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Abstract

Proteins are an important building block of life, and they are responsible for many processes

in living organisms. Therefore, understanding their functions and working mechanisms has vi-

tal importance to answer many questions about diseases and is a basis for the development of

novel drugs. Three dimensional (3D) structure of proteins determine their functions; therefore,

the determination of the 3D structures of proteins has been studied widely. Although many

experimental techniques have been developed to determine the structures of proteins, they have

limitations, especially for large protein complexes. Protein structure can help understand protein

function, as can looking at conserved residues, but typically time consuming mutagenesis exper-

iments combined with protein function assays are needed. As an alternative to the experimental

methods, researchers have been working on developing computational approaches. While it is

relatively easy to predict structures when the structure of a homologous protein is known, as

it can be used as a template, the prediction of protein structures in the absence of a template

is more challenging. For template-free predictions, coevolved amino acid residue pairs, pre-

dicted from the alignment of the homologous sequences, provided promising improvements in

the field. More recently, successful implementation of the artificial neural networks, fed by the

predicted coevolved residue pairs, improved the accuracy of the predicted structures further.

Although there are promising developments in the coevolution based approaches, especially

for the structure prediction of small/medium-sized proteins, more developments are needed for

predicting protein structure, particularly of large protein complexes. Here, we show that the

prediction of distances between residue pairs, via deep neural networks fed by predictions of

coevolved residue pairs, improves the accuracy of structure prediction in small/medium-sized
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proteins. The prediction of residue pair distances, using a similar approach, in two interacting

domains also allows us to predict how two domains on the same chain interact with each other.

Further, we show that prediction of coevolved residue groups, via statistical coupling analysis,

allows us to determine functional boundaries of domains and diverged amino acid patterns in

the sub-types of the domains in a multi-domain protein complex, a polyketide synthase. We

found that using predicted distances, in addition to the predicted residue pairs in contact, al-

lows us to generate structures closer to the experimental structures, and to select them as the

final models in a straightforward approach. Additionally, we reveal that the distances of the

residue pairs on interacting domain pairs can be predicted accurately leading to the success-

ful prediction of the structural interface between two interacting proteins when the interface

surface is large, and the sequence alignment is comprehensive enough. Finally, we found that

functional domain boundaries, which are consistent with the experimental studies, can be de-

termined. Also, some coevolved residue groups have distinct amino acid patterns in different

domain sub-types including the positions that have already known as the fingerprint motifs of

the different sub-types. These approaches can be applied to predict the structures of individual

domains and to predict how two domains interact with each other, which can be used to predict

the structure of multi-domain proteins. The work on polyketides here demonstrates how these

developments might be applied, since identifying domain boundaries and residues important

for substrate specificity should aid in the design of novel polyketide synthases and thus of novel

polyketides. This in itself is an important development given the commercial and medicinal

importance of polyketides, but also opens the way to similar analysis on other multidomain

proteins.
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and Mertkan Şener, for being like a family to me in London.

I am extremely thankful to my dearest friends Aslı Yenenler-Kutlu, Burak Büyüksakallı,
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Chapter 1

Introduction

1.1 Proteins

Proteins are an extremely important building block of life and they are responsible for most of

the functions in cells including catalytic activities, DNA replication, transcription, translation,

signalling, and the structural integrity of the cell. Proteins are made of twenty types of amino

acids. All of the amino acids have a backbone consisting of an amine (-NH2) and a carboxyl

(-COOH) group attached to a central carbon atom (Cα). Additionally, a side chain group (-R) is

attached to (Cα) providing the diversity between the amino acid types (Fig. 1.1). An amino acid

chain (i.e. polypeptide chain) should fold into a three dimensional (3D) structure in order to be

functional. In the folding process, the polypeptide chain first forms a secondary structure that

can be α- helix or β- sheet via hydrogen bonding between the backbone atoms (Fig. 1.2). Fur-

ther interactions between the amino acids (via electrostatic interactions, salt bridges, disulfate

bonds etc.) provide additional folding leading to the tertiary structure. Although some proteins

can be functional in the tertiary state, most of the proteins interact with other folded amino acid

chains to form a quarternary state (Fig. 1.2).

Proteins consist of domains that are separately evolved from the rest of the protein chain

and independently fold into a 3D structure. Some proteins have only one domain whereas

most of them have multiple domains. Predictions to determine the number of single and multi-

domain proteins have been performed for at least two decades (Chothia 2003; Ekman et al.
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Figure 1.1: Structure of an amino acid. There are 20 types of amino acids and all of them have a
backbone consists of an amine (-NH2) and a carboxyl (-COOH) group attached to a central carbon atom
(Cα). Additionally, a side chain group (-R) is attached to (Cα) providing the diversity between the amino
acid types.

2005). Although estimates vary slightly, the calculated number of multi-domain proteins in

prokaryotes is around 40%, which increases up to 65% in eukaryotes (Ekman et al. 2005).

Since the structure of a protein determines its function, it is critical to determine the structure

of a protein. Many experimental techniques have been developed to determine the structure of

the proteins. X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are

two commonly used methods. While X-ray crystallography provides high resolution (up to

smaller than 1 Å), crystallization of a structure is experimentally challenging and costly, and it

is particularly difficult for large protein complexes. On the other hand, while NMR spectroscopy

is not as challenging as X-ray crystallography and determines the structure in solution (no need

for crystalization), it is limited to smaller proteins. As of August 2020, 90% of all protein

structures in the PDB are determined via X-ray crystallography and 7% via NMR spectroscopy.

The remaining 3% are determined via electron microscopy and other methods (Berman 2000).

3D Electron Microscopy (3DEM) allows determination of protein structures with larger

sizes. Although the method was not very successful in determination of the structures in better

resolutions, recent developments improved the resolution quality (Malhotra et al. 2019), and the

number of 3DEM structure releases in the PDB (Berman 2000) exceeded the number of NMR

structure releases since 2016. Although very promising improvements have been achieved,

structure determination for mega-Dalton sized proteins are still limited. For example, there are

969 structures in the PDB whose size is larger than 2 MDa; however only one of them has the
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Figure 1.2: Folding of a polypeptide chain into the 3D structure. The polypeptide chain first forms a
secondary structure that can be α- helix or β- sheet via hydrogen bonding between the backbone atoms.
Further interactions between the amino acids (via electrostatic interactions, salt bridges, disulfate bonds
etc.) provide additional folding leading to the tertiary structure. Although some proteins can be func-
tional in the tertiary state, most of the proteins interact with other folded amino acid chains to form a
quarternary state.

resolution smaller than 2 Å (PDB ID: 6e9d), indicating how challenging it is to determine the

structures of large proteins with high quality of resolution.

Small-angle X-ray scattering (SAXS) is also used to determine structures of large proteins

in solution; however, its resolution is low (Kikhney and Svergun 2015). The resolution of the

structure can be improved by using structural information obtained from other methods (X-ray

crystallography, NMR) similar to 3DEM.

These limiations in experimental methods directed researchers to develop computational

approaches for protein structure prediction methods. Predictions of structures of individual

domains are important for fast determination of the structures; however, due to the challenges
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of the current experimental techniques, it is critical for mega-sized protein complexes.

The computational methods can be divided roughly into two approaches. Template-based

methods, which require known experimental structures, can result in very accurate predictions

especially when the sequence similarity between the target and the template structures are high.

For the proteins without any structural template, template-free approaches have been developed.

The aim is to predict the structure of a protein from a solely amino acid sequence without using

any template or fold similarity information.

Since it is a very important task to predict the structures accurately, the Critical Assessment

of Techniques for Protein Structure Prediction (CASP) competition has been going on to eval-

uate the success of the predicted structures since 1994 (Moult et al. 1995). Many groups from

all around the world participate in this competition for evaluation of their methods for protein

structure prediction. It is a biennial, double-blind competition where the structures of the target

proteins either have not been solved previously or have not been published; therefore, the pre-

dictors cannot know the structures of the target proteins. Hence, the success of the predictions

only depends on the methodology that researchers developed. As all participants have been

working on predicting the same set of target proteins, the competition ranks the methods reveal-

ing what kind of developments in the methodologies provide improvements in the area. These

properties of the competition put CASP into a central role in the protein structure prediction

challenge.

This chapter will begin with a summary of different computational methods for protein

structure prediction including the milestone developments in the area with a specific emphasis

on the coevolution-dependent approaches. Later, the methods for predicting the structure of

multi-domain complex will be explained with details of developments and gaps in the field,

highlighting the importance of the detection of coevolved residue pairs for the successful pre-

diction of the domain-domain interactions. Then, detection of coevolved residue groups for

identification of protein regions evolved for distinct functions will be explained, and their ap-

plication area will be demonstrating the feasibility of its application on multi-domain proteins.

Lastly, a multi-domain protein complex class, polyketide synthases, is explained in detailed,
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which will be used as a model system for the following chapters.

1.2 Computational Methodologies for Protein Structure Pre-

diction

1.2.1 Template-Based Methods

1.2.1.1 Comparative (Homology) modelling

Comparative (homology) modelling is used to predict the 3D structure of a protein (target) based

on a template structure that is homologous to the target protein. For the prediction of a structure,

the first step is the detection of homologous structures from the PDB. This can be performed

by similarity searching tool, like BLAST (Altschul et al. 1990), which can search the PDB for

matching sequences or sequence fragments. If the identity is higher than 30 %, then the structure

is selected to be used as a template (Xiang 2006). After alignment of the template sequence and

the target sequence, a model is constructed. As the last step, the model is evaluated in order to

check for errors (Eswar et al. 2007). The success of comparative modelling has increased with

the development of better alignment algorithms that provided more accurate template selection

and sequence alignment. Moreover, since the number of structures has been increasing, there

are more templates available covering a greater range of patterns (KC 2016). MODELLER

(Eswar et al. 2006), SWISS-MODEL (Guex and Peitsch 1997) are successful and widely used

examples for homology modeling tools.

In the first decade of CASP experiments, predictions showed promising improvement due

to the successful progress in alignment methods since the accuracy of comparative modelling

is mainly based on the success of the alignment. On the other hand, in the second decade of

CASP, this acceleration has disappeared. The misaligned regions of targets constitute no more

than 15% of alignable regions so obtaining further improvements is more challenging via this

approach. Although comparative modelling is in a stationary phase, the best predictions were

obtained by homology modelling when there is a good template in recent CASP rounds (Moult

et al. 2016; Croll et al. 2019).
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The success of homology modelling depends on the identity of the target sequence with the

homologous model. If the match between the sequences is higher than 40%, root-mean-square

deviation (RMSD) of 90% of main-chain atoms is up to 1 Å. When the identity between the

sequences is about 30-40%, alignment becomes challenging. While 80% of main-chain atoms

RMSD can be less than 3.5 Å, it is higher for the rest. For the sequences with lower than 30%

identity, finding homologous structures becomes difficult, which results in worse predictions

(Xiang 2006).

1.2.1.2 Fold Recognition modelling (Threading)

When there is no high similarity between the target sequence and the sequences of the proteins

in the PDB (sequence identity < 30%), alternative methods should be applied to those proteins

to predict their structures (Khor et al. 2015). One approach to predict the structures of these

proteins is ab-initio modelling, which is explained in detailed in the following section. The other

approach is using similar folds or motifs of proteins as a structural template, rather than using

the whole protein structure. This method is called as fold recognition modelling or threading.

The idea behind threading is placing (i.e. threading) the amino acids of a query sequence

along the positions of amino acids on the structures of target proteins, and selecting template

structures based on the quality of fit the by a scoring function. In other words, with this ap-

proach target proteins are searched to detect whether they have similar folds to the query se-

quence. That’s why this approach is also called fold recognition. Using fold similarity to predict

structures is based on the idea that there are a limited number of folds in nature (Chothia 1992;

Zhang and Skolnick 2005; Chakraborty et al. 2017).

Originally the threading process was one where the sequence of the query protein was

threaded through all proteins in the database and the ones with the best score, as judged by

a statistical potential, were selected (Jones et al. 1992), although this idea is now often con-

flated with broader techniques for fold recognition, as described below. Similar to homology

modelling, the critical step is to be able to find good templates, which requires successful align-

ments evaluated by accurate scoring functions (Khor et al. 2015). A variety of alignment scores

including secondary structure match, sequence profile-profile alignment, sequence-structural
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profile alignments, hidden-Markov models (HMMs) as well as deep learning-based algorithms

have been used to find precise query-template matches. For example, I-TASSER (Iterative

Threading ASSEmbly Refinement) (Roy et al. 2010) is a widely used tool for fold recognition

based protein structure prediction. To select the template structures, I-TASSER uses a program

called LOMETS (Wu and Zhang 2007), which combines six different profile based threading

algorithms and five different deep learning-based threading methods leading to better templates

compared to any single method alone (Wu and Zhang 2007; Zheng et al. 2019). After selec-

tion of templates, I-TASSER generates full-length structures by iterative fragment assembly

simulations (Yang and Zhang 2015).

1.2.2 Template-Free (ab initio, de novo) modelling

Template-free modelling aims to predict the 3D structure of a protein from only its amino acid

sequence. Since template-based approaches need experimentally determined 3D structures,

its application is limited to the presence of template structures. In the absence of a proper

protein template, ab initio structure prediction is a unique way to predict the structure of a

target sequence.

There are several approaches to predict protein structure from sequence. They can be clas-

sified as physics-based, fragment-based and covariance-based methods.

1.2.2.1 Physics based de novo structure prediction

All atom molecular dynamics (MD) simulations are used to understand the dynamics of bio-

logical molecules and their interactions at atomic resolution. Therefore, in theory, molecular

dynamics simulations should properly provide native structures of proteins. However, there are

some limitations to the application of MD simulations to predict protein structure. The first one

is the computational cost of modelling. Since it takes up to 100 µs for the fast proteins to fold

(Lindorff-Larsen et al. 2011), simulating folding processes is computationally costly. In order

to be able to simulate these processes, the Shaw group developed a supercomputer - named

Anton- with a chip architecture specially designed for fast MD simulations (Shaw et al. 2008;

Shaw et al. 2014). The advanced version of Anton (Anton 2 (Shaw et al. 2014)) is capable of
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simulating a system with 10,000 atoms at a rate of 100 µs/day with 512 nodes; whereas the rate

decreases to ∼ 15 µs/day when the system size increases up to 1,000,000 atoms (Shaw et al.

2014). The Shaw group demonstrated that simulation of the folding of ubiquitin, a 76 residue

protein, which folds comparatively slow experimentally (Piana et al. 2013) with Anton took 3

ms of simulated time to fold, which is consistent with the experimental time scale. If this study

were performed with Anton2, it would be expected to catch one folding event (3 ms) in slightly

less than 30 days (with a system of around 9,000 atoms), using 512 nodes. Although it is not a

very long time scale for the detailed study of protein folding, it is not feasible when the aim is

to predict the 3D structures of proteins.

In a recent study from the same group, restraints that were determined from the first con-

former of the NMR structure were applied to interacting residues to decrease simulation time.

With this approach, they could obtain more than an order of magnitude faster folding of the

same protein resulting in less than 1 Å RMSD from the NMR structure (Raval et al. 2015).

Apart from being costly, the success of all-atom MD simulations highly depends on the

selected force field. Therefore, the determination of the best force field for a specific system

may require additional studies and optimizations.

In order to decrease the cost of the calculation, coarse-grained modelling methods have

been developed. Coarse-grained protein models use different representations of amino acids in

a sequence. The resolution of the representations for a residue varies from several united atoms

representing different parts of an amino acid up to a single united atom for the whole residue.

These models can use physics-based, statistic-based and structure-based models of force fields.

Since coarse-grained models allow the simulations of longer time scales and larger systems

compared to all-atom MD, they promise a better understanding of biosystems (Kmiecik et al.

2016). However, similar to all-atom MD, selection of “best” force field is the challenging step

of this approach.

1.2.2.2 Fragment based de novo structure prediction

The main idea of this approach is the assumption of peptide fragments having a limited number

of conformations. Therefore, for the purpose of structure prediction of a target sequence, one
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should select the correct peptide fragments and assemble them. The fragment libraries are cre-

ated via known structures (from the PDB). The programs select various fragments and replace

them with one another to sample all possible conformations. After scanning the conformation

space, the fragments are sampled and the potential energies of the conformations are calculated

to compare the structures. The success of the prediction not only depends on the performance

of the tool that performs these processes, but also the fragment library used. The fragments

should be determined with detailed consideration. If long fragments are used, it would decrease

the computational cost since the number of fragments used for a target would decrease. On the

other hand, it would also reduce the chance of finding the correct fragment from the database.

In order to obtain the balance between accuracy and speed, intermediate fragments (up to 21

amino acid length) are used from the libraries (Wang et al. 2016). One limitation of this ap-

proach is its dependency on the structures in the database. It may not to be possible to find

candidate fragments (because of misalignments and missing templates), which results in a dras-

tic decrease in the success of the prediction (Wang et al. 2016). For fragment library generation,

several algorithms including NNmake (Gront et al. 2011), HHfrag (Kalev and Habeck 2011),

Flib (Oliveira et al. 2015), LRFragLib (Wang et al. 2016) have been developed. Similarly, for

fragment assembly, there are various algorithms including Rosetta AbinitioRelax (Simons et al.

1997; Rohl et al. 2004), Bilevel and ILS (Kandathil et al. 2018) protocols.

1.2.2.3 Covariance based de novo structure prediction

Interactions between amino acids provide proteins have their 3D structure and the maintenance

of these interactions is critical for proteins to sustain their functions properly. During the evo-

lutionary course, when a mutation occurs at one residue position, complementary mutations

should occur at the interacting positions in order to preserve the 3D structure of the protein and

the function. This evolutionary pressure results in the coevolution of residue pairs or groups.

Detection of these coevolving residues promises to predict interacting amino acids in a protein

structure that - in theory - should allow us to build the overall 3D structure.
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1.2.2.3.1 Generation of Multiple Sequence Alignment

For the detection of coevolved residues from the sequence of the target protein, the first step is

to find proteins with similar sequences, i.e. homologous proteins, via sequence search tools like

BLAST (Altschul et al. 1990), PSI-BLAST (Altschul 1997), HMMER3 (Eddy 2011), HHsuite

(Zimmermann et al. 2018). BLAST (Basic Local Alignment Search Tool) looks for sequences

in a sequence database that have local similarities to the query (i.e. input) sequence and de-

termines the statistical significance of the match (Altschul et al. 1990). PSI-BLAST (Position-

Specific Iterative Basic Local Alignment Search Tool) is an iterative sequence searching tool.

The first round is the same as a BLAST search. However, from the first run of BLAST, PSI-

BLAST generates a position-specific scoring matrix (PSSM) (i.e. sequence profile) from the

MSA based on the frequencies of the amino acids at each position in the sequence alignment.

PSI-BLAST uses this PSSM to detect similar sequences in the following round. The PSSM is

updated in every iteration and the updated PSSM is used to detect homologous sequences in the

following iteration(Altschul 1997). As PSSM based sequence searching uses information not

only from a unique sequence (i.e query sequence) but also information of an MSA consisting

of similar sequences it provides a more sensitive search and allows the detection of distantly

homologous sequences (Altschul 1997).

HMMs (Hidden Markov Models) are generally better at find remote sequence homologues

than the BLAST family of methods. Profile HMMs include position specific penalties for in-

sertions and deletions besides amino acid substitions, resulting in improvements in sensitivity.

HMMER3 uses a profile HMM to search a sequence database to detect homologous sequences

(Eddy 2011). A simple position-independent scoring system based profile is generated from the

query sequence and homologous sequences are searched in a sequence database (by phmmer).

If an iterative search is desired, the profile HMM is updated with detected sequences in each

iteration and the updated profile HMM is used in the following iteration (by jackhmmer) (Eddy

2011).

HHsearch and HHblits from HHsuite also uses profile HMMs to find homologous sequences,

the latter performing an iterative search (Zimmermann et al. 2018). On the contrary to PSI-
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BLAST and HMMER3, HHblits searches a profile HMM database to detect homologous se-

quences rather than searching a raw sequence database. Using HMM profiles for both the query

and target proteins makes HHblits a more sensitive tool for detection of distant sequence homo-

logues (Zimmermann et al. 2018; Steinegger et al. 2019).

Due to their sensitivity, Jackhmmer and HHblits are commonly used tools to generate

MSAs, which is the first step for predicting contacts in covariance based de novo structure

prediction. The precision of predicted contacts vary depending on the prediction method (like

plmDCA, PSICOV, described below), the parameters used in alignment generation or the databases

used (Skwark et al. 2013; Tetchner 2015). However, the difference is not clear enough to claim

one tool is better than the other for contact prediction studies.

1.2.2.3.2 Detection of Coevolutionary Information

Many approaches and methodologies have been developed to detect coevolutionary information

from MSAs. The aim is to be able to detect contacting residue pairs (whose distance between

Cβ atoms (Cα for glycine) is less than 8 Å). On the other hand, the coevolutionary analysis gives

not only directly coupled residues but also indirect couplings between the residues. Detection of

indirect couplings is an inevitable artefact of coevolutionary analysis; since, for example, when

residue A is contacting to residue B and when residue B is contacting to residue C, the only

direct couplings between these three residues are between A-B and B-C. In this case, residues

A-C have an indirect coupling through residue B, which is also detected in coevolutionary pat-

terns. The problem is, when we cannot identify the real directly coupled residues, we introduce

indirect couplings as direct couplings resulting in unsuccessful protein structure predictions.

Mutual information (MI) between the columns of the alignment has been used to determine

the correlation. However, the MI approach could not eliminate indirect couplings. In order to

overcome this problem global statistical models such as direct coupling analysis (DCA) (Weigt

et al. 2008) and protein sparse inverse covariance (PSICOV) (Jones et al. 2011) approaches have

been developed. DCA uses a maximum entropy method and the first reported version used a

message-passing algorithm (mpDCA) (Weigt et al. 2008). mpDCA was computationally costly

because it was using an iterative approach. As an alternative, a mean-field approximation was
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introduced to DCA (mfDCA) providing 103 -104 times faster calculations. Therefore it could be

applied to longer sequences (Morcos et al. 2011). Afterwards, psuedolikelihood maximization

was developed and applied to DCA (plmDCA) resulting in improvements in the accuracy of

contact predictions (Ekeberg et al. 2013).

Apart from plmDCA, GREMLIN also uses a pseudolikelihood method and improves the

predictions of plmDCA (Kamisetty et al. 2013). Comparison of the prediction with plmDCA,

PSICOV and MI shows GREMLIN provides better predictions than all others while MI gives

the worst. FreeContact implements EVfold-mfDCA and PSICOV that provides faster calcu-

lation but struggles to obtain accurate results as plmDCA and GREMLIN (Kaján et al. 2014;

Seemayer et al. 2014). Another approach that uses pseudolikelihood maximization is CCM-

pred, which is faster than plmDCA, GREMLIN and PSICOV while as accurate as plmDCA and

GREMLIN and better than PSICOV (Seemayer et al. 2014).

1.2.2.3.3 Progress in CASP competitions

Improvements in the contact prediction accuracies led to a leap in the success of ab initio struc-

ture predictions in CASP competitions (Schaarschmidt et al. 2018). Although the prediction of

coevolved residue pairs to predict protein structures has been studied for more than two decades,

the first encouraging results were obtained in CASP10 (2012). Removal of the indirect inter-

actions was the reason for this improvement. Further success was obtained when the machine

learning algorithms, using coevolutionary information as input, were implemented to predict

the contacting pairs by MetaPSICOV (Jones et al. 2015) in CASP11 (2014) (Fig. 1.3). The

average precision of top L/5 pairs (where L is the length of the sequence of a target protein) of

long range contacts increased from 22% to 27% from CASP10 to CASP11, and it was acknowl-

edged as a great success and oriented the attention to the implementation of the artificial neural

networks for ab-intio structure prediction challenge. In CASP12, 26 of 32 groups performed

better than the best performing group in CASP11 with reaching up to 47% average precision

and among them, RaptorX (Wang et al. 2017) achieved the highest score. On the contrary of the

results of CASP11, where there is a large difference between the top predictor (MetaPSICOV)

and the second-best, in CASP12 top predictors have similar average precision on the target
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proteins.

Figure 1.3: The precision of contact predictions in CASP12 jumped compared to predictions of
CASP10 and CASP11 thanks to the developments in sequence databases and machine learning ap-
proaches. Each bar represents the average precision score for the top L/5 residue pairs of long range
contacts of a group, ranked along the x-axis from most successful to least successful group for each
CASP competition (CASP10 (red), CASP11 (green) and CASP12 (blue)). Black dashed lines show the
highest score for the corresponding competition. Figure is taken from ref. (Schaarschmidt et al. 2018),
for the permission to use, please see Appendix B.

Improvements in the contact prediction has continued in CASP13 with another great jump

in the average prediction (Shrestha et al. 2019; Kryshtafovych et al. 2019) (Fig. 1.4). Most of

the participants performed well in contact prediction in this round of CASP where 16 of them

outperformed the highest score of the previous round. Similar to the CASP12, Jinbo Xu’s group

achieved the highest contact prediction score with RaptorX, in CASP13 (Xu 2019).

Although great achievements have been obtained in the contact prediction accuracy, the big

jump in structure prediction has been obtained by DeepMind’s AlphaFold (Senior et al. 2019;

Senior et al. 2020) in CASP13 (Fig. 1.5). The reason for this leap was obtained thanks to

the successful predictions of the distance potentials between the residue pairs, rather than a

successful prediction of contacting amino acids solely. Although AlphaFold showed a great

success in CASP13 thanks to the prediction of distances between the residue pairs successfully,

the idea of predicting distances and using them to predict the structure of proteins is not a novel
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Figure 1.4: Contact predictions in CASP13 performed a further jump compared to predictions of
previous CASP rounds thanks to impelementation of advanced neural networks. Figure is taken from
ref. (Shrestha et al. 2019), for the permission to use, please see Appendix B.

idea. Residue pairs were predicted previously by Pollastri et al., yet the implementation of

these predictions to structure prediction was not that successful with a TM-score of 0.24 for the

tested 9 CASP protein targets (Walsh et al. 2009; Kukic et al. 2014). The Jinbo Xu’s group

predicted inter-residue distance distribution for protein threading and showed that threading

with distance information also helps to improve predictions on CASP12 free modelling targets

(Zhu et al. 2018). To the best of my knowledge, we are one of the first groups who could

predict the distances between the residues and obtained improvement in the predicted structure

quality when distance predictions were implemented for ab initio structure prediction (Ji et al.

2019) (for details please see Chapter 2). Distances between residue pairs were later successfully

predicted and implemented by other groups as well. For example, DMPfold was developed by

David Jones and colleagues as an improved version on MetaPSICOV (Greener et al. 2019) and

distance predictions were implemented to RaptorX by Jinbo Xu’s group (Xu 2019).

