analy-

sis and its practical applications, including emergent (or at least, recently renewed)

concepts such as modular construction and Bayesian workflows. This informed

the development of new algorithms and software tools that have been published

and made available to others. Unfortunately, and despite the order of presentation,

Chapters 4 and 5 were essentially the last to be completed. This meant that the im-

pact of that learning (and associated outputs) on ‘subsequent’ chapters was mostly

retrospective. This accounts for certain continuity gaps across those chapters. It

also reflects the iterative and cyclical flow of execution in the project.

The last is a characteristic of Bayesian data analysis generally that was noted

in the main text, but also driven in this case by a constantly renewed effort to
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focus on the motivating problem (and further develop the means to do so). That

is, the as yet still poorly defined (but vitally important) nature of within-herd BTB

dynamics in cattle herds. It is sometimes said that PhD projects are never truly

finished, only abandoned. The final conclusion proffered is that truer words have

never been spoken.
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Appendix A

ARQ-MCMC supplementary

material

Here we provide additional commentary on the ARQ-MCMC algorithm introduced

in Chapter 3, specifically concerning estimation of the marginal likelihood.

Estimating the marginal likelihood

For the ARQ MCMC algorithm (Algorithm 10) we could (notionally) obtain a good

approximation of the marginal likelihood by computing:

π(y) ≈ L =

∑
θ∈Θi π̂(θ|y)
NR

d
(A.1)

where π̂(θ|y) is computed according to parameter function ϕ and the sum is over all

NR
d elements of Θi. In the theory of quasi Monte Carlo [94, 51] if the sequence con-

struction used to generate Θi is strongly completely uniformly distributed (CUD)

the above should provide an unbiased estimate in the limit as NC ,ΓL → ∞, com-

puted as it is from another unbiased estimator ϕ(θ). However, algorithm 10 uses an

ordinary (i.e. PRNG-based) Metropolis-Hastings procedure to sample and resample

a primitive QMC construction, albeit one that is at least weakly CUD.

This is somewhat irrelevant as we would not expect to sample every tuple in Θi.

However on the basis that the importance sample Γ is sufficiently enriched to have

incorporated the elements of Θi that correspond to the densest regions of posterior
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mass, we can (crudely) approximate (2.40) by:

L̂ =

∑
θ∈Γ π̂(θ|y) +

∑
θ/∈ΓE(π̂(θ|y))

NR
d

(A.2)

where E(...) the expectation for the marginal likelihood of the unsampled elements

of Θi, denoted by θ /∈ Γ. This can be estimated quite easily, by sampling uniformly

from θ /∈ Γ and taking the average of ϕ(θ). However we have found that in practice,

simply computing:

L ≈
∑

θ∈Γ π̂(θ|y)
NR

d
(A.3)

provides a reasonable though slightly conservative approximation of 2.41 to suffice

for model selection purposes, since the additionally sampled tuples tend to con-

tribute relatively little to the marginal likelihood. Of course this relies on the as-

sumption that we have good (rather than ‘patchy’) coverage of the posterior mass.

In cases of anything other than moderately low d it would be more appropriate

to compute an interpolated value. However the computational benefits of ARQ

MCMC recede exponentially as d is increased, converging on the performance of

standard particle MCMC, so it is not well suited to such problems in any case.

This leads to the following definition:
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Appendix B

BayesianWorkflows.jl

supplementary material

This appendix provides supplementary information for Chapter 5 (which introduces

the BayesianWorkflows.jl package for Julia). It begins with basic instructions for

using the package. That is followed by a series of examples and case studies based

on real and simulated data, accompanied by sample code and results.

Note: the package was developed throughout the course of the project and has

undergone many changes and iterations. The content in this section is included

mainly to give a flavour of the work done for Chapter 5 rather than as useful or

current instructions for using the package. The most up to date version of those

will always be the online docs 1.

B.1 Installation and usage

As a prerequisite, the package naturally requires a working installation of the Julia

programming language. Instructions for installing the package itself can be found

on the home page the source code repository2.

1Package documentation: https://mjb3.github.io/BayesianWorkflows.jl/stable/
2BayesianWorkflows.jl repo: https://github.com/mjb3/DiscretePOMP.jl
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Getting started

Once the package has been installed, the following code snippet can be used to

reproduce the SIS example cited in this chapter.

Download the Pooley dataset from the source code repository3 and run:

1 us ing DPOMPs

2 y = get_observations_from_file ( ”path/ to /data/ pooley . csv ” )

3 model = generate_model ( ”SIS” , [ 1 0 0 , 1 ] )

4 mcmc = run_met_hastings_mcmc ( model , y , [ 0 . 0 0 2 5 , 0 . 1 2 ] )

Listing B.1: Getting started – run a basic MBP-MCMC analysis.

Along with the code provided in B, the code used to produce the other examples

in this chapter are available in the package documentation along with animated

examples and other useful reference material.

B.2 A simple example – SIS model

Overview of this section

Here we demonstrate the main features of the package. In particular, we address:

• How to define a model, in §B.2.2 (including customised and predefined mod-

els).

• Model simulation using Algorithm 1, in §B.2.3.

• The main body of the section is given over to describing how to use func-

tions for Bayesian parameter inference, with single-model inference covered

in §B.2.4. That includes convergence diagnostics, as described in Chapter 2,

along with and visualisation and analysis tools.

• Model comparison (i.e. multi-model inference) briefly covered in §B.2.7 with

an applied example given in §B.3.3.

As such, this section provides instructions for using most of the package’s core

functions, and sample code for an exemplar. That problem is borrowed from the

3Pooley dataset: https://raw.githubusercontent.com/mjb3/BayesianWorkflows.jl/master/data/pooley.csv
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paper by Pooley et al.,that introduced the MBP method [4], and is based on the

susceptible-infectious-susceptible (SIS) model, as illustrated in Figure B.1. We also

note that the model is a stochastic analogue of Levin’s patch occupancy model in

a meta-population [95, 96].

S I
θ1SI

θ2I

(a) SIS model

(b) Inline simulation plot.

Figure B.1: In contrast to the SIR model, the SIS model is intended to represent

the dynamics of infectious diseases which do not confer long-lasting immunity (or

patch occupancy in the aforementioned meta-population model of Levin). The

example on the RHS was simulated (and visualised) using the package (Algorithm 1

– see §B.2.3.) The parameters used by [4] of θ = {β := 0.003, γ := 0.1} were also

used here, and the results are approximately the same.

For the most part, the code samples given throughout this section are in se-

quence, such that they are not self-contained. Rather, the variables defined – in

particular the model and simulated observations data – are typically required to

run onward code samples.

More complete examples that are self-contained are provided in various appen-

dices; with the online package documentation4; and also within the source code

repository itself, in the ‘examples’ directory5.

4Package documentation: https://mjb3.github.io/DiscretePOMP.jl/stable/
5Source code: https://github.com/mjb3/DiscretePOMP.jl
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B.2.1 Installation

Instructions for downloading and installing the package can be found on the home

page of the package’s GitHub repository6.

B.2.2 Defining models

In order for the main features of the package to be useful, a model must first

be defined and instantiated. The package framework allows users to define (or

customise) models according to their own requirements.

Also provided are several predefined models based on well known examples from

epidemiology, and population-ecology more generally. They include the standard

susceptible-infectious-recovered (SIR) model [3] depicted in Figure 2.2, and other

well-known variants like the SEIR. A complete list is provided with the package

documentation.

Analyses based on predefined models require the least amount of code, and are

thus the fastest way to begin.

Example: a predefined SIS model

Creating a predefined model instance is straightforward; besides the model name

(a String) the only parameter input required from the user is the initial population

state variable, referred to in more general terms as the system’s initial condition.

It is passed to the function as an Array of integers. For example:

1 us ing DPOMPs # NB . install the package first

2 # generate model :

3 initial_condition = [100 , 1 ]

4 model = generate_model ( ”SIS” , initial_condition )

Listing B.2: Generate a predefined model instance.

where both the model name and initial condition variables are mandatory arguments

that are passed to the function used to create generate the model automatically.

6DiscretePOMP.jl repo: https://github.com/mjb3/DiscretePOMP.jl
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Defining custom models

Models can also be specified manually. Among other things, this allows for an

arbitrary number of user-defined event types. That aspect of the model can be

determined by specifying a custom rate function and transition matrix.

Note that the instructions that follow are somewhat redundant, because the SIS

model has already been predefined. However they are still useful for exposition.

We begin with the event rate function, which reflects the complete set of possible

events. Thus for the SIS model we have:

r1 = θ1SI (B.1)

r2 = θ2I (B.2)

where the infection and recovery rates are labelled r1 and r2, respectively. Note

that this will correspond to their positions in the output [Array] variable.

As an aside, note that the definition is identical to the SIR model, as per the

rates denoted in the illustration in Figure 5.1a. It is actually the matrices that

describe the transition between states that distinguishes this aspect of the model.

For the SIS model it is written as:

T =

[
−1 1

1 −1

]
(B.3)

For illustrative comparison, the same is given for the SIR model by:

T =

[
−1 1 0

0 −1 1

]
(B.4)

Note that the row vectors are associated with each distinct type of event, and col-

umn vectors relate to the model state-space, e.g. S-I-R, from left-to-right in (B.4).

For the purpose of using the package, these are expressed in Julia as two vari-

ables; a function and the aforementioned [Array] variable, i.e. (B.3), as follows for

the SIS model:

1 # rate function :

2 function sis_rf ! ( output , parameters : : Array{Float64 , 1} , ←↩
population : : Array{Int64 , 1})

3 output [ 1 ] = parameters [ 1 ] ∗ population [ 1 ] ∗ population [ 2 ]
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4 output [ 2 ] = parameters [ 2 ] ∗ population [ 2 ]

5 end

6 # transition matrix :

7 tm = [−1 1 ; 1 −1]

Listing B.3: Rate function and transition matrix for the SIS model.

Note that the function’s output variable is predefined7. In other words the user’s

only responsibility when defining the custom event rate function, is to populate it

with the correct values.

The variables defined as above (including the function) can then either be used

to instantiate a DPOMPModel directly, else supplied to the generate_custom_model helper

function as input parameters when instantiating the model that way.

The helper function has a number of other optional input parameters, such as

the as prior distribution, and the observation [log-likelihood] model. It is invoked

like so:

1 # NB . requires the ' Di s t r i bu t i o n s ' package f o r prior

2 us ing Distributions

3 prior = Product ( Uniform . ( 0 , [ 0 . 0 1 , 0 . 5 ] ) ) # optional

4 model = generate_custom_model ( ”SIS custom” , sis_rf ! , ←↩
initial_condition , tm ; prior = prior )

Listing B.4: Generating a custom model.

Here we have defined the prior distribution as a [multivariate] Uniform distri-

bution using vector notation, simply for illustration. The lower bound for each

component distribution is zero. The upper bound is 0.01 and 0.5 for θ1 and θ2

respectively.

A similar example is provided in Appendix B.5.1 for a different model. A more

complete code sample for the SIS model definition, that incorporates a more ex-

pansive model definition, including both the prior distribution and an observation

model, is provided in B.5.2.

7By Julia convention, the function name has an exclamation mark appended in use cases where

the function operates on variables that are passed (first by convention) to it – as in ‘function name!’
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Partial customisation

It is not necessary to fully (i.e. manually) specify a model or use the custom

helper function in order to customise it. As described in the package manual, the

DPOMPModel type is mutable.

That means that its properties can be replaced by user-defined values, including

predefined models instantiated using the generate_model function. The package also

provides predefined functions for use as, e.g. observation models, and other such

mutable components that can be recombined.

As such, simulation and inference can be performed even on customised models

using minimal amounts of code. Refer to the online package documentation for a

complete list of predefined models and model components, and the default options

for each.

Characterisation of the observations process

Bayesian methods can also be usefully applied to retrospectively characterise the

the observation process itself, when it involves some degree of uncertainty. For

example, the sensitivity and specificity of diagnostic assays, or the efficiency of

capture campaigns.

This flexibility can be especially useful in situations where observation and data

collection are costly and subject to inherent uncertainties. In DiscretePOMP.jl, the

observation likelihood model is represented by a function variable, similar to the

event rate function.

B.2.3 Model simulation

The package implements Algorithm 1 for simulating from models. Invoking the

corresponding function is straightforward, requiring (at a minimum) only a model

instance (i.e. the one that we just defined) and vector of model parameters θ.

1 # NB . first define the SIS 'model ' variable , per above

2 theta = [0 . 0 0 3 , 0 . 1 ]

3 x = gillespie_sim ( model , theta ) # run simulation

4 p = plot_trajectory (x ) # plot ( optional )

Listing B.5: Simulate a model realisation.
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The [complete] system trajectory, denoted herein simply as x, is represented by

the x.trajectory property of the output variable.

The other product of the simulation x.observations property is an array of Ob-

servation types which represent the set of simulated [partial] observations data,

denoted as y, produced automatically and based on the observation function of the

model. This provides a convenient way to assess the package’s functionality for

performing inference from such data, which we now demonstrate.

The final line of code in the sample above produces (but doesn’t display) an

inline plot of the realised (i.e. ‘simulated’) trajectory, as illustrated in Figure B.1b.

Visualisation functionality generally is discussed further in §B.2.5.

