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Abstract
Clustering mixed-type data, that is, observation by variable data that consist of both
continuous and categorical variables poses novel challenges. Foremost among these
challenges is the choice of the most appropriate clustering method for the data. This
paper presents a benchmarking study comparing eight distance-based partitioning
methods for mixed-type data in terms of cluster recovery performance. A series of
simulations carried out by a full factorial design are presented that examined the
effect of a variety of factors on cluster recovery. The amount of cluster overlap, the
percentage of categorical variables in the data set, the number of clusters and the
number of observations had the largest effects on cluster recovery and in most of
the tested scenarios. KAMILA, K-Prototypes and sequential Factor Analysis and K-
Means clustering typically performed better than other methods. The study can be a
useful reference for practitioners in the choice of the most appropriate method.
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1 Introduction

Benchmarking studies of clustering are increasingly important for guiding users and
practitioners in choosing appropriate clustering approaches among an increasing num-
ber of alternatives (Van Mechelen et al. 2018). The objective of the present study is
to contribute to the benchmarking literature by evaluating the performance of cluster-
ing methods for mixed-type data, that is, observation by variable data that consist of
both continuous and categorical variables. Indeed, research in a variety of domains
usually relies on heterogeneous or mixed-type data. In social science research, for
example, data sets typically include demographic background characteristics (usu-
ally categorical variables) together with socioeconomic or psychological measures
(usually continuous variables). Such heterogeneity urges for ways to guide users and
practitioners in choosing appropriate clustering approaches for mixed-type data sets
in order to identify distinct profiles of individuals and/or generate hypotheses, thereby
contributing to a quantitative empirical methodology for the discipline.

Cluster analysis of mixed-type data sets can be a particularly challenging task
because it requires to weigh and aggregate different variables against each other
(Hennig and Liao 2013). One of the main issues is the choice of the most appro-
priate distance or model to simultaneously process both data types. Among the most
simple and intuitive strategies for clustering mixed-type data is to convert all variables
to a single type, continuous or categorical, via discretization, dummy-coding or fuzzy-
coding. Such a strategy may lead to a significant loss of information from the original
data and may consequently lead to increased bias (Foss and Markatou 2018). Another
approach is to cluster observations separately for continuous and categorical variables,
and then match the clusters in the two clusterings. This approach, however, ignores
any dependencies that might exist between variables of different types (Hunt and Jor-
gensen 2011). Fortunately, a wide range of clustering algorithms has been specifically
developed to deal with mixed-type data. A taxonomy of available methods can be
found in Ahmad and Khan (2019) and overviews of distance or dissimilarity-based
methods are given by Foss et al. (2019) and van de Velden et al. (2019).

Benchmarking studies may be performed by independent groups interested in sys-
tematically comparing existing methods or by authors of new methods to demonstrate
performance improvements or other advantages over existing competitors.With regard
to studies performed by independent groups, there have been several benchmarking
studies of clustering for continuous data only or categorical data only (e.g., Milligan
1980; Meilă and Heckerman 2001; Ferreira and Hitchcock 2009; Saraçli et al. 2013;
Boulesteix and Hatz 2017; Javed et al. 2020; Hennig 2022), whereas benchmarking
studies of clustering for mixed-type data are scarce (Jimeno et al. 2021; Preud’Homme
et al. 2021).We can also distinguish benchmarking studies of clustering formixed-type
data that are part of original papers where new methods are proposed (e.g., Ahmad
and Dey 2007; Hennig and Liao 2013; Foss et al. 2016).

In this paper, we concern ourselves with distance or dissimilarity-based partition-
ing methods for mixed-type data, that is, methods that rely on explicit distances or
dissimilarities between observations or between observations and cluster centroids.
In the authors’ understanding, these methods span three general approaches. The first
approach involves computing an appropriate dissimilarity measure for mixed-type
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data, followed by a partitioning algorithm on the resulting dissimilarity matrix. Typ-
ically, such a dissimilarity measure can be constructed by defining and combining
dissimilarity measures for each type of variable. A popular choice in this category
involves the computation of Gower’s (dis)similarity measure (Gower 1971) among
observations and then applying K-Medoids or hierarchical clustering on the dissimi-
laritymatrix. Instead of usingGower’s dissimilarity, Hennig and Liao (2013) proposed
a specific weighting scheme to more appropriately balance continuous against cate-
gorical variables. The second approach involves conducting a partitional clustering of
the observation by variable data with the distances between observations and cluster
centroids calculated separately for categorical and continuous variables, and combine
them into a single objective function. Representative methods in this category are K-
Prototypes (Huang 1997),Modha-Spangler K-Means (Modha and Spangler 2003) and
MixedK-Means (Ahmad andDey 2007). The third approach comprises factor analysis
of the variables and partitional clustering of the observations in the low-dimensional
space. Factor analysis and clustering can be performed sequentially, i.e., in a two-step
approach where clustering is applied to the resulting factor scores (see e.g., Dolnicar
and Grün 2008) or simultaneously, where the two objectives are combined by optimiz-
ing a single convex objective function (Vichi et al. 2019). In the sequential approach,
the first step usually involves Factor Analysis for Mixed Data or PCAMIX (Pagès
2014; Kiers 1991) to obtain the observation scores in a low-dimensional space and
then K-Means clustering to partition the observation scores. Simultaneous approaches
include extensions of Reduced K-Means (De Soete and Carroll 1994) and Factorial K-
Means (Vichi and Kiers 2001) to deal with the general relevant case of mixed variables
(Vichi et al. 2019).