1.2.2.3.4 Additional features used for ab initio structure prediction

In neural network architectures, in addition to the coevolutionary information, several other fea-

tures, like predicted secondary structures, predicted solvent accessibility, statistical potentials,

the effective number of sequences, amino acid composition, and Shannon entropy, are used

to predict residue contacts (Jones et al. 2015; Wang et al. 2017) as well as in our protocols

described in Chapters 2 and 3.
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Figure 1.5: AlphaFold (G043) outperformed other predictors in free modeling catagory of CASP13
thanks to the successful predictions of the distances between the residue pairs and implementation of
advanced neural networks. Figure is taken from ref. (Groups Analysis: zscores - CASP13)

Work to predict secondary structures has been ongoing for three decades as secondary struc-

tures provide information for functional annotation of proteins and also a step to predict the 3D

structures (Zhu and Liu 2019). There are several successful secondary structure prediction tools

like PSIPRED (Jones 1999), DeepCNF (Wang et al. 2016), SPIDER2 (Yang et al. 2016). For

our predictions, we used SPIDER2, whose performance is ranked among top prediction tools

on several benchmarks (Yang et al. 2016; Juan et al. 2020) with an high prediction speed (Juan

et al. 2020).

Another feature that is fed to the ANNs are statistical potentials, which are also known as

knowledge-based potentials. These are pairwise interaction scores for amino acid pairs gener-

ated from known 3D structures of proteins. In most of the approaches to determine a statistical

potential, the residue pairs are assumed to be interacting and so taken into consideration if the

distance between their side chains’ center of mass is closer than a certain threshold. Genera-

tion of statistical potentials from known structures were first proposed by Tanaka and Scheraga

(Tanaka and Scheraga 1976), and further expanded by Miyazawa and Jernigan (Miyazawa and

Jernigan 1996). Many modificitions on the approach led to the generation of several statistical

potentials. Betancourt and Thirumalai generated a potential matrix by rescaling Miyazawa and

Jernigan’s contact interaction giving hydrophobicities better aggreement with experiments (Be-

tancourt and Thirumalai 2008). In MetaPSICOV, Jones et al. used the statistical potential of
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Betancourt and Thirumalai, and for a given residue pair they calculated the weighted average

(sequence weights) of the potentials based on the amino acid content of the corresponding MSA

columns (Jones et al. 2015).

1.2.3 Implementation of machine learning algorithms for ab initio predic-

tions

1.2.3.1 A brief introduction to machine learning

The working principle of machine learning algorithms is based on finding patterns in data and

predicting the outcome with that detected patterns. Machine learning algorithms are used in

many fields today; including finance, automatization, manufacturing as well as biology. In

biology, the application of machine learning algorithms contains many fields as drug discovery,

DNA sequencing, tumour detection.

Machine learning algorithms vary based on the type of data, availability of input and output

and the approach to the task. For example, in supervised learning both input and output data

are known and a model is trained to construct a pattern from input to output. Regression and

classification are widely used types of supervised learning for discrete and continuous data,

respectively. On the other hand, in unsupervised learning, there is no output data and the aim

is to be able to find some patterns in the input data. Clustering, for example, is a type of

unsupervised learning and the aim is to be able to cluster the input data points based on their

“similarities”. There are further types of learning algorithms exist in machine learning including

semi-supervised learning, reinforcement learning; however, since I have used classification as a

learning algorithm, details of the other types are beyond scope of this thesis.

One challenging point of using machine learning algorithms is to select the right approach

for the specific task. While algorithm options can be narrowed based on data size and type, the

most appropriate one can be selected with trial and error. Artificially neural networks (ANN)

is one class of widely used machine learning algorithms. An ANN is composed of individual

neurons and their interactions. A simple neuron is demonstrated in Fig. 1.6, left.

In a neuron, given information, input (p) is multiplied by a scalar weight (w) resulting a
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weighted input, wp (Fig. 1.6, left). When there is a bias, wp is added to the bias, b, resulting

wp + b, which is called as net input, n. The net input, n, is acted on by a function called the

transfer function, f , producing an output, a where a = f (wp + b) (Fig. 1.6, right).

Figure 1.6: Structure of a single neuron with a scalar input without (left) and with (right) a bias. An
input (p) is multiplied by a scalar weight (w) resulting a weighted input, wp (left). When there is a bias,
wp is added to the bias, b, resulting wp + b (right).

The overall point of ANNs is to optimize these w and b values based on the given data. In

other words, the training process is a process of the adjustment of these parameters to obtain the

given output. In the case where the input is not just a scalar but a vector, p, then it is multiplied

by a weight vector, W, resulting Wp + b (Fig. 1.7).

Figure 1.7: Structure of a single neuron with a vector input. When an input is not just a scalar but a
vector, p, it is multipled by a weight vector, W, resulting Wp + b.

Although these simplifications make it easier to understand the basic mechanism, neural

networks used for training are much more complicated. A layer of neurons (also called as a

hidden layer) contains multiple neurons as illustrated in Fig. 1.8. In the case where there is

more than one hidden layer, the method is called a deep neural network (DNN). In Fig. 1.9,

the structure of neural interactions with three hidden layers is shown. In this system, the first

layer receives the input and after processing it produces an output, which is taken as input

by the second layer and processed again to produce an output that is taken as an input for

the third layer. The third layer processes it one more time to give the overall output. Deep
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learning is specifically used in image recognition applications including motion detection and

face recognition (Demuth et al. 2000).

Figure 1.8: Neural network structure with multi-neurons in a network with one hidden layer.

Figure 1.9: Neural network structure with multi-neurons in a network with three hidden layers.

As the output from one layer to the next layer is transferred via a transfer (or activation)

function, one critical decision in a neural network is to be able to select a “proper” activa-

tion function for the specific network architecture and the task. An activation function decides

whether to pass or not to pass the information from one layer to the following layer. Therefore

an activation function generally just scales the output. There are different kind of activation

functions, some of them are shown in Fig. 1.10. Each of them has some advantages and disad-

vantages. Therefore, finding the most “suitable” activation function for the specific settings of

the neural network can be an additional task for training a neural network.

Whether it is a very simplistic network or a very complex DNN, the overall aim is to be

able to find the best weights and biases as mentioned before. Based on the weights and biases

an output is predicted and with a loss (error, cost) function the success of this prediction deter-

mined by comparing how close the prediction is to the target. For regression tasks mean squared
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Figure 1.10: Examples of activation functions. There are variety of activation functions, the most
proper one should be selected based on the task.

error, mean absolute error are widely used loss functions; for classification tasks cross-entropy

is a widely used loss function. During the training of a model, weights and biases are aimed to

be adjusted in a way to reduce the loss. During this process, the gradient of the loss function

based on the weights is calculated with an algorithm called backpropagation. Backpropagation

calculates how the loss function changes with respect to the weights; in other words, backprop-

agation calculates the gradients. Weights are modified based on this calculation in a way to find

where the loss function gets the deepest step with an aim to find the local minimum. This is

how neural networks learn. For this learning process - to optimize the weights and biases based

on the backpropagation calculations - optimizers are used. The most common type of optimizer

is gradient descent optimization and many variations of it have been applied to train a variety

of neural networks.

For the application of these learning methods, there should be sets of training data, test data

and validation data. Training set is used for the algorithms to adjust their parameters based on

this set. In other words, it is the dataset network is trained on. Validation set is used to “try”

the trained network on it to determine which adjusted parameters are better. The test set is

used to apply this network on some independent data and determine the “success” of the trained

network.

19



1.2.3.2 Neural networks used for protein structure prediction

The success of MetaPSICOV in CASP11 brought the attention to machine learning applica-

tions for protein structure predictions as mentioned in section 1.2.2.3. However, it is not the

first study that uses a machine learning algorithm to predict protein structures. Elofsson and

colleagues used random forest classifier to combine different coevolution based contact predic-

tors and improve the prediction accuracies compared to their individual performances (Skwark

et al. 2013). In that study, they showed that using both inverse covariance matrix estimation

method (PSICOV) (Jones et al. 2012) and pseudolikelihood maximization with Potts model

(plmDCA) (Ekeberg et al. 2013) increases the success of the prediction by 20% compared to

the best individual method. In MetaPSICOV, Jones et al. used data from three different coevo-

lution calculations (Jones et al. 2015). In addition to PSICOV and plmDCA (from CCMpred

software (Seemayer et al. 2014)), they used the predictions of FreeContact (Kaján et al. 2014).

Besides, they use additional properties including predicted secondary structure, solvent acces-

sibility, Shannon entropy, mutual information and some additional features extracted from the

alignments. As a machine learning algorithm, they used a feed-forward neural network with one

hidden layer including only 55 neurons. Even with a shallow network test set’s mean precision

for the contact predictions were significantly higher than the contact predictions of individual

methods whose results were used as input for the network.

Most of the top predicting tools in CASP12 used deep neural networks and coevolution data

to predict contacts (Schaarschmidt et al. 2018). For example, RaptorX, the top-scoring predic-

tor for contact prediction accuracies, uses more advanced deep neural networks (convolutional

residual neural networks, explained in detail in Chapter 4) to predict contacting residue pairs

rather than a 2-layer neural network as MetaPSICOV did in CASP11 (Wang et al. 2017). A

subset of MetaPSICOV features was used in RaptorX; however, their predictions outperformed

MetaPSICOV’s predictions suggesting using a deeper network architecture improved the suc-

cess of the predictions.

Although RaptorX became the winner in contact prediction in CASP13, in the structure

prediction DeepMind’s AlphaFold outperformed all other groups with an unignorable difference
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(Fig. 1.5). Although the successful prediction of distance potentials, rather than predicting

contacting pairs only, has a great role in this success, the part of very advanced neural networks

cannot be underestimated (Senior et al. 2019; Senior et al. 2020).

Overall, it is seen that there are four main steps in improvements of ab initio protein structure

prediction: (i) removal of indirect couplings, (ii) implementation of ANNs, (iii) implementation

of deeper networks and (iv) distance predictions and further improvements in network architec-

tures. Therefore it is clear that except for the first step, all milestones in the way of increasing

the accuracy of protein structure prediction have been achieved with the successful implemen-

tation of the machine learning algorithms. This suggests that application of advanced network

architectures and features extracted from the sequences and the sequence alignments not only

can improve the prediction of average-sized proteins further but also promises to provide de-

velopments in other structural bioinformatics challenges like the prediction of the structures of

large, multi-domain protein complexes.
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1.3 Structure prediction of multi-domain protein complexes

While the approaches explained in the previous section have been used to predict the 3D struc-

ture of a single domain or single protein, the adjusted versions of them have been applied to

predict multi-domain protein structures. This area is particularly important since experimental

techniques struggle to determine the structure of large protein complexes while the number of

multi-domain proteins in living organisms constitutes a large proportion (Ekman et al. 2005).

Domain-domain interaction problem to predict the overall structure of a multi-domain pro-

tein complex, or domain assembly problem, has been widely studied similar to the protein

structure prediction problem. Two approaches have been developed to predict domain inter-

faces: (i) template-based methods and (ii) template-free methods. Template-based interface

prediction methods, similar to template-based domain structure prediction methods, require to

have structures of homologous protein complexes. The idea is if two protein complexes have

similar sequence and structures, they would have similar domain interaction patterns and these

interfaces can be used as a template to predict the unknown interfaces. PPI3D (Dapkunas et

al. 2017), DEMO (Zhou et al. 2019), SWISS-MODEL (Waterhouse et al. 2018), InterPred

(Mirabello and Wallner 2017) are successful examples of the tools that use template-based ap-

proaches for domain assembly.

Template-free (ab initio, de novo) approaches, on the other hand, aim to predict domain

interfaces when no template structure is available. Ab initio methods generally approach to

the problem as a docking problem; in which all possible interaction conformations are scanned

and “the best” interface is chosen. However, the conformational space might be too broad and

may require expensive computational sources. Therefore, reasonable restrictions to all possi-

ble interaction conformations have been applied. For that purpose, some researches focused

on finding the correct domain interfaces by the searching the linker conformation space since

for the domains on the same polypeptide chains, relative domain orientation is restricted by

the conformation of the linker between two domains (Wollacott et al. 2006; Xu et al. 2015).

Another method to restrict conformational space is to put restraints on the residue pairs, which
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are either determined with experimental methods or predicted with computational approaches.

HADDOCK, for example, is one of the most successful docking tools, was developed to use

experimental data to put restraints on residues for docking predictions to reduce the interaction

conformational space. However, experimental data may be absent for most of the cases, where

accurate computational predictions are needed for successful interface predictions. Many other

tools allow users to put restrainst on the residues of two domains to reduce the space to span.

One critical point in these approaches is to be able to implement correct restraints in order to

get correct interfaces. Otherwise, these restraints would be forcing the domains to have wrong

orientations with respect to each other. Therefore, many approaches have been developed to

predict the interface surfaces or interacting residues pairs.

Interface residue predictions generally use conservation and/or coevolution information of

the residues. Most recent tools that use conservation scores for interface prediction obtain con-

servation information from Shannon entropy or evolutionary rate and combine this information

with additional features and implement to machine learning algorithms (Savojardo et al. 2017;

Hou et al. 2017; Wang et al. 2019; Northey et al. 2018).

Similarly, coevolution information obtained from various approaches PSICOV, CCMpred

are used as input to machine learning algorithms besides additional features extracted from the

sequences (Hopf et al. 2014; Zeng et al. 2018).

Although many tools and approaches have been developed to predict interaction surfaces

and interacting residues on a pair of domains or proteins, the success in ab initio prediction of

single domain structures could not be achieved for the domain assembly challenge.

Similar to CASP, protein structure prediction competition, there is Critical Assessment of

PRedicted Interactions (CAPRI) competition focusing on the successful predictions of protein

complexes. CAPRI rounds are performed more frequently than CASP, and CASP rounds col-

laborate with CAPRI for multi-domain complex predictions since 2014. Although very encour-

aging improvements have been achieved in ab initio structure prediction, similar progress could

not be observed for multimer predictions. In the last CASP/CAPRI (2018) competition, tar-

gets were classified into three: (i) easy targets for which template homologous models could be
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found for both the subunits and interfaces, (ii) medium targets for which template homologous

structures could be found for the subunits but not for the interfaces, and (iii) difficult targets

for which no template homologous information was available neither for the interface nor for

the subunit structures. While the groups could make successful predictions for easy targets, the

success of predictions for medium and hard targets was not very high. In other words, when a

template for the interface available, successful prediction can be made, whereas for the targets

without a template model, the interface cannot be predicted accurately. Another important point

is among the participants, the ones with higher success rates are the ones with human interven-

tion; whereas the ranking of the automated methods was similar. Overall, last CASP/CAPRI

competition results suggest that predictions are not very successful when there is no template

available and further improvements are needed in automation, suggesting further developments

are needed for protein assembly/ domain interaction prediction area. (Dapkunas et al. 2017;

Guzenko et al. 2019)

Although the progress in the domain assembly challenge is not as high as protein structure

prediction area, the recent progress in the prediction of single-domain structures established

motivation for further studies on the domain interface prediction problem. Implementation of

advanced neural networks and prediction of distance potentials between the residues of domain

pairs - which is studied in this thesis (chapter 3) - led to promising developments for the domain

assembly problem.

1.4 Detection of coevolved residue groups in proteins

Another approach to detecting coevolved residues is using statistical coupling analysis (SCA)

(Halabi et al. 2009; Rivoire et al. 2016). While with DCA and related methods the aim is to

focus on minimal units of coevolution in order to detect interacting pairs, in the SCA the aim

is to be able to detect global units of coevolution for a purpose to detect residue groups that are

coevolved for a specific function (Cocco et al. 2013; Rivoire 2013; Rivoire et al. 2016). There-

fore, while DCA and related methods are useful for predicting the structure of a protein/protein

complex, for detection of functional residue networks, a more global perspective is needed,
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which can be detected with SCA.

In SCA analysis, a covariance matrix from the multiple sequence alignment is generated and

this matrix is weighted with the conservation score of the amino acids. Top eigenmodes of this

conservation-weighted covariance matrix give groups of residues that are coevolved together

for a distinct function from the remaining coevolved residue groups. This approach has been

applied to study a few protein families (Halabi et al. 2009; Rivoire et al. 2016; Narayanan et al.

2017).

In the first study by Ranganathan and colleagues, SCA was developed to see whether sta-

tistically coupled residues, obtained from evolutionary data, are related to each other thermo-

dynamically (Lockless 1999). By mutational analysis, they showed that for the PDZ domain

family, statistically coupled residues - regardless of their spatial distance to each other - are

energetically coupled. Later, Halabi et al. detected multiple, independent residue networks,

named sectors, that are evolved for a different function (Halabi et al. 2009). In serine protease

protein family, they detected three sectors and with mutational studies, they showed that one

of these sectors is functional for the thermal stability and the second one is responsible for the

catalytic activity. In the following study, they overcame some methodological challenges and

with a more straightforward protocol, they could detect different sectors on G-protein family,

DHFR, β-lactamase as well as further investigation on serine protease enzyme family (Rivoire

et al. 2016).

In order to avoid cross-coupling between the determined coevolved groups Rivorie et al.

determined independent components, whose coupling with other residue groups are as less as

possible (Rivoire et al. 2016).

In order to detect the independent components, covariation of amino acids along the se-

quence is calculated from the MSA as the first step:

Cab
i j = f ab

i j − f a
i f b

j (1.1)

where f a
i is the frequency of amino acid a at position i; similarly, f b

j is the frequency of

amino acid b at position j. f ab
i j is their joint probability, which measures the probability of a and
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b being at positions i and j simultaneously.

Position-specific conservation is calculated by Kullback-Leibler relative entropy and covari-

ance matrix (Cab
i j ) is weighted by the conservation score of each amino acid at each position with

respect to the amino acid frequency, which is denoted by φa
i for amino acid a at position i and

φb
j for amino acid b at position j.

C̃ab
i j = φa

i φ
b
jC

ab
i j (1.2)

Conservation weighted correlation matrix, C̃ab
i j , is a four-dimensional matrix (LxLx20x20,

where L is the length of the sequence) and it is compressed to a two-dimensional LxL matrix

by taking the Frobenius norm. The resulting matrix C̃i j (or statistical coupling analysis (SCA)

matrix) is used to determine the coevolved residue groups.

The matrix C̃i j gives the couplings between the positions of the amino acids but how can we

learn which positions are more correlated to each other that can be useful to detect the residue

groups evolved for a distinct function like catalytic activity, ligand binding etc.? In other words,

can we group the amino acid positions which are coevolved together for a specific function?

To do that, we need to transform C̃i j in a way that can separate the residues as different

groups and these residue groups should be as independent as possible from each other for proper

detection of residue group-function relation. For this transformation, firstly, eigenvalue (spec-

tral) decomposition is applied to the C̃i j. This process decomposes C̃i j into three matrices:

C̃ = Ṽ∆̃ṼT (1.3)

where Ṽ is an eigenvector matrix and ∆̃ is an eigenvalue matrix, which is a diagonal matrix

bearing weight for each corresponding eigenvector. The matrix Ṽ carries the information of

the combination of the residue positions as scores. ∆̃ contains the eigenvalues of Ṽ that car-

ries the information about the ”importance” of the corresponding eigenvector. For example,

low eigenvalue means an insignificant contribution of the corresponding eigenvector whereas

high eigenvalue means a strong contribution of the corresponding eigenvector to the variance
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in C̃i j. Therefore, the eigenvectors with high eigenvalues carry the information of a ”strong”

relationship between the residue positions. This means these eigenvectors carry the information

of residue positions that have a coevolutionary relationship. On the other hand, this separa-

tion of the residues into groups based on the eigenvalues and eigenvectors are unfortunately

not successful enough since there can be strong coupling between the groups. To minimize

this interaction between the groups, the significant eigenvectors (the eigenvectors with high

weights, Ṽ1···k∗) are transformed into new components, which are maximally independent from

each other.

Ṽ p
1···k∗ = WṼ1···k∗ (1.4)

where W is the transformation matrix. This mathematical transformation is known as inde-

pendent component analysis (ICA) and resulting residue groups are called independent compo-

nents (ICs) (Rivoire et al. 2016).

Detection of protein sectors by SCA on single-domain proteins have been used by other

groups, too. More recently, Narayanan et al. applied this approach to study pancreatic-type

ribonuclease superfamily and demonstrated one of the detected two sectors is responsible for

thermal stability and the second sector residues are functional in catalytic activity. (Narayanan

et al. 2017)

All these studies demonstrate that it is possible to detect the residue networks that are

evolved separately for distinct functions from the sequence information alone. With this per-

spective, the application of this approach on multi-domain proteins can be a novel way to detect

direct and indirect interactions within and between the domains of multi-domain proteins. Fur-

ther, this analysis can detect functional residue groups in multi-domain proteins that can suggest

new perspectives to experimental studies focusing on modification of protein complexes for the

generation of novel products. With this motivation, I applied SCA analysis on a polyketide syn-

thase, a multi-domain protein complex, to detect coevolved residue groups, which are explained

further in Chapter 4.
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1.5 Polyketide Synthases

Polyketides are secondary metabolites that are produced by many living organisms including

bacteria, fungi, plant and some animal species. They are complex structures and have a huge

role in pharmacology since they have many functions as an antibiotic, antifungal and antipara-

sitic drugs. They are produced by polyketide synthases (PKSs) that are extremely large proteins

or protein complexes. Little is known about the higher-order structure of PKSs although many

individual functional domains are known. Since PKS structures are massive, it is challenging

to determine the structure of the whole PKSs with either experimentally or computationally.

Despite all the challenges it is worth to put effort on the determination of the PKS structures

and working mechanism since re-engineering the structures can overcome the limitations of the

current drugs and provide production of new, target specific medicines.

1.5.1 Organization of Polyketide Synthases

PKSs are classified as type I, type II and type III PKSs (Shen 2003). Type I PKSs are large

multifunctional proteins whose first reports were published in 1990. They can be either itera-

tive or modular. Iterative type I PKSs produce aromatic and enediyne polyketides by using the

same set of domains consecutively to elongate the extending unit. Modular type I PKSs consist

of repeating unit of domain assembly and each module has a separate contribution to extending

chain. In Figure 1.11a, 6-deoxyeryttomycin B synthase (DEBS) modular architecture is given

as an example for type I PKSs. DEBS is one of the most commonly studied PKS and produces

erythromycin A. One other PKS type known as type II PKS have multienzyme systems consist-

ing of small distinct proteins for each catalytic activity and have an iterative function. These

types of PKS generally produce aromatic polyketides. Tetracenomycin PKS is an example for

type II PKS given in Figure 1.11b whose first report was published in 1999. Type III PKSs

necessarily work iteratively and they do not use acyl carrier protein domains while PKS type I

and type II does. In Figure 1.11c, RppA is given as an example of PKS type III. (Shen 2003) In

this thesis, studies are focused on type I PKSs.

Each polypeptide chain in PKS type I is called a subunit and each subunit contains one or
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Figure 1.11: There are three types of PKSs. DEBS is a type I PKS and a widely studied system pro-
ducing erythromycin A. It has a modular structure consisting of one loading module and six elongation
modules (a). Type II PKSs are multienzyme systems with small distinct proteins for each catalytic ac-
tivity. Tetracenomycin PKS is an example of a type II PKSs (b). Type III PKSs are lack an acyl carrier
protein domain and work iteratively. RppA is an example of a type III PKSs (c). Figure is taken from
(Shen 2003), for permission to use, please see Appendix B.
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more modules. These modules are located in a way that the “tail” of the previous module inter-

acts with the “head” of the following module. These interactions are provided by unstructured

peptide linkers or docking domains. In each module intermediate product is elongated with or

without modifications. Each elongation module contains a minimum of a ketosynthase (KS)

domain, an acyltransferase (AT) domain and an acyl carrier protein (ACP) domain. The KS

domain gets the intermediate product from the previous module, the AT domain chooses the

proper extender unit from the cytoplasm and transfers it to the ACP. Chain elongation is per-

formed by the KS domain via a Claisen condensation reaction between the intermediate product

and the extender unit remaining on the ACP. A module may also include one or more modifi-

cation domains like ketoreductase (KR), dehydratase (DH) and enoyl reductase (ER). At the

C-terminus of the PKSs, there is a thioesterase (TE) domain that releases the final product and

in some systems, it also performs macrocyclization (Robbins et al. 2016).

Figure 1.12: Schematic representation of turnstile mechanism. Figure is plotted based on ref. (Bayly
and Yadav 2017).

While there is an extending intermediate in the module, a KS does not accept a new polyke-

tide intermediate from the previous module. In Fig. 1.12, the so-called turnstile mechanism is

shown. Although it is not clear how a KS ”senses” there is an extending chain in the module,

interdomain linkers are the potential candidate in mediating the conformational changes leads
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KS to ”sense” the information (Bayly and Yadav 2017). For a module with only KS, AT and

ACP domains, the resulting chain has a β-keto group. In the case when a module has all three

modification domains KR, DH and ER, elongating chain ends up with fully-reduced methylene

as KR reduces β-keto group into hydroxyl group, DH reduces the hydroxyl group into a double

bond and finally, ER reduces the double bond into a single bond. In Fig. 1.13, it is illustrated

how each domain modifies the extending unit.

Figure 1.13: Modification on β-keto acyl-ACP by KR, DH and ER.

The AT domain of PKSs can either be within the module (cis-AT) or separate from the

module (trans-AT). For cis-AT PKSs, the structure of the polyketide is predictable from the

organization of the modules. In other words, there is a strong correlation between the sequence

of the modules and the structure of the polyketide. On the other hand, this correlation is dras-

tically low in trans-AT systems. Trans-AT systems include additional catalytic functions like

β-branching and C-methyl transfer activities and the ER domains typically act in trans. They

may also have nonribosomal peptide synthase (NRPS) modules that introduce amino acids into

the intermediate product (Weissman 2015). Despite many challenges, there are plenty of studies

to understand the structure and the mechanism of the PKS systems. It is hoped that solving the

structure and the dynamics will provide new insights into protein engineering allowing modifi-

cation of the current products or the production of novel ones.

1.5.2 Structural studies of PKSs

Since PKSs are extremely large, most structural studies focus on the determination of the do-

mains individually. The largest complex determined experimentally is just one module of a

PKS (Dutta et al. 2014; Edwards et al. 2014). Therefore, there is little information about the
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overall structure of the whole complex and how domains interact with each other. One of the

widely studied PKSs is 6-Deoxyerythronolide B Synthase (DEBS). In Fig. 1.14b, the struc-

ture of DEBS module 3 is presented, which was determined via Small Angle X-ray Scattering

(SAXS). During rigid-body modelling, KS-AT was treated as a unit e.g. the dimer retained its

linear structure during the process. The KS domain (green and light green) forms a homodimer

structure and KS-AT (AT domains are presented with blue and light blue color) didomain con-

struct a nearly linear structure. This KS-AT structure is highly similar to vertebrate fatty acid

synthase (FAS) (Edwards et al. 2014; Robbins et al. 2016).

