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Abstract—With the development of intelligent transportation
system (ITS), the vital technology of ITS, short-term traffic
forecasting, gains increasing attention. However, the existing
prediction models ignore the impact of urban functional zones
on traffic data, resulting in inaccurate extractions of dynamic
spatial relationships from network. Furthermore, how to cal-
culate the influence of external factors such as weather and
holidays on traffic is an unsolved problem. This paper proposes
a spatio-temporal hierarchical mapping and interactive attention
network (HMIAN), which extracts the spatial features from
traffic network by constructing functional zones, and designs
an effective external factors fusion method. HMIAN uses the
hierarchical mapping structure to aggregate the roads into
functional zones, calculate the interaction between functional
zones and feed this information back to the spatial features.
And the interactive attention mechanism is utilized to fuse
the traffic data with external factors effectively, and extracts
temporal features. In addition, some experiments were carried
out on three real traffic data sets. First, experiment results
show that the proposed model better prediction performance
compared with other existing approaches in more complex traffic
network. Second, the longitudinal comparison experiment verifies
that the hierarchical mapping structure is effective in extracting
spatial features in complex road network. Finally, the influence of
different external factors and fusion methods on traffic prediction
are compared, which provides a consult for subsequent research
on the influence of external factors.

Index Terms—traffic prediction, deep learning, data fusion.

I. INTRODUCTION

W ITH the development of emerging technologies such as
Internet of things (IoT) and artificial intelligence (AI),

intelligent transportation system (ITS) is considered to be one
of the most promising applications in in the transportation
field [1], [2], [3]. As an important part of ITS, traffic pre-
diction provides necessary technical support for urban traffic
planning, public travel and traffic accident avoidance, which
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(b) Traffic flow in different functional
zones.

Fig. 1. Adjacent roads with correlation form functional zones with certain
structure, and different zones present different traffic trends due to differences
in functional characteristics.

includes traffic flow, average speed, occupancy prediction.
Traffic forecasting methods can be roughly divided into two
categories, deductive and inductive [4]. Deductive methods are
not applicable to the actual complex traffic network, because
it is mainly based on the simulation of traffic situations. The
mainstream forecasting algorithm are inductive methods in
recent years.

Inductive models can also be classified into model-driven
and data-driven methods [5]. model-driven methods predict
the future traffic data by analyzing the change trend of the
sequence. For example, Autoregressive Integrated Moving
Average (ARIMA) [6] model, Kalman filter and its derivatives
[7], [8] have been widely used in traffic forecasting [9].
Nevertheless, due to the uncertainty and nonlinearity of traffic
information, model-driven methods are difficult to effectively
capture the regularity of traffic changes from the data.

In order to deal with nonlinear data, data-driven methods
which consist of machine learning method and deep learning
method are applied to traffic prediction [10], [11], [12].
Machine learning models, such as Support Vector Machine
(SVM) [13], [14], k-Nearest Neighbor algorithm [15] and k-
means clustering algorithm [16], shows good performance in
predicting short-term traffic data compared to model-driven
models. However, the complexity of traffic data of real network
has high complexity, hence these traditional shallow machine
learning methods are difficult to make more accurate predic-
tions.

The application of deep learning in traffic prediction im-
proves the efficiency of processing the traffic data with high



2

00:00 08:00 16:00 00:00 08:00 16:00 00:00

Time

Fl
ow

Holiday

Weekday

00:00 08:00 16:00 00:00 08:00 16:00 00:00

Time

Fl
ow

28 -34

 5 -14(a) Traffic flow during holidays and weekday.00:00 08:00 16:00 00:00 08:00 16:00 00:00

Time

Fl
ow

Holiday

Weekday

00:00 08:00 16:00 00:00 08:00 16:00 00:00

Time

Fl
ow

28 -34

 5 -14

(b) Traffic flow at different temperatures.

Fig. 2. External factors, such as holidays and weather, have a certain impact
on the traffic data.

complexity and can represent traffic features without prior
knowledge [17], such as stacked autoencoder (SAE) [17] and
deep belief network (DBN) [18]. Furthermore, traffic data as
time series, to better extract time correlation from traffic data,
recurrent neural network (RNN) derivative algorithms, such as
long short-term memory (LSTM) model [19] neural network
and gated recurrent unit networks (GRU) [20], [21], have been
introduced. Nonetheless, the traffic prediction in a certain road
is not only influenced by historical data, but also be influenced
by the traffic conditions of surrounding roads, namely, the
spatial-temporal features of traffic data [22], [23]. The above
algorithms ignore the spatial influence on traffic prediction.

It is necessary to process the structure of traffic network to
extract the spatial representation from traffic data. Convolu-
tional Neural Network (CNN) is applied in this field for its
local feature extraction capability [24]. For instance, LC-RNN
[25] is a hybrid model composed of RNN and CNN, which
can capture multidimensional dependencies, and MGSTC [26]
can explore multiple spatio-temporal dependencies through
multiple gated spatio-temporal CNN branches. Since the traffic
network is a non-Euclidean structure, researchers need to
preprocess the road network into a matrix like Euclidean
structure according to the number of neighbors of all node
[27], [28]. In fact, the actual traffic network structure is very
complex, and this kind of preprocessing to transform the road
network into Euclidean structure brings more difficulties to the
prediction.