A simulation study was conducted to compare eight distance-based partitioning
methods in terms of cluster recovery performance, following recommendations pro-
vided in Boulesteix et al. (2013) and Van Mechelen et al. (2018). The involved
clustering methods represent a major class of methods listed in Murtagh (2015), are
well established andwidely used - at least the less recent ones - while themost recently
proposed have been shown in previous studies to outperformothers. The study attempts
to provide a neutral comparison of the methods since none of the authors have been
involved in the development of any of the compared methods, and have no specific
interest to portray any of them as particularly good or bad. The current study goes
beyond previous work by considering different aspects that might affect performance
(number of clusters, number of observations, number of variables, percentage of cate-
gorical variables in the data set, cluster overlap, cluster density and cluster sphericity),
according to a full factorial design. The result is a concrete description of the method
performance, with the goal of providing researchers with a guide to selecting the most
suitable method for their study.

The remainder of this paper is structured as follows: Sect. 2 reviews benchmarking
studies of clustering for mixed-type data, Sect. 3 presents the methods under compar-
ison, Sect. 4 describes the simulation study design, Sect. 5 presents the results and
Sect. 6 discusses the results and concludes the paper.
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2 Related work

Most comparison studies of clustering algorithms for mixed-type data have been per-
formed within original articles presenting new methods, usually in order to establish
their superiority over classical approaches. Foss et al. (2016) conducted a small scale
simulation study and analyses of real-world data sets to illustrate the effectiveness
of KAMILA, a newly proposed semi-parametric method, versus Modha-Spangler K-
Means, K-Means with a weighting scheme described in Hennig and Liao (2013) and
two finite mixture models. They considered both normal and non-normal data sets
(data following a p-generalized normal-multinomial distribution or the lognormal-
multinomial distribution), with varying sample sizes (250, 500, 1000, and 10000),
number of continuous variables (2, 4), number of categorical variables (1, 2, 3, and
4), level of continuous overlap (1%, 15%, 30%, and 45%), level of categorical overlap
(1%, 15%, 30%, 45%, 60%, 75%, and 90%), number of clusters (2, and 4), and number
of categorical levels (2, and 4). The authors verified that the findings from the artificial
data set analysis are generalizable in the context of real-world applications. KAMILA
performed well across all conditions.

In line with Foss et al. (2016), Markos et al. (2020) investigated the performance of
three sequential dimensionality reduction and clustering approaches versus KAMILA,
Modha-Spangler K-Means andGower’s (dis)similaritymeasure followed by Partition-
ingAroundMedoids on simulated datawith varying degree of cluster separation.More
precisely, the study focused on three different scenarios; first, a scenario where both
continuous and categorical variables have approximately comparable cluster overlap
(i.e., contain equally useful information regarding the cluster structure), second, a
scenario where continuous variables have substantially more overlap compared to cat-
egorical ones (i.e., the categorical variables are more useful for clustering purposes)
and third, a case where categorical variables have substantially more overlap com-
pared to continuous ones (i.e., the continuous variables are more useful for clustering
purposes). They generated 500 data sets with 200 observations, two continuous and
two categorical variables with four categories/levels each. Results showed that dimen-
sionality reduction followed by clustering in the reduced space is an effective strategy
for clustering mixed-type data when categorical variables are more informative than
continuous ones with regard to the cluster structure.

More recently, Jimeno et al. (2021) comparedKAMILA,K-Prototypes andMultiple
CorrespondenceAnalysis (MCA) followed byK-Means, fuzzyC-Means, Probabilistic
Distance Clustering or a mixture of Student’s t distributions, under different simulated
scenarios. The study considered 27 simulated scenarios based on three parameters:
the number of clusters (2, 5, and 7), the amount of overlap in each cluster (30%, 60%,
and 80%), and the ratio of continuous variables to nominal variables (1:3, 1:1, and
3:1). The total numbers of variables and observations were fixed in each case (128
variables and 1920 observations). K-Prototypes and KAMILA performed consistently
well for spherical clusters. As the number of clusters increased, the performance of
MCA followed by fuzzy C-means or PD clustering worsened. MCA followed by a
mixture of Student’s t distributions performed well in all cases.