Figure 1.14: Modular structure of polyketide synthases. (a) Structure of module five of pikromycin
synthase (determined via Cyrogenic Electron Microscopy, Cyro-EM), (b) structure of module three of
DEBS (determined via Small Angle X-ray Scattering, SAXS). Although both modules have the same
domain composition, the structures of pikromycin synthase module five and DEBS module three have
drastic differences. KS domains are shown with dark and light green, AT domains are shown with dark
and light blue, KR domains are shown with purple and pink, ACP domains are shown with dark and light
yellow. Figure is taken from ref. (Robbins et al. 2016), for permission to use, please see Appendix B.

The structure of pikromycin synthase module 5 (PikAIII) was determined via Cryogenic

Electron Microscopy (Cyro-EM) (Dutta et al. 2014) in 2014. The structure is different from

the module of DEBS (Fig. 1.14). AT domains are bent downwards via rotation about 120◦

along KS-AT linker. The following KR domains complete a circle resulting in a hole (reaction
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chamber) at the center of the structure that provides a space for the ACP to move and reach

other domains. Until this study, all proposed structures of PKSs and FASs included two reaction

chambers (Fig. 1.14b). In contrast, there is only one reaction chamber in the PikAIII structure

and the active sites of the domains face into the chamber. Additionally, ACPs were observed in

two different locations (i) near the KR domain, (ii) near the AT domain. Since the dimerization

element in the module locates at the C terminus, the two ACPs move together in the chamber.

Even though the structures in Fig. 1.14 seem different, the reason can be using KS and AT

not individually but as a dimer during rigid body modelling as discussed in ref. (Weissman

2015). Since SAXS data provided approximately 40 Å resolution, it is not known whether

using these domains individually could give a structure similar to PikAIII structure. Although

recent developments in electron microscopy have allowed higher resolution structures for larger

proteins, no atomic resolution structure has been published for a module of a PKS at the time

of writing this thesis.

1.5.3 Experimental studies on AT and KR domains to generate novel polyke-

tides

Apart from structural approaches to understand the structure, dynamics and function of the

PKS, many other experimental studies have been conducted to figure out the working mecha-

nisms in order to be able to successfully manipulate the protein complexes for generation new

polyketides as novel drug candidates.

AT and KR domains are frequently manipulated to produce new polyketides. Many experi-

mental studies have been performed to modify the extender unit specificity of the AT domain or

switch the KR domain sub-type (Fig. 1.15) (Weissman 2016; Barajas et al. 2017; Musiol-Kroll

and Wohlleben 2018; Kornfuehrer and Eustáquio 2019). One common approach to change the

specificity of that domain is to swap the native domain with an external corresponding domain

from another PKS system or module. As another approach, site-specific mutations have been

applied on certain residues that are thought critical for the specific function of the domain.

The challenging point of the domain swapping experiments is to sustain the interaction be-
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Figure 1.15: Different sub-types of KR domain produce intermediate products with different configu-
rations.

tween the inserted domain and the remaining domains on the host system, to maintain structural

and functional integrity. Early attempts for the AT domain swapping experiments were per-

formed between erythromycin (DEBS) and rapamycin (RAPS) systems. The AT domain of the

first module in a system where the TE domain was attached to the end of the first two modules

of DEBS (DEBS1-TE) was replaced with the AT domain of the RAPS system second module.

This swap resulted in successful switch from malonyl specificity to methylmalonyl specificity

with almost no change in the product amount (Oliynyk et al. 1996). This result made domain

swapping experiments a promising approach to generate new polyketides. On the other hand,

not all AT swapping experiments were successful. When the full PKS system is used instead

of DEBS1-TE, the product yield decreased significantly (Ruan et al. 1997). Confusing results

from several experiments led researchers to think that when the overall PKS system is used, the

position of the modified module in the system is important for the success of the experiment.

When the modifications were performed on initial modules, the product yield decreased signif-

icantly (Ruan et al. 1997; Lau et al. 1999), yet swapping the last AT domain did not make any

change in the product yield (Liu et al. 1997). However, it was later shown that swapping the

AT domain of the fourth module provided a similar amount of erythromycin analog contrary

to similar studies (Petkovic et al. 2003). The important point of that study was the fact that

34



they used different domain boundaries for swapping. This suggested that for domain swapping

experiments, domain boundaries should be optimized carefully to obtain similar amounts of

product as the wild type. Recently, a comprehensive kinetic study with different domain bound-

aries on DEBS module 6 showed that optimized AT domain boundary works successfully in a

variety of PKS systems (Yuzawa et al. 2017).

Another approach to change the extender unit specificity is to mutate certain residues on

the AT domain via site-directed mutagenesis. Sequence analysis revealed that methylmalonyl

specific AT domains bear YASH motif whereas malonyl specific AT domains have HAFH motif

at the corresponding position in the sequence (Haydock et al. 1995). The targets for the modi-

fications were selected on either the fingerprint motifs (YASH, HAFH), or other residues close

to the catalytic site. Failure in switching extender unit specificity by mutating YASH/HAFH

motifs led researchers to try to characterise additional residues likely to be funtional in extender

unit binding. Koryakina et al. applied single and double mutations on DEBS-AT6 to convert

methylmalonyl specificity to propargylmalonyl specificity (Koryakina et al. 2017). For that

study, they worked both on only DEBS module 6, and bimodule of DEBS module 5 and 6. In

the former experiment, conversion of the specificity was highly achieved by mutating YASH

motif to RASH by a single mutation. In the latter experiment, the same mutation provided

incorporation of the propargylmalonyl-CoA, as well; however, the amount of the product was

significantly lower compared to the methylmalonyl-CoA incorporation with the same mutation.

Kalkreuter et al. applied a similar approach to modules 5 and 6 of pikromycin polyketide syn-

thase whose AT domains are specific for malonyl-CoA with low promiscuity to other extender

units (Kalkreuter et al. 2019). With mutating only one module in bimodule systems, they

were able to increase the incorporation of the propargylmalonyl-CoA up to 50% with a slight

decrease in the relative activity. More recently, Zhang et al. studied on switching malonly/meth-

lymalonyl/ethylmalonyl specificities on salinomycin PKS by gradually mutating four residues

in addition to the fingerpront motif residues (Zhang et al. 2019). By these experiments they

could incorporate targeted extender unit without losing the efficiency in catalytic activity only

when they manupalted the residues at all six positions. On the other hand, the success of switch-
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ing the extender unit decreased drastically when cognate holo-ACP was incubated with the AT

domains. These experiments showed that switching the extender unit specificity from one type

to another is possible only with successful characterization of the critical residues additional to

the YASH/HAFH motif.

Similar to AT domain modifications, one widely applied approach on KR domains is to

swap the reductive loop with the corresponding position from another module or PKS system.

Kellenberger et al. swapped KR domain by using different domain boundaries in DEBS1-TE

system where the host KR is A1 type (module 2) (“A Polylinker Approach to Reductive Loop

Swaps in Modular Polyketide Synthases”). Although swapping the domain with A1 and B1 type

KRs gave good results, swapping with A2 and B2 KRs did not produce detectable amounts of

products. Additionally, despite different domain boundaries were used, more than one boundary

were not tested on the same host-donor system; hence, it is hard to conclude on the optimized

domain boundaries. On the other hand, one year later Valenzano et al. were able to swap

a non-epimerazing KR to an epimerazing KR domain in DEBS module 6 (Valenzano et al.

2009). Another study swapped module 2 KR (type A1) with a range of type A2 and B2 KRs

in order to test the incorporation of epimerization activity further (“Evaluating Ketoreductase

Exchanges as a Means of Rationally Altering Polyketide Stereochemistry”). For A2 swapped

systems, epimerized structures were able to be observed besides non-epimerized or non-reduced

structures. Although their amount was not as high as the wild type product, it was significantly

higher compared to the previous researches. On the other hand, type B2 KR swapping exper-

iments were not that successful as only two out of six swaps yielded traces of the epimerized

structure. Consistent with these results, another experiment performed on lipomycin PKS mod-

ule 1 showed that swapping the A2 type host domain with A type donor KRs produced the

expected product; yet when B-type KRs were used as a donor, expected products were unable

to be detected (Eng et al. 2016).

Sequence analysis on KR domains revealed that LDD motif approximately 57 residues be-

fore the catalytic tyrosine is conserved (specifically the latter aspartic acid residue is strictly

conserved) in type-B KR domains and this motif is absent in the type-A KR domains. In-
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stead, type-A KR domains bear tryptophan eight residues before the catalytic tyrosine. It was

also detected that three residues before the catalytic tyrosine, leucine, histidine, and glutamine

residues are conserved in B2 type, A2 type and A1-B1 types of KRs, respectively. Site-directed

mutagenesis studies on these motifs to switch the KR type on isolated DEBS modules 1 and 2,

KR domains yielded a decreased amount of the expected product (Baerga-Ortiz et al. 2006).

Nevertheless, the same approach applied to DEBS1-TE system did not provide any switch from

the natural product towards expected product (Kwan et al. 2011). Later, Zheng et al., suc-

cessfully converted A1 type KR to A2 type KR on the second module of amphotericin PKS

via mutating two residues detected by structural analysis (Zheng et al. 2013). The same group

later showed that, with single or double mutations, they were successfully converted type B2

KR of DEBS module 1 into type A2 KR (Bailey et al. 2016). Mutations on the leucine (three

residues before the catalytic tyrosine) to histidine and glutamine, which are conserved in A2

type and A1-B1 types respectively, did not lead any conversion. However, mutating this residue

to alanine provided to obtain A2 type product. Moreover, with mutations in the same positions,

they converted amphotericin KR2 (type A1) and tylosin KR1 (type B1) to type A2 KR. How-

ever, corresponding mutations on rifamycin KR7 (type A2) did not change the KR type. This

suggested that for the reduction process, A2 type KR follows the most energetically favored

pathway among these four types.

Although there is an intense effort to determine the structure of PKSs, even the most com-

prehensive studies include no more than one module. Even though there are improvements in

experimental systems, it seems there is a long way (if it is not impossible) to determine the

whole PKS structure experimentally. In this thesis, domain interactions are predicted via an ap-

proach that I developed by using coevolutionary information and deep neural networks to have

furhter insights about relative orientations of the domains with respect to each other (Chapter

3) and statistical coupling analysis have been applied on the first module of DEBS to detect

coevolved residue groups (Chapter 4).
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1.6 Scope of the thesis

Understanding the structure and the function of multi-domain complexes has critical importance

since they constitute a large proportion of all proteins. As their structural determination with

experimental methods is highly time-consuming and expensive, when possible to figure out,

computational approaches for determining the structures of multi-domain complexes and for

understanding their working mechanism could provide a cheaper method for addressing the

problem.

Analysis of coevolutionary patterns in multiple sequence alignments arise due to natural

selection, to maintain important structure-function relationships. The hypothesis presented

here is that coevolutionary information, extracted from sequence alignment, can be used to

obtain information about the structure and function of multi-domain proteins, including infor-

mation about the distance between residues within individual domains, and between domains,

the boundaries of individual domains, modes of functional cooperation between residues in

different domains and residues that confer critical functionality to the protein e.g. by deter-

mining substrate specificity. This thesis shows developments in all these areas, improving and

extending existing methods in the field and breaking ground by specifically applying them to

multi-domain proteins.

This thesis includes four additional chapters. The second chapter of the thesis focuses on

our contributions to ab initio protein structure prediction problem, where deep neural networks

- with coevolution data - were used to predict the distances between the residue pairs resulting

in improvements in the quality of the predicted structures. In the third chapter, deep neural net-

works fed by the features extracted from sequence information, including predicted coevolved

residue pairs, are used to predict distance potentials between the residue pairs of the domain

pairs. It will be demonstrated that the successful predictions of distance potentials provide

successful predictions of the interface between two interacting domains. In the fourth chapter,

coevolved residue groups in a multi-domain protein complex are detected via statistical cou-

pling analysis. It will be shown that, by this analysis, domain boundaries and residue groups

38



that are functional in sub-type specification can be detected. In the last chapter, the results and

the contribution to the literature will be summarized.
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Chapter 2

Ab-initio prediction of protein domain

structure

2.1 Overview of the Chapter

Protein structure prediction has been one of the most important and difficult challenges of bi-

ology. Knowing the structure of a protein is essential for better understanding its function, and

performing successful experiments for protein engineering. Therefore, many groups have been

working on the prediction of protein structures for decades as explained in Section 1.2. Here, in

this study, we worked on the ab-initio protein structure prediction problem. In the covariance-

based ab-initio protein structure prediction problem, the main approach is to be able to predict

the contacting residue pairs (distance between the Cβ, Cα for glycine, atoms of two residues is

less than 8 Å) to predict the experimental structure of a protein (Jones et al. 2015; Wang et al.

2017; Schaarschmidt et al. 2018). In this study, in addition to predicting contacting residues,

we aimed to predict residue pairs whose distance is larger than 8 Å.

At the point that the work in this chapter was started, there were few people in the field who

had tried to predict distances and none had shown significant benefits (Walsh et al. 2009; Kukic

et al. 2014). There are more recent studies demonstrating the successful distance predictions

and their contributions to the structure prediction (Xu 2019; Senior et al. 2019; Senior et al.

2020), and we are one of the first groups to show that the successful prediction of distances
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between residue pairs improves structure prediction accuracy for ab initio structure prediction.

Besides, we show that implementation of distance predictions leads to select better models

without using any additional model assessment tool.

In the following sections, I describe the methodology we followed for neural network train-

ing and testing, and generating the structures by using predicted contacts and distances. Then, I

present the results demonstrating the effect of distance predictions on structure prediction qual-

ity, analysis on training and test protein structures belonging to the same topology class, the

impact of increasing the structure pool size on the selected final model, and amino acid pair

type distributions on the successful predictions. Lastly, I discuss the importance of our results

and the contribution of this study to the literature.

This study was published in PLoS One in January 2019 (Ji et al. 2019). I have an equal

contribution in this study with Shuangxi Ji, and contributions of the other authors are cited in

the following sections.

2.2 Methods

2.2.1 Neural network architecture and parameters

As the input for the neural network, a feature vector was generated for all residue pairs of

the training and the test set proteins with information extracted and predicted from the target

sequence and the alignment containing homologous sequences (multiple sequence alignment,

MSA). From the MSA, mutual information with the average product correlation (APC) (Dunn et

al. 2007), normalized mutual information with APC, CCMPred (Seemayer et al. 2014), QUIC

(Hsieh et al. 2014) and mfDCA (Morcos et al. 2011) were used to detect coevolved residue

pairs. SPIDER2 (Yang et al. 2016) was used to predict the secondary structure and solvent

accessibility. Statistical potential (Betancourt and Thirumalai 2008), the effective number of

sequences, amino acid composition, and Shannon entropy were calculated by a script from the

source code of MetaPSICOV (Jones et al. 2015).

Training and test sets included 1701 and 108 proteins, respectively. For each residue pair

in a protein, a feature vector with 733 elements was generated, with features very similar to
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those used in MetaPSICOV feature vector (Jones et al. 2015). Details of the training and test

set preparation as well as feature vector generation are explained in Appendix A.

For all networks, a simple nine-layer neural network architecture was used with one input

layer, eight hidden layers and one output layer (Fig. A.2). The first hidden layer consist of 120,

the second hidden layer consist of 50 and the remaning hidden layers consist of 30 neurons (Fig.

A.2). Keras (Chollet 2015) with Tensorflow (Abadi et al. 2015) backend was used for training

the models, stochastic gradient descent (SGD) was used as the optimizer, binary cross-entropy

was used as loss function, SELU was used as the activation function between the layers except

for the last hidden layer and the output layer where the sigmoid function was used. In order

to avoid overfitting, the early-stopping algorithm was chosen with 20% of the data randomly

assigned as the validation set. The maximum number of epochs was set to 300, patience was

set to 40. The batch size was selected as 32.

Seven different neural networks with the same network architecture were trained. For the

contact predictions (0 - 8 Å), four different networks with varying upper boundary, (0-7.9] Å,

(0-8.0] Å, (0-8.1] Å and (0-8.2] Å, were trained. For each residue pair, the average score of four

networks was calculated and used as the final network score. For each distance bin, one neural

network was trained for the distance intervals of (8-13] Å, (13-18] Å, and (18-23] Å.

Feature vector generation, determination of the training and the test sets, initial optimization

of the neural network architecture and the parameters of the network, implementation protocol

of the contact and distance predictions into Rosetta for ab initio structure prediction were stud-

ied by Shuangxi Ji (Ji 2019) and the details are explained in Appendix A. Further optimization

of the network architecture and the parameters were studied by Liam Mead (Mead 2018). Con-

tact bin predictions were made by Liam Meads and distance bin predictions were made by me.

2.2.2 Reducing the effective number of sequences of test proteins

In order to study the effect of having fewer sequences in the alignment, some sequences were

removed from the alignment of the test set proteins. To reduce the Nf value of the alignment

(Nf: the number of sequences in the alignment, having maximum 80% identity to each other,
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divided by the square root of the protein length) of alignment, subsampled MSAs from the

initial MSA were generated. For that, firstly the MSA was filtered with 80% identity threshold

by HHfilter (Zimmermann et al. 2018). For a target Nf, Nf*
√

L sequences, keeping the target

sequence in the alignment, were randomly selected to generate a subsampled MSA, where L is

the length of the sequence.

2.2.3 Generation of an additional test set

Although using 25% identity threshold allows us to ensure that we are not using similar se-

quences in the training and the test sets, from a structural perspective, it does not guarantee we

are not using similar structures. The possibility of using similar structures raises the question,

would having proteins with similar structures in the training set and the test set cause the neural

network to learn the structural patterns and lead to a bias in the prediction accuracy.

To investigate this question, we analysed the training and the test set proteins based on

their CATH database (Dawson et al. 2016) classification. The CATH database classifies protein

structures in a hierarchical scheme. In the highest order, Class (C of CATH), protein structures

are grouped based on their secondary structure: (i) α-helix only, (ii) β-sheet only, (iii) both

alpha-helix and beta-sheet and (iv) little secondary structure. At the Architecture (A of CATH)

level, proteins are further grouped based on the arrangements of their secondary structures. At

the Topology/Folding (T of CATH) level, the further grouping is made based on how secondary

structures are connected. And at the Homologous Superfamily (H of CATH) level, proteins are

classified based on their evolutionary relation, i.e. grouped if there is any evidence that they are

homologous (Dawson et al. 2016).

For analysing the training and test sets based on their structural similarity we used topology

and homologous superfamily level similarities based on the CATH database downloaded in

January 2018.

For further investigation of the effect of having test set proteins belonging to the same topol-

ogy/homologous superfamily classes as the training set proteins, an additional test set whose

proteins do not share any common topology with the training sets of DeepCDpred, MetaPSI-
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COV and RaptorX, was generated. In CATH v4.0.0 database, there are 1391 topology classes

and only 327 of them do not have a common topology with the proteins of the training sets.

There are 12234 protein chains in the 327 topology classes. The PISCES server was used to

cull the proteins to select the ones with maximum 25% sequence identity, maximum 2.5 Å res-

olution, and sequence length between 40 - 400 amino acids. From the remaining protein set, we

removed the ones with missing residues or atoms in the structure, leaving us with 50 proteins.

PDB IDs of this additional, non-topologous, test set proteins are given in Table 2.1.

Table 2.1: PDB ID list of the test set with 50 proteins.

1b12A 1ckmA 1d0qA 1dd9A 1dmgA
1e1hA 1e1hB 1g2rA 1hufA 1i71A
1inpA 1io1A 1j3aA 1o9iA 1okcA
1r7lA 1rajA 1sknP 1svbA 1tgrA

1w2yA 1whiA 1wjxA 1yrtA 1yu5X
1ywmA 2j7aC 2p84A 2rhkC 2vnlA
2wqiA 3bl9B 3bqwA 3girA 3hrdB
3o79A 3pn3A 3rioA 3rlfG 3ts2A
3vtoQ 3x02A 3x34A 4x8yA 4xb4A
4ymuC 4z6mA 5b66O 5hobA 5hocA

2.2.4 Expansion of the structure pool

For each test protein, initial 100 structures were generated by Rosetta as explained in Appendix

A. An additional 100 structures, with the same set of parameters, were generated to see the

effect of model selection and quality between 100 and 200 structure pools. The model with the

lowest Rosetta score was selected as the final model from the structure pool. To evaluate the

quality of the predicted structures, i.e. how close is the predicted structure to the experimental

structure, we used TM-score (Xu and Zhang 2010). TM-score measures the similarity between

two structures, score of > 0.5 means the predicted structure the experimental structure is very

likely to have the same fold; whereas, a score of < 0.5 indicates the two structures do not have

the same fold. To determine the “best” structure in a structure pool, we calculated the TM-score

of all structures (by comparing them against the experimental structures of the proteins) and

selected the one with the highest TM-score for analysis.
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2.2.5 Determination of the proportion of amino acid types in correctly

predicted residue pairs.

Amino acid types of the successfully predicted contacts and distances were analyzed to deter-

mine whether there is any bias in the types of residues that are successfully predicted in each

of the four distance bins. Residue pairs with high network score (0.7) were analysed. The

observed distribution (O) and expected distribution (E) as

E =

∑
AB ∈ d∑

all residue pairs ∈ d
(2.1)

O =

∑
AB correctly predicted ∈ d∑

all residue pairs correctly predicted ∈ d
. (2.2)

Here, AB is a given amino acid pair type and d is the distance bin where AB belongs, based

on their distance in the 3D structure. For each pair type, AB, the mean O/E was determined

over the 108 test set proteins.

We calculated the precision as the number of correctly predicted contacts/distances for that

pair of amino acid types divided by the all contact/distance predictions for that pair.

precision =

∑
correct AB ∈ d∑

correct AB ∈ d +
∑

incorrect AB ∈ d
. (2.3)

Calculations were made on the residue pairs with high network score (0.7).

All scripts were written in Python (Van Rossum and Drake Jr 1995).

2.3 Results

2.3.1 Implementation of distance restraints to improve protein structure

prediction accuracy.

For the trained neural network (nine-layered), the accuracies for the 108 protein test set were

determined for the top L/10, L/5, L/4, L/3, L/2, L and 1.5L residue pairs (where L is the length
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of the protein sequence) (Fig. A.3). Although the prediction accuracies of DeepCDpred are

better than MetaPSICOV and NeBcon, RaptorX contact prediction accuracies are better than

DeepCDpred’s.

Distance prediction accuracies of DeepCDpred show variation between the distance bins

(Fig. 2.1). Bin 8-13 Å predictions have a very high accuracy, the top 1.5L prediction accuracy

is even higher than the top 1.5L contact prediction accuracy of all methods (Fig. A.3). Bin

13-18 Å drops slightly yet the accuracy for top 1.5L residue pairs is similar to top 1.5L contact

predictions of DeepCDpred. On the other hand, bin 18-23 Å accuracies drop drastically leading

to ∼ 60 % accuracy for top 1.5L residue pairs.
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Figure 2.1: Distances were predicted with high accuracy by DeepCDpred on 108 test proteins.

To see the effect of distance predictions on the quality of predicted structures, distance

predictions were implemented as constraints besides contact predictions for the 108 test set

proteins. Since the contact prediction accuracy of RaptorX is better than DeepCDpred’s, we

introduced the distance predictions alongside DeepCDpred contact predictions or RaptorX pre-

dictions. For each test protein, 100 structures were generated by Rosetta and the structure with

the lowest Rosetta score was selected as the final model. Comparison of DeepCDpred, RaptorX
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and RaptorX+DeepCDpred distance predictions are given in Fig. 2.2.
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Figure 2.2: Implementation of distance predictions allows the selection of a better model when the
Rosetta score is used as selection criteria. TM-scores for DeepCDpred contact vs. RaptorX (left), Deep-
CDpred contact vs. DeepCDpred contact + distance (middle), and RaptorX vs. RaptorX + DeepCDpred
distance (right) are plotted. There is no significant difference between RaptorX and DeepCDpred contact
(p-value: 0.4325). While RaptorX + DeepCDpred distance is significantly better than RaptorX predic-
tions (p-value: 9.24e-05), DeepCDpred contact + distance is not significantly better than DeepCDpred
contact predictions (p-value:0.2121). Contact predictions were made by Liam Mead.

For the prediction of the structures, using contact predictions from DeepCDpred or Rap-

torX did not lead to any significant difference between the average TM-scores of the selected

models (selected by Rosetta score) of the test proteins (paired t test p-value=0.4325) (Fig. 2.2,

left), although contact prediction accuracies of RaptorX was higher than DeepCDpred’s (Fig.

A.3). While implementation of DeepCDpred distance predictions did not lead any significant

improvement on the TM-score of the predicted structures (paired t-test p-value=0.2121) (Fig.

2.2, middle), implementation of the distance predictions to RaptorX predictions provided a sig-

nificant improvement in the final structure selected by Rosetta energy (paired t-test p-value=

9.24e-05) (Fig. 2.2, right). This result suggests that implementation of DeepCDpred distance

predictions increases the accuracy of the predicted structure.

Although using Rosetta energy is a reasonable and easy way to to select the final struc-

ture from the structure pool, it fails to find the structure closest to the experimental structure

(the structure with the highest TM-score). Selecting the structure with the highest TM-score

as the final structure reveals that predictions with RaptorX contact predictions produce signifi-

cantly better results than the structures generated with DeepCDpred contact predictions (paired

t test p-value: 1.9e-12) (Fig. 2.3, left). Furthermore, implementation of DeepCDpred distance
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predictions improves the predicted structure quality when they are implemented together with

DeepCDpred contact or RaptorX (paired t test p-value: 0.0108 and 0.0370, respectively) (Fig.

2.3, middle, right).
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Figure 2.3: Implementation of distance predictions allows the selection of a better model when the
best model is selected from the structure pool. TM-scores (structure with the best TM-score is selected)
for DeepCDpred contact vs. RaptorX (left), DeepCDpred contact vs DeepCDpred contact + distance
(middle), and RaptorX vs. RaptorX + DeepCDpred distance (right) are plotted. RaptorX is significantly
better than DeepCDpred contact (p-value: 1.9e-12). Distance predictions have a significant effect in
both DeepCDpred contact and RaptorX predictions (p-values: 0.0108 and 0.0370, respectively). Contact
predictions were made by Liam Mead.