To capture the spatial features of non-Euclidean traffic net-
work more effectively, researchers use graph convolution net-
work (GCN) to process the road network [29]. GCN converts
network data from spatial domain to spectral domain, which
efficiently processes topological data to extract spatial features
[30]. STGCN [31] and GraphWaveNet [32] model use GCN
to capture the comprehensive temporal and spatial correlation
of multi-scale traffic network. Besides, random walk algorithm
can also be used to calculate the spatial correlation of traffic
network. DCRNN [33] model uses bidirectional random walk

TABLE I
THE KEY NOTATIONS

Notations Description
G = ⟨V,A⟩ The graph of traffic road network structure.

V The set of sensors deployed on the road network.
A The adjacency matrix of nodes.

X ,Y Input data and forecast result.
t Time step.
τ The number of time steps of data.
c The number of types of features.
E Feature embedding of data.
M Hard mapping matrix.
g The gate to control the fusion of information.

W, b,w The trainable parameters.

to model the spatial dependence. Even so, the existing graph
neural networks rely too much on the fixed road network
structure and ignore the dynamic changes of the connections
(weights) between nodes resulting in the decline of prediction
accuracy and lack of generality.

The Graph Attention Networks (GAT) model was proposed
by Velickovic al et. [34], which can aggregate the weights
of adjacent node features by attention mechanism, and the
weights of adjacent node features depend entirely on node
features and are independent of graph structure [35]. GMAN
[36] model was proposed to extract dynamic spatial correlation
through graph multi-head attention mechanism. Therefore, in
traffic prediction, the universality of the model under different
road network structures can be improved.

The urban traffic can be divided into different zones accord-
ing to different functional features. As shown in Fig. 1, the
traffic features of roads within the regions are similar, that is,
the structure of road network shows the features of clustering,
and each cluster has its own structure (e.g., overpass) and
function (e.g., residential district) [37]. In addition, due to the
interaction between functional zones, there are dependencies
between long-distance roads [38]. But, in the current research
on traffic prediction, these problems are not considered in
forecasting methods.

From the perspective of data other than traffic flow, existing
forecasting methods tend to ignore the impact of external
factors, such as holidays and weather [39]. These factors have
different degrees of influence on different areas. As shown in
Fig. 2(a), during the holidays, the traffic flow shows a surge,
and the traffic trend no longer has obvious regularity. Fig. 2(b)
shows that weather factors also have much influence on traffic
flow.

To solve the above problems, this paper proposes a hier-
archical mapping and interactive attention network (HMIAN)
data fusion prediction model. In terms of extracting spatial
features, the model uses hierarchical mapping structure takes
to capture the relevance of functional zones and long-distance
dependence on traffic network. In terms of temporal features,
the model uses the interactive attention mechanism to calculate
the influence of external factors on traffic data. The main
contributions of this paper can be summarized as follows:
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Fig. 3. The transformation between real road network structure and adjacency
graph. The white arrow represents the direction of the road, and the monitor
icon represents the location of the sensor. Each sensor can be regarded as a
node, and the black arrow indicates whether it can be directly reached between
nodes.

1) Hierarchical mapping network is proposed to aggregate
the road network structure to construct functional zones.
By calculating the interaction between functional zones,
distant dependencies between roads are captured and
feed them back to spatial features through the top-down
updating mechanism.

2) HMIAN model adopts interactive attention mechanism
and intra-attention mechanism, abstracts traffic data and
external factor data into embedding sequences, which
improves the degree of fusion and the accuracy of
prediction.

3) Experiment results shows that the HMIAN model has
better performance in the complex traffic network com-
pared with other baseline models. Moreover, the longitu-
dinal comparison experiments verify that the interaction
of functional zones can affect the traffic prediction, and
compare the influence of different data fusion methods
and different external factors on the predicted results.
the results demonstrate that the hierarchical mapping
network and the interactive attention can improve the
prediction accuracy.

The follow-up content of the article is organized as below.
Section II gives some definitions that need to be understood
before introducing the model. The model proposed in this
paper is introduced in detail in section III. Section IV mainly
introduces the experiments to verify the effectiveness of the
model and the analysis of the results. Finally, section V
summarizes the full paper.

II. PRELIMINARISE

This section introduces some notations and definitions that
are used in the model, and defines the task of the model. Some
important notations are recorded in Table I.

Definition 1. Road network structure. The structure of the
traffic network can be regarded as a weighted directed graph
G = ⟨V,A⟩, where G represents the road network (RN), and
V represents the set of nodes. In this paper, all corresponding
traffic sensors in the data set can be equivalent to nodes in the
directed graph, which are denoted as vi ∈ V , i ∈ (1, 2, . . . , n),
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Fig. 4. Traffic data represented in time dimension. Each piece of graph
denotes the traffic information of the network at a certain time step. The
prediction task is using τx time steps historical data (X ) to predict next τy
time steps traffic data (Y).

where n is total number of sensors. Another notation A repre-
sents the adjacency matrix of nodes in the graph, whose non-
zero elements represents the direct distance between nodes.
Namely if A [vi, vj ] > 0, i, j ∈ (1, 2, . . . , n), vehicles can
arrive node vj directly from node vi without passing through
other nodes. In Fig. 3, for example, the monitor icons represent
sensors deployed on the road network, and the white arrow
indicates the direction of the lane. According to the above
rules, the directed graph of road network can be obtained.

Definition 2. Hierarchical mapping network. This method
is used in spatial feature extraction module of the model
in this paper. The network is divided into three floors. The
first floor represents the original road network (RN) structure,
namely G mentioned above. The second floor is a network
composed of virtual nodes called as “structural area (SA)
nodes” (denoted as VSA), which is obtained through clustering
the nodes of the first floor. These structural areas have dense
sensor nodes, which play an important role in traffic, such as
vertical intersections and viaducts. The virtual nodes of the
last floor is called as “functional zone (FZ) nodes” (denoted
as VFZ), which is constructed by making further abstraction
on the second floor. It can be understood as zones with certain
functions, such as business center and residential district. This
network structure also solves the problem of dependence be-
tween remote nodes, because this kind of abstract information
is shared in the nodes of the third floor, and then transmits
the information to the underlying nodes through the update
mechanism. Details are described in the following sections.