A recent benchmarking study by Preud’Homme et al. (2021) compared the perfor-
mance of four model-based methods (KAMILA, Latent Class Analysis, Latent Class
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Model, and Clustering by Mixture Modeling) and five distance/dissimilarity-based
methods (Gower’s dissimilarity or Unsupervised Extra Trees dissimilarity followed
by hierarchical clustering or Partitioning Around Medoids, K-prototypes) on both
simulated and real data. The parameters used for the simulations were the number
of observations (300, 600, and 1200), the number of clusters (2, 6, and 10), the ratio
between the number of continuous and categorical variables in the data, the proportion
of relevant or non-noisy variables (20%, 50%, and 90%), and the degree of relevance
of the variables with regard to the cluster structure (low, mild, and high, as defined
by a cluster separation index in the case of continuous variables and a noise propor-
tion introduced via resampling in the categorical variables). The authors considered
seven scenarios and 1000 data sets were generated for each scenario. Results revealed
the dominance of model-based over most distance or dissimilarity-based methods;
this was somewhat expected since the simulated data matched the assumptions of
model-based methods. K-Prototypes was the only efficient distance-based method,
outperforming all other techniques for larger numbers of clusters.

It is important to outline that none of the aforementioned studies made use of a full
factorial design to enhance inferential capacity in terms of disentangling the effects
of each of the manipulated parameters and their interactions.

3 Benchmarkmethods

The present study constrains its scope to distance or dissimilarity-based methods
for partitioning mixed-type data, i.e., methods that rely on explicit distances or dis-
similarities between observations or between observations and cluster centroids. The
methods under comparison produce crisp partitions, allow to fix the number of clusters
in advance and have an R-implementation.

Two of the methods considered in the study involve the conversion of observation
by variable data into observation by observation proximities. A popular choice is to
calculate pairwise Gower’s dissimilarities among observations (Gower 1971):

dGower (X i , X i ′) = 1 −

p∑

j=1
w j (X i , X i ′)s j (X i , X i ′)

p∑

j=1
w j (X i , X i ′)

, 1 ≤ i, i ′ ≤ n, i �= i ′, (1)

where X i , X i ′ are distinct observations, therefore rows of an (n× p)-dimensional data
matrix. We denote the weight of the j th variable for the two observations by w j ; this
is typically set to 1, assuming equal weight for all variables, but can also take different
values for different variables based on their subject matter importance (Hennig and
Liao 2013). Finally, s j is a coefficient of similarity between the j th components of X i

and X i ′ , defined as the range-normalised Manhattan distance for continuous variables
and the Kronecker delta for categorical ones. Gower’s dissimilarity is very general and
covers most applications of dissimilarity-based clustering to mixed-type variables.
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In a discussion regarding the formal definition of ‘dissimilarity’, Hennig and Liao
(2013) argue that a proper dissimilarity measure between data objects should not
only aggregate the variables, but it should also make use of some weighting scheme
that controls variable importance, especially for nominal variables. In fact, they pro-
pose standardising the continuous variables to unit variance, contrary to the range
standardisation that is used for Gower’s dissimilarity, while they introduce a more
sophisticated weighting for nominal variables. More precisely, they claim that since it
holds that for two independent and identically distributed continuous random vari-
ables X1 and X2, standardisation to unit variance implies E

{
(X1 − X2)

2} = 2,
standardisation of a nominal variable should be done in such a way that the dis-
similarity between the two categories of a binary variable is about equal to the
aforementioned expression or less than that, if the variable has more than two cat-
egorical levels. Based on this rationale, Hennig and Liao (2013) suggest setting
I∑

i=1
E

{
(Zi1 − Zi2)

2} = E
{
(X1 − X2)

2} = 2ξ , where Zi1, Zi2 represent the values

of the first and second data points on the dummy variables Zi , obtained after dummy
coding of a nominal variable with I levels. The coefficient, ξ , is set to be equal to
1/2 in order to avoid a clustering output that is highly dependent on the levels of the
categorical variables. Thus, dummy-coded nominal variables are scaled so that they
are comparable to unit variance scaled continuous variables. This is followed by con-
structing the Euclidean distance matrix between the observations, which is equivalent
to the notion of a ‘dissimilarity matrix’, as for Gower’s dissimilarity.

Once the pairwise dissimilarities are calculated (either using Gower’s or Hennig-
Liao’s measure), Partitioning Around Medoids or PAM (Kaufman and Rousseeuw
1990) is applied to the proximitymatrix obtained from the previous step. The objective
of PAM is to find K observations that will be representative, in the sense that they will
minimise the average dissimilaritywith all other points in each cluster. These are called
‘medoids’ and are analogous to the ‘centroids’ in the widely-used K-Means algorithm.
In this study, the R package cluster (Maechler et al. 2021) was used to calculate
Gower’s dissimilarity (function daisy()) and subsequently carry out PAM clustering
(function pam()). The function distancefactor() of the R package fpc (Hennig 2020)
was used for the standardisation of nominal variables based onHennig andLiao (2013).
Clustering mixed-type data with Gower’s dissimilarity and the weighting scheme of
Hennig and Liao (2013) followed by PAM are herein referred to as ‘Gower/PAM’ and
‘HL/PAM’ respectively.

