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Abstract: The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of indi-
vidual electrical appliances by disaggregating the overall power consumption that has been sampled
from a smart meter at a house or commercial/industrial building. Last decade’s developments in
deep learning and the utilization of Convolutional Neural Networks have improved disaggregation
accuracy significantly, especially when utilizing two-dimensional signal representations. However,
converting time series’ to two-dimensional representations is still an open challenge, and it is not clear
how it influences the performance of the energy disaggregation. Therefore, in this article, six different
two-dimensional representation techniques are compared in terms of performance, runtime, influence
on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show
an advantage of two-dimensional imaging techniques over univariate and multivariate features.
In detail, the evaluation results show that: first, the active and reactive power-based signatures
double Fourier based signatures, as well as outperforming most of the other approaches for low
levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise,
they perform best under high noise conditions and show the smallest decrease in performance with
increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation
performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no
significant improvements in terms of performance could be observed.

Keywords: appliance identification; Non-Intrusive Load Monitoring (NILM); time series imaging;
two-dimensional signal representations

1. Introduction

The aim of Non-Intrusive Load Monitoring (NILM) is to estimate the power consump-
tion on the device level from the aggregated power-consumption signal of a household or
a building [1], while minimizing the number of installed energy meters and thus reducing
the wiring harness and improving the retrofitting capabilities [1,2]. NILM is defined as a
single-channel source-separation task, and the methods that have been proposed in the
literature to solve it can be classified into three main categories [3], namely (i) the pattern-
matching (elastic matching) approaches which detect load signatures in the aggregated
power-consumption signal by comparing them to a set of reference signatures [4–6]; (ii) the
source-separation methods, including matrix and tensor factorization as well as sparse
coding, which separate base components and activations using numeric solvers [7–9]; and
(iii) the model-based approaches which are based on machine learning algorithms, usually
training one model per device, in order to estimate the power consumption of the loads of
interest from the aggregated signal [10–12].

In detail, within the last few decades, NILM has been employed in many utility
and non-utility applications. As regards the utility applications, energy-consumption
reduction for residential [13,14] and industrial [15] areas is the most common application.
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Furthermore, NILM has been used in energy management of smart-grids to optimize load
schedules as well as to increase customers’ satisfaction [16,17]. Moreover, NILM has been
used to improve load forecasting utilizing specific appliance-usage patterns [11]. In non-
utility applications, NILM has been used for fault detection and diagnostics in both the
industrial [18] and the residential sectors [19]. Moreover, the privacy-persevering nature of
NILM has been used for human behavior monitoring [20]. Moreover, NILM was evaluated
in terms of its ability to extract socio-economic information and consumer behavior [21].

The recent development of deep machine learning algorithms and the creation of big
data collections have resulted in advanced NILM methodologies. NILM methodologies
that are based on Deep Neural Networks (DNNs) [22], Convolutional Neural Networks
(CNNs) [15], Long-Short-Term-Memory (LSTM), and Recurrent Neural Networks (RNNs)
are presented in the bibliography [23]. Specifically, in [24], the authors presented a causal
CNN with gate-dilation optimisation, while, in [25], the authors proposed a concatenated
CNN method for high sampling frequencies. In [26], the authors presented a bidirectional
LSTM approach with forward and backward path optimization and Bayesian optimization
of the hyper-parameter. In [27], the authors proposed the use of RNNs combined with
convolutional layers, and, in [28], the authors presented a NILM method based on deep
RNNs. Moreover, recently published work on NILM is focused on the use of Generative
Adversarial Networks (GANs) [29–31] and on bidirectional Transformers [32] in order
to use self-attention mechanisms to increase the accuracy of NILM [33], as well as the
robustness [30,34] of NILM methods. The transfer capability of NILM methods was studied
in [35,36]. Moreover, the areas of fault detection [19] and privacy and security-sensitive
Information extraction [3] have been studied.

