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Abstract

Online abusive language has been given increasing prominence as a societal problem over the
past few years as people are increasingly communicating on online platforms. This increase
in prominence has resulted in an increase in academic attention to the issue, particularly
within the field of Natural Language Processing (NLP), which has proposed multiple datasets
and machine learning methods for the detection of text-based abuse. Recently, the issue of
disparate impacts of machine learning has been given attention, showing that marginalised
groups in society are disproportionately negatively affected by automated content moderation
systems. Moreover, a number of challenges have been identified for abusive language
detection technologies, including poor model performance across datasets and a lack of
ability of models to contextualise potentially abusive speech within the context of speaker
intentions. This dissertation aims to ask how NLP models for online abuse detection can
address issues of generalisation and context.

Through critically examining the task of online abuse detection, I highlight how content
moderation acts as protective filter that seeks to maintain a sanitised environment. I find that
when considering automated content moderation systems through this lens, it is made clear
that such systems are centred around experiences of some bodies at the expense of others,
often those who are already marginalised.

In efforts to address this, I propose two different modelling processes that a) centre the the
mental and emotional states of the speaker by representing documents through the Linguistic
Inquiry and Word Count (LIWC) categories that they invoke, and using Multi-Task Learning
(MTL) to model abuse, such that the model takes aims to take account the intentions of the
speaker.

I find that through the use of LIWC for representing documents, machine learning models
for online abuse detection can see improvements in classification scores on in-domain and
out-of-domain datasets. Similarly, I show that through a use of MTL, machine learning
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models can gain improvements by using a variety of auxiliary tasks that combine data for
content moderation systems and data for related tasks such as sarcasm detection.

Finally, I critique the machine learning pipeline in an effort to identify paths forward that
can bring into focus the people who are excluded and are likely to experience harms from
machine learning models for content moderation.
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Chapter 1

Introduction

As people consume, interact with, and create online media at an ever growing rate, it
becomes increasingly important to carefully consider the content with which they interact,
how this influences and impacts audiences and the cultures that are formed in online spaces.
Online abuse is a small but prominent portion of online communication, that is expressed
through various forms , including cyber-bullying, hate speech, harassment, aggressive speech,
and offensive speech (Vidgen et al., 2019). Extended exposure to such content can have
adverse effects for users’ engagement in online spaces (Fisher and McBride, 2016), lead to
psychological harms for the targets of abuse (Gelber and McNamara, 2016), and be a factor in
increases in hate crimes (Müller and Schwarz, 2020). As a result, social media platforms have
long been subject to pressure to moderate and remove such content from users and regulators
alike. Moderating, removing, and adjudicating content in online spaces has traditionally
been a human effort (Roberts, 2019) however as computational methods such as machine
learning have matured, social media platforms such as Facebook have increasingly come to
rely on such automated methods (Facebook, n.d.). . These automated content moderation
systems developed by commercial platforms operate across several different modalities,
including images, text, and videos. Along with this increase in automated content moderation
systems developed by commercial entities, there has been an increase in attention to the
challenge of developing automated systems for detecting text-based abuse in the Natural
Language Processing (NLP) community. Beyond the NLP community, there has been
sustained academic attention to the challenges faced by content moderation systems, both
human and automated. This body of work has spanned across a wide variety of disciplines
including, but not limited to, media studies (Carmi, 2020; Gerrard, 2020; Gillespie et al.,
2020), archival research (Agostinho et al., 2019; Thylstrup, 2019), and legal studies (Cobbe,
2020; Llansó et al., 2020). While commercial content moderation systems that are developed
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by social media platforms often span across modalities, I specifically focus on text-based
content moderation systems, i.e. NLP systems, for online abuse in this dissertation.

The academic inquiry into content moderations from the NLP community has identified
several challenges with machinic content moderation systems, including poor generalisation
of optimised models onto new data and contexts (Fortuna et al., 2021; Talat, 2016), socially
discriminatory model predictions against already-marginalised communities (Davidson et al.,
2019; Dias Oliva et al., 2021), poor ability to understand in-group communicative norms
(Dias Oliva et al., 2021), and annotation biases in the data creation process (Davidson et al.,
2019; Talat et al., 2018). Beyond the challenges in model performance, several key concerns
have been raised about the data creation process. For instance, Wiegand et al. (2019) and
Vidgen and Derczynski (2020) raise concerns about contemporary methods for collecting data,
while Talat et al. (2017, 2018) point out that there is an incompatibility between widely used
definitions. Vidgen and Derczynski (2020) further highlight how developing resources for
English Language abuse detection has been over-emphasised by the NLP research community.
Finally, applying both to modelling and data creation, the processes in the field are unable to
situate speech within the context and communicative intents of the speakers (Bender et al.,
2021; Dinan et al., 2020). Such a lack of ability to situate content moderation technologies
within the communicative norms of many communities, provides privileges for those few
communities that are represented when such technologies are applied across all communities.
As Dias Oliva et al. (2021) show, such universality has come to mean a tacit approval of white
supremacist speech while simultaneously marginalising speech from the queer community.
Such consequences are unavoidable if research in content moderation technologies continues
to seek universality as a solution to the issue of addressing large scale content production.
For this reason, I argue that research in content moderation technologies should move from
universal definitions and operationalisations of abuse, towards methods that follow the notion
of “small is beautiful” (Schumacher, 1973), in which content moderation technologies centre
the communicative norms of the communities that they are applied on. Although each of
these challenges and directions are of equal importance and each require urgent attention, I
focus my efforts first on considering the socio-political consequences of content moderation
technologies, and aim to explain which modelling decisions may influence discriminatory
outcomes. Second, I seek to connect the consequences of contemporaneous methods for
content moderation technologies and develop new techniques for modelling abuse that aim
to address some of these concerns. These twin objectives thus collectively seek to highlight
the ways in which content moderation technologies are built to intrinsically optimise for
universalism and white respectability politics through the political economies that they are
created within (and reinforce), and the technical means of optimisation that prioritise the
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frequent and hegemonic over the diverse. Moreover, by jointly considering and making
explicit the connection between the technical and the social of such socio-technical systems, I
am afforded the ability to examine ways in which inadequacies, stemming from optimisation
technologies, can be addressed from within a framework of optimisation. The over-arching
research questions below then seek to first make explicit how the technical and social are
connected, and rethink modes of computation to address methods that are factors in the
socially discriminatory patterns of content moderation technologies.

RQ i What technical and social factors are present in the socially discriminatory
predictions of content moderation systems?

RQ ii In which ways can computational methods be used to address limitations that
are influential in discriminatory outputs from computational modelling?

I examine these research questions by subdividing my thesis into four sections: First, I
address questions around how abuse is defined and the consequences of such definitions on
the content that is subject to such systems. Second, I address model generalisability onto
out-of-domain data labelled for abuse using low-dimensional data representations. Third, I
examine the impacts of representing different contexts into machine learning models in terms
of improvements on classification metrics. And finally, fourth, I discuss how marginalisation
caused by machine learning systems is driven by modelling choices and the various ways in
which designers of machine learning systems embed their own subjectivities into the models.

I choose these specific foci because my core interest is identifying how humans fit into
the structure of content moderation systems, as they are currently being built. Through
my interventions, I hope to identify theoretical and practical means for content moderation
technologies to come to more closely respect and represent the humanity of the people who
are subject to them.

To examine these questions, I begin by examining content moderation systems and logics
theoretically through the field of discard studies. Specifically, I examine how people are
impacted by the operationalisation of annotation guidelines and the modelling approaches
chosen. Then, I consider a method for modelling abuse that seeks to address the concern of
models over-fitting to highly salient terms by performing large scale vocabulary reductions.
Next, I investigate how joint optimisation of abusive, and seemingly, semantically similar
non-abusive tasks impact model performances for abuse detection and analyse the impacts
of different classification task configurations. Finally, in a return to theory, I view machine
learning and NLP through the lens of Science and Technology Studies (STS) to expose the
ways in which practitioners perform a series of embodiments and disembodiments to each
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stage in the machine learning development pipeline. For each section, I present research
questions that are subsumed by the two over-arching questions presented above. These
questions allow for specific points of entry through which we are afforded the ability examine
content moderation technologies as a whole. Contesting with the breadth and depth of
content moderation technologies clearly requires that the research conducted has a base
in a number of disciplines, from the computational methodologies to the anthropological
and to the sociological, and in this case reflexive methodologies. For this reason, I address
each section of my thesis from the disciplines which are best suited to answer the research
questions at hand. I note here that any attempt to divorce the social from the computational,
or vice versa is bound to fail to grasp the complexities and complications that they each
bring, rendering the insights wanting, if not incomplete. Next, I provide a deeper description
of each section of the paper, to serve as a guide to where my interests intersect with the
reader’s.

First, in chapter 4, I consider the nature of the task of detecting abusive content from the
perspective of discard studies. Through an analysis of two content moderation systems,
I examine how power differentials and respectability politics to determine the boundaries
between ‘the healthy’ and ‘the toxic’ are embedded into content moderation infrastructures
and expressed through them. In these analyses, I consider the aims of computational pro-
cesses for abuse detection and the methods with which researchers have attempted to achieve
these. Moreover, I critically examine how the notion of ‘toxicity’ has been operationalised in
computational boundary work and the implications that these operationalisations have on
the political economies of the content moderation infrastructures. Building on theories of
classification and purification (Douglas, 2005) and content moderation cast a digital sanitisa-
tion practice (Lepawsky, 2019), I argue that processes and political economies of content
moderation are co-constitutive of one another, thereby entrenching content moderation infras-
tructures within pre-existing systems of marginalisation. To address such issues, I suggest
that content moderation should move beyond the question of content removal towards a
productive “re-ordering of [...] environment[s]” (Douglas, 2005) to allow communities to
constitute their own identities. Specifically, I argue that current practices and operational-
isations of ‘toxicity’ for content moderation systems are rooted in patriarchal and white
supremacist imaginaries of acceptability.

This chapter then seeks to provide partial answers to RQ I by asking:
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RQ 1 How are notions of ‘toxicity’ operationalised and modelled, and what are
their socio-political implications for content moderation systems?

RQ 2
RQ 3

Chapter 4 is written on the basis of a collaborative research project with Nanna Bonde
Thylstrup (Copenhagen Business School) and a paper has been accepted in a special issue
of the journal First Monday. In this chapter, I expand on the considerations of the research
project in each section and particularly further develop sections 4.2 and 4.3.

Next, in chapter 5, I turn to the technical development of new content moderation systems for
abusive text. Here, I address the issue of model generalisability, over-fitting and efficiency by
representing documents through the Linguistic Inquiry and Word Count (LIWC) categories
invoked by the contents of the documents. LIWC is a software, and an associated dictionary,
that maps a set of words to their ‘psychology relevant’ categories, that can allow its users
to computationally analyse proxies to the mental states of speakers. Thus, by representing
documents through the LIWC categories each word invokes, it is possible to gain some insight
into the mental and emotional state of the speaker (Pennebaker et al., 2001). Consequently,
models that are optimised on LIWC representations of documents are optimised on proxies for
the mental and emotional states of the speaker. Moreover, the set of words that are included
in the LIWC dictionary figure in much lower numbers than the raw token vocabularies or
sub-words computed on the vocabulary. Thus, using LIWC can afford a low-vocabulary
modelling of the emotional context a speaker is in at the time of writing.

Reducing the vocabulary size throguh LIWC has a large implication for out-of-vocabulary
tokens, the likelihood of over-fitting to particular tokens, and the time required for optimising
the models. Using LIWC, the vocabulary sizes are minimise by up to 99% which also
introduces a question of whether this particular vocabulary reduction method is viable for
the task. Moreover, the reduction in vocabulary sizes and the fact that LIWC categories
act as proxies to the mental and emotional states of speakers, I experiment with the out-of-
domain generalisability of models optimised on documents represented through their LIWC
categories.

The research questions addressed in chapter 5 are thus:
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RQ 2 What are the modelling implications of using LIWC to substitute the use of
words and sub-words as input tokens ?

RQ 3
RQ 4

Then, in chapter 6, I proceed further into an inquiry of the impact of context on model
performance for abusive language detection tasks. Here, I use Multi-Task Learning (MTL)
to jointly optimise representations of abuse classification tasks and a selection of relate
tasks. Specifically, I explore new and pre-existing hypothesis on the relationships between
abuse classification tasks and related tasks, and how these relationships impact modelling
performance. The abuse classification tasks that I explore are hate speech detection (Talat,
2016; Talat and Hovy, 2016), offensive language detection (Davidson et al., 2017), and
toxicity detection (Wulczyn et al., 2017). For the non-abusive tasks explored are sarcasm
detection (Oraby et al., 2016), predicting of the basis of an argument (Oraby et al., 2015),
and moral sentiment prediction (Hoover et al., 2020). Through these tasks, where each
configuration sets one as the primary task and all other as auxiliary, the models are optimised
to all included tasks with attention to the primary task. Selecting the tasks to include
however is a challenge in itself. For this reason, I perform an ablation study investigating
the influence of each task onto the primary tasks, individually and in combination with one
another.

Thus, the research questions explored in this chapter are:

RQ 3 How do the individual and combinatory use of abuse classification and non-
abusive tasks impact classification of specific forms of abuse?

RQ 4
RQ 5
RQ 6

The work in chapter 6 is the result of an ongoing collaboration with Joachim Bingel (Hero
I/S). All of the content produced in the chapter is new and developed specifically for the
purposes of this dissertation.

In the final content chapter, chapter 7, I turn a critical lens to the proposition of objectivity
in machine learning models and how this imaginary influences the machine learning-based
classification of abuse. Drawing on work on subjectivity from Feminist Science and
Technology Studies, I examine how human subjectivities are embodied throughout the
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machine learning pipeline. That is, I examine how the social and cultural meaning, that is
embedded in the human experience, are also embedded in the derivatives of it, e.g. in the
data that are created by humans and subsequently the machine learning pipelines that are
created on the basis of these data. I argue that there is an illusion of objectivity (Haraway,
1988) through which denies the embodiments of the people whose data the models rely on,
the designers of machine learning pipelines, and the potential data annotators. Consequently,
such delusions of objectivity provides a barrier to developing machine learning models
that are developed and deployed in an equitable manner. Moreover, I argue that this veil
of objectivity is a central cause for machine learning models embodying and reproducing
xenophobic white supremacist and patriarchal logics. Consequently, current machine
learning models for social predictions, e.g. abusive language detection, are rooted in such
discriminatory imaginaries and thus, produce discriminatory outcomes. To address this
concern, I suggest that the development and deployment of machine learning models should
centre the subjectivities of the people whose data make the basis of the machine learning
models and the people that the models are developed for. A step to achieving this goal is
to analyse how the subjective embodiments of the designers are embedded in the machine
learning process, such that decisions can be made which are aligned with the subjectivities
of the people using the models, i.e. machine learning models should be optimised on data
from specific groups and designed for the use of those groups. The implication of these
arguments is that “bias” is not a quantifiable entity that can be subject to optimisation, rather
biases, or subjective embodiments, permeate the machine learning pipeline and as such the
goal and work of ‘debiasing’ machine learning models serve to obscure the situatedness and
subjective embodiments of machine learning models. For these reasons, I reflect on how my
own subjectivities are embodied through the modelling choices that I make throughout this
dissertation.

The research questions that I explore in this chapter are thus:

RQ 4 How are the subjective embodiments embedded in the machine learning
pipelines?

RQ 5
RQ 6 What are the implications of such subjective embodiments with regard to

developing machine learning models?
RQ 7

The work in chapter 7 extends on a collaboration with Smarika Lulz (Humboldt University),
Joachim Bingel (Hero I/S), and Isabelle Augenstein (University of Copenhagen). Subsections



8 Introduction

of the chapter are currently in review at the Conference on Fairness, Accountability, and
Transparancy (FAccT), 2022. The work presented here expands on the collaborative work
across all sections and the sections examining the machine learning models developed in this
dissertation are entirely new.

Through the work in these chapters, I examine different aspects of the machine learning
pipeline for abusive language detection to gain an understanding on a) what the implications
of task definitions and modelling approaches are, b) how do distinct data representations
influence model generalisability and efficiency in optimisation, c) how related tasks can
influence in-domain performance, and finally d) how subjective embodiments are expressed
throughout the machine learning pipeline and what the implications are for developing
equitable machine learning models. By examining in detail the machine learning development
pipeline for abuse detection, from conceptualisation to model development, I provide detailed
insights into limitations that occur at each step of the development process. The findings
of my research, and the implications and considerations that derive from them, provide for
a number of future directions for developing content moderation technologies. Crucially, I
call for the technical research into content moderation technologies to re-orient itself around
the lived realities of marginalised groups in society, i.e. those who are most at risk of harms
when their content is over-moderated and content about them is inadequately moderated,
such that the technologies that we develop come to serve those who are most in need of them.

Finally, before I release the reader to the core content of my thesis, I wish to provide dis-
claimers for the contents in this thesis. First, following Kulynych et al. (2020) I refer
to training machine learning models as optimising. I make this decision because machine
learning models are a specific kind of optimisation technology rather than a sentient entity
which can be trained. Moreover, this distinction between training and optimisation allows us
to view optimised models more clearly as statistical artefacts rather than anthropomorphised
machines that “learn”. Casting aside the veneer of sentient capabilities provides space to crit-
ically examine the decisions and artefacts that influence machine learning models to produce
the desired and undesired effects alike. Similarly, I refer to content moderation technologies
as machinic (Parisi, 2009) rather than automatic. This distinction is made to highlight the
inhuman nature of the underlying technologies, and consequently the judgements that are
made by the technologies. Second, I do not make use of pre-optimised embedding layers
or fine-tuned language models in my work. Although both techniques have been shown to
improve performances of machinic abuse detection (Fortuna and Nunes, 2018), they are not
compatible with some experiments in chapter 5 and thus influence comparability between
the experiments conducted in the chapter. For the chapters in which their use would not limit
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direct comparability, these methods carry a range of social biases and norms that are beyond
the scope of this thesis to examine. Thus I avoid using them as a way to ensure that the claims
I make in this thesis are a result of the models and modelling decisions, rather than spurious
correlations. Third, as I argue in chapter 7, there is a need for an active consideration of
the lived subjectivities practitioners’ and researchers’ in computational methods. To remain
consistent with my own recommendations, I use first person singular pronouns throughout
this thesis. In doing so, I follow a tradition in feminist (Haraway, 1988; McIntosh, 1988;
Whitson, 2017, e.g.) and Black feminist (Hill Collins, 2002; hooks, 1989; Nadar, 2014, e.g.)
scholarships and critiques of the veneer of objectivity in science. Fourth, I seek to avoid
providing examples of abusive texts where possible. Although my thesis is centered around
content moderation and therefore requires some examples, I believe that we, as researchers,
should limit the amount of abusive content in our work, as frivolous inclusion of such texts
can be limiting to the potential readership and institutionalise and archive the very harms that
we seek to mitigate. Lastly, beyond being a culmination of the research I have conducted,
this thesis is also strongly influenced by the conversations I have had with activists and social
scientific researchers, and the organisational work that I have done towards diversity and
inclusion in the NLP field and organising the Workshop on Online Abuse and Harms, which
I founded in 2017. Through my organisation I have come to have discussions with a variety
of scholars and organisations that are addressing aspects of online abuse, including Seyi
Akiwowo, Mikki Kendall, Maya Indira Ganesh, Alvin Grissom II, Kat Lo, Su Lin Blodgett,
Joris van Hoboken, Seeta Peña Gangadharan, and many others. While I do not claim to speak
for any of them or any particular community in this work, there is little doubt that the shape
of my would be very different, and much poorer, without the discussions and conversations
that we have shared.

1.1 Dissertation Structure

In this chapter, I have introduced the different research questions that I will be examining
throughout this dissertation. Here I provide a brief overview the structure of the dissertation.

In chapter 2, I introduce some of the foundational concepts and theories that I rely on that
have been developed in primarily non-computational fields.
In chapter 3, I turn to lay the computational foundation for the work conducted, introducing
the various modelling aspects that I rely on.
In chapter 4, I examine how notions of ‘toxic’ and ‘healthy’ are operationalised and the
implications these have on machine learning models and their outcomes.
In chapter 5, I focus on questions of model generalisability and the impacts of data represen-



10 Introduction

tations.
In chapter 6, I examine how abuse detection tasks and other tasks related to abusive language
detection can be used in a Multi-Task Learning setting to improve in-domain classification
performances.
In chapter 7, I consider how machine learning models rely on the illusion of objectivity to
disembody themselves, and the developers, from the subjective contexts they are embedded
in.
Finally, in chapter 8, I conclude on the insights from the different chapters and suggest
avenues of future research that take these insights into account.
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Theoretical Background

As abuse and automated-decision making systems for detecting abuse can disproportionately
affect some populations over others. Often communities that are already disproportionately
subject to negative societal biases face the worst consequences of such systems. Therefore,
this dissertation considers abuse not only as a technical question of how to address abuse,
but also a social question of how abuse detection systems exist and affect greater societal
contexts. To fully speak to these issues, it is necessary to have a solid understanding of
power and processes of marginalisation. This chapter introduces the core concepts from
social science, science and technology studies (STS), and Critical Race Theory (CRT) that
can provide such a foundation. Beyond this, this chapter reviews the previous literature that
the latter chapters of this dissertation relies on. Speaking directly towards online abuse, I
discuss work on conceptualising online abuse and hate speech. I briefly introduce the legal
landscape surrounding online abuse and content moderation. Finally, as I work with data
that is potentially sensitive, I provide a brief consideration of ethical concerns around using
social media data for research.

2.1 Privilege and Marginalisation

In a consideration of how automated systems might impact different populations, it is neces-
sary to reflect on the positions of groups in society and how they each group is enfranchised
and disenfranchised, that is to consider how different groups are privileged and marginalised.
The question of marginalisation and privilege has been subject to a large amount of attention
from a vast number of fields, including computer science (Bender et al., 2021; Dinan et al.,
2020; Mitchell et al., 2019), gender studies (McIntosh, 1988; Mohanty, 1984), law (Cren-
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shaw, 1989), critical race theory (Benjamin, 2019; Myers, 2019), and science and technology
studies (Haraway, 1988). In this chapter, and in this dissertation, I draw on the knowledge
produced in critical race theory, science and technology studies, and computer science.

2.1.1 Theoretical Underpinnings

In ‘Black Reconstruction in America’ Dubois (1935) argues that whiteness in America
functions as a ‘psychological wage’ providing poor whites in the nineteenth and early
twentieth century social status due to not being Black. Through this distinction, he argues
that whiteness offers a wage to poor whites who are similarly exploited by capitalism, offering
‘compensation’ beyond monetary compensations. Further, assigning whiteness a higher value,
or an idealised position, relies on the devaluation and marginalisation of Blackness and Black
existence.

Topics of marginalisation and privilege have been widely explored and is still an active area
of research, for instance, contemporary scholars such as Safiya Noble (2018) and Ruha
Benjamin (2019) examine how computing technologies continue to find ways of subjugating
Black people to white supremacist ideals. Beyond a technological focus, these concepts have
also been explored and expanded on to gender (Butler, 1990; de Beauvoir, 1953; McIntosh,
1988), sexuality (McCready, 2004), religion (Beaman, 2003), the intersection of gender and
race (Crenshaw, 1989; Voigt et al., 2017), and other aspects of identity. McIntosh (1988)
describes in her essay ways in which she is privileged as a white woman in comparison
to Black women. Thus she highlights in very specific ways in which whiteness affords
privileges and Blackness is marginalised. Throughout the many examples she list, she
oscillates between highlighting larger social structures, such as “I do not have to educate
my children to be aware of systemic racism for their own daily physical protection” and
daily experiences “If a traffic cop pulls me over or if the IRS audits my tax return, I can be
sure I haven’t been singled out because of my race”. Through this description, she calls to
attention how processes of marginalisation and privilege operate in both the micro and macro
scale, influencing all aspects of life. Through highlighting ways in which she is privileged,
McIntosh (1988) also highlights ways in which others are marginalised. It is thus clear
that privilege and marginalisation can be thought of as two sides of the same coin, where
one is advantaged, another may be discriminated. In more concrete and operationalisable
terms, the concept of privilege describes how some demographics are not systematically
and systemically disadvantaged. In comparison to marginalised communities, privileged
communities receive beneficial treatment due to their distance from marginalised identities.
Many social issues have been explained through the concept of privilege such as gender
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representations (Butler, 1990) and police treatment of Black people in the United States of
America (Voigt et al., 2017).

In recent years, there has been a greater focus on social and economic disparities in context
of race and gender, including not being financially punished for ones gender expression
(Lombardi et al., 2002); and the increased risk of lethal encounters with law enforcement
depending on racial identity (Zack, 2015).

As humans we are never confined to a single identity. In recognition of this, Crenshaw (1989)
analyses three legal cases in the United States in which Black women were discriminated
against while Black men and white women were not. She argues that the discrimination
of Black women face marginalisation across multiple axes as they exist on the intersection
of several marginalised groups: namely being Black and being women. In one of the three
cases presented, Hughes et al. v. General Motors, the plaintiffs alleged that General Motors
had engaged in discriminatory practices when they fired them, based on seniority. Through
the trial it was discovered that all Black women hired after 1970 were fired in a round of
seniority-based lay-offs. The courts found that no discrimination had occurred on the basis
of sex, as white women were not fired, thus the discrimination could not be based on gender.
The court proposed that the case be consolidated with another active case against General
Motors on the grounds of racial discrimination. However, as the case was brought on the
basis of combination of gender and race-based discrimination, the two lawsuits could not
be consolidated. Thus, the marginalisation of Black women could not be identified along
racialised or gendered lines individually. To expose the marginalisation faced by Black
women Crenshaw (1989) theorises an intersectional lens. Crenshaw (1989) sheds light
on the unique forms of discrimination that are rendered invisible by not considering, or
refusing to consider as in the cases she discusses, how existing on the intersection of multiple
marginalised identities, such as Black women, creates forms of marginalisation that are
distinct from being marginalised along a single axis.

2.1.2 Marginalisation Through Technology

While Crenshaw’s (1989) paper was published more than thirty years ago, the underlying
consideration of how multiple identities intersect to create new forms of discrimination
is still relevant to new technology that is being developed. In 2018, Kearns et al. (2018)
independently realised that when developing algorithms to detect bias in machine learning
systems it is possible to create models that are fair on the basis of singular characteristics,
such as race or gender but biased towards the combination of characteristics. They thus
propose an algorithm to identify an optimal number of sub-groups to consider for addressing
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bias in machine learning systems. In recognition of Kearns et al. (2018) and inspired by
Crenshaw (1989), Foulds et al. (2019) propose a new measure of the fairness of machine
learning systems that takes into account an intersectional nature of marginalisation.

However, the work of Kearns et al. (2018) and Foulds et al. (2019) both operate within the
confines of the machine. As Blodgett et al. (2020) reminds us, the question of what bias
and fairness mean is an inherently normative question, for which reason it is imperative that
researchers define their notion of bias. Blodgett et al. (2020) recommend that considerations
of bias take into account the social hierarchies that exist outside of the realm of modelling,
arguing that “work analysing ‘bias’ in NLP systems will paint a much fuller picture if it
engages with the relevant literature outside of NLP that explores the relationships between
language and social hierarchies.” Thus, computational work cannot be divorced from the
social systems that it exists in.

In another line of recent work on how technology can marginalise, Sweeney (2013) identified
how search results from Google were racially biased against names that are frequently used
by African Americans. Sweeney (2013) found that when searching for names with a higher
association with African Americans, advertisements for examining arrest reports were shown
at a higher frequency than when searching for names frequently used by white Americans.
Going a step further, Noble (2018) shows how search engines reinforces racialized and
gendered logics and can aid in radicalisation processes in favour of white supremacy. She
argues that search engines do not merely reflect society and frequent search terms, but create
their own reality through ranking.

Search does not merely present pages but structures knowledge, and the results
retrieved in a commercial search engine create their own particular material
reality. Ranking is itself information that also reflects the political, social, and
cultural values of the society that search engines operate within[...]

Safiya Noble (2018, p.148)

Moving beyond the world of search engines, Benjamin (2019) describes how information
technology at large reinforce white supremacy by providing disparate outcomes for different
racial groups. Benjamin (2019) argues technology encodes such discriminatory biases in
spite of, and in part due to, its ‘allure of objectivity’. She argues that within our global
social structure “codes operate within powerful systems of meaning that render some things
visible, others invisible, and creates a vast array of distortions and dangers” as technology
operates within such systems do not require the explicit intent for racism to produce racist
outcomes. In one example, she highlights the identity number system in India that produced
discriminatory outcomes when their identity number, Aadhar, could not be identified:



2.2 The ‘God Trick’ 15

There are already reports of citizens being denied welfare services, including
children unable to receive school lunches when their Aadhaar could not be
authenticated. In this way the New Jim Code gives rise to digital untouchables.

Ruha Benjamin (2019, p. 133)

Benjamin (2019) argues that this signifies a discriminatory blindness in technology that
are in part brought by the makers, who are predominately white and male. Moreover, she
describes a number of other examples ranging from designating Black neighbourhoods as
incubators for criminality to using NLP to identify the Roman numeral ‘X’ to represent
the number ten, resulting in incorrect street names such as “Malcom Ten Boulevard”. She
argues that “No malice needed, no N-word required, just a lack of concern for how the
past shapes the present” (Benjamin, 2019, p. 48) Notably, Benjamin (2019) proposes four
dimensions that information technological systems rely on to discriminate, what she refers
to as “the new Jim Code”. The first dimension is the appearance of impartiality, which she
argues is not impartial given its embedding in the global social structures. The second is
personalisation, which relies on the use of stereotyped information to be created. The third is
merit, although systems of merit themselves are subjective and prejudiced as they too operate
within our social structures. Finally, she argues that the fourth arises from “forward-looking
(i.e. predictive) enterprises that promises social good” (Benjamin, 2019, p. 85), one such
instance being machine learning, and as this dissertation argues, abusive language detection
technologies.

2.2 The ‘God Trick’

No one ever accused the God of monotheism of objectivity, only indifference
Donna Haraway (1988)

In her foundational feminist STS work, Donna Haraway (1988) calls to question the notion of
objectivity, critically examining science communication through a feminist lens. She argues
that knowledge production is an active process, in which we subjectively construct knowledge
based on our particular, subjective bodies. She argues that in science communication an
‘objective’ position is used to describe the object of study. However, such an ‘objective’
position, like all other positions comes with its own limitations in terms of what things are
rendered visible and what is obscured. Thus, an ‘objective’ position is no less subjective, as
it privileges the point of view of a particular body marked by subjective social and political
meanings and possibilities along the lines of race, class, geography, gender etc. In contrast to
other ‘subjective’ positions, an ‘objective’ position claims omniscience for itself by denying
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its own particular embodiments. Through this denial the ‘objective’ position obscures its
own subjective rootedness. In the ‘objective’ position’s denial of the subjectivity of its own
body, the objective position elevates itself over other ‘lesser subjective bodies’, thus playing
the ‘God trick’ (Haraway, 1988). Notably, within the frame of the existence of an ‘objective’
body, as Haraway (1988) argues the ‘objective’ body is that which is held by “unmarked
positions of Man and White” (Haraway, 1988, p. 8). Subsequently, the ‘lesser subjective
bodies’ are those that do not fit within these, that is people of colour and women.

Through its own disembodiment, the position of objectivity claims to be ‘universal’ and
free from embodied socio-political meaning and is therefore applicable in all contexts and
can be imposed on all other subjective positions (Mohanty, 1984). From this it follows that
embodied positions are mired in a particular, in contrast to ‘universal’, context. Accepting
new knowledge from these specific embodied represents a threat to the claim of omniscience
presented by the disembodied ‘objective’ position. However, as Haraway (1988) argues,
subjectively embodied positions allow for things to made visible, that are otherwise rendered
invisible to the ‘objective’ position. For instance, in the context of labelling uses of the
n-word, an exclusive focus on its derogatory use would imply an understanding of the
word through a disembodied and universalised position, as this universal position is often
occupied by the white male body (Haraway, 1988). Only through an engagement with the
particularised experiences and histories of Black bodies can the rich cultural meaning that is
crafted in African-American communities be revealed and observed (Rahman, 2012).

2.3 Theoretical Approaches to Content Moderation

In her ground-breaking book ‘Behind the Screen: Content moderation in the shadows of
social media’, Sarah T. Roberts (2019) defines Commercial Content Moderation (CCM)
as professionals who are employed to “evaluate and adjudicate online content generated
by users and decide if it can stay up or must be deleted” (Roberts, 2019, p. 1), in other
words, to ‘clean’ internet platforms for content that is unwanted by the platforms. Roberts
argues that CCMs are often outsourced to call centres in the global south and boutique firms
in North America, with a minority work force held in-house by social media companies
(Roberts, 2019). For outsourced workers, the work is frequently poorly paid and has steep
psychological costs to the workers undertaking the job of keeping social media companies
palatable to their core audiences. As one interviewee states “Horror movies are ineffective at
this point. I have seen all that stuff in real life” (Roberts, 2019, p. 122). Moreover, she argues
that large companies reproduce colonial logics by creating special ‘ecozones’ in Manila,
developed in part to respond to the needs for “uninterrupted electricity, the capacity for large
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scale bandwidth for data transfer, and so on” (Roberts, 2019, p. 183). In these zones, call
centre workers are increasingly given higher targets and smaller workforces (Roberts, 2019,
p. 178) due to the increased competition from other companies in other parts of Asia. Thus,
large social media companies establish their own colonies of exploitation in such ecozones
where workers’ rights are competing with the risk of companies outsourcing to a different
company in a different part of Asia.

In her work on theories of social pollution, Mary Douglas (2005) examines how meaning
and community are made through the positive reordering of the environment to separate
the subjects and objects that belong and those that do not, i.e. what is not and what is dirt.
She argues that “dirt is the by-product of a systematic ordering and classification of matter,
in so far as ordering involves rejecting inappropriate elements” (Douglas, 2005). Dirt is
then not an independent attribute of an object or subject, but a “residual category rejected
from our normal scheme of classifications” (Douglas, 2005). This classification between
what is dirt and what is not, practised through rituals and habits that create coherence within
communities, helps establish borders between what and who belongs in a group and what
does not. As communities reject the impure, members of the collective, or in fact society,
form a shared meaning. Through these processes of meaning-making the collective can
maintain its integrity. Dirt then becomes something communities avoid in order to prevent
the breakdown of meanings. Thus to Douglas (2005), the avoidance and removal of dirt are
not negative processes of removal, they are a “positive effort to organize the environment”
(Douglas, 2005) of the community in which the removals takes place. Further she argues that
we seek to re-order our environment to make it conform to an idea.

As the identification, demarcation, and expulsion of dirt are collective actions, the definitions
and understandings of what constitutes dirt is subjective in nature and meaning can only be
attributed within a given system: “no single item is dirty apart from a particular system of
classification in which it does not fit” (Douglas, 2005). Further, in her conceptualisation
dirt is an encompassing label for “all events which blur, smudge, contradict or otherwise
confuse accepted definitions” (Douglas, 2005). Dirt is then contextual, and what is dirty in
one situation may not be dirty in another. She exemplifies this through the mundane: food
is not necessarily dirty, “but it is dirty to leave cooking utensils in the bedroom” (Douglas,
2005).

Given the contextual nature of dirt, many might imagine that they are unequivocally able
to identify dirt, Douglas (2005) argues that detecting dirt is complex as with the contextual
nature of dirt, it follows that there can be no such thing as absolute dirt or clean, as these
depend on the subject observing it. Thus, what is dirt to one might be valuable to another.
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Conversely, as Lepawsky (2019) argues, the positionality of discarding, or cleaning, may
result in discarding or maintaining things that are valuable to one, but are harmful to another.
Who then gets to exert such power to determine what stays and what remains becomes a
question of differential power relations. Indeed, Hall (1997a) similarly ties the classification
of dirt and the clean to racist logics of social purification:

What you do with dirt in the bedroom is you cleanse it, you sweep it out, you
restore the order, you police the boundaries, you know the hard and fixed
boundaries between what belongs and what doesn’t. Inside/outside. Cul-
tured/uncivilised. Barbarous and cultivated, and so on.

Stuart Hall (1997a, p.3)

By investigating the question of power relationships and commercial content moderation
Lepawsky (2019) extends Douglas (2005) framework into digital spaces, arguing that such
work can help us understand online communities as systems that must constitute themselves
through removal, for which human and automated content moderation systems act as the
filters that allow for such constitution.

In Hall’s (1997a), theory of encoding and decoding, it is argued that expressions are written,
or encoded, with a specific understanding which may differ when it is interpreted by the
reader from one of three positions: dominant, negotiated, or oppositional. These moments
of interpretation create a space for uncertainty and instability. Where things have been
encoded with one meaning, they can be decoded with a different meaning, e.g. a semi-colon
followed by a close parenthesis may be encoded as an indicator of sarcasm, but decoded
as ungrammatical. Such oppositional reading can give space for subcultural communities,
that stabilise their own meaning-making process such that the community understands a
semi-colon followed by a close parenthesis as indicating happiness.

In considering Hall (1997a) and Lepawsky (2019), the logics of dirt cannot be disconnected
from the oppression experienced by marginalised people. As Risam (2015) notes, toxic
“has become cultural code for irritants and pollutants that disrupt our lived experience”.
Risam (2015) argues that discourses of toxicity are invoked in cultural conversation be-
tween hegemonic and marginalised bodies, and are weaponised against marginalised bodies
through an engagement in ‘toxic slippage’. Toxic slippage denotes when, in response to
‘toxic’ behaviour, users, or this dissertation theorises, computational methods, engage in
toxic behavioural patterns. Camp theory, as Schaffer (2015) argues, can offer a “useful
mode of reading for any field of study marked by questionable binaries”. As the question
of ‘toxic’/’non-toxic’, ‘abuse’/‘non-abuse’, and ‘hate’/‘not-hate’ provide such questionable
binaries between the desired and undesirable, camp theory’s focus on re-evaluating a cul-
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ture’s ‘trash’ offers a well-established theoretical frame to re-articulating such concepts,
complicating the ways in which content “can blur and transgress and cover in glitter those
boundaries between waste and not-waste [...] without pretending that waste has stopped
being waste”(Schaffer, 2015). As camp provides a mode of queering the understanding of
waste from the discarded to the celebrated, it can be read as a “queer way of knowing, one
that emphasises reader relations over any inherent meaning of a cultural object” (Schaffer,
2015).

A camp reading of content moderation systems and the decisions produced by them, would
centralise the experiences of the marginalised individual faced with consequences of toxic
slippage and how dirt must apply to them. Such a reading would fortify the centrality of the
subjective positionality of the individual in relation to the subjective positionalities of the
content moderation system.

2.4 The Legality of Abuse

As the detection of abuse may be closely linked to the content moderation and the removal of
content, any consideration of tools with the purpose of identifying abuse must also consider
the legal context context in which they may operate, to situate the work in computational
content moderation within the social and political realities that it exists in. Here, I consider
two forms of legal contexts: 1) platform policies and 2) regulatory frameworks and their
influences on using automated methods for detecting abusive language.

2.4.1 Moderation Practices

To understand how content moderation can work, it is necessary to consider the communica-
tive power of frameworks for reporting inappropriate content. Crawford and Gillespie (2016)
argue that reporting mechanisms constitute a communicative channel between users and the
platforms. Thus, the question of content reporting becomes a more nuanced space than the
question of what content is permissible, instead it becomes a question of what is desired
by different user communities (Crawford and Gillespie, 2016). Simultaneously, reporting
frameworks also allow for companies to control the expressiveness of the communication
between users and the company and the volume of this communication (Crawford and Gille-
spie, 2016). On one hand the expressiveness of the reporting can be controlled by the level
of detail users are afforded when reporting, on the other hand, volume can be controlled
through the ease of access to the flagging mechanism. When platforms set the degree of
expressiveness of the flagging mechanism, the detail allowed provides a signal on whether
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the platform are interested in the particular way content offends or simply that users find that
the content should be disallowed (Crawford and Gillespie, 2016).

While often a flagging is often a solitary effort performed by a single user, it can also be the
result of a strategic means of communication by a coordinated user group. For instance, a
group of bloggers angered by pro-Muslim content on YouTube started the ‘Operation Smack-
down’ campaign in 2007 to remove such content. In this coordinated attack, coordinating
users created lists of YouTube videos for other users to flag as ‘promotes terrorism’ (Crawford
and Gillespie, 2016). Here flagging campaigns are used to reinforce social hegemonies.

On the other hand, when platforms remove content that is socially acceptable to a large
majority, there can be strong backlashes against the platforms. In one such event, Facebook
removed an image of two male actors kissing on the television show EastEnders. Following
this removal there was a large outrage, accusing Facebook for perpetuating homophobia
as images of straight couples had not been subject to removal. Following this controversy,
Facebook reversed their decision to remove the image and apologised for the removal
(Crawford and Gillespie, 2016).

2.4.2 Platform Policies

Many large social media companies lay out their policies for acceptable behaviour on their
platforms, often detailed in their user guidelines. Many of these have similar phrasing on the
acceptance of abusive language,1 in figs. 2.1 to 2.3, I show excerpts of the policies on hate
speech and prohibited content of three social media platforms.

These excerpts highlight how platforms envision what prohibited content appears on their
platforms and which priorities that they have. For instance, in Facebook’s policy (see fig. 2.1)
they make a brief mention of real-world harms, however incitement to violence is omitted
from their guidelines. Twitter on the other hand (see fig. 2.2) provide a much less clear in
terms of what is prohibited and what is allowed through the ambiguity that they use (Kirtz
et al., 2022). It is, for example unclear what constitutes are ‘direct attack’ on diffuse concepts
such as demographic groups. Lastly, Reddit (see fig. 2.3) very succinctly describe the kind of
content that is prohibited on the platform, so succinct that considerations around hate speech
are entirely omitted.

1For the full policies see https://en-gb.facebook.com/communitystandards/hate_speech
for Facebook’s policy on hate speech, https://help.twitter.com/en/rules-and-policies/
hateful-conduct-policy for Twitter’s policy on hate speech, and https://www.redditinc.com/
policies/content-policy for Reddit’s policy on prohibited content.

https://en-gb.facebook.com/communitystandards/hate_speech
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://www.redditinc.com/policies/content-policy
https://www.redditinc.com/policies/content-policy
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In all three excerpts of the policies, there is a prohibition of content which attacks others, in
Reddit’s policy on encouraging and inciting violence they further outline that users should
not post content that “that encourages, glorifies, incites, or calls for violence or physical
harm against an individual or a group of people”2 establishing similar outlines for acceptable
conduct as seen on Twitter and Facebook. Facebook note in their Community Standards
Enforcement Report3 that they acted on 4 million items for hate speech and 2.8 million
items for bullying and harassment in the period of January to March 2019. The report does
not detail the number of user reports received, nor the amount of content which was not
removed.4 Considering the scale of the items which have actions taken for different kinds of
abuse, there is an incentive to allow for some automation to guide the attentions of human
moderators or decrease the volume of content that moderators need to consider.5

While Facebook report high numbers of removals, the performance of their (human and
automated) moderation practices have been the source of criticism as a number of activists
have reported being temporarily banned for speaking about racial discrimination while abuse
and discrimination received is not addressed (Sharif, 2019). Moreover, users have been
noting that simply talking about race may mean that their post is removed, particularly if
the poster is not white (Guynn, 2019). A report from Pro Publica details that the policies of
Facebook in determining whether a post violates community guidelines, by seeking global
standards, effectively “protect the people who least need it and take it away from those who
really need it.” (Angwin and Grassegger, 2017)

Perhaps most damningly, public figures are often exempt from community guidelines with
the argument that their content is in the public interest (Díaz and Hecht, 2021), in spite of
the fact that public figures have the potential to influence much larger groups of people, and
incitements to violence, for instance, can reach a much larger group of people.

Considering how such policies are described, understood, and enacted by commercial
content moderators, content moderation algorithms, and users, Kirtz et al. (2022) perform an
analysis of how different platforms describe their community guidelines and their downstream
implications for content moderation technologies and user experiences. They argue that the
platform policies are often ambiguous and do not provide a clear expectation to users as

2for the full policy see https://www.reddithelp.com/en/categories/rules-reporting/
account-and-community-restrictions/do-not-post-violent-content

3See report here: https://transparency.facebook.com/community-standards-enforcement#
hate-speech

4Acted on here means acknowledging that the content does violate community standards and an action was
taken by Facebook.

5The Community Standards Enforcement Report details that automated systems are deployed but do not
detail the performances of the system in terms of accuracy, precision, or recall.

https://www.reddithelp.com/en/categories/rules-reporting/account-and-community-restrictions/do-not-post-violent-content
https://www.reddithelp.com/en/categories/rules-reporting/account-and-community-restrictions/do-not-post-violent-content
https://transparency.facebook.com/community-standards-enforcement#hate-speech
https://transparency.facebook.com/community-standards-enforcement#hate-speech
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Fig. 2.1 Excerpt of Facebook policy on prohibited content and hate speech.

Fig. 2.2 Excerpt of Twitter policy on prohibited content and hate speech.

to what is prohibited content and what is allowed. Kirtz et al. (2022) further argue that the
machine learning algorithms that underpin many automated content moderation systems
require a degree of specificity to function that is not apparent from the policy guidelines or
otherwise communicated. Developing guidelines for machine learning systems on the basis
of such policies, as a number of studies in NLP do (Davidson et al., 2017; Qian et al., 2019,
e.g.) then provides a large ambiguous space for human workers which makes understandings
of each category tacit rather than explicit, regardless of whether the workers are employed on
low wage contracts in South East Asia (Roberts, 2019) or hired by academic researchers.

2.4.3 Regulation

In recent years several different governments have sought distinct methods to address the
issue of online abuse. For instance, the British Home Office (Home Office, 2016) and the
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Fig. 2.3 Excerpts of Reddit policy on prohibited content and hate speech.

European Commission (European Commission, 2016) have provided guidelines and calls
to action for social media networks, while the German government passed the Network
Enforcement Act (NetzDG) (The Bundestag, 2017) which aims to provide direct regulation
for the moderation of online abuse and misinformation. NetzDG incentivises the moderation
of content through fines if social media companies systematically fail to remove within 24
hours.

Building on this, the European Union is currently considering regulation on disseminating
terrorist content which may have implications on hate speech and how social media platforms
deal with issues such as hate speech (European Commission, 2018). The proposal contains
a requirement for social media networks to remove content within 1 hour of receiving
notice from a trusted authority.6 In response to this proposed regulation, the European
Union Agency for Fundamental Rights (FRA) highlight the difficulty in the border work in
distinguishing between content that promotes terrorism, documents war crimes, or is simply
hateful. The FRA suggest that the proposed regulation should provide a clear definition of
terrorist content, which is limited to inciting or promoting terrorist activities, or providing
instructions for making or using weapons (European Union Agency for Fundamental Rights,
2019).

In contrast to developments in Europe, the governance surrounding the moderation of online
content in the United States of America is centred around section 230 of the Communi-
cations Decency Act of 1996 (Communications Decency Act of 1996, 1996). Relating
to the moderation of online content, Section 230(c) of the Communications Decency Act
specifies that “No provider or user of an interactive computer service shall be treated as the
publisher or speaker of any information provided by another information content provider”

6Trusted authority was not specified at the time of writing.
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(Communications Decency Act of 1996, 1996), thus specifying that service providers, e.g.
social media networks are not liable for the content that is created by others and hosted on
their platform. The over-arching goal of Section 230 has been to ensure that service providers
are not liable for hosting content that is beyond their control. However, sub-paragraph 2(a)
notes that

No provider or user of an interactive computer service shall be held liable on
account of—any action voluntarily taken in good faith to restrict access to or
availability of material that the provider or user considers to be obscene, lewd,
lascivious, filthy, excessively violent, harassing, or otherwise objectionable,
whether or not such material is constitutionally protected.

Thus allowing social media networks to remove and moderate content from their platforms.
Section 230 has been central to the evolution of social media networks and their content
moderation infrastructures, as many such networks are founded and legally based in the
United States of America and therefore subject to its laws.7 8 Section 230, its consequences,
and potentials are the deeply complex. Providing a detailed overview of the issue is therefore
beyond the scope of this thesis. Interested parties can see research and organisations that
more specifically deal with the legal landscape for online intermediaries Appelman et al.
(2021); Díaz and Hecht (2021); Llansó et al. (2020, e.g.) and section 230 specifically Ardia
(2010); Defterderian (2009); Foundation (n.d.); Goldman (2018); Leary (2018); Sheridan
(1997, e.g.).