K-Prototypes is a clustering method introduced by Huang (1997) for dealing with
data of mixed type. The K-Means algorithm can be seen as a ‘special case’ of this
method, since the rationale behind it is that it seeks for a minimisation of the trace of
the within cluster dispersion matrix cost function, defined as:

E =
K∑

l=1

n∑

i=1

yil d(X i , Ql). (2)

The term yil in Eq. (2) denotes the (i, l)th element of an (n × K ) partition matrix,
taking values 0 and 1 (1 indicating cluster membership), while Ql is the prototype for
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the lth cluster. A prototype is the equivalent to a medoid for PAM or a centroid for K-
Means. The distance between X i and Ql is denoted by d(X i , Ql) and it is calculated
as a combination of the squared Euclidean distance for continuous and the weighted
binary indicator for categorical variables. Assuming, without loss of generality, that
the first pr < p variables in our data set are continuous and the rest are categorical,
this may be expressed as:

d(X i , Ql) =
pr∑

j=1

(xi j − ql j )
2 + γl

p∑

j=pr+1

δ(xi j , ql j ). (3)

In the expression above, γl is a weight coefficient for categorical variables in the lth
cluster; setting it to zero (thus indicating the absence of categorical variables), one
can recover the K-Means algorithm. For computational reasons, the value of γl is
chosen to be the same for all clusters and it is calculated as the ratio of the variance
of continuous variables to the variance of the categorical variables in the data set. For
the j th categorical variable, the variance is defined as 1 − ∑

h
p2jh , where p jh is the

frequency of hth categorical level of the j th variable divided by n. It can be shown
that the components ql j ( j = 1, . . . , p) of Ql upon minimisation of (2) are given by
the mean or the mode of values that the j th variable takes in the lth cluster, for j being
a continuous or a categorical variable respectively. K-Prototypes was conducted in
this study using the kproto() function in the R package clustMixType (Szepannek
2018).

Some of the shortcomings of K-Prototypes, as argued by Ahmad and Dey (2007),
include the use of the mode of categorical variables while ignoring other frequent
categories, the fact that the distance for categorical variables is not weighted and the
need for a more ‘refined’ notion of categorical distance. Therefore, Ahmad and Dey
(2007) proposed another K-Means-based algorithm for mixed-type data, that scales
the Euclidean distance and calculates categorical distances based on the co-occurrence
of categorical values (herein referred to as ‘Mixed K-Means’).

More precisely, the distance between two distinct categories is first calculated with
respect to the rest of the variables. Say A and B are two categories of the same j th
categorical variable, then the categorical distance between the two with respect a j ′th
categorical variable is defined as the sum of the conditional probability that the j th
component of an observation X i takes the value A, given that xi j ′ is in some subset σ
of possible values of a j ′th variable and the conditional probability that xi j = B given
xi j ′ /∈ σ . In order for this to be a distance metric satisfying that the distance between
two identical categorical values is zero, we subtract a unit from the sum we obtain.
Notice that σ is chosen carefully among all possible subsets of values of a j ′th variable
so that it maximises the aforementioned sum. Then, the distance between A and B
is calculated as the average of all the categorical distances with respect to all other
variables. Since this notion is defined for a j ′th categorical variable, Ahmad and Dey
(2007) suggested a simple algorithm for the discretization of continuous variables in
intervals of equal width. This discretization is also used for determining the weight of
continuous variables, which is defined to be the average categorical distance between
all possible combinations of the categorical levels introduced.
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To conduct Mixed K-Means in this study, a distance matrix was first computed
using the function distmix() from the R package kmed and was then supplied as the
input to a K-Medoids algorithm, implemented in the function fastkmed() of the same
package.

Another clustering method, that is based on K-Prototypes, is Modha-Spangler K-
Means (Modha and Spangler 2003). Once again, the Euclidean distance is used for
continuous variables (not scaled, unlike for Mixed K-Means), while the cosine dis-
similarity is used for categorical variables. The objective function is thus given by:

dMS(X i , Ql) =
pr∑

j=1

(xi j − ql j )
2 + γl

⎛

⎜
⎜
⎜
⎜
⎝
1 −

p∗
∑

j=pr+1
xi j ql j

√
p∗∑

j=pr+1
x2i j

√
p∗∑

j=pr+1
q2l j

⎞

⎟
⎟
⎟
⎟
⎠

(4)

which is really similar to the cost function (2) but uses a different categorical distance.
For the cosine dissimilarity to be used as in Eq. (4), we need to make sure that our
categorical variables are first dummy-coded, so that inner products and norms of
vectors can be calculated. We also denote the total number of columns for continuous
and dummy-coded categorical variables by p∗.