Definition 3. Traffic data and external factors. There
are two types of traffic data in this paper. First is the traffic
data collected by sensors in the road network, denoted as
X =

(
Xt1 , Xt2 , . . . , Xtτx

)
∈ Rτx×n×c, where τx represents

the time steps of historical data entered, n is the total number
of sensors and c is described as the number of kinds of
features (e.g., speed, traffic flow, occupancy). The predic-
tion results in the next τy time steps are denoted as Y =(
Ytτx+1, Ytτx+2, . . . , Ytτx+tτy

)
∈ Rτy×n×c. Another type of

data is external factors, including date, time, weather, holiday,
etc., which have impacts on traffic. Its data format is described
as XEF =

(
XEF

tτx+1, X
EF
tτx+2, . . . , X

EF
tτx+tτy

)
∈ Rτy×cEF ,

where cEF is the numbers of types of external factors. To
calculate the impact of external factors on the prediction
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results, the time steps of the external factors is consistent with
the prediction result.

Prediction task. Given the historical traffic data in continu-
ous τx time steps, the external factors in next τy time steps and
the traffic network structure G, predict the traffic information
in future τy time steps (such as flow, speed, occupancy rate,
etc.).

III. HIERARCHICAL MAPPING AND INTERACTIVE
ATTENTION NETWORK

The network model is mainly composed of two-layer HMIA
modules, as shown in Fig. 5, and each HMIA module includes
a hierarchical mapping network spatial module, a interactive
attention temporal module and a gated fusion module, which
are used to fuse external factors with traffic date and extract
temporal and spatial features. The extracted features form
the final result processed by the gating fusion module. The
construction and the training method of these modules are
described in detail next.

A. Hierarchical Mapping Spatial Module

This module uses hierarchical mapping algorithms to ab-
stract the original road network structure, and constructs the
structural area floor and functional zone floor, as shown in Fig.
6. This module is mainly composed of two parts. One is the
cluster mechanism which is responsible for aggregating node
information and constructing the virtual nodes to form the
floor of structure area and functional zone mentioned above.
Another part of this module is to update the information of
each floor of new nodes from top to bottom. This section
will explain how each floor is constructed on the basis of the
previous floor, and how to update the node information in this
multi-level module.

1) Construct Structural Areas: In this paper, structural
areas are considered to play an important role in traffic for
connection, such as crossroads and viaducts. Assume that each
sensor node is located only belongs to the only structure area,
and different areas have different importance.

The first operation constructs the mapping matrix between
the original road network and the structure area floor by ag-
gregating the node features (e.g., average speed, flow detected
by sensors) with the road network structure. Node2vec [40]
can be used to cluster the nodes on the road network. This
algorithm is only based on the fixed original road network
structure, which is used to find the central nodes of clusters
and the neighbors closely associated with each node and build
a hard mapping matrix from the original network to structural
area. The hard mapping matrix is denoted as M1 ∈ Rn×nSA ,
where each element can be represented as follows

M1 [v, vSA] =

{
1 v ∈ vSA,
0 else,

(1)

where v and vSA represent the nodes of the original road
network and structural area floor respectively. Based on the
previous assumption, each sensor node belongs to only one
area, namely, only one element whose value is 1 in each row
of the matrix.
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Fig. 5. Display of HMIAN model structure and main modules of the model.
(a) HMIAN is mainly composed of spatial-temporal embedding module and
double-layer HMIA spatial-temporal module. (b) HMIA module consists of
hierarchical mapping spatial module, interactive attention temporal module
and gated fusion module.

In addition, from the perspective of features of nodes, the
input data is first extracted by the fully connected network
(FCN) and transformed into spatial embedding (SE). Then
this module adopts the Graph Attention Network (GAT) [34]
calculate the information interaction embedding (IE) between
nodes and surrounding nodes as follows:

IE1 = GAT(SEti , A) , (2)

where SEti ∈ Rn×d1 (i ∈ {1, 2, . . . , τx}) is the high dimen-
sional features matrix of all sensor nodes in time step ti, d1
is a constant, A is the adjacency matrix for the road network,
and IE1 ∈ Rn×nSA is the learned output through GAT. Here,
the dimension of embedding of each node is set to nSA

in IE1 to associate the nodes with the structure areas. The
elements of each column vector in IE1 can be understood
as the importance of different nodes in the structural area.
Multiply IE1 and hard mapping matrix M1, then obtain the
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Fig. 6. Structure of hierarchical mapping network spatial module. Cluster mechanism is responsible for abstracting the original road network to extract the
features of functional structure of and the long-distance dependence between nodes. The update mechanism is responsible for updating the node information
of each floor from top to bottom, and feeding back the abstract features to the original nodes.

corresponding relationship matrix of the original road network
to the structural area floor:

ARN,SA = softmax (M1 ⊙ IE1) , (3)

where ⊙ denotes the Hadamard product which is the element-
wise multiplication between two matrices, and softmax (·) is
the standard softmax function which normalizes each column
of the matrix ARN,SA. Next, utilize ARN,SA to calculate the
features matrix of structural area floor:

SESA,ti = AT
RN,SA · SEti , (4)

where SESA,ti ∈ RnSA×d2 (i ∈ {1, 2, . . . , τx}) is the features
matrix of the structural area floor, d2 is also a constant.
Moreover, the weighted adjacency matrix ASA ∈ RnSA×nSA

of structural area floor can also be calculated by similar
method:

ASA = AT
RN,SA ·A ·ARN,SA, (5)

2) Construct Functional Zones: This part elaborates the
method of building a functional zone floor. This floor is also
composed of virtual nodes, which is based on the structure
area. Its main function is to calculate the information interac-
tion between functional zones and capture the spatial features
and the dependence between remote nodes.