Contrasting the permissive nature of Section 230, the United States of America recently
instituted two bills, the Stop Enabling Sex Traffickers Act (SESTA) and Fight Online Sex
Trafficking Act (FOSTA) which take more active approaches to ensuring that online service
providers remove content that offends the bills. These two bills aim to prevent sex trafficking
by removing online content for sexual solicitation. As a consequence of these bills, a number
of online platforms entirely removed all sexual content which particularly has adverse effects
for already marginalised communities. These bills have been heavily criticised for flaws
in their conceptualisation (Romano, 2018), their impact on criminal investigative work (Q,
2018), and their consequences for sex workers, which include missing persons and deaths of

7This seeming tension between not being liable while being given authority to exercise content moderation
is also at odds with the highly permissible notion of Freedom of Speech that is institutionalised in the United
States of America’s law. In the law of the United States of America, the concept of freedom of speech has very
few limits, in contrast to the European notion of freedom of speech, which has much greater restrictions (Banks,
2010).

8I note here that although the Commnications Decency Act only applies to the legal territories of the United
States of America, it is often used as the guiding principle from which content moderation decisions are
motivated.
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sex workers (Blue, 2018; Simon, 2018). More widely, there are three main implications of
the bills:

1. The bills seek to undermine (Romano, 2018; Stryker, 2018) Section 230 of the
Communications Decency Act (CDA) by holding that computer service providers are
not publishers and thus not liable for content on the platform (Foundation, n.d.),

2. the bills are effective retroactively (Stryker, 2018), therefore necessitating moderation
of both new and historic content, and

3. the bills do not require a request to remove content prior to potential consequences for
not upholding the laws.

While enforcing more regulation and shifting liability for content on platforms onto the online
social networks is in line with the European and German regulations, the consequences of
SESTA and FOSTA go a step further, as the bills are retroactively effective, for which reason
online online platforms sought to remove all sexual content to avoid the risk of fines at the
cost of people’s freedom of speech. In contrast, the German and European efforts largely
allow for content to remain, as platforms only need to react if and when content is reported -
moreover, they are not retroactively effective, meaning that platforms did not need to perform
sweeping removals. The contrasts between the European approach and the approach taken
by the United States of America, have strong implications for how online platforms develop
technology for content moderation. For instance, the European approach incentivises social
media networks to implement robust content moderation infrastructures, that somewhat
evenly balance precision and recall. The approach taken by the United States of America on
the other hand, incentivises a much less precise method, as platforms have greater risk from
retaining content than simply remove it all. As a consequence, several platforms removed
entire sections of content created by users that may have had a perceived risk to the platform.
One such platform was Tumblr which removed a large section of historical and new content
produced by queer communities, due to the risk that any content related to sexuality may also
have been solicitation. The work in this thesis thus more closely aligns with the European
approach, seeking not to remove content from entire communities but rather identify specific
instances of content to be removed.

2.5 Ethical Considerations

When dealing with a subject like online abuse and content moderation, there are a number
of ethical issues that are necessary to bear in mind, from the anonymisation of already-
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existing data to the methods of collecting new data. These issues are further complicated
by the strength with which identity intersects with whether something is offensive, as some
things are only visible as offensive, or non-offensive, when one has intimate knowledge and
familiarity with the target. What is the ground truth then becomes subject to the particular
subjectivities of an individual who is involved in the communicative act.

Considering first the issue of anonymisation, though it is important to perform some level
of anonymisation for ethical as well as technical reasons, i.e. minimising tokens to overfit
to, there is also a greater risk of performing anonymisation to a strong degree, i.e. make
the author of a text entirely unrecoverable. One such risk of strong anonymisation, which
would require that the text is reordered, is that the dialectal indicators of belonging to a
demographic would be erased, thus directly contradicting the need to have intimate grounding
in the subjectivities of a given speaker. Moreover, when releasing a new dataset, researchers
need to address the issue of potential harms arising from data being publicly available.
One alternative to such publication of data is for data of a sensitive nature, i.e. labelled or
identifiable social media data, to never be released publicly. An imaginable configuration for
this could be that data is never released, however researchers can submit models and code to
optimise and evaluate on the dataset. Such a governance model however comes with several
drawbacks: 1) it is not possible for researchers to analyse the kinds of mistakes that machine
learning models make, 2) the governance model severely inhibits who has access to data, and
3) it renders invisible analysis and drawbacks of the datasets, something which is of vital
importance as our understanding of abuse and hate speech continuously grows.

Developing new resources for abuse detection also provide concerns and challenges. Creating
a dataset for online abuse requires designating someone to look at a large volume of data,
in which abusive content will likely appear without warning. Being situated in such a
context can have mental health concerns due to the exposure to vicarious trauma, i.e. trauma
occurring from witnessing traumatic events. As Roberts (2019) notes, the human workers
who deal with moderating content for large tech companies often experience severe mental
health issues as a consequence to their job. This issue of subjecting workers to trauma is
then further exacerbated when we consider the interaction between correctly identifying
online abuse and identity. Specifically, people will be most attuned to the various ways in
which hateful and offensive content is directed towards their own identities. Consider for
a moment dog-whistles (Drakulich et al., 2020), the coded language that is used to target
specific demographic groups, the specific group that is being targeted may be the only group
that can correctly identify a speech act as abusive or hateful. Thus, it is of great importance
that the workers that are recruited label data about their own identities, however this too
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comes with a great personal cost. Recruiting people to annotate abuse and hateful speech
targeted towards their own identities also means exposing them to violence that specifically
targets them (Boeckmann and Liew, 2002), which may make the issue of vicarious trauma
even more acute.

Turning lastly to the use of modelling and predicting online abuse, there are risks of harms
to people from model misclassification, in particular to people who are in communities that
are already marginalised. As Talat et al. (2018) indicate and Davidson et al. (2019) and
Dias Oliva et al. (2021) lay clear, there are significant racialised issues with classification of
abuse, leading to African American English speakers and queer folks being censored through
a disproportionate amount of false positives. One might turn to the question of whether
computational modelling is at all appropriate for content moderation or whether it is best to
return to entirely human content moderation pipelines. This question is complicated by the
sheer scale of content being generated, with billions of new tweets, Facebook and Reddit
posts, and YouTube videos and comments created each day. The scale is then far beyond
what could be hoped to be reviewed by human content moderators alone - suggesting a need
for some form of automation to aid the human workers in their task. But is it acceptable for
anyone to have to be subjected to the violence of harmful and abusive content at scale? If
it isn’t acceptable, then it is imperative that we develop content moderation technologies
quickly and robustly, to address the right to be free from persecution in online spaces.

2.5.1 Ethics Statement

As this dissertation deals with data that is published by individuals who very often are private
citizen, it is necessary to consider different aspects of the ethical use of social media data
use. As I only make use of previously published data, informed consent cannot be obtained
directly, as I do not have access to the necessary contact details. Moreover, several of datasets
do not provide the user information to even consider access. Finally, as many of the datasets
are several years old any contact information that could be gleaned from the data sets have,
in many cases, decayed.

As informed consent is not sought for the data, the need for a consideration of anonymity
and privacy is only heightened, to ensure that private citizens are not exposed additional
harms. For this reason, all experimental parts of this dissertation have undergone ethics
review for risks and harms and been approved for study. All experimental work presented
exclusively makes use of previously published, and currently public datasets. Some data in
these datasets are provided entirely anonymised while others are entirely de-anonymised.
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In all experimental work, I anonymise all data where appropriate to avoid the undue risk of
harms to data subjects.

2.6 Summary

In this chapter, I have introduced several key notions and concepts that will lay a theoretical
and philosophical foundation of my work. Specifically, this chapter introduces the notions of
privilege and marginalisation and previous work on how these concepts relate to computa-
tional techniques. I further provide a background to theory surrounding content moderation.
Finally, I provide a consideration of ethical use of social media for research and conclude the
chapter with a brief overview of two legal aspects of abuse.



Chapter 3

Computational Background

This chapter introduces related work in Natural Language Processing (NLP) and theoretical
background on the machine learning methods that I use throughout this dissertation.

3.1 Abusive Language Detection

In recent years, the computational study of online abuse has seen a rapid increase in the
number of papers dedicated starting with a handful of papers prior to 2016 to a thriving
research field with numerous papers, shared tasks, and workshops (Vidgen et al., 2020a). In
spite of the growth in research dedicated to the detection of online abuse, the research field is
still in its infancy with a number of open questions, including questions around definition
of the task, annotation guidelines, and modelling techniques. Due to the relative infancy of
the field, the ‘early’ and ‘recent’ work overlap each other in time. I use ‘early’ and ‘recent’
work to distinguish ‘early’ from ‘recent’ by conceptualising ‘early’ as work which laid the
foundations of the field and ‘recent’ as work that develops, or critiques, these foundations.
The earliest work in the field sought to address questions of cyber-bullying (Chen et al.,
2012; Daegon Cho, 2013; Reynolds et al., 2011) and profanity (Sood et al., 2012a,b) with
sparing focus on demographically specified abuse, such as racism, sexism, and anti-Semitism
(Warner and Hirschberg, 2012). More recently, work on demographically specified abuse
has surfaced as an independent task (Gorrell et al., 2018; Karan and Šnajder, 2018; Meyer
and Gambäck, 2019; Palmer et al., 2020; Park and Fung, 2017; Safi Samghabadi et al.,
2017; Stoop et al., 2019; Talat, 2016; Talat and Hovy, 2016; Tulkens et al., 2015; Vidgen
et al., 2020a). As a consequence of increased visibility of hate speech and abuse on online
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platforms, the academic inquiry into the computational detection has grown along with the
regulatory responses (European Commission, 2016; The Bundestag, 2017).

Early, and contemporary computational work, has seen a great deal of focus to central ques-
tions around the task: how do we annotate and create datasets (Talat and Hovy, 2016; Talat
et al., 2017; Vidgen et al., 2020a) and understanding annotator interaction and performance
(Ross et al., 2016; Talat, 2016; Vidgen et al., 2020b). Early work focused on questions of
marginalisation and oppression, for instance through the work of Talat and Hovy (2016) who
base their annotation on works in gender studies and critical race theory, and collect data
based on gendered and racialised abuse; more recently data collection and annotation pro-
cesses have moved towards a demographically blind process. Such early work was inspired
by the marginalisation of certain bodies and the desire to develop computational tools to
protect marginalised people (Warner and Hirschberg, 2012). More recent work has instead
directed its focus to demographically blind approaches to data collection and annotation,
succumbing to ‘marginalisation-blind’ annotation processes and guidelines. Although pro-
cesses that do not take marginalisation into account, but instead seek to treat every group
equally provide an allure of fairness, they also encode dominant discourse on abuse with
the subsequent result of the resistance to oppression and marginalisation being treated the
same as marginalisation. In concert with the growing evidence of racially biased content
moderation tools (Davidson et al., 2019; Talat et al., 2018), demographically blind annotation
criteria and data curation pose a threat to the goal of developing tools that aid in ensuring
people from the right from persecution. One such example is presented by Salminen et al.
(2018) who develop a taxonomy that includes ‘anti-white’ as a target of hate on par with
anti-Black hate in spite of whiteness as a hegemonic entity that marginalises (McIntosh,
1988). A result of this are egregious annotation choice, such as “The white will always
steal; FUCK YOU TO ALL WHITES RACIST” labelled as hate speech (Salminen et al.,
2018), in spite of the comment speaking to ongoing racism and the historical exploitation
enacted by white societies (e.g. the theft of cultural artefacts from colonised territories
(Frost, 2019), the numerous genocides committed by imperialistic colonial states (Weisbord,
2003), and the theft of bodies in the transatlantic slave trade). Moreover, and perhaps of even
greater concern, the annotation and curation processes of Salminen et al. (2018) result in data
responding to the abuse of authority committed by police as hate, in one such example they
identify the following comment as hate “did to that poor guy. 10 s of pepper spray directly
into the face, run over foot etc. equal it up a little bit, except for the detail of having a fucking
stroke. So it still wouldn’t be exactly what the guy went through. Fucking discusting. They
get a hard on power tripping others. They are just fucking cowards”, in all likelihood due to
the aggressive nature of the comment.
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Through such demographically uninformed processes of curating and making data, a danger
of erasure of past and ongoing marginalisation and responses to it as well as critical responses
to the violent abuse of authority as ‘hate speech’ that should be subject to content moderation.
The question of automated hate speech detection thus, for works such as Salminen et al.
(2018) is no longer ensuring the right to not be persecuted but instead insuring that processes
of marginalisation remain unchallenged. For these reasons, I use the datasets released in
early work, specifically I use the Offence dataset (Davidson et al., 2017), Toxicity dataset
(Wulczyn et al., 2017), and Hate Speech dataset (Talat and Hovy, 2016) in all computational
chapters. For chapter 5 which examines the influence and generalisability of vocabulary
manipulation, I also use the Hate Expert (Talat, 2016) and the StormFront (Garcia et al.,
2019) datasets. Each of these datasets share the common attributes that they are collected
either from spaces that are hateful towards marginalised groups or have considerations of
marginalisation encoded into the annotation guidelines. In chapter 6 I also use three datasets
that are labelled for abuse but instead to tasks that are seemingly related. First, I use the
Argument Base dataset (Oraby et al., 2015), the second dataset (Sarcasm) is developed for
sarcasm detection (Oraby et al., 2016), and the final dataset, Moral Sentiment, examines the
moral sentiments expressed in tweets (Hoover et al., 2019).

In an early effort to address issues of annotator biases and under-sampling of some forms of
data in the data curation process, Talat et al. (2017) propose a typology of abuse that aims to
categorise abuse by how it is characterised rather than determining the exact form of abuse.
To this end, Talat et al. (2017) present a 2-dimensional typology of hate; the first dimension
operates along implicit and explicitly expressed hate. Implicitly communicated hate, Talat
et al. (2017) argue is hate that is communicated through subversive means by using code
words and communicating implicit biases. Explicit abuse on the other hand is explicit in
its intention to abuse, e.g. through the use of slurs. The second dimension concerns itself
with the target of abuse that can either be a generalized other, or a specific group, the former
category detailing abuse that is targeted towards small groups and individuals while the latter
is aimed at generalised targets, e.g. larger demographics. It’s important to note that content
may be simultaneously explicit and implicit, directed and generalised (Talat et al., 2017).
For instance, content that implicitly targets Muslims, may simultaneously explicitly target a
specific group of women.

Modelling for automated hate speech detection has also undergone a development from early
to contemporary work. Early work was primarily focused on feature-based modelling (e.g.
Davidson et al., 2017; Sahlgren et al., 2018; Talat, 2016; Talat and Hovy, 2016) whereas
subsequent work has directed a greater attention to neural network based approaches (e.g.
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Explicit Implicit

D
ir

ec
te

d “Go kill yourself”, “You’re a sad little f*ck” (Van Hee et al.,

2015),
“@User shut yo beaner ass up sp*c and hop your f*ggot ass

back across the border little n*gga” (Davidson et al., 2017),
“Youre one of the ugliest b*tches Ive ever fucking seen” (Kon-

tostathis et al., 2013).

“Hey Brendan, you look gorgeous today. What beauty salon

did you visit?” (Dinakar et al., 2012),

“(((@User))) and what is your job? Writing cuck articles and

slurping Google balls? #Dumbgoogles” (Hine et al., 2017),

“you’re intelligence is so breathtaking!!!!!!” (Dinakar et al.,

2011)

G
en

er
al

iz
ed

“I am surprised they reported on this crap who cares about

another dead n*gger?”, “300 missiles are cool! Love to see

um launched into Tel Aviv! Kill all the g*ys there!” (Nobata

et al., 2016),

“So an 11 year old n*gger girl killed herself over my tweets?

_̂ ˆ thats another n*gger off the streets!!” (Kwok and Wang,

2013).

“Totally fed up with the way this country has turned into a

haven for terrorists. Send them all back home.” (Burnap and

Williams, 2015),

“Gas the skypes” (Magu et al., 2017),

“most of them come north and are good at just mowing lawns”

(Dinakar et al., 2011)

Table 3.1 Typology of abusive language presented by (Talat et al., 2017).

Badjatiya et al., 2017; Gambäck and Sikdar, 2017; Kolhatkar et al., 2020; Talat et al., 2018).
In this dissertation I follow a similar pattern of developing baseline models from feature-
based models and suggest neural network architectures as extensions and improvements on
these. In early work, Logistic Regression (LR) and Support Vector Machines (SVM) were
the most frequently used models. As the scholarship has developed, specific types of neural
networks have come to dominate the modelling, namely Convolutional Neural Networks
(CNN) and Long-Short Term Memory (LSTM) networks. In each chapter, I perform the
review of the models that are pertinent to the work in the chapter. Here instead I provide a
theoretical overview of the models, their components (e.g. dropout and activation functions)
and their intended functionalities (i.e. the kind of data that they are designed to operate on
and which assumptions are built into the model architectures).

3.1.1 A Word on Definitions of Hate

The definitions of hate speech and offensive content that are used in the machine learning
literature deviate quite strongly from how these concepts are defined in fields such as critical
race theory, gender studies, and feminist science and technology studies. Here, I want to
make clear the distinctions between these to schools of thought. The primary difference
in the critical and computer scientist reading of hate speech and abuse is the consideration
of social circumstance and systems of power. Critical race theory, gender studies, and
feminist science and technology studies all consider how social constructs, such as race and
gender influence our experience of the world. Turning this consideration of social constructs
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and power structures towards the question of racism, sexism, and hate speech in general,
these fields then distinguish how targets are situated in terms of power when considering
whether something is hate speech or not (Ging and Siapera, 2018). For instance, should two
people with different identities be targeted with the same abusive statement, the impacts of
that abuse will differ and speak into different histories. Should one of these people have a
hegemonic identity while the other belongs to an oppressed group, e.g. one is a man and
the other a woman, then the abuse will speak into histories of power and marginalisations,
respectively. Following this line of thinking, abuse then is also a matter of structural power.
The distinctions between discrimination and hate speech, for instance, is then co-constituted
by what the specific dimension of the abuse is, e.g. gender or race, and the whether the
recipient is marginalised along that axis. Thus, racism moves from discriminatory statements
into hate speech, when the target is also marginalised along the axes of race, and social
class-based abuse goes from discriminatory statements into when the target is also oppressed
along the axis of class. It is important to note here that the distinguishing factor is not whether
there is an impact or the strength of the impact of a discriminatory moment on an individual,
but rather the historical and contemporary contexts within which such a moment exists.

The computer scientist and machine learning literature however largely disengages with
questions of power structures. Instead, the literature tends to focus in on micro-instances
of conflict and to a large degree disconnects the identities of the target with the abuse. For
instance, in the conceptualisation of Davidson et al. (2017) and Wulczyn et al. (2017) the
offensive, hate, and toxic are entirely focused on the conversational moment and the presumed
intent of the speakers.1 This approach also is divorced from the systemic reading of hate
speech which makes the impact central, rather than the intent of the speaker (Ging and
Siapera, 2018). The computer scientific approach to hate, is a comparatively simplistic
approach which collapses important distinctions such as how people live at the intersection
of multiple identities, i.e. queer brown men or working-class white women.

In the following chapters, I consider the readings which are most appropriate for the content
of the chapters. In chapter 4, I consider consequences of the simplistic view computer science
takes on hate speech. In the next two chapters, chapter 5 and chapter 6, I focus on the
computer scientific notions of the superset abuse and its subsets: Hate speech, toxicity, and
offense. Finally, in chapter 7 I return to the notion of hate speech in the systemic sense, as I
consider the wider implications of the processes through which we develop machine learning
technologies.

1Presumed by annotators.
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3.1.2 Datasets

Here I provide an overview of the different datasets that are used throughout this dissertation.2

For each dataset, I introduce the curation rationale, the source of the datasets, the annotation
guidelines, annotator selection, and finally how each of these dimensions influence the
resulting dataset. In subsubsection 3.1.2.1 I describe the datasets annotated for hate speech
and abuse and then in subsubsection 3.1.2.2, I turn to the datasets used for the auxiliary tasks
for chapter 6.

3.1.2.1 Hate Speech and Abuse Datasets

To perform any machine learning modelling of abusive language it is necessary to use some
datasets. However, as we saw in section 3.1, many of the datasets that exist at the time of
writing suffer from a number of issues, including mislabelling of African American English
and sampling issues (Wiegand et al., 2019). Similarly, many more recent datasets suffer from
critical flaws, e.g. the dataset proposed by Salminen et al. (2018) which treats responses to
physical abuse and the abuse of power as ‘abusive’. The more recent datasets have not been
subject to the same level of critical inquiry as the early datasets, in spite of many of similar
issues being apparent upon inspection. As the limitations of early datasets are well known
within the field, and their results can be interpreted within the context of their limitations, I
find that these are most appropriate for use for the work in this thesis.

I also make use of two datasets that I have developed and published before starting my
doctoral research, the Hate Speech and Hate Expert datasets. These were developed prior
to undertaking my doctoral research and are historically significant as they a) help to map
how my thinking has developed over time and b) were released as some of the first publicly
available datasets for online abuse.

Hate Speech Published as the first publicly available dataset for hate speech and abusive
language detection, Talat and Hovy (2016) developed a dataset for detecting abuse towards
gendered and racialised minorities. In an interview in the Let’s Chat Ethics Podcast, Zeerak
Waseem shared that the initial motivation for developing the dataset was the somewhat
naïve hope to address online harassment as experienced by women during #GamerGate, a
harassment campaign against female game developers and games journalists (Massanari,
2015). This aim of developing tools that can protect marginalised people is apparent in the

2I only provide examples from datasets that are not annotated for abuse, as adding more than the minimum
number of examples provides little additional value. Moreover, as all datasets are publicly available, examples
are readily available for perusal for interested readers.
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data sampling and the source of data. As a large amount of the GamerGate abuse occurred
on Twitter, Talat and Hovy (2016) use Twitter as a source of their data, collecting 16,914
tweets labelled as ‘sexist’, ‘racist’, and ‘neither’. In efforts to ensure that their collected
and annotated sample contains gendered and racialised abuse, they bootstrap their corpus
collection by first search for common slurs against women, ethnic minorities, religious
minorities, and sexual minorities to identify the salient terms and users for scraping. To
annotate this dataset, with the target group in mind, Talat and Hovy (2016) develop 11
questions to test whether a comment is hateful or not. This set of questions focuses on
breadth in the types of hate expressed rather than depth in each type. This is apparent as
the tests ranges from asking about explicit forms of hate, such as the use of slurs to implicit
forms like questions around stereotyping and the use of straw man arguments in criticisms of
minorities. Talat and Hovy (2016) annotate their dataset and have their annotations verified
by an external annotator. Collectively, these decisions are made to ensure that there was a
diversity in the forms of hate in addition to the sources. However, as they note, the racist
abuse only comes from 9 different accounts. Moreover, as salient terms were sampled for
annotation, some terms (i.e. the hashtag for the Australian TV show My Kitchen Rules)
are over-represented in the data. In spite of these issues, the annotations in this dataset are
embodied within the context of critical race and gender studies perspectives on abuse.

Hate Expert In an extension of the dataset proposed by Talat and Hovy (2016), Talat
(2016) sample 6,909 tweets from the original scrape and have it annotated by two groups, in
efforts to understand the influence of annotator biases. The first group consisted of “feminist
and anti-racism activists” (Talat, 2016) who annotate the sample of the dataset with one
of four labels ‘racist’, ‘sexist’, ‘both’, and ‘neither’. The second group of annotators were
recruited from CrowdFlower to re-annotate the sample annotated by the first group.3 The
label set was expanded by Talat (2016) to include the category ‘both’, in acknowledgement
that marginalisation can be expressed across multiple dimensions, in an Intersectional manner.
Comparing models optimised on each group of annotators, Talat (2016) find that models
that use the annotations of the first group consistently outperform models optimised on the
second. Talat (2016) argue that the reason for this difference is that the models that are
optimised on the former group benefit from similarities in the understanding of hate speech.
On the other hand, the only salient unifying characteristic for the latter is that they perform
work on a micro-work platform, which produces internal inconsistencies in labelling that
renders it harder for models to consistently identify patterns that they can optimise on.

3CrowdFlower has since been renamed Appen.
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In presenting this dataset, Talat (2016) propose that ideologues can take similar positions
on a topic, given their subjective positionalities. They argue that only through a principled
understanding of hate speech is it possible to annotate reliably for hate speech and that
crowd-sourced annotations for hate speech display inconsistencies that to some degree erases
the meaning of the term. In using this dataset for this dissertation, I use the annotations
provided by the feminist and anti-racist activists.

Offence Departing from the question of forms of hate speech and gender studies and
critical race theory based annotation guidelines, Davidson et al. (2017) turn instead to ask
where the distinction between simply ‘offensive’ speech and ‘hate speech’ lies. Using a
list of terms from Hatebase to identify 33,458 users whose tweets they sample.4 From
these users, they randomly sample 25,000 tweets for annotation by CrowdFlower workers,
resulting in 24,802 annotated tweets. The crowd-workers were given guidelines to aid
them in distinguishing between ‘offensive content’, ‘hateful content’ or ‘neither offensive or
hateful’, selecting only one for each tweet. Davidson et al. (2017) instruct their annotators
that hate speech is speech that “is used in reference to certain groups that expresses hatred
towards the group or is intended to be derogatory, to humiliate, or to insult the members of the
group”. Moreover, they provide examples of such content which includes the straightforward
“Need to send these w******s back to their country”5 and the more conflicted “I hate white
trash”. The conflict in the latter stems from it being unclear whether the emphasis is on
class-based hate or if it is targeting white people. While the former is less contentious,
the latter would imply that white people too are targets of marginalisation on the basis of
their race. However, as numerous scholars have argued, whiteness is the hegemonic force
that marginalises (Benjamin, 2019; Noble, 2018). ‘Offensive’ content is provided as an
alternative, less serious form of potentially unwanted content. This group is defined in
contrast to the hateful class “[o]ffensive content might use some of the same words we
associate with hate speech but do not necessarily constitute hate speech because the words
are not used in the same context as ‘hate speech”’.6 From this definition it’s clear that in
spite of the instruction to select only one category, Davidson et al. (2017) acknowledge that
there is a potential overlap between offensive language and hate speech. Moreover, unlike
the annotation guidelines proposed by Talat and Hovy (2016), the definition of offensive
draws in the question of context. Illustrating this point, Davidson et al. (2017) provide the

4Hatebase.org is a website that crowd-sources slurs and insulting turns of phrase. Due to marginalised
people being disproportionately targeted, there is a distributional skew towards terms that target marginalised
people in the number of terms.

5Censoring of the slur is mine.
6Emphasis added.
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following example “Oh shush you know I love you f****t”. This use of context, provides
space for inoffensive uses of slurs and insulting terms e.g. for reclaimed and in-group uses,
a space that the annotation guidelines of Talat and Hovy (2016) does not afford. With the
annotators being selected from CrowdFlower, the issues of multiple distinct ideologues in the
annotator pool raised by Talat (2016) are likely also manifest in this dataset. However, as the
dataset offers a space within which one can utter offensive but not hateful messages, it also
offers the space to live, that is it offers spaces that dominant discourse on acceptability of
language use would deem as unacceptable.7 In consideration of the marginalisation of queer
people and people of colour, this dataset thus offers space for their uninterrupted existence.
However, as the dataset is labelled for a multi-class classification problem, where a single
label is assigned to each document, the dataset does not afford space to be free from exposure
to offensive language and hate speech, without also treating the two as equally sanctionable.

Toxicity Starting from a similar point as Davidson et al. (2017), Wulczyn et al. (2017)
develop a dataset of 115,737 comments to understand which types of conversations are likely
to make users depart from the conversation. Departing from the early tradition of using
Twitter as a source of data, Wulczyn et al. (2017) consider the Wikipedia editor discussion
pages. Taking a narrow view of behaviours that inhibits participation in conversations,
Wulczyn et al. (2017) focus on personal attacks and harassment, specifically asking their
annotators whether which entity (the participant or a third party) is the subject of the attack.
As a last positive category, they include whether it is “[a]nother kind of attack or harassment”,
thus relegating all forms of harassment that are not directed at specific individuals to a residual
category. The dataset thus is comprised of ‘personal attacks’ and ‘other forms of harassment’.
As the study is specifically grounded in identifying personal attacks, this categorisation of
various forms of personal attacks and a residual category as positive instances is in line with
the aims of the data, if not the description. Using this definition, Wulczyn et al. (2017) select
a random sample of 37,611 comments that are labelled by 10 annotators for personal attacks.
This resulted in only 0.9% of the labelled data in the positive class. To address this, Wulczyn
et al. (2017) identify an additional 78,126 comments that are sampled from users whose
content had been moderated from the discussion pages. For each user, 5 comments made by
the moderated user around the moderated comment were collected and subject to annotation,
resulting in the positive class consisting of 16.9% of the total dataset. Similarly to Talat

7By dominant discourses on acceptability, I refer to what mainstream discourses deem as acceptable and
unacceptable manners of speaking. However, such a discourses are internally inconsistent, as Dias Oliva et al.
(2021) show, acceptable speech can come to include neo-nazi and white supremacist speech that threaten social
cohesion while deeming speech by queer communities as toxic and inherently holding greater threat to the
boundaries within which society should operate.
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(2016) and Davidson et al. (2017), Wulczyn et al. (2017) use CrowdFlower to obtain their
annotations and subsequently are prone to similar issues in their data. However, to curb such
issues they obtain 10 annotations for each comment, allowing to compute a majority vote that
takes a broader perspective on the comment into account. In spite of this approach, where
those annotators are from and what their position on personal attacks are, and their ability
to identify subtle attacks, still remain uncertain resulting in a dataset that may take a global
position or a culturally grounded position on identifying personal attacks, e.g. if a large subset
of annotators live in India, a subset of the data may very well reflect Indian perceptions of
personal attacks. The resulting dataset has been constructed to understand which comments
are likely to turn discussions “toxic” as a result of personal attacks. Through the use of 10
annotators for each comment, Wulczyn et al. (2017) aim for a global understanding of toxicity
derived, in part, from personal attacks. Similarly to Davidson et al. (2017), there appear to be
no consideration of the experiences of abuse against marginalised communities. Considering
Wikipedia’s well documented issues with being a hostile space to women (Torres, 2016) and
the distribution of gender crowd-workers often veering towards a greater representation of
men than women (Posch et al., 2018), the lack of such a consideration may further entrench
subjective positions that are hostile towards women into the datasets and subsequently into
the models.

StormFront Focusing on the white supremacist web-forum StormFront, Garcia et al.
(2019) collect a dataset of 10,568 sentences annotated by three of the authors for containing
hateful utterances. Similarly to Davidson et al. (2017) and Wulczyn et al. (2016), Garcia
et al. (2019) employ a marginalisation-blind definition and understanding of hate speech. In
the case of a white supremacist web-forum, employing a marginalisation-blind definition is
unlikely to be challenged as the participants are unlikely to engage in derogation against white,
straight, cisgender men. The decision for using StormFront as a source of data was motivated
by the prevalence of “pseudo-rational discussions of race”. Moreover, this dataset further
distinguishes itself from prior datasets by annotating on a sentence level. The authors argue
that annotating on a sentence level can reduce the confounding factors by only addressing
content which is explicitly hateful. While this may, in some instances have little effect as
the surrounding sentences bear no impact on whether a sentence is hateful. This particularly
holds for explicit hate speech. However, for subtle forms of hate speech, conducting sentence
level annotation may obscure hate that is only apparent when considering a post in its entirety
rather than its sentence level components. In order to address this issue, Garcia et al. (2019)
introduce a ‘related’ tag which is to be used when individual sentences do not convey hate but
the combination of several sentences in sequence do convey hate. This method for mitigation
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does not account for longer sequences of sentences that convey hate, as is often the case for
subtle forms of hate speech and dog whistles. Moreover, as Garcia et al. (2019) take a very
conservative position on what constitutes hate, for instance, the use of a derogatory term, on
a white supremacist web-forum, “cannot be said to be a deliberate attack, taken without any
more context, despite it likely being offensive.” For this reason, Garcia et al. (2019) argue
that simply the occurrence of slurs weaponised against marginalised communities cannot
be said to be hateful. Thus, while initially side-stepping the issue of marginalisation-blind
definitions by sourcing data from a white supremacist web-forum, it is softly reintroduced by
taking a conservative stance on what constitutes hate.

3.1.2.2 Non-abuse Datasets

Sarcasm Oraby et al. (2016) develop a dataset for sarcasm detection in dialogues. The
dataset was developed in order to address the lack annotation for subtypes of sarcasm, i.e.
rhetorical questions and hyperbole, at scale in previous datasets. Sourcing their data from the
Internet Argument Corpus (IAC) (Abbott et al., 2016), Oraby et al. (2016) annotate their data
for “generic sarcasm, rhetorical questions, and hyperbole”. In order to generate a dataset
from the IAC, Oraby et al. (2016) optimise a ‘weakly-supervised pattern learner’ (Oraby
et al., 2016) to identify a set of 30,000 posts, filtering two thirds of the posts that don’t
contain any ‘not-sarcastic’ cues and annotate the remaining 11,040 posts in quote-response
pairs for annotation on Amazon Mechanical Turk. Similarly to the abusive language datasets
annotated on CrowdFlower, this choice of annotators can introduce biases stemming from the
subjective embodiments of the human annotators and the geo-cultural contexts in which they
exist. Following the annotation process a dataset of 6,520 posts (with a 50% split of sarcastic
and not-sarcastic posts) is obtaned and released. Examining the dataset for suitability for
machine learning experiments, Oraby et al. (2016) optimise a linear SVM with Stochastic
Gradient Descent (SGD) optimisation and L2 regularisation obtaining F1-score of 0.74 using
features derived from Word2Vec (Mikolov et al., 2010).

Argument Basis Investigating the characteristics of factual and emotional argumenta-
tion styles, Oraby et al. (2015) also draw on the IAC as the source of data. Considering
quote-response pairs, each response is annotated for whether the argument presented in the
response based primarily in fact or feeling. Oraby et al. (2015) present 10,003 from the
IAC for annotation by 5− 7 crowd-workers on Amazon Mechanical Turk for annotation
selecting a value ranging from −5 to 5 to indicate whether the response is a feeling or
fact-based argument, where negative values indicate that the argument basis is dominated by
an emotional argumentation style and positive values indicate a fact-based argument. Each
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document is then given a binary label indicating its argument basis, where all texts with
a score greater than 1 are assigned as fact-based, all texts with a score lower than −1 are
assigned to the feeling-based class, and all scores [−1,1] are discarded. This annotation
process results in 3,466 fact-based and 2,382 feeling-based documents. Similarly to the
previously examined datasets that utilise crowd-workers, this dataset is also subject to the
contexts which the individual annotators exist within. For instance if an annotator is from a
culture where feeling-based argumentation is not experienced as impassioned but instead
supportive of facts, they may be likely to rate some documents as more fact-based than
annotators who hail from cultures that emphasise fact-based argumentation would deem as
relying on an emotional argumentation style. The subjectivity of the annotation task may
provide an explanation for why 4,155 or more than 41% of the documents are discarded due
to being rated, in aggregate, as dominated by neither fact or emotion.

Moral Sentiment The final dataset used in this dissertation is the Moral Foundations
Twitter Corpus (Hoover et al., 2019). This dataset provides 35,108 tweets annotated for 10
different categories of moral sentiment, introducing the task of moral sentiment prediction.
A task, and dataset designed to allow psychology researchers to investigate the relationship
between comments made around events and the moral foundations found in such comments
made on Twitter. Hoover et al. (2019) draw from research in psychology around human
morality using a five-factor taxonomy that reveals insights into the moral foundations that
underlie comments about and attitudes towards topics. Each of the five factors are represented
through a binary, where one end of the binary represents a virtue and is contrarian to the
other, representing a vice. Hoover et al. (2019) argue that the human expression of vice and
virtue are distinguishable from one another through distinct language use for each. The five
factors introduced are care, “concerns related to caring for others” and harm, “concerns
related to not harming others”; fairness, “concerns related to fairness and equality” and
cheating, “concerns related not not cheating or exploiting others”; loyalty, “concerns
related to prioritising one’s ingroup” and betrayal, “concerns related to not betraying
or abandoning one’s ingroup”; authority, “concerns related to submitting to authority
and tradition” and subversion, “concerns related to not subverting authority or tradition”;
purity, “concerns related to maintaining the purity of sacred entities, such as the body or a
relic” and degradation, “concerns focused on the contamination of such [sacred] entities.”
Noting that there is low occurrence of moral sentiments expressed in a random sample
of tweets, Hoover et al. (2019) collect tweets related seven different discourse domains
where the occurrence of moral sentiment is likely to at a high rate: Black Lives Matter, All
Lives Matter, Baltimore protests following the death of Freddie Gray, the 2016 presidential
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elections in the United States of America, hurricane Sandy, the #MeToo movement, and
offensive language, re-annotating a sample of Davidson et al. (2017) for the moral sentiments.
For annotation, Hoover et al. (2019) train 8 undergraduate research assistants to an expert-
level familiarity with the moral foundations taxonomy, annotating 4,000−6,000 for each
discourse domain. The annotators are trained through training sessions and, in early stages,
discussion surrounding annotator disagreement. The annotator selection procedure here thus
develops on the suggestion of Talat (2016) to use expert annotators to describing a means
of training expert annotators for a highly subjective task. Interestingly, as the annotation
process continues past early stages, annotator disagreements are not resolved, instead the
authors opt for expressing the inherent subjectivity of the human annotation task.

3.1.2.3 Non-English Datasets for Abuse

In this dissertation, I focus my attention to detecting abuse in English language datasets
as my methods do not map to other languages. However, an important growing body of
research and resources are being developed for other languages such as Arabic (Albadi et al.,
2018; Mulki et al., 2019; Ousidhoum et al., 2019), Croatian (Ljubešić et al., 2018), Danish
(Sigurbergsson and Derczynski, 2019), French (Chiril et al., 2019a; Chung et al., 2019), and
Urdu (Rizwan et al., 2020) amongst many more.

Developing models for each individual language, and in particular resources that address
abuse that code-switches, require an attention to the particularities of the different languages
and cultures, just as model development for English requires researchers to be attuned to the
particularities and cultures represented in English language use.

3.1.3 Generalisable Machine Learning Models for Abusive Language
Detection

A common criticism of many current computational methods for abuse detection is that they
have poor generalisability onto other datasets. Although this issue of non-generalisability
poses a serious issue for the abuse community, it has received relatively little attention
(Fortuna et al., 2021; Karan and Šnajder, 2018; Swamy et al., 2019; Talat, 2016; Talat et al.,
2018; Wiegand et al., 2019) in comparison to single-dataset classifier performance. In each
of the computational chapters (see chapters 5 and 6), I also provide consideration of how
well the optimised models perform on out-of-domain datasets. In the pursuit of models that
generalise well onto other datasets, researchers have proposed a variety of architectures. As
an initial investigation into the question of generalisability, Talat (2016) note that the best
performing classifier on the dataset they propose does not generalise well onto the Hate
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Speech dataset, noting that the performance of their classifier drops by more than a 25%.
Using MTL,8 Talat et al. (2018) address the issue of poor generalisability between the Hate
Speech and Hate Expert (combined into a single dataset) and the Offence dataset, showing
that a MTL framework can be used for optimising models that can generalise onto from
one cultural context onto another. Moreover, considering the results posted by Talat et al.
(2018), it appears that there is a trade-off between well-performing in-domain models and
well-performing cross-domain models, where cross-domain improvements appear to come
at the cost of in-domain performance, where out-of-domain performance is computed by
mapping the classes in the in-domain datasets to the out-of-domain dataset.

Karan and Šnajder (2018) further explore the question of cross-dataset generalisability using a
linear SVM model. Karan and Šnajder (2018) approach the task of out-of-dataset performance
as a classical domain adaptation task, finding that without significant procedures for domain
adaptation, there is poor generalisability. Similarly to Talat et al. (2018), Karan and Šnajder
(2018) find that cross-domain performance comes at the cost of in-domain performances but
with large out-of-domain improvements. One difference between Karan and Šnajder (2018)
and the previously described studies is that Karan and Šnajder (2018) reduce the learning
task to a binary classification task of ‘abusive’ and ‘non-abusive’ documents.

The last approach to generalisation I consider is the work by Fortuna et al. (2021). In this
paper, the authors compare four different models for out-of-domain classification: a Bag-of-
Words SVM model, a Continuous Bag-of-Words FastText model, a BERT model (Devlin
et al., 2019), and an ALBERT model Lan et al. (2020). The latter two being transformer-
based language-models that are fined-tuned to the task of predicting abuse. Fortuna et al.
(2021) propose a different class organisation to past studies, first they propose as generalised
class organisation that collapse classes across datasets into a smaller, generalised subset that
maps across datasets. For instance, the ‘sexist’ class provided by Talat and Hovy (2016) and
the ‘misogyny’ class provided by Fersini et al. (2018) into a ‘misogyny-sexism’ class. Each
of the generalised classes are binarised to allow models optimised with other standardised
labels to predict on them. Using these generalised classes, Fortuna et al. (2021) show that by
using methods that capture more complex word-interactions, out-of-domain performance
generally improves within and out of domain, subject to the classification task. Specifically,
they find that when classes have significant overlaps across datasets in their rationalisation of
what the are to represent then models optimised on those classes will map well onto the rest.
Conversely, when the classes have a little overlap, the models will generalise poorly onto the
new dataset. Moreover, Fortuna et al. (2021) identify that some dataset combinations produce

8Multi-Task Learning allows for optimising models using multiple different datasets, for distinct machine
learning tasks, where one (main) task is given higher priority and all other tasks are treated as auxiliary tasks.
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poor generalisation between each other regardless of the models used. This, in concert with
their conclusion that dataset overlap and out-of-domain similarities are drivers of model
generalisation has two implications. First, current computational models can, to some degree,
adapt onto new distributions and samples but models using words as input are poorly suited
for learning general trends of a wide variety of abuse, including closely related concepts such
as ‘toxicity’ and ‘severe toxicity’ (Fortuna et al., 2021). Second, as models do not generalise
onto other concepts, even if closely related, research in the detection of online abuse must
either develop methods that can generalise onto studying different objects and perspectives
of online abuse, or datasets must be annotated following highly similar annotation guidelines
at the cost of the depth and breadth of concepts that can be explored.

3.2 Modelling Techniques

In this section I provide an introduction to the different modelling techniques that I use
throughout the dissertation.

3.2.1 Data Encoding

In order for models to read the data, it is necessary to provide the models with machine
readable representations of the data. The first step to creating such machine readable
representations is to provide each unique token with a numerical index. The numerical index,
and what it represents is a matter of how the data is pre-processed. For instance, in chapter 5,
I represent tokens in three different ways. First, I represent tokens using their surface form,
that is each word is represented in its entirety following a tokenisation process where all
words are lower-cased and punctuation markers are split from the word (see chapter 5 for
further pre-processing steps). Second, I take the surface forms of tokens computed and
represent them as the categories of the Linguistic Inquiry and Word Count (LIWC) categories
each token induces (see chapter 5 for further detail). Finally, in chapters 5 and 6 I represent
tokens as the subwords that they consist of. In this section, the sub-word forms while omitting
the surface-token and LIWC-token forms as these rely on simple pre-processing and mapping
steps that are described in more detail in chapter 5.

3.2.1.1 Byte-Pair Embeddings

Byte-Pair Encodings were introduced to the NLP comunity by Sennrich et al. (2016) for
the task of Neural Machine Translation to address the issue of out-of-vocabulary tokens.
In this paper, the authors argue that for word-level machine translation there is not always



3.2 Modelling Techniques 45

a one-to-one relationship between a word in the source language and its translation into a
target language. Sennrich et al. (2016) illustrate this point through compound words, where
a compound word represents a specific entity that is represented through multiple words
in the source language, e.g. the German Abwasser|behandlungs|anlange and its English
translation sewage water treatment plant (Sennrich et al., 2016). Sennrich et al. (2016)
propose to compute sub-words using the byte-pair encodings algorithm proposed by Gage
(1994). While the algorithm proposed by Gage (1994) operates on bytes and seeks to
develop a new representation of bytes that can compress their representation, Sennrich et al.
(2016) seek to operate on the sub-units of words, that is a sequence of characters. In both
cases, the algorithm operates by considering the input and identifying frequently occurring
patterns that can be represented in terms of a single unit. In efforts to obtain a sub-word
representation, Sennrich et al. (2016) initialise their algorithm initially with a vocabulary
consisting of each unique character token in the dataset and then count all symbol pairs (e.g.
character co-occurrences) and merge the most frequently occurring pairs and adding it to the
vocabulary. This merging process is repeated a number of times, where the total number of
merge operations is a hyper-parameter set by the designer of the sub-word representation.
The size of the vocabulary following this process will be the size of the original vocabulary
plus the number of merge operations that are set by the designers (Sennrich et al., 2016) In
terms of language, using sub-words to represent documents can minimise the number of
out-of-vocabulary tokens in the validation and evaluation sets of a dataset, as the likelihood
of a word not being represented decreases as it is broken down into its subwords.

In this dissertation, I use the pre-optimised Byte-Pair Embeddings (BPE) developed by
Heinzerling and Strube (2018). These embeddings were optimised for 275 languages us-
ing the Wikipedia pages in each language as the source of data. Heinzerling and Strube
(2018) provide embeddings for 1,000, 3,000, 5,000, 10,000, 25,000, 50,000, 100,000, and
200,000 merge operations with dimensions 25, 50, 100, 200, and 300. For all chapters in
this dissertation, I choose the 300 dimensional embeddings that have been subject to 200,000
merge operations as these embeddings are likely to offer good representations of the data
that used in this dissertation.

3.2.2 Strategies Against Over-fitting

Machine learning models are prone to identify salient patterns in the optimisation data with
the result that they perform poorly on evaluation sets and out-of-domain data. In order to
address this issue, I use a number of different techniques depending on the type of model
used. For linear models, I experiment with three different regularisers: L1 regularisation, L2
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regularisation, and Elasticnet. For neural networks, that by virtue of their ability to identify
and represent complex interaction patterns are prone to overfit, I use two different techniques,
namely early stopping and dropout.

L1 Regularisation L1 regularisation operates by iteratively zeroing out uninformative
features in order to produce a more sparse representation of the data while minimising loss
of performance of a given model (Goldberg, 2017). For instance, if there are two features x1

and x2 that both carry an equal weight towards the same class, one of the features will be
zeroed out while the other will retain its weight. While this can be helpful in an in-domain
setting, it may not be quite as useful when the model is used on new data, in cases where x1

exists in the document to be classified but is zeroed out x2 does not occur in the document.

L2 Regularisation To address this short-coming, L2 regularisation is proposed (Goldberg,
2017). L2 regularisation seeks to penalise weights of features, making the weights smaller,
rather than altogether zeroing out any weights. This penalisation and reduction of weights
by L2 regularisation seeks to minimise across all features. Thus L2 regularisation does not
necessarily zero out any individual feature but instead reduce the weight of all features to
prevent over-fitting to any particular set of features.

Elastic Net Elastic Net seeks to combine L1 and L2 regularisation into a single regular-
isation function (Goldberg, 2017). Thus, elastic net seeks to both zero out uninformative
features and minimise the weight of all features to reduce variance between them. Elastic
Net is particularly fitting in modelling contexts where there is a high dimensionality in the
data, for which reason it is desirable to reduce the size of the feature space while retaining a
maximum number of features that are informative towards the prediction task.

Dropout In order to prevent neural networks from over-fitting on optimisation data, Gold-
berg (2017) introduce the notion of dropout. Dropout refers to randomly zeroing out some
values of a model’s internal representation between different layers. The idea behind dropout
is that models may over-fit to individual tokens or interaction patterns between tokens, thus
to prevent the model from learning such patterns, one can randomly zero out values in the
internal representations of a document as it is passed through the layers of the model. Such
zeroing out forces the model to adapt to different representations for a given document each
time it is passed through the model and, hopefully, identify general patterns rather than ones
that occur from spurious correlations in the data.
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Early Stopping A second method for addressing over-fitting in neural network models
is the idea of early stopping (Prechelt, 1998). Early stopping, in terms of neural networks,
means to end a optimisation cycle before it passed over the data for the number of epochs
specified by the researcher. The idea behind early stopping is that a model may identify an
optimal representation before the maximum number of epochs has been reached. Any further
optimisation processes on the model representation are thus likely to have a detrimental effect
to a model’s performance on the evaluation set. In this dissertation I trigger early stopping by
considering the development of model loss. Specifically, if the model loss monotonically
increases for a set number of epochs, I trigger early stopping as this indicates that the model
has already identified a representation that minimises the loss.

3.2.3 Optimisation Techniques

Optimising a neural network requires a host of different techniques for optimisation, such
that the model can identify optimal minima. Among these are the loss function, the activation
function and pooling functions for CNNs. Further, in order to identify optimal minima, it may
be necessary to optimise the model with a number of different values for the hyper-parameters
(i.e. model parameters such as embedding sizes and parameters for the optimisation functions
such as the learning rate) which is also a process that can be subject to optimisation itself.
Here, I describe the different optimisation techniques that I use in this dissertation.