Modha-Spangler K-Means is a convex algorithm as both distance functions used
are convex. One of its main strengths is that the coefficient γl is automatically deter-
mined by the algorithm, by trying to minimise the ratio of the product of the average
within-cluster dispersion for continuous and categorical variables to the product of the
average between-cluster dispersion for continuous and categorical variables. A much
more detailed description can be found in Modha and Spangler (2003). However, a
weakness of this algorithm is that it requires a brute-force approach for determining
the optimal value of γl ; usually a greedy search over a grid of values specified by
the user is employed. In our case, due to computational constraints, we consider only
five candidate values of γl , which are the values of the set �l = { i6 : i ∈ [1, 5]}. The
element of�l that yields the smallest value for the objective function (4) is the one that
is eventually used for γl . Modha-Spangler K-Means was applied in this study using
the function gmsClust() of the R package kamila (Foss and Markatou 2018). The
number of distinct cluster weightings evaluated in the brute-force search was set to 10
(the default option).

The five aforementioned clustering methods all work with the full data, in perhaps
very high dimensions. Another approach to cluster analysis is the so-called ‘tandem
analysis’, a term coined byArabie (1994),which consists of a dimensionality reduction
step via factor analysis, followed by a clustering of the observations in the resulting
low-dimensional space (see also Dolnicar and Grün 2008). One such dimensionality
reduction method, suitable for mixed-type data, is Factor Analysis for Mixed Data or
FAMD (also known as Principal Component Analysis for Mixed Data) (Pagès 2014).

Dimensionality reduction in FAMD is seen as a compromise between Principal
Component Analysis and Multiple Correspondence Analysis (Markos et al. 2020).
The idea is that the data matrix is partitioned in such a way that all columns consisting
of continuous variables are ‘stacked’ right next to an ‘indicator matrix’ or ‘complete
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disjunctive table’ that is constructed from the categorical variables. This partition
matrix is constructed by recoding the categorical variables using dummyvariables. The
usual standardisation process of subtracting fromeach column itsmean anddividing by
its standard deviation is used for continuous variables. Standardisation of the indicator
matrix is achieved by dividing the elements of each of its columns by the square
root of the proportion of observations possessing the respective category that the
column represents. Then, the two standardised matrices are concatenated and standard
Principal ComponentAnalysis (PCA) is performed on the resultingmatrix. As in PCA,
when applying FAMD it is important to decide on the number of factors to retain.

Audigier et al. (2016) state that if the i th principal component obtained is denoted
by Fi , then the first principal component F1 maximises the expression:

pr∑

j=1

R2 (
Fi , Xcon j

) +
p∑

j=pr+1

η2
(
Fi , Xcat j

)
. (5)

Here, R2 represents the coefficient of determination and η2 is the squared correlation
ratio, also known as the ‘Intraclass Correlation Coefficient’. Moreover, Xcon j and
Xcat j denote the j th continuous and categorical variables respectively, with j being
the column index. Maximising Eq. (5) is therefore equivalent to maximising the link
between continuous and categorical variables, so one may view F1 as the synthetic
variable that is most correlated with both continuous and categorical variables. Sim-
ilarly, F2 will be the synthetic variable orthogonal to F1 maximising Eq. (5). Once
the dimensionality reduction step has been implemented, the final step consists of
applying K-Means clustering on the lower-dimensional representation that has been
obtained. This two-step procedure is herein referred to as ‘FAMD/K-Means’. FAMD is
conducted using the function FAMD() of the R package FactoMineR and K-Means
using the base R function kmeans().

While FAMD followed by K-Means and generally tandem analysis seems like a
reasonable approach to the clustering problem, De Soete and Carroll (1994) raise
the point that variables with little contribution to the cluster structure can potentially
‘mask’ this structure, thus leading to unreliable results. This problem of ‘cluster mask-
ing’ is described in more detail by Vichi et al. (2019), who provide an illustration via a
toy example. The idea of performing dimensionality reduction via PCA and K-Means
clustering simultaneously, known as Reduced K-Means, was introduced in De Soete
and Carroll (1994) as a potential solution to the cluster masking problem, with van de
Velden et al. (2017) giving a concise description of a similar algorithm suitable for
categorical data. Vichi et al. (2019) generalized Reduced K-Means algorithm in the
case of mixed-type data.