B.2.4 Inference from data

This section is reserved primarily for demonstrating the package’s functionality for

single-model parameter inference. Methods for multi-model inference, including

model comparison and selection, are essentially incorporated within a single func-

tion. This is briefly explained in §B.2.7 but the functionality itself is demonstrated

using a dedicated example of model selection in practice, in §B.3.3.
In general, all these methods entail the use of [partial] data to learn about the

posterior distribution of the model parameters θ. Note that this does not preclude

the possibility of also learning about the posterior distribution of trajectory variable.

However that is not directly addressed here.

There are three main [single-model] inference functions defined within the pack-

age, that together incorporate each of the specific methods described in Chapters 2

and 4. They are,

• run_mcmc_analysis – for performing data-augmented MCMC analyses (Algo-

rithm 4).

• run_ibis_analysis – for iterative-batch-importance-sampling analyses (Algo-

rithms 8 and 9).

• run_arq_mcmc_analysis – an implementation of the algorithm introduced in §3.3
as ARQ-MCMC, that in this case depends on a particle-filter (i.e. Algo-

rithms 10 and 6 respectively).
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One of the main distinguishing features of these functions is the way the results are

formatted. MCMC is a form of rejection sampling ; those results consist of a set of

MCMC samples, and auxiliary information, such as the results of the Gelman-Rubin

convergence diagnostic (as discussed in §2.4.6).
More specifically, they include estimates of the scale-reduction-factors for that

test (labelled SRE within the package). By contrast, importance sampling results

consist of a set of weighted samples, as one might expect. They lack a corresponding

convergence diagnostic, but do include an estimate of the marginal likelihood π(y),

also referred to as the [Bayesian] model evidence.

The ARQ-MCMC is essentially an importance sampling algorithm, but the

MCMC resamples used to weight the former are also included with the results.

As such the results of a call to this function includes all of the above, including

further auxiliary information common to all, such as the algorithm runtime, and

estimates for E(θ) and corresponding variances.

Code samples for the summary and analysis of each type of results (or for-

mat) are given throughout this section. In general, functions that take them are

overloaded for all results types. For example, the tabulate_results function is com-

patible with all formats. As such that the distinctions noted above are at least

somewhat removed from the user’s concern in practice.

We now describe the main single-model inference functionality in more detail,

including code samples for the SIS model and corresponding output from the pack-

age, before moving on to the topic of multi-model inference in §B.2.7.

Running data-augmented MCMC analyses

Data-augmented methods are so-called in reference to latent variables – in this case,

a single one that represents the complete system trajectory – used to ‘augment’ the

expression that defines posterior density.

The general notion is then to sample the joint density of the model parameters

including the latent variable. This is written throughout as π(θ, x|y), where x is

the latent variable.

The primary method implemented for data-augmented MCMC (DA-MCMC) is

the Metropolis-Hastings algorithm – i.e the one given in §2.4.2 as Algorithm 4.

The default proposal algorithm is Algorithm 5, or MBP, with standard (i.e.

naive) MCMC moves available as the only other built-in alternative (customised
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proposals are also possible, as demonstrated in §B.4).
Thus the full [default] algorithm is MBP-MCMC, as first described in [4]. It is

invoked by using the run_mcmc_analysis function.

The following code sample is sufficient to run a straightforward MCMC anal-

ysis – following on from the code samples given above for model definition and

simulation:

1 # NB . uses both the 'model ' and 'x ' variables , as per above

2 y = x . observations # use simulated observations data

3 rs = run_mcmc_analysis ( model , y ; fin_adapt = true )

4 tabulate_results (rs )

Listing B.6: Run a finite-adaptive MBP-MCMC analysis.

At a minimum, the function is parametrised by two inputs: the model instance,

and the observations data. Here we also specify fin_adapt = true for finite-adaptive

MCMC8 (as opposed to simply ‘adaptive’ – the default). Other optional parameters

include: the number of iterations; the adaptation period; proposal algorithm (MBP

or standard MCMC moves) and a vector of initial model parameter values.

The latter may be used to manually initialise the Markov chains. Here it is not

specified, and so the initial model parameter values are sampled automatically from

the prior distribution.

The final line of code in the sample above, tabulates the results of the analysis

and displays it to the user. Sample output is provided in Figure B.2.

Figure B.2: Sample output from Julia for the code sample above. The tabulated

results include the mean and standard deviation of posterior samples (µ and σ

respectively) and the potential scale reduction factors R̂.

8This means that the proposal distribution is only adapted during the adaptation (or ‘burn-in’)

period.
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This is only a summary of the results, which in their entirety include the MCMC

samples; a covariance matrix of the same, and other information such as the com-

puter runtime.

Iterative batch importance sampling

The second function covered here, run_ibis_analysis, incorporates two separate al-

gorithms, both of which are based on the iterative-batch-importance-sampling tech-

nique of Chopin [44].

The default algorithm invoked is the one also proposed by Chopin, as SMC2 –

described in Chapter 2 as Algorithm 8. It can be conceptually imagined as one

particle filtering algorithm (e.g. Algorithm 6) embedded within another.

The second algorithm relies on the model-based-proposal (MBP) technique of

Pooley (Algorithm 5). A description is given in §3.2 as Algorithm 9, or MBP-IBIS.

The latter is the option invoked in the code sample provided below. SMC 2 can

be used instead by either changing the ‘algorithm’ input parameter to ‘SMC2’, or

else simply by not specifying it at all.

1 rs = run_ibis_analysis ( model , y ; algorithm = 'MBPI ' )
2 tabulate_results (rs )

Listing B.7: Run an MBP-IBIS analysis.

An estimate of the [log] model evidence, denoted ln p(y), is computed automati-

cally and supplied with the tabulated results (the second line of code). Correspond-

ing output is illustrated in Figure B.3.

Particle ARQ-MCMC

The third and last function described in this section for single-model inference

corresponds to a single algorithm; an implementation of quasi-MCMC inspired

method presented in §3.3 as ARQ-MCMC, combined with a standard particle filter.

The algorithm can be invoked by using the run_arq_mcmc_analysis function with

a DPOMP model type, as defined within the package (although that is not the only

option).

As implemented within the package, the latter is the same modular component

as used within SMC 2, and the functions share certain input parameters accordingly.
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(a) Marginal distribution of θ1 := β.

Figure B.3: Sample output andMBP-IBIS results, based on the SIS model problem.

The tabulated summary consists of the weighted expectations value µ and the

square root of the corresponding variance, σ. It also includes the natural log of

the model evidence (ln p(y)) estimated according to the method described in §2.5.
‘AR’ denotes the [MCMC] proposal Acceptance Rate (i.e. the ‘mutation’ step) –

autotuned to achieve a rate of approximately ∼ 1
3
by default.

This is one specific application of ARQ-MCMC ; the particle filter provides an

unbiased estimate of the likelihood π̂(x|θ, y), effectively allowing us to sample the

posterior.

The function can be invoked using any [compatible] user-supplied function – not

only probability densities, let alone DPOMPModel types. It is demonstrated here using

the default [automatically generated] particle filtering algorithm provided with the

package for the sake of brevity though.

That is because it requires only one additional input parameter at a minimum;

the bounds of the parameter space to be mapped to the algorithm’s internal ‘unit

cube’.

1 theta_lims = [0 0 . 0 1 ; 0 0 . 5 ] # NB . bounded parameter space

2 rs = run_arq_mcmc_analysis ( model , y , theta_lims )

3 tabulate_results (rs )

Listing B.8: Run an ARQ-MCMC analysis.

The corresponding output for this code is given in Figure B.4. A crude approxi-

mation of the marginal likelihood is included with those results, but it is much less

robust than the estimate provided by the IBIS algorithms. This accounts for the

apparent9 discrepancy with the Table 2.1, which records that the algorithm does

9Technically it is not a discrepancy; the table refers to [i.e. unbiased] estimates of the marginal

likelihood and the ARQ-MCMC algorithm merely provides a biased approximation.
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not compute this quantity.

Figure B.4: ARQ-MCMC results for the SIS model and data.

B.2.5 Assessing parameter inference

As has been shown, the tabulate_results function provides a straightforward way to

view the results of the a single-model inference analysis. This approach is compati-

ble with each of the three main functions described so far (even though the format

of the results returned is slightly different in each case).

Other functionality common to all include the print_results function, for saving

results to a directory of CSV files, and visualisation of the posterior samples (or

resamples, in the case of the importance sampling scheme).

Sample code and output is provided below, with more information about each

available in the package documentation.

Visualisation using UnicodePlots.jl

1 println ( plot_parameter_marginal (rs , 1) ) # plot first marginal

2 println ( plot_parameter_heatmap (rs , 1 , 2) ) # joint marginal

3 print_results (rs , ' path/ to / d i r ' ) # save to file

Listing B.9: Sample code for visualising the SIS model results (and saving them to

file). The corresponding output is given in Figure B.5

Inline plots are implemented using the Julia package UnicodePlots.jl10. Thus,

10https://libraries.io/julia/UnicodePlots
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(a) Marginal distribution of θ1 := β. (b) Joint distribution of θ.

Figure B.5: Visualisations of posterior samples for {θ1, θ2} := {β γ}. The functions
are compatible with all three inference approaches described in this section. The

specific examples illustrated here were produced using results from the first method

and code sample, i.e. MBP-MCMC.

they can be manipulated in the same way as other plots produced using that pack-

age. For example:

1 import UnicodePlots # NB . install first , us ing Pkg . add

2 p = plot_parameter_heatmap (rs , 1 , 2) )

3 UnicodePlots . xlabel ! ( p , 'new x ax i s l a b e l ' )
4 UnicodePlots . ylabel ! ( p , 'new y ax i s l a b e l ' )
5 println (p ) # show plot

Listing B.10: Example: alter the axis labels of a UnicodePlot.

This is a simple example, merely intended to highlight that p in this case is a

UnicodePlot like any other, thus the options available to users are extensive. See

that package’s documentation for further information and instructions.

Finally, the individual plotting functions implemented within DiscretePOMP.jl

have been introduced throughout within context. However the complete list can be

browsed in the manual section of the online package documentation.
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Assessing convergence for MCMC

The main MCMC convergence diagnostic provided with the package are the scale

reduction factor estimates provided automatically with single-model results – see

the Gelman-Rubin diagnostic as discussed in §2.4.6.
‘Mixing’ in the Markov chains can also be visually assessed using the trace-plot

function, plot_parameter_trace(rs, 1), which may indicate problems in some cases

(though not all). An example is illustrated in Figure B.6.

Naturally, the function is only applicable with results format produced using

MCMC algorithms, including ARQ-MCMC. Attempting to invoke it for other types

will result in an exception being thrown.

Figure B.6: Inline trace plot from DPOMPs in Julia, for the contact rate parameter

in the SIS example.

B.2.6 Prediction

We have seen how parameter inference can be used to learn about the characteristics

of a system. For example, we could infer the likely impact of control measures (e.g.

a ‘lockdown’) on the contact rate parameter, by estimating it for two separate

periods – with and without the control measure.

At some later time, we could use those results to ‘predict’ the likely impact of

the same control measure (or the likely impact of removing it, depending on the

circumstances). That is, by simulating the system as described above repeatedly,
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altering the simulation parameters as required. E.g. by choosing the expectations

of the inferred distribution of θ; or resampling a set of MCMC samples.

Finally, note that the above is an everyday description of the exercise. Mathe-

matically, we are performing numerical integration in the manner described by [30].

B.2.7 Inferring model structure

As described in §2.5, the marginal likelihood p(y) can be interpreted as a proba-

bilistic measure of model-fit; the model evidence. It can also be used to compute

the Bayes factor, for directly comparing two models. An applied example of model

selection using the Bayes factor is given in §B.3.3.
The methods described in that section for computing an estimate of the marginal

likelihood have been implemented for the applicable algorithms. No additional effort

is required on the part of the user, since those estimates are computed and included

automatically with the results of [single model] analyses.

Model comparison using the Bayes factor

In the context of multiple [‘candidate’] models, the model evidence gives rise to a

natural (i.e. probabilistic and Bayesian) method for comparing different models;

the Bayes factor. This is given by:

Ki,j =
π(y|mi)

π(y|mj)
(B.5)

where p(y|mi) is the marginal likelihood computed [estimated] for the ith model.

According to the scale originally proposed by Jeffreys [65, 64], K1,2 > 10 can be

considered to be strong evidence for favouring model m1 over m2.

log10K K Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

Table B.1: Bayes factor interpretation, from Kass and Raftery[1].
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This final stage of the analysis can be accomplished by the user quite easily

based on the results of single-model analyses, since the calculation is simple; it is

only the marginal likelihood itself that is difficult to compute. However a multi-

model inference workflow has nonetheless been automated for convenience. It is

invoked like so:

1 # NB . first define some models to compare , e . g . as m1 , m2 , etc

2 models = [ m1 , m2 , m3 ]

3 results = run_model_comparison_analysis ( models , y ; n_runs = 10)

4 tabulate_results ( results , null_index = 2) # null model : m2

Listing B.11: Model comparison code. This is actual (rather than psuedo) code.

However it is not executable without a valid vector of models (i.e. m1, etc

must be defined). A full working example is provided with code and results in

Appendix §B.3.3.

The Bayes factor is computed when the results are tabulated, with respect a

baseline, or ’null’ model, such that different choices of null model can be evaluated

for the same inference results. Note that the Bayes factor of the ‘null’ model is

therefore always = 1.0.

There is no intrinsic need to nominate a null model in this way (i.e. it is

somewhat peculiar to this implementation) but doing so allows for the results to be

given as a single vector of Bayes factors, for convenient and meaningful presentation

to the user.