The above-described approaches utilize either one-dimensional time series as in-
put features [26,37] or multivariate time series of several different features, e.g., active
power, reactive power, apparent power, and current, as in [24,27]. However, CNNs in
particular were originally proposed as feature-extraction engines for two-dimensional
and three-dimensional inputs, e.g., for image processing [38]. Therefore, few approaches
have investigated the transformation of one-dimensional time series into two-dimensional
signal representations while considering the physical nature of the NILM problem, i.e., con-
sidering the harmonic content or the relationship between active and reactive power.
For example, in [39], a double-Fourier-integral-based approach for high-frequency energy
disaggregation was proposed, and, in [40], a low-frequency approach based on active and
reactive power signatures was proposed. Furthermore, voltage and current signatures were
used to convert raw measurements into two-dimensional signatures [41,42]. Moreover,
in [43,44] time series imaging approaches for univariate time series, i.e., when only a single
feature is available, were investigated. However, it is not clear which two-dimensional
representations have the best disaggregation performance, since, to the best of the authors
knowledge, time-series-imaging techniques have not been compared with each other be-
fore. Therefore, in this paper, we investigate the NILM performance of two-dimensional
signatures utilizing high- and low-frequency data. Furthermore, we compare the two-
dimensional representations with previously published approaches using univariate or
multivariate features. The contributions are as follows.

1. Six time-series-imaging (two-dimensional representations) techniques were compared
on high- and low-frequency data.

2. The convergence behavior and the influence on the sampling frequency of the two-
dimensional representations were evaluated.

3. The robustness to noise for the six evaluated time series imaging approaches was
evaluated.

The remainder of the paper is structured as follows. In Section 2, an introduction
to time series imaging for energy consumption signals is provided. In Section 3, the
evaluated architecture utilizing two-dimensional representations is presented. In Section 4,
the experimental setup is provided, and the evaluation results are presented in Section 5.
The discussion is provided in Section 6, while the paper is concluded in Section 7.
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2. Time Series Imaging for Energy-Consumption Signals

Let xagg ∈ RT and yagg ∈ RT be two aggregated discrete time signals of length
T samples, e.g., current (iagg) and voltage (vagg) for high-frequency measurements or
active power (pagg) and reactive power (qagg) for low-frequency measurements, continu-
ously measured by a smart meter. The two signals are time-aligned (time-synchronous
acquisition and in parallel A/D conversion); thus, when each signal is segmented to
frames of length W samples for any arbitrary frame xτ

agg ∈ RW of xagg, with xτ
agg =

[x(t0), x(t0 + 1), . . . , x(t0 + W − 1)], there is also a frame yτ
agg ∈ RW of yagg, with yτ

agg =
[y(t0), y(t0 + 1), . . . , y(t0 + W − 1)], where t0 is an arbitrary starting sample of the frame.
Based on the above, the following six time series imaging methods are introduced: Voltage–
Current (VI) trajectories (in Section 2.1), Double Fourier Integral Analysis (DFIA) (in Section
2.2), active–reactive (PQ) transformation (in Section 2.3), Recurrence (REC) plot (in Section
2.4), Gramian Angular Field (GAF) (in Section 2.5), and Markov Transition Field (MKF) (in
Section 2.6).

2.1. VI-Trajectory

VI-Trajectories describe the changes of current and voltage in a two-dimensional plane,
thus transforming the two time series of the current (iagg) and the voltage (vagg) into a two-
dimensional array. Considering a frame of current iτ

agg and voltage vτ
agg, the VI-Trajectory

can be calculated as follows [41,42]:

1. Normalize the waveforms to their absolute maximum values, i.e., ĩτ
agg =

iτagg

max (|iagg|)
and ṽτ

agg =
vτ

agg

max (|vagg|) .

2. Define a uniform grid with grid size ∆i = max(|iagg |)
W/2 and ∆v =

max(|vagg |)
W/2 .

3. Map the current and voltages samples ĩagg(i) and ṽagg(j) with 1 ≤ i, j ≤ W to the
W ×W grid cells, obtaining the VI-Trajectory feature vector Fτ

i,j ∈ RW×W , where each
element in Fτ

i,j indicates if a combination of current and voltage exists or not.

2.2. Double Fourier Integral Analysis

In DFIA, an output function f (·) is defined [45] by the cyclically varying signals
xτ

agg and yτ
agg, i.e., f (xτ

agg, yτ
agg), i.e., zτ

i,j = xτ
agg(i) · yτ

agg(j), with 1 ≤ i, j ≤ W and Zτ ∈
RW×W being the two-dimensional representation for the τ-th frame. Each two-dimensional
plane, Zτ , contains the information of the trajectories in the x/y directions. For energy
disaggregation, the double Fourier transform is calculated for each Zτ frame, i.e.,

Fτ
k,l =

1
W2

W

∑
i=1

W

∑
j=0

zi,j · e−j2π( k
W i+ l

W j), (1)

where 1 ≤ k < K and 1 ≤ l < L are index variables. The magnitude and/or phase of
each feature vector Fτ ∈ CW×W is then used as the input of a machine learning model for
classification or regression.