This joint dimensionality reduction and clustering technique is referred to asMixed
Reduced K-Means, where ‘Mixed’ indicates the presence of mixed-type data (van de
Velden et al. 2019). Its objective function is given by:

φRKM (B, ZK , G) = ∥
∥X − ZKGBᵀ∥

∥2
F , (6)
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with X, ZK , G, B indicating the data matrix is centered and standardised in the
exact same way as described for FAMD, the (n × K )-dimensional cluster mem-
bership matrix, the (K × d)-dimensional matrix of cluster centroids in the reduced
d-dimensional space and a (p∗ × d)-dimensional columnwise orthonormal loadings
matrix respectively. We use ‖·‖F to refer to the Frobenius norm and Eq. (6) is min-
imised via an Alternating Least Squares algorithm. In fact, it can be shown that there
exists a certain expression for G that minimises (6), from which one can derive an
expression for φRKM that only depends on ZK and B. The ALS algorithm used will
first update the loadings matrix B while keeping ZK fixed and this corresponds to a
dimensionality reduction step. Once B has been updated, it is kept fixed and ZK is
updated accordingly, which can be seen as a K-Means problem. This also explains the
intuition behind this algorithm performing joint dimensionality reduction and cluster-
ing. The choice of the number of dimensions retained, namely d, is set to be equal to
K − 1, where K is the number of clusters. This follows from the recommendation of
Vichi and Kiers (2001), who argue that keeping more than K −1 dimensions is waste-
ful in joint dimensionality reduction and clustering algorithms, as this corresponds
to describing a low-dimensional configuration of centroids in more dimensions than
necessary. We have used the same number of dimensions in FAMD as in Mixed RKM
for consistency. Notice that while Mixed RKM, as well as Mixed Factorial K-Means,
which we have not implemented in our study, seem like reasonable methods for one
to implement, Yamamoto and Hwang (2014) warn that these joint dimensionality
reduction and clustering techniques are prone to giving inaccurate results if there exist
variables irrelevant to the cluster structure in the data, which also happen to have high
correlations between each other. ReducedK-Meanswas conducted in the current study
using the function cluspca() of the R package clustrd (Markos et al. 2019).

The final method considered in the study is the KAMILA (KAy-means for MIxed
LArge data) algorithm, that was introduced in Foss et al. (2016). The method attempts
to cluster mixed-type data while balancing the level of contribution of continuous and
categorical variables in a flexible way, such that no strong parametric assumptions are
made. KAMILA can be seen as a combination of the K-Means algorithm with the
Gaussian-Multinomial mixture model that is commonly used in model-based clus-
tering (Hunt and Jorgensen 2011). In fact, the crucial assumption of Gaussianity of
the continuous variables Xcon = (

Xcon1 , . . . , Xcon pr

)ᵀ is relaxed in KAMILA by
considering the following more general probability density function for spherically
symmetric distributions centered at the origin:

fXcon (xcon) = fR(r)�
( pr
2 + 1

)

prr pr−1π
pr
2

. (7)

Equation (7) requires the evaluation of the density of pairwise distances between con-
tinuous variables r =

√
xᵀ
conxcon , which is replaced by a univariate kernel density

estimate that uses the Radial Basis Function (RBF) kernel. The assignment of data
points in the clusters is made according to the sum of the estimated f̂Xcon log likeli-
hood value at the Euclidean distance of each data point to each cluster centroid and of
the log probability of observing the i th categorical vector given population member-
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ship. This quantity needs to be calculated for each cluster separately, with the cluster
maximising the quantity being the one that the data point will be assigned to. Notice
that this formulation is valid under the assumption of independence of the p − pr
categorical variables within each cluster. The iterative scheme of KAMILA updates
the cluster centroids and the parameters of the assumed underlying multinomial and
spherically symmetric distributions until these remain unchanged, thus yielding the
same partitions. Although KAMILA cannot be strictly considered as a distance-based
partitioning approach, it was included in the comparison as a model-based alternative
of K-Means. Moreover, in a series of studies it was consistently found to outperform
model-based and distance-based methods. A more detailed mathematical description
of the algorithm can be found in Foss et al. (2016), while the R implementation of
KAMILA is available in the kamila package (function kamila()) (Foss andMarkatou
2018).

4 Simulation study

A simulation study was conducted to evaluate the performance of the eight cluster-
ing methods presented in the previous Section in terms of cluster recovery. The data
were generated using the function MixSim() of the R package MixSim (Melnykov
et al. 2012), which allows for the determination of pairwise overlap between any pair
of clusters. The notion of pairwise overlap is defined as the sum of two misclassi-
fication probabilities for a pair of weighted Gaussian distributions (Melnykov and
Maitra 2010). More precisely, if X is a random variable originating from cluster l ′,
the probability that it is misclassified to be originating from the lth cluster is given by
ωl|l ′ = PX

(
πl ′φ

(
X;μl ′ ,�l ′

)
< πlφ

(
X;μl ,�l

) |X ∼ Np
(
μl ′ ,�l ′

))
. Defining ωl ′|l

analogously, the overlap between the two clusters is given byωll ′ = ωl|l ′ +ωl ′|l . Notice
that μl ,μl ′ ,�l and�l ′ denote the mean vectors and the covariance matrices of the lth
and the l ′th components. However, this notion is only determined for continuous vari-
ables. In order to generate a categorical variable, a continuous variable was discretized
by dividing it into c classes with the 100/c% quantile as the cut point. For simplicity,
we will be assuming an equal number of categorical levels for all categorical variables
(set equal to 4).