A similar method is used in Eq. (4) to learn features of
functional zone floor using the graph aggregation algorithm
on structural area floor. Given the ASA,FZ ∈ RnSA×nFZ

mapping matrix from structural area floor to functional zone
floor. ASA,FZ [vSA, vFZ ] denotes the conditional probability
that a structural area node vSA belongs to a functional zone
node vFZ . Use the GAT network to calculate ASA,FZ :

M2 = GAT(SESA,ti , ASA) , (6)

ASA,FZ = softmax(M2), (7)

where M2 ∈ RnSA×nFZ represents the hard mapping matrix
and the softmax function performed by columns of the matrix
to derive the soft mapping matrix ASA,FZ . In this way, the

features matrix of functional zone floor can be set as the linear
combination of the features matrix of structural area floor:

SEFZ,ti = AT
SA,FZ · SESA,ti . (8)

With SEFZ,ti , the adjacency matrix of functional zone floor
is calculated by the ReLU activation function to prevent the
gradient from disappearing during training:

AFZ = ReLU(SEFZ,ti · SET
FZ,ti − ω), (9)

where AFZ is the weighted adjacency matrix for graph of
functional zone floor and ω is a scaling parameter.

3) Top-down Update Mechanism: In the above work, how
to construct the features representation and adjacency matrix
of each floor is described. In this part, the process of updating
information and features from top to bottom is illustrated.

First, the update mechanism in functional zone floor is
introduced. The features matrix needs to be updated and
prepared for the information transmitted to the lower floor. The
low complexity Graph Convolutional Network (GCN) based
on Chebyshev polynomials [41] is used to update the feature
embedding:

SE
(h+1)
FZ,ti

= GCN(SE
(h)
FZ,ti

, AFZ), (10)

where AFZ is the computed adjacency matrix for functional
zone nodes. On account of the AFZ is not a binary matrix,
GAT is not applicable to updating feature embedding in this
case [37]. Then, send the functional zone embedding to the
lower floor for updating structural area embedding:

∼
SE

(h)
SA,ti

= SE
(h)
FZ,ti

+ gFZ,SA ⊙
(
ASA,FZ · SE(h+1)

FZ,ti

)
,

(11)

gFZ,SA = σ
((

SE
(h)
SA,ti

||
(
ASA,FZ · SE(h+1)

FZ,ti

))
· w1

)
,

(12)
where gFZ,SA is a gate monitor which is similar to a weight
matrix controling the information passing from functional zone
floor to structural area floor, σ is the sigmoid function and w1

is a trainable parameter vector.
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Fig. 7. Structure of Interactive Attention Temporal Module. Intra-attention is mainly used to calculate the interaction of internal elements of traffic data
sequence. Inter-attention can calculate the impact of external factors on traffic data. Lastly, use the history attention to calculate the impact of historical data
on future data.

At the structural-area-level, model first updates its own
feature embedding with GCN:

SE
(h+1)
SA,ti

= GCN

(
∼
SE

(h)
SA,ti

, ASA

)
, (13)

where ASA is the weighted adjacency matrix calculated by Eq.
5. Similarly, pass the updated information to the next floor:

∼
SE

(h)
ti = SE

(h)
ti + gSA,RN ⊙

(
ARN,SA · SE(h+1)

SA,ti

)
, (14)

gSA,RN = σ
((

SE
(h)
ti ||

(
ARN,SA · SE(h+1)

SA,ti

))
· w2

)
, (15)

where gSA,RN is a gate monitor that controls the information
passing from structural area floor to original road network,
and w2 is also a trainable parameter vector.

Finally, utilize a GAT to update the relation between seg-
ment nodes as follows

SE
(h+1)
ti = GCN

(
∼
SE

(h)
ti , A

)
, (16)

where A is the adjacency matrix for the nodes of road network.

B. Interactive Attention Temporal Module

The module uses the interactive attention mechanism to fuse
external factors and traffic features to calculate the impact
of external factors on traffic, and employs the intra-attention
mechanism and historical attention mechanism to extract the
features of traffic data from the temporal dimension as shown
in Fig. 7. The following content describes the content of the
module and the calculation process.

1) Intra-attention Mechanism: Before calculating the in-
teraction between different data sequences, the intra-attention
mechanism should be applied alone to capture the internal
correlation of features. In this paper, self-attention [42] is
introduced to implement this mechanism instead of RNNs. The
aim is to reduce the computational complexity and prevent
the loss of location information of sequence. The following
details the interaction of the algorithm processing data within
the sequence.

In order to facilitate the calculation, a fully connected
network (FCN) is employed to adjust the input data dimen-
sion. The input data includes traffic data and external factors
which are recorded as embedding TEtemp

X ∈ Rτx×d and
TEtemp

EF ∈ Rτy×d respectively after adjustment, where d is
a constant.