2.3. PQ Transformation

When high-frequency measurements are not available, the time frames of xτ
agg and yτ

agg
can be used to form a two-dimensional PQ-representation. Specifically, if low-frequency
active and reactive power are available, power can be calculated as in Equation (2).

Fτ
i,j =

√
pτ

agg(i)
2 + qτ

agg (j)2, (2)

where Fτ
i,j ∈ RW×W with 1 ≤ i, j ≤W is the two-dimensional representation of frame τ on

the PQ plane, with the diagonal elements of Fτ representing the instantaneous apparent
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power. Similarly, when the current and voltage are available with high-frequency resolution,
a power plane can be calculated as in Equation (3).

Fτ
i,j = iτ

agg(i) · vτ
agg(j) (3)

2.4. Recurrence Plot

The above-described methods have utilized both time series, xagg and yagg, to compute
the two-dimensional representation that can be used as input features. However, some
datasets offer only univariate measurements, e.g., only active power or current [46], thus
not allowing the utilization of VI, DFIA, or PQ approaches. A method to utilize univariate
time series imaging is the recurrence plot, which computes the pairwise distances between
two successive frames. Based on the definition of the frame xτ

agg, the recurrence plot can be
calculated as in Equation (4).

Fτ
i,j = Θ

(
ε− ||xτ

agg(i)− xτ
agg(j)||

)
, (4)

where Fτ
i,j ∈ RW×W with 1 ≤ i, j ≤W is the two-dimensional recurrence plot representation,

Θ is the Heaviside function, and ε is a threshold parameter.

2.5. Gramian Angular Field

Similarly, Gramian Angular Fields (GAFs) can create two-dimensional representations
based on a single time series. In detail, the GAF is a method creates a matrix of temporal
correlations for each (xi, xj) within a frame xτ

agg ∈ RW . First, the time series is rescaled in
the range [xmin, xmax] with −1 ≤ xmin < xmax ≤ 1 as described in Equation (5).

x̃τ
i = xmin + (xmax−xmin) ·

xτ
i −min(xτ)

max(xτ)−min(xτ)
, (5)

where x̃τ
i , ∀i ∈ 1, . . . , W, is the rescaled i-th sample of the τ-th frame of xagg. After rescaling

x̃τ
i can be represented in polar coordinates based on the polar coordinates’ angle, φτ

i =
arcos(x̃τ

i ), the Gramian Angular (Summation) Field can be calculated as in Equation (6).

Fτ
i,j = cos(φi + φj), (6)

where Fτ
i,j ∈ RW×W with 1 ≤ i, j ≤W is the two-dimensional representation of the GAF.

2.6. Markov Transition Field

The Markov Transition Field (MTF) discretizes a time series into Q bins and spreads
out the temporal information after calculating its Markov matrix. Considering the time
frame xτ

agg, each sample xτ
agg(i) is assigned to one bin qj with jε[1, Q] creating an Q× Q

adjacent matrix which counts the transitions among the quantile bins, where wi,j denotes
the frequency of a point of quantile qj, following a point of quantile qi. Based on this, the
MTF can be written as in Equation (7).

Fτ
i,j =


w i,j|x1∈qi ,x1∈qj

· · · w i,j|x1∈qi ,xW∈qj
...

. . .
...

w i,j|xW∈qi ,x1∈qj
· · · w i,j|xW∈qi ,xW∈qj

, (7)

where Fτ
i,j ∈ RW×W with 1 ≤ i, j ≤W is the two-dimensional representation of the MTF.

A graphical illustration example of one electrical cycle of the current and voltage of
the aggregated signal, as well as the graphical representation of the six methods for time
series imaging, is illustrated in Figure 1.
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Figure 1. One electrical cycle for the aggregated current and voltage (a) as well as the transformed
signals as obtained from the time series imaging (b–g).