2.3.2 The effect on the prediction accuracy of sharing common homolo-

gy/topology

Training and test set proteins were originally selected based on having sequence similarity less

than 25 % identity as mentioned in section Section A.0.2. While this approach ensures that

we do not use homologous sequences, the approach ignores the fact that structures of proteins

may be similar despite their sequence similarities being low (Orengo et al. 1994). Therefore,

we wanted to analyse whether having proteins in the training set with the same topology and/or

homology class as the test proteins increased the prediction accuracy by causing a bias, possibly

due to a bias arising during training..

For this purpose, we first calculated how many of the test proteins share common topology

and homology with the training set proteins. Among 108 test set proteins, 80 of them share the

same homology classes as the training set proteins (homologous proteins); whereas 28 of them

do not belong to any mutual homologous superfamily with the training proteins (unique). In
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terms of sharing the same topology classes, 90 of the test proteins belong to the same topology

classes as the training set proteins (topologous proteins); whereas, 18 of them do not have any

common topology with the training set proteins (unique proteins).

Since the number of unique proteins and homologous/topologous protein groups is not bal-

anced, we decided to train the neural network with different subsets of the training set. The

training set was divided into three groups and the network was trained on the proteins from

individual groups separately. The groups were determined by Tugce Oruc, but the training was

performed by Liam Mead (Mead 2018).

Summary of the new training subsets are as following:

1. homology training set (includes proteins that belong to the same homologous superfamily

as the test set proteins) - 532 proteins

2. topology training set (includes proteins that belong to the same topology class but not to

the same homologous superfamily as the test set proteins) - 446 proteins

3. unique training set (does not include any protein that belongs to the same homologous

superfamily or topology class as the test set proteins) - 723 proteins

As the number of the proteins in the subsets is not the same, ten different training sets - from

all three sub-training protein sets - with 200 proteins were constructed by a random selection of

the proteins, ending up with 30 training subsets in total. Each subset was trained with the nine-

layer neural network architecture. The accuracy for the 108 test proteins was calculated and

the average accuracy of the ten sets was used for comparisons. The mean contact prediction

accuracy (for top 1.5L residue pairs) of the test set for the models trained with topologous

training sets is 63.8% (σ=0.41), and the mean accuracy of the test set for the models trained with

homologous sets is 65.6% (σ=0.83). Both of the accuracies are significantly higher than the

mean accuracy of the test set for the models trained with set of unique proteins, which is 62.6%

(σ=0.90) (two-tailed paired t-test p-values are 7.92 x 10−7 and 6.28 x 10−19, respectively).

When we first focus on the accuracy difference between the homologous and unique training

sets, the results suggest that training on the homologous proteins provides more successful

predictions for the test set proteins. One possible reason for that can be thought as the neural

49



network learns patterns from the homologous structures leading to better predictions for the

test set proteins. One potential other reason is differences in the depth of the MSA and length

of the sequences. When the Nf is low, prediction accuracy drops (Ovchinnikov et al. 2015;

Ovchinnikov et al. 2017), and the average Nf value of the homologous training set is higher

compared to both the unique set and the topologous set (Fig. 2.4).
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Figure 2.4: Nf values and sequence lengths of homology, topology and unique training set proteins.
While Nf values of topology and unique protein sets have a similar distribution, Nf values of homology
set proteins are higher than topology and unique protein sets. Sequence lengths of three sets have a
similar distribution. Nf: number of sequences in the alignment, having maximum 80% identity to each
other, divided by the square root of the protein length. The boundareis of the box range from the lower
quartile of the data to the upper quartile, the line shows the median, the whiskers demonstrate the range
of the data. Outliers are shown with red plus signs. The mean values are shown with green plus signs.
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To eliminate the effect of the Nf on the success of training, the number of sequences in the

homologous training proteins were decreased to give a similar mean to the unique set proteins.

Comparison of the Nf value distribution of ten unique sets, ten homologous sets and ten ho-

mologous sets with reduced Nfs is shown in Fig. 2.5. The average of 1.5L contact prediction

accuracy with trimmed MSAs of the training proteins is 61.74; whereas, the average accuracy

of the trainings with the unique test set is 62.61. As the average accuracy of the network mod-

els trained on unique proteins are significantly higher than the average accuracy of the models

trained on homologous proteins with reduced Nfs (paired t-test p-value = 0.00157), it can be

suggested that having almost three times higher average Nf score is the primary reason why

training on the homologous sets resulted in a significantly higher contact prediction accuracy

compared to training with unique sets.
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Figure 2.5: Nf values of the proteins in unique set, homology set and homology set with reduced Nf.
Nf values of homology set proteins were reduced in a way to have a similar mean Nf similar to the unique
set proteins. Nf: number of sequences in the alignment, having maximum 80% identity to each other,
divided by the square root of the protein length.The boundareis of the box range from the lower quartile
of the data to the upper quartile, the line shows the median, the whiskers demonstrate the range of the
data. Outliers are shown with red plus signs. The mean values are shown with green plus signs.

Individual analysis of the accuracy of test set proteins between the homologous and the

unique sets, and homologous set with reduced Nfs and the unique sets are shown in Fig. 2.6 and

Fig. 2.8. The percentage change of the accuracy (i.e. the difference in the accuracy) of test set

proteins from unique sets to homologous sets (the homologous set accuracy minus the unique

set accuracy, divided by the unique set accuracy), unpaired t-test p-values between the accu-
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racy calculations of ten sets (ten predictions for the unique trainings and ten for homologous

trainings), and the number of homologous proteins in the homologous training sets for the test

proteins are shown in Fig. 2.6. Not surprisingly, for the proteins with the high difference be-

tween unique and homologous trainings, the p-value is lower. If training on the homologous set

allows the network to learn the patterns of the homologous proteins, it can be expected that test

set proteins which have a greater number of homologous structures in the homologous training

set would have higher predictions compared to the trainings on the unique training sets. How-

ever, for the proteins, which have a greater number of homologous proteins in the homologous

training sets (for example the one with 52 homologous proteins) the accuracy difference is not

significant. Similarly, for the proteins, even the ones that do not have any homologous proteins

in the homologous training set, there can be a significant difference between the trainings. The

correlation coefficient between the number of homologous proteins in the training set and the

ratio of the difference is 0.37 (p-value of 0.00007), indicating a significant weak correlation

(Fig 2.7). This suggests that there is not any strong evindence to state that having homologous

proteins in the training set cause a bias towards homologous proteins for our test set proteins.

When the Nf numbers were reduced in the homologous training sets, there are fewer proteins

whose percentage difference are significant (Fig. 2.8). Further, it is clear that the difference (the

homologous set accuracy minus the unique set accuracy, divided by the unique set accuracy), is

not only positive, but it is negative for most of the proteins, indicating there are more proteins

with higher accuracy on the unique set. Moreover, it is seen that for four of the six proteins with

the highest number of homologous proteins in the training set, there is no significant difference

between the training on homologous sets and the training on the unique sets. The correlation

coefficient between the number of homologous proteins in the training set and the ratio of the

difference is 0.32 (p-value of 0.0007), again indicating a significant weak correlation (Fig. 2.9).

Analyses of the test set contact prediction accuracy of the models trained on the topologous

sets and the unique sets are shown in Fig. 2.10. Although the average prediction accuracy of

models trained on topologous sets is significantly higher than the trained models with unique

set protein (paired t-test p-value= 7.92x10−7), this difference does not seem to be sourced by

52



Protein

0.05

0.00

0.05

0.10

0.15

0.20

0.25

%
 d

iff
er

en
ce

8

6

4

2

0

lo
g 1

0(
p-

va
lu

e)

0

10

20

30

40

50

# 
of

 h
om

ol
og

ou
s p

ro
te

in
s

in
 th

e 
ho

m
ol

og
ou

s t
ra

in
in

g 
se

ts

p=0.05

Figure 2.6: Contact prediction accuracy comparison of the test proteins on the models trained with
unique set proteins and homology set proteins. The difference between the accuracy of unique and
homology sets (the homologous set accuracy minus the unique set accuracy, divided by the unique set
accuracy) (gray bars, left hand axis), the statistical significance of that difference measured as an un-
paired p-value between the ten predictions of unique and homology sets (blue dots) and the number
homologous proteins in the homology training sets (green dots) are shown for the test proteins. The
training was performed by Liam Mead, the groups were determined and the analysis were performed by
me.

0 10 20 30 40 50
# of homologous proteins

in the homologous training sets

0.05

0.00

0.05

0.10

0.15

0.20

0.25

%
 d

iff
er

en
ce

r=0.37
p-value=7e-05

Figure 2.7: Correlation between the number of homologous proteins in the homologous training set
and the percentage difference in accuracy is significant but weak. The correlation coefficient, r, is 0.37
with a p-value of 0.000007. R2=0.139.

53



Protein

0.10

0.05

0.00

0.05

0.10

0.15
%

 d
iff

er
en

ce

8

6

4

2

0

lo
g 1

0(
p-

va
lu

e)

0

10

20

30

40

50

# 
of

 h
om

ol
og

ou
s p

ro
te

in
s

in
 th

e 
ho

m
ol

og
ou

s t
ra

in
in

g 
se

ts

p=0.05

Figure 2.8: Contact prediction accuracy comparison of the test proteins on the models trained with
unique set proteins and homology set proteins with reduced Nfs. The difference between the accuracy
of unique and reduced Nf-homology sets (the homologous set accuracy minus the unique set accuracy,
divided by the unique set accuracy) (gray bars, left hand axis), the statistical significance of that differ-
ence measured as an unpaired p-value between the ten predictions of unique and reduced Nf-homology
sets (blue dots) and the number homologous proteins in the reduced Nf-homology training sets (green
dots) are shown for the test proteins.
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Figure 2.9: Correlation between the number of homologous proteins in the homologous training
set with reduced Nf values and the percentage difference in accuracy is significant but weak. The
correlation coefficient, r, is 0.32 with a p-value of 0.00007. R2=0.103.
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having topologous proteins in the training set. In that case, it would be expected that the test

set proteins, which have more topologous proteins in the topologous training set, should have a

significant increase, which is not the case (Fig. 2.10). The contact prediction accuracy for the

proteins that have the maximum number of topologous proteins (as many as 116), changed both

significantly and insignificantly. Similarly, for the proteins that do not have any topologous pro-

teins in the topologous training set, a significant change in the contact prediction accuracy was

observed. There is no correlation between the number of topologous proteins in the topologous

training set and the percentage difference (Fig. 2.11). This suggests that having topologous

proteins in the training set does not cause a bias in the predictions.
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Figure 2.10: Contact prediction accuracy comparison of the test proteins on the models trained with
unique set proteins and topology set proteins. The difference between the accuracy of unique and topol-
ogy sets (the topologous set accuracy minus the unique set accuracy, divided by the unique set accuracy)
(gray bars, left hand axis), the statistical significance of that difference measured as an unpaired p-value
between the ten predictions of unique and topology sets (blue dots) and the number topologous proteins
in the topology training sets (green dots) are shown for the test proteins. The training was performed by
Liam Mead, the groups were determined and the analysis were performed by me.

Although a significant difference was detected in the comparison of the models trained on

the unique training set versus the homologous training set with reduced Nf values, and the

unique training set versus topologous sets, a detailed analysis suggested that having homolo-
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Figure 2.11: There is no correlation between the number of topologous proteins in the topologous
training set and the percentage difference. The correlation coefficient, r, is 0.06 with a p-value of
0.53869. R2=0.004.

gous/topologous proteins in the training and the test sets are not the source of this difference.

The fluctuation in the prediction accuracy can be caused by a poor generalization of the models

since only 200 proteins were used in a training set. Overall, these analyses suggest that our

trained models do not learn specific patterns belonging to some topology class or homologous

superfamily class resulting in a bias in the prediction accuracy.
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2.3.3 Structure prediction on an additional non-topologous test set

To further investigate whether having topologous/homologous structures in the training set

causes a bias in the prediction accuracy, another test set whose structures are not topologically

related to the training set proteins was generated. The new test set includes 50 proteins that do

not belong to the same topology class as the training set proteins of DeepCDpred, MetaPSICOV

or RaptorX (for further details please see Section 2.2.3).

Comparison of the Nf values and the sequence lengths of the test sets with 108 proteins

and 50 non-topologous proteins is shown in Fig. 2.12. The average of the Nf values for the 50

proteins (Nf50 = 75) is almost an order of magnitude lower than the average of the Nf values of

the 108 protein test set (Nf108 = 794). The maximum sequence length of the 50 test proteins is

400; whereas, it is 242 for the 108 proteins. Having lower Nf values makes contact and structure

prediction of the 50 proteins a harder challenge as the success of the coevolved pair detection is

related to the depth of the alignment and the length of the sequence (Ovchinnikov et al. 2015;

Ovchinnikov et al. 2017).
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Figure 2.12: Nf values and sequence lengths of the test sets with 108 and 50 proteins. The average Nf
value of the test set with 108 proteins is almost an order of magnitude larger than the average Nf value
of the test set with 50 proteins. Nf: number of sequences in the alignment, having maximum 80% identity
to each other, divided by the square root of the protein length.
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Contact prediction accuracies for the 50 additional test set proteins are drastically low com-

pared to the accuracy of the 108 proteins for all of the contact prediction tools that we use to

compare (Fig. 2.13). Among the three tools we used, RaptorX provided the highest accuracy

similar to the test set with 108 proteins, where DeepCDpred and MetaPSICOV performed with

similar accuracy. The prediction of distance accuracy is low for the 50 protein test set compared

toe 108 protein set. (Fig. 2.14).
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Figure 2.13: Contact prediction accuracy of both 108 protein and 50 protein test sets; besides, the
accuracy of 108 test set proteins when their Nf values were reduced. Prediction accuracy for all
DeepCDpred, RaptorX and MetaPSICOV is lower for the test set with 50 proteins compared to the test
set with 108 proteins. When the Nf values were reduced of the 108 proteins, performances of both
DeepCDpred and RaptorX decreased. Nf: number of sequences in the alignment, having maximum 80%
identity to each other, divided by the square root of the protein length.

This data suggests that contact and distance predictions of the 50 proteins are less success-

ful compared to the 108 test proteins. As the Nf values of the test set with 108 proteins are an

order of magnitude greater than the test set with 50 proteins, we investigated the accuracy of

predictions on the 108 protein test set but with lower Nf values. To test that, their alignments

were trimmed in a way to obtain a similar average Nf value as the 50 test set proteins. The anal-

ysis showed that both the accuracy of DeepCDpred and RaptorX contact predictions decreased

compared to the full alignment predictions (Fig. 2.13). On the other hand, the decrease for

DeepCDpred is larger compared to the decrease of RaptorX predictions (Fig. 2.13). Although

a decrease could be observed due to the dropped Nf values, their contact prediction accuracy is
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Figure 2.14: Distance prediction accuracy for both 108 protein and 50 protein test sets. Prediction
accuracy for all three bins is lower for the test set with 50 proteins compared to the accuracy for the test
set of 108 proteins.

not as low as the contact prediction accuracy of the 50 test proteins.

Structure prediction comparison with DeepCDpred and RaptorX predictions for the 50 non-

topologous proteins are given in Fig. 2.15. Results suggest that for the 50 proteins, RaptorX

contact predictions provide better structure predictions compared to DeepCDpred contact pre-

dictions (paired t-test p-value:0.0008), which is not surprising as the contact prediction accuracy

is higher than DeepCDpred contact prediction accuracy (Fig. 2.13). While the implementation

of distance predictions to the DeepCDpred contact predictions did not lead any improvements

in the selected models (paired t-test p-value:0.0621), implementation of distance predictions to

RaptorX contact predictions led a significant increase in the TM-scores of the predicted struc-

tures (paired t-test p-value:0.0013).

On the other hand, the increase in the TM-score for selected structure with implementation

of the distance predictions could not be observed for the comparisons of the best structures (with

the highest TM-score) in the pool (Fig. 2.16). TM-scores of the best-predicted structures by

RaptorX contact predictions are significantly higher than the TM-scores of the best-predicted

structures by DeepCDpred (paired t-test p-value: 2.869e-05) (Fig. 2.16, left). Implementation

of distance predictions to DeepCDpred contact predictions surprisingly reduces the average

TM-score (paired t-test p-value=0.0397) (Fig. 2.16, middle). Implementation of DeepCDpred
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Figure 2.15: Implementation of distance predictions allows the selection of a better model when the
Rosetta score is used as selection criteria for addtional 50 test proteins. TM-scores for DeepCDpred
contact vs. RaptorX (left), DeepCDpred contact vs. DeepCDpred contact + distance (middle), and
RaptorX vs. RaptorX + DeepCDpred distance (right) are plotted. Paired t-test p-values are 0.0008,
0.0621 and 0.0013, respectively.

distance predictions to RaptorX contact predictions lead a slight but insignificant increase in the

average TM-score of the best predictions (paired t-test p-value=0.4533) (Fig. 2.16, right).
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Figure 2.16: Implementation of distance predictions provides small but insignificant improvement
on model generation when RaptorX contact predictions are used for 50 test proteins. (TM-scores
for DeepCDpred contact vs. RaptorX (left), DeepCDpred contact vs. DeepCDpred contact + distance
(middle), and RaptorX vs. RaptorX + DeepCDpred distance (right) are plotted. Paired t-test p-values:
2.869e-05, 0.0397 and 0.4533, respectively.

2.3.4 Effect of structure pool size in the prediction accuracy.

To see how increasing the size of the structure pool affects the prediction accuracy, 100 addi-

tional structures were generated for both test sets (with 108 proteins and 50 non-topologous

proteins) for RaptorX contact predictions and RaptorX contact predictions with DeepCDpred

distance predictions. Comparison of the structures from the pool with 100 structures and the

pool with 200 structures selecting one per pool using the minimum Rosetta energy or the true

60



best structure, determined by the TM score with respect to the experimental structure are shown

in Table 2.2. For the test set with 108 proteins, increasing the number of structures in the pool

from 100 to 200 produced structures closer to the experimental structure when both distance

predictions were used and were not used (p-values are 7 x 10−5 and 0.04, respectively). When

Rosetta score was used as the selection criteria, a significant improvement was detected in the

average TM-score when distance predictions were implemented (p-value = 0.008); however,

a significant improvement could not be detected when only RaptorX contact predictions were

used to generate structures (p-value = 0.320). It suggests that increasing the pool size provides

to generate structures closer to the experimental structure.

Table 2.2: Comparison of average TM-scores of the structure pools with 100 vs. 200 models.

Lowest Rosetta Energy Model with highest TM

Average
TM

Average
TM

p-
value1

Average
TM

Average
TM

p-
value1

from
100

from
200

from
100

from
200

RaptorX contact only (108) 0.667 0.665 0.320 0.766 0.775 0.04
RaptorX + Distance (108) 0.720 0.737 0.008 0.780 0.786 7x10−5

RaptorX contact only (50) 0.493 0.494 0.831 0.557 0.568 1x10−5

RaptorX + Distance (50) 0.516 0.515 0.850 0.561 0.576 8x10−5

1 Paired t-test to determine if there is a significant improvement when the pool size is increased.

For the test set with 50 non-topologous proteins, increasing the pool size from 100 to 200

increases the average TM-score when the structure with the highest TM-score is selected. In

other words, generating more structures increases the number of structures in the pool that are

close to the experimental structure. On the other hand, this increase could not be detected

when minimum Rosetta score was used to select the final model for this test set. Overall,

using another model assesment method may increase the accuracy of the final model; however,

without a better scoring method there’s not much point in increasing the pool size.
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2.3.5 Comparison of the effect of distance predictions in proteins from

two test sets with 200 generated structures

Comparisons of selected models from the pool with 200 structures are given in Fig. 2.17.

For the 108 protein test set, implementing the DeepCDpred distance predictions significantly

improved the average TM-score with an average increase of ∼ 0.07 (paired t-test p-value =

9x10−9) compared to using the RaptorX contact predictions only (Fig. 2.17A). Similarly, for

the 50 non-topologous test set, addition of the distance predictions increased the average TM-

score by ∼ 0.03 (paired t-test p-value = 0.004) (Fig. 2.17C). While using distance predictions

improves the average TM-score of the best models significantly by ∼ 0.01 (paired t-test p-value

= 0.001) for the test set with 108 proteins (Fig. 2.17B), a significant improvement could not be

observed for the 50 non-topologous test set (paired t-test p-value = 0.158) where the average

TM-score of the best models increased only by ∼ 0.008 (Fig. 2.17D).

Although using the lowest Rosetta score to select the final model from a structure pool is

an easy and time-saving approach, it rarely selects the best model from the pool. Selecting the

model closest to the experimental structure, model assessment, is another challenge of structural

bioinformatics which has been studied by many groups (Cheng et al. 2019). However, we see

that when we use the distance predictions as additional constraints for the structure predictions,

using the lowest Rosetta scores led us to select the models closer to the experimental structures

(Fig. 2.18). For the 108 protein test set, the correlation between the TM-scores of selected

models by the lowest Rosetta energy and the models closest to experimental structures is 0.62

when only contact predictions were used as restraints (Fig. 2.18A). When distance predictions

were implemented as additional restraints, the correlation increased to 0.89 (Fig. 2.18B), which

indicates the addition of distance restraints allows the selection of better models from the struc-

ture pool. A similar, but not that distinct pattern is seen for the 50 non-topologous test proteins.

The correlation between the models selected by the Rosetta score and the models closest to the

experimental structure improved from 0.95 to 0.97 by addition of the distance restraints (Fig.

2.18C,D).
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Figure 2.17: Distance predictions improve the accuracy of predicted structures. Implementation of
distance predictions improves the accuracy of the final structure when Rosetta score is used as selection
criteria for both test sets (A, C) as well as improving the quality of predicted structures significantly
for the test set with 108 proteins (B). For the test set with 50 proteins, the addition of distance predic-
tions leads a small but insignificant increase in the quality of predicted structures (D). The red ‘+’ sign
indicates the average TM-score.
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Figure 2.18: The addition of distance predictions to contact predictions provides to select models closer
to the experimental structure with Rosetta energy.The red ‘+’ sign indicates the average TM-score.

64



2.3.6 Amino acid type distribution in successfully predicted residue pairs

The propensity of amino acid types in correctly predicted pairs was analysed to see which

amino acid types are observed more or less frequently than the expected in the successful pre-

dictions. It is seen that in the contact bin (0-8 Å bin), the propotion of hydrophobic amino

acid interactions are higher than expected, whereas a similar abundancy cannot be observed for

hydrophobic-hydrophilic or hydrophilic-hydrophilic amino acid pairs 2.19A). For 8-13 Å bin,

while hydrophobic pair types are still over-represented, hydrophilic - hydrophobic amino acid

pairs become more abundant, as well (Fig. 2.19B). When the distance between the residue pairs

increases, hydrophobic interactions lose their over-representation and hydrophilic residue pairs

become more abundant (Fig. 2.19C, D). The precision of amino acid pair types are high for all

amino acid types in the prediction bins, indicating there is no bias in predicting some residue

pair types better than others (Fig. 2.20).
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Figure 2.19: Amino acid type distribution in successfully predicted residue pairs for contact and
distance bins. A: 0-8 Å, B: 8-13 Å, C: 13-18 Å, D: 18-23 Å. Squares represent log2(<O/E>) value for
each amino acid pair type. The scale is shown on the right hand side of each plot. Amino acids are
colored based on ClustalX coloring scheme: hydrophobic as dark blue; tyrosine and histidine in cyan;
non-charged polar amino acids in green; acidic residues as magenta; basic aliphatic residues as red;
glycine: orange; proline: yellow.
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Figure 2.20: The precision of contact and distance bin predictions of amino acid pair types. A: 0-8
Å, B: 8-13 Å, C: 13-18 Å, D: 18-23 Å. The scale is shown on the right hand side of each plot. Amino
acids are colored based on ClustalX coloring scheme: hydrophobic as dark blue; tyrosine and histidine
in cyan; non-charged polar amino acids in green; acidic residues as magenta; basic aliphatic residues
as red; glycine: orange; proline: yellow.
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2.4 Discussion

The prediction of structures from amino acid sequences is an appealing and challenging area.

In the process of predicting high-quality structures, there are critical points for generation of

accurate models. One of them is accurate contact predictions, and distance predictions as in

this study. Using neural networks is a useful tool for accurate predictions, as it has been shown

by many studies (Jones et al. 2015; Wang et al. 2017; Senior et al. 2019; Senior et al. 2020).

However, for successful predictions, there are important points that should be taken into care-

ful consideration if one is to obtain a good network model. One of the possible problems is

overfitting of the model. That means weights are trained in a way to fit on the training data

successfully without generalization, leading to the model failing on the test set. To avoid such

incidents, we used the early stopping algorithm. With this approach, the training stops earlier

than the total number of predefined training cycles (epochs) when the no decrease is detected

in validation loss for a predefined epochs (patience). For example, in our study, we trained the

network with patience 40 epochs for a total of 300 epochs. This setting led the network to stop

training when there is no decrease in the validation loss for 40 epochs. By this way, the training

of the models was terminated even though the training loss might still be decreasing, avoiding

overfitting of the model on the training data.

To be sure that our neural network does not learn some specific patterns from the training set

related to structural features of some proteins, we trained new models considering the structural

classification of the proteins and generated an additional test set with distinct structural orga-

nization. We could not find any results suggesting that the network learns patterns specific to

some topology/homology classes leading a bias in the prediction accuracy (Sections 2.3.2 and

2.3.3). Although we could not find any data to support that possibility, the maximum number of

proteins belonging to the same topology and homologous superfamily classes in the 108 test set

proteins were 116 and 52, respectively, which might be too low to cause any bias. Therefore,

it is not clear whether having more topologous/homologous proteins in the training set would

result in a bias in the trained network. Since this question is beyond the focus of this study, the
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effect of having topologous/homologous proteins in the training set was not investigated further.

Another critical point for structure prediction is to use a successful tool to implement contact

and distance predictions for generation of accurate 3D models. We used Rosetta to predict struc-

tures by implementing predicted contacts and distances. However, there are other approaches to

generate structures. One of the alternative approaches is using a faster tool like CNS (Crystal-

lography & NMR System) suite (Brünger et al. 1998), as Jinbo Xu and colleagues used in the

RaptorX study (Wang et al. 2017). Although CNS is faster compared to Rosetta, the prediction

quality is lower (Wang et al. 2017; Ji 2019).