In self-attention, in order to take the positional information
into account, it is necessary to encode the data sequence by
the position of each element in the sequence. The positional
coding method mentioned in the transformer [42] is employed,

TEpos(position, 2j) = sin

(
position

1000
2j
d

)
, (17)

TEpos(position, 2j + 1) = cos

(
position

1000
2j
d

)
, (18)

where position is the position index of the element in the
sequence, and 2j and 2j +1 represent odd and even numbers
in the sequence, respectively. Finally, the embedding of input
data is obtained by adding the adjusted dimension data matrix
and the location coding matrix as

TEX = TEtemp
X + TEpos

X ∈ Rτx×d, (19)

TEEF = TEtemp
EF + TEpos

EF ∈ Rτy×d. (20)

As mentioned above, data is encoded by self-attention
mechanism after being transformed into embedding. Generally,
the attention mechanism is to map a query and a set of key-
value pairs to an output. The output result is the weighted sum
of values, and the weight matrix is the inner product of query
and key normalizing by the softmax function. In self-attention,
the query Q, key K and value V are linear projections from
the same input embedding matrix. The self-attention function
is defined as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (21)

where dk is the second dimension of Q and K. The inner
product of Q and K is scaled by

√
dk to avoid the small

gradient caused by the large value of dot product.
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To prevent overfitting, on the basis of self-attention, a multi-
head attention mechanism is adopted to encode the input
sequence. The input data embedding is projected into different
nsub subspaces through linear mapping, and the corresponding
set of matrices {Qm,Km, Vm} is generated in each subspace,
where queries Qm = TE · WQ

m , WQ
m ∈ Rd×dk , keys

Km = TE ·WK
m , WK

m ∈ Rd×dk , and values Vm = TE ·WV
m ,

WV
m ∈ Rd×dv , m ∈ {1, 2, . . . , nsub}. Finally, concatenate all

attention heads together and project concatenated result to be
the intra-encoding embedding as

TEintra = MultiHead(TE)
= Concat(head1, head2, . . . , headnsub

)Wintra
,

(22)
where headm = Attention(Qm,Km, Vm), Wintra ∈
Rdnsub×dintra , and m (m ∈ {1, 2, . . . , nsub}) is the index
of the heads. Set dk = dv = dintra/nsub.

It is not necessary to calculate the intra-attention for external
factor sequence, because most of the external factors are
objective elements, and traffic data does not adversely affect
those factors. Given traffic embedding of traffic data TEX ,
the intra-encoding embedding are calculated as TEintra

X =
MultiHead(TEX)

2) Inter-attention Mechanism: In order to calculate the
impact of external factors on traffic, that is to calculate the
impact between different data sequences. The inter-attention
mechanism is used to realize this function.

In the self-attention, the query, key and value are projected
from the same data sequence to capture the internal interaction
of the same sequence. In the inter-attention of this module, the
query is projected from the external factors embedding, while
key and value are projected from the traffic data embedding.
Given the input sequences embedding TEX and TEEF , the
inter-encoding embedding are calculated as follows,

TEinter
X,EF = MultiHead(TEEF , TEX)
= Concat(head1, head2, . . . , headnsub

)Winter
,

(23)
where headm = Attention(QEF

m ,KX
m , V X

m ), QEF
m = TEEF ·

WQEF
m , KX

m = TEX ·WKX
m , and V X

m = TEX ·WVX
m .

To reduce the number of parameters and overfitting, the final
encoding embedding of integration of traffic data and external
factors are calculated by applying the global average pooling
operator on the intra-encoding and inter-encoding results, then
concatenate them as

eX,EF = Concat
(
pool

(
TEintra

X

)
,pool

(
TEinter

X,EF

))
, (24)

where the pool is the global average pooling operator. After
being processed by the historical attention mechanism de-
scribed in detail below, vector eX,EF can be added to itself
to obtain the final time embedding.

3) History Attention Mechanism: For the purpose of cal-
culating the impact of historical traffic data on forecasting
data, history attention is used to extract historical represen-
tation, i.e., calculating the weighted sum of historical data.
Implementing historical attention mechanism on eX,EF =
{eX,EF

1 , eX,EF
2 , . . . , eX,EF

τy } generated from Eq. (24), the

history attention representation history is calculated as the
weighted sum of embedding as

history =

τx∑
i=1

αie
X,EF
i . (25)

The weights α = {α1, α2, . . . , ατx} is obtained by following:

αi = softmax(λi) =
eλi

T·bc∑
j e

λj
T·bc

, (26)

λi = tanh(Wh · ei + bh), i ∈ {1, 2, . . . , τy}, (27)

where bc represents a trainable history context vector.
The purpose of history attention is to extract the history

representation information. Due to the spatial-temporal corre-
lation of traffic data, traffic prediction is not only affected by
the surrounding areas, but also affected by historical data.

The encoding vectors and historical attention vectors from
traffic data and external factor sequence are concatenated
together as

ẽ = σ (Concat (eX,EF , history)) , (28)

where σ is the sigmoid function.
Finally, the dimension of ẽ is adjusted through the full con-

nection network (FCN) to obtain the final temporal embedding
TE.

C. Gated Fusion Module

The module applies the gated mechanism to fuse the spatial
embedding SE and temporal embedding TE from the above
two modules to obtain the spatial-temporal feature embedding
FE. As shown in Fig. 5(b), the fusion process is as follows:

FE(h) = SE(h) ⊙ g + TE(h) ⊙ (1− g) , (29)

g = σ
(
SE(h) ·WSE

g + TE(h) ·WTE
g + bg

)
, (30)

where ⊙ denotes the element-wise product, g is the gate which
controls the respective fusion degree of spatial and temporal
features, and WSE

g , WTE
g , bg are trainable parameters.