As can be seen in the example of Figure 1, the methods for imaging time series into
two-dimensional signatures result in very different two-dimensional representations of the
one-dimensional voltage and current signals. In detail, the VI-Trajectory and DFIA result
in relatively sparse two-dimensional patterns, whereas all other approaches have densely
filled matrices. Moreover, due to the periodically varying current and voltage signals, the
two-dimensional representations show symmetry properties for approaches (b–f), while
the MTF representations are more chaotic due to the discretization of the data and putting
the data into different bins.

3. NILM Using Two-Dimensional Signal Representations

NILM is defined as the problem of extracting the power consumption on the device
level from the aggregated signal measured by one sensor in short-time analysis, i.e., in
time-sliding windows. Specifically, given a set of M-1 known appliances with each of them
consuming power pm with 1 ≤ m ≤ M− 1, the aggregated power pagg measured by the
sensor is:

pagg = f (p1, p2, . . . , pM−1, e ) =
M−1

∑
m=1

pm + e =
M

∑
m=1

pm, (8)

where e = pM is the noise generated by one or more unknown device, and f (·) is the
aggregation function. In NILM, the goal is to find estimations p̂m, ê = p̂M of the power con-
sumption of each device m using a disaggregation function f−1(·) with minimal estimation
error, i.e.,

P̂ = { p̂1, p̂2, . . . , p̂M−1, ê} = f−1(pagg). (9)

Given that Equation (9) cannot practically be solved analytically, most NILM ap-
proaches perform short-time analysis by segmenting the aggregated signal into frames and
then estimating the power consumption of each appliance for every frame. In order to feed
the disaggregation function f−1(·) with more distinctive information, every frame of the
active power signal, pτ

agg (or iτ
agg/vτ

agg for high-frequency data), is usually transferred to a
feature representation, Fτ

agg, as discussed in Section 2. Based on this, the disaggregation
problem from Equation (9) can be reformulated on the frame level using the feature vectors
as defined in Section 2.
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P̂τ =
{

p̂τ
1 , p̂τ

2 , . . . , p̂τ
M−1, êτ

}
= f−1(F

τ

agg) (10)

The architecture of the presented NILM method using time series imaging consist of
four steps, namely pre-processing, framing, time series imaging (two-dimensional signal
representation) as discussed in Section 2, and disaggregation. The architecture for high-
frequency data inputs is illustrated in Figure 2.

Disaggregation
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Figure 2. Non-Intrusive Load-Monitoring architecture using time series imaging for high-frequency
data inputs.

As can be seen in Figure 2, the raw current (iagg(t)) and raw voltage (vagg(t)) signals
are initially pre-processed. Pre-processing consists of two steps, namely filtering and
down-sampling of the data, resulting in the pre-processed signals i′agg(t) and v′agg(t).
After pre-processing the signals are frame blocked into frames of length W resulting into
the signals iτ

agg ∈ RW and vτ
agg ∈ RW . Finally, time series imaging is performed generating

the two-dimensional frame representation Fτ
agg, which is used as input to the disaggregation

stage. The disaggregation stage, consisting of a CNN operating as a feature-extraction
engine and a DNN estimating the appliance consumption p̂τ

m.

4. Experimental Setup

The NILM architecture based on the imaging time series as described in Section 3 was
evaluated using the datasets and regression algorithm presented below.

4.1. Datasets

The proposed architecture was evaluated using two different datasets, namely the
REDD [46] and the AMPds2 [47], and was chosen for two reasons. First, REDD is the most
widely used dataset in the energy disaggregation task and provides, next to low-frequency
measurements (1 Hz), high-frequency measurements (16.5 kHz) for the aggregated sig-
nal, including both current and voltage signals [46]. Furthermore, the high-frequency
measurements enable the comparison of different sampling rates and their impact on the
disaggregation performance. Second, AMPds2 was chosen as it enables one-to-one compar-
ison to previously proposed architectures such as WaveNILM [24] or SSHMM [10] since
there are no missing data points and all data are time-synchronized [47]. Brief descriptions
of the datasets can be found in Table 1, where NAR indicates the noise-to-aggregate ratio
as defined in [48].

Table 1. Short description of the REDD and AMPds2 database.

Name House Country Appliances Sampling Rate NAR

REDD 3, 5 US 19, 22 16.5 kHz 11.1–31.8%
AMPds2 - CA 22 60 sec 17.8
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As regards the AMPds2 dataset, in the literature, either all or a subset of appliances
are used, often referred to the deferrable loads; thus, in the evaluation protocol and the
experimental results, we have included both scenarios. In specific, the deferrable loads for
the AMPds2 dataset are the cloth dryer, the dish washer, the HVAC system, the heat pump,
and the kitchen wall oven [10].