Models are defined in same way as described before, but users must take care

that each is equipped with an observation model that is compatible with the same

observations data y (even though the underlying parameter space and configuration

of each model may be quite distinct).

Since a meaningful demonstration of this functionality requires more than one

model, a completely self-contained example – also based on simulated data – is

given in §B.3.3.
Per the sample code given here, tabulation of results works in the same way as

before. If the null model is not specified, it is assumed to be the first model in the

array used for the initial analysis, i.e. as passed to run_model_comparison_analysis.

The plot_model_comparison function provides options for visualisation, which are

also explained and demonstrated in §B.3.3.
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Finally, note that the entire analysis require MN independent calls to the un-

derlying inference algorithm (Algorithm 8, or SMC 2, by default) where M is the

number of models, and N is the value [optionally] passed as the n_runs named pa-

rameter to the run_model_comparison_analysis function. As such they may take a

considerable amount of time to run, depending on the number and complexity of

the underlying models, and data, that are being analysed.

It is therefore advisable to run single-model inference analyses for each model

first, partly to ensure that the approximate total run time (i.e. of N runs each)

is realistically feasible. Failing that, to at least begin with a low choice of N (the

default is three).
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B.3 Case studies

The key features of the package have been introduced using a single case study,

borrowed from the epidemiological literature. We now provide a small selection

of others to better represent the range of potential applications that such meth-

ods offer, as briefly spoken of in the introduction to this chapter. They include

the models also illustrated in the introduction; predator-prey and the two-species

malaria model in §B.3.1 and §B.3.2.
We also use this section to cover aspects of the functionality not yet fully ex-

plained; namely, multi-model inference (i.e. model comparison) in §B.3.3. Finally

in §B.4 we demonstrate usage of custom features, by estimating the epidemiological

parameters for a smallpox outbreak in Nigeria.

B.3.1 Predator-prey model

The first model we examine in this section is the Lotka-Volterra predator-prey

model, loosely based on a [discrete-time] example published by Boys et al., [97, 22].

Recall that individuals conceptually take one of n states; in this case predator or

prey. The states are labelled in accordance with convention as {P,N}, respectively.
Three coupled processes (or ‘event types’) govern the internal dynamics of the

model. They are, prey reproduction, labelled ‘birth’; predation; and predator death.

Events occur randomly, at rates labelled r1, r2 and r3 respectively.

This definition (as shown in Figure B.7) is perhaps more directly relevant to

interacting chemical species than to, say, a macroscopic ecosystem. In particular,

predation (N → P) encompasses both prey death and predator reproduction in a

way that is evocative of [bio]chemical reactions.

As demonstrated in the previous section, adaptations such as these can be ac-

complished quite straightforwardly, by defining a new event rate function and cor-

responding transition matrix, and overwriting those components for the predefined

model (or by using them to define one from scratch).

As before, inter-event times are exponentially distributed, with the rates defined
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birth
N P

death

θ1N θ2NP θ3P

Figure B.7: The Lotka-Volterra predator-prey model. More accurately, it is a

discrete-state-space conceptual realisation of the Lotka-Volterra predator-prey equa-

tions. In previous [epidemiological] examples, we rationalised model dynamics as

the ‘migration of individuals’ between [discrete] states. For consistency we stay with

the same symbolic representation, though it is perhaps not as fitting depending on

the practical situation being considered.

as follows:

r1 = θ1N (B.6)

r2 = θ2NP (B.7)

r3 = θ3P (B.8)

It is assumed that a prey reproduction event results in the addition of one indi-

vidual to that population while the predator reproduction event adds one to that

population and removes one prey. The predator death event removes one predator.

Thus the transition matrix for the model is defined as:

T =

 0 1

1 −1
−1 0

 (B.9)

Specifying these aspects of the model manually is straightforward, the sample code

is provided for illustration in B.5.1, but not necessary in this case because it is

predefined. The sample code provided here uses the latter technique for brevity:

1 model = generate_model ( ”LOTKA” , [ 7 9 , 7 1 ] )

2 theta = [ 0 . 5 , 0 .0025 , 0 . 3 ]

3 x = gillespie_sim ( model , theta ) # run simulation

4 p = plot_trajectory (x ) # plot ( optional )

Listing B.12: Simulate a Lotka-Volterra realisation.

The simulated realisation and observations dataset produced by this code are illus-

trated in Figure B.8.
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Figure B.8: Realisation of the Lotka-Volterra predator-prey model, produced using

the code sample above. Note that this particular illustration was produced using

the ggplot2 package in R [7] – not the inline package function in Julia referred to

above.

As noted in the previous section, the ability to simulate observations in partic-

ular is important for inference purposes.

B.3.2 Vector-host model

In the first case study, we saw how DPOMP-based models can be used to notionally

represent different ‘species’, or other types of population process (e.g. reproduction,

migration) beyond those considered in the previous epidemiological examples.

There are of course many conceivable situations where we might wish to combine

such concepts, to yield a unified representation of both disease and more general

population dynamics.

Here we consider such a model, based on the equations of George MacDonald [98]

and Ronald Ross [77], and usually therefore referred to as the Ross-MacDonald

model [99, 100].

It is a standard mathematical framework for modelling vector-borne disease,

and was initially proposed for malaria, a potentially fatal infectious disease carried

by mosquitoes which can affect humans and other animals – caused by a parasitic

single-celled organism (or protozoa) of the Plasmodium genus.

As per the representation shown in Figure 5.1b, it is essentially an extension

of the standard susceptible-infectious[-susceptible] (SIS) model [3] with individuals

labelled S and I in accordance with convention, and two distinct species denoted
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by subscript.

birth
Sm Im

death

Sh Ih

θ1Sm
θ2

Sm
Sm+Im

Ih

θ3
Sh

Sh+Ih
Im

θ4Ih

cSm cIm

Figure B.9: A simplified DSS interpretation of the Ross-MacDonald malaria model;

here it is assumed that the average lifespan of mosquitoes is known to be c−1.

Note that within the package itself the use of subscripts in this way is not

practical. Thus by default human individuals are labelled S and I, and susceptible

and infectious mosquito populations are denoted by A and B respectively.

Code for simulating the Ross-MacDonald model

1 model = generate_model ( ”ROSSMAC” , initial_state )

2 theta = [ 0 . 5 , 0 .0025 , 0 . 3 ]

3 x = gillespie_sim ( model , theta ) # run simulation

4 p = plot_trajectory (x ) # plot ( optional )

Listing B.13: Model simulation.

B.3.3 Model selection: simulated example

We now turn our attention to the task of statistical inference in the context of

multiple models. That is, situations where there are multiple possible models that

may fit the data in question, and our purpose is to select the one that is optimal.

To demonstrate this in practice, we apply two models; the SIR, and the SEIR,

and utilise observations data simulated from each (i.e. two separate scenarios). As

with previous examples, we assume that the underlying system is partially observed;

only the number of infectious individuals is recorded at each observation time. The

same observation model is used for all – it is assumed that observation errors are
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normally distributed ∼ N(0, σ2) and that σ = 2 (i.e. the default observation model

in the package).

In plain terms then, the (imaginary) scientific question to be addressed, is

whether or not an infectious disease includes a significant non-infectious latent

period, which should be accounted for when attempting to explain its prevalence

using a model and partial data.

We simulate and analyse both scenarios in order to better test the robustness

of the approach under different conditions. Note that unlike other measures of

model deviance, the model evidence p(y) does not incorporate an explicit term

penalty. In accordance with general scientific principles, we therefore assume that

our preference (i.e. the ‘null’ model) in both cases is the simpler one, the SIR.

This is the model used to compute the Bayes factor for each of the models being

compared. It is computed ‘on-the-fly’ for the tabulation function itself, such that

multiple candidates for the null can be considered for the same set of results.

We now present both scenarios in turn, along with code samples and instructions

for reproducing the analyses; tabulating the results, and optionally specifying the

null model; and visualising the log estimates of the model evidence obtained by the

underlying [designated] algorithm.
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Scenario one: simulated SIR data

Figure B.10: Package output: the simulated SIR epidemic. The parameters used

were θ = {0.003, 0.072}. Observations are recorded at intervals of slightly less than

four time units. Since this only intended to be a simple illustrative example, it is

assumed that the initial infection time is known to be t0 = 0, and that the overall

population size remains constant.

We begin with a preliminary assessment. That is, single-model inference for

each of the models in consideration. That is to ensure that the algorithm and

configuration chosen for the main analysis is adequate enough to ensure reliable

estimates.

Only select output from the preliminary analyses have been included here, since

that functionality has already been addressed at length.

In summary though, it was originally envisaged that three or four models would

be assessed, including a susceptible-exposed-infectious-susceptible (SEIS) model.

That model is very similar to the SEIR but allows that infection does not confer

immunity to previously infected hosts.

The single-model inference analysis revealed that only the SIR and SEIR fit

data simulated by each of those models sufficiently well to even provide reliable

estimates of the model evidence, and so only those two were carried forward into

the main analysis.

Single-model inference also provides a basis for cross-validation of the final

[multi-model inference] results. For example, inference using any of the MCMC
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algorithms provides evidence for convergence via the scale reduction factor esti-

mates.

In this case, parameter estimates obtained using the MBP-MCMC algorithm

were used to validate those produced by the SMC 2 algorithm, which was then used

in turn to compute independent estimates of the model evidence itself in the main

analysis.

That analysis was run using:

1 # TBA : MODELS INCL OM

2 models = [ seir , sir ] # models must be defined first

3 mcomp = run_model_comparison_analysis ( models [ [ 1 , 2 ] ] , y )

4 tabulate_results ( mcomp ; null_index = 2)

5 p = plot_model_evidence ( mcomp )

Listing B.14: Model comparison.

Here the ‘null’ model – the evidence for which is used to compute the Bayes

factor for every model – is specified by passing the index of the null model, with

respect to the array of models used to conduct the original analysis, as an additional

named parameter to the tabulation function. Else it is assumed to be the first model

that was specified in that array.

The output is given in Figure B.11.

(a) Results table. (b) Default plot.

Figure B.11: Model comparison output from DPOMPs in Julia. Both give the

natural log of the [arithmetic] mean model evidence, estimated from (in this case)

three independent runs of the SMC2 algorithm per model. The Bayes factor (BF)

is also given, based on the same.

As per the results table on the LHS, the model evidence was actually better (i.e.

higher, or equivalently, the negative log evidence was lower) for the ‘wrong’ model,

the SEIR. However the Bayes factor is less than ten, suggesting that there is not

[yet] sufficiently good evidence to justify rejecting the SIR model in favour of it.
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Thus we have at least tentatively, and by Occam’s Razor11, arrived at the correct

conclusion – we favour the SIR in this case.

The final line of code in the code sample above plots the [negative] geometric

mean (i.e. the arithmetic mean of the evidence itself) by default. The same function

can also be be used to produce a box-plot of the log estimates obtained, per the

example given in Figure B.14 (which is based on the results of the second scenario).

Scenario two: simulated SEIR data

Here we provide the results of the second scenario for illustrative comparison. The

code required to run it is virtually identical. However it is a different scenario, in

that we now designate the null model as the one that did not produce the simulated

results, in practical terms the ‘wrong’ one.

Figure B.12: The simulated SEIR epidemic. The parameters used were θ =

{0.003, 0.066, 0.072}. Observations are recorded intervals identical to that of the

first scenario and it is again assumed that the initial infection time is known to be

t0 = 0, with the overall population size remaining constant.

In practice another distinction, that is actually helpful in this case for illustrative

purposes, is that a problem was encountered during the preliminary (i.e. single-

model inference) validation analysis.

On that occasion, the DA-MCMC algorithm did not successfully converge. This

was identified by the MCMC convergence diagnostic computed automatically with

11Because our choice to designate the simplest model – the SIR – as the null model was guided

by that principle at the outset.
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the analysis, with the potential scale reduction factors denoted R̂ estimated to be

between 1.6 and 2, significantly surpassing the commonly used acceptable threshold

of 1.1.

The issue was further confirmed by visual inspection of the trace-plots. An

illustrative comparison with the ARQ-MCMC algorithm (which did successfully

converge) is shown for the contact rate parameter in Figure B.13.

(a) MBP-MCMC (b) ARQ-MCMC

Figure B.13: Trace-plots from the SEIR validation analyses conducted for the sec-

ond scenario. θ1 here is the contact rate parameter, more commonly denoted as β.

Secondary validation was carried out using the MBP-IBIS and ARQ-MCMC

single-model algorithms, which both yielded parameter estimates consistent with

SMC2, allowing the main analysis to proceed as before.

That yielded the results given in Figure B.14. In this case the Bayes factor of

the SEIR model is high enough that we can regard the results as strong evidence

for favouring that model. Thus we have correctly identified the model used to

simulate the results, based on only partial data - the number of infectious individuals

recorded at intervals (and assuming that the distribution of observation errors is

known).
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(a) Results table.

(b) Box plot.

Figure B.14: Model comparison output from the second analysis, based on simulated

SEIR data. The box plot shows the range of log estimates for the model evidence.
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B.4 Another example application: Smallpox

Note that the code samples provided with this section are not compatible with the

most recent version of the package.

This case study is based on data published by O’Neill and Roberts in their

analysis of a smallpox outbreak within a closed community of one hundred and

twenty individuals in Abakaliki, Nigeria [8].

B.4.1 Problem statement

The goal is to repeat the same kind of analysis as presented in the original paper,

albeit for a continuous-time DPOMP model, and estimate epidemiological param-

eters for the SIR model.