Seven factors that are typical of data sets collected in real-world scenarios and
commonly encountered in benchmarking studies of clustering, were systematically
manipulated for data generation. The first factor, the number of clusters in the data
set, was examined at three levels, K = 3, 5, and 8. The second factor, the number of
observations, was evaluated at three levels, n = 100, 600 and 1000, corresponding to
a small, moderately large and large sample size in the social and behavioral sciences.
The third factor, number of variables, was tested at three levels, p = 8, 12 and 16. The
fourth factor, overlap of clusters, assumedvalues of 0.1%, 0.5%, 1.0%, 1.5%and2.0%,
corresponding to very small, small, moderate, high and very high overlap (specified
via the argument BarOmega of the function MixSim()). These values correspond to
smaller overlap, similar overlap, andmuchmore overlap than in real data sets typically
used to demonstrate clustering algorithms (seeShireman et al. (2016), for a justification
and discussion of cluster overlap in real data sets compared to simulated data sets).
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The fifth factor, percentage of categorical variables in the data (versus continuous
variables), was tested at three levels, 20%, 50% and 80%. The sixth factor, density
of the clusters, was tested at two levels: (a) an equal number of observations in each
cluster and (b) 10% of the observations in one cluster and the remaining observations
equally divided across the remaining clusters. The seventh factor considered is cluster
sphericity, defined by the covariance matrix structure with two levels: (a) mixtures
of heteroscedastic spherical components, that is spherical covariance matrices with
nonhomogeneous variances among themixture components (arguments sph and hom
of the functionMixSim() were set toTRUE and FALSE, respectively) and (b) mixtures
of heteroscedastic non-spherical components, that is ellipsoidal covariance matrices
with nonhomogeneous variances among the mixture components (arguments sph and
homwere both set toFALSE). This resulted in 3×3×3×5×3×2×2 = 1620 distinct
data scenarios. Fifty replications were made for each scenario, resulting in a total of
81000 data sets. Each clustering procedure was fit 100 times using random starting
values. For each data set, the number of clusters was always correctly specified. For
FAMDandMixedReducedK-Means the number of dimensions (factors)was set to the
number of clusters minus one. The ability of each procedure to return the true cluster
structure was measured by the Adjusted Rand Index (ARI; Hubert and Arabie 1985)
and the Adjusted Mutual Information (AMI; Vinh et al. 2010). The ARI measures
the agreement between two different partitions of the same set of observations, by
looking at pairs of observations in the original data set and counting and comparing
how many pairs were assigned to the same cluster in both partitions, and how many
pairs were not assigned to the same clusters in both partitions. The maximum value of
theARI is 1 and its expected value in the case of random partitions is 0. Steinley (2004)
has provided some guidelines for interpreting ARI values in simulation experiments,
with thresholds of .90, .80, and .65 corresponding to excellent, good, and fair cluster
recovery, respectively. Values of the ARI below .65 reflect poor recovery. The AMI
is an information-theoretic index that measures the amount of “shared information"
between two clusterings and is expected to be less susceptible to cluster size imbalance
thanARI (Van der Hoef andWarrens 2019). Both ARI andAMImeasure the similarity
between ground truth class assignments and those of the clustering method, adjusted
for chance groupings. The simulated data sets, the resulting ARI and AMI values and
the R code used for analyses are publicly available in an OSF repository at https://rb.
gy/rgpdyu.

5 Results

Table 1 reports average cluster recovery of the eight methods across all factors.
The best performing methods, on average, are KAMILA, FAMD/K-Means and K-
Prototypes, followed by Modha-Spangler K-Means and Mixed Reduced K-Means.
The worst performing methods were HL/PAM, Mixed K-Means and Gower/PAM.
Table 1 also presents the degree of agreement in cluster recovery between methods
in terms of ARI/AMI, based on Pearson’s correlation. Some pairwise correlations
are large enough, the largest being Cor(FAMD/K-Means, Mixed Reduced K-Means)
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Table 1 Agreement between methods based on Pearson’s correlation and mean cluster recovery (ARI/AMI
values) in the analysis of simulated data sets

Method (1) (2) (3) (4) (5) (6) (7) Mean
ARI/AMI

(1) KAMILA - .366/.404

(2) FAMD/K-Means .90/.93 - .340/.381

(3) K-Prototypes .93/.95 .90/.92 - .336/.377

(4) M-S K-Means .90/.91 .89/.91 .88/.91 - .313/.357

(5) Mixed RKM .87/.90 .94/.96 .88/.89 .92/.93 - .309/.357

(6) HL/PAM .79/.82 .75/.78 .81/.86 .78/.82 .76/.79 - .193/.246

(7) Mixed K-Means .78/.82 .70/.74 .81/.86 .75/.80 .69/.74 .81/.88 - .191/.246

(8) Gower/PAM .73/.72 .75/.75 .73/.74 .74/.75 .77/.77 .65/.71 .77/.82 .136/.182

Fig. 1 Violin/box plots of Adjusted Rand Index values by method

= .94/.96; that is both FAMD/K-Means and Mixed Reduced K-Means account for
88%/92% of the variance in the other.