Another alternative is using MD simulations to predict structures (explained in Section

1.2.2.1). Predicted contact and distances can be applied as restraints on the protein chain to

generate a 3D structure. To test how effective this approach is, I tested the performance of

three force fields (Amber ff99SB-ILDN(Lindorff-Larsen et al. 2010), Amber ff14SB(Maier et

al. 2015) and YAMBER(Krieger et al. 2004)), two environmental conditions (vacuum and ex-

plicit water) with different restraint sets (with contact restraints only, with both contact and

distance restraints) on one of the test proteins from the test set with 108 proteins. A simulated

annealing protocol (which is basically simulation at high temperature and then slowly cooling

down) was applied with restraints to scan the conformational space and find the global mini-

mum. Besides contact and distance predictions, secondary structure predictions from SPIDER

were applied as restraints. Among the three force fields, YAMBER provided the best struc-

ture. This is not quite surprising because YAMBER was developed from the Amber ff99SB

force field via adjusting the parameters in a way to get closer structures to ones obtained from

X-ray crystallography (Krieger et al. 2004). Among three conditions ( (i)contact predictions

in vacuum, (ii) contact predictions in explicit water and (iii) contact + distance predictions in

explicit water), maximum TM-score was obtained when only contact predictions were applied

in a vacuum (TM-score=0.77, RMSD=2.99). Although this protocol worked on one protein

very well, its performance failed on an additional four proteins with an RMSD of 13.42 for

the worst prediction. Although further optimizations could be performed to find a protocol that

works on more proteins, the time cost of the simulations makes further studies inefficient. The
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protein I worked on has only 145 amino acids, and it took approximately six-core hours to

run just one simulation in a vacuum. When explicit solvent simulations were performed, the

time needed to complete a simulation increased to approximately 11 core hours. Increasing the

simulation number up to 100 structures, which is the minimum number of structures generated

with Rosetta, would require 1100 core hours which makes the approach computationally costly.

Therefore, no further study was performed to generate structures with this approach and we

generated structures with Rosetta.

We showed that increasing the pool size provides the generation of structures closer to the

experimental structure. Although it can be anticipated that there can be a stationary point where

a further generation of structures does not lead any further improvements in the structure quality,

more structures should be generated to test it. Since this question is beyond the scope of this

study, we did not generate more structures to see a pattern.

For the selection of the final model from a structure pool, we used Rosetta score and selected

the model with the lowest Rosetta energy as the final model. Addition of distance predictions

improved the quality of the final structure in both test sets compared to using contact predictions

alone; whereas, the increase for the 50 non-topologous proteins was not as high as the increase

for the 108 test proteins (by 11% and 8% for the 108 test proteins and 50 non-topologous test

proteins, respectively) (Fig. 2.17). This result is not quite surprising since the Nf values of the

50 non-topologous proteins are lower compared to 108 test proteins (Fig. 2.12), and we showed

that decreasing the Nf values decreases the prediction accuracy (Fig. 2.13).

Selection of the best models from a structure pool is another critical point for predicting pro-

tein structures. Many groups have been working on the model assessment challenge and develop

separate tools to determine the quality of individual structures and pick the one closest to the

experimental structure (Cheng et al. 2019). Although, they can be successful in selecting better

models, using an additional tool for model assessment can be time-consuming. Implementation

of distance predictions also allowed us to select better models by simply using Rosetta energy

(Fig. 2.18), which is a handy and fast model selection method, especially if one needs to predict

structures of tens of different proteins.
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The overrepresentation of hydrophobic residue pairs in the contact bin suggests that the the

network is more sensitive to predict hydrophobic pairs at the shorter distance range. On the

other hand, hydrophilic interactions can be predicted more accurately for longer distances. This

observation can be caused by the relative occurance of residue pair types in different bins. For

example, for the contact bin, it is expected to see higher propotion of hyrophobic interactions

and the loss function can be optimized by the network in a way to predict accurate hydrophobic

contacts easily due to the high abundance of hydrophobic interactions at 0-8Å distance range.
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Chapter 3

Interaction surface prediction of domain

pairs

3.1 Overview

Prediction of multi-domain protein structure is another challenging area of computational bi-

ology. However, the developments in the domain assembly area are not as promising as the

structure prediction of small or medium-sized proteins. In the last CASP/CAPRI competition,

it was revealed that the template free prediction accuracies are not high, and further improve-

ments are needed for automation (Guzenko et al. 2019).

Here, in this chapter, a method is developed to predict how two domains on the same chain

interact with each other, without using any structural template for the interaction. Initially, I

tested different feature vectors by looking at their accuracy at predicting different distances,

and then I moved to predicting distances potentials, with my best model. Predicted distance

potentials between the residue pairs were applied as constraints on the domain pairs for interface

prediction. For almost half of the predicted domain pairs, correct interfaces could be obtained.

The model was applied on a multi-domain protein complex, fatty acid synthase as a test system.

To the best of our knowledge, this is the first study that predicts the distance potentials of the

residue pairs on domain pairs for structure prediction of multi-domain complexes.

I first explain how I generated the training, validation and test sets, followed by introducing
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features I tested, and how I generated the feature matrix. After the details of the neural network

architecture, I explain how I predicted the structure of domain interfaces with the predicted

distances between the residue pairs. In the Results section, the results of different feature sets on

the validation data are compared, and the predictions on the test data with the selected feature

set are made. After presenting how the network output is converted to distance potentials, I

present the interface prediction quality with and without distance potential constraints. Lastly,

the effect of domain-domain interface size the Nf value and the number of predicted residue

pairs on the predicted interface surface quality is analysed.

3.2 Methods

3.2.1 Training, validation and test set generation

The 3did database was used to generate training, validation and test sets. The 3did database

classifies the domain-domain interactions based on Pfam families. For each domain-domain

interaction (either homodimeric and heterodimeric interactions) it lists all proteins (with PDB

IDs) belonging to the interactions of the Pfam domain(s). It also indicates whether the domains

are on the same or different chains, the residue numbers of interacting amino acids and whether

main or side chains are interacting. In the database, two domains are accepted as interacting if

there are at least five estimated contacts (via van der Waals interactions, electrostatic interactions

or hydogen bonds between the atoms of amino acids) between them. The version of the database

that was used included PDB 2017 06 and Pfam30 data with 11200 domain-domain interactions.

I extracted the domain pairs that belong to the different Pfams (for heterodimeric interaction

prediction). Among them, 1607 domain pairs are found on the same chain. Based on the PDB

ID, proteins were culled to give identity lower than 25%, length between 40 and 400 amino acids

and resolution 3 Å or better, via the PISCES server (Wang and Dunbrack 2003). The remaining

proteins were divided into training, validation and test sets with 813, 161 and 161 proteins,

respectively, such that they had a similar average Nf value (460, 405, 485, respectively). As

we calculated the statistical coupling matrix (SCA) as a feature for the network (described in

detail below), sequences whose effective number of sequences were insufficient to generate
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an SCA matrix were removed from the sets. From the test set, domain pairs with fewer than

10 contacting residue pairs were removed (as judged by Cβ to Cβ distance of 8Å or less, Cα for

glycine) were also removed. This processes left 804, 156 and 133 proteins in training, validation

and test sets. As a final process, sequence identities of individiual domains were compared. Not

only should whole sequences be less than 25% identical to each other, domains within the

proteins under consideration should not match between the test, training and validation sets.

Therefore, individual domain sequence between the validation and training set, and the test and

training set were compared. As a result, 16 of the validation proteins and 13 of the test proteins

have sequence identity more than 25 % for both domains with the training set domain pairs;

hence, they were discarded from the predictions.

3.2.2 Feature generation

For the generation of features, first of all, multiple sequence alignments (MSAs) were gener-

ated. Sequences of two domains were concatenated with respect to their order in the chain.

Homologous sequences were searched by HHblits in uniprot20 2016 02 databases with setting

e-value to 0.001, coverage to 60, minimum sequence identity to 0, maximum sequence identity

to 90. 4 iterations were performed and a maximum of 500,000 sequences were allowed to pass

to the next iteration.

The following features were calculated from the generated MSAs and fed into the neural net-

work: CCMpred results as a prediction of coevolving residues (DCA) (Seemayer et al. 2014),

mutual information (Dunn et al. 2007; Jones et al. 2015), normalized mutual information(Jones

et al. 2015), statistical potential (Betancourt and Thirumalai 2008; Jones et al. 2015), secondary

structure predictions (Yang et al. 2016), predicted accessible surface area (Yang et al. 2016),

and the statistical coupling analysis matrix (Rivoire et al. 2016) were used. Additionally, the dot

product of the DCA matrix (DCAdot) was also used as a potential enhancer of the coevolution

signals from the DCA matrix since the dot product of any two residues would be large if their

coevolution patterns with the all other residues in the dimer is similar; would be low, otherwise.

Finally, a binary matrix was used to indicate whether a position carries information about the
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residue pairs, which is not always the case. Since the lengths of two domains are different, in

the final input matrix (described below) there are cells in the matrix which do not correspond to

a real residue pair. A position was assigned in the binary information matrix as 1 if the position

corresponds to a real pair; as 0 otherwise. The weights of the neural networks are trained on

these features.

3.2.3 Neural network architecture

A two-dimensional convolutional neural network was used, with the feature vector containing

2D data. DCA, DCAdot, mutual information, normalized mutual information, statistical po-

tential are already 2D data; therefore, there was no need for further processing. In order to

convert secondary structure information into 2D data, predicted values of a residue (from the

first domain) for helix, strand and coil probabilities were multiplied by the values of the second

residue (from the second domain) leading to nine values for each residue pair. Therefore, for

secondary structure prediction, L x L x 9 matrices were generated where L is the total length of

the sequence. Similarly, predicted accessible surface area of positions were multiplied to obtain

a 2D matrix.

All resulting matrices have L x L x 1 or L x L x 9 dimensions; however, for training only

d1 x d2 region of L x L matrix were extracted where d1 is the length of the first domain and d2

is the length of the second domain (Fig. 3.1). As training data size is small, the matrix with d1

x d2 size was chopped into smaller squares whose size are 32 amino acids by 32 amino acids,

leading to obtaining more than one input from one domain pair. For example, for a domain

pair whose sequence lenghts are, let’s say, 100 and 50 amino acids, chopping the matrix into 32

amino acids-sized matrices provides to have eight different input matrices rather than one input

matrix. Moreover, in order to increase the training data size further and avoid edge effects, three

additional boundaries, 16 residue-size away from the boundaries of the original d1 x d2 matrix,

were selected for cropping (Fig. 3.2). For the final score of a residue pair, the average of four

predictions were taken. This setting for the training with four different boundaries will be called

as T4 setting in the remaining of the text.
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Figure 3.1: Feature matrix generation for neural networks. From the overall matrix, the intersection
region of the first domain and the second domain is extracted and further divided into square matrixes
with a length of 32 amino acids (aa).

As the output matrix, 1 Å interval bins were used ( [0, 3.5), [3.5, 4.5), [4.5, 5.5) .... [19.5,

20.5), [20.5, ∞) ), where for a residue pair, the real distance bin is marked with 1 and the other

layers are marked as 0 for corresponding residue pair (Fig. 3.3). The design of the network

arhitecture was inspired by the architecture of AlphaFold (Senior et al. 2019; Senior et al.

2020). 24 residual blocks were used consisting of three layers with a 1 x 1 x 64 projection

layer, a 3 x 3 x 64 dilated convolution layer, and a 1 x 1 x 128 projection layer. Elu was used as

the activation function, batch normalization was applied before every layer, dropout (0.3 rate)

was used to avoid overfitting, ’he normal’ was used as the kernel initializer, Adam optimizer

was used with its default settings in Keras. Dilated convolutional layers were used in order

to increase receptive field with a rate of 1 (no dilation), 2, 4 and 8 in a cyclic manner. Keras

(Chollet 2015) with Tensorflow (Abadi et al. 2015) backend was used.
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Figure 3.2: Increasing the input size via chopping the input matrix from three additional boundaries
(T4 setting). In order to increase the input data size d1 x d2 matrix was chopped from four different
boundaries. Additional three matrices (colored with green, orange and blue) whose boundaries start
from 16 amino acid (aa) away from the boundary of d1 x d2 matrix. As the final network score for a
residue pair, the average of four settings was calculated.

3.2.4 Measuring the accuracy of the the residue-residue interaction pre-

dictions

In order to determine how accurately residue pair distances were predicted, the accuracy of

pairs in 0 - 8 Å, 8 - 13 Å, 13 - 18 Å distances were calculated. For 0 - 8 Å, 8 - 13 Å, 13 - 18 Å

distances, accuracy was estimated via

accuracy =
# o f residue pairs correctly predicted in a bin

# o f residue pairs predicted in a bin.
(3.1)

A measure we refer to as the accuracy for ±2 Å was also calculated. This is the proportion

of residue pair predictions where the highest scoring bin is within 2Å of that observed in the

experimental structure as compared to the total number of predictions.

3.2.5 Distance potential prediction between two residues

To create a distance potential, the bin sizes were set to one angstrom and the network was

trained using different sets of features. The probabilities for each bin were then converted to a
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Figure 3.3: Neural network architecture for residue pair distance prediction. Convolutional neural
networks were used to train models. As output matrix, 1 Å interval bins were used. For all residue pairs
in the target matrix, the real distance bin is marked with 1 and the other layers are marked as 0.

distance potential by taking their negative log. In more detail, the network was trained intially

six times, but later increased to ten for some feature sets. As a result, a score distribution for

each residue pair was obtained for all residue pairs of the domain pairs. The pairs were removed

if the highest score was detected in the last bin ([20.5, ∞)) since the range is too large. For a

domain pair, all remaining residue pair score distributions from the six (or ten) trained models

were pooled to use for interface prediction. If a residue pair had acceptable predictions from

two or more networks then the final score for each distance bin was their average. The score

distributions were converted to distance potentials by taking negative logarithm of the network

scores. Further, these scores were subtracted from the highest score of the distribution to fix the

maximum potential score to 0.

3.2.6 Predicting the structure of domain-domain interactions.

The rosetta docking application was used to predict the structure of domain-domain interac-

tions. Predicted potentials were implemented as spline constraints on the Cβ (Cα for glycine)

atoms of residue pairs. For implementation of spline constraints, the predicted potentials are

given in a histogram file including an x axis row, which has the distance values between the

residues; and a y axis row, which has the corresponding predicted potential values. For con-

straining the distance between an atom pair, Rosetta generates a cubic spline over the data given

in the histogram file using the Rosetta SplineGenerator. Experimental structures of individual
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domains were used for docking. The orientations of both docking partners were randomized (by

the -randomize1, -randomize2 flags), the second docking partner was allowed to spin around

the centre of mass of the first docking partner (by -spin flag), random perturbation of the input

structure was allowed (by -dock pert flag with recommended usage), and extra side-chain ro-

tamers were added as recommended (by -ex1, -ex2aro flags). 4500 interfaces were generated

for each domain pair and the structure with the minimum Rosetta energy (Rosetta score) was

selected as a final model from the structure pool.

3.2.7 Interface evaluation

In the CAPRI docking competition, the success of the prediction of a protein complex is as-

sessed by categorizing the quality of the interface. Four groups are defined (Table 3.1) based

on fnat, L-RMSD and I-RMSD values where fnat is the fraction of the successfully predicted

native contacts (native contacts are defined as residue pairs in domain pairs whose any heavy

atom distance is ≤ 5 Å to each other). Ligand RMSD, L-RMSD, is the backbone (N, Cα, C,

O) RMSD between the ligands (smaller domains) when the receptors (larger domains) are su-

perposed. Interface RMSD, I-RMSD, is the backbone (N, Cα, C, O) RMSD of the interface

residues when the interface residues are superposed. A residue is defined as an interface residue

if one of its heavy atoms is close to ≤ 10 Å to the any heavy atom of the binding domain.

Table 3.1: CAPRI competition accuracy cutoffs.

Quality fnat L-RMSD I-RMSD
High ≥ 0.5 ≤ 1.0 or ≤ 1.0

Medium
≥ 0.5 > 1.0 or > 1.0
≥ 0.3 1.0 < x ≤ 5.0 or 1.0 < x ≤ 2.0

Acceptable
≥ 0.3 > 5.0 or > 2.0
≥ 0.1 5.0 < x ≤ 10.0 or 2.0 < x ≤ 4.0

Incorrect
≥ 0.1 > 10.0 or > 4.0
< 0.1

All scripts were written in Python (Van Rossum and Drake Jr 1995).
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3.3 Results

3.3.1 Investigation of the effect of different features on the prediction ac-

curacy.

Different feature combinations were tested to find the optimum input vector. Keeping secondary

structure predictions, accessible surface area predictions, binary information, mutual informa-

tion and normalized mutual information always in the input vector, the effect of DCA, DCAdot

and SCA matrices were investigated. Further, the effect of chopping the input matrix from ad-

ditional three different boundaries (T4 setting) was investigated. Comparisons were made on

the validation set (Table 3.2).
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Table 3.2: Accuracies of predictions on the 140 validation domain pairs with different feature sets.

bin 0 - 8 bin 8 - 13 bin 13 - 18 ±2 Å range
features accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all

predictions2 predictions3 predictions2 predictions3 predictions2 predictions3 predictions2 predictions3

DCA 0.316 61 72 0.665 75 80 0.585 76 85 0.341 84 106
SCA 0.039 2 31 0.672 41 48 0.610 48 61 0.145 55 92

DCA + SCA 0.243 62 71 0.606 78 82 0.589 86 91 0.351 85 116
DCA + DCAdot 0.300 67 77 0.614 82 86 0.566 83 94 0.297 91 125

DCA + DCAdot + SCA 0.335 68 80 0.598 89 95 0.572 97 105 0.287 100 127
DCA + DCAdot + SCA T4 0.308 72 96 0.625 101 105 0.550 103 112 0.276 108 133

1 Mean accuracy of only non-zero predictions.
2 Number of domain pairs which has at least one correct residue-residue prediction (non-zero prediction).
3 Number of total domain pairs including zero and non-zero accuracy predictions.

Table 3.3: Accuracies of predictions on the 140 validation domain pairs for different feature sets and requiring a prediction to have been made by at least
two of the trained networks.

bin 0 - 8 bin 8 - 13 bin 13 - 18 ±2 Å range
features accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all

predictions2 predictions3 predictions2 predictions3 predictions2 predictions3 predictions2 predictions3

DCA 0.369 53 61 0.677 61 64 0.588 59 65 0.440 64 77
DCA + SCA 0.301 57 67 0.641 67 67 0.598 61 68 0.455 69 86

DCA + DCAdot 0.330 61 66 0.690 67 72 0.523 64 67 0.431 73 85
DCA + DCAdot + SCA 0.344 59 68 0.681 70 72 0.530 71 76 0.419 76 89

DCA + DCAdot + SCA T4 0.339 67 76 0.669 78 78 0.544 75 81 0.433 81 102
DCA + DCAdot + SCA T4 10tr4 0.324 71 84 0.638 85 86 0.565 80 90 0.380 89 113

1 Mean accuracy of only non-zero predictions.
2 Number of domain pairs which has at least one correct residue-residue prediction (non-zero prediction).
3 Number of total domain pairs including zero and non-zero accuracy predictions.
4 10tr: Ten trained networks.
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Since the residue pairs whose maximum network score was detected in the last bin ( [20.5,

∞) ) were not taken into consideration, for some proteins no residue pair prediction could be

made, resulting in no interface prediction. Accuracies were calculated for three distance bins (0

- 8 Å, 8 - 13 Å and 13 - 18 Å) as well as for ±2 Å range. Average accuracies were calculated

over the domain pairs whose accuracy is greater than zero. The number of domain pairs whose

accuracy is greater than zero and the number of total domain pairs for which at least one residue

interaction prediction were made are given in Table 3.2.

The average accuracies of 8 - 13 Å and 13 - 18 Å bin are higher than those in the 0 - 8

Å bin for all feature vectors. Although it is not clear why, it emphasizes the importance of

predicting not only contacting pairs but also the residue pairs at longer distances. Although

0 - 8 Å, 8 - 13 Å and 13 - 18 Å bin accuracies gives us insight about the prediction success

in different intervals, for the network comparisons we will focus on ±2 Å range accuracies as

it gives information about the success of the prediction in a continuous metric rather than a

discrete metric (as in 0 - 8 Å, 8 - 13 Å and 13 - 18 Å accuracies).

Accuracies presented in Table 3.2 indicate that DCA predictions form the backbone of the

calculations, as removal of it (and using SCA only) reduces the number of domain pairs for

which predictions could be made, i.e. for which there were predictions of less than 20.5 Å

separation, and reduces the accuracy of any predictions. While there are minimal variations in

0 - 8 Å, 8 - 13 Å and 13 - 18 Å accuracies for DCA, DCA + SCA, DCA + DCAdot and DCA +

SCA + DCAdot, the maximum number of predictions was obtained training with DCA + SCA

+ DCAdot, suggesting a more generalised model. Although the ±2 Å range accuracy of DCA +

SCA is ∼ 0.06 higher than DCA + SCA + DCAdot, predictions could be made for 100 domain

pairs, i.e. 100 pairs had at least one residue pair predicted to be less than 20.5 Å A apart, for

the latter, whereas there are only 85 predictions for the former. These results suggested that

inclusion of all features (DCA, SCA and DCAdot) provides better generalization without any

loss in prediction accuracy.

As mentioned above, the input matrix was further chopped from additional three boundaries

to increase the input data size (T4 setting). This step (DCA + SCA + DCAdot T4) increased
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the number of domain pairs for which predictions could be made, with a slight change in the

accuracy.

To reduce the number of incorrect predictions, for a residue pair to be considered as a

predicted distance it needed to be predicted as such by at least two of the six (or ten) trained

networks. This modification in selection criteria increased accuracies but reduced the number

of domain pair that predictions were made for, as shown in Table 3.3. Increasing the number of

trainings from six to ten, increasing the number of domain pairs predictions that were made but

caused a slight decrease in ±2 Å range predictions.

Although it is clear that accepting a residue pair if it was predicted at least two times leads

to better predictions, which feature set from Table 3.3 is the best one is challenging to decide.

Average ±2 Å accuracy of DCA, DCA + SCA, DCA + DCAdot + SCA and DCA + DCAdot

+ SCA T4 settings varies with the lowest ±2 Å accuracy of 0.419 while the number of domain

predictions whose accuracy is larger than zero increases, suggesting that the addition of DCAdot

and SCA, and chopping the matrix from three additional boundaries improve the generalization

of the network. Although increasing the number of the trained network from six to ten decreases

the average ±2 Å accuracy, since more non-zero accuracy predictions were made with DCA +

DCAdot + SCA T4 10tr feature set, predictions of this feature set were selected for further

analysis.

Accuracy of residue pair predictions on the test set based on the models trained with DCA

+ DCAdot + SCA T4 10tr feature set are given in Table 3.4. Among 120 test domain pairs,

predictions were able to be performed for 91 of them. Average accuracies for test domain pairs

are similar to the validation domain pairs (Table 3.3).
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Table 3.4: Accuracies of predictions on the 120 test domain pairs with DCA + DCAdot +SCA + B T4 10tr feature set. At least two occurancse among all
trainings was used as selection criteria for a residue pair to be taken into account.

bin 0 - 8 bin 8 - 13 bin 13 - 18 ±2 Å range
features accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all accuracy1 # of non-zero # of all

predictions2 predictions3 predictions2 predictions3 predictions2 predictions3 predictions2 predictions3

DCA + DCAdot +SCA + B T4 10tr4 0.347 67 73 0.629 74 76 0.561 76 77 0.397 78 91
1 Mean accuracy of only non-zero predictions.
2 Number of domain pairs which has at least one correct residue-residue prediction (non-zero prediction).
3 Number of total domain pairs including zero and non-zero accuracy predictions.
4 10tr: Ten trained networks.
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3.3.2 Distance potentials were generated from network score distribution.

Based on the results of the previous section the feature vector was chosen as DCA + DCAdot +

SCA T4 10tr, and the network was trained six times with distance bins of 1 Å width (Fig. 3.4),

from which a distance potential was calculated. The network score distribution was converted

into a distance potential by calculation negative log of the score (Fig. 3.4). As an example,

the predicted distance potentials of one of the test proteins are shown in Fig. 3.5. Distance

distributions for each pair are shown in separate subplots and real distance for that residue pair

is shown with a red line and 8 Å contact threshold is shown with a green line. Successful

predictions include both contacting and non-contacting residue pairs.

Figure 3.4: Distance potentials were calculated from network score distribution. For a chosen residue
pair the distribution of network scores was converted into a distance potential by calculation of negative
logarithm.
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Figure 3.5: Predicted distance distributions of residue pairs of a test set domain pair. Distance poten-
tials were determined by calculating negative log likelihood of neural network score for that protein. The
potential values were substracted from the highest score in the distribution (blue lines). Real distance
between the residue pairs are shown with red lines, 8 Å contact threshold is shown with green lines.
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3.3.3 The structures of domain domain interactions were predicted from

the distance potentials.

The distance potentials, described in the previous section, were applied as constraints within

Rosetta Dock to predict the structure of domain interactions. The success of a prediction was

evaluated using the criteria of the CAPRI docking competition, which assesses the quality of

the interface between the two docked proteins (Table 3.1). Besides applying the constraints

from DCA + DCAdot +SCA T4 10w tr feature set, structures were predicted without applying

predicted distance potential constraints, to compare the results with constraints and without con-

straints. Out of 91 domain pair predictions, 17 of the interface structures have high accuracy, 27

have medium accuracy and 6 have acceptable accuracy; whereas the predicted interfaces for 41

domain pairs are incorrect based on CAPRI evaluation metric (Table 3.5, Fig. 3.6). Examples

for high, medium, acceptable and incorrect interface predictions are given in Fig. 3.7. When

predicted distance distributions were not applied as constraints, only 7 domain interfaces were

predicted with high accuracy, 3 domain interfaces were predicted with medium accuracy, and

incorrect predictions were made for 81 domain pairs. Interestingly for six domain pairs, predic-

tion quality is better without restraints, probably because the introduction of the unsuccessfully

predicted residue pair constraints forces the domain pairs have wrong orientations. However,

for 45 domain pairs, having constraints improves the quality of the predicted structure. This

suggests that implementation of the distance potentials provides successful domain interface

predictions.

The domain pairs with higher ±2 Å range accuracy correlated with more successful interface

predictions (Fig. 3.6). When the ±2 Å range accuracy is lower than ∼ 0.3, incorrect interfaces

were predicted; whereas, when ±2 Å range accuracy is higher than ∼ 0.3, acceptable, medium

and high predictions were made. This result is not surprising as a more accurate distance po-

tential is expected to provide more accurate interface predictions.