Across all neural network models optimised for the experiments in this dissertation, I use
a softmax function to produce output values representing the likelihood for each class
based on the model representations. The softmax function operates by taking a vector and
producing a value of [0,1] of the vector by computing the normalised exponential function of
all the units in the layers (see eq. (3.1) for a mathematical definition for softmax).

S(x)i =
ex j

Σ jex j
(3.1)

Fig. 3.1 Equation for the softmax function (Goldberg, 2017).

Moreover, as the resulting vector sums to 1 we can treat the values in the vector as a
probability distribution where the largest value represents the most likely class.

3.2.3.1 Loss

Broadly, two different types of neural networks exist: feed-forward networks and networks
that use back-propagation. Feed-forward networks chronologically update the model on
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the basis of the data it is provided without concern for how each update to the model’s
parameters impact the model’s ability to perform the classification task. Back-propagation
was introduced as a method with which model parameters could be updated after the forward
step of the model had completed and an evaluation of the model’s performance with its most
recent parameter weight s(Goldberg, 2017) . By obtaining the model’s loss, or model error
given by a loss function, one can back-propagate the loss through the model to perform an
update to the model’s parameters after the completion of the forward step. In this dissertation,
I only make use of back-propagated models with Negative Log Likelihood loss.

Negative Log Likelihood I choose Negative Log Likelihood (NLL) as a loss func-
tion as it is particularly well-suited for use with the softmax function. I provide the definition
of NLL as provided by the PyTorch library (Paszke et al., 2019) (see eq. (3.2)), where ŷ is a
vector of the predicted labels, y is the vector of given labels (Goldberg, 2017).9 Negative log-
likelihood operates by by assigning a higher loss to for the correct class for each document
on the basis of the probability estimates (obtained through the softmax function) for the
class. The higher the probability estimation for the correct class is, the lower the loss is and
on the other hand the smaller the probability estimate for the correct class is, the higher the
loss is. By focusing on the probability estimate for the correct, in terms of ground truth, label,
NLL avoids the potential issue of assigning all predictions with a correct or incorrect label a
specific value. Thus, NLL addresses the model’s certainty rather than the prediction itself.

L(ŷ,y) =−∑
i

yi log(ŷi) (3.2)

Fig. 3.2 Equation for Negative Log Likelihood loss.

3.2.3.2 Non-linearities

In the experiments conducted in this dissertation I use two different non-linear functions that
I subject various layers in the neural network models to. The role of non-linearities in neural
networks is to allow for models to optimise non-linear functions rather than linear ones. The
two non-linearities that I experiment with are Tanh and ReLU.

The hyperbolic tangent, or Tanh, function (see eq. (3.3) for its mathematical definition)
is a non-linear activation function that element wise transforms the values of the tensor
representation of the model into a real valued space between [−1,1]. Tanh is a monotonically

9See https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html for the implemen-
tation details for Negative Log Likelihood used in PyTorch.

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
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increasing function that is symmetrical around 0 due to which there is a risk of the issue of
vanishing gradients for the model (Teuwen and Moriakov, 2020). Vanishing gradients refers
to the issue where the gradients of the models become increasingly small, to the point of no
longer having an effect on the parameter updates, due to being centred around 0.

tanhx =
e2x −−1
e2x +1

(3.3)

Fig. 3.3 Equation for Tanh (Goldberg, 2017).

One way to address the potential issue of vanishing gradients is to use a Rectified Linear
Unit (ReLU) as the activation function (see eq. (3.4) for the mathematical definition of ReLU).
Unlike the Tanh function, ReLU is not a symmetrical function, but instead relies on a binary
evaluation of each element in a vector. If the weight of the element under consideration
wx < 0, then the value computed is ReLU(x) = 0. On the other hand, when the value wx > 0,
then the value computed is ReLU(x) = 1 ·wx (Teuwen and Moriakov, 2020).

ReLU(x) = max(0,x) =

{
0 if x < 0
x otherwise

(3.4)

Fig. 3.4 Equation for ReLU.

3.2.3.3 Pooling Layers

For CNN models it is necessary to use either average pooling or maximum pooling to
summarise the features under a filter. As a summary, pooling operations act as a method for
downsampling the feature representation obtained after convolutional layers. Two common
kinds of pooling operations are average pooling and maximum pooling. Average pooling
computes the mean value of the pooling features under the filter while maximum pooling
extracts the largest value. In my experiments with CNN models, I use maximum pooling
exclusively due to its dominance in the CNN models developed for abuse detection (Kolhatkar
et al., 2020).

3.2.3.4 Optimisation Algorithms

At the heart of neural networks lie the optimisation algorithms that control the rate and
manner in which model weights are updated. A number of different optimisation algo-
rithms have been proposed for neural networks, but in my experiments I focus on two
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algorithms, Stochastic Gradient Descent (SGD) and Adam. For each of these algo-
rithms, I use the originally proposed algorithms, SGD and Adam, and a variant that address
specific short-comings of each algorithms, Averaged Stochastic Gradient Descent
(ASGD) and Adam with decoupled weight decay (AdamW). For all algorithms, we use
the implementations used in Paszke et al. (2019) and refer readers to the PyTorch documenta-
tion for further details.10

Stochastic Gradient Descent Stochastic Gradient Descent (Sutskever et al., 2013)
is a popular optimisation algorithm used for neural networks and has been used by a large
number of researchers for a diverse set of tasks across various machine learning research
areas and tasks, including online abuse detection (Bodapati et al., 2019; Singh et al., 2018).
SGD relies on gradient descent, which is an algorithm that computes the gradients of points
on a function until it reaches a minima. This process can be computationally expensive as
gradient descent requires a computation on the entire dataset. This approach has two issues:
First it is computationally expensive as the computation is performed on the entire dataset;
second, gradient descent requires a learning rate being given, which determines the position
for the next point at which to compute the gradient. If the learning rate is sufficiently small,
and the function under optimisation is not a convex function, gradient descent may identify
and settle at a local minima rather than the desired global minima.

vt+1 = µνt − ε∇ f (θt +µνt) (3.5)
θt+1 = θt +νt+1 (3.6)

Fig. 3.5 Equation for Stochastic Gradient Descent (Sutskever et al., 2014), where ε is the
learning rate, ∇ f (θt +µνt) is the gradient, and µ is the momentum.

SGD similarly computes the gradients of points on a function, but rather than computing the
gradient descent on the entire dataset, a single example is selected and the gradient descent
is computed for that data point, thus minimising the computation time, even when more
iterations are necessary to identify the minima. The second issue of local minima is in part
addressed by the random nature of selecting a data point to compute the gradient from. This
randomness results in greater fluctuations in the development of the gradient, however, this
exact fluctuation and variance may allow the algorithm to identify a better minima.

10The API reference can be found at https://pytorch.org/docs/stable/optim.html.

https://pytorch.org/docs/stable/optim.html
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Averaged Stochastic Gradient Descent Another approach to addressing the issue of
identifying optimal minima is Averaged Stochastic Gradient Descent Polyak and
Juditsky (1992). ASGD operates similarly to SGD but considers averaged trajectories in order
to accelerate the identification of the optimal minima. The acceleration is obtained through a
reduction of noise from the stochastic nature of the selection of data point for consideration.
ASGD takes the standard SGD algorithm and recursively computes the average w̄t =

1
t Σt

i=1wt

(Bottou, 2010).

Adam The Adam algorithm (Kingma and Ba, 2015) is also frequently used in abuse detec-
tion classification research (Kolhatkar et al., 2020; Meyer and Gambäck, 2019; Zimmerman
et al., 2018). The algorithm seeks to further push the goal of faster convergence onto optimal
minima, Kingma and Ba (2015) propose the Adam algorithm. The Adam algorithm is also a
stochastic optimisation algorithm, however it only requires computing the first-order gradi-
ents. The algorithm seeks to compute the value of parameters θ at time-step t that achieves
convergence. However, rather than updating all parameters with with the same learning rate,
Adam maintains a learning rate for each parameter which is adapted as the optimisation of the
network proceeds.

Adam achieves this by first computing the gradients with regard to the stochastic objective
at time-step t, then updating the biased mean estimate and the biased uncentred variance
estimate. This is followed by computing the bias-corrected mean and uncentred variance
estimates, respectively which are computed by factoring in exponential decay rates for the
moment (mean and uncentred variances) estimates. Finally, the value of θt is updated and
the process is repeated if θt has not converged.

Adam with Decoupled Weight Decay Adam with decoupled weight decay (AdamW)
was proposed by Loshchilov and Hutter (2019) as a result of examining the implementation of
Adam in many libraries for neural network optimisation and finding that many had incorrectly
implemented Adam using L2 regularisation rather than weight decay.

Since this correction, papers on abuse detection have started to use this algorithm (Röttger
et al., 2020; Vidgen et al., 2020a) over the initial Adam implementation that used L2 regulari-
sation rather than weight decay.

3.2.4 Bayesian Hyper Parameter Tuning

The performance of neural network architectures rely on a range of hyper-parameters that
control their behaviour from a number of different positions in the model. For instance, the



52 Computational Background

size of the layers in the network can be treated as a hyper-parameter, the learning rate for
the optimisation algorithms, and the rate with which to apply dropout in the model. As a
result of the many different potential hyper-parameters that can be tuned, the complete search
space for all hyper-parameters grows exponentially for each new hyper-parameter under
consideration. While the same holds true for linear models, the number of parameters to
be explored often figure in much smaller ranges. For instance, the searches for parameters
and hyper-parameters, for the linear models used in this dissertation are concluded in only
minutes due to a smaller search space. For neural network models, a full search of the hyper-
parameter search space however quickly becomes infeasible as the number of parameters
to be explored scale. This introduces the question of how a hyper-parameter search space
can be adequately explored without the need for a complete search through every possible
combination.

One way to perform a hyper-parameter space search, without searching the complete space
of every combination, is through Bayesian Optimisation for hyper-parameter identification
(Snoek et al., 2012). Through the use of Gaussian Processes (GP), the selection of hyper-
parameters for trial can be cast as an optimisation problem, where the hyper-parameters
serve as a feature space and the performance obtained with each parameter serves as the
label. The aim of the GP model is to estimate how each hyper-parameter contributes to the
final classification performance of the model and provide suggestions for the next set of
hyper-parameters to trial. I use Biewald (2020), which implements Snoek et al. (2012), for
all hyper-parameter searches for neural network-based experiments.

3.2.5 Metrics

Model performances can be evaluated in a number of different ways, from qualitative analyses
of the model outputs to quantitative analyses. Within the bracket of quantitative analysis,
further subdivisions exist including the one I will use in this dissertation, namely the use
metrics computed using model predictions and the ground truth. For my evaluation, I use
the F1-score, precision, recall, and accuracy. As many of the datasets that are used
for optimisation and evaluation have heavily imbalanced class distributions, each of these
scores provide different aspects into model performances and different levels of insight
into the models. The metrics all require insights into the agreements between the ground
truth and a model’s predictions. These agreements can be categorised into four different
groups: True Positives (TP), where the model’s prediction and the ground truth label
agree and the label belongs to the positive class; True Negatives (TN), similarly where
model prediction and ground truth agree and the label belongs to the negative class; False
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Positive (FP), where the model predicts the label for the positive class but the ground
truth is in the negative class; and False Negative (FN), which is the inverse of True
Positive, i.e. the model predicts the negative class but the ground truth is in the positive
class. 11

Accuracy Accuracy is the simplest metrics among those I use, and it’s subsequently also
highly volatile to class imbalances. The score (see eq. (3.7)) computes the number of correct
predictions out of all predictions made. For balanced datasets, this metric provides a good
insight into a model’s overall performance, however for imbalanced data, it is susceptible to
providing a distorted view of a model’s performance. For instance, if a dataset has a heavy
class imbalance, a model that only predicts the majority class will have a deceivingly high
accuracy score.

accuracy(Y,Ŷ ) =
T P+T N

T P+T N +FP+FN
(3.7)

Fig. 3.6 Equation for the accuracy score.

Precision Precision provides an estimate of how well a model predicts into the positive
class. Specifically precision asks to which degree classifications into positive class are correct
classifications into the class (see eq. (3.8)). Thus, one can ascertain to which degree a model
can be trusted when it predicts a positive label.

precision(Y,Ŷ ) =
T P

T P+FP
(3.8)

Fig. 3.7 Equation for the precision score.

Recall Recall on the other hand, provides insight into the ability of a model to retrieve
correct instances of the positive class. By computing the fraction of data predicted correctly
into the positive class and the union of data correctly predicted into the positive class or
incorrectly predicted into the negative class, recall can allow for an intuition into how
trust-worthy a model is when it predicts that data is not in the positive class.

11I do not use the Area Under the receiver operating characteristic Curve as a metric as this
metric does assumes a similarity between all underlying samples (Stevenson, 2021). A guarantee that cannot be
made when datasets with distinct annotation strategies and sampling are involved .
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recall(Y,Ŷ ) =
T P

T P+FN
(3.9)

Fig. 3.8 Equation for the recall score.

F1-score In practice it is often desirable to balance precision and recall as as they
allow for intuitions into two crucial aspects of model performance, it’s ability to correctly
retrieve data into and exclude data from the positive class. The F1-score provides exactly
such a balancing by computing the harmonic mean of the precision and recall scores
(see eq. (3.10)).

F1-score(Y,Ŷ ) = 2 · Precision ·Recall
Precision+Recall

(3.10)

Fig. 3.9 Equation for the F1-score.

For abuse detection, the macro average of the F1-score is often used. The macro averaged
F1-score, or macro F1-score, sum the F1-score for each class and computes their mean,
thus providing insight into the performance of models across the different classes. In this
dissertation, all F1-scores reported are macro F1-scores as this has been widely used in the
abusive language detection field (Fortuna et al., 2021).

3.2.6 Machine Learning Models

As I explore different experimental research questions, I optimise different machine learning
algorithm for detecting abusive language. Each of the model types that I use rely on different
methods of operationalising data to obtain internal representations of the different classes.
Here X is to mean the processed input to the model, Y is to denote the corresponding ground
truth labels, and Ŷ denote the set of model predictions. For all models, the aim is to optimise
a function f (X |Y ) that can delineate between each class yi ∈ Y .

Logistic Regression The first linear model that I use in this dissertation is Logistic Regres-
sion (LR), which has previously been used widely in NLP tasks. Logistic Regression is a
model that carries certain assumptions about the data that is represented, in particular, I call
to attention its assumption of feature independence. The assumption of feature independence
presumes that each individual feature, or word token in the case of language, contributes
to the classes in isolation of all other features. Trivially, this assumption does not hold for
language.
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In terms of mathematical modelling, LR relies on the Sigmoid function (see Equation 3.11)
which calculates the probability of a data point, or document, belonging to a class. In
Equation 3.11, w0,w1, . . . ,wn denote model coefficients that are obtained through maximum
likelihood estimation and x1, . . . ,xn represent the features that are treated independently.

F(x) =
1

1+ e−x (3.11)

Fig. 3.10 The sigmoid function.

Support Vector Machines The Support Vector Machine (SVM) algorithm seeks to identify
a hyper-plane where the data can be mapped to and classes yi ∈ Y are linearly separable.
Such mappings can be computed using different kernels. Beyond identifying a hyper-plane
where the classes are linearly separable, SVMs also have the additional aim of identifying a
hyper-plane that maximises the margins, that is the distance between the linear separation and
the closest data points for each class. Specifically, SVMs seeks to maximise the prediction
given by sign(wT φ(x)+b) where φ is the identity function and b is an independent value.
Although many different kernels exist for SVM classifiers, I use a linear kernel (see eq. (3.12)
for the mathematical formula used by Pedregosa et al. (2011)) as this provides weights for
each feature that can be analysed to understand which patterns the model is learning.

min
w,b

1
2

wT w+C ·Σi=1 max(0,yi(wT
φ(xi)+b)) (3.12)

Fig. 3.11 Formulation of the Linear Support Vector Machine provided by Pedregosa et al. (2011),
where φ is the identity function and C is the regularisation strength.

Multi-Layered Perceptron The Multi-Layered Perceptron (MLP) is perhaps the simplest
form of neural network. This neural network is an extension of the Perceptron algorithm by
chaining several Perceptron units into a single layer, A Perceptron is updated given the update
rule in Equation 3.13. Moreover, rather than consisting of a single Perceptron that learns
weights of the optimisation data, MLPs are formed of multiple layers of chained Perceptron
units. An MLP requires at least three layers, an input layer, at least one hidden layer, and
an output layer. Similar to the linear models described in the past sections, MLPs also have
an independence assumption coded in, as they assume that each input token is independent
from each other.

Finally, the Perceptron, similarly SVM and LR classifiers is a classifier operates on the data
in a one-directional, that is a feed-forward manner. MLPs on the other hand can either be
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wi+1 = wi(t)+ ε(yi − ŷi(t))xi) (3.13)

Fig. 3.12 The Perceptron weight update function for binary classification. Where t is the time-step, ε

is the learning rate, xi is the optimisation example, yi and ŷi(t) are the ground truth and the model
prediction at time-step t, respectively.

developed as feed-forward networks or networks with back-propagation. A network that uses
back-propagation updates the model representation first in the same manner as a feed-forward
network in its forward pass, second by computing the loss and propagating it backwards
through the model, updating the representation as the loss is propagated through each layer
of the model. In this dissertation, all MLPs are optimised with back-propagation.

Long-Short Term Memory Networks The idea of recurrence for neural networks stems
from the realisation that MLPs are poorly suited to address sequences that move through
some conceptualisation of time. 12 To address this short-coming, Recurrent Neural Networks
(RNNs) were proposed. RNNs introduce a loop, or recurrence, in the neural network by
iterating over the components of the input, linking each iteration (cell) of the loops to
all prior iterations. By linking into past iterations of the within-model loop, RNNs can
model developments of data through a linear conceptualisation of time, by predicating the
performance of the loop at time-step t on the representation of the network at time-step
t −1. For instance, when passing a document through a RNN, the model will iterate over
the document, treating each token as a time-step. The representation derived for the token at
time-step t will then be predicated by all preceding tokens. In this way, RNN models can
encode dependencies to understand complex interactions of tokens through time.

In practice however, RNNs aren’t well suited for long-range dependencies, as all preceding
time-steps are treated with equal value, leading to a decay over time. Additionally, some
information occurring at an earlier time-step may not be relevant to all subsequent time-steps.
To address this issue, Hochreiter and Schmidhuber (1997) propose the Long-Short Term
Memory (LSTM) network, which is a special form of RNNs. LSTMs differ from vanilla
RNNs by introducing the concepts of gates. Namely, Hochreiter and Schmidhuber (1997)
introduce a ‘forget’ gate and an ‘input’ gate in each cell of the LSTM. Each gate in the LSTM
cell can modify the cell state. First, the input at time-step ht receives the output from the cell
at state ht−1 and a sigmoid function that determines what information from the cell state at
ht−1 is retained, given xt . Next, the ‘input’ gate decides which values will be stored in the cell

12The conceptualisation of time can vary depending on the data and task at hand. For structured prediction,
time can be the sequence of tokens while for stock price prediction it can be the traditional understanding of
time as a linear construct.
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state. This decision is made by first selecting the values that are to be updated and how much
they are to be updated, and then creating a vector of candidate values to be added. Having
computed which values to forget, store, and update, it is now a simple matter of performing
the updates to the cell state at ht−1. First modifying the cell-state to only retain the values
that are to be remembered. Then, the values selected for updating and their candidate values
are added to the cell-state, thus producing a new cell-state. Finally, a version of the cell-state,
filtered by a sigmoid function to control what is passed on, is output to the next cell ht+1.

For my experiments using LSTMs, I use the implementation offered by Paszke et al. (2019)
which uses the variation of LSTMs proposed by Sak et al. (2014).

Convolutional Neural Network Convolutional Neural Networks are a type of neural
network that were initially proposed for computer vision tasks. Like all other forms of neural
networks, CNNs have an input, an output layer, and some hidden layers. The hidden layers
of CNNs contain convolutional layers. These layers apply a series of convolutions, or sliding
windows over a matrix of features and compute a summary of those features. Where other
networks, MLPs for instance, often contain just a single hidden layer, CNNs often contain
multiple hidden layers in the form of convolutional layers. After the data has been processed
by each convolutional layer, a non-linearity is applied to the resulting representation. Once
all convolutions have been completed, a pooling operation (see section 3.2.3.3 for more detail
on types of pooling) is performed as the final step that is unique to CNNs. The operation of
using convolutions that consider multiple features can be likened to the use of n-grams where
n > 1. However, unlike traditional n-grams that are processed directly, convolutional layers
are subject to the non-linearity and the pooling operation, the latter of which summarises the
identified features and creates a modified representation of the learned feature maps.

3.2.7 Multi-Task Learning

The Multi-Task Learning framework was initially proposed by Caruana (1993) as a way
to optimise a model for a specific primary task by leveraging that (multiple) tasks may be
related. Choosing a primary task, one or more tasks can be chosen as auxiliary tasks that can
provide inductive biases for the model to take advantage of to perform better performance for
the main task. MTL models can be optimised in two different ways, through hard parameter
sharing or soft parameter sharing. Hard parameter sharing models are optimised by having
(some) hidden layers that are shared by all tasks and some layers that are individual to each
task. When optimising for each task, the model updates all layers of that task, including the
shared hidden layers.
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On the other hand, models that are optimised using soft parameter sharing do not share any
layers, instead the parameters of each task are regularised to be similar (Duong et al., 2015).

While the idea of inductive biases from related tasks provides a compelling argument for ex-
amining MTL for abuse and hate speech detection, there are some interesting attributes to the
framework. First, as MTL is compatible with neural networks, researchers can forego feature
selection similar to other neural network approaches. This automated feature selection pro-
cess carries some benefits and risks. One benefit of automated feature selection performed by
neural networks is that designers of models aren’t required to identify potentially suboptimal
features. On the other hand, such automated feature identification risks that models identify
spurious patterns in the data to exploit without easy ability to easily identify such spurious
patterns. Moreover, manual feature creation relies on designers of systems to interrogate
the data to create features, resulting in research hypothesis being directly embedded in the
systems designed to answer the research questions.

Second, while an ensemble model optimisation framework may appear very similar to the
MTL framework, a key dissimilarity is that MTL models share information between the
different tasks; for hard parameter sharing models this sharing occurs through shared layers
(Caruana, 1993), while for soft parameter sharing model information is shared through the
similarity of of layers across models for each task (Duong et al., 2015).

Third, for hard-parameter sharing models, the complexity of developing a model is reduced
as information is directly shared between the models through the shared layer, while at least
two layers (input and output layers) are individual to each task. Thus, only a single model is
developed, where the designers need only to concern themselves with the layers that are not
shared, rather than concern themselves with full models and how to balance them.

Fourth, as Caruana (1997) show, the framework allows for optimising for several distinct
tasks while leveraging the similarities shared by each individual task. For hard parameter
sharing models, this approach also introduces the risk (and opportunity) of a single task
dominating the representation of the model, due to either more data being available or a task
being selected with for optimisation with greater probability than the remaining tasks.

Fifth, when working with different datasets for similar and distinct tasks alike, directly
leveraging them outside of a MTL model can be a cause for concern due to differences in
collection rationales, data sources, or annotation strategies Talat et al. (2018). However,
through both weighting of the different tasks and the fact that each task has either its own
input and output layers or its own model, such concerns can be alleviated due to either limited
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shared layers that are optimised or due to distinct models being optimised that are regularised
to minimise dissimilarity, depending on which parameter sharing strategy is used.

Finally, in the event that an auxiliary task does not contribute to the primary task as the
researcher had hypothesised, it may still contribute to the overall generalisability of the model
as the offending task will act as regulariser for the primary task, as it introduces noise into
shared layer (Bingel et al., 2018).

For hard parameter sharing MTL models, the selection of batches for optimising the model
requires significant consideration as the batch determines which task is being optimised.
Thus, if one task is selected more than others, the resulting model will be tuned towards that
model. For this reason, there are two ways to control which task acts as the primary task, 1)
through the main task being selected most frequently or 2) through weighting the different
tasks according to their importance. The latter method controls the influence of each task by
multiplying the weight of each task with the loss produced following each epoch.

3.3 Fairness

Bias and fairness in machine learning and the corresponding field for NLP are growing fields
that seeks to describe and address how machine learning systems have disparate impacts on
different groups, leading to downstream marginalisation of some bodies. The field addresses
the question of marginalisation using statistically based measures to quantify and redress the
harms enacted by optimisation technologies (Kulynych et al., 2020). In other words, the field
attempts to address issues of marginalisation by using the very abstractions that cause the
exacerbation of harms by computational tools. In general, work in the field operates along
three different strands

1. A descriptive strand which aims to map out models and datasets with their intended
uses and limitations,

2. a quantitative strand, which seeks the quantification and automated analysis of the
quantification and analysis of disparate outcomes of model prediction, and

3. a mitigation strand focusing on how biases that are present in models and datasets can
be addressed.
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3.3.1 Mapping Uses and Limitations

A number of papers have sought to map limitations in prior work and proposed methods
for future works to document ethical risks and ramifications. In early work, Hovy and
Spruit (2016) design a taxonomy of ethical risks of NLP systems from over generalisation to
dual use of models and from exclusion of demographies of people in datasets to over- and
under-exposure of topics to a model. Following with considerations of datasets, Bender and
Friedman (2018) and Gebru et al. (2018) propose ‘data statements’ and ‘data sheets’, respec-
tively, to documenting the processes with which datasets for machine learning experiments
are created and the logics that they draw on for their creation, and shortly thereafter Mitchell
et al. (2019) propose an analogous ‘model card’ framework for describing the design ratio-
nales for machine learning models. More recently, Blodgett et al. (2020) surveyed 146 papers
addressing questions of bias in NLP, and identify that in spite of the large body of work, the
notion of ‘bias’ is often under-specified to a point that “techniques [for addressing bias] are
poorly matched to their motivations, and are not comparable to one another” (Blodgett et al.,
2020, p. 5455).

3.3.2 Quantifying Harms

Shah et al. (2020) propose a mathematical framework for quantifying biases that arise in
different steps of the NLP pipeline with a basis in the taxonomy proposed by Hovy and
Spruit (2016). Here, the authors develop a method to quantify biases that may stem from
the data and models optimised on it, aiming to provide designers of NLP pipelines with a
method to zoom away from the details of how data and models may be biased and instead
obtain an abstraction that provides a guide to where human attention may be needed. Moving
away from a laboratory setting, Buolamwini and Gebru (2018) identify how commercial
facial recognition systems perform and fail for people. They find that there is a correlation
between a facial recognition system’s ability to identify faces and the gender and skin-tone
of the subject. They find that, in general the systems surveyed tend to perform worse on
darker skin-tones and women, with the ability to detect dark-skinned women. Turning to
language, Gonen and Goldberg (2019) highlight that many methods for addressing bias in
word embeddings leave traces of stereotypes that allow for reconstruction of gendered spaces
in word embeddings that have been treated for gender bias.13 In a different conceptualisation
and operationalisation of bias, Talat (2016) examine how different annotator groups label
hate speech. While many of the previous methods seek to eliminate, document, or redress

13Although bias treatment is often termed ‘debiasing’, I resist convention as the term ‘debias’ is a red-herring
for ‘acceptable bias’. As I address in greater detail in chapter 7, such language obscure how methods treated for
bias exist and are politicised.
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biases in datasets and models, Talat (2016) proposes to instead accept that social biases are
an inevitable force that cannot simply be removed. Instead, they propose that one can lean
into this issue by specifically biasing data towards a specific position. Talat (2016) argue that
by such deviation from requiring a ‘debiased’ or ‘global’ position, it is possible to optimise
models that outperform systems that are based on data that reflects the quest for a global
consensus.

3.3.3 Harm Reduction

At least two broad conceptualisations of bias can be found in the large body of work dedicated
to this question (e.g. Agarwal et al., 2018; Bolukbasi et al., 2016; Kulynych et al., 2020;
Romanov et al., 2019; Zhao et al., 2017). In the first conceptualisation, bias can be imagined
as a finite and countable quantity in a model. Being a countable quantity, it can also be
minimised and reduced out of the model or data representation. The aims of this work, is not
only to minimise the discriminatory social biases that exist in the models but also maintain
‘good’ performance on the primary task. Thus, this line of work accepts a premise that models
and data representations that have been treated for bias must still be useful for their intended
purpose instead of proposing that models that cannot function without encoding social biases
cease to have a valid justification for their existence. The second conceptualisation of harm
reduction accepts that machine learning models, and optimisation systems more generally,
are subject to social biases and instead of direct reductions to the model, seek to identify
methods that can externally counteract marginalisation.

Working within the first conceptualisation, Agarwal et al. (2018) propose a method to modify
the weights of optimised models such that they satisfy a given criteria for fairness. In this
work, there is a reliance on the knowledge of who, in the case of language data, the speaker is
and what demographics they belong to. Contrary to this requirement, Romanov et al. (2019)
propose a method that does not have this requirement. Instead, they propose developing an
auxiliary machine learning system for the expressed purposed of identifying the demographic
belongs of a person given text that they have authored. The predictions of this machine
learning system is tehn encoded into the loss function of the task they seek to optimise a
model that has been treated for bias, letting the loss be subject to the identities that the author
has.

Using the second conceptualisation as their basis, Kulynych et al. (2020) propose a class of
Protective Optimisation Technologies (POTs) that use the logics of optimisation to counteract
marginalisation demographic groups experience as the result of being direct or indirect
subjects of optimisation technologies. Notably, this class of systems deviates from all other
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systems in that it does not necessitate developing computational models but rather seek
to interact antagonistically with the optimisation technologies that people are subject to.
Such systems can be computational in nature, for instance Kulynych et al. (2020) show
how an automated system can address disparities in loan applications by identifying which
features can be modified by a demographically dissimilar collective that have similar loan
applications to reduce the number of false negatives, that is people who are incorrectly
predicted to default on loans, in part as a basis of their demographic belonging. In an
example of a non-computational POTs, Kulynych et al. (2020) describe how people who
see large amounts of traffic being redirected through residential neighbourhoods by route-
planning applications report road works and other obstructions, to avoid traffic from being
directed through their residential neighbourhoods. Thus, while the residents that resist the
optimisation of route-planning applications are not the primary users of the application,
they become externalities of those applications and antagonistically use the technologies to
address the harms that are inflicted upon them by the optimisation technologies.

3.4 Summary

In this chapter, I have provided an introduction to the computational methods and logics that
the work in this dissertation rely on. First, I introduced the task of abusive language detection;
second, I provided an overview of the datasets that I used in the subsequent chapters of
this dissertation; third, I detail the different parts of the modelling process that the machine
learning systems developed in this dissertation rely on; and finally, I gave a brief overview of
different strands of thinking for work on bias and fairness in the machine learning literature.



Chapter 4

The Politics of Toxicity in Content
Moderation Infrastructures1

In this dissertation, I will work with notions of ‘toxicity’ and ‘abuse’ without deeply consid-
ering the implications that the designations have or the political constructs they live within.
Here, I turn a critical gaze on the implications of the political economies that these terms live
within and how content moderation infrastructures define toxic content. That is, I examine
the narrow understandings of ‘toxic’ as it is constructed in the computer scientific literature
and consider its implications through the lens of structural marginalisation, as constructed
within the social sciences. This chapter then seeks to illuminate RQ I by asking what the
socio-political implications are of the ways in which ‘toxicity’ is operationalised in content
moderation infrastructures (see RQ 1 in chapter 1).

Through an examination of two content moderation tools, the Perspective API and Opt Out, I
argue that content moderation’s historical reliance on static categories, which are embedded
in social systems of racism and patriarchy, embeds content moderation technologies in
structures that risk reproducing social inequalities, subsequently encoding white supremacist
ideologies. I choose the two technologies to illustrate the differences between top-down and
bottom-up approaches to content moderation and the distinct ways in which they embed
meaning to ‘toxic’ and ‘abuse’, and the cultural filtering work that content moderation has
come to do. These two examples enable me to identify the challenges inherent in attempts
to automate and scale content moderation and ask two fundamental questions of content

1Parts of the content in this chapter contains work done in collaboration with Nanna Bonde Thylstrup
(Copenhagen Business School, first author). The chapter is currently under review in the First Monday Special
Issue for the Workshop on Online Abuse.
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moderation: Whom are content moderation systems for and who gets to define and enforce
them?

By engaging with scholarly work that draws on and develops pollution and discard theory,
we can better understand this discourse of ‘toxicity’ and identify new avenues of research
for content moderation studies. Moreover, by relying on theories of social pollution from
anthropology Douglas (2005) in addition to work on dirt and toxicity in the field of discard
studies Lepawsky (2019); Liboiron et al. (2018), I argue that content moderation should
move beyond the question of merely removal of toxic content to a productive “re-ordering of
our environment” through practices of classification and purification Douglas (2005).

4.1 Content Moderation as a Problem of Dirt

If we consider content moderation technologies as ‘protective’ filtering systems that reject
and accept to ensure the ‘health’ of communities,2 then we must also accept and consider
their inseparability from discourses of hygiene and pollution. By conceptualising content
moderation systems deployed with the purpose of protecting platforms and their communities
against the existential threat that occurs through the through the existence of dirt Lepawsky
(2019), we can begin to develop an understanding of online abusive content as ‘toxic’.
Thus, rather than ‘simple’ technical solutions, we can think of content moderation systems
as complex processes which aid the communities, or platforms in their practice of self-
constitution.

Through an application of the considerations on dirt presented by Mary Douglas 2005 to
content moderation technology and their classification schemes of harmful and abusive
content, I find that content moderation requires constant efforts to classify, detect, and
reorganise content online in every step of the process, from conceptual frameworks and
annotation guidelines to computational models and from organisational systems to manual
labour. Each of these elements of the content moderation system become different mechanism
that allow the system to exert efforts to positively reorganise online environments through
sanctioning content. In many online spaces, e.g. Facebook’s familiar space of people you
(have once) know(n) content moderators are hard at work, removing human rights abuses
and system critiques alike. In such cases, removal is not only a negative act, but also a part
of productive processes embedded in complex community formation that reconstitute the
platforms they operate on. For instance, as many social media platforms cater to general

2Content moderation and ‘health’ of conversation and communities has previously been highlighted by
Twitter through their ‘Healthy Conversations’ academic partnerships (Gadde and Gasca, 2018).
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publics, including children, they perform an act of sanitisation of the environments that
exist to constitute an environment that is perceived as acceptable in social settings, and in
particular for children to navigate.

Douglas’ framework of dirt allows us to see and examine the cultural embeddings of content
moderation. Considering such cultural embeddings, it is no surprise that operationalising
terms such as ‘toxic’, ‘hate speech’, and ‘offensive’ lead to negotiations between coders
and designers of data Talat (2016). Such issues with operationalisation of the terms then
also blur the decision boundaries learned by machine learning for content moderation.
Moreover, in spite of such culture wars in the data annotation processes and their downstream
effects on blurring machine-identified decision boundaries, many machine learning methods
are presented with the result of the annotation process as objective truths. The machine
learning methods applied to such would-be objective bodies of data codify the patterns
and correlations with the associated labels. What was once subjective is then presented as
objective, universally true rules, as machine learning methods play the God Trick (Haraway,
1988).

Faithful representations of collective negotiations of what constitutes ‘toxic’ or ‘abusive’
must then also have a degree of indeterminability to them. This indeterminability of labels is
then an indication of the instability of the terms and their operationalisations. It follows then,
that indeterminability can cause harm to social order Hall (1997b) as multiple concurrent
decoding processes may exist that deviate from the intended encoding. In the setting of
content moderation, we must add an intermediary in Hall’s Hall (1997a) setting of encoding-
decoding framework as the content moderation system itself must decode and adjudicate
a decision: Should this content be actioned or not? Through answering this question, the
meaning made in the decoding process of the content moderation system then becomes the
final decision on its meaning, regardless of its intended encoding or the decoding of the
reader.

Understanding these meaning-making processes and positions of power allows us to recognise
that some content might be flagged as problematic because of its “inability to be assimilated
into existing socio-cultural categories and systems” Rafi Arefin (2019). In handling content
for which multiple concurrent and contradictory meanings are made, content moderation
should be a relative practice that constantly oscillates among the meanings encoded and
decoded according to the context in which the actions happens. Moreover, as cultural systems
can change quickly, so can the meanings of symbols. What was once accepted practice e.g.
racist jokes can suddenly be considered harmful and socially transgressive; similarly what
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was once taboo can become acceptable practice. Many of the issues with content moderation
systems can then be traced back to these dynamic meaning-making processes for instance,
how does one determine if the usage of the N-word is used as a slur or a ‘soul’ word Rahman
(2012)?

These dynamic complexities stand in contradiction to automated content moderation systems
that internally assign each token a weight and a probability externally. These weights and
probabilities are unlikely to be zero, reinforcing the assertion made by Douglas (2005), that
there is no such thing as absolute dirt. In fact, many of the methods that seek to mitigate
social biases in machine learning, and by extension automated content moderation seek to
re-assign weights to minimise the social marginalisation that such systems cause on already-
marginalised people Liu and Avci (2019). These mitigation strategies frequently operate
within positivist logics of optimisation. The aim of such re-ordering within automated
content moderation systems is not to remove all traces of discriminatory biases within such
systems, instead such works engage in a calculus of operating with minimal acceptable
harms to marginalised people. However, such reordering does not take into account the
unequal impacts of equal treatment. In fact, such work rarely takes into account that through
their search for patterns to aid in prediction, automated systems may go beyond simply
representing inequities and instead actively amplify them (Zhao et al., 2017).

The fact that human, machine, and hybrid content moderation systems reproduce such social
inequities has been the object of both scholarly work Davidson et al. (2019); Dias Oliva
et al. (2021); Dixon et al. (2018); Sap et al. (2019) and public criticism Guynn (2019).
Indeed the excessive policing of marginalised communities has given rise to the use of
Protective Optimisation Technologies (POTs) Kulynych et al. (2020) in efforts to circumvent
such policing through a number of tactics including phonetic spelling (e.g. the use of
‘wypipo’ instead of ‘white people’) Guynn (2019). These methods of circumventing content
moderation systems come from the experience of negative removals Guynn (2019). Examples
of such negative removals include the removal of content oppositional to racism and sexism or
simply documenting the lived experiences of marginalisation (Kirtz et al., 2022). Considering,
for instance, content moderation of AAE, the content moderation filters may reproduce
racialised logics and thus excessively reject content written in AAE as particularly dirt-like
Talat et al. (2018). At other times, the system may fail to capture the semantic richness
of AAE. For many content moderation systems, the working assumption embedded in the
systems Davidson et al. (2019) that is curated through labelled data Talat et al. (2018) is that
any mention of the n-word invokes a negative stereotyping. However, as Rahman (2012)
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reminds us, beyond the negative uses of the n-word as a slur, there is a rich and complex
cultural history and meaning assigned to the word when it used by in-group speakers. Such
structural biases occur because in efforts to scale the size of data, working with ‘deep
data’ (Lori Kendall cited in Brock (2015)), i.e. working on data with methods that include
deeper insights about the “cultural, moral, and social choices about technology use” found
in different cultural communities Brock (2015). Thus, in particular for the moderation of
language, many content moderation infrastructures reproduce the problems of respectability
politics and its favouring of upper-middle class White ideals Kerrison et al. (2018), resulting
in state-of-the-art models of white supremacy.

4.2 Addressing Toxicity Online

Through the exemplification of Jigsaw’s Perspective API and the Opt Out’s browser-plugin, I
examine the issues of power differentials, respectability politics, and the complex space in
which content moderation systems navigate.

4.2.1 Perspective

The Perspective API was developed Wulczyn et al. (2017) and launched by Jigsaw and
Google’s Counter-Abuse Technology team in 2017. The method employed by Perspective
aims to explore online discussions through experiments, models and research data in order to
create better governance tools and “explore strengths and weaknesses of [machine learning]
as a tool for online discussion”. The API is developed to score the toxicity of provided text
using machine learning. Each bit of text, or comment is then given a score between zero
and one, which can be interpreted as the percentage of people who would find the comment
offensive Jigsaw (2017).

In order to identify what is toxic and not toxic, Perspective offer defining a toxic comment as
‘a rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion’
Jigsaw (2017). This definition is used in the data creation process. The data is created
by “asking people to rate internet comments on a scale from ‘Very toxic’ to ‘Very healthy’
contribution” Dias Oliva et al. (2021). As the definition is decidedly ambiguous, a certain
degree of the different internal operationalisations of it, and thus the resulting dataset, is
required by the people who optimised the machine learning underpinning the API. The API
works in real-time allowing for people to see the toxicity score of their comment as they are
typing. The function of Perspective, phrased in terms of dirt is then to distinguish between
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the ‘toxic’, which threaten the stability of online discussions, and the ‘healthy’, that the
communities can reinforce themselves around.

In its description, as well as in the labelling choices, Perspective conceptualises toxic in
opposition to healthy, or in terms of Douglas (2005): dirty and clean. However, unlike many
other datasets, the optimisation data underpinning Perspective is not only optimised on found
objects that are then annotated, the dataset also consists of crowdsourced abusive comments
that were generated by antagonist users trying the system Marvin (2019).

The Perspective team note that “initial testing revealed major blind spots and algorithmic bias”
Marvin (2019) which were then addressed, however as librarian Jessamyn West discovered
such biases had not been fully addressed (see Figure 4.1); examples such as “I am a man”
produced a toxicity score of only 0.20 while “I am a gay black woman” scored 0.87, that is
just below the threshold of being deemed as toxic by the system.

Fig. 4.1 Jessamyn West on Twitter.
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Similarly, writer David Auerbach found issues with regard to religion and persecution (see
Figure 4.2). For instance, he found that the model predicted a toxicity score of 0.73 for
the statement “whites and blacks are not inferior to one another”, 0.70 for “hitler was an
anti-semite”, and only 0.18 for “some races are inferior to others”, 0.06 for “Hitler’s biggest
mistake was not getting the job done”, and 0.05 for “14/88”, a common neo-Nazi symbol.3

Fig. 4.2 David Auerbach on Twitter.

Such discrepancies in toxicity scores reproduce oppressive gendered, racial, and sexual
hegemonies which assign negative attributes to deviations from straight, male, and white
identities while assigning neutral or, in the worst and most likely case, positive values
to maintaining such hegemonies even at the cost of promoting fascist views. Why did

3Please see https://www.adl.org/education/references/hate-symbols/14-words and
https://www.adl.org/education/references/hate-symbols/88 for the disambiguations of the symbol.
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Perspective then embody such oppressive logics of racism, anti-Semitism„ sexuality, and
gender? The answer is likely to be found in the data the model is optimised on as well as
how the machine learning model is likely to function.

Computationally, I delineate between three different causes: 1) the optimisation data, 2)
the word-embeddings used for the model, and 3) the model architecture itself. First, the
optimisation data is likely to consists of imbalanced distributions of identity words in the
different classes. t is highly likely that terms such as ‘Black’, ‘gay’, and ‘woman’ more
frequently occur in the positive classes than in the negative class, for this reason the model is
likely to embody stronger correlations between those identity terms and the positive classes
than ‘white’ and ‘man’ (Dixon et al., 2018). The occurrence of the terms documented by
Jessamyn West in a document parsed by the API is then more likely to produce the label
‘toxic’. Conversely, content that uses ‘civilised’ language while arguing for positions that
more profoundly disturb the social order are a) less likely to be labelled as toxic by virtue of
their ‘civilised’ language and b) less frequent in the data overall, leaving seemingly benign
words used in a context the model has rarely seen, and will therefore not know that it is in
fact ‘toxic’ language that needs ‘cleaning up’ Dias Oliva et al. (2021).

Second, through the application of GloVe word embeddings Pennington et al. (2014) the
model can take advantage of knowledge held outside of the optimisation data. Several works
have identified that severe social biases against marginalised communities are apparent in
word embeddings Bolukbasi et al. (2016); Nissim et al. (2020); Speer (2017); Zhao et al.
(2017, 2020), moreover even once such embedding spaces have been treated for social
biases they continue to exhibit social biases Gonen and Goldberg (2019). Thus, the external
knowledge that the model relies in is then also likely to exhibit characteristics of oppressive
racial, sexual, and gendered social structures.

Finally, the model architecture itself is a likely culprit of amplifying the biases held within
the dataset and word embeddings Zhao et al. (2017). As machine learning models seek to
identify decision boundaries between the different classes, between the dirt and the clean, the
models seek to determine boundaries in the contextual and indeterminable. Therefore, the
models embody strong correlations with what is most frequently in the positive classes, what
is most frequently in the negative classes, and what is frequently in both positive and negative
classes. It is in the final space that the decision boundaries are drawn, however social biases
are likely to be seen in spaces further away from the decision boundaries, more towards the
positive and negative classes respectively. It is in the ‘civilized’ language production tending
towards the negative classes that some socially disturbing content is found, and it is towards
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the space of the positive classes that find strong correlations with mentions of marginalised
identities.

As Jigsaw have stated their commitment to treat their models for social biases Marvin (2019),
we can assume that some development may have happened since Auerbach and West’s
examinations. However, at the time of writing w find that the phrase ‘black queer women’
scored 0.77 toxicity, while ‘white men are’ scores 0.25, and ‘white straight men are’ scored
0.50.

4.2.2 Opt Out

The second case study is Opt Out, an open-source Firefox browser extension founded by
Theresa Ingram. The extension, which was launched on the 8th of March, 2020, focuses on
detecting misogyny. Opt Out define misogyny as “any verbal, visual or physical harassment
and abuse rooted in misogyny that is threatened, carried out and/or amplified online” Ingram
(2020). Unlike the Perspective’s aim to address content moderation at the platform level, the
aim of Opt Out is to empower individual users to address the torrent of misogyny from their
own timeline. Thus, while Perspective aims to provide a globally prescriptive understanding
of ‘toxic’, Opt Out aims to adjust to each individual’s tolerance of misogyny, under a global
understanding of what constitutes misogyny. The downstream impacts of this distinction
includes how power is distributed. In Perspective’s centralised architecture, it retains the
power to identify and distinguish what is dirt and what is not, allowing third party adjudicators
the option of what to remove and retain. In Opt Out’s model, the definitional power is held
by Opt Out, as with Perspective, however distributes that power to their users, as they allow
for users to set how the dirt found is handled.

Foregrounding the cultural contingency of harmful expressions, Opt Out implement machine
learning systems that are optimised on multiple previously published datasets with competing
definitions and operationalisations of misogyny, thus countering essentialist tendencies at the
cost of model performance.

Considering Figure 4.4 and Figure 4.5, we see tensions in how to understand, or decode
the term ‘b**ch’ to distinguish between pejorative and reclaimed uses of the word. Further,
while there is a distinction in the text-only reading of the two tweets, by considering the
image accompanying them, it is clear that the pejorative use in Figure 4.4 is in fact referring
to a non-human entity, namely the respiratory virus COVID-19. This depiction of the virus
then hedges the pejorative nature of the text. In contrast, the image used in Figure 4.5 figures
as underscoring the point, and the positive nature, of the tweet. These uses of images as an
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Fig. 4.3 NotNalise on Twitter.

Fig. 4.4 Flash_Hoe on Twitter.

additional modality of communication in the tweets exemplify the incomplete natures of
identifying dirt in any single modality. Where the image in Figure 4.4 negates the pejorative
message in tweet, Figure 4.5 brings more emphasis to the message.

Moreover, considering Figure 4.3 we see that identity terms, even compounded ones, are
not punished by Opt Out. This suggests that the different understandings within the distinct
datasets used to optimise the model may not have strong correlations with identity terms
and the positive class. However, as the developers of the extension have shared, balancing
the different understandings and levels of allowable misogyny does not come without its
own costs. As machine learning systems rely on consistency in data and annotation to
identify decision boundaries between different bodies of labelled data, there are seemingly
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Fig. 4.5 Aquaria on Twitter.

spurious inconsistencies in what the model deems harmful, which has a downstream effect
on the users who may experience what appear to be random effectiveness of the model in
removing misogyny from their streams. Opt Out’s use of multiple datasets and competing
definitions of misogyny then penalises the dataset underpinning the model’s positive class
as the different datasets have different annotation schemes and define misogyny in closely
related, yet distinct ways. Considered through Douglas (2005) framework, we can understand
this inconsistency, or noise less as a technical problem to be optimised for or solved, but
instead as a fundamental cultural question of boundary setting and tolerance for ambiguity.
Ambiguity in the optimisation data can create competing signals for the model, as the model
seeks out correlations to rely on to identify misogyny. Further, as the model is optimised on
multiple competing definitions, it is limited in the nuances of any single operationalisation of
misogyny; consequently a sparse modelling space is made more sparse, as less data remains
at the centre and more is pushed to the margins of the space. The data, and correlations that
remain at the centre then tend to consist of highly normative understandings of what is and
what is not dirt.