Recovery times were recorded (i.e. assumed to be known) to within the closest

day, and no information regarding the number of infected individuals is available,

save that the epidemic is assumed to be complete following the final recovery – that

is, the number of infected individuals is assumed to be zero at that time.

These assumptions lead to a fixed trajectory length, and specific requirements

for the proposal algorithm. For example, since it is assumed that the total number

of events is known, we can construct an algorithm that simply alters the time of

events – there is no need to delete events or to insert new ones.

In summary:

• Events and the new times can easily be sampled on a uniform basis, ensuring

that g(Xf→i) = g(Xi→f ), such that the terms cancel in equation 2.21. This is

the same as the standard MCMC proposal algorithm available the package.

• Some additional information is available regarding the times of recoveries;

they are known to within a day. We can therefore propose new recovery event

times such that they remain within that time frame (a day is regarded as a

single time unit in this model).

• The initial sample, including the latent variable (i.e. a complete realisation of

the model) can optionally be passed to the algorithm as a function (in place of

one sampled automatically via Algorithm 1). That is preferable in this case,

due to the information already known about the possible values of x.
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As to the last, a constructor function is provided for manually initialising values of x

– the generate_custom_x0 function, with details given in the package documentation.

B.4.2 Model

The model is based on the standard SIR, so it makes sense to begin with that

predefined option and make modifications as necessary. Thus:

1 # define model

2 model = DPOMPs . generate_model ( ”SIR” , [ 119 , 1 , 0 ] ) ;

3 model . t0_index = 3

4 # add ”medium” prior per the original paper

5 p1 = Distributions . Gamma (10 , 0 . 0001)

6 p2 = Distributions . Gamma (10 , 0 . 01 )

7 p3 = Distributions . Uniform (−360 , 0)

8 model . prior = Distributions . Product ( [ p1 , p2 , p3 ] )

Listing B.15: Model definition.

We also define the observations data itself:

1 # removal times and ' obse rvat i on ' ( final time )

2 t = [ 0 . 0 , 13 . 0 , 20 . 0 , 22 . 0 , 25 . 0 , 25 . 0 , 25 . 0 , 26 . 0 , 30 . 0 , 35 . 0 , ←↩
38 . 0 , 40 . 0 , 40 . 0 , 42 . 0 , 42 . 0 , 47 . 0 , 50 . 0 , 51 . 0 , 55 . 0 , 55 . 0 , ←↩
56 . 0 , 57 . 0 , 58 . 0 , 60 . 0 , 60 . 0 , 61 . 0 , 6 6 . 0 ] ;

3 y = [ DPOMPs . Observation ( 6 7 . 0 , 1 , 1 . 0 , zeros ( Int64 , 1 ) ) ]

Listing B.16: Observations data.

In this case, we are dealing with a [partial] observation process, rather than

a separate observation likelihood model as before, but we still define a ‘dummy’

observation array. The single observation time is be set to the maximum possible

event time.

The observation model property must also be overwritten:

1 # dummy observation model

2 observation_model (y : : DPOMPs . Observation , population : : Array{Int64←↩
, 1} , theta : : Array{Float64 , 1}) = 0 .0

3 model . obs_model = observation_model
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Listing B.17: Observation model.

Custom proposal function

With the model defined, we move on to the proposal function itself. This generates

new trajectories according to the requirements laid out in the problem statement.

In this example, the function signature is specified for the correct data type. This

is recommended, but not necessary.

1 ## custom proposal algorithm

2 function custom_proposal (xi : : DPOMPs . Particle )

3 seq_f = deepcopy (xi . trajectory ) # new ←↩
trajectory

4 t0 = xi . theta [ model . t0_index ] # NB . ←↩
initial infection time

5 evt_i = rand ( 1 : length (xi . trajectory ) ) # choose ←↩
event and new time

6 evt_tm = xi . trajectory [ evt_i ] . event_type == 1 ? ( rand ( ) ∗ (y←↩
[ end ] . time − t0 ) ) + t0 : floor (xi . trajectory [ evt_i ] . time )←↩
+ rand ( )

7 evt = DPOMPs . Event ( evt_tm , xi . trajectory [ evt_i ] . event_type )

8 seq_f [ evt_i ] = evt # replace ←↩
with new event

9 sort ! ( seq_f ) # sort

10 re turn DPOMPs . Particle (xi . theta , xi . initial_condition , copy (←↩
xi . initial_condition ) , seq_f , xi . prior , zeros (2 ) )

11 end # end of std proposal function

Listing B.18: Custom proposal function.

It is however important to return the correct data type (which is the same as

the input parameter).

Initial trajectory function

We also specify a function sampling the initial trajectory variable, this time making

use of the generate_custom_particle function to define the output. This instantiates

302



the particle and computes its likelihood, allowing us to ensure that it is a valid

trajectory:

1 ## initial trajectory function

2 function gen_x0 ( theta : : Vector{Float64 })
3 trajectory = DPOMPs . Event [ ]

4 f o r i in 1 : ( length (t ) − 1) # infections : arbitrary t (←↩
must be > t0 )

5 push ! ( trajectory , DPOMPs . Event (i == 1 ? theta [ model .←↩
t0_index ] ∗ rand ( ) : t [ i ] ∗ rand ( ) , 1) )

6 end

7 f o r i in eachindex (t ) # recoveries

8 push ! ( trajectory , DPOMPs . Event (t [ i ] , 2 ) )

9 end

10 x0 = DPOMPs . generate_custom_particle ( model , y , trajectory ; ←↩
theta = theta )

11 println ( ”x0 log l i k e : ” , x0 . log_like )

12 re turn x0

13 end

Listing B.19: Initial trajectory function.

303



B.4.3 MCMC analysis

Finally, we can run the analysis itself. The package documentation has complete

information about using run_custom_mcmc_analysis function. However it essentially

works in the same manner as for the standard function.

The custom proposal function is a required parameter, but the initial trajectory

function is optional. The remaining optional parameters are named, and most

correspond to the standard function.

1 ## run MCMC

2 rs = run_custom_mcmc_analysis ( model , y , custom_proposal , gen_x0 ;←↩
steps = 100000)

3 tabulate_results (rs )

4 println ( plot_parameter_trace (rs , 1) )

5 println ( plot_parameter_marginal (rs , 1) )

6 println ( plot_parameter_heatmap (rs , 1 , 2) )

Listing B.20: Run the analysis.

The results and other sample output are given in Figure B.15. Due to the nature of

the underlying models and approach, they are not directly comparable with those

of the original authors. In this case we also used a multi-chain analysis, so as to

make better use of the convergence diagnostics within the package.

However a single-chain validation analysis was carried out using a separate soft-

ware implementation, and compared to the results of the original work, notwith-

standing the remaining differences in approach. The results for that analysis are

given in B.6.
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(a) Results table.

(b) Trace plot.

(c) θ1 marginal. (d) θ1, θ2 joint marginal.

Figure B.15: Inference results for the analysis of smallpox data, loosely based on

that of O’Neill and Roberts [8].

B.5 Sample code

Here we provide various code snippets. Please note

B.5.1 Rate function sample code

The following sample code defines the event rate function and transition matrix for

the Lotka-Volterra predator-prey model [97].

1 # rate function

2 function lotka_rf ( output , parameters : : Array{Float64 , 1} , ←↩
population : : Array{Int32 , 1})

3 # prey ; predator reproduction ; predator death

4 output [ 1 ] = parameters [ 1 ] ∗ population [ 2 ]
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5 output [ 2 ] = parameters [ 2 ] ∗ population [ 1 ] ∗ population [ 2 ]

6 output [ 3 ] = parameters [ 3 ] ∗ population [ 1 ]

7 end

8 # transition matrix

9 m_t = [0 1 ; 1 −1; −1 0 ]

Listing B.21: Lotka-Volterra rate function

Note that DPOMPs automatically defines the output array as the correct size,

and passes a reference to it when calling the function is [internally] called within

the package.

As such, the user simply has to populate it for each event type, given the model

parameters; the population vector; and any user-defined constants, or other valid

Julia expression that the user wishes to introduce.
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B.5.2 Custom SIS model code

The following snippet of code manually defines the SIS model example TBC**

1 ## define model

2 # rate function

3 function sis_rf ! ( output , parameters : : Array{Float64 , 1} , ←↩
population : : Array{Int64 , 1})

4 output [ 1 ] = parameters [ 1 ] ∗ population [ 1 ] ∗ population [ 2 ]

5 output [ 2 ] = parameters [ 2 ] ∗ population [ 2 ]

6 end

7 # define obs function (no error )

8 obs_fn ( population : : Array{Int64 , 1}) = population

9 # prior

10 function prior_density ( parameters : : Array{Float64 , 1})
11 parameters [ 1 ] > 0 .0 | | re turn 0 .0

12 parameters [ 2 ] > 0 .0 | | re turn 0 .0

13 re turn 1 .0

14 end

15 # obs model

16 function si_gaussian (y : : Array{Int64 , 1} , population : : Array{Int64←↩
, 1})

17 obs_err = 2

18 tmp1 = log (1 / ( sqrt (2 ∗ pi ) ∗ obs_err ) )

19 tmp2 = 2 ∗ obs_err ∗ obs_err

20 obs_diff = y [ 2 ] − population [ 2 ]

21 re turn tmp1 − ( ( obs_diff ∗ obs_diff ) / tmp2 )

22 end

23 # define model

24 model = DPOMPs . DPOMPsModel ( ”SIS” , sis_rf ! , [−1 1 ; 1 −1] , [ 100 , ←↩
1 ] , obs_fn , prior_density , si_gaussian , 0)

Listing B.22: Generate a ‘custom’ SIS model instance
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B.6 Smallpox validation analysis

An analysis for the Smallpox case study example given in the main body of this

appendix was carried out using a separate software implementation for the purposes

of validation. Those results are reported here in brief, since the model and problem

have already been described.

Figure B.16: θ trace plots from the custom MCMC analysis of the smallpox data

with ‘medium’ prior distributions for transmission, removal coefficients θ1; θ2, initial

infection time θ3. The results reported by O’Neill and Roberts for their discrete

time model are not directly comparable, but are nonetheless marked for reference.

θ E(X) SD Mode 95% CI z

1 0.00099 0.000211 0.00094 (0.00063 - 0.0015) 0.05

2 0.1 0.0221 0.095 (0.066 - 0.15) 0.15

3 -3.2 3.11 -0.085 (-12 - -0.077) 0.06

Table B.2: SIR model MCMC analysis: results from a single-chain ‘custom’ MCMC

analysis, based on the dataset and proposal function described. The prior density

function used in this example matches that of O’Neill and Roberts (described in that

paper as the ‘medium’ prior distribution). The estimates obtained by the authors

(albeit using a different model) were reported as θ1 = 0.0011 and θ2 = 0.107 for

[θ] = {β, γ}. The initial infection time θ3 = t0 was not reported in that paper.
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Chain Proposed Accepted Rate

Adapted 100000 61253 0.613

Burn in 20000 12975 0.649

Total 120000 74228 0.619

Table B.3: SIR model MCMC analysis: MCMC proposal summary
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Appendix C

Detailed results for within-herd

BTB scenarios

Here we provide additional information concerning the initial inference analyses

that were carried out as preliminary work towards the results reported in Chapter 6.

They were produced more as a proof of concept, with heterogeneity of diagnostic test

types ignored, for example. They consist of three independent ‘herd scenarios’ that

are somewhat similar to simulated scenario results also reported in that chapter.

The are included here because they represent the first results obtained through-

out the course of the project that were based on actual BTB surveillance data.

Perhaps more importantly, they provide a flavour as to how the main results re-

ported in the corresponding chapter were compiled.

Each scenario includes a summary of the underlying observational data in the

first Figure. Also included are visual and tabulated summaries of the parameter

inference results, and lastly estimates obtained for the marginal likelihood.

C.1 Simulated scenarios

Here we report the full inference results for the simulation scenarios discussed in

Chapter 6.
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SEI-tdR validation analysis

C.1.1 Scenario one: one diagnostic test

## SMC2 analysis:

## Theta iMu iSD

## 1 1 1.1e-04 7.0e-05

## 2 2 1.9e-02 2.4e-02

## 3 3 -1.5e+02 8.7e+01

## 4 4 6.5e-01 1.4e-01

Figure C.1: Inference summaries for the primary (i.e. SMC2) SEIR analysis: sce-

nario one. The model parameters labeled from one to four are as follows: contact

parameter S → E; progression rate E → I; SICCT test sensitivity; and onset of

infectiousness in the first affected individual, also denoted in the main text as t0.
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## MBP IBIS analysis:

## Theta iMu iSD

## 1 1 1.1e-04 6.2e-05

## 2 2 1.4e-02 2.3e-02

## 3 3 -1.7e+02 9.1e+01

## 4 4 6.9e-01 1.6e-01

## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 1.1e-04 5.1e-05 1.1e-04 5.5e-05 1 1

## 2 2 1.3e-02 2.2e-02 1.6e-02 2.5e-02 1 1

## 3 3 -1.6e+02 9.9e+01 -1.6e+02 1.0e+02 1 1

## 4 4 6.9e-01 1.6e-01 6.7e-01 1.6e-01 1 1

Figure C.2: Inference summaries for the two validation analyses corresponding to

the results given in Figure C.1 (incident one).