D. Loss Function

Loss function is used to calculate the difference between the
predicted value and the true value in each training, and update
the trainable parameters according to the difference by back
propagation. In HMIAN model, the mean square error (MSE)
is used as the loss function. The loss function is defined as

MSE =
1

τy

τy∑
i=1

(Yti −Xti)
2
, (31)

where Yti and Xti are the prediction value and real traffic
data respectively in ti time step, and τy is the time steps of
prediction results.
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(a) Node distribution in Shaoshan. (b) Node distribution in PeMS.

(c) Node distribution in Beijing.

Fig. 8. Distribution of sensor nodes in three data sets. (a) is the distribution of
nodes in Shaoshan dataset, with a total of 36 nodes. (b) is the distribution of
nodes in the PeMS dataset, with a total of 325 nodes. (c) is the the distribution
of nodes in the Beijing dataset, with a total of 502 nodes.

TABLE II
DESCRIPTION OF THE DATASET

Dataset #Nodes #Edges #TimeSteps AVG STD
Shaoshan 36 62 16128 33.47 11.65

PeMS 325 438 52116 58.89 13.48
Beijing 502 742 17568 37.82 20.28

IV. EXPERIMENT

A. Datasets

1) Traffic Datasets: This paper verifies the performance of
HMIAN on three real datasets: the transport network dataset
provided by Shaoshan scenic spot, the public transport network
dataset PeMS and the Beijing traffic speed dataset provided by
Baidu Map [43].

• Shaoshan traffic dataset is the traffic flow information
collected through cameras arranged at key intersections.
There are 36 sensor nodes in total, and the time range is
from December 20, 2020 to February 13, 2021.

• PeMS dataset is the average speed information from the
Bay Area of California. These data are collected from
the California transportation administration performance
measurement system (PeMS). There are 325 sensor nodes
in total, and the time range is from January 1, 2017 to
June 30, 2017.

• Beijing traffic dataset is the average speed information
from the 6th ring road of Beijing. 502 nodes in this data
set were selected as the experimental data, and the time
range is from April 1, 2017 to May 31, 2017.

Take 5 minutes as a time point to count the traffic data in
this time period, that is, there are 288 time points in the traffic
data of a day. All data are normalized by Z-score algorithm.
The distribution of sensor nodes in these data sets is shown in

Figure 8. For specific descriptions of the three data sets, refer
to Table II.

2) External Factors Datasets: The dimension of external
factors data is 8, including which day of the week the data is
on, time period, holiday, average temperature (°F), minimum
temperature (°F), maximum temperature (°F), average wind
speed (knots), visibility (MI). Among them, the meteorological
data were collected by meteorological observation stations
distributed around Bay Area and Shaoshan, and the data are
provided by Convergent Weather. The data length is consistent
with Shaoshan, PeMS and Beijing data set individually.

B. Experiment Settings

In this paper, the above data set is divided into training
set, verification set and test set according to the ratio of 7:1:2.
According to the rules of short-term traffic flow prediction and
previous research works [32], [33], The historical traffic data
of 12 consecutive time steps in one hour is used to predict the
data of 12 consecutive time steps in the next hour. The final
experimental results on each data set are the average of ten
experimental results.

The experiment is carried out in the following hardware
configuration. An Intel (R) Core (TM) i7-10700F CPU @ 2.90
GHz and NVIDIA GeForce RTX 2070 SUPER GPU 8GB
card.

The hyperparameter settings are as follows: In order to
ensure the efficiency of model training, Adam optimizer is
used to train the model, and the learning rate is 0.01. To
fully train all models, the batch size of input data is 32 and
the training epoch is 100. The hyperparameters involved in
NMIAN mainly include a scaling parameter ω in hierarchical
mapping structure, the number of attention heads nsub and
the dimensionality d of each attention head in the Interactive
Attention mechanism. These parameters are adjusted on the
validation set to achieve the best performance of the HMIAN
model (ω=0.5, nsub=8, d=64).

The experimental results are measured by Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE):

MAE =
1

τy

τy∑
i=1

|Yti −Xti |, (32)

RMSE =

√√√√ 1

τy

τy∑
i=1

(Yti −Xti)
2
, (33)

MAPE =
100%

τy

τy∑
i=1

∣∣∣∣Yti −Xti

Yti

∣∣∣∣, (34)

where Yti and Xti are the prediction result and real traffic
data separately in ti time step, and τy is the number of time
steps of prediction.

C. Results and Analysis Compared with Baseline Methods

This experiment is mainly to compare the HMIAN model
with the baseline model to verify the performance of the
model. The following baseline models are mainly from the
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TABLE III
COMPARISON OF PREDICTION RESULTS BETWEEN HMIAN AND BASELINE MODEL ON SHAOSHAN, PEMS AND BEIJING DATA SETS.

Dataset Metric ARIMA LSTM DCRNN STGCN Graph WaveNet GMAN HMIAN

Shaoshan
MAE 10.33 10.16 9.98 9.58 9.56 9.08 9.16

RMSE 16.85 16.39 16.09 15.37 15.45 14.98 14.77
MAPE(%) 17.25 16.90 16.36 16.15 15.81 15.74 15.62

PeMS
MAE 14.77 13.40 13.02 11.69 11.61 11.49 11.36

RMSE 23.88 23.11 22.41 20.04 20.73 19.62 19.54
MAPE(%) 17.86 17.28 16.69 15.12 14.93 15.07 14.96

Beijing
MAE 13.05 12.61 11.94 12.11 11.38 11.70 10.77

RMSE 16.83 16.43 15.73 16.12 15.20 15.56 13.81
MAPE(%) 16.44 15.82 15.06 15.32 14.03 14.62 12.41
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Fig. 9. Accuracy comparison of different prediction steps in three data sets.

research results of traffic flow prediction neighborhood in
recent years:

• ARIMA: Autoregressive Integrated Moving Average
model, which is a time series prediction and analysis
method [44].