4.3 Concluding Remarks

The theoretical framework of dirt and toxicity shows that if the aim of content moderation
systems, human or computational, is to ensure that online spaces can be safely navigated
regardless of identity for the communities that exist within them, then the tools which shape
the conversation and interactions cannot be universal systems that do not take into account
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the positionality of communities. Indeed, the notion of a ‘sanitised’ space must raise question
of whom the space is sanitised for, as the notion of dirt has no essence beyond that which it is
ascribed in the power dynamics and culture wars that occur at the boundaries. Through Risam
(2015), we can understand that discourses of ‘toxic’ come to inhabit violent clashes that can
only be resolved through an understanding of the subjective positionality of communities.
Thus, boundary work must deal with the messiness of conflicts in power dynamics and
address the ongoing reconfigurations of dirt and filth.

Considering how technological systems marginalise already marginalised communities
(Benjamin, 2019), content moderation systems as porous and continually negotiated infras-
tructures must engage in ongoing reconfigurations to ensure that they align with justice
movements. Without taking into account the ongoing shifts in what constitutes ‘toxic’,
content moderation systems stand at the risks of engaging in toxic slippage: on one hand
failing to protect marginalised communities from the disproportionate abuse that they are
subject to, while on the other hand being faced with disproportionate policing of content
(Schaffer, 2015). Consequently, human and technical content moderation systems systemati-
cally disenfranchise marginalised people from the ability to create boundaries that best apply
to their subjective experiences. For computational content moderation infrastructures, and
the research into the development of these, dealing with these issues requires a fundamental
re-conceptualisation of the task of content moderation. Such a re-conceptualisation will
require shifting from the focus on micro-instances of toxicity or abuse towards a consider-
ation of how machinic content moderation infrastructures interact with society. This then
poses several challenges for such research such as: how to co-create conceptualisations and
operationalise these into computational methods that take the wider social contexts into
account. A re-conceptualisation will also require that researchers come to contend with
issues of annotation and ground truthing, namely identifying who is most attuned to identify
and label abuse towards a specific group - and how to deal with issues of vicarious trauma
that may occur from the annotation process. This re-conceptualisation however also offers
space for thinking about how contemporary computational methods can be used to more
closely represent and embody the subjectivities of the speakers of content. These issues
of disenfranchisement and marginalisation will continue to permeate content moderation
infrastructures, unless they are given the necessary social, technical and human capital that
can allow for developing practices and tools that begin with marginalised communities at the
centre instead of the margins.
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4.4 Summary

In this chapter, I have examined how ‘toxicity’ and related categories are operationalised in
content moderation technologies. Specifically I have sought to answer RQ I: How are notions
of ‘toxicity’ operationalised and modelled, and what are their socio-political implications for
content moderation systems?

Social networks seek to sanitise digital spaces in efforts to make them appear appropriate for a
desired online community. As a part of this effort, these networks employ content moderation
infrastructures, which are a mixture of manual human labour and machine learning-based
systems. In this chapter, I focus on the processes by which machine learning based models
engage in content moderation and examine the values that such systems encode. In efforts to
provide an answer to RQ I, I ask RQ 1: How are notions of ‘toxicity’ operationalised and
modelled, and what the socio-political implications of content moderation systems are?

I argue that content moderation infrastructures, human or automated, act as a third party reader
to communications between people. The values that such content moderation infrastructures
embed then come to determine what content is deemed acceptable and what is deemed
inappropriate. This is of particular importance to algorithmic content moderation, as these
socio-technical objects are applied widely across multiple demographics.

Through an analysis of two machinic content moderation systems, I have argued that the ways
in which computer scientific work operationalises “hate” and “toxicity” comes at the cost of
systematically excluded and marginalised communities and peoples. This cost, i.e. the right
to freedom of speech for marginalised communities, is incurred through the development
pipeline for machine learning. Specifically, these issues are incurred from the very concep-
tualisation of the notions of ‘toxicity’; the annotation process, i.e. the annotators identities
and operationalisations of the annotation guidelines; the choice of model components, e.g.
the use of pre-optimised objects that hold assumptions and hegemonic correlations, such as
word embeddings; and the choice of model model architecture. Collectively, each of these,
at times minute decisions come to have large scale harmful impacts to the equal access of
online spaces.

The theoretical development and analysis that I conduct in this chapter then comes to the
larger social and societal harms of the means that occur from the operationalisations and
modelling techniques employed in the practice of algorithmic content moderation. This
suggests that there is a need for computational research to go beyond considering the micro-
instances of abuse and instead turn towards a more structural framing of toxicity and abuse
to curtail such issues. In practice, restructuring the task provides for some significant
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road-blocks for computational content moderation that need addressing before work can be
taken, while also providing for avenues that can be explored while the road-blocks are being
addressed.



Chapter 5

What Do You Mean?! The Predictive
Power of Vocabulary Manipulation for
Abuse Detection

One of the key issues in machine learning for content moderation is that such systems in
deployed settings (see chapter 4) as well as in research (see chapter 1 and chapter 3) over-fit
to individual tokens that are over-represented in the positive and negative classes respectively.
Moreover, efforts in NLP have identified that content moderation systems are likely to over-fit
to identity markers such as the mentions of gender and race (Dixon et al., 2018). While
research efforts have been made to address such issues, the problem of over-fitting to words
and identity markers remain an open question for the field. Some work has addressed this
problem by replacing certain words and phrases to balance identity distributions Dixon et al.
(2018); Park et al. (2018). In this chapter, I propose a different approach which serves to
address the issue of models over-fitting to tokens by 1) minimising the size of the vocabulary
in order to avoid over-fitting to distributional skews of low-frequency tokens across classes;
2) representing documents in terms of how they serve as a proxy for thoughts, feelings,
and personality; and 3) through such vocabulary minimisation highlight the importance
of the mental and emotional states communicated, rather than the surface form of tokens
while retaining model performance. An additional benefit of such vocabulary reduction is a
decrease in model size and optimisation time required for complex models such as neural
networks, resulting in models that have a smaller environmental impact (Strubell et al., 2019).
Thus in this chapter, I seek to provide an answer to RQ II by asking RQ 2: What are the
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modelling implications of using the Linguistic Inquiry and Word Count (LIWC) resource to
substitute the use of words and sub-words as input tokens?

Through this use of LIWC Pennebaker et al. (2001, 2015), I pre-process documents from
large vocabularies, that are riddled with obfuscations, intentional misspellings, and uninten-
tionally misspelled words into a smaller vocabulary set representing instead psycholinguistic
properties of words. Through a reduction of thousands, or in some cases hundreds of thou-
sands, of unique tokens to hundreds of LIWC categories, I aim for models to gain deeper
insight into language patterns of abuse than simply selecting the most frequently used tokens.
Moreover, I show that such a reduction is accompanied by a negligible reduction in intra- and
inter-dataset performance in comparison to models using the full surface token vocabularies.

Through the use of simple deep neural networks and ‘shallow’ linear models, I show that it is
possible to achieve comparable performances within datasets and, in some cases, improve-
ments on out-of-domain datasets, in spite of up to 98% reductions in model parameters and
vocabulary size. This holds two strong implications for future research on computational
hate speech detection: first that current approaches through an over-reliance on surface forms
are computationally inefficient, and second that the exclusive use of surface forms of tokens
can lead models to overly attend to the occurrence of certain tokens and variations (e.g.
prominent misspellings) (Röttger et al., 2020). Finally, as datasets for hate speech detection
frequently contain biases along racialised and dialectal lines (Davidson et al., 2019; Talat
et al., 2018), the use of LIWC can serve as small, but conflicted aid in avoiding such biases
as dialectal spellings of words are unlikely to appear in the dictionary, thus being relegated to
unknown tokens (see table 5.3 for synthetic examples of LIWC representations).

5.1 Previous Work

In the interest of curtailing the spread of online abuse, a large number of technical approaches
have been considered in the ever-increasing body of research on the topic (please see chapter 3
for a broad overview on the topic). Here, I focus on three different strands of research. First,
I briefly introduce the LIWC dictionary. Second, I consider manual development of features
for machine learning models, as it is necessary to form hypotheses for what might serve as
indicators of abuse on the basis of the dataset and problem in question. Third, I examine
neural network approaches for abusive language detection. Finally, I consider the growing
body of research devoted to examining the generalisability of computational models for
abusive language detection. I restrict my attention to studies in conducted on abuse in English
as it is most pertinent to this work.
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5.1.1 Linguistic Inquiry and Word Count

The Linguistic Inquiry and Word Count dictionary and software was initially developed by
Pennebaker et al. (2001) in an effort to address the issue of high disagreement and negative
effects on well-being of judges, as they reviewed essays written on people’s experiences
of emotional upheaval. In order to minimise such costs, Pennebaker et al. (2001) turned to
computationally counting words that were in 80 “psychology-relevant categories” in order to
gain an understanding of the emotional states and cognition of the speakers at the time of
writing. By passing over a large body of text within a single document, e.g. personal essays,
Pennebaker et al. (2001) compute the percentage occurrence of each invoked category. While
there are some examples that appear clear cut, e.g. the categorisation of articles such as ‘a’
and ‘the’, other word classes, such as “emotion word categories” are more clearly subjective
and require deeper human consideration (Tausczik and Pennebaker, 2010). Though LIWC
was initially developed using long form texts, the version of the dictionary that I use in this
dissertation is an expanded version that also used Twitter and ‘blogs’ in the development of
the dictionary (Pennebaker et al., 2015). As such, though not originally intended for the use
on short-form messages, LIWC has evolved with the rise of new forms of communication
in efforts for the dictionary to accurately reflect language use in short-form documents. As
LIWC was originally developed using long-form documents in the United States of America,
the language that is reflected in the dictionary is predominately white American English
and thus it excludes other languages and many dialects within American English. By such
exclusion, the dictionary does not accommodate for different forms of communicating, in
particular it is likely to only insufficiently cover the language use of a variety of marginalised
communities. Such a lack of recognition however has a benefit. By not learning language
patterns of e.g. African American English speakers who are disproportionately represented
in the positive classes of several datasets for abuse (Davidson et al., 2019; Talat et al.,
2018), it is possible that models optimised on this representation are less likely to be biased
against those groups. Although such lack of recognition can have positive effects, such
as lower false positive rate, the politics of not being recognised, as argued by Benjamin
(2019) are not straightforward and the lack of recognition does not provide a guarantee that
systemic harm will not occur. For instance, if systems developed to detect abuse did not
recognise Multi-cultural London English due to vocabulary reductions, any abuse that was
written in that dialect would not be recognised, leaving those users in harms way. Given
that LIWC was developed using “dictionaries, thesauruses, questionnaires, and lists made
by research assistants” (Tausczik and Pennebaker, 2010) in a North American context, it
is highly unlikely that word forms that differ from mainstream usage were included. For
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instance, the commonly used ‘brotha’ and ‘bruva’ in North American and British contexts,
respectively, are absent from the dictionary.

In this thesis, I use LIWC to provide the word categories that each word invokes, and rather
than compute the overall word classes exhibited to provide an analysis, I use the LIWC
categories of each word in a document as an alternative document representation. Thus, my
approach diverges slightly in the goals of using LIWC, however it does not diverge in the
method for obtaining information about the psychological state of the speaker.

5.1.1.1 Limitations of Psychometrics

The use of psychometrics for computational research is a highly contested practice that has
been used in highly concerning cases, notably psychometrics were used by Cambridge Ana-
lytica in their electoral campaigns (Stark, 2018). In their paper “Algorithmic Psychometrics
and the Scalable Subject”, Luke Stark (2018) highlights the racist, sexist, and classist history
of psychometrics, which were originally proposed by Francis Galton, a known eugenicist
(Stark, 2018). Psychometrics were first proposed as “the art of imposing measurement and
number upon operations of the mind” (Francis Galton quoted in Stark (2018)), which aligned
with Galton’s views on eugenics as methods for psychometrics were amenable to “hierarchies
of class, race and sex in Victorian Britain’s industrial imperialist capitalism” (Stark, 2018,
p.209). Rather than steering away from this troubled past, the field of psychometrics has
continued to embrace the foundational notions proposed by Galton and begun to operate
in digital media on large bodies of data. However, as Stark (2018) argues, the use of psy-
chometrics to make judgements on and for people faces a serious challenge of the ongoing
development of people as they lack both qualitative and quantitative data about a whole
person.

LIWC, as a psychometric tool is embedded within this troubling history and development. In
particular, being a mixture of statistical correlations and human judgements LIWC comes to
embody the particular subjectivities of the developers of the dictionary. This is particularly
evident in its lack of inclusion of terms that are particular to dialects within and outside of
the United States of America. The creators of LIWC indeed caution a heavy reliance on the
dictionary as a means to identify the mental and emotional states, arguing that it is in nature
imprecise (Tausczik and Pennebaker, 2010).

In the work described below, there is a heavy reliance on LIWC, however it is not used
to predict the emotional and mental states of the speakers of given texts. Instead, I use it
precisely because of its impreciseness and its highly limited expression, to gain a very rough
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alternate representation to the texts provided. While this limited expression does not allow
for making judgements on the mental states of the speakers, it does allow for an investigation
into the potential of representing texts for abuse classification using a smaller vocabulary that
does not rely on the structured (e.g. Part of Speech tags) but instead provides a rudimentary
approximations of speakers’ subjectivities.

5.1.2 Modelling

5.1.2.1 Manually Selected Features

A large body of work has sought to use manually developed features for online abuse
detection (Davidson et al., 2017; Fortuna and Nunes, 2018; Talat et al., 2017; Wiegand et al.,
2019, e.g.), showing performance boosts from using manually developed features such as the
predicted speaker gender (Talat and Hovy, 2016) or Part-of-Speech (POS) tags (Davidson
et al., 2017). There are two primary reasons for using manually crafted features: First, using
manually crafted features requires having some understanding of the data at hand and some
intuition about which features may distinguish the classes in the data from one another.
Second, as manual features are frequently used with models that don’t use neural architecture,
they allow for interpretable models, in the sense that one can often identify how each token
contributed towards a final prediction. Moreover, as features are often computationally fast
to compute, the use of features along with their expressive interpretability, allow for quickly
testing hypothesis surrounding online abuse and its nature. Through a consideration of a
handful of systems that employ some of the most frequently used features for the development
of machinic abusive language detection systems, distinct modelling choices, features and
rationales for their use become apparent. Here I provide a brief overview of prominent
features; how they are used, including which models and feature weighting schemes they are
used with; and the explicit and implicit rationales for the use of each feature.

First, the most common feature used, and rarely used on its own, is a Bag-of-Words (BoW)
(Davidson et al., 2017; Fortuna and Nunes, 2018), where each token in a document is treated
as independent from all other tokens in the document. The use of this feature frequently relies
on using stop-word lists to remove tokens that are bound to occur frequently across a majority
of documents, e.g. determiners, to prevent models from learning spurious correlations with
such tokens. The understanding of abuse that underlies this feature is that the occurrence of
some tokens are likely to disproportionately occur in abusive contexts, and that those tokens,
in isolation, will indicate abuse. Several works have complicated this notion (Davidson et al.,
2019; Talat et al., 2018, e.g.), arguing that tokens considered in isolation do not provide the
necessary context to determine whether a text is abusive. Due to certain perspectives on
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abuse being overly represented (Talat, 2016) in annotation guidelines and annotations, some
words that have been reclaimed, and thus have an innocuous usage potentially in addition to
an abusive use, may be disproportionately represented in the positive classes.

To address the issue of token independence, several approaches use n-grams, e.g. bi-grams
(Talat, 2016) and tri-grams (Davidson et al., 2017) to aid with identifying abuse. Here, by
considering groups of sequential token occurrences independently from token sequences, a
step is taken away from the independence of individual tokens, instead to the independence
of short sequences of tokens. Due to this remaining independence assumption, similar issues
around to the limitations of BoW hold for n-grams.

Part-of-Speech (POS) tags have also seen frequent use in abusive language detection tasks
(Fortuna and Nunes, 2018) and are often used as n-grams. The intuition behind the use of
POS tags for abuse detection is that abuse may differ from non-abuse in terms of linguistic
structure. While n-grams of POS tags with an independence assumption may not reveal the
full depth of the linguistic syntax available through POS tagged data (in contrast to the POS
tags of the entire sequence being treated as a single feature), it does relay some information
on the linguistic structure which has been proven helpful for predicting abuse (Fortuna and
Nunes, 2018).

Another frequently used feature is sentiment scores obtained using sentiment analysis (For-
tuna and Nunes, 2018) which have the underlying assumption that abuse and negative
sentiment are correlated, and can thus aid in detecting some forms of abuse. Similarly to
BoW and n-grams, this is a feature that is most frequently used in combination with other
features as sentiment scores alone are not presumed to be good predictors of abuse (Fortuna
and Nunes, 2018). Sentiment as a feature, like the use of LIWC proposed in this dissertation,
assumes that some more abstract reasoning about the data can be helpful to automatically
detecting abuse. Specifically, its use suggests that there the concepts of negativity and
hostility towards entities will be relevant to detecting abuse in texts. Some previous work that
uses sentiment as a feature for abuse detection (Davidson et al., 2017) relies on off-the-shelf
systems for detecting sentiment and may therefore not be attuned to how sentiment and abuse
interact. An implication of using off-the-shelf systems for computing sentiment, rather than
assuming that sentiment can be extrapolated only from a mapping of the occurrence of abuse
to sentiment, is that sentiment and abuse, while correlated are not equated and thus that the
task of detecting sentiment, while related is a distinct task from detecting abuse. As such,
sentiment and abuse detection are tasks that in some cases co-constitute each other while
there may be no correlation in other cases.
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Finally, LIWC has previously been proposed as a feature for the classification of abuse in
a small number of studies (Joksimovic et al., 2019; Nina-Alcocer, 2018). In these studies,
LIWC has been used in conjunction with other features such as lexical features (e.g. word
n-grams) and syntactic features (e.g. POS tags) (Joksimovic et al., 2019). This use of LIWC,
similar to the motivations for its use in this chapter, relies on an assumption that proxies
of mental states of the speaker and the interpretations of readers will relay information on
the intention of the speaker to cause offence. For instance, Nina-Alcocer (2018) compute
the percentages of emotions that are expressed in abusive documents in efforts to identify
correlations between impassioned and emotive speech with abuse, asserting an intuition that
abusive speech is likely to occur in individual moments dominated by emotion rather than
rationality. A position that (Talat, 2016) argue is likely as they find that considering the top
100 most frequently occurring tokens, ranked using Term Frequency - Inverse Document
Frequency (TF-IDF), does not aid in the prediction of hate speech, suggesting that in many
cases it may be a question of moments of abuse rather than consistently abusive people.

All features must be weighted, either through raw counts or their relative frequency. One
such frequently used weighting scheme is TF-IDF which weights features by their relative
frequency in the corpus (Fortuna and Nunes, 2018), assigning higher weight to the features
that are rare corpus-wide and lower weights to those that common. As such, TF-IDF can
be a useful measure to address the dominance of high-frequency tokens. At the same time,
TF-IDF also increases the capacity for models to over-fit to the corpus and generalise poorly,
as tokens that are unique to a corpus may not exist in other data or even be common to
other data. The use of n-grams as features provides a similar double-edged benefit, where
models optimise on sequences of words that may be very differently distributed in each
class. In abuse detection the most common n-grams are unigrams, bi-grams, and trigrams.
Such word-sequences can be helpful for models in uncovering patterns of language use in
the corpus but are also vulnerable to vocabulary changes that occur across datasets. For
instance Talat and Hovy (2016) optimise a logistic regression classifier and identify that
character n-grams of innocuous words such as ‘Islam’ and ‘Muslim’ rank as some of the
most predictive features due to the disproportionate occurrences of such terms in the hateful
classes.

Many of the previously mentioned works use linear machine learning models, with a partic-
ular dominance of Logistic Regression and Support Vector Machines (SVMs) (please see
chapter 3 for more detail). One notable exception to this is the work of Gorrell et al. (2018).
In this work, the authors use a “set of NLP tools, combining them into a semantic pipeline”
(Gorrell et al., 2018, pp. 601). Rather than using supervised classification techniques, they
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argue that their rule-based systems to detect abuse allows for a interpretable and easy to
modify method, allowing researchers to address weaknesses of the approach without the
need for additional large-scale quantities of data.1 However, this approach is a laborious one
as it requires the researchers to manually identify patterns of abuse and construct rules that
can address such patterns along with any exceptions to the patterns that are not abusive.

Prior work on lexical replacements Reducing the dimensionality of data has been ap-
proached from a number of different avenues in prior literature. A large body of work is
dedicated to the mathematical and algorithmic induction of what features to retain and which
to omit (Witschel and Biemann, 2006, e.g.). The object of the mathematical and algorithmic
approaches is to identify which features provide the most and least information about the
distinctions between each class. Another body of work has been dedicated to dimensionality
reduction through semantic replacements. One approach to such a reduction is the use of
clustering algorithms, e.g. Brown Clustering (Derczynski et al., 2015). Another, more recent
approach is to perform partial replacements in documents, only replacing some tokens. This
method has been used in recent studies on abuse detection by using the HurtLex resource
(Bassignana et al., 2018). HurtLex is a multi-lingual lexicon that seeks to map ‘offensive’
words into three macro categories, and seventeen fine-grained categories.

Several papers have approached the task of abuse detection across multiple languages by
using HurtLex to perform a reduction in the feature space of offensive words in the lexicon.
For instance, Pamungkas et al. (2020) use HurtLex to create a feature vector for each of the
fine-grained categories to be used for optimisation and classification, as a way to separate
out profanities and hateful terms. Chiril et al. (2019b) use HurtLex across English and
French tweets to count the number of times each of the fine-grained categories are invoked.
They optimise their models using the length of the tweets along with the number of times
each fine-grained category is invoked in a tweet. Others have used HurtLex in combination
with deep learning methods by creating onehot encodings (Pamungkas and Patti, 2019) and
using the encoding to create a HurtLex embedding layer (Koufakou et al., 2020). These
approaches all either directly reduce the feature space or seek to force optimised models to
pay particular attention to the tokens included in the HurtLex resource. The approach that I
take in this chapter contrasts these approaches by replacing all tokens with their respective
LIWC categories and optimising models on the resulting document representations.

In this chapter, I take inspiration from the use of manually crafted features as a way to provide
testable hypothesis while departing from the notion of feature generation. Specifically, I

1This detail on the rule-based nature of the classification systems was provided by Genevieve Gorrell in
personal communications.
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hypothesise that LIWC categories can provide information for predictive modelling that can
allow for high performance in spite of token sparsity when using neural network methods.

5.1.2.2 Neural Networks

Though the earliest models for the tasks were predominately linear models that used manually
generated features (Davidson et al., 2017; Talat and Hovy, 2016; Warner and Hirschberg,
2012) more recent work has been dominated by the development of neural network-based
models for automated abuse detection, posting ever-evolving state-of-the-art models and
classification performances (Badjatiya et al., 2017; Isaksen and Gambäck, 2020; Park and
Fung, 2017; Stoop et al., 2019; Zimmerman et al., 2018, e.g.). Here I consider a handful of
neural network methods for detecting abuse, focusing on the distinct implications following
the modelling choices and the logics that underpin them. As all neural network-based
methods that I examine receive only the text as input, the primary differences between
different proposed neural network models is in their use and organisation of different types
of layers and the loss function selected for the respective models.

The most commonly used architecture for neural networks that in the surveyed literature
is a CNN (Gambäck and Sikdar, 2017; Kolhatkar et al., 2020; Park and Fung, 2017; Wang
et al., 2020; Wulczyn et al., 2017; Zimmerman et al., 2018). As CNNs have been the subject
of particularly interest, a number of distinct modelling approaches have been proposed.
First, relying on a simple neural network architecture, Kolhatkar et al. (2020) use GloVe
embeddings as the first layer, followed by three convolutional layers (that have window sizes
3,4, and 5, respectively) with global maximum pooling layers. Prior to passing data to an
output layer, a dropout layer is applied to the output of the convolutional layers which is then
passed to a dense layer. All layers prior to the output layer use a ReLU (see chapter 3 for
more detail) activation function. The output layer applies the sigmoid function to provide a
prediction from the model. This model most closely resembles the CNN architecture used in
this chapter. As this model uses a pre-optimised word-embedding layer as its input layer, the
input the model receives are documents that have been subject to tokenisation processes.

A different architecture is proposed by Park and Fung (2017). In their work they compare a
single classifier, what they name a ‘one-step classifier’, that predicts the final classes directly
with a stacked architecture of two models, with a ‘two-step classifier’ in their vernacular, that
first predicts whether content is abusive and then predicts which type of abuse the documents
predicted as abusive are. There are two primary distinctions between the two-step architecture
proposed by Park and Fung (2017) and the architecture proposed by Kolhatkar et al. (2020).
First, Kolhatkar et al. (2020) acts as a one-step classifier whereas the architecture proposed
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by Park and Fung (2017) acts in two steps. Second, Kolhatkar et al. (2020) only acts on
documents tokenised into words and punctuation whereas Park and Fung (2017) propose a
CNN that takes documents tokenised into words and punctuation in addition to documents
tokenised into characters. Park and Fung (2017) show that through the use of a one-step
CNN optimised on word and character input, they achieve a performance boost obtaining
a F1-score of 0.827 on the datasets proposed by Talat and Hovy (2016) and Talat (2016),
though the performance boost is lost once a two-step hybrid CNN is used.

As CNNs build feature mappings by passing over the data using filters, they come with
certain assumptions built into them. As researchers define the number of filters and the stride
size, they also define the range, in terms of token order, within which the model is given
leave to identify token interactions. The implication of this is that there will likely be some,
potentially overlapping ranges that the models identify patterns from. Depending on how
researchers define these, the models will develop feature mappings corresponding to the
ranges provided.

Another frequently used architecture is LSTMs (Badjatiya et al., 2017; Kolhatkar et al.,
2020; Meyer and Gambäck, 2019). For instance, Kolhatkar et al. (2020) propose using a
bi-directional LSTM that, like their CNN, has a pre-optimised embedding layer, a recurrent
layer, a dropout layer, and a fully connected output layer with a sigmoid activation to predict
the output classes. Meyer and Gambäck (2019) on the other hand take develop on the idea of a
hybrid CNN, developing a LSTM architecture that takes documents tokenised into words and
characters as input. The word representation is obtained through tokenisation passed through
an embedding layer and the character representation is obtained by processing the documents
with a CNN. Using these approaches, Kolhatkar et al. (2020) show comparable performances
between the CNN and bi-directional LSTM on their dataset. Meyer and Gambäck (2019) on
the other hand show that a baseline model only using character level information performs
comparably with other more complex approaches, obtaining a macro F1-score of 0.7923
for the baseline and 0.7924 for the final system on the dataset proposed by Talat and Hovy
(2016), and notably out-performs several other previously proposed methods.

The use of LSTMs, that rely on recurrence, breaks with the independence assumption of the
manual feature-based models. By recurring over a document, each new token is considered in
conjunction with the previous tokens that have not been forgotten. In this way, an assumption
is built into the models that through processing enough token sequences, it will be possible
to identify patterns in the sequences of tokens that connote abuse. Such a reliance on the
text alone does not consider the positionality of abuse; Talat et al. (2018) argue only through
understanding the context within which the speaker and audience exist in, is it possible to
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deem something as abusive. For instance, it is only through an understanding of the speaker
that one can deem whether the n-word is weaponised as abuse or is reclaimed to connote
complex social identity.

All methods described that rely on documents tokenised into sentences rely on pre-optimised
embedding layers (most frequently GloVe Pennington et al. (2014)), come with their own
costs and benefits. For instance, word embeddings that are optimised on web-text are likely
to harbour social biases (Bolukbasi et al., 2016) that have been proven hard to address (Gonen
and Goldberg, 2019). On the other hand, they also allow for better representations of related
concepts and will be less susceptible to creating different representations for closely related
concepts as a result of dataset biases. For instance, the concepts ‘Television’ and ‘T.V.’
might only be distantly related, if at all, in a small dataset due to few co-occurring terms
within the dataset. In a larger dataset, spanning millions of documents, these two concepts
are likely to appear as closely related as a robust language representation will likely have
been achieved for such commonly occurring tokens. The methods that rely on character
embeddings are also subject to similar distributional concerns, however this can be a benefit
when used in conjunction with word embeddings. This benefit comes through as the set of
possible characters is much smaller than the set of possible unique words, less data is needed
to optimise robust embedding layers, though the optimised character embeddings will be
particularly attuned to the dataset at hand. On the other hand, due to such particularity of the
character embeddings, they are less likely to map well onto other domains even if they show
good performance on the dataset that they are derived from.

For the work in this chapter, the use of pre-optimised embeddings is not appropriate for
some models. Specifically the models that use LIWC-represented documents as LIWC
embeddings are not publicly available or have been developed, to the best of my knowledge.
Moreover, documents represented through LIWC categories are poorly suited for optimising
general embeddings as only a small set of tokens are defined and they are not necessarily
distributed in a suitable fashion for developing such generalised embeddings. Second, I don’t
use pre-optimised embeddings in the architectures for other models as a means to ensure that
any comparisons with the LIWC-based models, provide a direct comparison of the influence
of using LIWC as input tokenswhile avoiding potentially confounding factors.

5.1.3 Datasets

In order to understand and validate my approach, I optimise a model on multiple datasets.
Moreover, I take each model that is optimised on a given dataset and apply it to all other
datasets. To accommodate prediction on a model optimised on one dataset to others, I reduce
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all classification tasks to a binary task of abusive and not-abusive. This has downstream
implications for the construction of the datasets and for the validity of the prediction task
on the out-of-domain datasets. First, the dataset distributions are modified as tasks with
more than two classes see their data collapsed. For some datasets, this means that the class
imbalances are improved, as the majority class is non-abusive. The exception to this is the
dataset proposed by Davidson et al. (2017) where the largest class is the ‘offensive’ class,
which I combine with ‘hateful’, further minimising the size of the negative class. Second, as
each dataset has been collected with different rationales and annotated with distinct purposes
(please see section 3.1.2.1 for more detail), direct comparisons, and subsequently model
predictions on each dataset, can be at odds with the goals of the datasets. For this reason,
high scores on prediction metrics on external datasets should be viewed as a weak indication
of the ability to identify general patterns while low scores can indicate a number of factors
including, but not limited to, highly distinct data sources, annotation strategies, and lastly the
questions each dataset is developed to ask.

With these concerns in mind, I decide to use datasets with distinct sources that are developed
for different purposes. Rather than resist or seek to minimise the modelling concerns, I
choose to lean into them to allow space for understanding how LIWC-based modelling may
influence the optimisation and model performance on each dataset. Moreover, I seek to gain
an understanding along which axes model generalisation may be afforded using LIWC-based
modelling (see table 5.1 for the vocabulary sizes for each dataset and input type).

In this chapter I use the StormFront dataset (Garcia et al., 2019), the Offence dataset (Davidson
et al., 2017), the Hate Speech dataset (Talat and Hovy, 2016), the Expert Hate dataset (Talat,
2016), and finally the Toxicity dataset (Wulczyn et al., 2017) (please see section 3.1.2.1 for a
detailed overview of each dataset).

5.1.3.1 StormFront

First, I use the StormFront dataset which was collected from the white supremacist web forum
of the same name by Garcia et al. (2019). The data consists of 2,392 documents, split into
1,531 optimisation documents, 383 documents for validation, and 478 test documents. While
the full dataset published consists of 10,000 documents annotated as ‘hate’ and ‘not-hate’,
with a large class imbalance towards non-hateful comments, I choose to use a balanced
subset of the data provided by the authors. I choose this subset as it allows for testing how
LIWC-based models perform when optimised on a a) small dataset and b) balanced data
distribution. The dataset is initially split into an optimisation and evaluation set, I further
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create a validation set by extracting a stratified sample from the optimisation data, retaining
the class balance from the balanced subset.

5.1.3.2 Offence

The second dataset that I use to optimise and evaluate my models is the Offence dataset
collected from Twitter by Davidson et al. (2017). This dataset was collected to disambiguate
offensive tweets from hateful ones. This dataset is distinguished from all other datasets
in that the positive classes, i.e. ‘offensive’ and ‘hateful’ accounting for 1,430 documents
and 19,190 documents, respectively. This leaves only 4,163 documents in the negative
class. Once binarised, the dataset consists of 4,163 documents in the negative class and
20,620 documents in the positive class. The dataset is provided by the authors as a single file
containing all documents, so I create stratified splits of the data into an optimisation set (80%
or 19,826 documents), a validation set (10% or 2,478 documents), and a evaluation set (10%
or 2,479 documents), retaining the class distribution in each split. Using this dataset further
allows for an investigation into how sensitive LIWC-based modelling is to dataset skews.

5.1.3.3 Hate Speech

I also use the Hate Speech dataset, which is collected from Twitter by Talat and Hovy (2016).
This dataset contains 16,914 documents that follow a more traditional class distribution for
abusive language data. In this dataset I collapse the ‘racism’ and ‘sexism’ classes into a
single positive class, ‘abuse’. This class consists of 5,355 documents with the negative class
occupying the remaining 11,559 documents. The primary function that this dataset serves
in this chapter is to allow for insight into whether the LIWC-based models would function
under a distinct annotation criteria that is motivated by academic work in Gender Studies and
Critical Race Theory on marginalisation, rather than social media guidelines for acceptable
behaviour.

5.1.3.4 Expert Hate

The Expert Hate dataset proposed by Talat (2016) contains 6,909 documents and is also
collected from Twitter, and it is also designed as a multi-class classification task. In this
dataset the positive classes consist of ‘sexism’ (13% or 898 documents), ‘racism’ (1.41%
or 97 documents) and ‘both’ (0.70% or 48 documents) while the negative class consists of
84.19% of the dataset. I reduce this down to a binary classification task and split the dataset
into an optimisation set (80% or 5,527 documents), a validation set (10% or 690 documents),
and an evaluation set (10% or 692 documents) ensuring that binary the class distribution is
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retained. This dataset is annotated following the annotation guidelines proposed by Talat and
Hovy (2016), however it is annotated using intersectional feminist activists as annotators.
This dataset then allows for testing the influence of LIWC-based models on data annotated
by experts.

5.1.3.5 Toxicity

Finally, I use the Toxicity dataset published by Wulczyn et al. (2017). This dataset was
collected from Wikipedia editor discussion pages and annotated as ‘toxic’ and ‘not-toxic’,
and it is the largest dataset with 159,686 documents. These documents are provided split into
an optimisation set consisting of 95,692 documents, a validation set with 32,128 documents
and a evaluation set containing 31,866 documents. Similarly to the Hate Speech and Expert
Hate datasets, this dataset is highly imbalanced with the positive class accounting for 16%
of the entire dataset. I use this dataset to gain an understanding of how large scale datasets
can influences the performance, size, and optimisation time of LIWC-based models.

5.2 Modelling

In order to understand the impact of LIWC-based modelling, I design feature-based and
neural network-based machine learning models. I optimise a Logistic Regression model
and a SVM model with a linear kernel for each type of input data (Word unigrams, BPE
unigrams, and LIWC unigrams) to allow for feature-based analysis of the identified patterns.
To investigate how neural network models operate on the input data, I develop three types of
neural networks for each input type: First, I optimise a MLP to provide an initial insight into
whether neural network approaches might be appropriate. Second, I develop a LSTM model
to investigate whether there are any benefits from its recurrent nature. Lastly, I develop a
CNN model due to their widespread use in previous work.

I specify two different optimisation procedures, one for the linear baseline models and one for
the neural networks. For the linear baseline models, I tokenise and pre-process the data and
perform a grid-search over a parameter space in search of the parameter values that optimises
for the highest macro F1-score performance. For neural network models, I similarly tokenise
and pre-process the data and perform a Bayesian hyper-parameter search to identify the best
performing parameter setting given by macro F1-score. I then reuse this best performing
parameter settings and re-run the models with 5 different random seeds to ensure that the
models’ behaviour on the dataset is not the result of the initialisation of tensors caused by
the setting of the random seed values.
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Dataset Word Vocabulary BPE Vocabulary LIWC Vocabulary
Offence 16,768 16,663 857
Toxicity 95,710 95,712 1,024
Hate Expert 9,110 9,181 744
Hate Speech 14,730 14,834 849
StormFront 5,566 5,510 622

Table 5.1 Vocabulary sizes for each input type and the optimisation set for each dataset.

5.2.1 Pre-processing

Prior to providing data to any model, it is necessary to pre-process the data to make it suitable
for the experiment conducted. In my experiments I examine the influences that vocabulary
manipulation has on model design. To this effect, it is necessary to have some shared and
distinct pre-processing steps for the datasets, depending on the experiment. For the shared
pre-processing steps, I lower-case all documents, replace all usernames, that follow the
Twitter standard of an ‘@’ followed by a string, with a generic <USER> token, replace all
website URLs with a generic <URL> token, and finally, replace all hashtags with a generic
<HASHTAG> token. The resulting vocabulary sizes for each dataset and data type can be
seen in table 5.1.

For the LIWC-based models and the word-based models, I pre-process documents using the
python library Ekphrasis (Baziotis et al., 2017) which was developed specifically to handle
the particularities of social media text. For instance, elongated words are mapped to their
unelongated form, e.g. ‘heyyyy’ is mapped to ‘hey’ (see table 5.2 and table 5.3 for examples
of tokenisation). No further processing is done for experiments using word tokens as input.

For the LIWC experiments, I take another step after the initial tokenisation so that I can
compute the LIWC categories invoked by each word. Each token obtained is passed through
a function which identifies all LIWC categories that the token invokes and combines them
into a single token, where each LIWC category is separated by an underscore. All tokens
that are not recognised by LIWC are replaced with a general token for <UNK> token (see
table 5.3 for examples on the result of the pre-processing of documents).

For the BPE-based models on the other hand, I pre-process documents using the 200-
dimensional Byte-Pair Embeddings from the BPE python library (Heinzerling and Strube,
2018). Byte-Pair Encodings are well suited to handle the particularities of social media text,
as it breaks unrecognised words into known subwords, thus minimising unknown tokens in
the validation and evaluation sets. Through this process, the hope is that even if part of a of
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Document Word Token Representation Byte-Pair Representation
Man I fucking hate animals! Man I fucking hate animals ! _man _i _fucking _hate _animals !
Man I fking h8 animals! Man I fking h8 animals ! _man _i _f king _h 0 _animals !
Bruv I fking hate animals! Bruv I fking hate animals ! _br uv _i _f king _hate _animals !

Table 5.2 Word token and BPE representation.

Document LIWC Representation
Man I fucking hate animals MALE_SOCIAL PPRON_FUNCTION_I_PRONOUN AF-

FECT_SEXUAL_BIO_INFORMAL_NEGEMO_ANGER_ADJ_SWEAR
AFFECT_NEGEMO_ANGER_VERB_FOCUSPRESENT UNK UNK

Man I fking h8 animals MALE_SOCIAL PPRON_FUNCTION_I_PRONOUN UNK NUM UNK
UNK

Bruv I fking hate animals UNK PPRON_FUNCTION_I_PRONOUN UNK AF-
FECT_NEGEMO_ANGER_VERB_FOCUSPRESENT UNK UNK

Table 5.3 Examples of LIWC representations.

a word is out-of-vocabulary for the model some of its subwords will be within a model’s
vocabulary, allowing the remaining subwords to be used for inference.

In reviewing table 5.1, it is clear that computing LIWC representations result in smaller
vocabularies than the surface form counter-parts. It’s further apparent that the BPE repre-
sentations does not substantially alter the vocabulary sizes, with the exception of the Hate
Expert and Hate Speech datasets, where there’s a small increase in the vocabulary sizes. It
is unsurprising that the vocabulary size would grow when using BPE, as subwords for all
unrecognised tokens are computed using the Byte-Pair Encoding. That is, when there are
words in the dataset that aren’t recognised by the embedding, the words are split into their
sub-parts thus increasing the overall size of the dataset.

For the documents represented through the LIWC categories that they invoke, I observe in
table 5.1 a sharp decline in the sizes of the vocabularies. This is expected as the LIWC
dictionary only encompasses a small number of words. Many words used in informal conver-
sations on online platforms are likely to fall outside of those considered when developing
the dictionary. Moreover, it is also not surprising that a drop would occur as many of the
datasets are created and published after the creation of the LIWC dictionary and examine
domains that are unlikely to be well represented within the LIWC dictionary. Consequently
the vocabularies produced using the LIWC dictionary is subject to language drift in addition
to domain shifts.

Considering tables 5.4 to 5.6 that display the numbers of tokens that are unique to- and shared
by each class in each dataset, there are some clear implications for my research question.
First, only minor distributional shifts occur between word-based vocabularies (see table 5.5)



5.2 Modelling 93

Not Abuse Only Abuse Only Intersection Vocab size
Offence 24 (2.8%) 150 (17.6%) 677 (79.6%) 851
Toxicity 131 (12.8%) 5 (0.5%) 886 (86.9%) 1,022
Hate Expert 241 (32.6%) 25 (3.4%) 473 (64%) 739
Hate Speech 116 (13.9%) 47 (5.62%) 674 (80.5%) 837
StormFront 74 (11.9%) 117 (18.8%) 431 (69.3%) 622

Table 5.4 Number of unique LIWC tokens in each class for each dataset and the size of their
intersection.

Not Abuse Only Abuse Only Intersection Vocab size
Offence 3,303 (19.7%) 8,656 (51.6%) 4,809 (28.7%) 16,768
Toxicity 71,491 (74.7%) 1,560 (1.6%) 22,659 (23.7%) 95,710
Hate Expert 6,155 (67.6%) 953 (10.5%) 2,002 (22.98%) 9,110
Hate Speech 7,042 (47.8%) 2,599 (17.6%) 5,089 (34.6%) 14,730
StormFront 1,834 (32.9%) 2,273 (40.8%) 1,459 (26.2%) 5,566

Table 5.5 Number of unique word tokens in each class for each dataset and the size of their intersection.

and BPE-based vocabularies (see table 5.6). As processing and representing documents
as their byte-pair represented counter-parts results in the computation of sub-words, such
small distributional discrepancies are to be expected. Second, observing the differences
between LIWC vocabulary distributions (see table 5.4) and the word vocabulary distributions,
it is clear that there are large distributional changes, which have large ramifications for the
datasets and subsequently the models optimised on them. This means that as the vast majority
of tokens are shared between the classes, there are fewer potential signals for models to
over-fit to. Disregarding token interactions, a word-based model optimised on the Toxicity
dataset may overfit to 72,929 unique tokens (76.3% of all unique tokens in the dataset).
Similarly disregarding token interactions, a LIWC-based model is only provided with 136
unique tokens (13.3% of all unique tokens in the dataset) to which it can overfit to. Similarly
to n-gram character-based modelling, a smaller set of unique tokens is likely to result in
a matrix that is, in places, more dense, allowing for a model to identify patterns based on
the interaction of tokens rather than individual tokens. This particular case is likely for
LIWC-based models as the vast majority (between 64% and 86%) of tokens are shared
between both classes.

5.2.2 Linear Baseline Models

For the linear baseline models, I optimise several different linear models (i.e. Logistic
Regression models and SVM models) that function as baselines using the Scikit-Learn
python library Pedregosa et al. (2011). For each algorithm, I develop three different models:
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Not Abuse Only Abuse Only Intersection Vocab size
Offence 3,199 (19.2%) 7,978 (47.9%) 5,486 (32.9%) 16,663
Toxicity 71,493 (74.7%) 1,560 (1.6%) 22,659 (23.4%) 95,712
Hate Expert 6,231 (67.9%) 971 (10.6%) 1,979 (21.6%) 9,181
Hate Speech 7,074 (47.7%) 2,653 (17.9%) 5,107 (34.4%) 14,834
StormFront 1,804 (32.7%) 2,240 (40.7%) 1,466 (26.6%) 5,510

Table 5.6 Number of unique BPE tokens in each class for each dataset and the size of their intersection.

a) surface token-based model that uses sentences tokenised into words, b) models on the
Byte-Pair encoded representation, and c) models that use the LIWC-based representation
as their input data. For all baseline models, I only use token unigrams as features, as these
provide competitive baselines for many of the datasets. To ensure that the baseline models
use the most appropriate parameters, I perform a cross-validated grid-search (as implemented
by Pedregosa et al. (2011)) over the possible settings of the model parameters for each
model. For both SVM and Logistic Regression models, I explore values of the strength of
the regularisation ([0.1,0.2,0.3, . . . ,0.9]) to examine the strength of regularisation and the
regulariser ({L1,L2}). For Logistic Regression, I also set the parameter search to consider
Elasticnet as a third regulariser option.

In the optimisation procedure for the linear models, I first fit a count vectoriser on the
optimisation data and then optimise a model on the vectorised optimisation data. For
prediction on other datasets, all datasets are passed through vectoriser that is fitted to the
optimisation data. This ensures that all datasets are processed and indexed in accordance
to the vocabulary of the optimisation dataset and the model. A notable difference between
the optimisation of linear models and their neural network counterparts is that linear models
are only provided with the dataset once for each cross-validation set and the order of the
documents in the dataset is not randomised whereas the neural network models iterate
multiple times over the optimisation dataset where the order of the documents in the dataset
is randomly shuffled between each iteration.

5.2.3 Neural Models

I implement three different neural network model types using PyTorch (Paszke et al., 2019)
and perform a hyper-parameter search on each model type for every dataset and input type.
Specifically, I implement a MLP, a LSTM, and a CNN. I choose to implement an MLP as it is
the simplest form of neural networks and it can provide insights into the applicability of neural
network-based architectures. As the LIWC tokens are distributed such that the vast majority
of tokens are shared by both classes, I also develop a LSTM network to take long-range
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dependencies into account. I choose a LSTM over a basic RNN model as unknown tokens
are likely to occur frequently in the LIWC-based data due to the small size of the dictionary
and resulting vocabularies, and it may be desirable for any recurrent model optimised on the
data to be afforded the ability to forget sequences of unknown tokens. Finally, I develop a
CNN model as this model type has been frequently applied in the previous work.

In order to focus on the utility of the different document representations, I optimise models
that have simple architectures. To this end, I don’t use pre-optimised embeddings as
embedding layers within the model as I am not aware of any general purpose pre-optimised
LIWC-embeddings and, as is apparent from table 5.3, the LIWC tokens generated for each
token would most likely be out-of-vocabulary for most pre-optimised word embeddings.
Instead, I opt to optimise the embedding layer along with all other layers. To address the
issue of the model over-fitting the data, either by identifying spurious correlations in the data
or by over-optimising the model, I subject each model to dropout and early stopping (see
section 3.2 for more detail on dropout and early stopping). To address the issues of exploding
and vanishing gradients, I employ gradient clipping (Bengio et al., 1994), to normalise the
value of the gradients in the optimisation procedures.

I use a single optimisation procedure for all models to limit the confounding factors in the
optimisation process. The models are given data, which they iterate over in a pre-defined
number of epochs, shuffling the dataset between each epoch. Within each epoch, batches of
the data are passed through the model for prediction during optimisation. Following this
prediction, the loss is back-propagated through the model, updating the internal representation
in the process. This process is repeated for the assigned maximum number of epochs, or
until the model triggers the early stopping (Prechelt, 1998) criteria. The early stopping
criteria is that the computed loss on the validation set has been strictly increasing for at least
15 epochs. Once a model has finished optimising, performance in terms of macro F1-score,
precision, recall and accuracy are computed on the validation set and evaluation sets.
To be able to speak to the optimisation time, I start a timer when the model optimisation
procedure is initiated and stop the timer when the model has fully completed its optimisation,
but prior to any inference made using the model. I repeat this process for at least 200 unique
trials for each model and dataset combination and use the F1-score on the validation set
to identify the best configuration of hyper-parameters. Once the best hyper-parameters
are selected, I rerun the models with 5 different random seeds and obtain these models’
performance on all evaluation sets, that is the in-domain test for the dataset the models are
optimised on and the out-of-domain evaluation sets from the remaining datasets.
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In efforts to identify the best hyper-parameters without performing a grid-search of all
possible combinations, I turn towards Bayesian Hyper-Parameter Tuning (Neal, 1996).
Briefly, Bayesian Optimisation allows for estimating the best hyper-parameters for a model
through a series of trials with different hyper-parameter settings. I use the implementation of
Bayesian Hyper-Parameter Optimisation offered through Biewald (2020) and set the objective
of the hyper-parameter optimisation to maximise the macro F1-score on the development
data (please refer to section 3.2.4 for more detail).