Figure C.3: Twin parameter marginal densities for the SEIR model analysis (Sce-

nario one; ARQ-MCMC).
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Figure C.4: Marginal model parameter distributions for the first SEIR model sce-

nario. Each row represents a separate run of the SMC2 algorithm with N =

{6000, 8000, 10000} (independent proposals). Left to right: contact rate S → E;

progression rate E → I; onset of infectiousness in the first affected individual; and

diagnostic test sensitivity. The simulation values have been marked for reference.

Figure C.5: As per Figure C.4, but for the MBP-IBIS algorithm. Each row repre-

sents a separate run of the algorithm with ...
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Figure C.6: As per Figure C.4, but for the ARQ-MCMC algorithm. Each row

represents a separate run of the algorithm with ...
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C.1.2 Scenario two: two diagnostic tests

## SMC2 analysis:

## Theta iMu iSD

## 1 1 1.3e-04 2.4e-05

## 2 2 5.4e-02 2.2e-02

## 3 3 -1.1e+02 7.5e+01

## 4 4 5.3e-01 6.5e-02

## 5 5 7.2e-01 1.4e-01

## MBP IBIS analysis:

## Theta iMu iSD

## 1 1 1.3e-04 2.6e-05

## 2 2 5.0e-02 2.6e-02

## 3 3 -1.3e+02 9.2e+01

## 4 4 5.2e-01 7.8e-02

## 5 5 7.2e-01 1.4e-01

## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 1.2e-04 2.1e-05 1.3e-04 2.6e-05 1 1

## 2 2 5.2e-02 2.4e-02 5.2e-02 2.5e-02 1 1

## 3 3 -1.0e+02 7.4e+01 -1.2e+02 9.0e+01 1 1

## 4 4 5.3e-01 6.0e-02 5.3e-01 7.6e-02 1 1

## 5 5 7.4e-01 1.4e-01 7.3e-01 1.5e-01 1 1

Figure C.7: Inference summaries for all three SEIR analyses (scenario two. The

model parameters labeled from one to five are as follows: contact parameter S → E;

progression rate E → I; SICCT test sensitivity; and onset of infectiousness in the

first affected individual, also denoted in the main text as t0.
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Figure C.8: Twin parameter marginal densities for the SEIR model analysis (Sce-

nario two; ARQ-MCMC).

Figure C.9: As per Figure C.10, but for the ARQ-MCMC algorithm. Each row

represents a separate run of the algorithm with ...
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Figure C.10: Marginal model parameter distributions for the first SEIR model

scenario. Each row represents a separate run of the SMC2 algorithm with N =

{6000, 8000, 10000} (independent proposals). Left to right: contact rate S → E;

progression rate E → I; onset of infectiousness in the first affected individual; and

diagnostic test sensitivity. The simulation values have been marked for reference.

Figure C.11: As per Figure C.10, but for the MBP-IBIS algorithm. Each row

represents a separate run of the algorithm.
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C.2 Incident one

The first (real) herd analysis is from a farm located in Staffordshire with a head

count fluctuating between about seventy and one hundred cattle.

(a) BTB surveillance data from VetNet.

(b) herd size estimated from CTS movement data.

Figure C.12: The first epidemic is based on an incident recorded in the VetNet

database at a farm in Staffordshire which lasted about two years following a break-

down triggered by a routine whole herd test in 2009. Migration data is based on

corresponding data as recorded in CTS. The latter is also used to corroborate the

approximate herd size at the beginning of each modelled scenario.
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SEIR model parameter estimates

The first set of results (for each of three scenarios) are based on the SEIR variant

of the test-determined removal model.

Figure C.13: Marginal model parameter distributions for the first VetNet data set

fitted to the SEIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals). Left to right: contact rate S → E; progression rate

E → I; SICCT test sensitivity; and onset of infectiousness in the first affected

individual.
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Figure C.14: Marginal model parameter distributions for the first VetNet data set

fitted to the SEIR model using the ARQ MCMC algorithm with ΓL = {1, 3, 7}
(ΓR = 30). The algorithm is much less efficient than SMC2 but tends to produce

consistent results.
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(a) Twin parameter marginal densities for the SEIR model analysis (ARQ MCMC).
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## SMC2 analysis:

## Theta iMu iSD

## 1 1 1.8e-04 4.5e-05

## 2 2 2.0e-01 9.7e-02

## 3 3 6.4e-01 9.2e-02

## 4 4 -2.5e+02 5.6e+01

## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 1.8e-04 5.0e-05 1.8e-04 5.7e-05 1 1

## 2 2 2.1e-01 1.1e-01 2.1e-01 1.1e-01 1 1

## 3 3 6.3e-01 1.1e-01 6.4e-01 1.1e-01 1 1

## 4 4 -2.4e+02 6.7e+01 -2.4e+02 7.0e+01 1 1

Figure C.16: Inference summaries for the two SEIR analyses (incident one). The

model parameters labeled from one to four are as follows: contact parameter S → E;

progression rate E → I; SICCT test sensitivity; and onset of infectiousness in the

first affected individual, also denoted in the main text as t0.
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SETIR model parameter estimates

Figure C.17: Marginal model parameter distributions for the first VetNet data set

fitted to the SETIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals) and ARQ MCMC.
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## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 2.0e-04 6.4e-05 2.2e-04 8.3e-05 1 1

## 2 2 2.1e-01 1.1e-01 2.0e-01 1.1e-01 1 1

## 3 3 1.8e-01 1.1e-01 1.8e-01 1.2e-01 1 1

## 4 4 6.3e-01 9.1e-02 6.4e-01 1.1e-01 1 1

## 5 5 -2.4e+02 6.2e+01 -2.4e+02 7.0e+01 1 1

## SMC2 analysis:

## Theta iMu iSD

## 1 1 2.1e-04 6.6e-05

## 2 2 2.0e-01 9.9e-02

## 3 3 1.7e-01 1.0e-01

## 4 4 6.4e-01 9.4e-02

## 5 5 -2.4e+02 5.9e+01

Figure C.18: Inference summaries for the two SETIR analyses (incident one). The

model parameters, labeled from one to five, are as follows: contact parameter S →
E; progression rate E → T ; progression rate T → I; SICCT test sensitivity; and

onset of infectiousness in the first affected individual.
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C.3 Incident two

(a) BTB surveillance data from VetNet.

(b) herd size estimated from CTS movement data.

Figure C.19: The second data set is based on two incidents recorded in the VetNet

database which occured about eighteen months apart at another farm in Stafford-

shire. The first was triggered by ‘contiguous’ herd testing following a slaughterhouse

case and the latter by the six month follow up test following the first incident.
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## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 8.1e-05 1.3e-05 8.3e-05 2.5e-05 1 1

## 2 2 2.7e-01 8.6e-02 2.6e-01 8.9e-02 1 1

## 3 3 8.1e-01 5.2e-02 8.1e-01 6.6e-02 1 1

## 4 4 -1.7e+02 6.3e+01 -1.8e+02 6.5e+01 1 1

## SMC2 analysis:

## Theta iMu iSD

## 1 1 8.1e-05 1.2e-05

## 2 2 2.6e-01 7.2e-02

## 3 3 8.1e-01 4.7e-02

## 4 4 -1.7e+02 4.6e+01

Figure C.20: Inference summaries for the two SEIR analyses (incident two).
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Figure C.21: Marginal model parameter distributions for the second VetNet data set

fitted to the SEIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals) and ARQ MCMC (ΓL = 7). Left to right: contact rate

S → E; progression rate E → I; SICCT test sensitivity; onset of infectiousness in

the first affected individual.
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## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 1.8e-04 1.1e-04 1.8e-04 1.1e-04 1.1 1.3

## 2 2 2.7e-01 8.3e-02 2.7e-01 8.9e-02 1.0 1.0

## 3 3 1.1e-01 1.2e-01 1.1e-01 1.2e-01 1.1 1.4

## 4 4 8.2e-01 4.3e-02 8.0e-01 7.6e-02 1.0 1.0

## 5 5 -1.3e+02 4.5e+01 -1.5e+02 6.2e+01 1.0 1.1

## SMC2 analysis:

## Theta iMu iSD

## 1 1 1.3e-04 7.8e-05

## 2 2 2.5e-01 8.3e-02

## 3 3 1.5e-01 1.2e-01

## 4 4 8.1e-01 5.2e-02

## 5 5 -1.6e+02 4.8e+01

Figure C.22: Inference summaries for the two SETIR analyses (incident two). The

model parameters, labeled from one to five, are as follows: contact parameter S →
E; progression rate E → T ; progression rate T → I; SICCT test sensitivity; and

onset of infectiousness in the first affected individual.
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Figure C.23: Marginal model parameter distributions for the second VetNet data set

fitted to the SETIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals) and ARQ MCMC (ΓL = 1). Left to right: contact S → E;

progression E → T ; progression T → I; SICCT test sensitivity; and onset of

infectiousness in the first affected individual.
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C.4 Incident three

(a) BTB surveillance data from VetNet.

(b) herd size estimated from CTS movement data.

Figure C.24: The final data set is based on two incidents that occurred at a farm

in Shropshire. The first was triggered by a routine whole herd test and the second

by the six monthly follow up test related to the first incident.
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## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 5.2e-05 1.7e-05 5.2e-05 2.0e-05 1 1

## 2 2 1.3e-01 1.2e-01 1.3e-01 1.2e-01 1 1

## 3 3 7.2e-01 1.2e-01 7.2e-01 1.2e-01 1 1

## 4 4 -3.0e+02 4.5e+01 -3.0e+02 4.7e+01 1 1

## SMC2 analysis:

## Theta iMu iSD

## 1 1 5.0e-05 1.4e-05

## 2 2 1.6e-01 1.1e-01

## 3 3 7.0e-01 1.0e-01

## 4 4 -3.0e+02 4.0e+01

Figure C.25: Inference summaries for the two SEIR analyses (incident three).
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Figure C.26: Marginal model parameter distributions for the third VetNet data set

fitted to the SEIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals) and ARQ MCMC (ΓL = 3). Left to right: contact rate

S → E; progression rate E → I; SICCT test sensitivity; onset of infectiousness in

the first affected individual.
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## ARQMCMC analysis:

## Theta iMu iSD rMu rSD SRE (95%)

## 1 1 6.7e-05 3.0e-05 6.9e-05 4.1e-05 1.1 1.1

## 2 2 8.0e-02 1.0e-01 1.3e-01 1.2e-01 1.0 1.2

## 3 3 1.6e-01 1.2e-01 1.5e-01 1.2e-01 1.0 1.0

## 4 4 7.7e-01 1.1e-01 7.2e-01 1.2e-01 1.0 1.2

## 5 5 -3.1e+02 3.8e+01 -2.9e+02 5.3e+01 1.0 1.1

## SMC2 analysis:

## Theta iMu iSD

## 1 1 6.6e-05 4.9e-05

## 2 2 1.6e-01 1.1e-01

## 3 3 1.8e-01 1.1e-01

## 4 4 7.0e-01 9.5e-02

## 5 5 -2.9e+02 4.6e+01

Figure C.27: Inference summaries for the two SETIR analyses (incident two). The

model parameters, labeled from one to five, are as follows: contact parameter S →
E; progression rate E → T ; progression rate T → I; SICCT test sensitivity; and

onset of infectiousness in the first affected individual.
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Figure C.28: Marginal model parameter distributions for the second VetNet data set

fitted to the SETIR model using the SMC2 algorithm with N = {6000, 8000, 10000}
(independent proposals) and ARQ MCMC (ΓL = 1). Left to right: contact S → E;

progression E → T ; progression T → I; SICCT test sensitivity; and onset of

infectiousness in the first affected individual.

334



C.5 Model evidence

(a) Incident one. (b) Incident two. (c) Incident three.

Figure C.29: Bayesian model evidence for the individual herd scenarios presented

in this chapter. Independent estimates were obtained using the SMC 2 and ARQ

MCMC algorithms, as described in Chapters 2 and 3 respectively.
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Appendix D

Detailed results for meta-analysis

of herd outbreaks for BTB

D.1 Model comparison

Yorkshire herds

The first subset is comprised of half a dozen herds drawn from the Yorkshire region.

Frequency-dependent models performed reasonably well for this subset. The excep-

tion was a case that polarised the reinfection models, with the super reinfection

model [marginally] outperforming all others. Those results are given in Tables D.1

and D.2.

East of England herds

The simple reinfection model bucked its own trend by generally outperforming other

models for the East of England cohort. These cases provide among the strongest

(but still inconclusive) evidence for carrying the reinfection concept forward in

future attempts to resolve longstanding scientific questions concerning the nature

and pathology of BTB. Those results are given in Table D.3.

Scottish herds

The final and largest subgroup was drawn from Scotland. Those results are given

in Tables D.4 and D.5. This was perhaps the most ‘mixed’ group of all, including

with respect to frequency- versus density-dependent models.
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Herd Model E(BME) Var(BME) BF

7397 TDR-SETIR (Freq. Dep) 122.8 29.8 17.1

7397 TDR-SEIR (Freq. Dep) 128.5 13.7 1.0

7397 SRI-SEIR 130.4 36.0 0.4

7397 TDR-SETIR (Dens. Dep) 133.2 86.0 0.1

7397 TDR-SEIR (Dens. Dep) 138.5 594.4 0.0

7397 TDR-SEYZ 179.7 4.6 0.0

7454 TDR-SETIR (Freq. Dep) 64.8 11.1 1.3

7454 TDR-SEIR (Freq. Dep) 65.3 14.8 1.0

7454 TDR-SETIR (Dens. Dep) 65.4 7.0 1.0

7454 TDR-SEIR (Dens. Dep) 65.6 9.9 0.9

7454 SRI-SEIR 66.5 0.3 0.6

7454 TDR-SEYZ 66.9 0.0 0.5

7456 TDR-SEYZ 109.4 83.1 26.6

7456 TDR-SETIR (Dens. Dep) 113.3 5.2 3.8

7456 TDR-SETIR (Freq. Dep) 114.9 1.9 1.7

7456 TDR-SEIR (Freq. Dep) 115.9 3.3 1.0

7456 TDR-SEIR (Dens. Dep) 118.1 7.8 0.3

7456 SRI-SEIR 118.4 7.6 0.3

Table D.1: First three (of six) herd model comparison scenarios drawn from the

Yorkshire group.