4.2. Pre-Processing

The data were pre-processed as commonly conducted previously in the literature [47]
using median filtering with a filter length of 21 samples. Furthermore, the high-frequency
data were down-sampled by a factor of five, resulting in an aggregated signal with sampling
frequency of 3.3 kHz, enabling the usage of the first 27 harmonics of the current and the
voltage, which are capturing most of the information as discussed in [49,50]. Similarly,
the data at appliance level were down-sampled to a resolution of one minute to be aligned
with the previously published literature [10,51,52]. Both aggregated and appliance data
were normalized using mean-std normalization, while the mean value and the value
of the standard deviation (std) were calculated using the training data subset only [53].
The normalization procedure is described in Equation (11).

x̃ =
x− x̄train

σtrain
, (11)

where x is the original signal, x̄train is the mean value of the signal in the training set, σtrain
is the standard deviation of the signal in the training set, and x̃ is the normalized data.

4.3. Model Parametrization

A two-dimensional CNN was utilized at the regression step as in [53] with RELU
activation functions in the intermediate layers and with a linear activation function in
the last one. In addition, the one-dimensional kernels were replaced by two-dimensional
kernels, to account for the two-dimensional inputs through the imaging of the time series’
of the proposed method. Furthermore, the number of layers and neurons in the dense part
of the model have been selected after hyper-parameter optimization. The detailed layer
setup, including the number of filters is illustrated in Figure 3.
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Figure 3. Architecture of the evaluated two-stage NILM model utilizing a two-dimensional CNN for
feature extraction and a three layer DNN for regression. For each layer, the number of filter/pooling
operations (X) and the two-dimensional filter/pooling size (Y× Z) is given as (X@Y× Z).

The NILM models were trained using TensorFlow, and the Keras backend was utilised
with Adam optimisation during the training of the models (The Python implementation
of the architecture is available at https://github.com/pascme05/HF_NILM, accessed on
20 August 2022). The selected values of the hyper-parameters of the models and the
parametrization of the Adam optimisation are shown in Table 2.

https://github.com/pascme05/HF_NILM


Sensors 2022, 22, 7200 8 of 16

Table 2. Hyper-parameter values of the CNN model and parameters of the Adam optimizer. HF and
LF are the parameters for using high-frequency and low-frequency data, respectively.

Parameter Value HF Values LF

Input size 55 × 55 30 × 30
Batch size 50 1000

Epochs 100 50
Patience 15 10

Learning rate 0.001 0.001
Beta-1 0.9 0.9
Beta-2 0.999 0.999

Epsilon 1× 108 1× 108

As can be seen in Table 2, different frame lengths have been utilized for the high-
frequency (HF) and the low-frequency (LF) experiments. In detail, for HF experiments,
at least one fundamental period (55 samples @3.3 kHz) of the electrical signals must be
captured to calculate the harmonic spectrum or the VI trajectories. Conversely, for LF
signals, there is no such restriction; thus, a frame length of 30 min (i.e., 30 samples) has
been used since it has shown good results in previous work [40]. Similarly, 100 epochs were
used for training the HF CNN due to the higher number of data samples, while 50 epochs
were used for the LF CNN.

4.4. Experimental Protocols

The proposed architecture was evaluated using three different experimental protocols.
Specifically, the evaluation was performed using 10-fold cross-validation with 10% of
the training data being used for validation, thus the test data are completely unseen in
training unlike a previous approach [24], where the validation data were used for testing as
well. Furthermore, all scenarios are utilizing the so-called noisy configuration [10] without
modelling the unrecorded data as an additional ghost appliance. A tabulated overview of
all three evaluated protocols is provided in Table 3.

Table 3. Three experimental protocols including train/test splits and evaluated appliances.

Protocol Dataset Model Appliances Train Validation Test

#1 REDD HF-CNN ALL 90% 10% of Train 10%
#2 AMPds2 LF-CNN ALL 90% 10% of Train 10%
#3 AMPds2 LF-CNN DEF 90% 10% of Train 10%

As can be seen in Table 3, protocol #1 evaluates the performance on HF data by
utilizing the REDD dataset. Protocol #2 and protocol #3 are used for direct comparison
with the literature evaluating the performance in the two most common scenarios when
utilizing AMPds2, namely through the evaluation of all (ALL) loads and the deferral (DEF)
loads, using current as the output feature [10].