As the Rosetta score does not always select the best model from the structure pool, the

quality of the structures with the lowest I-RMSD was recorded for all domain types. Predic-
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Table 3.5: The number of high, medium, acceptable and incorrect domain pairs. The structure with the
minimum Rosetta energy was selected as the final model.

high medium acceptable incorrect
No constraints 7 3 0 81

DCA + DCAdot +SCA T4 10w tr 17 27 6 41

Domain pairs

incorrect

acceptable

medium

high

±2Å range accuracy

No constraints
DCA + DCAdot +SCA T4 10w tr 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.6: Quality evaluation of predicted domain interfaces with and without constraints. When
constraints were not applied only ten interfaces could be predicted correctly; whereas, 50 interfaces
could be predicted correctly when predicted distance poteintials were applied. For the domain pairs
with ±2 Å range accuracies, interfaces could be predicted with at least acceptable quality.

tions without inter-residue distance constraints the choosing the model with lowest I-RMSD

gives 15 high, 25 average, and 31 medium accuracy predictions and 20 incorrect predictions.

Application of predicted distance potentials predicted 34 interfaces with high accuracy, 31 in-

terfaces with medium accuracy and 7 interfaces with acceptable accuracy, whereas no correct

predictions were made for 19 domain interfaces (Table 3.6, Fig. 3.8). The models of domain

interactions with the highest accuracy interfaces that were not selected because they didn’t have

the lowest Rosetta energy were those with low ±2 Å accuracy. This is not surprising as Rosetta

energy includes constraint energy and unsuccessful constraints contribute to the Rosetta score

and misleads the correct structure selection.

Comparison of Table 3.5 and Table 3.6 results suggest that even though there are more
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Figure 3.7: Example structures for high (upper left, PDB id:1qjf), medium (upper right, PDB id:5ayv),
acceptable (lower left, PDB id:1oi8), and incorrect (lower right, PDB id:1kcw) interface predictions.
The superposed domain of the pair is coloured cyan, the experimental orientation is coloured blue and
the predicted orientation is coloured red.

successful predictions in the structure pool, we cannot pick them as the final model. Although

the number of different domain pairs with at least ”acceptable” predictions is almost the same

with and without constraints (72 and 71, respectively), the number of high and medium quality

interfaces is greater for the predictions using constraints. When no constraints were applied,

only the structures of 10 domain pairs, selected as having the lowest Rosetta energy from a

pool of 4500 putative structures per domain pair, had ”acceptable” or better interfaces, whereas

the structure pools actually contained ”acceptable” or better predictions for 71 different domain

pairs. On the other hand, when constraints were applied, classifying the best model using the

Rosetta energy, including the energies associated with the constraints gave 50 different domain

pairs with ”acceptable” or better interfaces and in total 72 of them have correct predictions in
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the structure pools. Therefore, these results indicate that implementation of distance potentials

improves the quality of the correct interfaces, as well as providing to select better models from

the structure pool.

Table 3.6: Number of high, medium, acceptable and incorrect domain pairs. The structure with the
lowest I-RMSD value was selected as final structure.

feature high medium acceptable incorrect
No constraints 15 25 31 20

DCA + DCAdot +SCA T4 10w tr 34 31 7 19

Domain pairs

incorrect

acceptable

medium

high

±2Å range accuracy

No constraints
DCA + DCAdot +SCA T4 10w tr 
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Figure 3.8: Quality evaluation of predicted domain interfaces with and without constraints when
the best structure from the pool was selected. When constraints were applied more interfaces were
generated with high and medium accuracy.

3.3.4 Effect of Nf and real contacting pair number on the prediction qual-

ity.

Since successful predictions could not be made for all domain pairs in the test set, we investi-

gated the possible reasons for that. The Nf value (i.e. the number of sequences in the alignment

with maximum 80% pairwise sequence identity, divided by the square root of the sequence

length) is critical for the successful prediction of residue pairs as discussed in Chapter 2. When
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the alignment is not comprehensive enough, coevolution of residue pairs cannot be detected

successfully leading to inaccurately predicted protein structures. The surface area of the inter-

face, on the other hand, can also be expected to have an importance for the prediction of the

correct interface. Since the larger surface area means more interacting residue pairs between the

domains, for the proteins with large surface area, more residue pairs can be predicted correctly,

which would assist accurate prediction of the interfaces. Therefore, we investigated how the ±2

Å range accuracy, fnat, I-RMSD and L-RMSD scores change with the Nf values and the number

of real contacts (within 0 - 8 Å distance) in the experimental structures (Fig. 3.9).
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Figure 3.9: The success of predictions using distance constraints increases as the number of real
residue contacts and Nf values increase. The interface of pairs of domains is predicted best where
they have a high number of contacts in the experimental structure and a high Nf value in the sequence
alignment. The number of real residue contacts are determined based on the Cβ (Cα for glycine) atom
distance between two residues being less than 8 Å.

For all four metrics, the prediction success increases as the Nf value and the number of

real contacts increase (Fig. 3.9). The accuracy of the ±2 Å range increases as the number
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of contacting pairs increase excepting a few domain pairs with low Nf values. Similarly, the

fraction of successfully predicted native contacts, fnat, increases as there are more interacting

residue pairs in the domain pairs. The residue pairs that have a high number of contacting

pairs but have low fnat have mostly low Nf values. For the domain pairs with a high number

of contacting pairs, I-RMSD and L-RMSD are low except for the domain pairs with low Nf

values.

As monotonic relationships are observed between the number of real contacts vs. the inter-

face evaluation metrics (±2 Å range accuracy, fnat, I-RMSD and L-RMSD), and Nf values vs.

the interface evaluation metrics, Spearman’s rank correlation coefficient was calculated to de-

termine whether there is any significant monotonic correlation (Table 3.7). For all comparisons

weak but significant correlations are detected. Since both Nf values and real contact numbers

seem to contribute to the accuracy of the predicted structure of the interfaces, Spearman’s cor-

relation coefficient correlations were calculated for subsets of test domain pairs with higher real

contact numbers (>40) (Table 3.8) and higher Nf values (>300) (Table 3.9) to analyze their

effect individually. Correlation coefficients (ρ) and corresponding p-values reveal a clearer rela-

tionship between the Nf values and the interface quality, when the domain pairs with lower real

contact pair number are discarded, as higher significant correlations can be detected (Table 3.8).

Similarly, correlation coefficients (ρ) and corresponding p-values reveal a clearer relationship

between the real residue contact number and the interface quality, when the domain pairs with

the lower Nf values are discarded, since higher significant correlations can be detected (Table

3.9). Overall, it is seen that although there are a few exceptions, the common trend is that

when the surface area is larger, and when the sequence alignment is comprehensive enough, the

quality of the predicted interfaces is better.

3.3.5 The effect of the number of predicted residue pairs on the prediction

quality.

The relation between the number of predicted residue pairs and the prediction quality was in-

vestigated. Analysis suggests that when there are more constriants predicted for a domain pair,
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Table 3.7: Spearman’s rank correlation coefficient (ρ) and corresponding p-values between the Nf value
and the interface evaluation metrics (±2 Å range accuracy, fnat, I-RMSD and L-RMSD), and the number
of real contacts and the evalution metrics.

±2 Å fnat I-RMSD L-RMSD

Nf
ρ= 0.34 ρ=0.31 ρ=-0.35 ρ=-0.31

p=8.90E-04 p=2.56E-03 p=5.67E-04 p=2.71E-03

real contacts
ρ= 0.35 ρ=0.46 ρ=-0.40 ρ=-0.50

p=7.55E-04 p=4.62E-06 p=7.78E-05 p=5.59E-07

Table 3.8: Spearman’s rank correlation coefficient (ρ) and corresponding p-values between the Nf value
and the interface evaluation metrics (±2 Å range accuracy, fnat, I-RMSD and L-RMSD), and the number
of real contacts and the evalution metrics for the subset of test domain pairs (44 domain pairs) whose
real contact pairs are greater than 40.

±2 Å fnat I-RMSD L-RMSD

Nf
ρ= 0.39 ρ=0.48 ρ=-0.47 ρ=-0.47

p=9.68E-03 p=9.54E-04 p=1.19E-03 p=1.17E-03

real contacts
ρ= -0.07 ρ=0.12 ρ=0.00 ρ=-0.19

p=6.33E-01 p=4.57E-01 p=9.82E-01 p=2.22E-01

Table 3.9: Spearman’s rank correlation coefficient (ρ) and corresponding p-values between the Nf value
and the interface evaluation metrics(±2 Å range accuracy, fnat, I-RMSD and L-RMSD), and the number
of real contacts and the evalution metrics for the subset of test domain pairs (47 domain pairs) whose Nf
values are greater than 300.

±2 Å fnat I-RMSD L-RMSD

Nf
ρ= 0.20 ρ=0.18 ρ=-0.11 ρ=-0.08

p=1.67E-01 p=2.28E-01 p=4.45E-01 p=5.96E-01

real contacts
ρ= 0.35 ρ=0.59 ρ=-0.62 ρ=-0.65

p=1.46E-02 p=1.09E-05 p=3.71E-06 p=7.77E-07

it is more likely to have a better interface (Fig. 3.10). On the other hand, it is not clear why for

some of the domain pairs there are drastically more predictions (i.e outliers).
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Figure 3.10: Comparison of the number of predicted residue pairs per domain pair between the quality
groups. The number of predictions per domain pair is higher in the domain pairs with higher quality
interface predictions. The boundaries of the box range from the lower quartile of the data to the upper
quartile, the line shows the median, the whiskers demonstrate the range of the data. Outliers are shown
with black diamond signs.

94



3.3.6 Domain-domain interaction prediction on a multidomain protein.

Fatty acid synthases (FAS) is a multi-domain protein complex whose domain organization is

very similar to polyketide synthases (PKS). Since the crystal structure of wild boar, Sus scrofa,

FAS was determined at 3.2 Å (PDB ID:2vz9), we used this FAS as a model multi-domain

protein complex to test the success of our domain-domain prediction methodology. The domain

organization of the FAS is given in Fig. 3.11.

Figure 3.11: Experimentally determined domain organization of a fatty acid synthase structure. .
KS:ketosynthase, LD: ketosynthase - acyltransferase linker domain, MAT: acyltransferase (malonyl
transferase), KR: ketoreductase, ψKR: pseudo-ketoreductase, DH: dehydratese, ER: enoyl reductase.
PDB id: 2vz9.

To analyze the interactions between FAS domains, HHblits was run to find homologous

sequences (the whole FAS sequence including ACP and TE domain sequences was used). There

are 1999 sequences in the alignment including sequences from PKSs. Only the sequences that

are labelled as an FAS system or as uncharacterized were kept in the alignment resulting in 715

sequences in the MSA, 136 of which were labelled as FASs.

From the MSA, the positions of the selected domain pairs were extracted. The selected

domain pairs are (i) KS - LD and MAT, (ii) KS and DH, (iii) DH and ER, (iv) DH and KR, (v)

ψKR and KR, (vi) KS and LD and (vii) LD and MAT. The extracted alignments were filtered

to remove the sequences with a high number of gaps (minimum ≥ 80% coverage with the

95



query sequence). The number of residue pairs in the contact, 8-13 Å bin and 13-18 Å bin, as

determined from the experimental structure for these domain pairs are given in Table 3.10 as an

indicator of the interface area.

Table 3.10: Real contact, bin8-13 and bin13-18 numbers of interactions between two domains.

domain pairs contact bin 8-13 bin 13-18
KS-LD and MAT 35 250 699

KS and DH 0 46 247
DH and ER 3 68 300
DH and KR 30 212 60
ψKR and KR 5 40 176
KS and LD 245 1291 2821

LD and MAT 35 243 659

For the first four domain pairs listed in the Table3.10, residue distance potentials were pre-

dicted. Although predictions could be done for all domain pairs, accuracies for all bins were

0. Therefore, further predictions were performed by keeping all sequences (1999 sequences,

including the ones from PKSs) in the alignment. From this alignment, again the positions of

the selected domain pairs were extracted and the alignment was filtered to remove the highly

gapped sequences. Accuracies are given in Table 3.11.

Table 3.11: FAS domain pair predictions. The ratio of the number of the correct predictions to the
number of all predictions is given for each bin.

domain pairs contact bin 8-13 Å bin 13-18 Å ± 2 Å # of seqs in MSA length Nf
KS-LD and MAT 0 0 0 0 1701 792 49.6

KS and DH 0 0 0 0 1715 592 58.9
DH and ER 0 0 0 0 1736 548 66.0
DH and KR 0 3/7 4/20 7/458 1899 414 81.8
ψKR and KR 0 0 2/3 1/580 1283 367 59.8
KS and LD 26/140 295/472 261/470 567/1456 1663 473 62.6

LD and MAT 1/8 11/14 2/7 8/323 1891 431 79.4

For all tested FAS domain pairs, Nf values are low; therefore, the expected accuracies would

be low based on Fig. 3.9. For KS-LD and MAT, KS and DH, and DH and ER domain pairs,

no successful predictions could be made; whereas, for DH and KR, ψKR and KR, KS and

LD, and LD and MAT pairs at least one successful predictions could be obtained. When the

surface is area is very large (as in KS and LD domain pair), it was possible to obtain successful

predictions. On the other hand, when the surface area is very low (as in KS and DH domain pair
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and DH and ER domain pair), no successful predictions were obtained. Although the surface

area of ψKR and KR is low, two out of three predictions in 13-18 Å bin were correct, whereas

only one predicted distance out of 580 predictions was within 2 Å away from the experimental

distance.

Another interesting observation is the prediction of the interface between the LD and MAT

domains. KS-LD and MAT pair and LD and MAT pair have the same interface surface (i.e.

there is no direct interaction between the KS and the MAT domains). When the structure of the

interface between the LD and the MAT domains was aimed to be predicted by including the KS

domain, no successful prediction could be obtained. However, when KS domain was discarded,

successful residue-residue interaction predictions were obtained. This difference in the success

of predicting the same interface structure can be caused by two reasons. First one is, for the

KS-LD and MAT system, the Nf value is smaller (as the sequence length is larger) and that may

cause worse predictions. The second possible reason is having another domain, KS, which also

interacts with the LD domain, can introduce noise.

Overall, the interaction prediction between the FAS domain pairs gives consistent results

with the previous analysis. For successful residue pair predictions on a domain pair, large

interface area and comprehensive sequence alignment are necessary.
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3.4 Discussion

This chapter aimed to investigate the prediction of multi-domain protein structures without

needing a template for the domain-domain interactions. Convolutional neural networks were

used to predict distance potentials between pairs of residues on the two domains that are in-

teracting. The predicted distances were applied as constraints on the domain pairs to predict

domain interfaces correctly. There are studies in the literature aiming to predict how two do-

mains interact without using any template for the interface (Ovchinnikov et al. 2014; Zeng et al.

2018), where they aim to predict contacting pairs only, not the distances between the residue

pairs. Moreover, they generate the alignments of two domains separately and then match the

sequences for further analysis on the contrary to concatenating the sequences and finding the ho-

mologous sequences. To the best of my knowledge, this is the first study predicting the distance

potentials between the residue pairs of two same chain domains to predict correct interfaces.

In addition to DCA matrix, SCA and DCAdot matrices were used in the feature vector,

and their contribution was tested. In Table 3.3, it is seen that the implementation of SCA

matrix slightly increases both the number of domain pairs for which predictions were made,

and mean accuracy. Implementation of DCAdot also increases the number of domain pairs for

which predictions were made; whereas, the average accuracy slightly decreases. And using both

of them increases the number of domain pairs for which predictions were made, further with

again a slight decrease in the average accuracy. Overall, implementation of SCA and DCAdot

matrices allow us to make non-zero accuracy predictions for additional 12 domain pairs, yet

result in ∼ 0.02 decrease in the average accuracy. To the best of my knowledge, we are the first

group using SCA and DCAdot matrices in the feature vector and demonstrate their contribution

to the prediction accuracy.

Although successful distance potentials and domain interfaces were predicted, correct inter-

faces could not be obtained for all of the domain pairs in the test set. One of the reasons for

that result is almost certainly an insufficient number of domain pairs in the training set. Usu-

ally, the training set includes thousands of samples for successful training and generalization.

98



For example, the AlphaFold training set included almost 30,000 training proteins, whereas our

training set included only 804 domain pairs. Chopping the input data into smaller matrices and

choosing four additional chopping boundaries improved the success of the network (Table 3.2,

3.3), yet more data would be helpful.

As the success of correct detection of residue pairs depends on the alignment depth, the

predicted interface accuracy also depends on the Nf values of the domain pairs. Therefore, not

surprisingly, when there are fewer sequences in the alignment, the accuracy of the predictions

decreases. Moreover, the quality of the prediction also depends on the interface surface area.

When the interface surface area is larger, the correct interface can be predicted (Fig. 3.9). We

also demonstrated that, if the number of predicted residue pairs is high for a domain pair, it is

an indication that an interface prediction with at least acceptable quality can be obtained (Fig.

3.10).

The ranking of models in both the protein structure prediction area and the protein (or do-

main) docking area is an important challenge. We might be able to generate a correct structure

in a pool of model structures but if we have no good ranking method then we cannot identify it

as the correct structure. Using Rosetta energy to pick the final model is a very time efficient and

straightforward approach to pick the final model. However, unfortunately, the best prediction

cannot be selected most of the time. Implementation of distance potentials for docking of two

domains gives more successful predictions in the pool and helps to select better models as the

Rosetta score includes the constraint energy.

The success of the method was tested on a multi-domain protein complex, fatty acid syn-

thase which has a similar domain organization as polyketide synthases. Similar to the test set

proteins, successful residue pair predictions obtained as long as there were enough sequences

in the alignment (high Nf value), and the surface area was large.

Overall, in this study, successful predictions of domain domain interactions were achieved

without using an experimental model of the complex. Although limitations are causing un-

successful predictions for some cases, our method can be used to predict domain interfaces

correctly, which should allow the prediction of multi-domain protein structures.
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Chapter 4

Determination of coevolved residue groups

on DEBS module 1

4.1 Overview

Understanding the structure and working mechanism of multi-domain proteins and protein com-

plexes is important to be able to modify them for many protein engineering purposes including

the development of novel drug candidates. Here, we focus on polyketide synthases (PKSs),

which are multi-domain proteins or protein complexes, producing polyketides that have various

functions including antibiotic, antitumor, antifungal effects. Protein engineering applications

have been widely applied to PKSs to generate novel polyketides. However, most of the experi-

ments fail since the working mechanism of PKSs are not known in detail yet Weissman 2016.

Domain swapping and site-directed mutagenesis studies performed to manipulate polyketide

production resulted in either low yield product or no product at all. Experimental evidence sug-

gests that domain swapping studies without thorough optimization of the functional boundaries

of the domains and applying point mutations on only a few residues are not adequate to shift the

specificity of the domains successfully Weissman 2016; Barajas et al. 2017; Musiol-Kroll and

Wohlleben 2018; Kornfuehrer and Eustáquio 2019. In this chapter, it will be demonstrated that

co-evolved networks of residues (independent components and sectors) can be detected by sta-

tistical coupling analysis (SCA) and that these residue networks have specific functions within a
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PKS, notably defining domain boundaries consistent with experimental data. Further, we detect

residue groups that might make important contributions to the domain subtype functionality.

Detection of functional domain boundaries and residue groups specific to the domain sub-types

can enhance the success of the experimental studies to generate new drug candidates.

In this chapter, the methodology will be explained. On several model systems, I tested the

number of sequences needed for a convergence in the analysis, which has not been addressed

before. Then, I continue with the detailed steps of determination of coevolved amino acids in

the target system, which is the first module of DEBS, explained further in Chapter 1.5. Further,

I applied sequence-position mapping on the alignment including the determination of residues

that might make important contributions to subtype functionality. This section will be followed

by the results and discussion section demonstrating the detected residue networks and their

relation with experimental evidence. Lastly, concluding marks will be given summarizing the

outcomes of the study.

4.2 Methods

4.2.1 Multiple Sequence Alignment Generation

The sequence of DEBS1 module 1 together with the KS of module 2 was selected as the target

sequence (UniprotID:Q03131) (Fig 4.1). Homologous sequences were detected with HHblits

Remmert et al. 2011 and from which a multiple sequence alignment was generated. For each

sequence in the alignment, pfam domains El-Gebali et al. 2018 were determined via hmmscan

Eddy 2011 where e-value was set to 0.001. Sequences whose original module includes domains

other than KS, AT, KR, DH, ER, TE and ACP were removed from the alignment. After prepro-

cessing the MSA to improve its quality, as described in ref. Rivoire et al. 2016, e.g. to remove

highly gapped columns and sequence fragments, the final alignment included 2303 sequences.

Preproccesing on the MSA was applied with the scaProcessMSA.py script in SCA analysis

tool Rivoire et al. 2016 and the reference sequence was set to the target sequence by –refindex

0 command. Second and third steps of the analysis, which applies the SCA method and de-

termines the independent components, were performed by scaCore.py and scaSector.py scripts
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from the same tool package.
Alignment: /home/toruc/DEBS_model_pySCA_py2_nomodtoinitialaln_processingtest/pySCA−master/Inputs/DEBS1_module1+module2KSonly_mod.fasta
Seaview [blocks=10 fontsize=7 LETTER] on Wed Apr 15 17:37:37 2020

         1
DEBS_M1  EPVAVVAMAC RLPGGVSTPE EFWELLSEGR DAVAGLPTDR GWDLDSLFHP DPTRSGTAHQ RGGGFLTEAT AFDPAFFGMS PREALAVDPQ QRLMLELSWE VLERAGIPPT SLQASPTGVF

       121
DEBS_M1  VGLIPQEYGP RLAEGGEGVE GYLMTGTTTS VASGRIAYTL GLEGPAISVD TACSSSLVAV HLACQSLRRG ESSLAMAGGV TVMPTPGMLV DFSRMNSLAP DGRCKAFSAG ANGFGMAEGA

       241
DEBS_M1  GMLLLERLSD ARRNGHPVLA VLRGTAVNSD GASNGLSAPN GRAQVRVIQQ ALAESGLGPA DIDAVEAHGT GTRLGDPIEA RALFEAYGRD REQPLHLGSV KSNLGHTQAA AGVAGVIKMV

       361
DEBS_M1  LAMRAGTLPR TLHASERSKE IDWSSGAISL LDEPEPWPAG ARPRRAGVSS FGISGTNAHA IIEEAPQVVE GERVEAGDVV APWVLSASSA EGLRAQAARL AAHLREHPGQ DPRDIAYSLA

       481
DEBS_M1  TGRAALPHRA AFAPVDESAA LRVLDGLATG NADGAAVGTS RAQQRAVFVF PGQGWQWAGM AVDLLDTSPV FAAALRECAD ALEPHLDFEV IPFLRAEAAR REQDAALSTE RVDVVQPVMF

       601
DEBS_M1  AVMVSLASMW RAHGVEPAAV IGHSQGEIAA ACVAGALSLD DAARVVALRS RVIATMPGNK GMASIAAPAG EVRARIGDRV EIAAVNGPRS VVVAGDSDEL DRLVASCTTE CIRAKRLAVD

       721
DEBS_M1  YASHSSHVET IRDALHAELG EDFHPLPGFV PFFSTVTGRW TQPDELDAGY WYRNLRRTVR FADAVRALAE QGYRTFLEVS AHPILTAAIE EIGDGSGADL SAIHSLRRGD GSLADFGEAL

       841
DEBS_M1  SRAFAAGVAV DWESVHLGTG ARRVPLPTYP FQRERVWLEP KPVARRSTEV DEVSALRYRI EWRPTGAGEP ARLDGTWLVA KYAGTADETS TAAREALESA GARVRELVVD ARCGRDELAE

       961
DEBS_M1  RLRSVGEVAG VLSLLAVDEA EPEEAPLALA SLADTLSLVQ AMVSAELGCP LWTVTESAVA TGPFERVRNA AHGALWGVGR VIALENPAVW GGLVDVPAGS VAELARHLAA VVSGGAGEDQ

      1081
DEBS_M1  LALRADGVYG RRWVRAAAPA TDDEWKPTGT VLVTGGTGGV GGQIARWLAR RGAPHLLLVS RSGPDADGAG ELVAELEALG ARTTVAACDV TDRESVRELL GGIGDDVPLS AVFHAAATLD

      1201
DEBS_M1  DGTVDTLTGE RIERASRAKV LGARNLHELT RELDLTAFVL FSSFASAFGA PGLGGYAPGN AYLDGLAQQR RSDGLPATAV AWGTWAGSGM AEGAVADRFR RHGVIEMPPE TACRALQNAL

      1321
DEBS_M1  DRAEVCPIVI DVRWDRFLLA YTAQRPTRLF DEIDDARRAA PQAPAEPRVG ALASLPAPER EEALFELVRS HAAAVLGHAS AERVPADQAF AELGVDSLSA LELRNRLGAA TGVRLPTTTV

      1441
DEBS_M1  FDHPDVRTLA AHLAAELGGA TGAEQAAPAT TAPVDEPIAI VGMACRLPGE VDSPERLWEL ITSGRDSAAE VPDDRGWVPD ELMASDAAGT RAHGNFMAGA GDFDAAFFGI SPREALAMDP

      1561
DEBS_M1  QQRQALETTW EALESAGIPP ETLRGSDTGV FVGMSHQGYA TGRPRPEDGV DGYLLTGNTA SVASGRIAYV LGLEGPALTV DTACSSSLVA LHTACGSLRD GDCGLAVAGG VSVMAGPEVF

      1681
DEBS_M1  TEFSRQGALS PDGRCKPFSD EADGFGLGEG SAFVVLQRLS DARREGRRVL GVVAGSAVNQ DGASNGLSAP SGVAQQRVIR RAWARAGITG ADVAVVEAHG TGTRLGDPVE ASALLATYGK

      1801
DEBS_M1  SRGSSGPVLL GSVKSNIGHA QAAAGVAGVI KVLLGLERGV VPPMLCRGER SGLIDWSSGE IELADGVREW SPAADGVRRA GVSAFGVSGT NAHVIIAEPP E

Figure 4.1: Input sequence used for DEBS module 1.

4.2.2 AT Domain Classification

Sequences that did not give a hit for the AT domain with hmmscan were labelled as trans-AT

systems; whereas, the ones that gave a hit for the AT domain were labelled as cis-AT sequences.

The cis-AT sequences in the alignment were classified as malonyl-CoA, methylmalonyl-CoA

and ethylmalonyl-CoA specific based on their fingerprint motifs HAFH, YASH and (T/F/V/H)AGH,

respectively Haydock et al. 1995. The ones do not bear any of these motifs were label as ’Un-

classified’.

4.2.3 KR Domain Classification

Sequences were classified based on the subtype motifs of the KR domains. The ones with

LDD motifs were labelled as type B KRs, the ones with a tryptophan eight residues before

the catalytic tyrosine were labelled as type A. Further classification was made based on the

three residues before the catalytic tyrosine. Since leucine, histidine, and glutamine residues are

conserved in B2 type, A2 type and A1-B1 types of KRs, respectively Zheng and Keatinge-Clay
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2013, a further classification was made based on these specifications. KRs that did not bear any

of those sequence motifs were labelled as ’Unclassified’ and the ones that have both patterns

of A and B types are labelled as ’KRbothmotifs’. These groups are not shown in the sequence-

position mapping plots. Among all the sequences only 81 do not have KR domains. The most

abundant type in the alignment is type-B1, with 763 sequences. There are also 6 type-B2, 239

type-A1, 73 type-A2 and 67 type-C KR present. Unfortunately, 996 sequences could not be

classified and 20 of them bear motifs of both type A and type B KRs.