It was hoped that the relatively low incidence of BTB in Scotland generally

might isolate any extraneous factors that were unaccounted for in the dynamics of

the model, from the within-herd dynamics they were intended to evaluate. However

the approach still yielded no clear findings. These matters are addressed further in

the discussion at the end of the chapter.

For now we turn out attention (in the next sub-section) to the parameter in-

ference results. They are perhaps not as interesting due to the fact that no single

model stands out as especially worthy. However they are included for complete-

ness, and also serve a role in evaluating both the consistency of algorithms, and

correlation between important parameters within the model.
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Herd Model E(BME) Var(BME) BF

7457 TDR-SETIR (Freq. Dep) 68.5 0.2 1.3

7457 TDR-SETIR (Dens. Dep) 68.7 2.8 1.3

7457 TDR-SEIR (Freq. Dep) 69.1 0.1 1.0

7457 TDR-SEIR (Dens. Dep) 70.7 12.3 0.5

7457 SRI-SEIR 72.6 6.2 0.2

7457 TDR-SEYZ 110.4 462.3 0.0

7485 TDR-SEYZ 31.1 0.0 2.9

7485 TDR-SETIR (Dens. Dep) 32.2 0.2 1.7

7485 TDR-SETIR (Freq. Dep) 32.6 0.0 1.4

7485 TDR-SEIR (Dens. Dep) 33.2 0.0 1.0

7485 TDR-SEIR (Freq. Dep) 33.2 0.0 1.0

7485 SRI-SEIR 34.9 0.0 0.4

7675 TDR-SETIR (Freq. Dep) 50.9 0.9 1.3

7675 TDR-SEIR (Freq. Dep) 51.5 0.3 1.0

7675 TDR-SETIR (Dens. Dep) 51.6 1.9 1.0

7675 TDR-SEIR (Dens. Dep) 53.6 8.8 0.4

7675 SRI-SEIR 55.2 1.1 0.2

7675 TDR-SEYZ 80.0 12.3 0.0

Table D.2: Second three (of six) herd model comparison scenarios drawn from the

Yorkshire group.
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Herd Model E(BME) Var(BME) BF

7772 SRI-SEIR 109.4 5.2 265,155.4

7772 TDR-SETIR (Freq. Dep) 121.9 456.3 516.8

7772 TDR-SETIR (Dens. Dep) 128.1 981.3 24.0

7772 TDR-SEIR (Freq. Dep) 134.4 1,271.0 1.0

7772 TDR-SEYZ 136.7 14.9 0.3

7772 TDR-SEIR (Dens. Dep) 150.0 3,154.4 0.0

7775 SRI-SEIR 37.0 0.0 3.8

7775 TDR-SETIR (Freq. Dep) 39.4 9.1 1.2

7775 TDR-SEIR (Freq. Dep) 39.7 8.5 1.0

7775 TDR-SEIR (Dens. Dep) 46.6 29.2 0.0

7775 TDR-SETIR (Dens. Dep) 48.2 27.7 0.0

7775 TDR-SEYZ 91.7 7.1 0.0

7777 TDR-SEYZ 69.3 57.5 7,221.6

7777 SRI-SEIR 84.3 4.8 4.0

7777 TDR-SEIR (Freq. Dep) 87.1 48.3 1.0

7777 TDR-SETIR (Freq. Dep) 87.2 51.0 0.9

7777 TDR-SETIR (Dens. Dep) 90.1 58.7 0.2

7777 TDR-SEIR (Dens. Dep) 91.1 58.6 0.1

7805 SRI-SEIR 73.5 0.1 4.7

7805 TDR-SEYZ 73.9 7.2 3.9

7805 TDR-SETIR (Freq. Dep) 76.2 18.4 1.3

7805 TDR-SETIR (Dens. Dep) 76.3 20.1 1.2

7805 TDR-SEIR (Freq. Dep) 76.6 16.6 1.0

7805 TDR-SEIR (Dens. Dep) 76.9 16.7 0.9

Table D.3: Model comparison scenarios for the East of England group.
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Herd Model E(BME) Var(BME) BF

31336 TDR-SETIR (Dens. Dep) 55.9 0.7 2.8

31336 TDR-SETIR (Freq. Dep) 56.1 0.0 2.5

31336 TDR-SEIR (Dens. Dep) 57.0 0.5 1.6

31336 TDR-SEIR (Freq. Dep) 58.0 3.6 1.0

31336 SRI-SEIR 79.9 1,198.8 0.0

31336 TDR-SEYZ 82.2 11.6 0.0

31376 TDR-SETIR (Freq. Dep) 56.2 0.0 1.1

31376 TDR-SEIR (Freq. Dep) 56.4 0.0 1.0

31376 TDR-SETIR (Dens. Dep) 58.1 0.1 0.4

31376 TDR-SEIR (Dens. Dep) 58.7 0.2 0.3

31376 SRI-SEIR 60.2 0.1 0.2

31376 TDR-SEYZ 69.7 50.1 0.0

31472 TDR-SEIR (Freq. Dep) 75.3 47.5 1.0

31472 TDR-SETIR (Freq. Dep) 75.6 49.2 0.9

31472 TDR-SEIR (Dens. Dep) 80.0 57.7 0.1

31472 TDR-SETIR (Dens. Dep) 80.2 55.1 0.1

31472 SRI-SEIR 87.6 0.0 0.0

31472 TDR-SEYZ 108.7 12.2 0.0

31495 SRI-SEIR 86.4 0.6 1.8

31495 TDR-SEIR (Freq. Dep) 87.5 4.5 1.0

31495 TDR-SEIR (Dens. Dep) 96.5 36.9 0.0

31495 TDR-SETIR (Freq. Dep) 96.8 12.4 0.0

31495 TDR-SETIR (Dens. Dep) 125.1 297.6 0.0

Table D.4: Model comparison scenarios for the first four (of eight) herds comprising

the Scottish group.
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Herd Model E(BME) Var(BME) BF

31834 TDR-SETIR (Freq. Dep) 42.2 15.6 1.7

31834 TDR-SETIR (Dens. Dep) 42.8 8.2 1.3

31834 TDR-SEIR (Freq. Dep) 43.3 11.7 1.0

31834 TDR-SEIR (Dens. Dep) 44.8 10.0 0.5

31834 SRI-SEIR 45.5 0.7 0.3

31834 TDR-SEYZ 78.8 2.9 0.0

31906 TDR-SEYZ 340.3 13,403.3 4.75E+159

31906 TDR-SETIR (Dens. Dep) 908.3 301,648.6 2.18E+036

31906 TDR-SEIR (Freq. Dep) 1,075.6 342,619.7 1.0

31906 SRI-SEIR 1,233.2 2,293.8 0.0

31906 TDR-SEIR (Dens. Dep) 1,380.9 71,885.5 0.0

31906 TDR-SETIR (Freq. Dep) 1,742.0 220,867.8 0.0

32000 TDR-SEYZ 42.0 7.0 29.0

32000 TDR-SEIR (Dens. Dep) 46.6 2.5 2.8

32000 TDR-SETIR (Dens. Dep) 46.8 1.2 2.6

32000 SRI-SEIR 47.7 0.1 1.7

32000 TDR-SEIR (Freq. Dep) 48.7 0.1 1.0

32000 TDR-SETIR (Freq. Dep) 48.8 0.0 0.9

32012 TDR-SEYZ 96.2 287.1 274,519.1

32012 TDR-SETIR (Dens. Dep) 119.1 1.8 3.0

32012 TDR-SEIR (Dens. Dep) 120.1 2.1 1.8

32012 SRI-SEIR 120.1 3.6 1.8

32012 TDR-SETIR (Freq. Dep) 121.1 0.1 1.1

32012 TDR-SEIR (Freq. Dep) 121.3 0.4 1.0

Table D.5: Model comparison scenarios for the second four (of eight) herds com-

prising the Scottish group.
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D.2 Selected parameter estimates

Here we report selected parameter estimates grouped by type across regions. The

complete model parameter sets are given in the following section (and also reported

in tables.) As with the results already reported, several algorithm configurations

(and runs) were used to compute parameter estimates for each of the three herd

groups.

Estimates for the latent period

(a) Frequency-dependent (b) Density-dependent

Figure D.1: SEIR model estimates for Yorkshire

(a) Frequency-dependent (b) Density-dependent

Figure D.2: SEIR model estimates for East of England
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(a) Frequency-dependent (b) Density-dependent

Figure D.3: SEIR model estimates for Scotland

(a) Frequency-dependent (b) Density-dependent

Figure D.4: SETIR model estimates for Yorkshire

(a) Frequency-dependent (b) Density-dependent

Figure D.5: SETIR model estimates for East of England
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(a) Frequency-dependent (b) Density-dependent

Figure D.6: SETIR model estimates for Scotland

(a) Yorkshire (b) East of England

(c) Scotland

Figure D.7: Simple reinfection model estimates.
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Frequency dependent TDR-SEIR model

Figure D.8: Yorkshire

Figure D.9: East of England

Figure D.10: Scotland
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Density dependent TDR-SEIR model

Figure D.11: Yorkshire

Figure D.12: East of England

Figure D.13: Scotland
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Frequency dependent TDR-SETIR model

Figure D.14: Yorkshire

Figure D.15: East of England

Figure D.16: Scotland
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Density dependent TDR-SETIR model

Figure D.17: Yorkshire

Figure D.18: East of England

Figure D.19: Scotland
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Reinfection (SEYZ) model

Figure D.20: Yorkshire

Figure D.21: East of England

Figure D.22: Scotland
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Alternative reinfection model

Figure D.23: Yorkshire

Figure D.24: East of England

Figure D.25: Scotland
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D.3 Within-herd estimates by model

Here we provide a visual summary of the parameter estimates that comprise part

of the main results presented in chapter 6 (see §6.4) organised by model.

θi Symbol Description Prior: Ua Ub

1 β Infection (density dependent) 0.000 0.001

1 β Infection (frequency dependent) 0.0 0.1

2 γT Progression to T 0.0 0.1

3 γI Progression to I 0.0 0.1

4 t0 Time of initial onset -360.0 0.0

5 σS SICCT test sensitivity – standard 0.3 1.0

6 σH SICCT test sensitivity – high 0.3 1.0

7 σγ IFNγ test sensitivity 0.3 1.0

Table D.6: Test-determined removal model parameters.
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TDR-SEIR model

Figure D.26: Yorkshire

Figure D.27: East of England
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(a) Frequency-dependent TDR-SEIR (b) Density-dependent TDR-SEIR

Figure D.28: Scotland
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Frequency dependent TDR-SETIR model

Figure D.29: Yorkshire

Figure D.30: East of England

Figure D.31: Scotland
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Density dependent TDR-SETIR model

Figure D.32: Yorkshire

Figure D.33: East of England

Figure D.34: Scotland
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Reinfection (SEYZ) model

Figure D.35: Yorkshire

Figure D.36: East of England

Figure D.37: Scotland

356



(a) Yorkshire (b) East of England

(c) Scotland

Figure D.38: Joint marginal model parameter distributions .

θi Symbol Description Prior: Ua Ub

1 η Infection 0.000 0.001

2 δ Recovery 0.000 0.001

3 p′ Super infection 0.0 1.0

4 p Progression 0.0 1.0

5 q Loss of temporary immunity 0.0 1.0

6 q′ Remission 0.0 1.0

7 t0 Time of initial onset -360.0 0.0

8 σS SICCT test sensitivity – standard 0.3 1.0

9 σH SICCT test sensitivity – high 0.3 1.0

10 σγ IFNγ test sensitivity 0.3 1.0

Table D.7: Reinfection model parameters.
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θi Symbol Description Prior: Ua Ub

1 t0 Time of initial onset -360.0 0.0

2 σS SICCT test sensitivity – standard 0.3 1.0

3 σH SICCT test sensitivity – high 0.3 1.0

4 σγ IFNγ test sensitivity 0.3 1.0

5 β Infection 0.0 0.01

6 γ Progression 0.0 0.1

7 κ Reinfection scalar 0.0 10.0

Table D.8: Alternative reinfection model parameters.
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Alternative reinfection model

Figure D.39: Yorkshire

Figure D.40: East of England

Figure D.41: Scotland
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Appendix E

Hawkes model results

Here we provide more detailed inference results corresponding to those reported in

Chapter 7.

E.1 Homogeneous process model results
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E.1.1 North east England

Figure E.1: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1545

Reactor herds: 40

Number of reactors, i.e.

animals: 135

σi animals +ve

1 4725 18

2 733 2

3 2364 49

4 10 66

5 1 0

Figure E.2: VetNet surveillance data for selected North east England herds. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the North east England group.) A tabulated summary is

provided in Table E.1.