5. Experimental Results

The NILM methodology described in Section 3 was tested using the experimental
setup presented in Section 4. For the purpose of accurate comparison, performance was
tested in terms of estimation accuracy (EACC), as proposed in [46].

EACC = 1− ∑T
τ=1 ∑M

m=1| p̂τ
m − pτ

m|
2 ∑T

τ=1 ∑M
m=1|pτ

m|
, (12)

where p̂m is the estimated power of device m, with 1 <= m <= M, T is the number
of disaggregated frames, and M is the number of disaggregated devices. Furthermore,
to compare with previously published approaches, additional accuracy metrics, namely
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the Mean Absolute Error (MAE) and the normalized Signal Aggregated Error (SAE) are
used, which are defined as:

MAE =
1
T

T

∑
τ=1
| p̂τ

m − pτ
m| (13)

SAE =

∣∣Êm − Em
∣∣

Em , (14)

where Em denotes the total energy consumption of the appliance m and Êm its pre-
dicted value. The results for REDD-3 and REDD-5 are tabulated for the six different
two-dimensional transformation methods in Table 4. The results are reported in terms of
EACC, MAE, and SAE using active power as the output feature.

Table 4. Results for protocols #1 in terms of EACC, MAE, and SAE for the high-frequency data of
REDD-3/5.

2D Method REDD-3 HF REDD-5 HF
EACC MAE SAE EACC MAE SAE

VI 83.66% 6.69 0.053 65.62% 13.32 0.655
DFIA 85.31% 5.73 0.077 73.10% 10.40 0.036

PQ 86.26% 5.60 0.068 76.33% 9.73 0.055
REC 84.21% 6.16 0.077 76.51% 9.35 0.098
GAF 84.38% 6.30 0.074 77.43% 9.16 0.099
MKF 75.50% 9.74 0.074 67.25% 13.24 0.013

As can be seen in Table 4, the PQ-transformed signals outperform all other approaches
at REDD-3 dataset, while achieving very high performances at the REDD-5 as well. Con-
versely, MKF is achieving very low performance for all accuracy metrics in both REDD-3
and REDD-5, while REC and GAF are achieving quite similar results for all accuracy met-
rics and in both datasets. Similarly, the results for AMPds2 are reported for five different
two-dimensional transformation methods, since VI trajectories cannot be calculated due to
the missing voltage information in the AMPds2 dataset. The results are reported in terms
of EACC, MAE, and SAE using current as output feature and can be found in Table 5.

Table 5. Results for protocols #2 and #3 in terms of EACC, MAE, and SAE for the low-frequency data
of AMPds2.

2D Method AMPds2 ALL AMPds2 DEF
EACC MAE SAE EACC MAE SAE

DFIA 80.85% 0.22 0.246 81.84% 0.31 0.263
PQ 89.94% 0.12 0.048 94.78% 0.09 0.048

REC 80.91% 0.22 0.216 80.04% 0.34 0.352
GAF 79.18% 0.24 0.273 77.86% 0.38 0.408
MKF 77.94% 0.25 0.311 77.49% 0.39 0.423

As can be seen in Table 5, once again PQ transformed signals are outperforming all
other methods for both deferrable (protocol #3) and all loads (protocol #2), achieving a max-
imum accuracy of 94.78%. Furthermore, it can also be seen that MKF is reporting the worst
performance for all accuracy metrics for both deferrable and all loads. Moreover, it can be
seen that the time series imaging methods that are utilizing two input features, e.g., PQ
transformed signals or DFIA, are outperforming methods that utilize only univariate input
signals, e.g., REC, GAF, and MKF.

To compare the proposed time series imaging methods to previously proposed ap-
proaches, the five approaches reporting the best performance on the AMPds2 dataset have
been used for comparison and are tabulated in Table 6. It must be noted that, for the
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purpose of the direct comparison, the results in Table 6 have been calculated following the
evaluation setups of the corresponding articles, e.g., using only the first year of AMPds2
when comparing to [10,24] or using a reduced amount of data (training: 18 August 2012–13
April 2013, testing: 17 May 2013–17 June 2013) when comparing to [26,29,30].