The parameters that I perform the optimisation for varies across the different model types as
they require different hyper-parameters to be defined. A set of hyper-parameters are constant
across models: the size of mini-batches provided to the model for optimisation, the learning
rate, the number of epochs, and the embedding size. For each dataset and model type, I
perform at last 200 trials with different parameter settings, leading to choosing a final set
of hyper-parameters that I run with five different random seeds. The values for the learning
rate are sampled from a uniform distribution while the batch size and number of epochs to
optimise for are sampled from a pre-defined categorical set. More generally, the values for all
hyper-parameters, asides from dropout and the learning rate are sampled from a pre-defined
categorical set.

• Maximum epoch count: {50,100,200},

• Batch size: {16,32,64},

• learning rate: [0.00001,1.0]

5.2.3.1 Multi-Layered Perceptron

The first neural architecture that I implement is a Multi-Layered Perceptron. I choose this
model as it is the simplest form of a neural network and thus well suited for an initial investi-
gation into the feasibility of neural network approaches for the LIWC-based representations.
The MLP architecture that I use also lays the basis for the architectures for all other neural
network-based models in this chapter. The network consists of an embedding input layer,
a hidden layer, an output layer, and a softmax layer which produces the probabilities for
each class. I subject the model’s representation to a dropout layer and a non-linear activation
function between the input layer and hidden layer, and the hidden and output layer.

I perform a hyper-parameter search over the following hyper-parameter values, that are
specific to the MLP:

• dropout probability: [0.0,0.5],
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• hidden layer dimension: {64,100,200,300}, and

• the activation function: {ReLU,Tanh}

5.2.3.2 Long-Short Term Memory

I implement a simple architecture for the LSTM model to retain focus on the input types and
to avoid differences in model architectures, such as the use of an attention layer, to ensure
that the I examine the impact of the data representation, rather than potential differences
the construction of the models. The LSTM consists of an input embedding layer, a uni-
directional LSTM layer, a linear output layer, and a softmax to produce the class probability
distribution. I apply a dropout to the output of the input layer and the output of the LSTM
layer in efforts to prevent the model from over-fitting on any particular pattern. I use the
PyTorch implementation of an LSTM which uses a Tanh activation function (Paszke et al.,
2019), for which reason I do not apply other non-linearities to the model.

Thus, for the LSTM our hyper-parameter tuning considers the following parameters and
values:

• dropout probability: [0.0,0.5],

• embedding layer dimension: {64,100,200,300}, and

• hidden layer dimension: {64,100,200,300}

5.2.3.3 Convolutional Neural Network

Similarly to the MLP and LSTM, the input layer is an embedding layer, followed by three
two-dimensional convolutional layers, each of which are subject to a non-linear activation
function, a one dimensional max-pooling layer, and a output layer. The representation
obtained through the output layer is subjected to a softmax function that computes the
probability distribution for the classes.

Unlike the MLP and LSTM models, the CNN models are not subject to a dropout. However
as the CNN requires window sizes and number of filters to be set, these are added as
hyper-parameters to tune. The hyper-parameters that are used to tune this model are thus:

• window size: {(1,2,3),(2,3,4),(3,4,5)},

• Number of filters: {64,128,256},

• hidden layer dimension: {64,100,200,300}, and
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• the activation function: {ReLU,Tanh}

5.3 Results

To answer the research question set forth, I examine three different aspects of my models:
First, I examine the model performances on a held out evaluation set from dataset they
are optimised on in an effort to answer how appropriate LIWC representations are for
automated abuse detection. Second, I compare the model performances on the evaluation
sets of datasets that they are not optimised on. Finally, I observe the time it takes for models
to be optimised using the different representations. To examine these behaviours across
datasets and architectures, I develop three different neural network types and optimise these
on three different data representations for each of the five datasets introduced in section 5.1.3,
resulting in 45 different model architectures optimised. These 45 model architectures are
then subject to at least 200 hyper-parameter selection trials, resulting in over 9,000 models
developed in the process of identifying the best hyper-parameters. Once the hyper-parameters
are determined, I perform an additional 5 runs for each model architecture, examining the
influence of the random seed.

5.3.1 Baseline Models

5.3.1.1 Model Parameters and Validation Set Performances

All linear baseline models prefer an L2 regularisation. Considering table 5.7, it is clear that
in most cases using a word token input results in the best scores on the development set, the
exception to the rule being the Hate Expert dataset. However, an interesting pattern emerges,
for many of the datasets, using the LIWC-tokenised input provides highly competitive results,
suggesting the efficacy of using LIWC-based tokenisation even on linear models, a promising
sign for the subsequent experiments.

5.3.1.2 Evaluation Set Performances

In tables 5.8 to 5.12, though only baselines, there are a number of interesting patterns that
emerge. First, the baselines validate the hypothesis that LIWC-based representation can
serve as a viable input to machine learning models, as the LIWC-based models often achieve
competing scores, and in some instances out-perform models with other data representations,
e.g. in recall on the in-domain prediction on the Offence test data (see table 5.8) and the
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Model C F1-score

O
ff

en
ce

Word
SVM 0.1 0.9222
LR 0.9 0.9093

BPE
SVM 0.1 0.9216
LR 0.8 0.9119

LIWC
SVM 0.1 0.9207
LR 0.2 0.9140

To
xi

ci
ty

Word
SVM 0.2 0.8678
LR 1.0 0.8660

BPE
SVM 0.1 0.8664
LR 1.0 0.8673

LIWC
SVM 0.9 0.8514
LR 1.0 0.8374

H
at

e
E

xp
er

t Word
SVM 0.1 0.7587
LR 1.0 0.7653

BPE
SVM 0.1 0.8090
LR 0.8 0.7974

LIWC
SVM 1.0 0.6378
LR 0.7 0.6354

H
at

e
Sp

ee
ch Word

SVM 0.1 0.7995
LR 0.9 0.7928

BPE
SVM 0.1 0.7853
LR 0.5 0.7676

LIWC
SVM 0.4 0.7214
LR 1.0 0.7265

St
or

m
Fr

on
t Word

SVM 0.1 0.7485
LR 0.9 0.7508

BPE
SVM 0.3 0.7041
LR 1.0 0.7406

LIWC
SVM 0.1 0.7068
LR 0.1 0.7249

Table 5.7 Optimal parameter values for linear baseline models optimised on each data set and their
in-domain performance on the validation sets.
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F1-score achieved on the out-of-domain datasets, for instance for the models optimised on
the Toxicity dataset (see table 5.9).

Second, though the baselines often produce sub par classification performances on out-of-
domain data, ranging from random performance to worse than a majority baseline, they
sometimes yield surprisingly good results along individual metrics. E.g. in table 5.10 a word
token model achieves a high performance on the Toxicity dataset while a LIWC-based model
posts surprisingly high scores on the Offence dataset.

Third, many of the LIWC-based models post strong performances on in-domain data, sug-
gesting that simple linear models may be highly appropriate for the LIWC-based input.
Moreover, these strong in-domain performances also provide a weak suggestion that neural
network architectures may be well suited for the task, as most of the of the datasets that are
under consideration are small datasets. Fourth, an interesting trend of the models optimised
on the Offence and the Toxicity datasets obtain surprisingly good scores on each other. Two
potential reasons for this trend are, 1) the two datasets are the largest in datasets so more
general patterns may be learned, 2) as the notion of ‘offensive’ as constructed by Davidson
et al. (2017) bears strong similarities with the notion of ‘toxicity’ constructed by Wulczyn
et al. (2017), they may yield subsets of the datasets that strongly share similarities with each
other.

Finally, although these baseline models do obtain surprisingly good scores for many of the
models, there are several instances of noteworthy performance drops between the word token
and BPE-token models and their LIWC counterpart, notably the LIWC-based models often
perform well on some metrics, but fall short on others. For instance in tables 5.11 and 5.12,
the LIWC-based models perform well on recall and precision, though they are frequently
out-performed by models optimised with different data representations. Thus, within the
space of these strong results there is still room for improvement of the metrics. As most of
the datasets are imbalanced, I focus my attention on the macro F1-score performance due
to its particular ability to handle imbalanced data well and its use in the previous literature
(Fortuna et al., 2021).

5.3.2 Neural models

5.3.3 Model Hyper-Parameters and Validation Set Performances

As a result of the 200 trials, several parameter settings compete to be the best performing
model, with little difference in their scores on the validation set. The hyper-parameters for
the best and most stably performing model are presented in tables 5.13 to 5.17.
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Word BPE LIWC
LR SVM LR SVM LR SVM

Offence

Accuracy 0.9504 0.9544 0.9484 0.9504 0.9399 0.9407
Precision 0.9098 0.9140 0.9064 0.9073 0.8772 0.8755
Recall 0.9137 0.9257 0.9095 0.9174 0.9275 0.9385
F1-score 0.9118 0.9197 0.9079 0.9123 0.8995 0.9025

Toxicity

Accuracy 0.8319 0.8311 0.8882 0.8904 0.9342 0.9308
Precision 0.6505 0.6467 0.7055 0.7077 0.8108 0.7988
Recall 0.7941 0.7828 0.8006 0.7949 0.8062 0.8067
F1-score 0.6800 0.6752 0.7393 0.7397 0.8085 0.8027

Hate Expert

Accuracy 0.6416 0.6792 0.6922 0.7413 0.7630 0.7688
Precision 0.4892 0.4927 0.5223 0.5365 0.5738 0.5685
Recall 0.4832 0.4899 0.5316 0.5416 0.5857 0.5737
F1-score 0.4748 0.4864 0.5193 0.5381 0.5783 0.5708

Hate Speech

Accuracy 0.6413 0.6519 0.6294 0.6554 0.6738 0.6696
Precision 0.5835 0.5834 0.5565 0.5778 0.5941 0.5838
Recall 0.5810 0.5722 0.5503 0.5601 0.5564 0.5475
F1-score 0.5820 0.5741 0.5510 0.5597 0.5490 0.5364

StormFront

Accuracy 0.5879 0.5921 0.5795 0.6172 0.5000 0.5314
Precision 0.5887 0.5946 0.5798 0.6181 0.5000 0.5705
Recall 0.5879 0.5921 0.5795 0.6172 0.5000 0.5314
F1-score 0.5869 0.5893 0.5791 0.6164 0.4226 0.4559

Table 5.8 Scores on the evaluation sets for linear models optimised on the Offence
dataset.

Word BPE LIWC
LR SVM LR SVM LR SVM

Offence

Accuracy 0.6414 0.7019 0.6563 0.6962 0.8072 0.8665
Precision 0.6442 0.6609 0.6501 0.6636 0.7291 0.7763
Recall 0.7576 0.7825 0.7686 0.7897 0.8736 0.9083
F1-score 0.5983 0.6459 0.6109 0.6437 0.7496 0.8116

Toxicity

Accuracy 0.9577 0.9577 0.9584 0.9583 0.9530 0.9549
Precision 0.9058 0.8961 0.9052 0.9015 0.9135 0.9210
Recall 0.8352 0.8478 0.8406 0.8446 0.7952 0.8008
F1-score 0.8662 0.8700 0.8693 0.8703 0.8420 0.8484

Hate Expert

Accuracy 0.8020 0.8035 0.8353 0.8309 0.8309 0.8309
Precision 0.4834 0.5111 0.6325 0.6131 0.6167 0.6262
Recall 0.4929 0.5053 0.5513 0.5449 0.5524 0.5640
F1-score 0.4786 0.4974 0.5582 0.5493 0.5600 0.5750

Hate Speech

Accuracy 0.6761 0.6767 0.6684 0.6690 0.6785 0.6838
Precision 0.5876 0.5916 0.5606 0.5650 0.5925 0.6099
Recall 0.5325 0.5378 0.5217 0.5246 0.5325 0.5423
F1-score 0.5023 0.5130 0.4866 0.4925 0.5005 0.5167

StormFront

Accuracy 0.5544 0.5649 0.5649 0.5628 0.5126 0.5146
Precision 0.6697 0.6645 0.6829 0.6675 0.5866 0.5799
Recall 0.5544 0.5649 0.5649 0.5628 0.5126 0.5146
F1-score 0.4632 0.4872 0.4811 0.4817 0.3800 0.3901

Table 5.9 Scores on the evaluation sets for linear models optimised on the Toxicity
dataset.
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Word BPE LIWC
LR SVM LR SVM LR SVM

Offence

Accuracy 0.3651 0.3836 0.2925 0.3066 0.6006 0.6575
Precision 0.5537 0.5551 0.5495 0.5511 0.6213 0.6317
Recall 0.5695 0.5759 0.5451 0.5507 0.7159 0.7339
F1-score 0.3620 0.3783 0.2922 0.3066 0.5608 0.6025

Toxicity

Accuracy 0.9054 0.9029 0.9022 0.9004 0.8482 0.8419
Precision 0.7241 0.6800 0.6698 0.6525 0.6011 0.5973
Recall 0.5339 0.5299 0.5291 0.5323 0.6265 0.6293
F1-score 0.5404 0.5338 0.5325 0.5381 0.6111 0.6090

Hate Expert

Accuracy 0.8960 0.8988 0.8960 0.8974 0.8671 0.8584
Precision 0.8162 0.8193 0.8327 0.8270 0.7537 0.7249
Recall 0.7492 0.7625 0.7285 0.7446 0.6549 0.6536
F1-score 0.7764 0.7865 0.7657 0.7765 0.6851 0.6779

Hate Speech

Accuracy 0.6885 0.6885 0.6791 0.6850 0.7063 0.7009
Precision 0.6463 0.6463 0.5866 0.6199 0.6658 0.6474
Recall 0.5285 0.5285 0.5158 0.5260 0.5774 0.5828
F1-score 0.4777 0.4777 0.4577 0.4770 0.5681 0.5792

StormFront

Accuracy 0.5063 0.5063 0.5000 0.4979 0.5418 0.5460
Precision 0.6516 0.6087 0.5000 0.2495 0.6364 0.6048
Recall 0.5063 0.5063 0.5000 0.4979 0.5418 0.5460
F1-score 0.3507 0.3541 0.3370 0.3324 0.4458 0.4720

Table 5.10 Scores on the evaluation sets for linear models optimised on the Hate
Expert dataset.

Word BPE LIWC
LR SVM LR SVM LR SVM

Offence

Accuracy 0.4490 0.4748 0.2727 0.4986 0.5450 0.5365
Precision 0.5887 0.5926 0.5483 0.5955 0.6083 0.6073
Recall 0.6353 0.6479 0.5381 0.6584 0.6873 0.6841
F1-score 0.4378 0.4593 0.2714 0.4784 0.5168 0.5102

Toxicity

Accuracy 0.8786 0.8654 0.9006 0.8711 0.7278 0.7277
Precision 0.5730 0.5571 0.6462 0.5788 0.5325 0.5333
Recall 0.5390 0.5404 0.5268 0.5551 0.5702 0.5719
F1-score 0.5463 0.5456 0.5290 0.5630 0.5222 0.5230

Hate Expert

Accuracy 0.8468 0.8555 0.8931 0.8540 0.8309 0.8324
Precision 0.6881 0.7187 0.8246 0.7167 0.6447 0.6443
Recall 0.6043 0.6172 0.7229 0.6273 0.5949 0.5881
F1-score 0.6254 0.6428 0.7591 0.6525 0.6097 0.6030

Hate Speech

Accuracy 0.8381 0.8422 0.6838 0.8191 0.7719 0.7701
Precision 0.8280 0.8332 0.6187 0.7968 0.7464 0.7446
Recall 0.7882 0.7932 0.5193 0.7769 0.7006 0.6973
F1-score 0.8030 0.8081 0.4602 0.7853 0.7138 0.7106

StormFront

Accuracy 0.5544 0.5816 0.5000 0.5565 0.5523 0.5586
Precision 0.6858 0.7069 0.5000 0.6593 0.5929 0.6051
Recall 0.5544 0.5816 0.5000 0.5565 0.5523 0.5586
F1-score 0.4587 0.5069 0.3370 0.4712 0.4974 0.5037

Table 5.11 Scores on the evaluation sets for linear models optimised on the Hate
Speech dataset.
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Word BPE LIWC
LR SVM LR SVM LR SVM

Offence

Accuracy 0.2929 0.2945 0.2912 0.3142 0.4248 0.6821
Precision 0.5308 0.5372 0.5392 0.5398 0.5405 0.6185
Recall 0.5300 0.5357 0.5367 0.5429 0.5643 0.7027
F1-score 0.2928 0.2944 0.2911 0.3141 0.4088 0.6078

Toxicity

Accuracy 0.6271 0.6393 0.6370 0.6233 0.4075 0.4606
Precision 0.5085 0.5129 0.4987 0.5001 0.4959 0.5208
Recall 0.5224 0.5336 0.4967 0.5002 0.4886 0.5587
F1-score 0.4637 0.4726 0.4576 0.4541 0.3511 0.3944

Hate Expert

Accuracy 0.7731 0.7702 0.7905 0.7789 0.6792 0.6734
Precision 0.5181 0.5111 0.5157 0.4923 0.4983 0.5091
Recall 0.5144 0.5089 0.5095 0.4950 0.4976 0.5135
F1-score 0.5146 0.5085 0.5063 0.4896 0.4921 0.5020

Hate Speech

Accuracy 0.6696 0.6732 0.6820 0.6803 0.6389 0.6294
Precision 0.5821 0.5888 0.6081 0.6032 0.5928 0.5920
Recall 0.5438 0.5459 0.5586 0.5524 0.5969 0.5998
F1-score 0.5297 0.5312 0.5486 0.5388 0.5943 0.5932

StormFront

Accuracy 0.7259 0.7427 0.7280 0.7197 0.6987 0.6820
Precision 0.7260 0.7428 0.7280 0.7201 0.7015 0.6830
Recall 0.7259 0.7427 0.7280 0.7197 0.6987 0.6820
F1-score 0.7259 0.7426 0.7280 0.7195 0.6977 0.6816

Table 5.12 Scores on the evaluation sets for linear models optimised on the StormFront dataset.

Taking the best performing hyper-parameters, I re-run each model and dataset combination
with five different random seeds (22, 32, 42, 310, and 922) and display the macro F1-scores
and the loss on the in-domain validation sets in figs. 5.1 to 5.10. Note, that in figs. 5.1, 5.3,
5.5, 5.7 and 5.9 the standard deviations is depicted through shading whereas in figs. 5.2, 5.4,
5.6, 5.8 and 5.10 the shading represents the standard error.2 Moreover, as loss values most
frequently are small, I display the losses on a logarithmic scale to allow for more readable
figures.

2I display the standard error here, rather than the standard deviation, as displaying the standard deviation on
a log scale results in unreadable graphs due to outliers. Ignoring outliers in producing the graph has the natural
consequence that parts of the graph exist outside of the displayed area.
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Fig. 5.1 In-domain macro F1-score on validation set for models optimised on the Offence dataset.

In observing the F1-scores on the validation sets in figs. 5.1, 5.3, 5.5, 5.7 and 5.9, a general
pattern emerges in which most models, regardless of input type, display similar learning
curves. There are however some notable exceptions to this rule. One such exception can be
observed in fig. 5.1, where the LIWC-based CNN displays volatile performances throughout
the entire optimisation procedure. Another exception can be observed in fig. 5.5, where the
BPE-based MLP model starts with a low performance, but increasingly improves until the
final few epochs, where the model predictions become very volatile and ultimately triggers
early stopping with a large drop in performance. In addition to these two exceptions, the
models that are optimised for the StormFront dataset (see fig. 5.9) display three patterns:
First, there are some models that show a large variability in their performances from epoch
to epoch, these models tend to trigger early stopping at an early stage. Second, there are
models that show a smaller degree of variability in classification performance as the model is
optimised, but as they pass through the epochs, the model performance steadily increases and
the variability in performances decreases. Third, there are models that obtain a high score
early in the optimisation procedure and trigger early stopping at an early stage.

Another exception can be observed in the models optimised on Toxicity dataset (see fig. 5.3).
Here three salient trends occur. In the first, models start with a high F1-score and show little
improvement as over the epochs and trigger early stopping. In the second, models start with
a lower F1-score and show steady improvements until early stopping is triggered. The third
trend starts with a relatively low model performance (below 0.4 in F1-score), seeing steady
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Fig. 5.2 Validation losses for models optimised on the Offence dataset.

improvements, before reaching a plateau and continuing until early stopping is triggered or
the set number of epochs is reached.

Turning to the loss developments in figs. 5.2, 5.4, 5.6, 5.8 and 5.10 there are three unique
patterns: First, the loss rises throughout the optimisation process. Second, the loss remains
almost entirely unchanged throughout the entire optimisation process. Finally the third
pattern, the loss is volatile throughout the process, rising or dropping from epoch to epoch.

5.3.3.1 Evaluation Set Performances

In figs. 5.11 to 5.13, 5.15 to 5.18, 5.20 to 5.23 and 5.25, I show the in-domain and out-
of-domain results of using the neural network architectures described in section 5.2 for
modelling abuse using the three different document representations. The bars in each figure
represent the scores of each models on the test set in question, e.g. in fig. 5.11 I show the
macro F1-scores achieved by all models on the test set for the Offence dataset, and the
error bars are the standard deviation over the 5 parameter seed runs.

Considering figures collectively, it’s clear that in-domain models in most cases, predictably,
out-perform models optimised on out-of-domain datasets. Interestingly, it’s also clear
that LIWC-based models in many cases are comparable to models using full surface-form
vocabulary. Moreover, this similarity in performance largely also holds for out-of-domain
performance, with some LIWC-based models consistently ranking among the best performing
out-of-domain models. The comparison of out-of-domain performance between experimental
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Fig. 5.3 In-domain macro F1-score on validation set for models optimised on the Toxicity dataset.

Fig. 5.4 Validation losses for models optimised on the Toxicity dataset.
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Fig. 5.5 In-domain macro F1-score on validation set for models optimised on the Hate Expert
dataset.

Fig. 5.6 Validation losses for models optimised on the Hate Expert dataset.
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Fig. 5.7 In-domain macro F1-score on validation set for models optimised on the Hate Speech
dataset.

Fig. 5.8 Validation losses for models optimised on the Hate Speech dataset.
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Fig. 5.9 In-domain macro F1-score on validation set for models optimised on the StormFront dataset.

Fig. 5.10 Validation losses for models optimised on the StormFront dataset.
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models and the linear baselines too is worth noting. Here, in spite of improved performances
on the in-domain evaluation sets, there is a tend towards a slight decrease performance on
out-of-domain data by the experimental models.

One dataset however, is notable in its in-domain and all out-of-domain predictions: The
StormFront dataset. For this dataset, linear models perform at par, or better than all config-
urations of neural models. The most likely explanation for this can be found in the small
dataset size of less than 3,000 documents. One way to address such a short-coming of this
dataset is to increase the dataset size. Although the experiments I conduct with the dataset
keep the number of documents lower than the total annotated set in order to maintain a
balanced dataset, the dataset does in some cases allow for models that out-perform models
optimised on larger datasets, in terms of out-of-domain prediction. Specifically, the MLP
models evaluated on the Offence data (see fig. 5.11, where the StormFront LIWC-based
model out-performs several other models that are optimised on larger datasets.

More generally, from the out-of-domain classification performances, there seems to be a
correlation with the goals of the datasets and out-of-domain performance. For instance,
in figs. 5.11, 5.12, 5.16, 5.21 and 5.22, I observe that models optimised on the Offence
and Toxicity datasets out-perform models optimised on other datasets. For both of these
datasets, the governing understanding of abuse and hate speech are that not all speech that
is offensive is necessarily also problematic. The motivation for the development of the
Offence dataset was specifically to disentangle hateful from offensive but not necessarily
unacceptable. Similarly, the Toxicity dataset asked its annotators to identify comments that
might make people exit conversations they were part of rather than ask annotators to label for
all content that is offensive or hateful. Thus, for these two datasets, the governing question
is not necessarily the protection of marginalised communities and identities but instead
identifying a degree of acceptable abuse and hostility.

In contrast, the Hate Expert and Hate Speech datasets seek to identify communications that
are harmful to marginalised communities. Thus, it’s no surprise that the out-of-domain
performances for models optimised on these two datasets perform reasonably well with each
other. However here it is also clear that there is a relationship between dataset size and
out-of-domain performance. The models optimised on the larger dataset (i.e. Hate Speech
with 16,000 documents) have better performance on the evaluation set of the smaller (the
Hate Expert dataset with 7,000 documents) than the other way around.

The StormFront dataset on the other hand is annotated to identify deliberate attacks against
“specific group[s] of people” on the basis of their group membership or characteristics
of group’s identities (Garcia et al., 2019). This annotation criteria forms a subset of the
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annotation guidelines that are used for the Hate Speech and Hate Expert datasets. Moreover,
the collection strategies for the three datasets also share common characteristics. Where
Garcia et al. (2019) specifically seek out content from a white supremacist forum for their
dataset, Talat (2016); Talat and Hovy (2016) sample from Twitter by searching for keywords
that were likely to result in a large set of of gendered and racialised abuse. Thus, while the
domain of the data and the annotation guidelines are not the same, there are likely to be
similarities in the content and annotations produced.

Attending to the questions surrounding the use of LIWC to represent documents for modelling
abuse, I turn to the baseline and experimental model performances on the validation and
evaluation sets of the LIWC-based models. In the validation sets for the linear baselines
(see table 5.7), the LIWC-based methods do not out-perform any other model type on
some datasets while it does on others. For instance, a highly competitive score is obtained
(e.g. 0.9207 for LIWC-based SVM model against 0.9222 for a word token-based SVM)
. For other datasets however, the score obtained by LIWC-based models is much lower,
suggesting that LIWC-based modelling may be an appropriate means of modelling abuse
under some conditions. For the neural network-based models a similar story presents itself,
although the LIWC-based models perform reasonably well in comparison to models that use
a larger vocabulary (e.g. 0.9644 for the LIWC-based model in table 5.13 and 0.9783 for the
BPE-based model).

On the evaluation sets however, a slightly different patterns plays out. For most evaluation
datasets, at least one of the LIWC-based models out-perform some of the surface token-based
models, and in some cases out-perform all other models. In particular, fig. 5.12, the in-domain
LIWC-based model out-performs all other model types, though notably posts lower scores
than the out-of-domain LIWC-based Offence model.

Overall, the patterns displayed by the MLPs (see figs. 5.11 to 5.15) indicate that LIWC-based
document representations are appropriate for the development of neural networks for abuse
detection, in spite of the large reduction in vocabulary size.

In fact, the model performances also weakly indicate that there are benefits to be found
in using LIWC-based representations for medium sized and large datasets.3 Considering
the LIWC-based Toxicity and Hate Speech models, their performance appears slightly less
volatile to domain shifts in comparison to their surface token counterparts, although they still
exhibit a high degree of volatility as the goals of the datasets change.

3Medium and large are relative here to to the sizes of hate speech and abuse data, often ranging between
5,000 to 100,000 samples, rather than large scale datasets for computing that contain millions of samples.
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Fig. 5.11 Macro F1-scores for all MLP models on the Offence evaluation set with the standard
deviation represented in error bars.

Fig. 5.12 Macro F1-scores for all MLP models on the Toxicity evaluation set with the standard
deviation represented in error bars.
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Fig. 5.13 Macro F1-scores for all MLP models on the Hate Expert evaluation set with the standard
deviation represented in error bars.

Fig. 5.14 Macro F1-scores for all MLP models on the Hate Speech evaluation set with the standard
deviation represented in error bars.
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Fig. 5.15 Macro F1-scores for all MLP models on the StormFront evaluation set with the standard
deviation represented in error bars.

Fig. 5.16 Macro F1-scores for all LSTM models on the Offence evaluation set with the standard
deviation represented in error bars.
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Fig. 5.17 Macro F1-scores for all LSTM models on the Toxicity evaluation set with the standard
deviation represented in error bars.

Fig. 5.18 Macro F1-scores for all LSTM models on the Hate Expert evaluation set with the standard
deviation represented in error bars.
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Fig. 5.19 Macro F1-scores for all LSTM models on the Hate Speech evaluation set with the standard
deviation represented in error bars.

Fig. 5.20 Macro F1-scores for all LSTM models on the StormFront evaluation set with the standard
deviation represented in error bars.
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As I can establish that LIWC-based data representation is appropriate for neural network
methods, I turn to ask what the influence of recurrence is on the performance of models when
predicting on in-domain and out-of-domain datasets through the use of LSTM models.

On examining the test scores on the LSTM models (see figs. 5.16 to 5.20), I find that the
performance of MLPs and LSTMs in general are competitive with one another and it is
dependent on the dataset, which architecture will work best. To the point of this chapter,
while there is some variability in the performance of LIWC-based models in some instances,
they achieve high in-domain and out-of-domain performances. This for instance is the case
with the LIWC-based model optimised on the Toxicity dataset, which consistently achieves a
high F1-score on the Offence dataset.

Comparing only the LIWC-based models with each other, I find that in general, MLPs are
out-performed by LSTM models on in-domain data. The LSTM models, in turn tend to
achieve lower performances than the CNN models. In most cases, all models obtain high
performances and are competitive with one another. Although it is slightly surprising that
recurrence seems to have only have a small positive effect on the in-domain performances of
the LSTM models, this follows the prior work in abuse detection where CNN models long
had a dominance over other models due to their ability to outperform most other models.

Taking into consideration the generally high performance of the LIWC-based models opti-
mised for the Toxicity dataset, there appears to be an effect between the size of the dataset
and the in-domain and out-of-domain performances. The LIWC-based models optimised on
the Toxicity dataset tend to out-perform other models optimised on the Toxicity dataset, when
evaluated on out-of-domain datasets. These results suggest that LIWC-based modelling
may provide for improved out-of-domain performances when the models are optimised on
large datasets or are being applied to data with which there are shared attributes in terms of
annotation goal.

Comparing the LIWC-based models on out-of-domain performance, I note that for LIWC-
based models similarities in dataset goals seems to have a positive effect. Additionally, the
models optimised on the Offence tend to perform well across the different datasets.

5.3.3.2 Computational costs

Reducing the size of the vocabulary may also have implications for time required to optimised
models, which can have downstream effects on the environmental impacts of developing
machine learning models for abuse detection. Here, I consider the impacts that using LIWC-
based document representations have on optimisation time. Figures 5.26 to 5.30 show the
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Fig. 5.21 Macro F1-scores for all CNN models on the Offence evaluation set with the standard
deviation represented in error bars.

Fig. 5.22 Macro F1-scores for all CNN models on the Toxicity evaluation set with the standard
deviation represented in error bars.
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Fig. 5.23 Macro F1-scores for all CNN models on the Hate Expert evaluation set with the standard
deviation represented in error bars.

Fig. 5.24 Macro F1-scores for all CNN models on the Hate Speech evaluation set with the standard
deviation represented in error bars.
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Fig. 5.25 Macro F1-scores for all CNN models on the StormFront evaluation set with the standard
deviation represented in error bars.

number of minutes taken for each model to optimised on each dataset with the error bars
representing the standard deviation across 5 runs.

First, there is a predictable correlation with the complexity of the machine learning model
and the time required to optimise a model, with the MLP models being the quickest to be
optimised and the LSTM models taking the longest, with the exception of the CNN models
optimised on the Hate Expert dataset, where the LIWC CNN requires roughly twice as long
as the LIWC LSTM to optimise (see fig. 5.28).

Considering the influence of document representation on optimisation time, the results point
in multiple directions. First, figs. 5.26 to 5.30 show that LIWC-based representation for
MLPs and CNNs, in most cases, yields faster optimisation time than when using the surface
forms. The figures also show that LSTMs that use LIWC tend to finish optimising faster than
the LSTMs optimised on the surface forms. However, on the largest dataset, the Toxicity
dataset, the LIWC-based LSTM is slower to finish optimising than it’s surface form counter
parts. The LIWC-based CNN is slower to optimise than the word token CNN but faster than
the BPE CNN. Finally, the LIWC-based MLP optimises slightly faster than the models for
word token input and BPE input.

In the medium sized datasets however, the relation between optimisation time and vocabulary
minimisation is clear as the LIWC-based models tend to take less time to optimise than
counter-part, as is apparent in figs. 5.26, 5.28 and 5.29. For each of these datasets, some
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Fig. 5.26 Optimisation time in minutes for each model type on the Offence dataset.

LIWC-based models are optimised quicker while others are slower. In part, this appears to
be connected to model complexity, where the more complex the underlying model is, the
slower the optimisation time also is. For instance, in fig. 5.28 the LIWC-based MLP is the
quickest MLP to be optimised while the LIWC-based LSTM models is slower than all other
LSTM models.

Reflecting on the feasibility of using LIWC-based document representations for optimising
neural networks, I turn to the two largest datasets, the Offence and Toxicity datasets, and
the performance of LIWC-based models while bearing in mind their optimisation time
(see table 5.18). Beyond being the two largest datasets, I choose these to compare as their
operationalisations of abuse share large similarities. Thus, one can consider each dataset a
domain shifted dataset to the other, thus providing a more reasonable point of comparison
than using a dataset which is annotated with a fundamentally different goal.

In table 5.18, it immediately stands out that some LIWC-based models take longer to optimise
than their surface token-based counter-parts. Moreover, It is clear that many of the surface
token-based models that perform very well on the in-domain evaluation set do not see the
performance transfer to other datasets. Conversely, some LIWC-based models see a lesser
drop in performance on external data, if not an outright increase in performances. This
suggests that LIWC-based modelling may capture more general patterns of abuse that models
are otherwise prone to over-fit away from in pursuit of improved in-domain performance.
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Fig. 5.27 Optimisation time in minutes for each model type on the Toxicity dataset.

5.3.4 A Consideration through Dirt

I return here to the considerations in chapter 4 to understand how LIWC-based representation
comes to influence the challenges identified in chapter 4. Similarly to the Perspective API, the
LIWC-based model take a top-down approach to determining what constitutes ‘abuse’. For
this reason, a great deal of the analysis provided in section 4.2.1 also holds here. Specifically,
the use of similar neural network-based models are based on similar foundations, where
my models deviate is through the use of LIWC Pennebaker et al. (2001) to transform the
input data to the LIWC categories that are invoked, where the Perspective API uses surface
level representations of tokens without substantial transformations or modifications. Further,
the LIWC-based models, similarly to the Perspective API, do not take into consideration
the context within which documents exist, as such they are similarly disembodied from
the context they purport to model. The LIWC-based model, that I have developed in this
chapter further share a fixed data characteristic with Perspective. This characteristic keeps
optimisation data static, without the use of responses to data, or additional data to further
optimise or correct the models. Thus, the key question and distinction between the LIWC-
based model and the Perspective API lies in the transformation of data into LIWC tokens and
the Perspective APIs use of pre-optimised word embeddings. To ensure comparability of the
LIWC-based model developed in this dissertation with the Perspective API, I use the model
that is optimised on the dataset published by Wulczyn et al. (2017) with the highest macro
F1-score performance on the test set from Wulczyn et al. (2017). I choose this configuration
as this dataset is a part of the data that the Perspective API is optimised on (Jigsaw, 2017).
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Fig. 5.28 Optimisation time in minutes for each model type on the Hate Expert dataset.

In my use of LIWC to transform the input data into a smaller vocabulary that represents higher
level cognition of abuse detection, resulting in tokens such as ’Reich’ and ‘genderqueer’ not
being recognised. On the other hand, the model used in the Perspective API is unlikely to
treat many such words as out-of-vocabulary instances as the Perspective API is optimised on
a) the full dataset and vocabulary and b) relies on pre-optimised embeddings which further
introduce social biases into the world of the model. Thus, the Perspective API seeks to
broaden the world of the model to include richer information about tokens and their relations
whereas my approach seeks to limit the world-understanding of the model to a smaller set
of tokens that reveal information about higher level cognitive functions. My approach thus
limits the notion of dirt while the Perspective API seeks to broaden it. Such a narrowing and
broadening can be observed through the respective vocabulary sizes in the models on the
basis of the same optimisation data (Wulczyn et al., 2017).4 The dataset both models are
optimised on contains 95,710 unique tokens after normalising for elongations. The LIWC
vocabulary on the other hand contains 19,353 unique tokens and only 1,024 are encountered
in the optimisation data.5 Any token that is unrecognised by the LIWC dictionary will
then be relegated to a placeholder for unknown tokens. Given the heavy imbalance of the
dataset, with the vast majority of cases being non-toxic, the distribution of unknown tokens
is similarly skewed and disproportionately occurs in the negative class. Models that rely on

4This data only represents a subset of the optimisation data that the Perspective API is optimised on.
However, as optimisation data sizes increase, so do the unique tokens encountered in the optimisation data.

5Some tokens in the LIWC dictionary are wild-card tokens that are used to capture all inflections of a stem,
e.g. ‘abus*’.
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Fig. 5.29 Optimisation time in minutes for each model type on the Hate Speech dataset.

tokens transformed by the LIWC dictionary, are thus likely to embody a stronger association
between the negative class and the placeholder for unknown tokens.

Each approach comes with a set of opportunities and risks. For instance, as language use
evolves, so can the embeddings that the Perspective API rely on be re-optimised. A LIWC-
based approach on the other hand requires significant human effort, filtering, annotation,
and reasoning to create a new set of words to include. Such a process is both slower and
more limited in what will ultimately be included in the LIWC dictionary. On the other hand,
pre-optimised embeddings will also embody hegemonic social biases (Bender et al., 2021)
whereas the LIWC-based approaches only embody a subset of the social biases that are
present in the original dataset, due to the vast majority of tokens present in a large dataset,
e.g. (Wulczyn et al., 2017), not being known to the LIWC token. However, the social biases
that are present in the dataset that rely on identity terms will remain in the model, should the
identity terms also exist within the LIWC vocabulary, i.e. where identity terms are used as
slurs or the use of an identity term is unevenly distributed in the classes.

Returning to Douglas’ 2005 concept of dirt, such modelling choices are both the product
of meaning-making processes and produce meaning by first being subject to human under-
standings of what constitutes ‘non-toxic’ or sanitised virtual spaces and subsequently the
models construct such meaning. Thus, through a narrowing of the signals, that is tokens,
that can constitute dirt, the boundaries which are subject to sanitisation become more porous
along certain axes, providing solace for communities that are not recognised by the model.
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Fig. 5.30 Optimisation time in minutes for each model type on the StormFront dataset.

At the same time, such algorithmic boundary-making is also made less porous to the threat
of communities that are seen, and seen negatively, through the increased and incorrect
sanitisation efforts of the model. Consequently, unrecognised communities and positively
recognised communities are given leave to thrive and flourish while negatively recognised
communities are subject to sanitisation efforts that can threaten their existence in virtual,
moderated spaces. The question at hand is then whether signals, can stand in replacement of
signs, that is cultural understandings of abuse.

To address this question of signs and signals, I turn to the tests of cultural and social biases
in the Perspective API proposed by Jessamyn West (see Figure 4.1) and David Auerbach
(see Figure 4.2) in Table 5.19. Though a direct comparison cannot be made between the
Perspective API and our model, as the former produces percentages of how many people
‘would consider the comment to be toxic’ (Jigsaw, 2017) whereas the LIWC-based model
produces binary labels of toxic or not-toxic. Considering first the identity-based tests
proposed by Jessamyn West, the Perspective API incrementally increases its toxicity score
as identities deviate from ‘man’, at a 50% threshold, where half of all people would find
the comment toxic, all statements asides from “I am a man” and “I am a woman” would
be considered toxic. As the statements gravitate towards queer black people, so does the
score increase. The predictions produced by the LIWC on the other hand do not reproduce
differential results on the basis of race, however the differential results are maintained and
consistent for anyone with a queer identity (see documents 1-14 in Table 5.19). It is thus fair
to say that the LIWC model does not, at first glance, appear to be hold anti-Black biases yet
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Dataset Model Offence Toxicity Optimisation time

O
ffe

nc
e

Word MLP 0.4541 0.0873 2.443
BPE MLP 0.9729 0.5963 2.062
LIWC MLP 0.8997 0.5244 1.154
Word LSTM 0.794 0.4701 1.966
BPE LSTM 0.8128 0.517 9.563
LIWC LSTM 0.4463 0.412 5.545
Word CNN 0.9698 0.6298 2.201
BPE CNN 0.9699 0.4783 3.533
LIWC CNN 0.4971 0.3492 2.299

To
xi

ci
ty

Word MLP 0.7145 0.7816 18.252
BPE MLP 0.6005 0.5222 27.077
LIWC MLP 0.8284 0.6547 17.806
Word LSTM 0.6285 0.8714 158.18
BPE LSTM 0.6262 0.8643 146.05
LIWC LSTM 0.6954 0.8275 174.412
Word CNN 0.647 0.8542 20.834
BPE CNN 0.5846 0.8622 60.67
LIWC CNN 0.8064 0.8139 45.421

Table 5.18 Time to optimise models on the Offence and Toxicity datasets with their in-domain and
cross-domain macro F1-Scores.

it maintains strongly anti-LGTBQ+ sentiments, an issue that also holds for the Perspective
API (Dias Oliva et al., 2021). In the cases proposed by David Auerbach (see Figure 4.2 and
cases 15-40 in Table 5.19), we see that the LIWC-based model fails to capture many diverse
forms of abuse, while somewhat surprisingly, capturing other forms. Notably, case 23 and the
negated case 27 produce the same classification, this suggests that the LIWC-based model
does not handle negation well, an issue common to abuse detection systems Röttger et al.
(2020). Case 20 and 32 display surprising results, where the LIWC-based model correctly
classifies both cases, even though case 20 does hold a negation. However, considering the
LIWC representations of these two instances reveal that while ‘white’ and ‘black’ exist in
the LIWC dictionary ‘whites’ and ‘Blacks’ do not. Similarly, cases 30 and 36 contain tokens
for individual and group characteristics that do not appear in the LIWC dictionary and also
result in a non-toxic label. Given the data distributions in Wulczyn et al. (2017), the unknown
token placeholder is likely to occur more frequently in the negative class and a model is more
likely to associate it with a lack of toxicity. Subsequently, while the Perspective API overly
polices marginalised groups through biases learned in part from pre-optimised embeddings,
the LIWC-based classifier poses risk by allowing cases such as case 36.
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ID Document Prediction ID Document Prediction
1 I am a man not-toxic 2 I am a woman not-toxic
3 I am a lesbian not-toxic 4 I am a gay man toxic
5 I am a dyke toxic 6 I am a white man not-toxic
7 I am a gay woman toxic 8 I am a white woman not-toxic
9 I am a gay white man toxic 10 I am a black man not-toxic
11 I am a gay white woman toxic 12 I am a gay black man toxic
13 I am a black woman not-toxic 14 I am a gay black woman toxic
15 I fucking love you man. Happy birthday toxic 16 Donald Trump is a meretricious buffoon toxic
17 few muslims are a terrorist threat toxic 18 garbage truck not-toxic
19 You’re no racist toxic 20 whites and blacks are not inferior to one another not-toxic
21 I’d hate to be black in Donald Trump’s America. not-toxic 22 I think you’re being racist not-toxic
23 Hitler was an anti-semite not-toxic 24 This comment is highly toxic not-toxic
25 You are not being racist not-toxic 26 I’d hate to be you. toxic
27 Hitler was not an anti-semite not-toxic 28 drop dead not-toxic
29 gas the joos race war now not-toxic 30 genderqueer not-toxic
31 race war now not-toxic 32 some races are inferior to others toxic
33 You are part of the problem not-toxic 34 Serbia did nothing wrong not-toxic
35 The Third Reich’s only mistake was losing not-toxic 36 Please gas the joos. Thank you. not-toxic
37 Hitler’s biggest mistake was not getting the job done not-toxic 38 14/88 not-toxic
39 You should be made into a lamp not-toxic 40 she was asking for it not-toxic

Table 5.19 LIWC model labels for tests devised for the Perspective API.

Such misclassification also pose inherent risk to any communities that are not recognised
by the LIWC-based classifier while also offering space for some communities to exist. The
inability of both models to distinguishing signals from the signs that threaten the communities
function as a double edged sword that will require additional content moderation strategies for
such unrecognised communities. On the other hand, the Perspective API offers no protection
from dirt that threaten marginalised communities, instead it proposes additional policing and
marginalisation virtual spaces. In both cases, the models engage in ‘toxic slippage’ (Risam,
2015), where discursive power relations are enacted through algorithmic means.

5.4 Conclusions and future work

One of the core concerns surrounding content moderation technologies is that machine
learning models for the task of identifying abuse over-fit to spurious correlations and unique
tokens in the datasets. In this chapter, I have sought to examine how alternative forms of
document representations can alleviate such issues. In addition, I examine how a reduction
in the vocabulary size can affect the time it takes to optimise machine learning models
for detecting abuse. Through the use of LIWC, I perform a vocabulary reduction of up to
98.9% of the surface-form vocabulary and show that in spite of such a reduction, reasonable
in-domain and out-of-domain model performances can be achieved. In particular, I find
that out-of-domain model performances are contingent on similarities in the data sampling
process and the goals of objectives of annotating data. For instance, the Toxicity dataset
and the Offence dataset are sampled from two different sources, Wikipedia editor discussion
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pages and Twitter, respectively. However, the goal of the annotation tasks for both datasets
share similarities in the operationalisation of ‘toxic’ and ‘offensive’ allowing for models
to generalise onto the out-of-domain evaluation sets. By using simple neural network
architectures, I show how LIWC-based models can optimise to similar levels of performance
as surface token-based models. In this chapter, I do not make use of pre-optimised embedding
layers (Kolhatkar et al., 2020; Park and Fung, 2017) in my model or language models (e.g.
BERT (Devlin et al., 2019)) that are fine-tuned to a specific task that many contemporary
models make use of Isaksen and Gambäck (2020); Vidgen et al. (2020b, e.g.). I avoid these
as they are not compatible with the LIWC vocabulary and thus would not be applicable to
the core questions in this chapter.

Further, I investigate the implication of using LIWC to represent documents on the compu-
tational, and thus environmental costs of developing machine learning models. I show that
optimisation time of neural network models has a relation to the size of the surface token
vocabulary size and that models that make use of LIWC can provide competitive in-domain
results and, in some instances out-perform on out-of-domain evaluation sets. Moreover, I
find that the question of whether the time consumed by LIWC-based modelling, whether it is
less or more than surface token-based models, can be reframed as a question of in-domain
validity or generalisability onto an unseen sample. As the goal for machine learning models
is ultimately to generalise onto unseen data where the distributions of data may not mirror
those that the models have been optimised on, LIWC-based document representations may
prove to be a valuable direction for future work, as it optimises models to identify patterns
in cognitive processes and the emotional state of the speaker and the output labels, while
reducing the number of tokens that can act as confounding factors.

The results in this chapter have several implications for research into detecting online abuse.
First, the positive results using LIWC suggests that thinking carefully about document
representation and vocabulary reduction can have beneficial outcomes, in particular for
out-of-domain performance. Second, the generally strong performances of the LIWC-based
linear baselines suggests that although the field has moved on to non-linear modelling, there
is still room for improvement using classical machine learning models. Moreover, the results
for the LIWC-based models leave open questions for future work about how the interaction
with surface form tokens would influence the in-domain and out-of-domain generalisability
of machine learning models. Therefore I plan to address these questions in future work by
using pre-optimised word embedding layers to examine the efficacy of combining LIWC
with surface forms of tokens, to minimise the number of unknown tokens while retaining the
depth of information provided by LIWC.
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5.5 Summary

In this chapter, I sought to examine how large scale reductions in the vocabulary space
using LIWC-based document representations influence computational modelling of content
moderation technologies in efforts to address RQ II: how computational methods can be used
to address issues that result in downstream marginalisation caused by content moderation
technologies. In this way, I sought to address the concerns of automated content moderation
models over-fitting to individual tokens, which has a large impact on marginalised communi-
ties (Dias Oliva et al., 2021), I examine a method to drastically reduce the vocabulary space
in order to prevent over-fitting. Using LIWC to represent documents, I found that reducing
the vocabulary strongly shifted the distribution of tokens from unique to each class to being
shared across the classes, thus also limiting the number of tokens to which models can
over-fit. Moreover, I find that models optimised on LIWC-based document representations
allow for reasonable in-domain and out-of-domain performance. The performance of models
appears to have a correspondence to the size of the dataset used for optimisation and the
annotation guidelines. This pattern then suggests that using LIWC-based representations
can allow for encoding the cultural specificities of similar annotation frameworks. This
further suggests that moving between different value systems, and notions of respectability
will not improve on the results obtained using surface form representations. In spite of this,
the results I obtain in this chapter suggest that using rough and error-prone information on
the emotional and mental states of speakers can provide for contextualisation that can be
useful for abuse detection. However, reducing the vocabulary space does not have strong
implications for the time required to optimise models, perhaps due to the greater proportion
of shared tokens. The implication here then is that using LIWC does not have a strong benefit
in terms of environmental impacts of global climate change.