• LSTM: Long Short-Term Memory, which is a chain
neural network for obtaining long-term dependence in
sequence data [19].

• DCRNN: Diffusion Convolution Recurrent Neural Net-
work, which utilizes diffusion convolution and sequence
to sequence frameworks to capture spatial-temporal de-
pendencies [33].

• STGCN: spatial-temporal Graph Convolutional Net-
works, which uses GCN to deal with the spatial features
of traffic information [31].

• GraphWaveNet: Graph WaveNet framework, which con-
structs a self-adaptive adjacency matrix to preserve the
hidden spatial dependencies [32].

• GMAN: Graph Multi-Attention Network, which is a self-
coder composed of multiple spatial-temporal attention
mechanisms [36].

The experimental results on the three data sets are shown
in Table IV.

Compared with the traditional model-driven model, the deep
learning method has higher prediction accuracy. This result
proves that the deep learning method is more suitable for the
prediction task of nonlinear traffic data. On the other hand,
The prediction accuracy of LSTM used to process time series
data is not as good as other spatio-temporal prediction models
(DCRNN, STGCN, Graph WaveNet, GMAN, HMIAN), which
indicats the spatial correlation in traffic data will affect the
traffic prediction results, and explains that the main task of
current research in traffic prediction field is extracting the
spatio-temporal features of traffic data.

The results of the experiment show that the prediction accu-
racy of HMIAN model has reached the current research level.
As the road network structure of the model becomes more
complex and the number of nodes increases, the advantages
of HMIAN model can be better reflected. As shown in Fig.
9, By comparing the prediction results of different time steps
in the three data sets, HMIAN model has higher prediction
accuracy in more complex road network, and can better ensure
the prediction accuracy of 1 hour (12 time steps) in advance
compared with other baseline models, which can provide more
time for ITS to formulate strategies according to the traffic
prediction.

D. Hierarchical mapping network performance validation

This part will conduct longitudinal comparative experiments
to verify the performance of hierarchical mapping network in
the real traffic data set. The comparison models are constructed
by dismantling the hierarchical mapping network, and these
models are used to replace the spatial feature extraction
module of HMIAN

The comparison model is as follows:

• Node2vec: The algorithm is used to construct the hard
mapping matrix between the first and second floors of the
hierarchical mapping network, and extract the correlation
between nodes based on the road network structure [40].
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TABLE IV
PREDICTION BETWEEN HMIAN AND OTHER SPATIAL FEATURE EXTRACTION MODELS ON SHAOSHAN, PEMS AND BEIJING DATA SETS.

Dataset Metric Node2vec GAT GCN 1floor-HM 2floors-HM HMIAN

Shaoshan
MAE 10.09 8.84 9.39 8.97 9.32 9.16

RMSE 15.44 14.57 15.14 14.32 14.93 14.77
MAPE(%) 17.25 16.90 16.36 15.31 15.81 15.62

PeMS
MAE 13.91 13.34 12.51 11.79 11.64 11.36

RMSE 22.38 21.27 21.69 20.46 20.06 19.54
MAPE(%) 17.58 16.76 16.90 15.75 15.21 14.96

Beijing
MAE 13.05 13.23 12.86 12.17 11.38 10.77

RMSE 17.73 17.13 17.28 16.82 15.58 13.81
MAPE(%) 16.85 16.49 16.17 15.59 14.71 12.41

TABLE V
THE ACCURACY COMPARISON OF DIFFERENT FUSION METHODS AND FUSING DIFFERENT EXTERNAL FACTORS.

Dataset External factors
Data concatenating Inter-attention (HMIAN)

MAE RMSE MAPE(%) MAE RMSE MAPE(%)

Shaoshan

No external factors 9.46 15.34 15.91 9.16 14.77 15.62
The day of week 9.41 15.27 15.87 9.02 14.64 15.53

Time period 9.48 15.54 15.89 9.02 14.66 15.61
Holiday 9.19 15.08 15.67 8.76 14.36 15.31

Average temperature 9.33 15.42 15.91 9.10 14.76 15.42
Minimum temperature 9.29 15.11 15.65 8.97 14.44 15.37
Maximum temperature 9.23 15.28 16.73 9.15 14.64 15.49

Average wind speed 9.37 15.41 15.88 9.04 14.69 15.48
Visibility 9.30 15.49 16.07 9.22 14.83 15.59

All factors 9.52 15.59 16.18 9.13 14.81 15.47

PeMS

No external factors 11.65 20.03 15.46 11.36 19.54 14.96
The day of week 11.91 20.07 15.53 11.14 19.31 14.72

Time period 11.87 19.98 15.59 11.25 19.34 14.76
Holiday 11.67 20.02 15.54 11.13 19.05 14.43

Average temperature 11.41 19.95 15.50 11.16 19.24 14.74
Minimum temperature 11.35 19.87 15.38 11.08 19.17 14.66
Maximum temperature 11.48 20.02 15.46 11.20 19.29 14.68

Average wind speed 11.91 20.56 15.72 11.26 19.59 15.10
Visibility 11.72 20.16 15.44 11.39 19.51 14.82

All factors 11.81 20.04 15.50 11.30 19.68 15.91

Beijing

No external factors 11.02 14.27 13.31 10.83 13.95 12.79
The day of week 10.94 14.16 13.18 10.67 13.73 12.57

Time period 10.82 14.09 12.93 10.59 13.61 12.44
Holiday 10.63 13.96 12.77 10.48 13.38 12.31

Average temperature 10.57 14.26 12.91 10.23 13.47 12.24
Minimum temperature 10.39 13.98 12.65 10.41 13.63 12.52
Maximum temperature 10.46 14.28 12.92 10.62 13.72 12.57

Average wind speed 10.87 14.37 12.88 10.54 13.75 12.66
Visibility 11.22 14.58 13.62 11.04 14.21 13.18

All factors 11.39 14.74 13.81 11.17 14.54 13.10

• GAT: Graph Attention Networks, which can be used to
aggregate nodes in the road network and dynamically
calculate the interaction between nodes [34].