Table 6. Comparison of the best-performing proposed 2D transformation method (PQ) with state-of-
the-art performances reported in the literature in terms of EACC and MAE (* the approach utilizes the
next-to-active and reactive power and current and apparent power as its input features).

2D
Method PQ SSHMM

[10]
WaveNILM

[24]
BiLSTM

[26]
EnerGAN

[29]
EnerGAN++

[30]

DEF 95.2% 94.0% 94.7% - - -
ALL 90.0% - 90.2% * - - -

DR,HO,WO 13.2 - - 38.6 35.3 38.5

As can be seen in Table 6, the PQ-transformed signals are outperforming most of the
other techniques showing the advantages of utilizing two-dimensional representations
in combination with CNNs. Only the WaveNILM [24] approach using all appliances is
performing 0.2% better than the PQ-transformed signals; however, that approach is utilizing
four input features (active power, reactive power, apparent power, and current), while
the PQ transformation approach is only utilizing two input features (active power and
reactive power). Furthermore, when comparing only three appliances as in [26,29,30], the
PQ transformation is achieving significantly better performances.

6. Discussion

Further to the experimental results presented in Section 5, three topics, namely the
influence on the convergence and runtime of the two-dimensional representation methods
(Section 6.1), the influence on the sampling frequency (Section 6.2), and the robustness
towards noise (Section 6.3), are discussed in this Section.

6.1. Runtime and Convergence

For sequence-to-point approaches with high dimensionality of the input data, as in
the proposed one using time series imaging with two-dimensional representations, algo-
rithm convergence and real-time capability are of significant interest [35,39]. Therefore,
the convergence behavior for a fixed size of data and the execution times per sample
were investigated. The comparison of the convergence of protocol #1 of the six different
two-dimensional representation methods is shown for the training and the validation for
the first 50 epochs in Figure 4.

As can be seen in Figure 4, all the two-dimensional representation methods are show-
ing good convergence for both training and validation. In detail, the four approaches,
DFIA, PQ, REC, and GAF, are showing rather similar convergence behavior, which is
reflected in their similar performances tabulated in Table 4. Conversely, VI trajectories are
not converging the as-good, which was reflected in their slightly worse performance during
disaggregation. Furthermore, MKF is showing significantly worse convergence behavior,
which is in line with the results reported in Section 5 for both high- and low-frequency
data. Additionally, the convergence behavior for real-time applications and the runtime
of the algorithms are crucial. The execution time per sample for the six different time
series imaging methods was calculated on an AMD Ryzen 3700 CPU with 32 GB RAM.
The results are shown in Table 7.
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Figure 4. Convergence of the six time series 2D representation methods for 50 epochs of training
using the REDD database during (a) training and (b) validation.

Table 7. Average Execution Time (AET) per sample for different time series imaging approaches.

Imaging Method VI PQ DFIA REC GAF MKF

AET 670 us 33 us 170 us 950 us 920 us 980 us

As can be seen in Table 7, the PQ transformation outperforms all other approaches due
to only relying on one matrix multiplication of the current and voltage frame, whereas DFIA
requires a frequency two-dimensional Fourier analysis of a W×W size matrix. Similarly, all
other approaches require significantly more multiplications and additions to calculate the
corresponding signatures, as described in Section 2, thus reporting higher execution times.

6.2. Sampling Frequency

To design cost-effective smart meter hardware, it is important to understand the
dependencies of the disaggregation performance on the sampling frequency. Furthermore,
significant influences of the sampling frequency on the disaggregation performance have
been previously reported in the literature [54,55]. To investigate the dependency of the
performance on the sampling frequency, the high-frequency part of the REDD database
was used. In detail, the impact of the sampling frequency on the NILM performance
was investigated between 180 Hz and 1800 Hz, capturing up-to the 15th harmonic when
considering a line frequency of 60 Hz. The performance for different sampling frequencies
in terms of MAE is illustrated in Figure 5.