Chapter 6

Tasks that Matter: Multi-Task Learning
for Abusive Language Detection1

“So is hate speech detection kind of like sentiment analysis++” – ACL 2016
Conference Attendee

One of the frequently made assumptions is that hate speech detection, and in general abusive
language detection, shares many similarities to other tasks that also take on the challenge of
identifying and predicting subjective human experiences such as sentiment analysis, sarcasm
detection, and emotion detection. Indeed, each of these tasks share the characteristic that
the identification of each of these on the basis of text is a task of linguistic pragmatics and
that the interpretation of a given statement will vary on the basis of parties involved in the
communicative act. While they share this unifying characteristic, hate and humour, for
instance occupy different but sometimes overlapping processes as highlighted by the NGO
partners interviewed by Röttger et al. (2020).

Similarities between distinct related tasks pose several interesting questions. First, is it best
to create multiple annotations, either through re-annotating previously published data or
creating an entirely dataset, such that each task is addressed in all of the data or should one try
to develop modelling architectures that are overlapping? Second, how much data from each
task is necessary to annotate, in the case of creating multiple annotations for each document;
or, if the task is approached in terms of developing modelling architectures, how much of the

1This chapter contains elements of an ongoing collaboration with Joachim Bingel, Hero I/S. All contents of
the chapter, are original work produced for this dissertation. The shared elements between the project and this
chapter are the machine learning model designs.
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data from each task should be used in optimising the model. Alternatively, how should the
data from each task be weighted to gain the largest modelling improvements?

In this chapter, I approach the question of overlapping data operationalised through a question
of developing a modelling approach that aims to use potential overlaps between each task.
Specifically, I explore the use of four tasks labelled for different forms of abuse and four
non-abusive auxiliary tasks. The auxiliary tasks that are not labelled for abuse are: sarcasm
detection (Oraby et al., 2016), predicting moral sentiments (Hoover et al., 2019), and
predicting whether an argument is primarily based in facts or feelings (Oraby et al., 2015).
As each task may be related only in terms of the abstraction required to understand the
meaning of a given text, creating mappings between different classes from different tasks is
a complex task that in some cases may not be possible, as one class may not conveniently
fit others, e.g. mapping sarcasm to abuse and vice versa. Moreover, data for each task may
be collected from different sources, at different times, from different populations that use
different vocabularies resulting in models that may optimise to recognise spurious patterns in
the data that are not trivial to identify and address. Thus modelling abuse using distinct tasks
can be approached in two distinct manners. Either all documents are collapsed into a single
dataset without creating maps between the different classes or each task remains a distinct
task and model architectures such as MTL and Ensemble methods are explored. Here I take
the latter approach, developing a MTL model that jointly optimises models for each task that
share a unified layer (see section 3.2.7 for more details on how MTL functions). I select a
MTL modelling approach over an ensemble approach as optimising an ensemble requires
optimising a distinct model for each task, and a final model that considers the outputs of
each model. MTL models on the other hand can be optimised such that a single model is
optimised to perform on its primary task, treating all auxiliary tasks as secondary. Moreover,
as I use a hard-parameter sharing design for my MTL models, an additional benefit is that all
auxiliary tasks act as regularisers for the primary task, even if they are not directly beneficial
to it. Thus, I seek to partially address RQ II by asking RQ 3: How do the individual and
combinatory use of abuse classification and non-abusive tasks impact classification of specific
forms of abuse?

Through the use of of MTL models, I find that non-abusive tasks as auxiliary can be beneficial
to detecting all forms of abuse examined. In line with the results in chapter 5, there is a
difference in how helpful different abusive language datasets are for each other. However, in
spite of benefits from using MTL over some single-task baselines, some baseline models still
out-perform some of the MTL models, suggesting that while there are measurable effects of
using MTL, there is still room for improvements. Moreover, I find that the combinations of
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auxiliary tasks for abuse detection with auxiliary task of related tasks occupy the space for
the models that show most improvements over the baselines.

6.1 Previous work

MTL has previously been applied for a number of tasks in NLP, including language spe-
cific tasks such as multi-word expression identification Bingel and Bjerva (2018), machine
translation Dong et al. (2015), and sequence labelling Rei (2017). Further, MTL has also
been used in tasks that produce social outcomes such as predicting mental health conditions
Benton et al. (2017), hate speech detection Abu Farha and Magdy (2020); Djandji et al.
(2020); Rajamanickam et al. (2020); Talat et al. (2018), and rumour verification Kochkina
et al. (2018).

6.1.1 Modelling

For hate speech detection, and abusive language detection in general, MTL has been applied
to English (Rajamanickam et al., 2020; Talat et al., 2018) and Arabic (Abu Farha and Magdy,
2020; Djandji et al., 2020). Considering that I use datasets that are entirely in English, I only
consider the previous work for hate speech detection using MTL for English language data.

Talat et al. (2018) show that the cultural gaps that exist between different datasets, as a result
of their collection strategies and annotation procedures, could be addressed using MTL.
Using a hard parameter sharing strategy, they develop a MTL model that uses two different
tasks for optimisation. In their model, sampling of the batches is chosen at random, with
one of the tasks set as the main task and a manual mapping between the distinct classes
is performed. The machine learning model chosen by Talat et al. (2018) for their MTL
experiment is a back-propagated MLP with a Tanh activation function and Adam as their
optimisation function. For the input representations Talat et al. (2018) experiment with a
Bag-of-Words model that uses the 5,000 most frequent terms and model that uses Byte-Pair
encoded input data. Similarly to Talat et al. (2018), Rajamanickam et al. (2020) show that
using hard parameter sharing strategy for MTL with an auxiliary task can aid in the detection
of hate speech. Rather than using a different task coded for abuse as Talat et al. (2018) do,
Rajamanickam et al. (2020) instead ask whether jointly learning which emotions are invoked
in a given task can aid in the detection of abuse. Moreover, the architectures of the two
different approaches diverge from one another. Rajamanickam et al. (2020) implement a
double encoder model in which the primary and auxiliary share an encoder and each have a
stacked Bi-directional LSTM that generate a second encoding. The primary and auxiliary
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task models developed by Rajamanickam et al. (2020) diverge at this point. The auxiliary task
model directly passes the second encoding to a Bi-directional LSTM, the output of which
is subject to an attention layer and finally passed through to a linear layer and subject to an
activation function before producing the prediction of the model. The primary task model
sums the encodings obtained from the stacked Bi-directional LSTM networks for the primary
and auxiliary task, passing this on to a Bi-directional Long Short Term Memory network.
The resulting representation is then passed through an attention layer and passed through
an output layer generating the prediction. A key difference between the hard parameter
sharing models of Talat et al. (2018) and Rajamanickam et al. (2020) is that the latter use a
weighting parameter to distinguish between the primary and auxiliary task. Talat et al. (2018)
only distinguish between the primary and auxiliary tasks through the validation set. The
reason for this discrepancy is that Talat et al. (2018) seek to use MTL to optimise a model
that is capable of dealing with cross-cultural data, that is a model that is able to perform
on both tasks. Rajamanickam et al. (2020) on the other hand seek to improve classification
performance on the primary task, thus considering any performance gains on the auxiliary a
side-benefit. This discrepancy is the result of a natural prioritisation question, as the goal of
Rajamanickam et al. (2020) is to improve classification performance for abuse on a single
dataset whereas Talat et al. (2018) seek to identify a classifier that can generalise beyond
beyond the single dataset.

The work described in this chapter follows Rajamanickam et al. (2020) in their focus on
improving classification performances on the primary task. For this reason, I choose auxiliary
tasks that have been hypothesised as relevant to the question of detecting different forms of
online abuse (see section 3.1.2.2 for an overview of the auxiliary datasets).

6.1.2 Learning Tasks

MTL, as the name of the framework implies, requires distinct tasks for learning, where each
unique auxiliary task asks how learning representations from that task influences model
performance on the primary task. We saw in chapter 5, the optimised models for each abusive
dataset has different applications onto other datasets in the case of binary classification.
Therefore, I choose to use three different tasks for abusive language as main tasks. In contrast
to the method in chapter 5, I do not binarise, or otherwise modify the classes in from those
proposed by the authors of the datasets. This provides for the more challenging tasks of
predicting the type of abuse in addition to whether content is abusive or not. A further
consequence of not binarising the label sets for the main tasks is that the classes don’t directly
map onto other datasets. This means that I preclude considerations of generalisability onto
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other datasets for abuse without further reduction of the predicted labels into a binarised
label space. Here I provide brief descriptions of the different datasets and the rationale for
their inclusion, for more detail please refer to section 3.1.2 and section 5.1.3.

6.1.2.1 Main Task Datasets

For the main tasks, I choose to use the Toxicity dataset (Wulczyn et al., 2017), the Offence
dataset (Davidson et al., 2017), and the Hate Speech dataset (Talat and Hovy, 2016). I choose
these three datasets in part due to their different sizes and in part because they examine of
three different aspects of abuse. Through this choice, I aim to identify which auxiliary tasks
can improve performance for each type of abuse. Each main task dataset is also used as an
auxiliary task when it is not the used as a main task.

Hate Speech The Hate Speech dataset (Talat and Hovy, 2016) as proposed consists of
3,383 comments labelled as sexist, 1,972 labelled as racist and 11,559 labelled as neither
sexist or racist. This dataset was proposed as a first step towards modelling racialised and
gendered hate speech. I use this dataset to show that the MTL framework can be used to
distinguish between different targets of hate, as this dataset seeks to identify different forms
of hate speech. Beyond using this dataset to show the ability of MTL models to distinguish
different forms of hate speech, this dataset also provides the largest distribution of hate
speech, which otherwise is vanishingly small in other other main task datasets.

Offence The Offence dataset (Davidson et al., 2017) was proposed to distinguish ‘offensive’
content from ‘hateful’ and content that is neither ‘hateful’ or ‘offensive’. In the class
distribution proposed by Davidson et al. (2017), the ‘offensive’ class occupies the vast
majority of the dataset, with 19,190 documents labelled into the class, followed by the
negative class which consists of 4,163 documents, and finally the ‘hateful’ class which
contains only 1,430 documents. As such, the class distribution for this dataset varies strongly
from the Hate Speech and the Toxicity dataset, with the majority class being one of the two
positive classes. In using this dataset for the main task, I show that MTL models can provide
a viable modelling approach in spite of a significantly different class distribution.

Toxicity The Toxicity dataset (Wulczyn et al., 2017) provides a special case. For one, it
is the largest dataset consisting of 159,686 labelled comments split into an optimisation set
of 95,692 comments, a validation set of 32,128 comments, and an evaluation set of 31,866
comments. In total, this dataset has over than 100,000 more comments than the Toxicity and
Hate Speech datasets. Second, the dataset proposes a binary classification of ‘toxic’ and ‘not
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toxic’. Thus, the results from the MTL models optimised for this dataset can be directly
compared with the results obtained in chapter 5, unlike the models where the main task is
Offence or Hate Speech. Thus, I use this dataset to anchor the performances of the MTL
models within the context of the preceding chapter and to show the impact of using a large
scale dataset for abuse for MTL modelling.

6.1.2.2 Auxiliary Task Datasets

I choose the auxiliary task datasets for two different purposes: 1) to investigate the impact of
using other datasets for abusive language as auxiliary tasks and 2) to examine how datasets
that are labelled for other tasks can influence modelling for abuse. To answer the first
question, I use the three main task datasets in turn as auxiliary datasets when they are
not serving as the main task. Moreover, to address the issue of the poor representation of
content labelled within as hateful, I also use the Hate Expert dataset. Addressing the second
motivation, I use a dataset labelled for sarcasm (Oraby et al., 2016), a dataset labelled for
the moral sentiment invoked by the text (Hoover et al., 2019), and finally a dataset where
documents are labelled for whether arguments are primarily based in emotion or in facts
(Oraby et al., 2015). With the exception of the Moral Sentiments dataset, all auxiliary task
datasets contain between 5,000 and 16,000 labelled documents, while the Moral Sentiments
consists of 35,000 labelled documents. This spread of sizes of auxiliary task datasets allows
for considering how auxiliary task dataset size impact the main task. The choice of inclusion
of each of these datasets rely on differing rationales. While some tasks that I include have
been suggested in previous research others have not been previously been addressed. Those
that have not previously been addressed are included because the theories that underlie them
suggest that there may be a theoretical correlation that can be taken advantage of using
MTL. For instance, the Moral Sentiments dataset is based in theory from social psychology
which seeks to describe the moral sentiments that are communicated in text documents, e.g.
concerns relating to caring for others and concerns for not harming others. The inclusion
criteria for auxiliary tasks that I use is then both motivated empirically, i.e. through findings
from past research, and theoretically through the potential overlaps between the foundations
of a given task and the abuse classification task.

Sarcasm Previous work on hate speech detection (Röttger et al., 2020) has identified that
sarcasm and irony can be contributing factors to misclassification from machine learning
models as they take literally things that are communicated to be understood figuratively. In
efforts to better understand dialogue in online debate forums, Oraby et al. (2016) develop
a balanced dataset of 6520 comments labelled for the occurrence of sarcasm. Through this
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auxiliary task, MTL models optimise representations of how sarcasm is constituted within
Sarcasm dataset, in addition to the other auxiliary tasks, and the main task. Finally, through
the use of this dataset, I explore how learning representations for sarcasm detection influences
prediction of each operationalisation of detecting abuse.

Argument Basis Previous work on hate speech detection have suggested that many users
who utter hate speech do so infrequently, suggesting that discriminatory speech may be
produced in moments of carelessness and high emotionality (Talat, 2016). Given that
discriminatory speech may be produced in moments of high emotionality, obtaining a
representation within the model of whether a statement was made with a basis in emotion
or fact may be a useful signal for identifying abuse. Moreover, as is apparent from the
motivations used by Garcia et al. (2019) for using StormFront as a data source, white
supremacists may seek to mask their discrimination behind the use and distortions of fact.
Thus, whether hate is produced in the spur of the moment or is a part of a larger pattern, the
basis upon which the argument is made, whether it is fact-based or based on emotion, may
provide useful signals for learning to predict hate speech and abuse. To model the hypothesis
that high emotionality may influence the production of abuse, I include the Argument Basis
dataset (Oraby et al., 2015). This dataset was developed using the same underlying data
source as the Sarcasm dataset, however rather than annotating the dataset for the occurrence
of sarcasm, Oraby et al. (2015) annotate 5,848 comments as being based in either fact or
emotion. The dataset is slightly imbalanced with 59% of the dataset labelled as primarily
fact-based and 41% labelled as primarily based in feelings. MTL models for abuse can take
advantage of this dataset by learning a joint representation of the basis of an argument along
with the main task in question. Thus, this auxiliary task can provide insight into the question
of whether learning such a joint representation is beneficial to detecting abuse and implicitly
provide another signal into the feasibility of more deeply considering the emotional and
mental state of the author when writing, e.g. through the use of LIWC in chapter 5.

Moral Sentiments The Moral Sentiments dataset is annotated for the vices and virtues
represented along five different ‘factors’: Loyalty/betrayal, care/harm,
fairness/cheating, authority/subversion and purity/degradation (Hoover et al.,
2019). The authors of the dataset suggest that these five factors are likely to be represented
in data that contains abuse, through their use of a subset of the Offence dataset for annota-
tion. Moreover, identifying the moral factors may elicit information about the underlying
assumptions and intents that speakers hold when they engage in the production of abuse.
Thus, including the optimisation of moral sentiments in the optimisation of models for abuse
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detection, may provide contextualisation of a given speaker’s intent when they do, or do
not, produce abuse. To explore this further, I use this dataset as an auxiliary task. While the
impacts of moral sentiments on the Offence dataset are likely beneficial, using this auxiliary
task on other datasets allows for examining whether representing moral sentiments has a
positive impact on other datasets labelled for abuse.

Hate Expert Finally, as learned from chapter 5, some datasets for abusive language appear
to be more closely related to others. For this reason, I include the Hate Expert dataset as
an auxiliary task dataset to verify this finding and to provide a dataset to help address the
poor representation of hate speech in the classes. In chapter 5 I binarise this dataset, here I
retain all 4 classes in the dataset. In the expert annotated data, the four classes have a highly
imbalanced distribution, the largest class being the negative class consuming 84% of the
data, while the second largest class ‘sexism’ consumes 13% of the data, the ‘racist’ class
consuming 1.4% of the data and the final class, ‘both racist and sexist’ contributing with
0.7% of the data.

Focusing our attention on the smallest class for a moment, 0.7% of 6,909 documents means
less than 50 documents are labelled for the minority class, and given that I create stratified
splits for the optimisation (80%), validation (10%), and evaluation (10%) sets, less than
40 documents remain in the optimisation set. Thus there is not enough data for a machine
learning model to optimise patterns of abuse in the intersection between racist and sexist
speech. However, I choose to keep this data in the dataset to provide more instance of hate
speech and to complicate, albeit only slightly, the question of what constitutes hate for the
machine learning systems that use this dataset in the optimisation process.

Although this dataset does not hold many examples of intersectional abuse, the problem of
intersectional abuse is highly prudent one as people exist across intersections of different
identities, e.g. gender and race or disability and sexuality. While the dataset does not
hold enough samples of intersectional abuse to optimise machine learning models for this,
I believe that this reflects the particular interests and biases of authors of this and other
datasets, rather than an inherent challenge to dataset creation. Developing datasets for abuse
can provide for significant challenges, such as dealing with the notion of ground truth and
recruiting annotators that are attuned to abuse across intersections of identity (Talat, 2016)
and sampling (Wiegand et al., 2019). Neither of these issues provide fundamental limits to
the ability of optimising models for identifying intersectional abuse, however they betray
the interests, subjectivities, and priorities of researchers within the field. The issues of the
harms of content moderation infrastructures from chapter 4 and the challenges that I seek to
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address in this thesis also hold, potentially more strongly, when considering the intersection
between identities. It is therefore of great importance for the research field of abuse detection
to devote resources towards the creation of datasets for intersectional abuse and identify the
specific ways in which contemporary content moderation systems fail to protect those who
are marginalised across multiple intersections of identity.

6.2 Modelling

For the experiments conducted, I only use one form of tokens to allow for an examination of
the impact of the auxiliary tasks rather than the impact of tokenisation. I choose to represent
all documents by their Byte-Pair encoded representations as these minimise the number of
out-of-vocabulary tokens while retaining competitive performances in chapter 5. To this end,
I pre-process all documents using a 200 dimensional Byte-Pair Embedding (Heinzerling and
Strube, 2018). The pre-processing here follows the same method as in chapter 5, that is each
document is lower-cased, all hyper-links are replaced with a ‘<URL>’ token, all usernames
are replaced with a ‘<USER>’ token, and all hashtags are replaced with a ‘<HASHTAG>’
token. Then each document is passed through the Byte-Pair Embeddings to produce the
Byte-Pair encoded representations, that is their sub-word units.

I develop three different types of baseline models: a linear single-task model where the
model is optimised and evaluated on the same task, a non-linear single-task model, and a
linear ensemble model where a model is optimised on the basis of outputs from the auxiliary
task models. In terms of experimental models, I follow Talat et al. (2018) in designing a
Multi-Task Multi-Layered Perceptron implemented in PyTorch (Paszke et al., 2019). I select
an MLP over more complex neural networks architectures like CNNs and LSTMs due to the
speed with which MLPs are optimised along with their general performance in chapter 5.

I perform parameter and hyper-parameter optimisation for the linear and non-linear models,
respectively. For the non-linear models I use the Weights and Biases library (Biewald, 2020)
to perform Bayesian Hyper-Parameter Optimisation. For the linear models, I use grid-search
as implemented in the Scikit-Learn library (Pedregosa et al., 2011).

Once models have been optimised, they are each evaluated on the validation data and the
evaluation data. For non-linear models, the performance on the validation data guides the
decision on which parameter configurations are chosen for analysis while for linear models,
cross-validation is applied during the grid-search which aids in determining which parameter
configuration performs best.
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6.2.1 Baseline Models

I develop three baseline models: a linear single-task model, a neural network single-task
model, and a linear ensemble model. I choose to use a linear single-task model as a baseline
as these can provide a strong baseline against neural network approaches for abuse detection
while also being fast and efficient to optimise. The non-linear neural network baseline is
chosen as a counter-point to the linear baseline, using a MLP to more directly be able to
consider the influence of the multi-task architecture for the experimental models. Finally, I
choose to an ensemble classifier that is optimised on the outputs of linear single-task models
for each of the auxiliary task models as an ensemble, similarly to a multi-task model, can
take advantage of learned representations for each auxiliary task for producing a prediction
for the main task.

Single-Task Baselines Following prior work (Davidson et al., 2017; Talat, 2016), I op-
timise all single-task models using a Support Vector Machine with a linear kernel (see
section 3.2 for more details on SVMs). All linear single-task models are optimised on
unigram counts of the Byte-Pair encoded tokens and are subject to parameter-optimisation
of the regularisation type (L1 and L2) and the strength of regularisation (using values
0.1,0.2, . . . ,1.0).

MLP Single-Task Baseline I develop a MLP as a non-linear counter-part to the linear
single-task models to provide a baseline of the performance of a neural network approach
that only relies on the Byte-Pair unigrams for the main task to optimise for the main task.
To ensure that the baseline model is also tuned for optimal performance, I perform a
hyper-parameter sweep over the batch size ({16,32,64}), the dropout value ([0.0,0.5]),
the dimensionality of the embedding layers ({64,100,200,300}), the number of epochs for
optimisation ({50,100,200}), the dimensionality of the hidden layers ({64,100,200,300}),
the learning rate ([1−5,1.0]), the Non-linearity to apply ({Tanh,ReLU}), and the optimiser
function ({SGD,ASGD,Adam,AdamW}). I conduct at least 50 independent trials of distinct
hyper parameter settings which identify the best hyper parameter configuration.

Ensemble Baseline The ensemble baselines require a different optimisation scheme that
relies on a classifier that is optimised for each auxiliary task and an ensemble classifier that
relies on the outputs of the auxiliary task classifiers, by virtue of the nature of ensemble
classifiers. For this reason, I first optimise a linear SVM for each auxiliary task and perform
a grid search over the type of regulariser (L1, L2) and the strength of the regularisation
(0.1,0.2, . . . ,1.0) (see table 6.3 for the parameter settings for each auxiliary task). Once all
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auxiliary task classifiers have been optimised, I optimise a Logistic Regression model on the
outputs of the auxiliary task classifiers on the main task optimisation data, similarly subject
to a grid-search over the same parameter values as the auxiliary task models . During this
optimisation procedure, the ensemble is provided with the optimisation data for the main
task, which is vectorised to the vocabulary of each auxiliary task and a prediction is obtained
for each task. For each document, predictions of all auxiliary task classifiers are vectorised
and a classifier is optimised on the auxiliary task predictions. While this method allows for
every datasets to be passed through the model, by design this method limits the vocabulary
to that which exists in the optimisation datasets for the auxiliary tasks, rather than the main
task. This risk however is mitigated by the use of sub-words obtained by pre-processing all
data through the Byte-Pair embeddings.

6.2.2 Experimental Models

For the experimental models, I follow Talat et al. (2018) in using a Multi-Layered Perceptron
model. The Multi-task MLP architecture that I design consists of an input embedding layer
which is unique to each task, a shared linear hidden layer, followed by another linear hidden
layer that is specific to each task, a linear output layer for each task, and finally the softmax
is computed on the model representation. I also include a dropout layer and a non-linear
activation function, where I treat the decision of activation function as an hyper-parameter
optimising between the choice of ReLU and Tanh activation functions.

My architecture of the Multi-task MLP deviates from the architecture proposed by Talat et al.
(2018) in two ways: the choice of input layer and the choice of activation function. Where
I use an embedding layer as the input layer for each task, Talat et al. (2018) use a onehot
encoded input layer and they use a Tanh activation function for all of their experiments.
Following the experimental approach in chapter 5, I keep the embedding layer randomly
initialised rather than using a pre-optimised embedding layer. The motivation for optimising
the embedding layer, even with sparse data, is that pre-optimised embeddings have been
shown to harbour significant social biases against marginalised communities, a behaviour
that is directly oppositional to the aims of abuse detection.

The optimisation procedure for the Multi-task MLP deviates significantly from the optimisa-
tion procedures associated with the baseline models. For the Multi-task MLP, I optimise my
models by giving all tasks an equal weight but distinguish between the main task and the
auxiliary tasks by the probability with which a batch from task is chosen. A task is chosen
each time a batch is to be selected, where the primary task is chosen with a probability of
0.6 when there are two or more auxiliary tasks and 0.7 when there is only one auxiliary task.
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As each task is chosen probabilistically, it is necessary for the probabilities to sum to 1.0,
thus the weight of each auxiliary task is 1.0−P(M)

N , where N is the total number of auxiliary
tasks and P(M) is the probability of the main task being chosen. Given that I choose the task
to be optimised probabilistically, I do not weight the loss as in Rajamanickam et al. (2020).
Once a task has been chosen, a batch is selected from the data associated with the task and
is passed through the model and the loss on the batch is computed and back-propagated
through the network, a process which is repeated for a number of epochs, where the exact
number of epochs is a hyper-parameter that I tune. For single-task models, it is common
to iterate over the entire dataset, obtaining a batch count given the size of the dataset and
the batch size. MTL models however are optimised for a number of datasets, including
auxiliary task datasets where obtaining a high performance on the auxiliary task may not
be of concern, rather learning inductive biases from the data are. For this reason, I limit
the number of batches that are selected in each epoch, setting a global value of 300 batches
per epoch. Through the use of the probabilities with batches are chosen from each task in
conjunction with the number of epochs and the batches being shuffled between each epoch, I
ensure that my models gain a representative perspective of each dataset and their labelled
data. These representations of the datasets afford the models the ability to jointly optimise
representations based on the auxiliary tasks and the primary task.

For my hyper-parameter exploration, I explore the hyper-parameters listed above, that is
the number of epochs ({50,100,200}) and the activation function ({Tanh,ReLU}). I also per-
form a hyper-parameter optimisation of the choice of optimisation algorithm ({Adam,AdamW,

SGD,ASGD}); the dimensionality of the shared layer (64,128,256); the learning rate
([1−5,1.0]); the dimensionality of the task-specific hidden layers (64,100,200,300); the
dimensionality of the task-specific input layers ({64,100,200,300}); the value of dropout
[0.0,0.5]; and lastly the batch size ({16,32,64}). Note, that the batch size can have an
influence over how much of each dataset is exposed to the model at optimisation time as the
number of batches selected per epoch does not scale with the variation in the batch size.

6.2.3 Auxiliary Task Configurations

In order to select the auxiliary tasks and their combinations that contribute most towards the
performances of the primary, I add auxiliary tasks as they prove useful to the main task in
terms of performance boosts. To perform this selection, I design three different scenarios of
auxiliary task configurations:

1. Auxiliary tasks consist only of abusive language detection tasks,
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2. auxiliary tasks consist only of non-abusive language detection tasks, and

3. auxiliary tasks are a combination of abusive language detection tasks and tasks that are
not abusive language detection tasks.

I initially experiment with only one auxiliary task and select those that either outperform all
baseline models or obtain the highest performances, in the case where some baseline models
outperform all experimental models with one auxiliary task. I then construct experiments
with all combinations of the selected auxiliary tasks.

6.3 Results

6.3.1 Baseline Models

In tables 6.1, 6.4 and 6.5 I present the best identified hyper-parameters for each model type.
Focusing on the regulariser, all linear models prefer an L2 regulariser, likely because it
redistributes the weights of equally important features rather than zeroing any of them out.
Moreover, as observed in table 6.1 all models prefer a low regularisation strength when a
linear single-task classifier is optimised.

Regulariser Regularisation Strength
Offence Linear Single task L2 0.2
Hate Speech Linear Single task L2 0.1
Toxicity Linear Single task L2 0.1

Table 6.1 Best model parameters for linear single-task models.

For the ensemble classifier a different picture emerges (see table 6.4. As this model is
optimised on a very sparse feature set that consists only of the predictions of the auxiliary
task classifiers, it is no surprise that an L2 regulariser is preferred. Moreover, there are
indications of a correlation between the dataset size and the strength of the regularisation,
with the smallest dataset requiring the greatest regularisation strength (0.5 for Hate Speech)
and the largest dataset requiring the lowest regularisation strength (0.1 for Toxicity).

This narrative however is complicated by the best parameters found in table 6.3. Here, the
smallest abusive language dataset requires the largest regularisation power while other, in line
with the observation on table 6.4. However, classifiers optimised for the larger Offence dataset
require more regularisation strength than classifiers optimised the smaller Hate Speech. In
tandem, these observations suggest that beyond the size of the dataset in terms of numbers,
other factors may influence the strength of the regularisation. One such potential factor may
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Dataset Vocabulary Size Optimisation Documents # Classes
Offence 23263 19826 3
Hate Speech 19981 13525 3
Toxicity 95739 95692 2
Hate Expert 12005 5527 4
Sarcasm 21159 7508 2
Argument Basis 22275 8433 2
Moral Sentiment 31779 27989 11

Table 6.2 Vocabulary sizes for each of the datasets used.

be the vocabulary size. Observing the vocabulary sizes in table 6.2, it appears that vocabulary
sizes in conjunction with the dataset sizes may be causes for the regularisation strength for
models optimised for the different datasets.

Regulariser Regularisation Strength
Offence Aux Classifier L2 0.2
Hate Speech Aux Classifier L2 0.1
Toxicity Aux Classifier L2 0.1
Hate Expert Aux Classifier L2 0.5
Sarcasm Aux Classifier L2 0.1
Argument Basis Aux Classifier L2 0.1
Moral Sentiment Aux Classifier L2 0.1

Table 6.3 Auxiliary task parameters for ensemble classifier.

Regulariser Regularisation Strength
Offence Ensemble Classifier L2 0.2
Hate Speech Ensemble Classifier L2 0.5
Toxicity Ensemble Classifier L2 0.1

Table 6.4 Parameters for the ensemble classifiers.

Turning to the hyper-parameters for the non-linear baseline in table 6.5, the number of similar
and shared values across models optimised for each dataset decreases to share only one
parameter, the batch size. The models optimised for the larger datasets, the Offence and
Toxicity dataset also share a preference for using ReLU as their non-linearity. Moreover, the
baseline models optimised for these two datasets also prefer a higher learning rate compared
to the model optimised for the smaller Hate Speech dataset.
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Batch Size Dropout Embedding Dim Epochs Hidden Dim Learning Rate Non-linearity Optimiser
Offence MLP Single Task 64 0.318 300 200 100 0.003586 ReLU SGD
Hate Speech MLP Single Task 64 0.1458 300 100 100 0.0007246 Tanh AdamW
Toxicity MLP Single Task 64 0.1978 200 50 200 0.006056 ReLU Adam

Table 6.5 Best hyper parameters for non-linear single task model for each main task dataset.

6.3.1.1 Validation Data Performances

Prior to an analysis of the baseline model performances on the evaluation set, I examine
their performances on the validation set to gain an insight in the viability of the modelling
approach and expected outcomes on the evaluation data.

Considering the results for all baseline models in tables 6.6 to 6.8 it is immediately clear that
ensemble models provide a poor method for identifying each form of abuse. Additionally,
the linear SVM baseline models provide for good baselines to compare the experimental
models with, as the SVM baselines tend to out-perform the non-linear baselines.

Accuracy Precision Recall F1-score
Linear SVM 0.8515 0.8239 0.7741 0.7962
Ensemble 0.8493 0.2123 0.2500 0.2296
MLP 0.8117 0.7117 0.7737 0.7378

Table 6.6 Baseline validation scores on the Hate Speech dataset.

The exception to this pattern is provided by the MLP optimised for the Toxicity dataset, where
the MLP baseline outperforms the SVM baseline in terms of recall and F1-score. For all
datasets, the MLP classifiers show a drop in precision on the development set, suggesting
that while they may be comparable in terms of recall, the MLP models tend to misclassify
into the positive class at a greater rate than the negative classes.

Observing the results for the baseline models optimised for the Hate Speech dataset in
table 6.6, the largest drop in performance occurs for the positive classes when using the
MLP. The relatively smaller drop in accuracy is aligned with that the positive classes are
minority classes, thus a performance drop in the positive classes has a small impact as
the relative number of misclassification remains small. For the ensemble, the negligible
drop in accuracy, in comparison to precision and recall, suggests that although the
performance on precision and recall are abysmal, the largest performance drop happens
into the positive classes.

For the baseline models optimised for the Offence dataset on the other hand, the accuracy
score reveals a different performance drop. In this dataset, the ‘offence’ class is the majority
class, thus the accuracy obtained provides insight into how well the models predict into that
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Accuracy Precision Recall F1-score
Linear SVM 0.8898 0.7224 0.7107 0.8661
Ensemble 0.7744 0.2581 0.3333 0.2910
MLP 0.8708 0.6581 0.7024 0.6773

Table 6.7 Baseline validation scores on the Offence dataset.

class. The drop in precision is therefore likely to primarily occur in the other two classes
in the dataset, one of which, the ‘hate’ class, also being a positive class. The model scores
here tell a story of misclassifications primarily in the negative class and the positive ‘hate’
class.

Accuracy Precision Recall F1-score
Linear SVM 0.9570 0.8967 0.8411 0.8663
Ensemble 0.9045 0.4522 0.5000 0.4749
MLP 0.9480 0.8145 0.8671 0.8382

Table 6.8 Baseline validation scores on the Toxicity dataset.

Finally, the models optimised for the Toxicity dataset are the only ones where the non-linear
baseline outperforms the linear SVM. This dataset is developed for binary classification on
an imbalanced dataset, where the minority class is the positive class. Thus, the negligible
drops in accuracy provide information into the ability of the models to predict into negative
class. The MLP baseline optimised for the Toxicity classifier provides a stronger performance
on the recall, meaning that it has an improved ability in correctly identifying the data that
does not belong in the positive class compared to the linear SVM.

On the basis of the model performances on the validation sets, we can expect that the
ensemble models will uniformly under-perform on the evaluation data while the MLP models
provide a competitive, but lower, performance than the linear SVM baselines. The primary
performance drop for the MLP models is likely to be in their precision, that is their ability
to classify into the positive classes.

6.3.1.2 Evaluation Data Performances

Turning to the performances of the baseline models on the evaluation set, the model per-
formances and the patterns remain mostly stable between the validation and the evaluation
set across the datasets: the linear SVM out-perform all other models in most cases and the
ensemble models mostly post poor classification performances. In addition, the linear SVM
models tend to perform best in terms of precision, with the MLP models obtaining a lower
precision score.
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Accuracy Precision Recall F1-score
Linear 0.8440 0.8182 0.7671 0.7892
Ensemble 0.8454 0.2113 0.2500 0.2291
MLP 0.8056 0.6686 0.7894 0.7132

Table 6.9 Baseline model evaluation set performances on the Hate Speech dataset.

Within the performances for each dataset there are some discrepancies between the perfor-
mances on the validation and the evaluation sets. Unlike for the validation set, the MLP
models optimised for the Hate Speech dataset obtain a higher recall score on the evaluation
set (see table 6.9) than the linear SVM. This suggests that the MLP baseline is better suited for
correctly identifying the negative class while the linear SVM is better suited for identifying
the positive classes.

Accuracy Precision Recall F1-score
Linear 0.8871 0.6997 0.6789 0.6850
Ensemble 0.7729 0.4241 0.3948 0.3946
MLP 0.8790 0.5625 0.9163 0.5721

Table 6.10 Baseline model evaluation set performances on the Offence dataset.

Further discrepancies are found for the models optimised for the Offence dataset. On the
validation set, the linear SVM outperformed all other models across all metrics. On the
evaluation data however, the MLP baseline outperforms the linear SVM in terms of recall
with a 0.2 increase (see table 6.10). This increase is obtained while there is a decrease in
precision of 0.09.

Accuracy Precision Recall F1-score
Linear 0.9582 0.9008 0.8450 0.8702
Ensemble2 0.8450 0.9006 0.9582 0.8702
MLP 0.9397 0.6979 0.9359 0.7632

Table 6.11 Baseline model evaluation set performances on the Toxicity dataset.

The largest discrepancy between the validation set and evaluation set (see table 6.11) however
is found in the ensemble baseline optimised for the Toxicity dataset. Here the ensemble
classifier obtains a competitive classification performance across metrics to the linear SVM.
While the ensemble baseline breaks with the pattern observed on the validation set, the
MLP baseline does not. Similarly to its’ performances on the validation data, the MLP is

2The accuracy and precision for the ensemble classifiers have a lower performance, however rounding
up to represent the performances by 4 decimal points creates the illusion of identical performance.
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competitive with the linear SVM in terms of accuracy and posts poorer performance in
terms of precision. Meanwhile, the MLP baseline outperforms all other models in terms
of recall however the poor performance in terms of precision results in a F1-score that
is not competitive with the other baseline models.

6.3.2 Experimental Model Performances

As the experimental models are MLP models that have been adapted for MTL, the experi-
mental models are expected to at least out-perform the MLP baselines as they share a similar
architecture. The best hyper-parameter settings for each of the experimental settings for each
main task are shown in tables 6.15 to 6.17.3 In these tables, I show the best hyper-parameter
settings for the models with one auxiliary task and each of the subsequent dataset configura-
tions selected based. The dataset configurations are chosen on the basis of their F1-score
performance on the validation data where only the main task and a single auxiliary task (see
further detail on dataset combination selection in section 6.2.3). For all configurations of
the datasets, I perform at least 50 distinct trials of potential hyper-parameters to identify the
best-performing hyper-parameters. The selection of each hyper-parameter setting to trial is
performed through Bayesian Hyper-Parameter Optimisation which selects a candidate set of
parameters for trial given the results of past trials and an objective. For these experiments, I
set the objective to maximise the F1-score on the validation data as the models optimise for
minimisation on the optimisation loss.

6.3.2.1 Validation Set Performances

Observing the best hyper-parameters identified for each dataset in tables 6.15 to 6.17 three
salient attributes are immediately clear. First, the vast majority of models prefer ReLU as
a non-linearity. Second, most models prefer the largest batch size that I experiment with,
namely 64. Finally, Some version of the stochastic gradient descent optimisation algorithm
is preferred by all but two models, the vast majority of models preferring averaged stochastic
gradient descent.

Turning to the performances of the best performing models on the validation data. The
results presented in the first 6 rows of tables 6.12 to 6.14 guide decision for which auxiliary
task datasets to experiment with. The decision in which auxiliary task datasets to select
is guided by two different objectives: 1) selecting auxiliary task data that outperform the
MLP baselines in terms of macro F1 score and 2) selecting auxiliary tasks that can aid in

3Note that the ‘Aux Task Weight’ column only contains a single value as each auxiliary task is given the
same weight.
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outperforming the best-performing baseline. I separate these two objectives as not all MLP
baselines outperform the linear SVMs (please refer back to tables 6.6 to 6.8 for the results on
the validation sets). Thus, the first objective provides insight into the utility of using MTL as a
modelling approach can be observed through the ability of MTL-based models to out-perform
their single-task counterparts. However, in the interest of identifying auxiliary tasks that
contribute towards improved models for different forms of abusive language detection, I set
up the second objective of identifying auxiliary tasks that most positively contribute towards
the prediction of abusive language.

Selecting the auxiliary tasks for the models optimised for the Hate Speech dataset poses the
challenge that none of the model configurations with a single auxiliary task outperform the
linear SVM baseline on the development set though they all outperform the MLP baseline
(see table 6.6 for the baseline models and the first six rows of table 6.12 for the MTL models).
For this reason, I choose the best performing MTL auxiliary task configurations to continue
further experiments with. I select the top four auxiliary tasks as they are have a maximal
difference of 0.01 from one another. The auxiliary task datasets that I proceed to experiment
with are the Hate Expert dataset, the Offence dataset, the Moral Sentiment dataset and the
Sarcasm dataset.

Similarly to the pattern observed for the baseline models optimised for the Hate Speech data,
most of the MTL MLP dataset configurations outperform the baselines in terms of recall
while struggling in the precision score.

Although none of the auxiliary task datasets outperform all baselines, they all outperform the
MLP baseline thus providing early indication that learning a representation that all auxiliary
tasks that I consider provide some beneficial information to the main task of detecting abuse.

For the MTL models optimised on the Offence dataset, a similar issue of the linear SVM
baseline outperforming the MTL configurations with one auxiliary task. Here, I set the same
0.01 cut off in difference from the best performing auxiliary task as a criteria for inclusion.
This results in the Hate Speech, Toxicity and the Sarcasm datasets to be selected for further
experiments.

For the Offence dataset, the auxiliary tasks that are most beneficial turn out to be two other
datasets for abusive language and one for sarcasm detection, unlike the Hate Speech dataset,
where the two best performing non-abusive tasks obtain scores that are competitive with the
two best abusive language detection tasks.

Finally, turning to the Toxicity dataset, several of the MTL models using a single auxiliary
task outperform all linear baselines. In fact, all auxiliary tasks, with the exception of
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Accuracy Precision Recall F1-score
Hate Expert 0.8171 0.7463 0.7776 0.7608
Offence 0.8141 0.7518 0.7609 0.7558
Toxicity 0.8082 0.7433 0.7562 0.7495
Moral Sentiment 0.8242 0.7462 0.7865 0.7644
Argument Basis 0.8094 0.7374 0.7638 0.7494
Sarcasm 0.8194 0.7259 0.7944 0.7551
Hate Expert | Moral Sentiment 0.8212 0.7220 0.7996 0.7540
Offence | Moral Sentiment 0.7957 0.7552 0.7408 0.7476
Hate Expert | Offence 0.8200 0.7521 0.7781 0.7623
Sarcasm | Hate Expert 0.8171 0.7068 0.7994 0.7431
Sarcasm | Offence 0.8141 0.7284 0.7731 0.7449
Sarcasm | Moral Sentiment 0.8289 0.7425 0.8009 0.7664
Hate Expert | Offence | Moral Sentiment 0.8165 0.7212 0.7913 0.7497
Sarcasm | Hate Expert | Moral Sentiment 0.8259 0.7279 0.8051 0.7566
Sarcasm | Offence | Moral Sentiment 0.8194 0.7204 0.7916 0.7497
Sarcasm | Hate Expert | Offence | Moral Sentiment 0.8200 0.7389 0.7834 0.7561

Table 6.12 Experimental model validation scores on the Hate Speech dataset. Configurations written
in italic signify the auxiliary tasks chosen for further exploration and bolded scores indicate the
highest performances.

Accuracy Precision Recall F1-score
Hate Speech 0.8857 0.7422 0.7076 0.7232
Toxicity 0.8962 0.7124 0.7562 0.7286
Hate Expert 0.8882 0.7122 0.7042 0.7069
Sarcasm 0.8845 0.7503 0.7149 0.7312
Argument Basis 0.8987 0.7039 0.7489 0.7164
Moral Sentiment 0.8853 0.7237 0.7020 0.7105
Hate Speech | Toxicity 0.8914 0.7381 0.7251 0.7309
Sarcasm | Hate Speech 0.9023 0.7005 0.7619 0.7167
Sarcasm | Toxicity 0.8954 0.7367 0.7361 0.7349
Sarcasm | Toxicity | Hate Speech 0.8979 0.7338 0.7449 0.7345
Argument Basis | Hate Speech 0.8862 0.7018 0.7136 0.7069
Argument Basis | Toxicity 0.8958 0.7076 0.7449 0.7218
Argument Basis | Sarcasm 0.8906 0.7126 0.7194 0.7098
Argument Basis | Hate Speech | Toxicity 0.8765 0.7226 0.6992 0.7103
Argument Basis | Hate Speech | Sarcasm 0.8950 0.6952 0.7354 0.7069
Argument Basis | Toxicity | Sarcasm 0.8991 0.7122 0.7481 0.7211
Argument Basis | Hate Speech | Toxicity | Sarcasm 0.8902 0.6977 0.7281 0.7079

Table 6.13 Experimental model validation scores on the Offence dataset. Configurations written in
italic signify the auxiliary tasks chosen for further exploration and bolded scores indicate the highest
performances.
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Accuracy Precision Recall F1-score
Hate Speech 0.9513 0.8326 0.8726 0.8511
Offence 0.9490 0.8523 0.8524 0.8524
Hate Expert 0.9499 0.8001 0.8881 0.8370
Moral Sentiment 0.9528 0.8165 0.8918 0.8491
Sarcasm 0.9511 0.8130 0.8846 0.8441
Argument Basis 0.9534 0.8195 0.8932 0.8515
Moral Sentiment | Offence 0.9517 0.8158 0.8862 0.8465
Moral Sentiment | Hate Speech 0.9555 0.8167 0.9081 0.8551
Hate Speech | Offence 0.9504 0.8386 0.8652 0.8512
Sarcasm | Moral Sentiment 0.9533 0.8008 0.9093 0.8575
Sarcasm | Hate Speech 0.9558 0.8191 0.9079 0.8566
Sarcasm | Offence 0.9522 0.7957 0.9068 0.8469
Argument Basis | Hate Speech 0.9521 0.8148 0.8889 0.8421
Argument Basis | Moral Sentiment 0.9538 0.8101 0.9038 0.8492
Argument Basis | Sarcasm 0.9535 0.8376 0.8808 0.8575
Argument Basis | Offence 0.9542 0.8093 0.9066 0.8496
Moral Sentiment | Hate Speech | Offence 0.9529 0.7956 0.9121 0.8419
Sarcasm | Moral Sentiment | Hate Speech 0.9533 0.7938 0.917 0.8402
Sarcasm | Moral Sentiment | Offence 0.9523 0.7861 0.9184 0.8368
Argument Basis | Moral Sentiment | Sarcasm 0.9526 0.8214 0.8869 0.8503
Argument Basis | Moral Sentiment | Hate Speech 0.9516 0.8469 0.8661 0.8562
Argument Basis | Moral Sentiment | Offence 0.953 0.8248 0.8867 0.8523
Sarcasm | Moral Sentiment | Hate Speech | Offence 0.9548 0.8117 0.9086 0.8519
Argument Basis | Moral Sentiment | Sarcasm | Hate Speech 0.9514 0.8315 0.8740 0.8511
Argument Basis | Moral Sentiment | Sarcasm | Offence 0.9517 0.8098 0.8905 0.8442
Argument Basis | Moral Sentiment | Sarcasm | Offence | Hate Speech 0.9534 0.8039 0.9067 0.8459

Table 6.14 Experimental model validation scores on the Toxicity dataset. Configurations written in
italic signify the auxiliary tasks chosen for further exploration and bolded scores indicate the highest
performances.
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the Hate Expert dataset outperform all baseline models on the validation set in terms of
F1-score. Thus, all auxiliary tasks, asides from the Hate Expert task, are selected for further
experimentation.

6.3.2.2 Evaluation Data Performances

Turning to the performance on the test sets, the results presented in tables 6.18 to 6.20 are the
means of five runs with different random seeds and the standard deviation for each metric.

Hate Speech Main Task Considering first the results in table 6.18 for the MTL models
optimised for the Hate Speech task. All but one dataset configurations yield an improved
accuracy over the MLP baseline, though none outperform the SVM baseline. The best
auxiliary task configuration for accuracy is one that uses the Hate Expert and the Sarcasm
auxiliary tasks. Similarly to the results on the validation set, most MTL MLP models yield an
improvement in terms of recall over all baselines, while only one shows a strong decrease
in performance. The best auxiliary task configuration in terms of recall only uses the
Toxicity dataset for an auxiliary task. In terms of precision, all task configurations provide
an improvement over the MLP baseline, though similarly to the case with the accuracy
score, none outperform the best-performing baseline in terms of precision, the linear
SVM. Although all task configurations yield an improvement over the MLP baseline, an
interesting issue occurs where the use of all auxiliary tasks has a detrimental effect, resulting
in the worst performance of the MTL models in terms of precision. For the F1-score, no
models outperform the SVM baseline, though all models outperform the MLP baseline. The
strongest performance here is obtained by an auxiliary task combination where two out of
three auxiliary tasks are non-abusive in nature. This performance gain is obtained through
an increase in the experimental model’s ability in precision at the cost of a slightly lower
recall score. Although, on their own, none of the non-abusive tasks obtain the highest
performances out of all auxiliary task configurations, they frequently post highly competitive
scores with the all other configurations. This suggests that some of the improvements
obtained when using multiple auxiliary tasks is obtained through the use of non-abusive
information encoded into the shared layer of the model.