4.2.4 Determination of coevolved residue groups

Weighted correlation matrix and independent component analysis were applied as described in

Section 1.4 via scripts from py-SCA tool Rivoire et al. 2016.

In the process of eigenvalue decomposition, when the first eigenvalue is much larger than

the remaining significant eigenvalues, it indicates that the first eigenvector is the ”coherent”

mode and it describes the contribution to all positions to the total correlation Halabi et al. 2009.

In our system, the first eigenvalue is 822, whereas the second highest is only 143, indicating

the dominant first mode. As the first mode has the contributions from all positions, it was

removed for the SCA matrix visualization and hierarchical clustering for a clearer detection of

the covariation of the residue groups.

4.2.5 Hierarchical clustering of ICs

We performed hierarchical clustering based on average coupling scores of inter-ICs. In the

coupling matrix C̃i j, the average coupling score of each square (scores of intra-ICs and inter-

ICs) is calculated ending up with 34 x 34 size matrix (for the analysis after removal of some

ICs, the size of the average-scored coupling matrix is 22 x 22). Hierarchical clustering was

applied on the average-coupling score matrix by scipy.cluster hierarchical clustering package

where complete linkage calculations were performed on the average-coupling matrix as distance

matrix and the clusters were generated from the calculated linkage matrix.
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4.2.6 Sequence-position mapping

Covariation of the MSA matrix columns reveals the information of amino acids changing pat-

terns of positions resulting in the detection of the coevolved residue groups (i.e ICs). Similarly,

covariation of the MSA matrix rows is expected to give information about amino acid changing

patterns of the sequences.

The sequences, which have a high correlation in the row analysis of the MSA matrix, are the

sequences with high similarity in the pattern of the amino acid order i.e. amino acid sequence.

Grouping the sequences based on their correlation in the amino acid order means grouping

them based on their sequence similarity, which is similar to phylogenetic analysis. Therefore,

in other words, we can say that the correlation analysis of sequences gives information about

the closeness of the sequences. Although this approach is not the best way to learn more about

the similarity order of a given set of whole sequences, it is useful when we want to figure out

the sequence patterns of the coevolved residue groups.

Since both sequence correlations and position correlations are obtained from the same ma-

trix (MSA), they are related to each other by a mathematical approach known as singular value

decomposition (SVD).

Basically, SVD is used to decompose any matrix into three matrices:

X = UλVT . (4.1)

Here, U carries the information about sequence similarities (rows-based analysis) and V carries

information about position similarities (columns-based analysis). λ matrix is a diagonal matrix

that carries information about which parts of the U and V matrices provide “more important”

contribution to the X matrix.

With a slight modification, the matrix U, which carries the sequence similarity pattern, can

be obtained from the alignment matrix, X, and position correlation matrix, V:

U = XVλ−1 (4.2)
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This means we can obtain sequence similarity patterns specific to coevolved residue groups

i.e. independent components.

However, since we applied modifications on the positional correlations of the X matrix to

obtain the coupling matrix (C̃i j), we need to follow the same transformations.

Ũ = x̃Ṽ∆̃−1/2 (4.3)

where x̃ is a compressed alignment matrix (from MxLx20 to MxL), Ṽ and ∆̃ are eigenvectors

and eigenvalues of C̃i j, respectively. And as the final step, the ICA transformation is applied:

Ũ p = WŨ (4.4)

where W is the same transformation matrix that was used to transform the top eigenvectors

to independent components.

The final Ũ p matrix carries the information of sequence divergence patterns of the coevolved

residue groups (independent components). Therefore, this analysis allows us to map positional

correlations on sequences and thus this protocol is referred to as sequence-position mapping

in the following part of the chapter. For a more detailed explanation of the method please see

Rivoire et al. 2016.

In order to identify the importance of the residues for specific sub-types, we calculated

the projection of the separate C̃i j matrices onto the ICs for sub-type specific sequences only.

For the AT domain sub-types, we first generated two separate MSAs including malonyl- or

methylmalonyl- specific sequences and calculated the coupling matrices C̃m
i j and C̃mm

i j for malonyl-

and methylmalonyl- specific MSAs, respectively. The projections of C̃m
i j and C̃m

i jm matrices on

the Ṽ p
1···k∗ matrix were calculated via

Ṽ pm
1···k∗ = C̃m

i jṼ
p
1···k∗ (4.5)

Ṽ pmm
1···k∗ = C̃mm

i j Ṽ p
1···k∗ . (4.6)
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To determine the difference between the malonyl- and methylmalonic sub-types, we sub-

stracted the scores of projected ICs.

∆Ṽ p
1···k∗ = Ṽ pm

1···k∗ − Ṽ pmm
1···k∗ (4.7)

A similar approach was also applied for the analysis of KR sub-types.

All scripts were written in Python Van Rossum and Drake Jr 1995.

4.3 Results and Discussion

4.3.1 Determining the number of sequences needed for a sectors analysis.

The literature suggests that 100 sequences are sufficient for a sectors analysis Rivoire et al. 2016.

In contrast, other covariance methods such as direct coupling analysis require thousands of

sequences to give reliable results. The DEBS module that was selected to be analysed has 1901

amino acids, which is considerably larger than any sequence previously analysed by sectors

analysis. Hence, we anticipated a larger number of sequences in the alignment might be needed

to obtain robust results. We, therefore, analysed several uni-domain proteins to see whether we

can detect a trend between the length of a protein and the number of sequences adequate for the

analysis of the sector.

To test how the number of sequences in an MSA affected the ICs, varying numbers of

sequences, from 100 to the full complement of the sequence alignment, in increments of 100

sequences, were randomly were randomly selected from a source MSA, without replacement,

and ICs were determined. This was repeated three times for each different number of sequences

(n=3). To see the similarity between the ICs from subsampled MSAs and the ICs from the

source MSA a similarity score (ss) was calculated between the sets of ICs.

ss =
1
M

M∑
m=1

N∑
n=1

δ(ICm, ICn) (4.8)

where δ(ICm, ICn) is equal to one if the ratio of the number of mutual residues between two

ICs to the number of residues in the IC with the fewer sequences (min(len(ICm),len(ICn))) is
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greater than a threshold (set at 0.7) and either ICm or ICn is not matched with another IC; zero

otherwise.

For most of the proteins analysed, 100 sequences in the MSA is not sufficient to get ICs

similar to the ICs obtained using the MSA with the full complement of sequences available,

irrespective of the length of the protein (Fig. 4.2). On the other hand, the similarity score of

the all tested proteins converged to one. However, no trend was detected between the length

of the proteins and the ratios of the minimum number of sequences adequate for achieving the

same IC sets as the source MSA ICs (saturation point, Ms, shown in Fig. 4.2) to the number of

sequences (M), defined as saturation ratio (Fig. 4.3).

Even though subsampled MSAs with fewer sequences failed to provide the same IC sets

for most of the analysed proteins, some ICs were consistently detected even in the MSAs with

few sequences (Fig. 4.4). This suggests that although the number of sequences in the MSA is

critical for the sector analysis, some ICs can be successfully detected even when the MSA is

not comprehensive enough.
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Figure 4.2: As the number of sequences in the subsampled MSAs increase, similarity score converges
to 1. 100 sequences in the subsampled MSAs are generally insufficient to achieve the same set of ICs
are the source MSA. Increasing the number of sequences in the subsampled MSAs eventually gives a
saturation point (Ms) that varies among the proteins.
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Figure 4.3: A trend could not be detected between the length of the proteins (L) and the saturation
ratios (Ms/M). Ms values are defined as the minimum number of sequences adequate to achieve the
same set of ICs as the source MSA (with M number of sequences). Selected Ms values for each protein
are shown in Fig. 4.2.
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Figure 4.4: Some ICs can be detected successfully even though few sequences are used in the align-
ment. A light grey star indicates one occurrence in three replicates, a grey star indicates two occurrences
in three replicates and a black star indicates three occurrences in three replicates.110



4.3.2 Construction of a multiple sequence alignment for DEBS module

one.

An initial multiple sequence alignment (MSA) was generated by using the sequence of the first

module plus the KS domain of the second module (KS1 AT KR ACP KS2) of the DEBS sys-

tem (Fig. 4.1). After processing the MSA to remove highly gapped positions and sequences,

and highly identical ones, as described in Methods, 2303 sequences remained in the alignment.

Only 682 of the sequences have the exact domain composition as the input sequence. The re-

maining sequences have either a missing domain (like AT and KR) or an additional domain

(like DH and ER). Having 600 and fewer sequences in the alignment were sufficient for con-

sensus sector analysis for some of the proteins we analysed in the previous section, but here the

input sequence is longer than these proteins. Thus, we investigated the effect of the number of

sequences in the alignment on the ICs.

Similarity scores calculated between different alignments with a varying number of se-

quences showed that as the number of sequences increases in the sub-sampled alignment, simi-

larity to the original alignment (with 682 sequences) increases, too; but it does not converge to

a point where the addition of new sequences has no further effect (Fig. 4.5). This indicates that

to achieve the best analysis, we should include as many sequences as possible. Therefore, we

included sequences with different domain compositions. Keeping the two KS domains and the

ACP domain present in the sequences, we included sequences without AT and/or KR domains

or domain compositions with DH and/or ER domains. This allowed us to work on alignment

with 2303 sequences.

Although the inclusion of additional sequences was not adequate to obtain the convergence

of the results, the maximum similarity score is higher than the one where only sequences with

KS1 AT KR ACP KS2 domain composition were included in the MSA (Fig. 4.6).

34 ICs were detected in the studied system (Fig. 4.7). Eighteen sequence alignments were

sampled from the full alignment with 100, 500, 900, 1300, 1700 and 2100 sequences drawn

randomly three times over. Analysing the presence of the ICs in different subsets revealed
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Figure 4.5: The similarity of the detected ICs to the source MSA analysis. The MSA contains only
sequences of domain composition KS1 AT KR ACP KS2. The lack of convergence to a plateau indicates
that more sequences are needed for the analysis.

that some ICs were able to be detected even there are few sequences in the alignments (Fig.

4.8). Removal of the ICs that occurred less than or equal to three times in whole bootstrapping

analysis (ICs 9, 19, 20, 23, 24, 28, 29, 31, 32, 33, 34) and one IC with only two residues (IC 25)

finally gave 22 ICs for further analysis (Fig. 4.10).

4.3.3 Functional domain boundaries can be detected.

Some independent components consist of residues that are predominantly from only one domain

while most ICs have a signal from multiple domains and linkers (Fig. 4.10). Although an IC

is a grouping of alignment positions that have coevolved together, predominantly independent

of other ICs, there can be couplings between residues in different ICs (Fig. 4.9). Therefore,

previous work has grouped together ICs with high inter-IC coupling, each grouping termed

a sector Rivoire et al. 2016. However, there is no standard way to group ICs into sectors.

Therefore, in this study, we do not definitively define sectors but instead make hierarchical

clustering of ICs based on the average interaction score between residues in each pair of ICs
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Figure 4.6: The similarity of the detected ICs to the source MSA analysis (with varied domain com-
positons in the MSA) increased as the number of sequences in the sub-sampled MSA increases.
Although convergence could again not be detected, the similarity score is higher compared to the
KS1 AT KR ACP KS2-only MSA analysis.

as explained further in Methods section 4.2.5 (Fig. 4.11). Such hierarchical clustering shows

that AT and KR domains are characterised by several coupled ICs (Fig. 4.10) and they are

predominantly from the same one domain, thus allowing us to define domain boundaries.

The whole KR domain is defined by ICs 10, 17 and 21, which form a cluster of ICs that are

more cross-coupled to each other than to other ICs (Fig. 4.10). KR domain contains two parts:

a catalytic region (KRc) and a structural, non-catalytic, region (KRs) Keatinge-Clay and Stroud

2006b. KRc has strong inter-residue coevolutionary couplings that result in IC3 with only weak

couplings outside the KRc; on the other hand, ICs 10, 17, 21 have strong coupling across the

whole KR domain, resulting in defining the domain boundaries. Although there are other ICs

that have residues in the KR domain (ICs 1, 16, 18, 26, 27, 30), their coupling strength is not as

strong as the ICs 3, 10, 17 and 21 (Fig. 4.10 upper panel).

As residues of ICs 10, 17 and 21 have high coupling only within the KR domain, we were

concerned that these results may be an artefact of some sequences in the MSA not having a
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Figure 4.7: SCA analysis revealed 34 coevolved residue groups spanning either one domain or mul-
tiple domains and linkers, and clustering analysis based on the average coupling score between the
ICs grouped highly coupled ICs. The distributions of residue positions contributing to each co-evolving
group (i.e. IC) are shown. KS: Ketosynthase, AT: Acyltransferase, KAL: KS-AT linker, PAL1: post-AT
linker 1, PAL2c: post-AT linker 2 conserved region, PAL2nc: post-AT linker 2 non-conserved region,
KRs: Ketoreductase structural integrity region, KRc: Ketoreductase catalytic region , ACP: acyl carrier
protein, KS2: ketosynthase of module 2.

KR domain. To investigate that, sequences without the KR domains were removed from the

alignment and the same analysis was applied. Highly similar domain boundaries were detected

when only sequences with a domain composition that includes a KR were analysed (Fig. 4.12

IC10). In that analysis KRc also still comes out as defined by one IC (IC 5, Fig. 4.12) but

interestingly the KRs domain is detected as a separate entity in one IC (IC 20 Fig. 4.12), but

there are only 33 residues from a KRs subdomain of 219 residues, and their coupling scores are

low (Fig. 4.12 lower panel). It is not possible to tell if these differences are due to a change in

the number of sequences analysed or are an artefact arising from the presence/absence of the KR

domain in some sequences, but the results of the two analyses are similar. The analysis of the

MSA with all non-KR containing sequences removed indicates that the boundaries for the full

KR are expected to be R886 to A1356 and for the KRc domain to be P1107 to L1320 (ICs 10

and 5 of that analysis, respectively). For the full MSA analysis, then ICs 10, 17 and 21 together
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Figure 4.8: As the number sequences in the alignment increases, the number of the detected ICs
increases. 22 out of 34 ICs were selected for further analysis as they are detected at least three times
over all bootstrapping analyses. A light grey star indicates one occurrence in three replicates, a grey
star indicates two occurrences in three replicates and a black star indicates three occurrences in three
replicates.

define a boundary for the whole KR of L896 to R1357 for DEBS1 and IC3 defines a boundary

to the KRc of G1109 to L1320 compared to the boundaries in the literature Keatinge-Clay and

Stroud 2006b of V890 to A1360 where KRc starts at position T1110.

IC 3 includes highly conserved residue positions including the catalytic triad of the KR do-

main, K1219, S1243 and Y1256 and the NADPH binding site TGGTGxLG (T1114, G1115,

G1116, G1118, L1120, G1121) Zheng and Keatinge-Clay 2013. Keatinge-Clay and Stroud

identified that the adenine ring of NADPH stacks with R1141 and forms hydrogen bonds with

D1169 and V1170 Keatinge-Clay and Stroud 2006a, which are also detected in IC 3. Addition-

ally, they showed that the phosphate group of adenine ribose forms a salt bridge with R1141

and hydrogen bonds with S1142, which are detected in IC 3 and IC 21, respectively. For deter-

mination of the stereochemistry of KR products, an alpha helix proceeded by a loop close to the

active site, referred as the lid region, play role in cooperation with LDD motifs in B-type KRs

and conserved tryptophan residue in A-type KRs Keatinge-Clay 2007. The highly-conserved

second aspartic acid in the LDD motif (D1201) and W1282, T1284, W1285 and G1303 residues

of the lid region are detected in IC 3; whereas the LD of LDD motif, conserved tryptophan and

the rest of lid residues are detected in five different ICs. Position G1283 is detected in IC 16,

A1286, G1287, A1291, F1299, R1300 and H1302 are in IC 10, S1288 is in IC 1, G1289 and
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Figure 4.9: The coupling matrix sorted by the detected ICs. ICs are clustered further based on the
average inter-coupling score of the independent components

M1290 are in IC 28, V1295 and R1298 are in IC 17.

The ICs coupled to IC 3 (ICs 2, 5, 7, 11 and 13) bear highly conserved residues, as well

(Fig. 4.13). IC 2 contains the GXDS motif that is highly conserved in ACPs. Catalytic triad

residues of the KS1 domain (C173, H308 and H346) are also detected in IC 2. For the KS2

domain, while the catalytic residues C1644 and H1819 detected in IC 2, H1779 is detected in

IC 13, which contains highly conserved, only-KS2 domain residues. One intrigue here is how

such highly conserved residues can have a coevolutionary signal. Although these positions are

highly conserved, there are sequences where these residues are different and this can be seen in

the residues associated with IC 2 and IC 3 when the MSA consist of the positions of only IC 2
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or IC 3 filtered by HHfilter[ref] to have only sequences with <80% sequence ID with respect to

each other, is displayed as a logos plot (Fig. 4.14).
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Figure 4.10: SCA analysis revealed 34 coevolved residue groups of which 22 were consistent in sub-
samples of sequences. The residues in the upper panel are shaded according to their contribution to the
IC, dark indicating a strong contribution. Hierarchical clustering of the ICs, which were consistent in
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Figure 4.13: Highly conserved positions were detected in one branch of the cluster. Sequence logos
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Figure 4.14: Filtering the IC 2 and IC 3 sequences based on the sequence identity provided a clear
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The AT seems to be an independently evolving unit consisting of three ICs (4, 6 and 8).

These ICs have residues that are coupled to each other, and therefore they are clustered together

(Fig. 4.10). On the other hand, they do not have strong coupling with other ICs, except IC 20,

which has residues from the linker region at the C-terminus of the AT domain (Fig. 4.10). ICs

6 and 8 are coupled to residues from the ACP, and IC 6 also couples with five residues from

KRs,and one residue from KRc; however, these couplings to the residues outside of the AT PAL

region are very weak compared to those between residues within the AT domain. IC 4 contains

no residues from outside of the AT PAL1 boundary.

Removing trans-AT sequences from the MSA, to test if they influence the boundaries de-

fined here, leads to almost identical boundaries of coevolving residue clusters, although in-

evitably not identical since the MSA differs (Fig. 4.15). In this cis-AT only analysis, the AT is

now represented by two ICs, one consisting of AT and PAL1 (Fig. 4.15). Although there are a

few residues from other domains, their coupling strength is low on the contrary of the residues

of the AT domain (Fig. 4.15, lower panel). The second IC that has a signal from the AT domain

is IC 5 and similar to IC 2, coupling scores of the positions outside of the AT domain is weak

(Fig. 4.15, lower panel). IC 12 that has the residues from the post AT linker region (PAL1 and

PAL2c) is clustered with ICs 2, 5 with a similar pattern as the full MSA analysis.

Taking ICs 8, 4, 6 of the full MSA together, they define an AT PAL1 unit of residues V527

to S854, whereas IC 2 from the MSA without trans-AT sequences define the coevolving unit

as residues V527 to R863. Recent experimental work has demonstrated the need for the PAL

for the successful replacement of the AT domain of DEBS module 6 with that of the equiva-

lent residues from EPOS module 4 Yuzawa et al. 2017, equivalent to residues Q524 to P865 in

DEBS1. This is consistent with the results here; however, they obtained better kinetic parame-

ters (a lower KM value) when they included residues from the KAL region, which is not evident

in our ICs, but which they demonstrated led to functional swaps in other systems (the AT PAL

unit was only tested in one construct).
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Figure 4.15: Using only cis-AT sequences in the MSA provides similar AT domain boundaries to
the whole MSA analysis. Hierarchical clustering of the ICs when only cis-AT sequences were kept in
the alignment are shown in the upper panel. The residues in the lower panel are shaded according
to their contribution to the IC, dark indicating a strong contribution. KS1:Ketosynthase of module 1,
AT: Acyltransferase, KAL: KS-AT linker, PAL1: post-AT linker 1, PAL2c: post-AT linker 2 conserved
region, PAL2nc: post-AT linker 2 non-conserved region, KRs: Ketoreductase structural region, KRc:
Ketoreductase catalytic region, ACP: Acyl carrier protein, KS2: Ketosynthase of module 2.
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4.3.4 Amino acid patterns specific to different domain compositions are

detected.

We further investigated whether groups of sequences in the MSA show different amino acid

patterns at the residue positions detected in the ICs. To detect the sequence divergence patterns

of the amino acids within the ICs, we applied sequence-position mapping via singular value

decomposition of the weighted covariance matrix Rivoire et al. 2016. For this analysis, firstly,

sequences were classified based on their domain compositions, and sub-types of the AT and KR

domains.

Although the DEBS sequence has KS1 AT KR ACP KS2 domain composition, not all se-

quences in the MSA have the same domain composition. Some sequences do not have a KR

or AT domain; whereas, there are sequences whose original modular context include additional

reducing domains (DH and ER). Although these domains are removed from the final alignment

before the analysis, the rest of their sequence is kept and thus traces of these domains are likely

to be seen in the co-evolution networks. Within the MSA, the most abundant domain compo-

sitions detected are KS1 AT KR DH ACP KS2 (with 725 sequences), KS1 AT KR ACP KS2

(673), KS1 AT KR DH ER ACP KS2 (225), KS1 KR ACP KS2 (161), KS1 KR KS2 (132),

KS1 KR DH ACP KS2 (126).

Sequence-position mapping analysis based on domain composition classification reveals

distinct patterns on four ICs (IC 4, IC 6, IC 8, and IC 17, Fig. 4.16). The cis-AT and trans-AT

systems are distinguished by IC 4 and IC 6. Interestingly, IC 8 has two peaks: the first one has

sequences from all domain compositions while the second peak consists of the sequences only

from the cis-AT systems.
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Figure 4.16: Sequence-position mapping based on domain compositions of the sequences in the MSA. In these graphs, if any two classes of domain
composition are highly overlapped (i.e. showing a similar pattern) in an IC, it means the amino acid patterns of these positions detected in that IC are
similar. On the other hand, if any two class of domain compositions show diverged patterns, for these positions detected in that particular IC, amino acid
patterns are not the same. Although for most of the ICs, there is no clear distinction in the sequence patterns of the different domain compositions, IC 4,
IC 6, IC 8, and IC 17 show distinction between some domain compositions.
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On the other hand, the KS1 AT KR ACP KS2 domain composition is distinguished in

IC 17 from the KS1 AT KR DH ER ACP KS2, with additional DH and ER domains, and

KS1 AT KR DH ACP KS2, with an additional DH domain. Residue distributions of the po-

sitions in these four ICs along the sequence show that the residues of the ICs 4, 6 and 8 are

predominantly from the AT domain, whereas the residues of IC 17 are mainly accumulated in

the KR domain (Fig. 4.10). Since the signals originate from the AT and the KR domains, we

further classified the sequences based on the AT extender unit specificity and the KR domain

subtypes.

4.3.5 AT domains can be distinguished based on their extender unit speci-

ficity.

The AT domains in the sequence alignment were classified based on their specificity for their

malonyl-CoA, methylmalonyl-CoA, or ethylmalonyl-CoA extender unit, or unclassified, as de-

scribed in Methods. The sequence score distribution of the different AT types are distinguished

in ICs 1, 4, 6, and 8 (Figs. 4.18, 4.20, 4.21, 4.22, 4.17).

126



IC_1 IC_2 IC_3 IC_4 IC_5 IC_6 IC_7

IC_8 IC_9 IC_10 IC_11 IC_12 IC_13 IC_14

IC_15 IC_16 IC_17 IC_18 IC_19 IC_20 IC_21

IC_22 IC_23 IC_24 IC_25 IC_26 IC_27 IC_28

IC_29 IC_30 IC_31 IC_32 IC_33 IC_34
malonyl-CoA
methylmalonyl-CoA
ethylmalonyl-CoA
unknown type
trans-AT

Sequence-position map score (Up)

Oc
cu

rre
nc

e

Figure 4.17: Sequence-position mapping based on extender unit specificity of the AT domains. Although for most of the ICs, there is no clear distinction
in the sequence patterns of the different domain compositions, IC 1, IC 4, IC 6 and IC 8 show distinction between some AT domains with different extender
unit specificity.
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Methylmalonyl-CoA and malonyl-CoA specific AT domains show distinct patterns in IC 4

suggesting that these residues should be functional in the extender unit specificity of the AT

domain (Fig. 4.18A). The separation that the position-sequence map suggests can also be seen

by phylogenetic analysis of the IC 4 residue positions (Fig. 4.18B). From the phylogenetic tree,

a clear distinction can be detected between malonyl-, methylmalonyl- specific ATs and trans-

AT sequences. This pattern of the clustering is quite similar to the phylogenetic analysis applied

on the whole AT domain, with boundaries defined by IC 4 (Fig. 4.18C). These results suggests

that IC 4 might be important for the AT domain sub-type specification.
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Figure 4.18: Different sequence patterns for methylmalonyl-CoA, and malonyl-CoA specific cis-AT
systems were detected in IC 4. Sequence-position map separates the AT domains based on their exten-
der unit specifity (A). Phylogenetic analysis of the sequences of IC 4 residues distinguishes malonly-,
methylmalonyl- specific and trans-AT systems supporting the sequence-position mapping patterns of the
sequences (B). Pyhlogenetic analysis of whole AT domain reveals very similar clustering pattern as IC 4,
which suggests residues of IC 4 might be important for AT domain subtype specification (C). Sequence
logos show that sub-types of the AT domains have different amino acid patterns at IC 4 residue positions
(D). Y and H residues of YASH motif (methylmalonyl-CoA specificity) and H and F residues of HAFH
motif (malonly-CoA specificity) that provides the distinction between the fingerprint motifs are detected
in this IC (positions at 721 and 723, respectively). Amino acids are coloured based on their chemical
properties. Positions are sorted based on ∆Ṽ p

IC 4 scores where ∆Ṽ p
IC 4 = Ṽ pm

IC 4 − Ṽ pmm
IC 4.
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Analysis of sequence logos of malonyl-CoA and methylmalonyl-CoA specific AT domains

shows the divergence of the amino acids detected in IC 4 (Fig. 4.18D). Sorting based on ∆Ṽ p
IC 4

scores, as described in Methods, gives the positions that are more critical in methylmalonyl-

(left end) and malonyl- (right end) specific ATs. When the sequence logos are analysed, it

is seen that high-scored positions are mostly the ones that are conserved for that sub-type,

whereas diverged for the other sub-types. There is an exception at position 760 that has a score

in favour of methylmalonyl- specificity yet the conservation is not high. And a similar, but more

conserved pattern is seen for position 763. In order to investigate these positions further, C̃mm
i j

was analysed revealing that residue 760 has the highest coupling with residue 753. The spatial

positions of 753, 760 and 763 on the 3D structure are close to each other (Fig. 4.19B). The

most abundant pairs for positions 760 and 753 in methylmalonyl- specific sequences are Trp-

Phe, Leu-Tyr and Arg-Tyr suggesting that the interaction between these two positions may be

important and conserved (Fig. 4.19C); whereas, a similar pattern is not observed for malonyl-

specific sequences (Fig. 4.19D).