As can be seen in Figure 5, the MAE decreases while the sampling frequency increases,
due to the increase of the information captured by the higher order harmonics. However, it
can also be seen that an increase above 1200 Hz does not further decrease the MAE signifi-
cantly. Since the amplitude of the higher-order harmonics decreases with the square of the
harmonic order, i.e., a fundamental current amplitude of the maximum line current per
phase (15 A) corresponds to the amplitude of the 10th harmonic, which is approximately
equal to 15 A

100 = 150 mA, the information captured by the high-order harmonics is decreas-
ing quickly not providing any additional information to the disaggregation algorithm [41].
Moreover, due to the electrical design of certain appliances, especially the odd order har-
monics are having a significant influence on the performance, which can be seen in the
decrease around 360 Hz (3rd harmonic), 600 Hz (5th harmonic), and 840 Hz (7th harmonic).
It should also be noted that REDD-3 and REDD-5 show very similar characteristics in terms
of the influence of the sampling frequency to the NILM performance, which is due to the
underlying fundamental physical properties of the current harmonics [49,56].
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Figure 5. Performance for the REDD database for different sampling frequencies using PQ-
transformed signals.

6.3. Robustness to Noise

To investigate how robust the two-dimensional representation methods are against
noise, additive white noise was added to the aggregated signal during testing. In detail,
different levels of white noise have been investigated, namely 0–50%, with the noise
level broken into increments of 5%. Similarly to [30], a noise level of x% means that the
aggregated signal during testing has a deviation of x% when being compared to the original
signal. The influence on the MAE when adding a certain level of noise is illustrated for
the six different two-dimensional representation methods in Figure 6. To account for
influences during testing and training, each of these results was calculated using 5-fold
cross-validation and 50 epochs for training.
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Figure 6. Influence of the noise level on the performance of energy disaggregation for different time
series imaging methods.

As can be seen in Figure 6, there are differences considering the NILM performance
under different levels of noise. First, even though the five two-dimensional representation
methods (VI, DFIA, PQ, REC, and GAF) have shown very similar performances under
noiseless conditions, their behavior under noisy conditions is different. While, for low noise
conditions (0–10%), DFIA shows the best performance, which has already been reported
in [39], VI, PQ, and REC signatures outperform DFIA for noise levels larger than 15%. This
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is probably since DFIA is a technique working in the frequency domain, thus relying on the
correct identification of device-specific harmonics for disaggregation. Furthermore, while
VI signatures have the worst performance in noiseless conditions, the increase of MAE
with increasing noise is the smallest, reporting the best results for high noise conditions
(>25%). This robustness to noise is probably due to a sparse representation of the current
and voltage waveform that the VI trajectories are having, which cannot easily be distorted
by adding white noise (see Figure 1b). Moreover, GAF does not perform well under noisy
conditions, reporting an increase of MAE by approximately 75% when adding 5% of white
noise. This is probably due to the fact that GAF is based on an evaluation of phase angles,
which are far more sensitive to noise than amplitudes. Second, even though MKF reports
the worst absolute performance, the increase in MAE is the smallest for all two-dimensional
representation methods, which is probably observed because the MKF is evaluating the
signal changes and their frequency of change rather than the signal itself. Therefore, only
the changes of devices states are captured, which cannot easily be changed by adding
white noise.

7. Conclusions

A comparison of time series two-dimensional representation methods for energy
disaggregation has been presented. In detail, six different time series 2D representation
methods for high-frequency data were investigated, and it was shown that PQ transfor-
mations outperform other two-dimensional representation-based approaches in almost all
investigated evaluation protocols in terms of NILM performance, as well as in terms of
run-time. However, when high-noise conditions are considered current and voltage-based
signatures (i.e., VI-trajectories) outperform all other approaches showing the highest ro-
bustness against increasing levels of noise. Furthermore, it was shown that approaches
utilizing both current and voltage time series (such as VI-trajectories, PQ-transforms, or
DFIA) are outperforming approaches that rely on univariate data, i.e., the two-dimensional
representation that utilize only one time series (such as REC, GAF, or MTF). Moreover,
it was shown that utilizing high-frequency data significantly decreases the energy disag-
gregation error. However, it was also shown that sampling frequencies above 1200 Hz
barely show any improvement on the energy disaggregation performance. In general,
the results indicate that two-dimensional representations in combination with CNNs are
a suitable choice for addressing the energy disaggregation problem. When comparing
with previously published methods, it was shown that two-dimensional signatures achieve
equal or better performances, while often using fewer features. In the future, the following
research directions should be considered. First, an in-depth investigation on sampling
frequencies and their influence on appliance specific disaggregation accuracies should
be conducted to obtain a better understanding of the impact of certain harmonics on the
disaggregation problem. Second, two-dimensional representations (time series imaging)
should be combined with transfer learning, utilizing the transfer capability of pre-trained
big CNN models mostly used in computer vision tasks.
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