Aligning with the insights on dataset mappings identified in chapter 5, the Hate Expert
dataset provides for boosted predicted power when used in conjunction with a non-abusive
auxiliary task. Somewhat surprisingly, the Offence auxiliary task equally provides boosts in
performance. These improvements in performance indicate that the source domain of the
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Accuracy Precision Recall F1-score
Hate Expert 0.8082 (σ 0.0098) 0.7496 (σ 0.0117) 0.7661 (σ 0.0153) 0.7564 (σ 0.0044)
Offence 0.8194 (σ 0.0047) 0.7001 (σ 0.0181) 0.8204 (σ 0.0069) 0.7430 (σ 0.0124)
Toxicity 0.8105 (σ 0.0075) 0.7236 (σ 0.0244) 0.7779 (σ 0.0184) 0.7424 (σ 0.0165)
Moral Sentiment 0.8234 (σ 0.0024) 0.7302 (σ 0.0120) 0.8039 (σ 0.0079) 0.7595 (σ 0.0067)
Argument Basis 0.8141 (σ 0.0090) 0.7380 (σ 0.0185) 0.7744 (σ 0.0228) 0.7489 (σ 0.0146)
Sarcasm 0.8192 (σ 0.0018) 0.7262 (σ 0.0167) 0.7993 (σ 0.0145) 0.7548 (σ 0.0065)
Hate Expert | Moral Sentiment 0.8173 (σ 0.0071) 0.7366 (σ 0.0089) 0.7882 (σ 0.0191) 0.7523 (σ 0.0100)
Offence | Moral Sentiment 0.7985 (σ 0.0090) 0.6994 (σ 0.0240) 0.7628 (σ 0.0155) 0.7244 (σ 0.0163)
Hate Expert | Offence 0.8147 (σ 0.0053) 0.7294 (σ 0.0222) 0.7845 (σ 0.0184) 0.7505 (σ 0.0070)
Sarcasm | Hate Expert 0.8253 (σ 0.0079) 0.7333 (σ 0.0277) 0.8096 (σ 0.0167) 0.7618 (σ 0.0171)
Sarcasm | Offence 0.8182 (σ 0.0051) 0.7186 (σ 0.0266) 0.8031 (σ 0.0139) 0.7518 (σ 0.0160)
Sarcasm | Moral Sentiment 0.8215 (σ 0.0071) 0.7209 (σ 0.0231) 0.8108 (σ 0.0101) 0.7548 (σ 0.0164)
Hate Expert | Offence | Moral Sentiment 0.7901 (σ 0.0176) 0.7488 (σ 0.0057) 0.7366 (σ 0.0227) 0.7407 (σ 0.0153)
Sarcasm | Hate Expert | Moral Sentiment 0.8180 (σ 0.0071) 0.7129 (σ 0.0222) 0.8016 (σ 0.0046) 0.7473 (σ 0.0166)
Sarcasm | Offence | Moral Sentiment 0.8151 (σ 0.0066) 0.7502 (σ 0.0070) 0.7762 (σ 0.0103) 0.7623 (σ 0.0051)
Sarcasm | Hate Expert | Offence | Moral Sentiment 0.8124 (σ 0.0101) 0.6898 (σ 0.0221) 0.8142 (σ 0.0053) 0.7278 (σ 0.0234)

Table 6.18 Experimental model evaluation scores on the Hate Speech dataset. bolded scores indicate
the highest performances and σ values indicate the standard deviation.

data offer greater inductive biases, that can be optimised, than the size, as evidenced by the
Toxicity dataset not being selected for further experimentation. The selection of the Hate
Expert auxiliary task also suggests that an alignment of dataset goals, and the processes to
achieve those goals, also have a positive factor.

Offence Main Task When using Offence detection as the main task, most models outper-
form all baselines in terms of F1-score (see table 6.19). The exception to this pattern are
two auxiliary task configurations: the first where only the Argument Basis auxiliary task
is used, and the second where the Sarcasm auxiliary task is used in conjunction with one
abusive language detection task. In the setting where only one auxiliary task is used, the
Hate Speech auxiliary task somewhat surprisingly provides for slightly bigger improvements
across all scores than the Toxicity auxiliary task. This further evidences that abusive tasks
from the same data source provide for a good source of data. When combining multiple
auxiliary tasks however, the Toxicity data provides for more stable improvements across
different auxiliary task combinations. This further lends credibility to the observation that a
similarity of dataset goals is useful in a multi-task setting.

Focusing on the non-abusive auxiliary tasks, the Sarcasm and Argument Basis auxiliary tasks
are selected for further experimentation given the results on the validation data. The Sarcasm
auxiliary task, when used in isolation from other auxiliary tasks, offers competitive results
with the abusive language detection auxiliary tasks used in isolation, and outperforms the
closely related Toxicity auxiliary task in terms of accuracy. The Argument Basis auxiliary
task affords performance improvements along accuracy, precision, and F1-score and
only when this task is used in conjunction with other auxiliary tasks, specifically the Sarcasm
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Accuracy Precision Recall F1-score
Hate Speech 0.8970 (σ 0.0028) 0.6952 (σ 0.0240) 0.7685 (σ 0.0339) 0.7119 (σ 0.0138)
Toxicity 0.8916 (σ 0.0036) 0.6829 (σ 0.0176) 0.7659 (σ 0.0074) 0.7099 (σ 0.0159)
Hate Expert 0.8871 (σ 0.0048) 0.6794 (σ 0.0274) 0.7552 (σ 0.0110) 0.7028 (σ 0.0193)
Sarcasm 0.8933 (σ 0.0029) 0.6790 (σ 0.0303) 0.7594 (σ 0.0141) 0.6987 (σ 0.0271)
Argument Basis 0.8973 (σ 0.0045) 0.6740 (σ 0.0238) 0.7775 (σ 0.0202) 0.6847 (σ 0.0207)
Moral Sentiment 0.8956 (σ 0.0045) 0.6860 (σ 0.0344) 0.7541 (σ 0.0267) 0.6938 (σ 0.0356)
Hate Speech | Toxicity 0.8860 (σ 0.0046) 0.6961 (σ 0.0157) 0.7294 (σ 0.0211) 0.7033 (σ 0.0135)
Sarcasm | Hate Speech 0.8891 (σ 0.0080) 0.6561 (σ 0.0239) 0.7757 (σ 0.0157) 0.6806 (σ 0.0200)
Sarcasm | Toxicity 0.8977 (σ 0.0011) 0.6723 (σ 0.0126) 0.7899 (σ 0.0063) 0.6811 (σ 0.0227)
Sarcasm | Toxicity | Hate Speech 0.8923 (σ 0.0028) 0.6877 (σ 0.0213) 0.7601 (σ 0.0079) 0.7091 (σ 0.0151)
Argument Basis | Hate Speech 0.8864 (σ 0.0036) 0.7043 (σ 0.0320) 0.7386 (σ 0.0173) 0.7155 (σ 0.0139)
Argument Basis | Toxicity 0.8917 (σ 0.0052) 0.6929 (σ 0.0203) 0.7552 (σ 0.0049) 0.7143 (σ 0.0139)
Argument Basis | Sarcasm 0.9010 (σ 0.0022) 0.6939 (σ 0.0170) 0.7791 (σ 0.0110) 0.7105 (σ 0.0190)
Argument Basis | Hate Speech | Toxicity 0.8972 (σ 0.0036) 0.6861 (σ 0.0089) 0.7723 (σ 0.0085) 0.7064 (σ 0.0083)
Argument Basis | Hate Speech | Sarcasm 0.9025 (σ 0.0007) 0.7107 (σ 0.0090) 0.7820 (σ 0.0093) 0.7291 (σ 0.0072)
Argument Basis | Toxicity | Sarcasm 0.8925 (σ 0.0044) 0.6973 (σ 0.0218) 0.7472 (σ 0.0082) 0.7138 (σ 0.0125)
Argument Basis | Hate Speech | Toxicity | Sarcasm 0.8948 (σ 0.0016) 0.6979 (σ 0.0048) 0.7652 (σ 0.0102) 0.7100 (σ 0.0049)

Table 6.19 Experimental model evaluation scores on the Offence dataset. bolded scores indicate the
highest performances and σ values indicate the standard deviation.

and Hate Speech auxiliary tasks, do the models outperform the best baseline model in terms
of precision.

The experimental models optimised for the Offence detection task post a poorer recall
than the best performing baseline model, thus the increased performances in F1-score are
driven by improvements in precision score. The best performing baseline model, in terms
of recall, obtains a score of 0.91 but only obtains 0.57 in terms of precision. Thus,
adding auxiliary tasks provides for models that are more balanced in terms of performance
on precision and recall, yielding an improved performance in terms of F1-score as
neither precision or recall are being neglected in favour of the other. Comparing the
MTL models to the SVM baseline, all auxiliary task settings models strongly outperform the
baseline in terms of recall.

Toxicity Main Task The final task that I explore experimentally through MTL is the
Toxicity detection task. This task is the task that has the most auxiliary tasks that are explored
experimentally with five out of six tasks explored, the only task that is note explored is the
Hate Expert task. Moreover, this is also the task with the largest dataset available and the
only binary task, meaning that this is the only task where the results are directly comparable
with the results obtained in chapter 5.

Observing experimental model results in table 6.20 with the performances of the baseline
models in table 6.11, we see that no setting of the auxiliary tasks outperform the SVM
baseline in terms of F1-score or accuracy. However, all task configurations outperform
the SVM in terms of recall and are competitive in terms of the accuracy score with the
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worst performing configuration, one that uses the Sarcasm and the Hate Speech auxiliary
tasks scoring 0.0635 below the SVM baseline and 0.045 lower the MLP baseline. On the
other hand, the best performing model in terms of accuracy has a score that is 0.0044 lower
than the SVM baseline and 0.0141 higher than the MLP baseline. For precision, similarly
none of the experimental settings outperform the SVM or the ensemble baselines. The best
auxiliary task configuration only uses the Offence auxiliary task and obtains a precision
score of 0.8445, 0.0563 lower than the SVM baseline, while the worst performing auxiliary
task setting only uses the Argument Basis with a score of 0.7604 or 0.1404 lower than the
SVM baseline. Here is an indication that using the F1-score as the only metric by which
the auxiliary tasks are chosen is suboptimal as the Hate Expert auxiliary task outperforms
the Argument Basis auxiliary task for all metrics asides from the recall score. Although
the performance in terms of precision is lower than the SVM baseline, all auxiliary
task configurations outperform the MLP baseline with the worst performing task setting
outperforming the MLP baseline by 0.0625 and a 0.1466 improvement over the baseline for
the best-performing task setting. For the recall score, the best performing baseline model
is the ensemble baseline, closely followed by the MLP baseline. Neither of these baselines
are outperformed by the MTL models though all experimental models improve on the SVM
baseline. The best performing model here uses three different auxiliary tasks, namely the
Sarcasm task, the Moral Sentiment task, and the Offence task and only underperforms by
0.0124 in comparison to the MLP baseline. Finally, focusing on the F1-score. Although
no auxiliary task setting outperforms the best performing baseline, the SVM baseline, task
configurations strongly outperform the MLP baseline. The best performing auxiliary task
setting uses the Hate Speech and the Offence auxiliary tasks, that is all of the abusive language
detection tasks under consideration and it outperforms the MLP baseline by 0.0905. The
worst performing auxiliary task setting outscores the MLP baseline by 0.0438 and uses the
Sarcasm and the hate Speech auxiliary tasks.

In relation to the classification scores achieved by the best model for the Toxicity dataset in
chapter 5, the best performing model selected by highest F1-score is a LSTM model that
uses word tokens as its input obtains 0.9510 in accuracy, 0.8047 in precision, 0.9058
in recall, and 0.8357 in F1-score.4 Thus, the model from chapter 5 is outperformed,
in terms of accuracy, precision and F1-score, as the best performing auxiliary task
settings, ranked by F1-score. This further demonstrating the space for MTL models to
improve performance on single-task models.

4The scores here are the mean score over five different configurations of the random seeds.
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Auxiliary Task Patterns When considering the performances of each main task in isola-
tion, the larger patterns across the different main tasks are obscured by the details of the
model performances. Here I take a birds-eye view on all three main tasks and the patterns
that emerge from across the different main tasks and their auxiliary task settings.

In the performances of all three main tasks, auxiliary task configurations that include abusive
language detection tasks tend to post the high performances. This may be because forms
and phrasings in abusive, and non-abusive, text that are infrequently occurring in the main
task can be aided by the data provided in the abusive auxiliary tasks. This is particularly
evidenced through the improvements along the precision score, meaning that using abusive
language detection auxiliary tasks can minimise the number of false negatives that the model
predicts. These increases in the precision scores also positively affect the F1-scores,
although these are often hampered by a lower recall score. The lower performance in terms
of recall is somewhat surprising, as one might imagine that the inclusion of more abusive
data would often mean that there is an improvement along the lines of recall. However, as
I retain the class distribution in the different splits of the dataset and shuffle the order of
batches between each epoch, it may be that the same batches are frequently chosen and
that when distinct batches are chosen, they do not, on aggregate, provide for enough new
examples of abuse to provide a boost in terms of recall. Moreover, the weighting of each
auxiliary task may provide an additional cause for this pattern, as each auxiliary task has an
equal probability of being selected in a given configuration and not enough abusive samples
are provided to the model to improve recall. Finally, this may also be due to using several
different forms of abuse with distinct definitions of what constitutes abuse. Such disparate
definitions and forms of abuse may provide competing signals to models on documents with
a high degree of textual similarity. While there appears to be a lesser impact of dataset
size, likely because the number of epochs is fixed, so the larger datasets are not afforded the
ability to contribute more by virtue of their size, the data source and dataset goals appear to
influence the performances. This is apparent in all three main task settings but is particularly
visible when the main task is Offence detection. Here, Hate Speech shares the same data
source but has different annotation goals whereas Toxicity shares in the dataset goals but the
data has a different source. In the setting where only one auxiliary task is used, both post
comparative performances. When two auxiliary tasks are used and these auxiliary tasks are
used together, they produce results that are lower across all metrics asides from recall than
when only one of the tasks are used. When both auxiliary abuse detection tasks are used, then
adding a at least one more auxiliary task that is not abuse detection has a slightly beneficial
impact on the model performance.
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The non-abusive auxiliary tasks may at first seem to contribute less towards improved
model performances than the abuse detection auxiliary tasks, however for two out of three
different main tasks, the best F1-scores are obtained by the combination of abuse detection
tasks and auxiliary tasks that are not addressing the question of abuse. The non-abuse
related auxiliary tasks, when used in conjunction with abuse detection tasks offer modelling
improvements across all metrics. However, some non-abusive tasks appear to be more
applicable in general, specifically the Sarcasm auxiliary task appears across all three main
tasks while the Argument Basis and Moral Sentiment auxiliary tasks appear for two different
main task settings. Moreover, all three auxiliary tasks appear in the best performing auxiliary
task configurations and in the setting where only one auxiliary task is used, they achieve
competitive performances with the models that use an abuse detection auxiliary task.

6.4 Conclusions

Automated detection of abuse occurring in online spaces is a complex problem that is
contingent on the ability to contextualise comments made by authors with the intentions of
the authors, how the comments are perceived by readers, and situating the comments within
the contexts of the authors. In this chapter, I attempt to address the issue of contextualisation
through the use of MTL. Using MTL, I examine how different auxiliary tasks impact in-
domain classification of abuse detection. Specifically, I examine how the use of datasets
developed for the purpose of optimising machine learning models for abuse as auxiliary tasks
can impact the in-domain performances of different forms of abuse detection. I contrast
the use of these resources with resources that are developed for classifying the basis of an
argument, the moral sentiments displayed in messages, and the use of sarcasm and examine
how these impact the ability of MTL models to classify abuse, when the resources are used
as auxiliary tasks. Finally, I examine whether there are synergies between datasets developed
for detecting abuse and datasets developed to predict other constructs that are conducive
towards improved in-domain classification performance for the main task.

Through the use of MTL, I show that machine learning models developed for detecting
abuse can benefit from using auxiliary task datasets. In studying how other abuse detection
datasets impact performance on the main task when they are used as auxiliary tasks, I find
that datasets that 1) share in the goals of the main task dataset, or 2) are sampled from the
same data source, even with disparate dataset goals positively influence the performance of
neural machine learning models on the main task. The former condition further provides
support for the findings in chapter 5 where I identified that common dataset goals allow
for better generalisation. Rather than provide for better generalisation from one task to
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another, I find in this chapter that different datasets with similar goals can provide be used in
a multi-task setting to improve the in-domain classification results for one another. The latter
observation can be understood through the aims and purposes of the MTL framework. MTL
operates with the express notion that distinct tasks may share inherent latent information
that can be represented in a machine learning model through joint optimisation of the tasks.
Where language production on online platforms is created under restrictions put in place by
the platforms and the cultures of communication that are fostered on the platforms. Thus,
through using auxiliary tasks for abuse where the data is sourced form the same platform(s),
an MTL model can optimise representations of the particularities of communication on the
platform(s) in question, thus gaining a representation that can yield improvements in the
performances of the main task.

In addressing how data developed for tasks that are not directly related to abuse detection
can impact the performance of abuse detection models, I find that such tasks can aid in the
classification capabilities of abuse detection models, when the choice of tasks is informed
by specific questions surrounding the primary task. In particular, I find that the tasks of
identifying whether an argument is made on an emotional or factual basis, detecting sarcasm,
and detecting the moral sentiments all have a beneficial impact across the different main
task settings. While I find that all non-abusive auxiliary tasks that I experiment with are
beneficial for some forms of abuse, I also find that not all such tasks are equally well suited
for all forms of abuse. For instance, the Argument Basis auxiliary task does not perform
well enough to be included in the experiments, when it is used as the only auxiliary task to
the Hate Speech main task. Similarly, when the main task is the Offence task, the Moral
Sentiment auxiliary task does not perform well enough on the validation data to warrant
inclusion in the experiments.

Finally, considering how the abusive and non-abusive auxiliary tasks interact when used in
conjunction with each other, the results obtained in this chapter are clear. I find that there are
clear benefits to the main task from using a combination of abusive and non-abusive auxiliary
tasks with several task configurations that include abusive and non-abusive auxiliary tasks
posting highly competitive scores with other top performing models, if not outperforming all
other task configurations outright. By identifying abusive and non-abusive auxiliary tasks
that perform well in the case where there is only one auxiliary task, it is possible for a model
that uses them can benefit from the selected task to post performances that improve on the
scores achieved in the single-auxiliary task setting. Moreover, as multiple auxiliary tasks
are used, MTL-based models also optimise representations of each task, thus they come to
closer reflect how people speak. This is particularly clear when the auxiliary task is Sarcasm
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detection, where models optimise representations of what constitutes abuse in addition to
how sarcasm is expressed in the auxiliary task data. Thus, MTL models hold the potential
for more closely representing different facets of speech, and subsequently different facets of
speakers, than single-task machine learning models.

6.4.1 Future Work

The findings in this chapter have implications in the way automated abuse detection has been
performed to date. Beyond the limited number of auxiliary tasks that have been investigated
in this chapter, there is space for further experimentation on different kinds of auxiliary tasks.
For instance, two natural extensions of this work in terms of auxiliary task selection are
apparent: 1) the investigation of how optimising for core NLP tasks can yield a potential
benefit as these can aid MTL models in representing language construction in different data
sources and 2) following on the work of Davidson et al. (2019) and Dias Oliva et al. (2021),
using datasets that specifically incorporate varieties of English spoken by groups that are
often subject to high false positive errors can allow designers to encode in the model how
different groups are affected and should be affected by machine learning models for content
moderations. Building on my findings of how similarity in data sources impact the main task,
there is space for investigating how non-abusive tasks that are collected from the same data
source can impact the modelling performance.

Beyond a consideration of different auxiliary tasks there are also several modelling questions
that could be further explored. First, from my experiments I find that the models tend to prefer
the largest batch size that I experiment with, thus an investigation on the impacts of larger
batch sizes is warranted. The question of how to weight the different auxiliary tasks and
the frequency with which batches are selected from each also warrants further investigation
as all auxiliary tasks are unlikely to contribute equally, thus identifying dynamic methods
for weighting each task or setting the frequency with which batches are chosen from each
task may also provide an avenue for improved performances. Finally, in my experimental
models I do not use pre-optimised embedding layers in my models, however the use of these
have been shown to achieve high classification performances in single-task neural networks,
thus the use of pre-optimised embedding layers may allow for further improvements of the
classification scores achieved.
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6.5 Summary

In this chapter, I have sought to examine Multi-Task Learning as a method to incorporate
greater context into machine learning models than what is provided in only datasets for abuse.
Thus, I have attempted to address RQ II by examining which auxiliary tasks provide for
useful contextualisation for abuse detection. That is, I have sought to answer RQ 3: How
do the individual and combinatory use of abuse classification and non-abusive tasks impact
classification of specific forms of abuse?

From my experiments, I find that MTL can be a useful technique for abuse detection due
to the joint representation of multiple tasks that is encoded in the model. I further find that
selecting the appropriate auxiliary tasks is heavily dependent on the primary task dataset and
the goals the authors had in developing the resource.

These findings make clear the potential for contemporaneous machine learning techniques to
more closely embody the subjectivities of an individual. Returning briefly to the infrastructure
of content moderation and content moderation as a third party reader, the proximity between
the values held by the third party reader and the recipient is strongly indicative of the abilities
of content moderation infrastructures to more accurately represent a given recipient. MTL
for hate speech detection, and more generally abuse detection, then offers a means through
which practitioners can begin to develop machine learning models that more closely represent
the readers whose behalf they are purported to act on behalf of.





Chapter 7

State of the Art White Supremacy: On
Disembodiment in the Machine Learning
Pipeline1

What does it mean when the tools of a racist patriarchy are used to examine the
fruits of that same patriarchy? It means that only the most narrow parameters of
change are possible and allowable.

Lorde (1984, p.110-111)

In the previous chapters we have identified different areas of concern for the use of mod-
els and data. From the ways in which content moderation technologies come to create
discriminatory outcomes in chapter 4, to the constraints of document transformation in
chapter 5, and the influence of multiple data sources and prediction tasks in chapter 6. In
these chapters, I sought to find means to contextualise computational methods, and to make
them more closely represent the subjectivities and contexts of speakers from within frames
of existing computational methods. As the chapters collectively point to, there is an inherent
limitation to what is achievable within computational pipelines in which the entire process,
from dataset creation to modelling, is not developed while respecting human subjectivities.
More precisely, the need for finding ways to approximate contexts and subjectivities high-
lights how the current machine learning pipeline does not specify how subjectivities are
embedded in these technologies. Understanding precisely where such shortcomings arise in

1This chapter contains elements from a collaboration with Smarika Lulz, Joachim Bingel, and Isabelle
Augenstein. The associated paper is currently under review in the Conference on Fairness, Accountability, and
Transparancy (FAccT). The title is taken from a conversation between Abeba Birhane, Chris Dancy and myself,
where Chris offered the term State-of-the-Art White Supremacy.
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the machine learning pipeline requires a deeper consideration of machine learning and the
human embodiments within the pipeline. Moreover, it requires a deeper consideration of how
machine learning, as an academic practice, presents itself and disembodies itself from the
subjective human experiences that machine learning purports to be developed for. For this
reason, I turn to considering how the machine learning pipeline embodies and disembodies
human (experience). Therefore, I return to RQ I by asking how subjective experiences are
embodied in the machine learning pipeline (RQ 4) and what the implications of this are (RQ
5). In this chapter, I theorise on the core sources of these issues: the context within which
models and exist, the models and the data. To describe these issues, I invoke the metaphor of
the body in three different ways: first, pertaining to the physical material human body that
we each possess; second, to signify a collection of observations and data points created by
humans; and third, to refer subjective embodiments, that is how social and cultural meaning
is embedded in the human experience and derivatives of it, i.e. data created by humans. I
then reflexively apply my theory to the computational models in chapters 5 and 6 and provide
a critique of these technologies through a consideration of the data generation process and
the modelling stages of the machine learning pipeline. Finally, I discuss the implications of
current practices in machine learning and argue that we must radically reconsider our current
approaches to machine learning for social tasks, such that our approaches align better with
the stated aims.

7.1 Disembodied Machine Learning

Machine learning is a practice that is concerned with making decisions based on machine-
discernible patterns in observed data. Often, the data used to optimise machine learning
methods are ‘extracted’ from the context within which they are created, i.e. by ‘scraping’
online platforms for user-generated content. Through this process of separating context and
datum, a notion of ‘objectivity’ is imposed upon the data and the subsequent operations,
namely, optimising machine learning methods on the data and their results further entrench
this notion of objectivity. Datasets, or bodies of data, are thus created through the repetition
of separating datum from context. These amalgamated bodies of data exist only by virtue
of their strict separation from the material bodies from which the datum are derived. Such
disembodied and amalgamated bodies are then used to optimise machine learning models.
Machine learning methods come in two different forms: Supervised learning methods which
seek to distinguish distinct limbs which are pre-drawn, e.g. classes, from the data; and
unsupervised models which seek to identify discernible limbs of data within a single body
of data without direct guidance from designers. For both supervised and unsupervised
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models the underlying data and the models applied to them strongly influence what bodies
are discovered and what may be uncovered within these data. As Benjamin (2019) writes,
technology operates within social structure “codes [that] operate within powerful systems
of meaning that render some things visible, others invisible, and creates a vast array of
distortions and dangers”.

With the advent of machine learning, a new technology came to be hailed as objective and
unimpeded by subjective human biases, and by extension social marginalisation (O’Neil,
2017). However, an increasing amount of research suggests that social biases are common to
machine learning models (Agarwal et al., 2018; Buolamwini and Gebru, 2018; Shah et al.,
2020). Moreover, research has found that biases in the underlying data may be exacerbated
by the machine learning models (Jia et al., 2020; Zhao et al., 2017). As a result of this
growing awareness of the emergence of social biases in machine learning models, there
has been a number of research directions seek to identify (Bender and Friedman, 2018;
Buolamwini and Gebru, 2018; Mitchell et al., 2019; Shah et al., 2020), reduce or remove
social biases (Agarwal et al., 2018; Jia et al., 2020; Romanov et al., 2019; Zhao et al.,
2017) from machine learning models to prevent further marginalisation. However, such
work assumes that social biases operate within a positivist logic which casts the removal of
social biases as an optimisation problem. That is, this work assumes that bias is a finite and
quantifiable entity that can be disentangled, isolated, and mathematically reduced out of the
body of data or mathematical model, from which the designer, too, is disembodied.

Here, I provide a challenge to such a positivist logic. Drawing on work from feminist
Science and Technology Studies and examples from Natural Language Processing, I argue
that bias and subjectivity in machine learning pipelines are inescapable and can therefore
not be simply be reduced or removed. Therefore, I hold that an ongoing recognition and
reflection on our own positions, and the fiction of objectivity found in subjective realities is
necessary to identify how the political choices are reflected throughout the machine learning
pipeline. Through a conceptualisation of bias in these terms, I aim to shift the surrounding
discourse away from bias an its elimination, to understanding subjective positionality and its
implications on the machine learning pipeline from data generation to optimised model.

7.1.1 Embodiments in the Machine Learning Pipeline

Through Donna Haraway’s (1988) critique of objectivity (see chapter 2) it is possible to
rethink how subjectivity is embedded in machine learning. Rethinking subjectivities in
machine learning affords a recognition of machine learning’s potential to create social



170 State of the Art White Supremacy

marginalisation without casting the problem in a positivist, optimisational logic. That is, we
can come to understand the logics that govern machine learning for social data without casting
the issue of discriminatory models as one of ‘debiasing’—a problem that purports to be an
optimisable problem. In fact, by framing the issue of social bias away from such positivist
fantasies, we are afforded the ability to view machine learning systems as technologies that
are embedded in the very systems of oppressions that the models entrench. When we view
machine learning systems as co-constitutive of the social systems within which they are
embedded, it becomes clear that mathematical approaches to ‘debias’ such optimisation
technologies reinforce a fantasy that issues of social discrimination and marginalisation are
problems that can be treated as merely issues of statistics and mathematics, rather than living
and lived histories of oppression. Thus, as the machine learning pipeline relies on data
created by humans living within discriminatory social systems, the fantasy of ‘debiasing’
serves only to obscure how machine learning systems are complicit and co-constitutive of
exclusion and marginalisation. I argue that the disembodied, or ‘objective’ position is
expressed within the machine learning pipeline at multiple junctions:

1. In the data which is often removed from context and potentially adjudicated by exter-
nalised others,

2. in the model optimised on the disembodied data stemming from embodied data subjects,
and

3. in the person designing the experiment and pipeline.

When constructing a dataset for machine learning, one must make a series decisions about
how the data is to be constructed at different levels of granularity—from selecting a source
of data to specific means of operationalising it. These decisions come to determine the ways
in which contemporary machine learning methods disembody speakers from their speech.
At a higher level, designers of machine learning infrastructures make decisions that impact
every aspect of the pipeline. In their decisions, designers specify what counts and what
does not count as relevant information, and how such information should be represented
by machine learning models. Finally, once data has been gathered models are optimised
on disembodied data from embodied subjects. In this way, the model becomes embodied
through an amalgamation of limbs that have been disembodied from embodied data subjects.
For instance, when constructing datasets for machine learning, including datasets for content
moderation, it is necessary to make decisions on that delineate individual pieces of datum as
relevant or irrelevant to the task across several layers of granularity. First, one must consider
how to obtain a large sample of content which may contain the phenomena under study. In
developing a resource for online abuse a decision must be made to which online communities,
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topics, or types of discourse may provide a large enough sample for study. The collected
data is often produced by a large number of people on online platforms. Often, this process
does not include collecting all posts produced by the individuals in the sample. Instead only
posts that pertain to the phenomena under study are collected. In this way, a first step is made
towards disembodying the sampled data from the individuals who have created it. In NLP,
the primary focus of interest is the text, for which reason data about the user such as the name
they provide (username and provided name), their location, and other meta data are often
discarded. Thus, a second step is made towards disembodying the creator of the content, the
speaker, from the speech that they produce. Moreover, the discursive structure, such as a
posts and replies is often flattened, which further disembodies the speech act from the context
within which it is produced. By making such decisions, data comes to be disembodied from
the social and political contexts within which they are created.

Often an initial data sample which is large to ensure breadth in the sample is collected to
obtain as much evidence towards the phenomena under study as possible. A second level of
granularity in the data sample is then performed by selecting a smaller sample to study, within
the larger sample. Here designers may seek to qualify and disqualify certain sub-samples in
their originally collected sample, as some parts of the sample may not be pertinent or may
only infrequently contain the phenomena under study, as the phenomena has conceptualised
by the designers.

In the case of supervised machine learning, the data is passed through a third level of
granularity. Here, the datum is provided to a number of annotators, who are rarely the
creators of data in the sample. Moreover, it is the exception, rather than the rule, that the
annotators are situated within the contexts of the creators of the data. These annotators
then determine which limb of data i.e. the class, within the larger body of data, a given
datum belongs to given a set of criteria for making such an adjudication. These criteria are
developed and provided by the designers of the pipeline. Thus, the designers entrench their
own subjectivities into the annotation process and exert control over it, and the annotators.

Turning to the optimisation technologies. Through ways in which they operation on data,
machine learning models have different ways of embodying and disembodying data. In the
optimisation process, machine learning models operate on disembodied data and further
disembody them from the speakers through mathematical processes with the goal of settling
on a distinct embodiment derived from the data. The specific way a machine learning model
disembody data varies as a function of the specific mathematical functions that the models rely
on, and seek to optimise. The disembodiment that the optimisation process performs happens
through a manipulation of the data representations to draw discernible boundaries between
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the limbs of data, i.e. the classes. The underlying assumption that machine learning models
make is that the data provided is all that is necessary to know to draw meaningful decision
boundaries. It is then up to the designer to discern whether the decision boundaries drawn
are truly meaningful or they represent spurious correlations. Making this decision however
has proven to be large a challenge as recent research on the challenges of benchmarking
highlights, that is evaluating the performance of machine learning models has proven to be a
significantly challenging task due to a disconnect between what is measured in benchmark
datasets and what the stated goals of a task, and benchmark, is (Bowman and Dahl, 2021;
Kiela et al., 2021).

Finally, a great deal of attention has been given to how the lack of inclusion of designers
across axes of identity can contribute to the producing socially biased systems (Holstein
et al., 2019; West et al., 2019). However, the ways in which designers embed themselves
in the machine learning pipeline can be opaque. I argue that designers come to embed their
own subjectivities into the machine learning pipeline through choices that designers make
in the process of developing these technologies, e.g., how to represent data, how features
are selected and limits are set on vocabulary. In spite of being deeply embedded in the
machine learning pipeline and technologies, designers are rarely subject to the machine
learning systems, the harms of such systems, or are a part of the data that they rely on to
create models.

In each of these aspects lay a large number of value judgements on the perspectives of data
that are deemed relevant. I observe here a peculiarity of the machine learning pipeline. When
data is disembodied from its creator, the data becomes an archive or a body of knowledge
upon which the machine learning model draws on. In drawing upon the archive, machine
learning models implicitly transform all positions that exist outside of the model’s internal
body, i.e. the archive become disembodied from the model. This transformation from
disembodied to embodied then can serve as an explanation for calls for ‘more’ and ‘more
diverse’ data (Holstein et al., 2019). It is worth noting here that the model-embodiment
is tacitly acknowledged in the research fields of domain adaptation (Daumé III, 2007) and
transfer learning. These fields acknowledge that to the information held in machine learning
models is primarily applicable to the domains that are present in the datasets the models are
optimised on, and that even small perturbations in the input to the model may drastically
degrade its performance (Daumé III, 2007; Szegedy et al., 2014). These acknowledgements
of embodiment exist in a self-contradictory tension with the position of objectivity within
which these transfer-learning and domain adaptation methods operate within.
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7.1.2 Embodiment in Data

As Gitelman (2013) argues, datasets do not exist naturally but must be produced. Considering
this production of data through Haraway (1988), datasets can be understood as a form of
knowledge that is produced through disembodying embodied experiences. Subjectivity
can thus stem from a number of sources including the source of the data (Gitelman and
Jackson, 2013), the data sampling method (Shah et al., 2020), and the selection of annotators
(Derczynski et al., 2016; Talat, 2016).

Grounding my discussion in Natural Language Processing, I show how subjectivity manifests
itself in machine learning models through a number of meaning-making processes, modelling
choices, and data idiosyncrasies. I seek here to highlight the subjective and embodied nature
of of data and classifications and that by taking a position of objectivity, we cannot do justice
to the needs and wants of individuals or communities.

7.1.2.1 Natural Language Processing Tasks

A range of, if not all, Natural Language Processing tasks are highly sensitive to the subjective
values encoded in data. While such issues have frequently been studied in the context of
high-level tasks, such as machine translation and abusive language detection, less attention
has been given to core natural language processing tasks. Notably, the primary object of
study of biases in core natural language processing has been the Part of Speech tagging task
(Blodgett et al., 2016; Jørgensen et al., 2016) for which reason I also investigate the task.
Generally, I argue that the adjudication of content, be it for abusive language, part of speech
tagging, or any of the many other tasks that the field of natural language processing addresses
delegitimises the very tools that are built, for users of said technologies due their presumed
objectivity, which is neither truly neutral nor objective.

High-level tasks High-level tasks that require semantic and pragmatic understanding,
e.g. machine translation, dialogue systems, metaphor detection, sarcasm detection, and
abusive language detection are all highly sensitive to subjective values encoded in the
data. In machine translation, research has identified a range of issues including stylistic
(Hovy et al., 2020) and gender biases (Vanmassenhove et al., 2018). Particularly issues
that pertain to the reinforcement of sexist stereotypes have been the object of academic
(Zhao et al., 2017) and public (Locklear, 2018) scrutiny. A classic example of stereotypical
translation are the translations stereotyped occupations from a language that does not contain
grammatical gender to a language that does, e.g. the translations of doctor from English
(unmarked for gender) to the German Arzt (marked for masculine) and nurse from English
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(unmarked for gender) to the German Krankenschwester (marked for feminine). Here we
see that the ‘objective’, yet stereotyped translations are embodied in a patriarchal context
which delegates high prestige to men and low prestige to women. While the translations
may be correct in individual cases, they are not always correct. Assigning a single gold
label to a given translation in itself provides an issue, as an input text may have several
distinct and correct translations. However, most optimisation processes and evaluation
algorithms assume that there exists a single correct translation, and that is the one the model
is provided for optimisation and evaluation. The issue however is not always the adjudicated
data that the model relies on. For instance, researchers have noted that word embeddings
which are created through computing word co-occurrences similarly hold such stereotypical
associations (Bolukbasi et al., 2016).

The issue of highly subjective ‘truths’ and gold labels for data extends to several other
tasks such as text simplification and abusive language detection. In text simplification,
numerous datasets make the claim that some words, sentences, or texts are difficult to read
while others are easy. These labels are typically provided by human annotators who may
agree on some labels. This agreement may in turn aid in the ability of models optimised to
generalise to other datasets. However, the process of externalising the labelling process and
disembodies the data, and subsequent models, from the embodiments of the diverse set of
users of simplification technology, and how text difficulty manifests for them (Bingel et al.,
2018).

Further, as is apparent in abusive language detection, the outcome of an annotation process,
where the positionality of the adjudicators deviates within the group of adjudicators, may
be less consistent annotations (Talat, 2016), which harms both the model and the supposed
users of it. Many other causes and effects of disembodiment have been considered in the
task of identifying abusive language. For instance, Talat et al. (2018) argue that datasets
for abusive language embody a white perspective on respectability, finding that almost all
uses of the n-word are tagged in the positive class in the dataset released by Davidson et al.
(2017) regardless whether its use is within the African-American community. The labelling
of the n-word does not necessarily embody a white perspective on respectability as the word
does have frequent pejorative uses (Croom, 2013), however disregarding the usage of the
word within the black diaspora, as datasets and tools frequently do (Davidson et al., 2019),
does constitute a white supremacist idea of control of marginalised bodies and languages, for
which there is a rich history (Craft et al., 2020). Indeed Talat et al. (2018) find that a large
subset of the documents that contain the n-word in Davidson et al. (2017) that are labelled
as hate speech and offensive language are likely to be in-group uses. This issue however is
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not limited to the dataset presented by Davidson et al. (2017), in fact, all datasets examined
by Davidson et al. (2019) result in consistent and disproportionate error rates for African
American English speakers. Systems built on these datasets, or as I argue here, datasets that
are constructed within a social order where the white cisgender male body is constructed as
the ‘neutral’ or ‘objective’, will replicate such biases. Thus, the race towards state-of-the-art
machine learning models for content moderation is also a race towards state-of-the-art white
supremacy.

Core Natural Language Processing tasks Beyond these issues existing in high-level
tasks which may require a certain level of cognitive abstraction, they also exist in lower
level, core natural language processing tasks such as Part of Speech tagging and dependency
parsing. While I restrict the examples here to part of speech tagging, I contend that precisely
the same arguments apply to dependency parsing.

Considering part of speech tagging, I find multiple junctions at which theory and data
influence the process of developing tag-sets. First, the tag-set is developed based on a
subjective linguistic theory that licenses some tags while rejects other. This linguistic theory
is typically informed by observations on specific types language in the data it is developed to
describe. Second, in the choice of sources of data. If the observed language production is a
forum dedicated to computer games, the linguistic theories that form the basis of the tag-set
are likely to focus on informal, and perhaps adolescent communication patterns. If on the
other hand, the source of data primarily consists of newswire, the linguistic theory is likely
to specifically address language production in formal settings. Third, in the development of a
dataset of part of speech tags, I see similar issues of adjudication as for the high level tasks.2

Thus, the development of part of speech tag-sets, and datasets it is applied on is a practice in
developing descriptors and data which are mired in the context of the language production
they seek to describe.

An example of one such tag-set is the Penn Treebank tag-set (Marcus et al., 1993), the de-
facto standard for describing English word classes in natural language processing. The Penn
Treebank tag-set was developed on primarily financial newswire text and published works
in the United States of America in 1961 (Francis et al., 1982). The tag-set was primarily
motivated by economic factors, such as there being several word classes that were ambiguous
or word classes which occurred with such low frequency that they might only describe a
single word. The Penn Treebank tag-set was thus developed with formal Standard American
English in mind and is thus better suited to describe language which conforms to the English

2Although this may be mitigated by using trained linguists to label the dataset.
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the underlying theory the tag-set describes than other varieties, sociolects, or slang (Blodgett
et al., 2016; Jørgensen et al., 2016). This issue becomes even more drastically apparent when
a tag-set developed for English is forced upon some other language, which it is far removed
from being able to describe.

7.1.3 Embodiment in Modelling

While datasets are an important source of how a model may be embodied, machine learning
methods themselves encode which embodiments are highlighted and which are subjugated. I
primarily focus on supervised machine learning in my exploration of how models exacerbate
disembodiment, as unsupervised methods are more directly volatile to subjective choices of
the researcher, e.g. how the data is represented and which parameters the model is subject to.

As I seek to distinguish distinct model behaviours, I offer that models act on a spectrum
from localized to global behaviour. In this conceptualisation, localized behaviour refers to
when a model seeks to ground the datum within the context it is derived from, often using
knowledge external to the optimisation data, e.g. context-aware models (Devlin et al., 2019;
Garcia et al., 2019). Conversely, global modal behaviour instead operates only within the
realm of the optimisation data it is optimised on, i.e. models that compound multiple senses
of a word with little or no regard to their local contexts. Although language production is
situated within a wider socio-political context of society, I limit my use of ‘context’ to mean
the entirety of the sentence provided to the model.

By virtue of the subjective nature of embodying a datum within its context, there is large
variation in how locally acting models may be developed. One tactic to situate datum within
its context is through the use of transfer learning which allows for knowledge produced
outside of the optimisation data to alter what the model embodies. For instance, should
a dataset embody the language production within multiple sociolects, through the use of
pre-optimised language models (Devlin et al., 2019) or mixed-member language models
(Blodgett et al., 2016) deeper information about the sociolects in question can be provided by
using the context of the sentence to identify how to situate the representation of a document.3

The Multi-task learning paradigm also offers an avenue for embodying data in their contexts
through their ability to encode information about the creator of the datum (Benton et al.,
2017; Garcia et al., 2019). Transfer learning can similarly be applied to direct the model to
embody the context a datum is derived from. For instance, Romanov et al. (2019) encode

3Different language and dialectal varieties may not be equally distributed in optimisation data for contextual
models (Dunn, 2020), not unlike the issue of which bodies are given privileged space plague such models (Tan
and Celis, 2019).
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demographic information of the datum’s creator into the model in efforts to deter models
from learning stereotyped representations of marginalised speakers and communities.

Globally acting models on the other hand do not afford such embodiment. Through their
reduction of a features in a model to a single sense, they are inherently unable to take into
account the embodiment of the author, even if they are provided signals for how to embody
a document at optimisation and inference time, due to the fact that such models remake
meaning according to the distribution of features present at optimisation time. Any step
taken towards embodying datum in its original context moves globally acting models along
the spectrum towards being locally acting models. An example of such a step are word
embeddings. Through their representation of words by the words that co-occur with the
word’s neighbouring words, thus assuming a similarity between the word and other words.
While they provide a slight shift towards locally acting models through the frequency-based
nature of how closely associated a word is, they fail to take a meaningful step away from
being globally acting models, as all instances of a token occurring in the dataset will be
reduced to a singular representation that does not take the surrounding context, i.e. the
sentence, into account. It is important to note here that while word embeddings, and in fact
contextual word embeddings provide a step towards localising models, the techniques of
developing such embeddings rely on processes of disembodying a large set of data from their
creators and constructing an amalgamated body of data that can collective embodiments.
This amalgamated data carries with it many small influences of the specific subjective
embodiments of each data creator.

7.1.4 The Embodied Designer

Though often referred to as a ‘researcher’ or ‘developer’, I draw on Herbert Simon (2019)
to construct my understanding of a designer. I direct attention not to the profession of the
individual or team in the machine learning pipeline but instead to the their action.

Everyone designs who devises courses of action aimed at changing existing
situations into preferred ones.

(Simon, 2019, p. 111)

Following Simon (2019), the designer can then be understood to be anyone in the machine
learning pipeline. While this includes annotators in addition to developers and researchers,
I focus on the last two n their role as the designers as as they direct annotators and can
supersede the choices made by the annotators.
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The designer is embedded in the machine learning pipeline by virtue of the choices that
they make throughout the development process, from the initial conceptualisation of the
task to the final optimised system. All decisions that are described in section 7.1.2 and
section 7.1.3 are either directly or indirectly made by the designer, in efforts to shape the final
optimised model such that it fits the subjective positions of the designer. Direct decisions
such as the choice of model, how to pre-process the data and transform it are direct decisions
made by the designer. Indirect decisions refer to instances where the designer relinquishes
control over some part of the process, for instance in annotation. Annotations are indirect
decisions as the annotation guidelines are developed by the designer, yet the act of annotation
is often performed by others. The decision on how the guidelines are to be operationalised
however is a matter that is predominately controlled by the annotators, as they internalise
and operationalise the annotation guidelines according to their own lived experiences and
subjectivities. Moreover, the designer can choose several ways in which to disregard the
data labelled by the annotators, should subsets of the annotations disagree with the positions
that the designer holds. In this way, although designers relinquish some control through the
annotation process, they maintain, and often exert power over the result of the annotation
process. Through control of these decision making processes, the designers exert power and
embody their own subjectivities into the machine learning pipeline.

An oft proposed solution to the issues of socially biased machine learning systems is to
diversify the teams of designers who are developing the technologies (Holstein et al., 2019).
This line of work has a similar argument to mine: That the subjective designers project an
embodiment of self onto the technologies that they develop through the data and modelling
choices that they make. Drawing on Haraway (1988), this suggests that the God trick that
machine learning methods employ is a reflection of the ways in which the subjectivities of
the designers are embedded in the systems. Rather than calling for diversifying the identities
of the group of designers behind a tool, I argue that it is only through the recognition of
ones own subjective embodiments that the issue of socially biased machine learning can be
addressed. That is, it is only by recognising ones own subjectivities and actively making
choices to represent the subjectivities of those that the technologies will be applied to, that
one can hope to develop machine learning technologies that do not produce socially biased
outcomes when applied to the target user group.
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7.2 Embodiment and Disembodiment in the Abusive Lan-
guage Detection Pipeline

In the above sections, I have described generally how subjective embodiments are manip-
ulated and inserted throughout the machine learning pipeline for the general case. In this
section, I turn my attention to abuse detection technologies in an examination of the subjective
embodiments for this particular application of machine learning.

As with many machine learning pipelines, abusive language detection pipelines can have
different starting points depending on whether any data is being annotated, or previously
annotated data is used. For the latter case, the considerations of feature and model selection
are particularly relevant to the development, however designers of models should be aware
of the influences of subjective embodiment in the annotation process and as the effects of the
annotation process remain in the dataset. One such effect of the designer of the dataset is that
the subjective embodiments of the designers (and annotators) permeate through every step
of the pipeline, as I have argued in the previous sections. For this reason, I address how the
subjective embodiments influence each step of the abusive language detection pipeline in the
subsections below.

7.2.1 Annotation Guidelines

Perhaps the most clear case of subjective embodiments being inserted into pipeline is in
the annotation guidelines. For the abusive language detection there is no consensus on
how to operationalise abuse (Talat et al., 2017). This lack of consensus leads distinct
groups of designers to create their own guidelines on the basis of distinct sources and
understandings of abuse. The choice of which background source is used depends strongly
on the researchers. For instance, Talat and Hovy (2016) rely on critical race theory and
gender studies to inform their annotation guidelines. Conversely, Davidson et al. (2017) rely
on social media platforms’ community guidelines to define abuse, and Fišer et al. (2017) rely
on Slovenian legal definitions of hate speech to inform their annotation guidelines. These
distinct motivations in part are informed by the cultures within which the researchers exist.
For instance, the designers behind Davidson et al. (2017) are situated in the United States of
American and their annotation guidelines are thus contextualised by the highly permissive
freedom of speech protections enshrined by the second amendment of the constitution of the
United States of America. The aim of their work, distinguishing hate speech from otherwise
offensive content, can then be understood to be motivated by the issue of incorrectly labelling
non-hateful entries as hateful, which could be read as contrastive to the freedom of speech
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protections in the United States of America. On the other hand, Talat and Hovy (2016) seek
to address the issue of discriminatory speech, motivated by the harassment of women on
social media. Their understanding of hate speech is then motivated by ensuring protection of
marginalised communities, in part due to their belonging to a marginalised community. Thus,
while annotation guidelines are strongly argued and motivated, the local embodiments and
contexts of the authors influence the guidelines that they create.

7.2.2 Sampling Data

Beyond distinctions in the annotation guidelines, the sampling of data similarly is influenced
by the subjective embodiments of the designers, resulting in distinct datasets examining
different geographic cultures (Talat et al., 2018). Distinct motivations influence the questions
that are under investigation in the research of different groups (Talat et al., 2018). For
instance, Fišer et al. (2017) detail a framework based in the Slovenian legal context, where
the authors of the study reside, directing the hate studied to be directly addressing hate
occurring in Slovenia. Similarly, Davidson et al. (2017) seek to examine in hate in the United
States of America, further they also limit their data sampling to tweets posted from inside
the United States of America. Finally, Talat and Hovy (2016) specifically seek to address
abuse towards women and other minorities, notably religious minorities and therefore do not
limit the selection of data to any particular geography. In this way, datasets reflect more than
investigations into different aspects of abuse. The dataset also reflect the specific interests
and values of the designers as they choose sampling strategies that align with such interests.
It is worth noting here that the source of funding for the construction of the pipeline may
also hold influence. For instance, grants from government agencies may specify that abuse
must be considered within a national context or geographic territory.