• GCN: graph convolution network, which is the main
algorithm to update the spatial features of nodes in each
floor [29].

• 1floor-HM: The model only uses GAT and GCN to
update the node features of the original road network G.

• 2floors-HM: this model The model only constructs the
structural area floor (the second floor of ) on the basis of
the original road network G.

The results of this experiment show that the prediction
accuracy of the basic model with strong universality such
as GAT is higher, and the complex model will lead to poor
prediction accuracy int the traffic data set with a simple road
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network structure and few sensor nodes. In addition, more
complex the road network is, more obvious the advantages of
the hierarchical mapping network proposed in this paper are,
namely, the prediction accuracy will improve with the increase
of the number of layers of hierarchical mapping network. In
PeMS data set and Beijing data set, HMIAN achieves the best
accuracy compared with other models.

The above experimental results show that in the road
network with more complex traffic structure, the interaction
of structural areas and functional zones abstracted from the
original road network will have a greater impact on the
prediction results.

E. Comparative experiment of data fusion algorithms and
external factors

In this experiment, the HMIAN model is compared lon-
gitudinally in terms of data fusion to verify the impact of
different fusion methods on traffic prediction results. Based
on the HMIAN, the model is adjusted as follows:

• No fusion: The temporal module does not fuse any
external factors, but only extracts the time features of
traffic data.

• Data concatenating: The model adopts the simplest
fusion method. After the external factors are processed
into embedding, they are directly spliced with the input
data into a tensor.

• Interactive attention: The temporal module uses the
interactive attention mechanism to calculate the effects
of external factors.

In addition, in this experiment, different external factors are
integrated to verify their influence on the prediction results.

The experimental results are shown in Table V. The results
indicate that integrating external factors can indeed improve
the prediction accuracy to a certain extent, but only taking
external factors as a part of the input data tensor has little
impact on the accuracy. The prediction accuracy is effectively
improved by using interactive attention mechanism and inte-
grating external factors.

From the type of external factors, in order to verify whether
different external factors have a significant impact on the
prediction results, an analysis of variance [45] is conducted
according to the prediction results.

Firstly, the average value and variance of the prediction
results considering different external factors are calculated,
which are denoted as ȳi and si (i ∈ {1, 2, . . . , cEF }), respec-
tively. cEF is the number of types of external factors. Then,
the mean square of external factors (MSEF) and mean square
error are calculated as follow:

MSEF =

∑cEF

j=1 nj(ȳi − ȳ)
2

cEF − 1
, (35)

MSE =

∑cEF

j=1

∑nj

i=1 (yij − ȳi)
2

(nj − 1) · cEF
, (36)

where nj represents the number of experimental groups
which adopt different fusion method separately. ȳ is the
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Fig. 10. The prediction accuracy of fusing external factors by interactive
attention mechanism on the three data sets. The results are sorted by MAE.

average of all results, and yij is the prediction result of a
certain group fusing a certain kind of external factor.
F statistics is constructed to test the influence of different

external factors on the prediction results. The calculation
formula is as follows:

F =
MSEF

MSE
. (37)

Compare the calculated statistic F in the distribution critical
value table [45]. In this experiment, the quantile α was set
to 0.05. Since F >Fα (cEF − 1, (nj − 1) · cEF ), it can be
concluded that there are great differences between the effects
of different external factors on the prediction results.

According to Fig. 10, the experimental results show that
fusing the holiday and temperature factors can greatly improve
the prediction accuracy. Since the collection site of Shaotshan
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data set is located around the scenic spot, the holiday factor
have a great impact on the prediction accuracy. The other
two data sets have different degrees of influence from external
factors due to their complex road network and functions. It can
be seen that The influence of external factors on the prediction
results of different types of regions will also be different. On
the other hand, the experimental results show that fusing all
factors can not achieve the best effect, and factors such as
visibility may reduce the prediction accuracy.

V. CONCLUSION

In this paper, the HMIAN traffic prediction model is pro-
posed, which can effectively aggregate the roads related to
traffic information into functional zones, and extract the long-
distance dependence relationship between roads in the traffic
network by calculating the interaction between functional
zones. When calculating the temporal correlation of data, the
external factors affecting traffic are deeply integrated with data
by using the attention mechanism such as interactive attention.
Experiments were carried out on Shaoshan, PeMS and Beijing
traffic data sets. The results show that HMIAN model has
better prediction accuracy in more complex traffic networks
with more sensor nodes. Furthermore, The longitudinal com-
parison experiment to verify the performance of hierarchical
mapping network proves that the functional zones aggregated
by roads have a great impact on the prediction in complex
road network. And the comparative experiment of data fusion
algorithms and external factors shows that compared with the
general fusion method, the interactive attention mechanism
can fuse traffic data and external factors more effectively, and
improve the prediction accuracy. The result also verifies that
factors, such temperature, holidays, have a greater impact on
traffic prediction, and different regions are affected by external
factors to different degrees due to their functional features.
The following research will consider how to select appropriate
external factors for fusion to improve the accuracy of traffic
prediction.
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