Figure E.3: Marginal sample densities for North east England.
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Trace plots

Figure E.4: Trace plots for the North east England analysis.
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E.1.2 Cheshire

Figure E.5: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1364

Reactor herds: 152

Number of reactors, i.e.

animals: 955

σi animals +ve

1 4278 101

2 7582 23

3 4833 744

4 29 87

Figure E.6: VetNet surveillance data for selected Cheshire herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Cheshire group.) A tabulated summary is provided in

Table E.2.

Figure E.7: Marginal sample densities for Cheshire.
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Trace plots

Figure E.8: Trace plots for the Cheshire analysis.
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E.1.3 Oxfordshire

Figure E.9: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 502

Reactor herds: 35

Number of reactors, i.e.

animals: 242

σi animals +ve

1 1284 34

2 597 1

3 1466 164

4 12 43

Figure E.10: VetNet surveillance data for selected Oxfordshire herds. The diagnos-

tic test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Oxfordshire group.) A tabulated summary is provided in

Table E.3.

Figure E.11: Marginal sample densities for Oxfordshire.
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Trace plots

Figure E.12: Trace plots for the Oxfordshire analysis.
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E.1.4 Avon

Figure E.13: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 632

Reactor herds: 161

Number of reactors, i.e.

animals: 737

σi animals +ve

1 3971 205

2 1647 22

3 2402 486

4 30 24

Figure E.14: VetNet surveillance data for selected Avon herds. The diagnostic test

data are categorised as follows: standard SICCT herd tests; high-sensitivity SICCT

herd tests; risk-based surveillance testing; and the IFNγ blood test trial, denoted

σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Avon group.) A tabulated summary is provided in Ta-

ble E.4.

Figure E.15: Marginal sample densities for Avon.
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Trace plots

Figure E.16: Trace plots for the Avon analysis.
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E.1.5 Dorset

Figure E.17: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 971

Reactor herds: 196

Number of reactors, i.e.

animals: 849

σi animals +ve

1 3935 186

2 3321 30

3 3649 496

4 54 137

Figure E.18: VetNet surveillance data for selected Dorset herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Dorset group.) A tabulated summary is provided in

Table E.5.

Figure E.19: Marginal sample densities for Dorset.
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Trace plots

Figure E.20: Trace plots for the Dorset analysis.
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E.1.6 Wiltshire

Figure E.21: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 851

Reactor herds: 258

Number of reactors, i.e.

animals: 1801

σi animals +ve

1 4371 478

2 1800 35

3 3901 1225

4 36 63

Figure E.22: VetNet surveillance data for selected Wiltshire herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Wiltshire group.) A tabulated summary is provided in

Table E.6.

Figure E.23: Marginal sample densities for Wiltshire.
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Trace plots

Figure E.24: Trace plots for the Wiltshire analysis.
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E.1.7 Gwynedd

Figure E.25: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1585

Reactor herds: 46

Number of reactors, i.e.

animals: 95

σi animals +ve

1 3514 8

2 3303 1

3 5121 64

4 11 22

Figure E.26: VetNet surveillance data for selected Gwynedd herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Gwynedd group.) A tabulated summary is provided in

Table E.7.

Figure E.27: Marginal sample densities for Gwynedd.
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Trace plots

Figure E.28: Trace plots for the Gwynedd analysis.
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E.1.8 Gwent

Figure E.29: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 612

Reactor herds: 204

Number of reactors, i.e.

animals: 1816

σi animals +ve

1 3077 385

2 1184 23

3 3399 1336

4 63 72

Figure E.30: VetNet surveillance data for selected Gwent herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Gwent group.) A tabulated summary is provided in

Table E.8.

Figure E.31: Marginal sample densities for Gwent.
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Trace plots

Figure E.32: Trace plots for the Gwent analysis.
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E.1.9 Powys

Figure E.33: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1763

Reactor herds: 571

Number of reactors, i.e.

animals: 3298

σi animals +ve

1 8612 665

2 7877 105

3 8654 2389

4 107 139

Figure E.34: VetNet surveillance data for selected Powys herds. The diagnostic test

data are categorised as follows: standard SICCT herd tests; high-sensitivity SICCT

herd tests; risk-based surveillance testing; and the IFNγ blood test trial, denoted

σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the basic seven-

parameter model (for the Powys group.) A tabulated summary is provided in

Table E.9.

Figure E.35: Marginal sample densities for Powys.
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Trace plots

Figure E.36: Trace plots for the Powys analysis.
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E.1.10 Tabulated results

θi Mean SD R̂ 97.5

1 0.00001 0.00000 1.0 1.1

2 0.66500 0.14100 1.0 1.0

3 0.48100 0.20600 1.0 1.0

4 0.36800 0.09740 1.0 1.1

5 0.49000 0.15000 1.1 1.2

6 0.45200 0.08930 1.0 1.1

7 0.90600 0.08450 1.0 1.1

8 0.63100 0.19100 1.0 1.0

Table E.1: Standard Hawkes model parameter inference results for North east Eng-

land. Number of herds (reactors) := 1545 (135.)

θi Mean SD R̂ 97.5

1 0.00005 0.00000 1.0 1.0

2 0.80600 0.05690 1.0 1.0

3 0.13500 0.03470 1.0 1.1

4 0.53500 0.06290 1.0 1.0

5 0.33000 0.07500 1.0 1.0

6 0.70300 0.03340 1.1 1.2

7 0.90100 0.09700 1.1 1.1

Table E.2: Standard Hawkes model parameter inference results for Cheshire. Num-

ber of herds (reactors) := 1364 (955.)
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θi Mean SD R̂ 97.5

1 0.00004 0.00001 1.0 1.0

2 0.82300 0.07940 1.0 1.0

3 0.05820 0.03960 1.0 1.0

4 0.41200 0.09420 1.0 1.0

5 0.35900 0.11100 1.0 1.0

6 0.48500 0.05590 1.0 1.0

7 0.92400 0.08760 1.0 1.0

Table E.3: Standard Hawkes model parameter inference results for Oxfordshire.

Number of herds (reactors) := 502 (242.)

θi Mean SD R̂ 97.5

1 0.00014 0.00001 1.0 1.0

2 0.66200 0.04730 1.0 1.0

3 0.19000 0.05740 1.1 1.1

4 0.48000 0.04300 1.0 1.0

5 0.32900 0.06450 1.0 1.0

6 0.72300 0.03360 1.1 1.2

7 0.90100 0.09520 1.0 1.0

Table E.4: Standard Hawkes model parameter inference results for Avon. Number

of herds (reactors) := 632 (737.)

θi Mean SD R̂ 97.5

1 0.00010 0.00001 1.0 1.0

2 0.69500 0.05520 1.0 1.0

3 0.12100 0.02990 1.0 1.1

4 0.40100 0.06110 1.1 1.2

5 0.32600 0.07680 1.0 1.0

6 0.43600 0.04460 1.1 1.3

7 0.92000 0.07580 1.1 1.3

Table E.5: Standard Hawkes model parameter inference results for Dorset. Number

of herds (reactors) := 971 (849.)
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θi Mean SD R̂ 97.5

1 0.00019 0.00001 1.0 1.0

2 0.74200 0.03480 1.0 1.0

3 0.11200 0.02380 1.2 1.4

4 0.66000 0.03190 1.0 1.1

5 0.33400 0.06770 1.0 1.1

6 0.63800 0.02290 1.0 1.0

7 0.92800 0.06780 1.0 1.0

Table E.6: Standard Hawkes model parameter inference results for Wiltshire. Num-

ber of herds (reactors) := 851 (1801.)

θi Mean SD R̂ 97.5

1 0.00001 0.00000 1.0 1.0

2 0.55900 0.18800 1.0 1.0

3 0.42900 0.25800 1.1 1.3

4 0.42100 0.11500 1.0 1.1

5 0.35300 0.09710 1.0 1.0

6 0.46000 0.07500 1.2 1.5

7 0.82600 0.09310 1.0 1.0

Table E.7: Standard Hawkes model parameter inference results for Gwynedd. Num-

ber of herds (reactors) := 1585 (95.)

θi Mean SD R̂ 97.5

1 0.00023 0.00001 1.0 1.0

2 0.77900 0.02960 1.0 1.0

3 0.04700 0.01690 1.1 1.4

4 0.70600 0.03500 1.0 1.1

5 0.32800 0.07150 1.0 1.0

6 0.71400 0.03840 1.1 1.2

7 0.89600 0.08340 1.0 1.0

Table E.8: Standard Hawkes model parameter inference results for Gwent. Number

of herds (reactors) := 612 (1816.)
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θi Mean SD R̂ 97.5

1 0.00015 0.00001 1.0 1.1

2 0.73200 0.03530 1.0 1.0

3 0.12400 0.02070 1.1 1.4

4 0.59800 0.02270 1.2 1.5

5 0.31500 0.05220 1.0 1.0

6 0.64600 0.01900 1.0 1.0

7 0.65000 0.04900 1.1 1.4

Table E.9: Standard Hawkes model parameter inference results for Powys. Number

of herds (reactors) := 1763 (3298.)
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E.2 Homogeneous disease process-hierarchical model

results

E.2.1 Summaries

Here we report the summaries of posterior samples for parameters from the second

analysis that not were not included in the main text.

Figure E.37: Constant FOI hierarchical parameter estimates.
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Figure E.38: Disease process parameter estimates {α, β}.
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(a) Standard sensitivity.

(b) High sensitivity.

Figure E.39: Diagnostic test sensitivity parameter estimates: SICCT test.
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(a) Trade-related testing.

(b) IFNγ blood test.

Figure E.40: Diagnostic test sensitivity parameter estimates: other.
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E.2.2 East England

Figure E.41: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 513

Reactor herds: 13

Number of reactors, i.e.

animals: 75

σi animals +ve

1 981 11

2 93 2

3 1619 29

4 20 33

Figure E.42: VetNet surveillance data for selected East England herds. The di-

agnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchi-

cal model with homogeneous disease processes (for the East England group.) A

tabulated summary is provided in Table E.10.

Figure E.43: Marginal sample densities for East England.
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Trace plots

Figure E.44: Trace plots for the East England analysis.
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E.2.3 East Midlands

Figure E.45: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1966

Reactor herds: 231

Number of reactors, i.e.

animals: 1217

σi animals +ve

1 5100 181

2 6142 17

3 7475 890

4 40 129

Figure E.46: VetNet surveillance data for selected East Midlands herds. The di-

agnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchi-

cal model with homogeneous disease processes (for the East Midlands group.) A

tabulated summary is provided in Table E.11.

Figure E.47: Marginal sample densities for East Midlands.
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Trace plots

Figure E.48: Trace plots for the East Midlands analysis.
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E.2.4 North east England

Figure E.49: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1015

Reactor herds: 22

Number of reactors, i.e.

animals: 103

σi animals +ve

1 2383 14

2 691 1

3 2017 30

4 8 58

Figure E.50: VetNet surveillance data for selected North east England herds. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchical

model with homogeneous disease processes (for the North east England group.) A

tabulated summary is provided in Table E.12.

Figure E.51: Marginal sample densities for North east England.
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Trace plots

Figure E.52: Trace plots for the North east England analysis.
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E.2.5 North west England

Figure E.53: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 3432

Reactor herds: 190

Number of reactors, i.e.

animals: 989

σi animals +ve

1 7953 97

2 12540 27

3 8972 694

4 45 171

Figure E.54: VetNet surveillance data for selected North west England herds. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchical

model with homogeneous disease processes (for the North west England group.) A

tabulated summary is provided in Table E.13.

Figure E.55: Marginal sample densities for North west England.
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Trace plots

Figure E.56: Trace plots for the North west England analysis.
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E.2.6 South east England

Figure E.57: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1393

Reactor herds: 78

Number of reactors, i.e.

animals: 357

σi animals +ve

1 3102 36

2 1664 9

3 3786 246

4 37 66

Figure E.58: VetNet surveillance data for selected South east England herds. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchical

model with homogeneous disease processes (for the South east England group.) A

tabulated summary is provided in Table E.14.

Figure E.59: Marginal sample densities for South east England.
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Trace plots

Figure E.60: Trace plots for the South east England analysis.
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E.2.7 Scotland

Figure E.61: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 4510

Reactor herds: 77

Number of reactors, i.e.

animals: 280

σi animals +ve

1 11053 19

2 3450 3

3 4884 176

4 24 82

Figure E.62: VetNet surveillance data for selected Scotland herds. The diagnostic

test data are categorised as follows: standard SICCT herd tests; high-sensitivity

SICCT herd tests; risk-based surveillance testing; and the IFNγ blood test trial,

denoted σi for 1:4 respectively.

411



Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchical

model with homogeneous disease processes (for the Scotland group.) A tabulated

summary is provided in Table E.15. Note that the algorithm achieved a poor degree

of convergence for many parameters, as indicated by R̂.