7.2.3 Annotators

Another source of the subjective embodiments that are encoded into the data is the annotation
process itself (Talat, 2016). As Talat (2016) show, distinct groups of people will internalise
and operationalise annotation guidelines according to their pre-existing values, that is their
own subjectivities. As such, the resulting annotations embed how different people and
groups operationalise the annotation guidelines. The outcome of annotation processes is
then a mixture of designers’ and annotators’ subjectivities, written into data. This has strong
implications for abusive language detection datasets, as these are the basis of models that
encode annotators’ views on acceptability, rather than abusive language directly. Unless
annotators are carefully selected and educated, the annotations derived from groups of
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annotators may be internally incompatible within a dataset. Training and selection of
annotators further provide space for designers to shift the annotators’ work towards their
own subjective positions on abusive language. Thus, annotators are also subject to the
embodiments and goals of the designers. More specifically, such influence is is wielded
by the designers through directly influencing aspects of annotations, such as the annotator
selection (Talat, 2016), training of annotators (Vidgen et al., 2020a), the guidance that is
provided (Palmer et al., 2020), the selection of annotations to use (Hovy et al., 2013), and
through indirect selection criteria such as payment-level for annotation (Sabou et al., 2014).

As Hovy et al. (2013) show, the reliability of annotations is important to the successes of any
subsequent task, however the question of what constitutes a reliable annotation is one that
reflects the designer’s positions on ‘correct’ labelling for a given task. In terms of abusive
language detection, ‘high quality’ annotations thus reflect how the designers envision the
task of abuse detection and the embodiments that the designers operate within. Consider
for instance a pool of annotators with diverse and divergent political positions tasked with
annotating hate speech. If the designers’ understanding of what constitutes hate speech
does not align with a sub-group of annotators, those annotations can then be disregarded
and classed as “annotation errors’. However, considering the positionality of the divergent
sub-group, their annotations may be entirely consistent with how they operationalise hate
speech and their own subjectivities. That is, rather than errors, these annotations are simply
embodying subjective positions that do not conform to those of the designers. For instance,
should a group of people who politically self-identify to be on the far-right form a sub-group
of annotators, then their operationalisation of hate speech is likely to diverge in key areas from
the remaining annotating population, while being consistent with their own operationalisation
of hate speech. In such a case, the designers are likely to disregard their annotation to ensure
that the resulting data aligns with their own aims and subjectivities.

This issue exists not only for subsets of the annotation pool, entire pools of annotators may
also consistently label within the designers’ expectations, yet in conflict to the annotation
framework. In one such instance, Davidson et al. (2017) find that “[h]uman coders appear to
consider racists or homophobic terms to be hateful but consider words that are sexist and
derogatory towards women to be only offensive”. Such divergences in labels towards groups
is inconsistent with the annotation guidelines provided by Davidson et al. (2017). However,
the authors highlight this as a strength of their annotation framework, arguing that their
annotation process allowed for distinguishing between hateful and offensive content, even if
such distinction runs counter to the guidelines provided. Where there are distinct sub-groups
within the data, selecting which group to consider has bearing on the internal consistency
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of the dataset and subsequently on any patterns a model might embody (Talat, 2016). This
leads (Talat, 2016) to conclude that the selection of annotators should follow processes
that allow for identifying, if not recruiting, annotators that share backgrounds and align on
socio-political issues. Discrepancies between annotator backgrounds and political stance can
also be addressed through annotator training, as Vidgen et al. (2020a) show. In instituting
annotator training and addressing discrepancies between annotators, the designers directly
train the annotators to reconstruct the embodied positions on hate speech that the designers
hold. Thus, the designers wield direct and indirect influence over annotators and annotations,
and hold power to elect whether the constructed dataset follows the embodiments of the
annotators or of the designers themselves.

Finally, Sabou et al. (2014) argue that designing the task and setting the payment level
can indirectly influence which annotators put themselves forward to work on the task. To
attract ‘good’ annotators, it necessary to set payment for each annotation, using incentives
such as high payment per document labelled. In this way, annotators are incentivised to
learn the subjective positions of the designers. For a great deal of work in abusive language
detection, the task and data are further disembodied in the annotation selection process
as the annotators are unlikely to appear in the dataset. By adding an additional layer of
disembodiment through the adjudication process that operates on already disembodied data,
the annotation process further disembodies the data, and subsequently the model, from the
context within which the data are derived from. One study however diverges from this notion
of universal understandings of what abuse constitutes (Arora et al., 2020). By asking the
very journalists who are a target of abuse to perform annotation work, they ensure that the
labels that are associated with each data point is embedded within the subjective positioning
of each journalist. This then affords training models that reflect the subjective positions that
each journalist, who received abuse, have on online abuse. The task, in this ways moves
away from being an abstract construction, to addressing the concrete needs of individual
journalists.

7.2.4 Feature Selection

Considering what information the machine learning models consider to be pertinent, that
is the bodies of data that uncovered through optimization, I similarly find ample space
for subjective positioning. I construct here the notion of feature selection to mean the
construction of features based on theoretical insights, hypotheses about the phenomena
and the sub-selection from complete vocabularies. Considered through the lens of abusive
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language detection, harmful patterns of marginalisation are apparent through a selection bias,
as designers realise themselves in the features that they construct.

7.2.4.1 Manually Constructed Features

A large body of work on hate speech detection has investigated the question of which
human constructed features are useful to the task of automated detection (Chiril et al., 2019a;
Fortuna and Nunes, 2018; Stanković et al., 2020; Talat, 2016). Similarly, in chapter 5 I
explore whether rationalising over content using LIWC can have beneficial influences for
machine learning approaches for abusive language detection. Clearly, there is an interest in
providing scaffolding for computational models to identify and address hate speech detection.

Through the use of higher level cognition, designers embed preconceived notions of what
information computational models should deem relevant, for instance in chapter 5, I consider
whether higher level cognitive information about the function of language can influence
modelling and performance. The assumption is that while words may provide ample space
for over-fitting models to specific instances and patterns that do not generalise beyond the
data provided, other sources of information, i.e. the LIWC dictionary, may be less prone to
over-fitting in such a way. By limiting the feature space to a much smaller discrete space of
possible inputs, I argue that it is possible to achieve performance gains on out-of-domain data,
relative to the input. Another frequently used modelling assumption is that computational
models can benefit from considering words in some context, generally obtained using n-gram
representations of the text (Chiril et al., 2019a; Davidson et al., 2017; Talat and Hovy, 2016).
This modelling choice represents an assumption that that the context within which words
appear carries significance beyond the word on its own. This stands in contrast to lexicon-
based methods (e.g. Bassignana et al., 2019) that assume that the occurrence of some terms,
disembodied from the local sentential context, should direct the model towards predicting
either abuse or not abuse.

7.2.4.2 Feature Selection in Neural Architectures

Many neural machine learning models are applied to text by providing the models with to-
kenised text, in which some minor replacements occur, e.g., substituting usernames, hashtags,
and hyperlinks with stand-in tokens. This modelling choice made by the designers part relies
on two strong assumptions. The first assumption is that all information seized from users
will, to some degree be relevant to the modelling of abuse. The second assumption is that
neural network models can use loss functions to update the model’s internal representation
of the data, in order to identify patterns that correlate in the input to the model with the
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output labels without the need for human cognition or oversight over the data or optimisation
processes.

The first assumption stands in contrast with the use of externally computed word embeddings
that neural network-based models frequently rely on (Isaksen and Gambäck, 2020; Kshirsagar
et al., 2018). Such external word embeddings are most often computed at a much earlier
time than the model is optimised, and their use requires that the vocabulary of the model
is fixed to the vocabulary of the word embeddings. Thereby the use of pre-optimised word
embeddings create a discursive shift between the knowledge contained in the data, and that
which can be used by the models. That is, any shifts in language use and vocabulary that
has occurred between the optimisation of the word embeddings and the optimisation of the
model, will be either misrepresented or relegated to “unknown” tokens. In this alignment,
such discursive shifts can have large impacts, particularly considering abusive language and
hate speech on social media, where users frequently obscure their intended message (Röttger
et al., 2020)—for example through intentional misspelling words. Such obscured tokens that
are excluded from a model’s knowledge and subsequent embodiment of data may in fact be
key in distinguishing abusive content from the non-abusive.

Consider for instance the tweet posted by the American rapper Azealia Banks, an African
American woman, directed towards fellow musician Zain Malik, a South Asian man, (see
Figure 7.1). While the tweet uses profane language, the text is written in African American
English, making the use of the n-word ambiguous. Similarly, as Azealia Banks is a woman,
the use of the b-word similarly holds ambiguity, thus on the basis of those terms alone the
tweet cannot unambiguously be identified as hate speech. While the tweet is clearly abusive
and offensive, in part due to the call for Malik to perform a sexual act on Banks, it is only
through the use of curry scented that the tweet moves unambiguously beyond merely being
offensive to being hateful. As ‘curry’ and ‘scented’ are tokens likely to exist in pre-optimised
word embeddings and language models, we might expect a model to correctly identify this
tweet as abusive. However, as ‘curry’ and ‘scented’ are unlikely to frequently appear in
context of abusive texts, the driver for a correct classification of hate speech is likely going
to be the use of the n-word and the b-word—tokens that in this case cannot be relied on to
determine abuse. Moreover, should there be attempts at obfuscating those tokens, e.g. by
replacing all occurrences of the letter ‘e’ with the number ‘3’ resulting in ‘sc3nt3d’, it is
reasonably to expect that a language model and word embeddings would not have previously
encountered this token. The token would then be transformed into an unknown token, and the
hateful rhetoric would be unavailable to the model, forcing a model to rely on the ambiguous
tokens to make a content moderation decision. On this basis, a model may incorrectly label
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it as simply offensive rather than hate speech, or correctly label it as hate speech, but for
incorrect reasons.4

Fig. 7.1 Azealia Banks tweeting to Zain Malik.

The second assumption, that neural models can rely only on the input data and loss functions
to identify relevant patterns without the need for human reasoning over the process or the
relevance of the input data. This is lauded as a particular strength of neural network-based
machine learning, as it is directed solely by the data without human interference. Through
this data-driven process, models models construct and manipulate their own embodiment, on
the basis of the disembodied data with which they are provided. Moreover, the designers’
subjectivities are reflected in the construction and manipulation of the model’s embodiment
through the designers’ decisions surrounding which data to include and how the model is
constructed. In these decisions, the designers also make decisions on which, if any context is
necessary to adequately represent the phenomena that is being modelled. Thus, designers
construct and embed the normative values that determine relevance to a task, e.g., abusive
language detection. That is, rather than theoretical or qualitative insights, model weights
and probabilistic correlations are emphasised as the appropriate basis for classifications, so
long as they reflect the designers’ subjectivities. Such a practice therefore theorises that
human cognition is rendered irrelevant by frequentist analyses of words and sub-words.
This (implicit) assumption made by the designers contradicts recent studies that argue that
language understanding models do not optimise to the point of having an ability to understand
language, instead they optimise to parrot it (Bender and Koller, 2020).

Disregarding for a moment whether such models truly understand language or simply parrot
it, what remains clear is that models that only use the surface forms of tokens lay on the
globalised end of the model spectrum. The use of already-optimised language models

4Given the social biases against African American English in computational models, the tweet is likely to
be identified as hateful in spite of the obscuring as a result of computational models disproportionately labelling
African American English as hate speech (Davidson et al., 2019).
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and word embeddings in a modelling architecture shift the models slightly towards a more
localised end of the spectrum, as these allow for some social context to be derived from the
way in text is written from a larger data sample. The use of these pre-optimised technologies
thus come to shift the model embodiment away from the embodiments of the users and
towards the embodiments of the designers’ specific subjectivities. This shift happens as the
choice of which language model and which word embeddings to use is a decision made by
the designers. The decision is made on the basis of which specific pre-optimised technology
best aligns with the designers’ subjective position on what constitutes abuse and how it is best
modelled, i.e. which underlying dataset for these technologies best aligns with the designers’
perception of the distinctive features of abuse.

7.2.5 Model selection

As a number of models are optimised to identify which model best embodies the data, the
designers must make normative decisions to identify what constitutes ‘best’. In this process,
designers make a final assertion, embedding their embodiments onto the decision on which
model is selected for further use. However, the choice of designating what constitutes ‘best’
is often times a decision that is made prior to any model optimisation. For abusive language
detection, best often refers to performance for some metrics. For instance, Gorrell et al.
(2018) set out to have a model that has a high precision at the cost of recall. They make this
choice to ensure high confidence in their model’s predictions of the positive class as their
use case is comments made to politicians, where the ability to criticise without sanction is of
particular importance. Wulczyn et al. (2016) and Kshirsagar et al. (2018) on the other hand
select their models using the Area Under the receiver operating characteristic Curve (AUC)
and F1-score, respectively. Both of these metrics for measuring model performance give
preference to models that balance classification error types, such that models are attuned to
false positives as well as false negatives.

Through the choices of metrics, we can discern some aims of the modelling process. Where
Gorrell et al. (2018) aim to situate their model within the context of abuse towards British
Members of Parliament as it occurs on Twitter, they forego claims of universal applicability.
The best performing model, within their understanding is a model which, within the context,
produces as few false positives as possible, explicitly accepting that the number of false
negatives may be high. Considering then the purpose of their modelling process, i.e. to allow
for embodied downstream analysis of how abuse targets a very specific group, their choice
affords an ability to speak to what is highly likely to be abuse within their understanding of
abuse. On the other hand, their choice does not afford them the ability to speak to what is not
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abuse nor what their model misclassifies as not being abusive. Wulczyn et al. (2016) and
Kshirsagar et al. (2018) on the other hand develop their models with the aim of obtaining a
high degree of generalisation onto data outside of the sample that the model is optimised on.
Within this goal lies an assumption that there exist a ‘universal’ and ‘objective’ understanding
of what constitutes abuse, which is invariant to the specific embodiments of different people.
That is, Wulczyn et al. (2016) and Kshirsagar et al. (2018) assume the existence of a global
understanding of what constitutes abuse for an imagined average user, that is disembodied
from all facets of human life.

7.3 Dissertation Models

Here I consider the two model types that I have developed for this dissertation, described
in in chapter 5 and chapter 6, respectively. I document the considerations and assumptions
that each model type reveals, and its implications for the machine learning pipeline. Rather
than go through the entire pipeline, I begin my analysis at the entry points in the thesis, i.e.,
the choices of datasets and the modelling choices, as I exclusively use previously published
datasets.

7.3.1 Vocabulary Reduction

In chapter 5, I optimised the machine learning models using the datasets published by
Davidson et al. (2017), Talat (2016), Talat and Hovy (2016), Wulczyn et al. (2016), and
de Gibert et al. (2018). The decision to use these datasets as optimisation data stems from
these datasets originating from three distinct sources: Twitter; StormFront, Wikipedia editor
discussions; and a white nationalist internet forum, respectively. To be able to measure
the generalisability of the models optimised on Davidson et al. (2017), Talat (2016), and
Talat and Hovy (2016), I reduce the multi-class classification tasks to binary classification
tasks. Through this reduction in classes, I enforce a normative choice that the detection of
abuse has greater value than the identification of the specific type of abuse, e.g., sexism or
racism. My own experiences of hate speech and racialised abuse are at the heart of such a
prioritisation, that is having been subject to such abuse I am more concerned with the ability
to detect abuse than identifying which specific type of abuse it is. Further, the modelling
choice of how to represent data are also subject to my subjectivities. While on one hand
the reduction of the input space to a much smaller input space means that the size of the
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subsequent models, and by extension the complexity of the models, is greatly reduced.5 On
the other hand, through such a reduction in the vocabulary, a large majority of words will no
longer be represented by the text in the models. Here, my belief that abuse detection models
rely to strongly on token occurrences, ultimately impeding the goal of developing models
that can protect marginalised people from abuse, is at the centre of my decision. On the
other end of the vocabulary size spectrum, I use byte-pair encoded documents. Due to the
nature of generating sub-words, this increases the size of the vocabulary in comparison to
simply using the existing word. I use sub-words and byte-pair encoding to minimise issues
of out-of-vocabulary items which may occur due to intentional obfuscation of words, e.g.
through inserting spaces or punctuation in the middle of words (Röttger et al., 2020). This
is also motivated by my lived experiences and observations of abuse towards others, where
peple intentionally obfuscate words to circumvent the simple content filtering techniques,
e.g., writing ‘moslems’ instead of ‘Muslims’. While the modality I work with is text, such
obfuscations also occur in the spoken word through intentional mispronunciation.

In the use of linear models as baseline models, the underlying assumption that I make is
is that simple correlations of word occurrences with labels, are insufficient to capture the
complex interactions between words that are required to make qualified judgements of abuse.
This assumption too is influenced by my own positionality as a brown Muslim who grew
up in a predominately white country where brown people, and in particular Muslims, are
vilified for their existence. One such example were the police bulletins in Danish news while
I was growing up. In these, the description ‘Muslim looking’ were routinely used to describe
Brown men. Such experiences have made it clear to me that social norms surrounding the
use of tokens cannot be readily understood from the words using simple correlations without
greater contextualisation. For this reason, I use LSTMs as they can capture long interactions
between words and are less directly reliant on the occurrence of individual patterns. I also
use CNNs as a number of past studies having shown the efficacy of CNNs for abuse detection
(Gambäck and Sikdar, 2017; Kolhatkar et al., 2020; Mitchell et al., 2019; Park and Fung,
2017; Rizwan et al., 2020; Safaya et al., 2020).

The models described in chapter 5 that only use words or byte-pair encoded words as input
rely entirely on the optimisation data to optimise for patterns in data. Therefore, those models
fall towards the very extreme of the globalised end of the model spectrum. The models that
rely on the LIWC representations, although still on the globalised end of the spectrum, are
further towards the localised end, as the LIWC dictionary is informed by considering data
that is external to the optimisation data.

5I appreciate that even with a reduction of the model size and complexity, neural networks are still too
complex to be readily understood without the aid of additional tools.
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The motivation for using Byte-Pair encoding is reflected in a) my own personal assumptions
about the importance of textual representations and b) computational considerations. I use
BPE to minimise hte number of out-of-vocabulary items, as BPE deconstructs words in
the optimisation data into smaller sub-words. This deconstruction affords minimising the
influence of intentional obfuscations. Furthermore, the choice to BPE can aid the models in
handling unknown tokens better.

Although some of the models are positioned further towards the localised end of the spectrum
than others, all the models used in chapter 5 are on the globalised end of the model spectrum.
Their globalised position derives from the fact that none of the data representations take local
subjective positionalities of individuals in the data into account. Instead, all of the models
rely on some abstraction away from the self through processes of disembodiment.

7.3.2 Multi-Task Learning

In chapter 6 I turn to the question of which constructs, in terms of machine learning tasks,
would be helpful for machine learning models to embody to improve performance for a
given abusive language detection task. Specifically, I examine whether jointly learning
representations of sarcasm (Oraby et al., 2016), whether an argument is based in fact or
feelings (Oraby et al., 2015), the moral sentiments elicited in tweets (Hoover et al., 2019),
and related notions of hate speech and offensive language (Davidson et al., 2017; Talat, 2016;
Talat and Hovy, 2016; Wulczyn et al., 2016) improves classification performance.

For this task, I reuse the BPE representations of documents from chapter 5. Therefore some
of the embodiments of the models, with regard to text representation remain the same as
described in section 7.3.1. Here I focus on the factors from chapter 6 that are distinct from
chapter 5. As I include more datasets into consideration, I also implicitly invite the question
‘why these datasets’? To answer this question, it’s necessary to revisit the aims of each
dataset.

One frequently identified issue with computational modelling of abuse is the issue of sarcasm
(Röttger et al., 2020) and I use the dataset labelled for sarcasm that was proposed by Oraby
et al. (2016). In this choice lay two assumptions: First, that computational models for abuse
detection can benefit from better understanding what constitutes sarcasm. Second, that there
does exist some overlap between sarcasm and abuse, where what appears to be abuse is in
fact sarcastic. Both assumptions are the result of years of researching online abuse, and
in particular exposing myself to the abuse that occurs in online spaces. While I may have
become desensitised to abuse through the disproportionate amounts I am exposed to through
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my research, I frequently see that online abuse, and responses to it are expressed through
humour, in particular sarcasm.6

The second dataset, asks the question of whether an argument is made in the basis of feeling
or on the basis of facts (Oraby et al., 2015). As a majority of people who perpetrate online
abuse do so infrequently (Talat and Hovy, 2016), an underlying cause for being abusive may
be being impassioned, and thus being able to determine whether an argument is made with a
basis in feelings or fact may be possible to help improve performance for abuse detection.

I also use a dataset annotated for moral foundation (Hoover et al., 2019). In this dataset,
each document is labelled for which moral foundations it invokes in the annotators. Moral
foundations and online abuse can be thought of as orthogonal concepts. Moral foundations,
as annotated in the dataset, provide for a higher level cognition about the content that is
read, in which abusive content is likely to elicit the moral sentiments that comprise the moral
foundations framework (Hoover et al., 2019). I therefore believe that machine learning
models jointly embodying abuse and moral foundations can aid with improving performance
of machine learning classifiers for abuse detection. My own experiences of racialised abuse
and observations of abuse in online spaces combined with the apparent desire of abusers to
inflict harm upon their target are central to my inclusion of this task.

Finally, I use a number of datasets for online abuse (Davidson et al., 2017; de Gibert et al.,
2018; Talat, 2016; Talat and Hovy, 2016; Wulczyn et al., 2016). For this task, I do not
reduce the question of detecting to a binary task, instead I use the auxiliary task datasets as a
means to provide the model with more conceptualisations of abuse. However, my subjective
positioning does not change from what is detailed in subsection 7.3.1.

Similarly for the choices in developing the data and textual representations, my own subjective
embodiments and experiences are a key factor in the modelling decisions (see section 7.3.1).
This is particularly true for MTL, where I specifically set the weights for how much each task
is to contribute to the main task through the frequency of selection. Such a weighting relies
on my own consideration of how important each task is to the overall task of identifying
abuse and, subsequently, the degree to which each auxiliary task should be afforded space
to influence the model representations for abuse. The specific architecture of the model is
influenced by its usefulness in prior work (Bingel et al., 2018) in addition to seeking an to
answer the question of how more complex models would influence the performance on the
task.

6By responses I mean general reactions and responses to abuse beyond the direct responses to a perpetrator
of abuse.
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Using the MTL framework has strong implications for where on the localisation spectrum
the model is positioned. For instance, the use multiple different datasets to influence a single
model precludes the extreme ends of the modelling spectrum. Jointly optimising multiple
tasks in a shared internal model layer explicitly shifts models away from the extreme of the
globalised spectrum, by providing using datasets that are external to the main task dataset
and by contextualising the main task with the representations obtained from the auxiliary
tasks. Similarly, the localised extreme of the model spectrum is also precluded using this
method, as the auxiliary tasks do not afford embedding the subjectivities and embodiments of
individuals. On a demographic level, however, MTL does hold potential for shifting towards
the localised extrema, if and only if all auxiliary tasks also come from the demographic that
the main task is concerned with. Moreover, as each auxiliary task will work, if as nothing else,
as a regulariser for the main task, MTL will shift the model away away from the extremes
of the spectrum. In my use of MTL for abusive language detection, with the auxiliary tasks
that I have chosen, the models that I have developed are shifted away from the globalised
extrema towards a more localised position on the model spectrum. However, as I do not
optimise my models on any tasks that seek to make predictions on users, and the distinct
datasets do not originate from the same demographic, the model remains a globalised model.
Instead the models that I produce, by virtue of learning considerations on tone, argument
basis, sarcasm, and moral sentiment, optimise for some representations of the faculties that
I believe of importance to the task. These auxiliary tasks then provide an avenue for the
models to be more closely situated within the how each individual person can be represented
as a function of how they express themselves. Thus, while further towards being a localised
end of the spectrum than the LIWC models, the models fall short of significantly situating
the modelling of individuals within the context and lived experiences of that individual.

7.4 Discussion

Given that subjective choices and biases masquerading as disembodied ‘objective’ positions
permeate the machine learning pipeline, the quest for objectivity and bias-free machine
learning becomes redundant. This redundancy is made apparent as all choices in the machine
learning development pipeline embody the subjective experiences of all who are a part of
the pipeline, from the people whose data is seized, to annotators and the designers of the
pipelines. As these experiences are embedded in the system, so slips away the illusion of
‘objectivity’ and ‘neutrality’ of the machine learning technologies. In fact, the search for
objectivity in the pipeline creates a veneer of social progress that may cause further harm to
already marginalised communities by obscuring and entrenching the dominance of certain
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bodies over others. Such harm is instituted by providing a veneer of more just, or fair,
machine learning technologies that nonetheless perform institutional violence upon all who
are externalised by the development process and the subjective experiences that lie at the
heart of them. Without taking the unique embodiments of all data subjects into account, this
imaginary of fair only serves as a justification of maintaining oppressive structures that are
inherently harmful and reductive.

Considering the task of hate speech detection, developing automated tools, that are applied
to a general population, makes inherent decisions on behalf of the user-group. The decisions
made by the third party adjudicator, i.e. content moderation technologies, embed subjective
experiences of the data subjects whose data has been stripped from the context it was created
in, the annotators, and the designers of the technologies. Such decisions are codified through
the machine learning pipeline, and are presented as disembodied and objective decisions on
what constitutes hate speech. In this way, machine learning technologies embed normative
socio-political positions on respectability and acceptability. These normative values come to
be presented as ‘objective’ through the disembodiments that occur in the machine learning
pipeline. However, such notions of objectivity merely provide a thin veil over the subjective
embodiments of the designers and annotators. With the vast majority of research on abusive
language detection being developed for English in the global north (Vidgen and Derczynski,
2020), the notions of respectability that are embedded in the technologies are normative for
white majoritarian countries and cultures. Through such codification of white perspectives
on respectability masqueraded as objective, attempts to address ‘bias’ in machine learning
technologies for content moderation only serve to justify existing oppressive structures by
further obscuring the subjectivities and norms embedded in the systems.

A consideration of how data is embodied can empower designers of machine learning
systems by allowing them to reflect on what is embodied and how it is mired in context.
Such considerations allow designers to interrogate the contexts within which data are created,
and how meaning is made at each step in the dataset creation process. It is through such
recognition of context and embodiment that one can realise that as contexts change, so does
the applicability data. Further, only by such recognition of the deeply complex nature of
embodiment and data can one hope to ask and ascertain which views the models privilege
and which are subjugated. For building content moderation systems for the detection of
hate speech and abuse, the designers of machine learning pipelines can ask how their
own embodiments prejudice them to selectively sanction some speech patterns. Moreover,
designers may want to ask themselves how such sanctions create downstream implications
for the speech that is sanctioned.
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Although there are methods with which we can move towards more localised machine
learning models, what positions are given space remains a political question. It is only
through wholly representing the context and embodiments of the data creator and the datum
that one can hope to arrive at sufficiently localised models. Thus, rather than asking how to
eliminate bias and subjective experiences from machine learning in the pursuit of objectivity,
shifting the question to consider embodiments would ask us to reflect on the subjective
experiences that are given voice. For hate speech detection, such reflections would have
designers ask which groups understandings of abuse it is most appropriate to ground their
definitions, and subsequently annotations and models, in. Such a shift would then require us
to ask and reflect upon which bodies’ subjective experiences we need to account for, such
that we give voice to socially, and computationally marginalised groups.

Only by recognising the positionality of the designers and annotators of machine learning
models and data, can one account for what (and whom) ones own position, and the models
derived from it privilege and sanction, give space for and the political ramifications of this.
For these reasons, it is imperative that machine learning moves away from consolidating
power in the designers and move towards development practices that are rooted in the
participation of the people who will be subject to the models, i.e. the intended users of the
models. Participatory design practices however can quickly turn predatory if the turn to
participatory design principles does not also provide for a redistribution of power (Kelly,
2019). Here, Sasha Costanza-Chock’s (2018) work on design justice can provide a guide
towards developing participatory design practices for machine learning. Costanza-Chock
(2018) argues for design practices that centre the experiences and needs of the communities
for whom the design practice is taking place. Specifically, Costanza-Chock (2018) argues
that design practices should have “sustainable, community-led and -controlled outcomes.”
By working towards such goals, machine learning research can come develop processes
and technologies that specifically address the needs of the communities for whom we are
developing our technologies.

7.5 Summary

In this chapter, I have sought to examine how subjective embodiments permeate the machine
learning pipeline, in efforts examine the machine learning infrastructures that underpin
contemporary content moderation technologies. Thus, in this chapter I seek to examine
RQ I by examining how subjective embodiments are embedded into machine learning
infrastructures and what the consequences of such embodiments are. In this chapter, I
then provide a reading of machine learning against the grain by critically examining how
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subjective embodiments become embedded within the machine learning infrastructure. By
performing this reading, I have used this chapter to examine the ways in which machine
learning systems come to produce socially biased outcomes, such that machine learning
research can move beyond the discriminatory practices that we have developed.

Identifying processes for developing machine learning technologies that are not discrimina-
tory, is of particular importance to content moderation technologies, as these technologies
currently produce discriminatory outcomes in terms of censorship of marginalised commu-
nities (see chapter 4 for further details). The work that I have performed in this chapter,
identifies specific ways in which machine learning, and machine learning for content modera-
tion encodes the subjectivities that are widely read as social biases. To address this concern, I
propose that researches be aware of the specific ways in which they embed their subjectivities
throughout the machine learning pipeline and consciously make decisions in the development
process that ensure that the subjectivities that are embedded within the systems reflect the
aims and the subjectivities of the people that the content moderation systems are to be applied
to. Specifically, I suggest that researchers are mindful of their own subjectivities and the
desired outcomes of the technologies, and that research engages in a genuine efforts for
participatory design by collaborating with the communities that technologies are developed
for. Moreover, I argue that the universalist notions applied in machine learning, including the
algorithmic detection of abusive language, contribute strongly to the ongoing marginalisation
that machine learning systems perpetuate. Finally, I argue that it is only by taking steps away
from such universalist notions and towards co-developing systems with communities that
are community-led and community-controlled that we can hope to overcome the issues of
discriminatory systems and, in the case of content moderation, systems that do not censor
marginalised communities.



Chapter 8

Conclusion

In this thesis I have sought to explore the content moderation infrastructures that are built
for classifying textual abuse in online spaces. The contributions of the thesis are struc-
tured around four central themes: How the notions of ‘healthy’ and ‘toxic’ content are
operationalised, the implications of such operationalisation and how these come to embody
hegemonic imaginaries on respectability; how large vocabulary reductions, that represent
the mental and emotional states of speakers rather than their words influence the ability of
models to classify in-domain and out-of-domain data; how different, apparently related, tasks
can be used to jointly optimise model representations to gain models that more closely come
to reflect the contexts a given speaker is operating in when speaking; and finally, how the
subjective embodiments of data subjects and modellers alike are embodied in the machine
learning pipeline and how these collectively come to privilege hegemonic discourses. These
four distinct themes are connected through two over-arching research questions:

RQ i What technical and social factors are present in the socially discriminatory
predictions of content moderation systems?

RQ ii In which ways can computational methods be used to address limitations that
are influential in discriminatory outputs from computational modelling?

To adequately answer these questions, I address each theme in turn through through multiple
disciplines. This approach affords insights into the technical, social, and political dimensions
of content moderation infrastructures for abusive texts. The contributions in this thesis
are thus in part theoretical and in part experimental in nature. By examining the questions
through theoretical and experimental lenses, I can begin to uncover the political and technical
complexities of content moderation infrastructures Furthermore, this multi-disciplinary ap-
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proach affords insights that are opaque when the questions are addressed purely theoretically
or purely experimentally approach. The thesis has been structured such that I start and
finish with primarily theoretical contributions while the primarily experimental contributions
constitute the middle of the thesis. I choose this structure to remain faithful to the machine
learning pipeline for content moderation, addressing first definitional questions and then
questions of modelling. Finally, I take a step back and reflect on the machine learning
pipeline from start to an end.

In efforts to answer RQ I and RQ II, I formulate sub-questions that ask the following directed
research questions:

RQ 1 How are notions of ‘toxicity’ operationalised and modelled, and what are
their socio-political implications for content moderation systems?

RQ 2 What are the modelling implications of using LIWC to substitute the use of
words and sub-words as input tokens?

RQ 3 How do the individual and combinatory use of abuse classification and non-
abusive tasks impact classification of specific forms of abuse?

RQ 4 How are the subjective embodiments embedded in the machine learning
pipelines?

RQ 5 What are the implications of such subjective embodiments with regard to
developing machine learning models?

In chapter 4, I address research question 1. In addressing RQ 1, I critique of how notions
of ‘toxicity’ are operationalised and employed through a consideration of of Mary Douglas
(2005) work on social pollution. I argue that notions of ‘toxic’ and ‘healthy’ are opera-
tionalised within several socio-cultural contexts: the context of the designers of the task, the
contexts of the annotators, and the contexts of distinct modelling techniques. These contexts,
however are not reflected on in the process of developing automated content moderation
tools, instead they are assumed to have little influence, resulting in models that collapse each
of these contexts into a single entity that embodies them. Such embodiment is predicated on
efforts towards obtaining a global understanding of ‘toxic’ and ‘healthy’ content, thus repro-
ducing racialised and gendered positions on respectability. As such, the content moderation
systems that I examine, engage in toxic slippage, where they simultaneously over-police the
content produced by people inhabiting marginalised positions while also failing to protect
these groups from ‘toxic’ content.

Moreover, I argue that the model development process exhibits three prominent avenues
that lead to models that maintain pre-existing, hegemonic power structures. First, through
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the optimisation data, which is likely to more frequently have occurrences of some identity
terms in the positive class than in the negative class, e.g. ‘Black’, ‘gay’, and ‘woman’.
Thus, a model is likely to embody that identity terms have a greater association to ‘toxic’
content. Further, I argue that even when several datasets with competing definitions of abuse
are used, the optimisation procedures result in models better representing the overlaps of
data and labels, at the expense of where the datasets or labels diverge from one another.
Second, models come to embody discriminatory norms through the use of pre-optimised
embeddings that take a distributional perspective on language production and are known
to harbour harmful social biases against minoritised groups (Speer, 2017). Lastly, I argue
that the models themselves are likely to exacerbate hegemonic positions, given that machine
learning models have been shown to amplify social biases that exist in datasets (Zhao et al.,
2017). These findings have an impact on future work for computational modellers as they
provide theoretical scaffolding for why and how marginalised communities come to suffer
under abuse classification models. Thus, the contributions here begin to forge a path towards
abuse detection models that are centred around the experiences of those who are most likely
to suffer harms from misclassifications.

One challenge that is raised in chapter 4 is the notion of the pluralist model that Opt Out
develop. While a pluralist model does allow for people embed their own subjectivities into
the modelling process, they are not exempt from the critiques made in chapter 4. In fact, as
we see in the chapter, Opt Out incorrectly moderates fig. 4.4 due to the uses of the b-word and
references to sexual promiscuity. Moreover, as pluralist models also need some centralisation
for optimising the machine learning model, they are similarly subject to the risks of optimising
towards hegemonic positions. This risk may be slightly decreased as the pluralist model
is only be applicable to a single person at a time. Thus the hegemonic positions that they
may come to embody might only affect singular individuals who specifically provide data
to the model that would encode such hegemonic positions. This further raises an issue
for consideration, namely that of the harms individuals may enact on a larger community.
Specifically, if a person’s model comes to embody positions that are tailored to the individual,
are there any limitations that should be set for minimal notions of acceptability, that are
applied for everyone using such pluralist models? For instance, should people who believe in
the genocide of other people be afforded the ability to determine that calls for genocide is
acceptable content while resistance to such calls is deemed as unacceptable? If such minimal
notions of acceptability are to be set, further questions around who is to determine them and
what exceptions should be made to this remain as vital questions.
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In chapter 5, I turn towards research questions 2. Starting with RQ 2, I optimise three different
neural network models and two baselines for five different datasets, each experimenting with
3 different data representations: Word tokens, sub-words, and LIWC encoded documents. I
find that using LIWC encoded documents to optimise machine learning models can obtain
competitive results with linear models and neural networks that are optimised on word
tokens and sub-word representations alike. Specifically, I find that for linear models, LIWC-
based models can obtain classification performances that are as good or better than models
optimised on the other two representations, though for some dataset and model combinations
there is a significant drop in performance. For neural network models, I similarly find that
LIWC models can provide for in-domain classification improvements in some cases, and in
most cases provide with a competitive performance. I find that all three neural model types
are well suited for the use of LIWC, with the best performances achieved by the CNN models.
Thus, I conclude that while there is space for the improvements in model performances,
LIWC based modelling can provide for an alternative to using word-token or sub-word
document representations.

I further observe how machine learning models are affected by the vocabulary change in
terms of the time required to fully optimise them. I find that in many cases, LIWC-based
modelling for neural networks show a reduction in the time it takes for a model to finish
the optimisation procedure. However, I also observer that in some cases, the LIWC-based
models take as long, or longer, than models optimised on other document representations.
In particular, I find a relationship between the complexity of the model and the model
optimisation time, where the more complex a model is, the longer it takes to optimise. That
is, I find that all but one LIWC MLPs take less time to complete the optimisation procedure
than their word-token and sub-word counterparts. For CNNs, LIWC models tend to finish
optimising close to as close as word-token models, and faster than sub-word based models,
with a single exception where the LIWC model takes almost twice as long as its closest
competitor. Finally, for LSTM models, I similarly find that in most configurations of datasets,
LIWC-based models tend to finish optimising quicker than the other models. Here too there
is a single outlier in which the LIWC LSTM model takes longer to finish optimising than
all other models. Thus, I find that in terms of speed in optimising the models, LIWC-based
modelling in most cases provides for as fast or faster model optimisation procedures.

I also examine how the LIWC-based models perform when evaluated on out-of-domain
data by applying on all models across all datasets, including those that the model has not
been optimised for. Using this method, I find that LIWC-based models often provide for
out-of-domain performances that out-perform all other out-of-domain models. Particularly
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LIWC-based models optimised on the Toxicity dataset performs well on out-of-domain data.
Finally, I observe that all models tend to perform better on out-of-domain datasets where the
goal of the dataset resembles the goal of the dataset the model is optimised on.

As the results of my experiments show, there is space for improving in-domain and out-
of-domain classification performances by thinking carefully about how data is represented.
Research question2 invites researchers to think carefully about data representations. More-
over, in specific next steps, there is space to investigate what the impact on modelling is when
LIWC-based document representations are combined with and word-token or sub-word token
representations. Such combinations would allow for using models that have pre-optimised
embedding layers for the word and sub-word parts of the data representations. The use of
pre-optimised layers is likely to provide for additional improvements on both in-domain and
out-of-domain performances.

Turning questions of context, I address research questions 3 in chapter 6. In this chapter,
I experiment with Multi-Task Learning with three main tasks for distinct forms of abuse,
the Offence detection task, the Hate Speech detection task, and the Toxicity detection task.
Each of these is also used as an auxiliary task when it is not the primary task. For auxiliary
tasks I use the three main task datasets in turn, and the Hate Expert dataset, as my abusive
auxiliary tasks. For my non-abusive auxiliary tasks I use the Sarcasm detection task, the
Moral Sentiment prediction task, and the Argument Basis task. Through my experiments, I
find that there is a positive impact on model performances, in terms of improvements over a
single task MLP baseline when using almost any dataset as and auxiliary task. Specifically,
I observe that the three main task models that I optimise all benefit from using sarcasm
detection as an auxiliary task. Moreover, two out of three auxiliary tasks also benefit from
using the remaining two non-abusive auxiliary tasks. Using combinations of only non-abusive
tasks also improves modelling performances, though none of these combinations achieve the
best-performing auxiliary task combination.

In fact, I find that using abusive tasks as auxiliary tasks has a positive impact on the model
performances. Unlike the non-abusive tasks there is one auxiliary task setting for one dataset
where the highest performance is achieved by a combination of only abusive auxiliary tasks.
The use of abusive tasks in particular has a beneficial impact on performances in terms of
precision score. In the abusive tasks however, I also find that not all tasks are equally suited.
In particular, I observe a relationship between abusive datasets that share similarities in either
data source or in annotation goals. For instance, the Hate Expert dataset only performs well
enough as an auxiliary tasks to be selected as for further when the main task is the Hate
Speech task which was sampled from the same collection of data and annotated using the
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same guidelines. Moreover, I find that the Offence auxiliary task is useful for both main tasks,
where it shares the dataset source with the Hate Speech task and shares annotation goal with
the Toxicity task.

When considering combinations of abusive and non-abusive auxiliary tasks, I find that
combining abusive and non-abusive auxiliary tasks provides for some of the best model
improvements. Specifically, I find that using the Sarcasm task in conjunction with one
or more abusive tasks provides for high performing models. This suggests that encoding
representations for sarcasm detection in combination with an auxiliary abuse dataset can have
benefits on the main task performance. It is worth noting that all three non-abusive auxiliary
tasks appear in the best-performing auxiliary task configurations and the best performances
are obtained when abusive and non-abusive auxiliary tasks are used together.

The findings in this chapter, provides several paths for future work. For instance, one avenue
for future work is to explore more non-abusive auxiliary tasks such as sentiment analysis.
Additionally, future research can address improvements in modelling e.g. by using more
complex modelling architectures or by optimising the weight each auxiliary task is given.

Finally, in chapter 7, I address the final two research questions: RQ 4 & 5. In this chapter,
I read against the grain in my considerations of the machine learning pipeline for NLP. I
further apply my insights to models developed in this thesis for abuse detection.

Through my reading, I find that subjectivity is embedded into machine learning in all
processes that humans with their subjective experiences are involved in. The subjective
experiences of people involved in the modelling pipeline express their subjective experiences
through the data collection, annotation, and model building processes. Thus, I argue that to
address issues of bias, fairness, and representing the users of machine learning models, it
is necessary for awareness of the subjective experiences that modellers want to represent
and develop processes which foster the human and computational expression of these. One
avenue for such development processes is through participatory design with a focus on
notions of design justice, as outlined by Costanza-Chock (2018). Moreover, to develop which
are fair an equitable, it is necessary to start with the development process of machine learning
models with those whose experiences are not embodied in machine learning. Thus, rather
than attempting to force models that have been optimised to reproduce oppressive structures,
this research calls for modelling to be centred around the subjective, lived experiences of
people and their needs.

In future work, there is more space for practitioners and researchers to engage in identifying
how their own subjective experiences influence their design decisions. Moreover, an implica-
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tion of this work is that models that embody desired subjective experiences can be developed,
given that the resources for this are developed.

Returning to the guiding questions of how machine learning systems for content moderation
come to produce socially discriminatory outputs and the ways in which computational
methods can come to address some of these concerns, my findings in this thesis are that
machine learning systems very poorly represent the subjective experiences of large groups
of people, and the computational approaches that I developed to more faithfully represent
these people make positive steps but still fall shy of making truly faithful representations.
Moreover, content moderation technologies for online abuse expressed through text at present
have largely not sought to closely represent the subjective experiences of users. Particularly,
they have failed to represent the perspectives and experiences of those who stand to be
harmed most by content moderation technologies, instead focusing on goals such as having
models that take a global perspective on abuse. These issues are the result of a computing
culture that seeks to abstract away subjectivity in search of, if not ‘objective truths’, global
consensus on inherently subjective questions. However, as I show in this thesis, there is vast,
and largely unexplored, space for developing models that more closely seeks to represent
the people and thus better make space for peoples subjective experiences. For instance, in
chapter 5, we see how using modelling that seeks to encode the mental and emotional state
of the author yields for improved performances on out-of-domain data, when the annotation
goals of the in-domain and out-of-domain data align, thus providing space for generalising
specific perspectives. Moreover, as observed in chapter 6 the use of MTL can allow for
models to optimise representations of related auxiliary tasks, such as whether a comment
is sarcastic or the expressed moral sentiments, can allow for deeper engagements with the
intentions of the speaker, thus moving modelling to more closely represent the speakers and
their intentions.

In seeking answers to the guiding questions, my work in this thesis both fails to achieve the
research goals and manages to fulfil them. My work fails to achieve these goals by not fully
engaging with the questions in more depth and in the same vein achieves these research goals
by providing a step into these questions. Moreover, my work achieves the research goals
by providing alternative readings and methods for machine learning that can afford more
faithful representations of people. On the other hand, the work fails to achieve its goals by not
providing definitive answers, but instead provides suggestions for research directions. While
I construct the successes and failures in absolute terms here, my position is more nuanced.
The work that I have performed provides for some beginnings of research directions and
for some further steps for pre-existing directions. The failures of not achieving definitive
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answers are offset by having identified new questions to ask while the successes of providing
steps for new directions also make space for analyses of the limitations of the directions that
I have investigated.

In this thesis, I have sought to identify challenges and opportunities for developing models
for the content moderation of online abuse. This is scaffolding for a hopeful path forward
- one that centres the subjective experiences and humanity of those impacted by content
moderation technologies, and that brings back considerations of the social hierarchies that
make them most vulnerable to abuse. I hope to bring the experiences of these people back
into the heart of the task.

8.1 Limitations and Future Work

The work in this thesis has a number of limitations, both computationally and theoretically.
A core limitation that applies to all aspects of this thesis is that the work is primarily
investigating content moderation as it applies to the global economic north, specifically for
English speaking nations, with a particular focus on the United States of America. For all
aspects of this thesis, future work would be well suited to develop on the work presented
here by centring specific contexts in the global economic south, where content moderation,
or the lack thereof has had disastrous consequences. Moreover, my chapter on content
moderation and social pollution (see chapter 4) provides a next step, expanding on Liboiron
et al. (2018). While this chapter extends a general theoretical framework, it is centred around
how content moderations deals with race and gender, and to a lesser degree sexuality in the
global economic north. A limitation here is then that the considerations and how they apply
to other contexts, i.e. the global economic south are not included. Future work could then
think more deeply about the specificities with which our framework requires extension for
specific contexts and that of content moderation in the global economic south.

In terms of computational limitations, the work in chapter 5 is limited to English as the
LIWC dictionary is only defined for English. Moreover, using LIWC is most appropriate
for content written in mainstream American English, as this is the only variant of English
that it is defined for. Finally, the use of psychometrics has deep-rooted issues, a reliance
on any psychometrics carries a risk of reproducing harmful and hegemonic reductions of
psychological constructs. Future work could then consider other forms of low-vocabulary
representations that are not rooted in such problematic histories. Furthermore, future work
could consider how low-vocabulary representations can be used in conjunction with pre-
optimised technologies such as large language models and word embeddings. Centring other
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languages than English would also have the direct benefit of requiring a different vocabulary
reduction technique as LIWC only exists for mainstream American English.

Similarly to the limitations of chapter 5, the work I have performed on Multi-Task Learning
would benefit greatly from centring other languages than English and other populations
and nations beyond that of the United States of America. Moreover, although there are
improvements on the baselines in this chapter, there is ample space for considering how
MTL could be used to improve results further. This space also includes considerations
of wider computational architectures, e.g. the inclusion of pre-optimised technologies as
internal layers of the model, or directly experiment with MTL using solely large language
models. Although I perform an extensive investigation of tasks, several more tasks could be
considered for exploration including rumour detection and sentiment analysis.

Both computational chapters could be extended along the lines of directly including consid-
erations of demographic belonging. That is, the loss functions for the neural networks used
in both chapters could take into account the demographic information that is available about
the speakers. By considering demographic information, machine learning models could
come to start to encode pre-existing power structures and account for these in their functions.
The final contribution of my thesis is largely theoretical and functionally translation work
between fields. For this reason, introducing the notion of disembodiment to the machine
learning and NLP communities, starts at the beginning, and thus the chapter seeks to provide
a foundation for future thought. The limitations of this work then is that there is far more
depth to consider in how each of the aspects highlighted contribute to disembodying machine
learning technologies from human experiences. Moreover, the pipeline that I have sought
to read and analyse is a research pipeline. In a production pipeline for a commercial entity,
machine learning technologies are often embedded in deeper technical structures. As ma-
chine learning technologies are increasingly being deployed into such production pipelines,
it is prudent with a consideration of how embodiment and disembodiment happens in a
commercial, for-profit entity.

Finally, with the work in this thesis I have sought to lay the foundations for new directions
for abusive language detection and machine learning. The scaffolding that I provide directly
invites and welcomes work to build around the scaffolding and develop the structures further,
such that we can emphasise justice in the processes we create for developing new technologies
for people and communities.
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