Sequence logo of the trans-AT system includes amino acids although only gaps would be

expected to be detected in the AT domain positions. It should be noted that a sequence is

classified as a trans-AT sequence when no domain hit was detected by hmmscan. Therefore,

the signals from the trans-AT sequences are either by the presence of remnants of the AT domain

or parts of other domains that were misaligned.

It also is important to note that, the Y and H residues of the YASH motif and H and F

residues of the HAFH motif, which provides the distinction between the fingerprint motifs,

are detected in this IC (positions at 721 for Y/H and 723 for S/F, marked with stars). Site-

directed mutagenesis studies on YASH and HAFH motifs aiming to switch the extender unit

specificity generally result in promiscuous domains that can accept both methylmalonyl-CoA

or malonyl-CoA as an extender unit. Further, the kinetic analysis showed that the cause of the

promiscuity is not an increase in the tendency to bind non-native extender units, but because

of a decrease in the capability of accepting the native one. In a recent study by Zhang et al.,

they performed experiments on salinomycin polyketide synthase targeting residues on malonyl,
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methylmalonyl and ethylmalonyl specific ATs beyond the residues of the YASH/HAFH motif

residues Zhang et al. 2019. After performing structural analysis and molecular dynamic simu-

lations, they determined that hydrophobic residues at positions 592, 653, 662 and 775 (DEBS1

module 1 numbering) are critical for substrate specificity. Mutations at these four positions

in addition to YASH/HASH mutations switch specificity when mutating YASH/HASH residues

did not. Consistent with these results, positions 592, 653 and 775 are all in IC 4. The exception,

residue 662, is discussed below. This suggests that we can detect the residues that are critical

for the AT domain extender unit specificity by sequence-position mapping analysis.

Sequence-position mapping based on the AT extender unit specificity also clarifies the am-

biguity of the double peak in IC 8 of domain composition based mapping (Fig. 4.20A). AT

extender unit type specificity based mapping reveals that the second peak is composed of only

methylmalonyl specific ATs while the first peak bears the mixture of the rest. The distinction

between the methylmalonyl- (and ethylmalonyl-) specific ATs and the others is also clear by the

phylogenetic tree of the IC 8 residues’ sequences (Fig. 4.20B). Detection of highly conserved

positions in the methylmalonyl specific AT domain within IC 8 suggests those residues may

have a role for methylmalonyl selection (Fig. 4.20C).
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Figure 4.19: Residues 760 and 763 that are favoured for methlymalonyl specificity yet not highly
conserved have high coupling with residue 753. The C̃mm

i j matrix reveals that positions 760 and 763
have strong coupling with position 753 (A). On a 3D model of the structure residues 753, 760 and 763
on the 3D structure model are close to each other (the structural model was obtained by a former master
student, Ruairi O’Brien, in the group via homology modeling) (B). Highly abundant pairs for positions
760 and 753 in methylmalonyl- specific sequences are Trp-Phe, Leu-Tyr and Arg-Tyr (B); whereas a
similar pattern is not observed for malonyl- specific sequences (C).
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Highly conserved residues in both malonyl-CoA and methylmalonyl-CoA are detected in

IC 6 including catalytic residues (S624, H724) (Fig 4.21). These highly conserved residues,

irrespective of extender unit specificity, that the residues detected in IC 6 are critical for the

proper function of the AT domain.

Residue 662, which was detected as an important residue in the study of the salinomycin

PKS Zhang et al. 2019, is detected in IC 6 as a highly conserved Met in all malonyl/methyl-

malonyl/ethylmalonyl specificity contrary to the system they studied as the residue at the corre-

sponding position is Val in the ethylmalonyl specific AT.
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Figure 4.21: Highly conserved positions of the AT domain are detected in IC 6, including the catalytic
residues. Sequence-position mapping distinguishes accumulates cis-AT sequences in IC 6. Sequence
logos reveal that highly conserved positions, including catalytic residues (S624, H724), are detected in
in all methylmalonyl-CoA, malonyl-CoA and ethylmalonyl-CoA specific AT domains (B).
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4.3.6 Residues that distinguish trans-AT and cis-AT systems.

Trans-AT and cis-AT systems are separated in IC 1 (Fig. 4.22A), which was not detected as

having different patterns in domain based sequence-position mapping. In contrast to the IC 4,

6 and 8, residues of IC 1 are dispersed along all the domains and the linkers except the AT

domain. Phylogenetic analysis also shows that trans-AT systems have a distinct clade (Fig.

4.22B). Having different conservation patterns between cis- and trans-AT systems suggest that

these positions (Fig. 4.22C) may have distinct roles in cis- and trans-AT systems.
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Figure 4.22: Different sequence patterns outside of the AT domain in cis- and trans- AT systems are
detected in IC 1. Sequence-position map of IC 1 separates cis- and trans- AT systems (A). Phylogenetic
tree of sequences of IC 1 residues clusters trans- AT sequences suggesting these position have similar
sequence patterns (B). Sequence logos demonstrates that sequences of trans-AT and cis-AT systems have
distinct amino acid patterns (C).
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4.3.7 KR domain types can be distinguished by the independent compo-

nents.

For most ICs, the different KR types show a very similar distribution (Fig. 4.23). In IC 3,

reducing and non-reducing type KRs are separated, which is not surprising as IC 3 includes the

catalytic core. Additionally, there is a slight but distinguishable separation between the reducing

and non-reducing KR domains in IC 10 and IC 21, which are the ICs containing residues from

both KRc and KRs parts.

The results suggest that A and B type KR domains can also be separated along with the

ICs, although there are too few examples of B2 type for any conclusions to be drawn for these.

IC 17 shows a distinction for A-type and B1 type sequences (Fig. 4.24A). This suggests that

IC 17 residues might be functional in the determination of whether the beta-hydroxyl is L or

D configured. B type KR domains have a sequence fingerprint of an LDD motif, of which the

KR1 of the DEBS pathway, the one we are studying here, is an example. The LD of this motif is

present in IC 17. The final D of the motif has been shown to be important and is hypothesised to

control the direction of entry of the substrate into the active site, controlling the chirality of the

resulting beta-hydroxyl Keatinge-Clay and Stroud 2006b, and this residue is detected in IC 3,

which has the highly conserved KRc positions. A type KR domains have no LDD domain but

rather have a conserved tryptophan and these two changes, as compared to B type, are thought

lead to substrate entering with the opposite face leading to the L stereo-configuration of the

resulting beta-hydroxyl group. This conserved tryptophan is detected in IC 10.

Clustering the sequences of KR domains is shown in Fig. 4.24B is similar to the clustering

of sequences based solely on the residues in IC 17. Although the trees are similar, KR sub-types

cluster more closely when all domain positions are used for analysis.

With a similar approach as we applied on the AT domain to identify the residues more

critical for different subtypes, we identified the residues of IC 17 that are important in the

type-B1 specification. To determine the difference between type-B1 and type-A1 KRs, we

substracted the scores of projected ICs. Since the number of sequences of type-B2 and type-A2
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is low, we applied this approach only on types B1 and A1.

∆Ṽ p
1···k∗ = Ṽ pB1

1···k∗ − Ṽ pA1
1···k∗ (4.9)

The positions of the IC was sorted based on ∆Ṽ p
IC 17 scores (Fig. 4.24D). We can detect LD

residues of LDD motif close to the right end consistent with the importance of these residues for

type B specification (Fig. 4.24D, marked with stars). Interestingly, we detect 12 more residues

having higher scores than L1199 and D1200 residues, suggesting these 12 positions should be

considered for experimental studies attempting to switch KR domains to type B2.
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Figure 4.23: Sequence-position mapping based on subtypes of the KR domain. Although for most of the ICs, there is no clear distinction in the sequence
patterns of the different domain compositions, IC 17 shows distinction between some subtypes of the KR domain.
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4.4 Conclusion

With the SCA, we can detect functional domain boundaries consistent with experimental studies

and that explains the importance of domain boundary optimisation for successful domain swap

experiments Yuzawa et al. 2017, since residues within the domain boundaries have clearly

been under selective pressure to function together. Furthermore, sequence-position mapping

analysis shows that there are groups of residues co-evolved specifically within different domain

subtypes. This is consistent with the experimental results since mutating only a few residues

has not switched the specificity of a domain from one subtype to another particular one.

In this study, we made extensions on the existing methodology to apply it on multi-domain

proteins and to determine key residues potentially important for the sub-type specificity.
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Chapter 5

Conclusion

The structures of proteins and their working mechanisms have been a widely studied area of

biology. Knowing protein structure and function helps answer many questions about diseases

and is a basis for discovering new drugs. As the function of a protein is determined by its three

dimensional (3D) structure, various experimental approaches have been developed to determine

the structure. Although experimental approaches are very successful in certain conditions, they

have limitations. For example, crystallization of proteins for X-ray crystallography is a very

challenging and time-consuming step, and NMR is limited to only for small-sized proteins.

Additionally, both of them are insufficient to determine the structures of mega-Dalton sized

proteins and protein complexes like polyketide synthases (PKS). Electron microscopy, on the

other hand, is a promising approach to determine larger structures. As of September 2020, all of

969 structures whose size is larger than 2 MDa - the size of DEBS, which is one of the smallest

PKSs - were determined via electron microscopy. The resolution of just one of these structures,

whose size is larger than 2MDa, is lower than 2 Å (PDB ID: 6e9d), indicating how challenging

it is to determine the structures of mega-Dalton sized proteins and protein complexes. While

researchers have been working to solve these experimental limitations, recent developments in

computational approaches to determine the structure of proteins are in the progress of being a

fast and reliable alternative.

Here in this thesis, firstly, I worked on ab initio protein structure prediction problem. Later,

I applied the successful approaches in ab initio protein structure prediction area to the challenge
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of structure prediction of multi-domain proteins. Lastly, I used another approach to study multi-

domain proteins and as a model system, I used a DEBS module.

In the second chapter, I explained how we contributed to ab initio protein structure predic-

tion. Besides predicting contacting residue pairs in a 3D structure, we successfully predicted

distances between the residue pairs via deep neural networks, resulting in an improvement in the

quality of predicted structures. In this project, I mostly focused on the analyses of (i) whether

having structures in the test set sharing the same topology or homologous superfamily class

with the training set cause a bias in the prediction, (ii) the effect of predicting more structures

in the accuracy of the final structure, and (iii) the proportion of amino acid types in correctly

predicted pairs, as well as analysing the effect of distance predictions on the structure prediction

accuracy with Shuangxi Ji.

Overall, we showed that not only contacting pairs but also residue pairs in longer distances

can be predicted. Implementation of distance constraints into Rosetta for ab initio prediction

improves the structure quality as well as allowing the selection of better models than using the

Rosetta score without the restraint energy. It was also shown that having structurally similar

proteins (based on the CATH classification) in the training set and the test set did not cause

any bias in our predictions. Increasing the structure pool size from 100 to 200 generated better

models (higher TM-score); however, a better model could not be always selected with Rosetta

energy. Lastly, it was demonstrated that the proportion of amino acid types in correctly pre-

dicted pairs changes depending on the distance between the pairs. Contribution of distance

predictions to ab initio protein structure prediction problem was further demonstrared by many

other groups (Zhu et al. 2018; Greener et al. 2019; Xu 2019; Senior et al. 2019; Senior et al.

2020).

In the third chapter, I applied a similar approach, which was shown as successful for predic-

tion of small/medium proteins, to predict how two domains on the same chain interact with each

other. For this purpose, different feature sets were tested for their ability to predict the distance

potentials between inter-domain residue pairs. Successful domain-domain interactions could

be predicted for almost half of the test set; whereas, for the domain pairs with fewer sequences
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in the alignment and the ones with smaller interface area, successful predictions could not be

obtained. The trained network is used to predict interactions between the domain pairs of a fatty

acid synthase, which has a similar domain organization as PKSs. Consistent with the results of

the test proteins, successful predictions could only be obtained when the sequence alignment

is comprehensive enough and the domain interface is large. To sum up, it is shown that the

evolutionary information in an MSA can be mined for structural information that improves the

prediction of the structures of domain-domain interactions. Moreover, criteria were identified

for the likelihood of a successful prediction, namely the Nf value and the interface size.

For the prediction of how two domains interact, the experimental structures of the domains

were used. As a further study, the same trained models can be tested using monomeric structures

that were generated by structure prediction algorithms (rather than experimental structures),

to see how the quality of prediction changes for the interaction prediction when there is no

structural information available.

In the fourth chapter, I worked on understanding the multi-domain proteins better with an

alternative approach. Here, I aimed to detect the coevolved residue groups in a multi-domain

protein. DEBS was selected as a model PKS since it is one of the most studied PKS systems.

Initially, the method was benchmarked using a number of small domains, to test the number of

sequences needed for a converged result. Contrary to claims in the existing literature this was

found to vary between systems from 100 to 1800 sequences. With this approach, the coevolved

residue groups within the DEBS1 module 1 were detected. The domain boundaries of the AT

and the KR domains were determined consistent with the experimental results in the literature.

Further, sequence-position mapping allowed us to determine residue groups that are potentially

important in domain sub-type specification.

In this study, the method was extended by (i) using a bootstrapping technique to look for

convergence in the results of the analysis, and (ii) projecting subtype covariance data onto the

ICs explaining the whole data set to determine key residues defining specificity, which still

needs to be tested experimentally but seems to agree with existing experimental data and pro-

vides a means for identifying critical residues for determining specificity, and thus allowing
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rational reengineering.
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lightning-fast iterative protein sequence searching by HMM-HMM alignment”. Nature Meth-
ods 9, 173 EP – (cit. on pp. 101, 159).

Rivoire, Olivier (2013). “Elements of Coevolution in Biological Sequences”. Physical Review
Letters 110.17 (cit. on p. 24).

Rivoire, Olivier, Kimberly A. Reynolds, and Rama Ranganathan (2016). “Evolution-Based
Functional Decomposition of Proteins”. PLOS Computational Biology 12.6, pp. 1–26 (cit.
on pp. 24, 25, 27, 74, 101, 103, 105, 106, 112, 124).

153



Robbins, Thomas, Yu-Chen Liu, David E Cane, and Chaitan Khosla (2016). “Structure and
mechanism of assembly line polyketide synthases”. Current Opinion in Structural Biology
41, pp. 10–18 (cit. on pp. 30, 32).

Rohl, Carol A., Charlie E.M. Strauss, Kira M.S. Misura, and David Baker (2004). “Protein
Structure Prediction Using Rosetta”. Methods in Enzymology. Elsevier, pp. 66–93 (cit. on
p. 9).

Roy, Ambrish, Alper Kucukural, and Yang Zhang (2010). “I-TASSER: a unified platform for
automated protein structure and function prediction”. Nature Protocols 5.4, pp. 725–738
(cit. on p. 7).

Ruan, X, A Pereda, D L Stassi, D Zeidner, R G Summers, M Jackson, A Shivakumar, S Kakavas,
M J Staver, S Donadio, and L Katz (1997). “Acyltransferase domain substitutions in ery-
thromycin polyketide synthase yield novel erythromycin derivatives.” Journal of Bacteriol-
ogy 179.20, pp. 6416–6425 (cit. on p. 34).

Savojardo, Castrense, Piero Fariselli, Pier Luigi Martelli, and Rita Casadio (2017). “ISPRED4:
Interaction sites PREDiction in protein structures with a refining grammar model”. Bioin-
formatics (cit. on p. 23).

Schaarschmidt, Joerg, Bohdan Monastyrskyy, Andriy Kryshtafovych, and Alexandre M.J.J.
Bonvin (2018). “Assessment of contact predictions in CASP12: Co-evolution and deep
learning coming of age”. Proteins: Structure, Function and Bioinformatics (cit. on pp. 12,
13, 20, 40).

Seemayer, Stefan, Markus Gruber, and Johannes Söding (2014). “CCMpred - Fast and precise
prediction of protein residue-residue contacts from correlated mutations”. Bioinformatics
(cit. on pp. 12, 20, 41, 74, 159).

Senior, Andrew W., Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
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Appendix A

Additional information on the methods of

“ab initio prediction of protein domain

structure” study

A.0.1 Feature Vector Generation
As the input for the neural network, a feature vector was generated for all residue pairs of
the training and the test set proteins with information extracted and predicted from the tar-
get sequence and the alignment containing homologous sequences. Multiple sequence align-
ments (MSAs) were generated by using HHblits (Remmert et al. 2011; Zimmermann et al.
2018). Homologous sequences were searched by setting e-value to 0.001, coverage to 60, min-
imum sequence identity to 0, maximum sequence identity to 90. 4 iterations were performed
and maximum 500,000 sequences were allowed to pass to the next iteration. As the database,
uniprot20 2016 02 was used.

For the feature vector generation, mutual information with the average product correlation
(APC) (Dunn et al. 2007), normalized mutual information with APC, CCMPred (Seemayer et
al. 2014), QUIC (Hsieh et al. 2014) and mfDCA (Morcos et al. 2011) were used to detect coe-
volved residue pairs. SPIDER2 (Yang et al. 2016) was used to predict the secondary structure
and solvent accessibility. Statistical potential (Betancourt and Thirumalai 2008), the effective
number of sequences, amino acid composition, and Shannon entropy were calculated by a script
from the source code of MetaPSICOV (Jones et al. 2015).

For each residue pair in a protein, a feature vector with 733 elements was generated, with
features very similar to those used in MetaPSICOV feature vector (Jones et al. 2015). For a
residue pair (i, j), 13-residue length windows were used for both residues i and j (Fig. A.1).
Additionally, a central window with a length of five residues was used centred at the residue
position of (i + j)/2 (Fig. A.1). Therefore, for each residue pair (i, j), we used information from
(2 ∗ 13 + 5 = 31) positions. For these 31 residues, we used secondary structure predictions
(predicted likelihood of α-helix, β-sheet and coil), predicted solvent accessibility, entropy and
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a binary value to indicate whether the corresponding position is within the sequence as for
the windows at the beginning and the end of a sequence, non-residue positions were taken
into account. In addition to 31 ∗ (3 + 1 + 1 + 1) = 186 features, coevolution calculations
from CCMPred, mfDCA and QUIC were used. These calculations were used as 13 by 13
window where the residue pair (i, j) is located at the centre of the 13 ∗13 window. Therefore, in
addition to 186 features, 3 ∗ (13 ∗ 13) = 507 elements were added to the feature vector. Finally,
for each residue (i, j) pair, 40 additional features from mutual information, normalized mutual
information, statistical potential, sequence length, number of sequences in the alignment, the
effective number of sequences in the alignment, amino acids and gap position frequency in the
MSA, an average of predicted likelihood of α-helix, β-sheet, coil and solvent accessibility, site
entropies and sequence separation (which is given as eight binary inputs for different separation
intervals) were included resulting in 733 elements in the feature vector.

Figure A.1: Residue windows used in feature generation for neural network training. For each target
sequence, two 13-amino acid (aa) lenght windows were used for a residue pair (i,j) centred at positions
i and j. One central five-amino acid (aa) length window was used centred at position (i + j)/2.

First optimization of the feature vector was studied by Shuangxi Ji(Ji 2019), and further
improved by Liam Mead(Mead 2018).

A.0.2 Training and Test Sets
As a test set, the test set proteins of MetaPSICOV was selected (Jones et al. 2015). From the
initial 150 test proteins, the ones having >25% sequence identity with the training set proteins
of DeepCDpred, RaptorX(Wang et al. 2017) and SPIDER2 (Yang et al. 2016) were removed,
resulting in 108 test proteins. The sequence length of the 108 proteins varies with a minimum
of 56 and a maximum of 242 and their sequence similarity to each other is less than 25%. PDB
IDs of 108 proteins are given in Table B.1. Selection of the test set proteins was performed by
Shuangxi Ji (Ji 2019).

Proteins used for the training set were selected from precompiled culledPDB lists of the
PISCES database (Wang and Dunbrack 2003), downloaded in November 2016. Protein list
with less than 25% sequence identity, a maximum resolution of 2 Å, a maximum R value of
0.25 was used to select training proteins. Among them, the ones with maximum 25% sequence
identity with the test set and the ones with maximum 400 amino acid length were selected.
1701 of them were arbitrarily selected as the training set. Training set proteins were selected by
Shuangxi Ji (Ji 2019).
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Table A.1: PDB ID list of the test set with 108 proteins.

1a3aA 1cc8A 1dsxA 1gzcA 1im5A 1ku3A 1p90A 1vjkA
1aapA 1chdA 1eazA 1h2eA 1j3aA 1kw4A 1pchA 1vmbA
1abaA 1cjwA 1ej8A 1h4xA 1jfuA 1lm4A 1qf9A 1vp6A
1ag6A 1ckeA 1f6bA 1hdoA 1jl1A 1lo7A 1qjpA 1w0hA
1aoeA 1ctfA 1fcyA 1hfcA 1jo0A 1m4jA 1r26A 1whiA
1atzA 1cxyA 1fk5A 1hh8A 1jo8A 1m8aA 1roaA 1wjxA
1avsA 1cznA 1fl0A 1htwA 1josA 1mk0A 1rw1A 1wkcA
1bdoA 1d0qA 1fvgA 1hxnA 1jwqA 1mugA 1smxA 1xffA
1bebA 1d1qA 1fx2A 1i1jA 1jyhA 1nb9A 1svyA 2cuaA
1behA 1d4oA 1g2rA 1i1nA 1k6kA 1ne2A 1t8kA 2phyA
1bkrA 1dixA 1g9oA 1i4jA 1k7jA 1npsA 1tifA 1c44A
1dlwA 1gmiA 1i58A 1kq6A 1nrvA 1tqgA 1c52A 1dmgA
1gmxA 1i71A 1kqrA 1ny1A 1tqhA 1c9oA 1dqgA 1gz2A
1iibA 1ktgA 1o1zA 1vfyA
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A.0.3 Neural Network Architecture and Hyperparameters

Figure A.2: Neural network architecture used to train models. The nine-layered neural network con-
sists of one input layer, eight hidden layers and one output layer with varying number of neurons.

A.0.4 Contact and distance prediction accuracy determination and com-
parison

Accuracy for top L/10, L/5, L/4, L/3, L/2, L and 1.5L number of residue pairs (where L is
the length of the protein sequence) was calculated for the predicted pairs in each bin. It was
determined as

Accuracy =
Correct Predictions

All Predictions
=

True Pozitives + False Pozitives
All Predictions

. (A.1)

Since we did not make true negative and false negative predictions, we calculated accuracy
simply by dividing the number of true positives to all predictions.

We compared our contact prediction accuracies with results of MetaPSICOV (Jones et al.
2015), RaptorX (Wang et al. 2017) and NeBcon (He et al. 2017). Predictions were performed
by Shuangxi Ji, Liam Mead, Muhammad Fayyaz Rehman and me.

A.0.5 Structure prediction
Rosetta AbInitioRelax (Simons et al. 1999) was used for structure prediction. Three-residue
and nine-residue fragments were generated by using make fragments.pl script of Rosetta with
-nohoms option in order to exclude homologous structures. As secondary structure predic-
tions, we used the results from SPIDER2. Top 1.5L contact and distance predictions were
implemented as bounded function constraints. The parameters for the constraints are shown
in Table A.2, which were optimized by Shuangxi Ji (Ji 2019). For each bin, the boundaries
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of the bounded function were determined based on the regression of the real distance against
the neural network score of the predicted pairs over 435 training proteins. For the pairs with
lower network score, the bounded function ranges were kept large with lower weights allowing
having values outside of the distance bin range. For the implementation of the predictions from
RaptorX, top 1.5L contact predictions were used with the same boundary conditions shown in
Table A.2.

Since we trained different neural networks for different distance ranges, for some residue
pairs there were high scoring predictions in more than one bin. In this case, network scores
were compared to decide to select which bin prediction to use. When there are predictions in
both contact bin and 8 - 13 Å bin (or 13 - 18 Å bin), if the 8 - 13 Å bin (or 13 - 18 Å bin) score
is 0.3 higher than the contact bin score, then 8 - 13 Å bin (or 13 - 18 Å bin) is used; otherwise,
the constraint for the residue pair was implemented as a contact bin prediction. If a residue
pair was predicted in both 8 - 13 Å bin and 13 - 18 Å bin, then the one with the higher score
was selected. 18 - 23 Å bin predictions were only selected if the pair score is 0.5 higher than
the predictions in the other bins. This priority order was determined based on the prediction
accuracy of the bins, it was not systematically optimized.

Table A.2: Parameters of the contact and distance constraints.

Range /Å DeepCDpred Upper Lower Standard Weight
score (s) boundary boundary deviation
>= 0.9 0.5 2.5

bin 0 - 8 >= 0.8 & <0.9 −10.8 ∗ s + 16.7 3.2 0.7 1.5
<0.8 1.0 1.0

bin 8 - 13 >= 0.8 −12 ∗ s + 23.5 7.5 1 1.5
<0.8 1.5 0.5

bin 13 - 18 >= 0.8 −8.6 ∗ s + 25.17 8.6 ∗ s + 4.84 1.5 0.8
<0.8 1.0 0.3

bin 18 - 23 >= 0.8 −7.2 ∗ s + 29.2 7.2 ∗ s + 11.2 1.5 0.6
<0.8 1.0 0.3
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Figure A.3: Contact prediction accuracy of DeepCDpred on 108 test proteins and their comparison
with MetaPSICOV, RaptorX and NeBcon results. DeepCDpred contact predictions outperform predic-
tions of MetaPSICOV and NeBcon for all top L/10, L/5, L/4, L/3, L/2, L and 1.5L residue pairs; however,
RaptorX predictions outperform DeepCDpred contact predictions. Predictions were made by Liam Mead
and Muhammad Fayyaz Rehman.
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Appendix B

Licence reference numbers of figures for

permissions to use

Table B.1: Licence reference numbers of figures for permissions to use.

Fig no Reference no
Fig. 1.3 5025770325530
Fig. 1.4 5025770080424

Fig. 1.11 5025770539654
Fig. 1.14 5016591236267
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