Figure E.63: Marginal sample densities for Scotland.
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Trace plots

Figure E.64: Trace plots for the Scotland analysis.
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E.2.8 Tabulated results

θi Type Mean SD R̂ 97.5

1 1 0.00003 0.00002 1.0 1.0

2 1 0.00003 0.00003 1.0 1.0

3 1 0.00004 0.00003 1.0 1.0

4 1 0.00003 0.00002 1.0 1.1

5 2 0.00015 0.00008 1.0 1.0

6 3 0.76497 0.21132 1.0 1.0

7 4 0.35162 0.23306 1.0 1.1

8 5 0.38440 0.16628 1.0 1.1

9 5 0.62194 0.21437 1.0 1.1

10 5 0.28467 0.11730 1.1 1.2

11 5 0.56560 0.08843 1.0 1.0

12 6 0.89852 0.44220 1.1 1.4

13 6 0.00040 0.00076 1.3 2.1

Table E.10: Basic hierarchical Hawkes model parameter inference results for East

England. Number of herds (reactors) := 513 (75.)
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θi Type Mean SD R̂ 97.5

1 1 0.00013 0.00001 1.0 1.1

2 1 0.00004 0.00002 1.1 1.2

3 1 0.00004 0.00002 1.0 1.0

4 2 0.00012 0.00006 1.0 1.1

5 3 0.73712 0.11517 1.1 1.2

6 4 0.27282 0.25733 5.5 27.3

7 5 0.36225 0.06705 1.0 1.0

8 5 0.20594 0.13754 1.1 1.1

9 5 0.51186 0.03151 1.1 1.4

10 5 0.81950 0.11625 1.0 1.0

11 6 0.68962 0.37199 1.3 1.8

12 6 0.00137 0.00217 1.1 1.3

Table E.11: Basic hierarchical Hawkes model parameter inference results for East

Midlands. Number of herds (reactors) := 1966 (1217.)

θi Type Mean SD R̂ 97.5

1 1 0.00003 0.00001 1.3 2.2

2 1 0.00004 0.00007 1.0 1.0

3 1 0.00003 0.00006 1.0 1.1

4 1 0.00002 0.00001 1.3 2.0

5 2 0.00005 0.00008 1.0 1.1

6 3 0.75709 0.27895 1.3 2.2

7 4 0.21163 0.28057 3.7 18.3

8 5 0.37195 0.14676 2.1 7.6

9 5 0.37732 0.19076 3.2 6.0

10 5 0.51934 0.07150 1.4 2.4

11 5 0.68964 0.17708 1.8 3.5

12 6 1.01515 0.08721 2.3 5.3

13 6 0.00024 0.00047 1.3 1.8

Table E.12: Basic hierarchical Hawkes model parameter inference results for North

east England. Number of herds (reactors) := 1015 (103.)
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θi Type Mean SD R̂ 97.5

1 1 0.00003 0.00001 1.2 1.6

2 1 0.00008 0.00001 1.5 2.2

3 1 0.00004 0.00003 1.0 1.1

4 2 0.00002 0.00002 1.0 1.1

5 3 0.79097 0.16251 1.1 1.4

6 4 0.33565 0.21105 3.5 8.4

7 5 0.30561 0.12306 1.6 3.2

8 5 0.31803 0.17433 2.5 6.0

9 5 0.52150 0.07563 2.1 4.0

10 5 0.82074 0.18955 1.5 3.5

11 6 0.94661 0.34063 2.5 8.5

12 6 0.00033 0.00056 1.6 5.6

Table E.13: Basic hierarchical Hawkes model parameter inference results for North

west England. Number of herds (reactors) := 3432 (989.)
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θi Type Mean SD R̂ 97.5

1 1 0.00006 0.00003 2.2 4.2

2 1 0.00007 0.00005 2.1 4.1

3 1 0.00004 0.00003 2.0 3.9

4 1 0.00007 0.00004 2.0 3.6

5 1 0.00005 0.00002 1.9 3.5

6 1 0.00011 0.00004 3.4 6.9

7 2 0.00003 0.00004 1.1 1.3

8 3 0.83919 0.26441 3.0 11.7

9 4 0.07696 0.05712 1.5 3.6

10 5 0.33633 0.22746 14.0 69.9

11 5 0.41831 0.15700 3.2 6.7

12 5 0.42008 0.07587 1.7 3.1

13 5 0.67178 0.16185 2.9 6.2

14 6 0.82319 0.18789 1.5 2.7

15 6 0.00205 0.00374 1.8 3.8

Table E.14: Basic hierarchical Hawkes model parameter inference results for South

east England. Number of herds (reactors) := 1393 (357.)
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θi Type Mean SD R̂ 97.5

1 1 0.00015 0.00011 21.1 40.9

2 1 0.00001 0.00002 1.4 2.1

3 1 0.00001 0.00002 2.1 5.5

4 1 0.00002 0.00004 1.3 1.8

5 1 0.00001 0.00003 1.4 2.0

6 1 0.00010 0.00010 26.9 57.8

7 1 0.00004 0.00005 7.2 18.1

8 1 0.00003 0.00009 1.7 2.8

9 1 0.00024 0.00021 28.0 63.0

10 1 0.00001 0.00006 1.2 1.8

11 1 0.00021 0.00017 20.8 52.4

12 1 0.00002 0.00006 1.2 1.5

13 1 0.00021 0.00012 15.1 31.0

14 1 0.00019 0.00008 13.7 27.0

15 1 0.00004 0.00002 1.4 2.7

16 1 0.00017 0.00021 29.7 64.6

17 1 0.00004 0.00003 3.8 8.6

18 1 0.00001 0.00003 1.0 1.1

19 1 0.00014 0.00015 11.8 33.5

20 1 0.00007 0.00005 6.5 17.7

21 1 0.00001 0.00002 1.1 1.1

22 1 0.00005 0.00005 4.1 14.2

23 1 0.00004 0.00002 2.0 3.3

24 1 0.00001 0.00004 1.1 1.4

25 1 0.00004 0.00002 4.3 8.8

26 1 0.00006 0.00005 2.0 5.3

27 1 0.00031 0.00015 14.8 31.2

28 1 0.00019 0.00013 14.4 31.8

Table E.15: Basic hierarchical Hawkes model parameter inference results for Scot-

land – continued on next page. Number of herds (reactors) := 4510 (280.
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θi Type Mean SD R̂ 97.5

29 1 0.00023 0.00014 13.2 27.9

30 1 0.00014 0.00018 19.0 49.9

31 1 0.00003 0.00002 1.8 3.5

32 1 0.00032 0.00021 33.6 66.6

33 1 0.00007 0.00004 5.2 10.1

34 2 0.00001 0.00001 1.9 3.1

35 3 1.00009 0.41471 1116.5 2394.9

36 4 0.11131 0.02861 208.5 539.5

37 5 0.50017 0.00088 5.0 10.1

38 5 0.50147 0.00277 23.4 55.6

39 5 0.50100 0.00211 11.9 24.8

40 5 0.49871 0.00217 11.9 31.8

41 6 1.00042 0.00142 13.0 26.3

42 6 0.00018 0.00004 6.4 14.2

Table E.16: Basic hierarchical Hawkes model parameter inference results for Scot-

land – carried over from previous page. Number of herds (reactors) := 4510 (280.)
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E.3 Heterogeneous disease process-hierarchical model

results

E.3.1 Summaries

Figure E.65: Constant FOI hierarchical parameter estimates.
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Figure E.66: Disease process parameter estimates α ∼ Γ(Aa, Ab).
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Figure E.67: Disease process parameter estimates β ∼ Γ(Ba, Bb).
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(a) Standard sensitivity.

(b) High sensitivity.

Figure E.68: Diagnostic test sensitivity parameter estimates: SICCT test.
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(a) Trade-related testing.

(b) IFNγ blood test.

Figure E.69: Diagnostic test sensitivity parameter estimates: other.
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E.3.2 East England

Figure E.70: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 513

Reactor herds: 13

Number of reactors, i.e.

animals: 75

σi animals +ve

1 981 11

2 93 2

3 1619 29

4 20 33

Figure E.71: VetNet surveillance data for selected East England herds. The di-

agnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchi-

cal model with heterogeneous disease processes (for the East England group.) A

tabulated summary is also provided, in Table E.17.

Figure E.72: Marginal densites for the East England analysis.
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Traceplots

(a) Marginal density and trace plot for the trade: µT parameter.

Figure E.73: Trace plots for the East England analysis.
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E.3.3 East Midlands

Figure E.74: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1966

Reactor herds: 231

Number of reactors, i.e.

animals: 1217

σi animals +ve

1 5100 181

2 6142 17

3 7475 890

4 40 129

Figure E.75: VetNet surveillance data for selected East Midlands herds. The di-

agnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchi-

cal model with heterogeneous disease processes (for the East Midlands group.) A

tabulated summary is also provided, in Table E.18.

Figure E.76: Marginal densites for the East Midlands analysis.
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Traceplots

(a) Marginal density and trace plot for the trade: µT parameter.

Figure E.77: Trace plots for the East Midlands analysis.
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E.3.4 North east England

Figure E.78: Herd and reactor distribution. The latter is given for the total number

reactors by herd for the entire observation period.

Number of herds: 1015

Reactor herds: 22

Number of reactors, i.e.

animals: 103

σi animals +ve

1 2383 14

2 691 1

3 2017 30

4 8 58

Figure E.79: VetNet surveillance data for selected North east England herds. The

diagnostic test data are categorised as follows: standard SICCT herd tests; high-

sensitivity SICCT herd tests; risk-based surveillance testing; and the IFNγ blood

test trial, denoted σi for 1:4 respectively.
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Marginal sample distributions

Here we provide a visual summary of the parameter estimates for the hierarchical

model with heterogeneous disease processes (for the North east England group.) A

tabulated summary is also provided, in Table E.19.

Figure E.80: Marginal densites for the North east England analysis.
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Traceplots

(a) Marginal density and trace plot for the trade: µT parameter.

Figure E.81: Trace plots for the North east England analysis.
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E.3.5 Tabulated results

θi Type Mean SD R̂ 97.5

1 1 0.00004 0.00003 1.2 1.5

2 1 0.00006 0.00004 1.1 1.2

3 1 0.00008 0.00005 1.1 1.4

4 1 0.00004 0.00002 1.1 1.3

5 2 0.00018 0.00011 1.2 1.5

6 3 0.69690 0.18566 1.0 1.0

7 3 0.47399 0.34401 1.1 1.2

8 3 0.49943 0.19281 1.0 1.0

9 3 0.75135 0.12380 1.1 1.2

10 4 1.12665 1.11948 1.3 1.9

11 4 1.74615 2.07334 1.1 1.3

12 4 1.30081 1.32197 1.2 1.6

13 4 1.22070 1.36326 2.0 4.3

14 5 0.24125 0.10965 1.2 1.5

15 5 0.65035 0.22885 1.0 1.0

16 5 0.21656 0.07008 1.4 2.0

17 5 0.59108 0.09001 1.0 1.1

18 6 3.80898 3.84957 1.1 1.3

19 6 0.00011 0.00027 1.6 5.5

20 7 6.25645 5.74147 1.0 1.0

21 7 0.29648 0.36387 1.1 1.1

22 8 18.22702 22.46303 2.5 10.0

23 8 0.28857 0.52707 1.9 7.5

Table E.17: Heterogenous disease process-hierarchical Hawkes model parameter

inference results for East England. Number of herds (reactors) := 513 (75.)
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θi Type Mean SD R̂ 97.5

1 1 0.00014 0.00001 1.0 1.1

2 1 0.00004 0.00002 1.0 1.0

3 1 0.00006 0.00002 1.0 1.0

4 2 0.00012 0.00006 1.0 1.1

5 3 0.71438 0.02869 1.0 1.0

6 3 0.84369 0.08788 1.0 1.0

7 3 0.42665 0.14164 1.0 1.1

8 4 0.17822 0.09140 1.2 1.7

9 4 0.11511 0.03255 1.2 1.5

10 4 0.18628 0.14867 1.1 1.1

11 5 0.31841 0.04248 1.1 1.4

12 5 0.12852 0.02620 1.0 1.1

13 5 0.50289 0.02987 1.0 1.1

14 5 0.85040 0.06335 1.0 1.0

15 6 3.10529 2.63685 1.0 1.1

16 6 0.00012 0.00016 1.0 1.0

17 7 7.23493 6.28737 1.1 1.2

18 7 0.25910 0.32388 1.2 1.5

19 8 11.16747 10.80835 1.3 2.1

20 8 0.03966 0.06644 1.5 4.4

Table E.18: Heterogenous disease process-hierarchical Hawkes model parameter

inference results for East Midlands. Number of herds (reactors) := 1966 (1217.)
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θi Type Mean SD R̂ 97.5

1 1 0.00004 0.00001 1.0 1.0

2 1 0.00005 0.00005 1.0 1.0

3 1 0.00004 0.00003 1.0 1.0

4 1 0.00003 0.00002 1.0 1.1

5 2 0.00008 0.00006 1.0 1.0

6 3 0.70678 0.08110 1.0 1.0

7 3 0.63718 0.58033 1.3 2.4

8 3 0.60250 0.41467 1.0 1.1

9 3 0.45670 0.14630 1.0 1.1

10 4 0.20104 0.17795 1.3 1.8

11 4 0.35729 0.45170 1.2 1.5

12 4 0.30932 0.47243 1.2 1.8

13 4 0.24878 0.26431 1.1 1.3

14 5 0.16785 0.07128 1.0 1.1

15 5 0.13243 0.03677 1.1 1.2

16 5 0.45943 0.10063 1.0 1.0

17 5 0.90782 0.05455 1.0 1.0

18 6 4.57949 3.88165 1.0 1.0

19 6 0.00002 0.00002 1.1 1.3

20 7 6.28088 5.87895 1.2 1.7

21 7 0.24505 0.34751 1.5 3.6

22 8 12.49514 9.72486 1.8 4.0

23 8 0.03458 0.04755 1.1 1.2

Table E.19: Heterogenous disease process-hierarchical Hawkes model parameter

inference results for North east England. Number of herds (reactors) := 1015 (103.)
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