The violin/box plots in Figs. 1 and 2 show the corresponding distributions of ARI
and AMI values, respectively, for the eight methods computed on the true clusterings,
confirming that KAMILA, FAMD/K-Means andK-Prototypes perform somewhat bet-
ter than Modha-Spangler K-Means and Mixed Reduced K-Means, and much better
than HL/PAM, Mixed K-Means and Gower/PAM. For instance, more than 50% of
the ARI values for HL/PAM, Mixed K-Means and Gower/PAM are less than .14.
Also notice that more than 75% of the ARI values for Gower/PAM are less than .20,
indicating poor cluster recovery.

After examining the overall performance of the methods, it is informative to deter-
mine if method performance is dependent upon specific situations (i.e., performance
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Fig. 2 Violin/box plots of Adjusted Mutual Information values by method

varies with the factor levels). The individual performances are examined by the lev-
els of each factor. For this purpose, two separate repeated-measures ANOVAs were
conducted on ARI and AMI scores (see Table 2). All main effects and interactions
were modeled. Given the large sample size, it was expected that most factors would
be statistically significant; therefore, all effects were evaluated with respect to their
estimated effect sizes, partial eta-squared (η2). Main effects and interactions were
presented and discussed further only if they reached at least a moderate effect size
(partial η2 ≥ .01).

The between data sets effects in Table 2 can be thought of as the influence of the
design factors across all clustering methods. Cluster overlap had the largest effect on
cluster recovery. Overall, and as expected, as the overlap of clusters increased from .01
to .20, the average recovery in terms of both ARI/AMI decreased, going from .55/.59
to .11/.16. Cluster sphericity had also a large effect on cluster recovery with mean
ARI/AMI values of .32/.36 for spherical and .23/.27 for non-spherical clusters. The
number of clusters had a large and negative effect on cluster recovery based on ARI,
with .33, .27 and .22, for 3, 5 and 8 clusters, respectively; the effect was negligible in
the case of AMI (.32, .31, .32). As the number of variables increased, the clustering
performance deteriorated, as indicated by ARI/AMI values of .30/.35, .27/.31 and
.25/.29 for 8, 12 and 16 variables, respectively. The percentage of categorical variables
in the data set had also a moderate and negative effect, with mean ARI/AMI values
equal to .29/.34, .28/.33 and .24/.29, for 20%, 50% and 80%, respectively. The num-
ber of observations had a more profound effect in the case of ARI, with mean values of
.25/.33, .28/.31 and .29/.31 for 100, 600 and 1000 observations, respectively. Last,
cluster density had a small effect on cluster recovery, with mean ARI/AMI values
equal to .26/.31 and .28/.33 for equally-sized clusters and a 10% of the observations
in a single cluster, respectively.
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Table 2 Repeated measures ANOVAs for eight clustering methods on ARI (top half) and AMI (bottom
half). Factors are ordered by decreasing effect size, partial η2

Effect Source df SS F Partial η2

ARI Between data sets effects Overlap 4 16112.64 76435.11 .794

Sphericity 1 1321.89 25083.02 .240

# clusters 2 1089.54 10337.15 .207

# vars 2 283.06 2685.57 .063

% categorical 2 282.99 2684.87 .063

# obs 2 185.60 1760.91 .042

Density 1 68.60 1301.74 .016

Within data sets effects
(univariate tests)

Method (M) 7 4200.76 122234.65 .606

M*overlap 28 1113.81 8102.46 .290

M*categorical 14 413.61 6017.59 .132

M*clusters 14 328.71 4782.51 .108

M*obs 14 157.04 2284.78 .054

M*sphericity 7 149.53 4350.96 .052

M*vars 14 141.70 2061.73 .049

M*overlap*categorical 56 92.58 336.75 .033

M*overlap*density 28 82.16 597.71 .029

M*overlap*vars 56 73.77 268.31 .026

M*density 7 34.48 1555.65 .019

AMI Between data sets effects Overlap 4 15745.59 103229.18 .839

Sphericity 1 1217.15 31918.95 .287

# vars 2 412.21 5405.00 .120

% categorical 2 291.69 3824.67 .088

# obs 2 65.27 855.89 .021

Density 1 61.67 1617.29 .020

# clusters 2 9.20 120.58 .003

Within data sets effects
(univariate tests)

Method (M) 7 3778.28 170484.85 .682

M*overlap 28 885.97 9994.29 .335

M*categorical 14 345.71 7799.54 .164

M*clusters 14 220.68 4978.78 .111

M*obs 14 145.00 3271.27 .076

M*vars 14 116.96 2638.72 .062

M*sphericity 7 91.60 4133.20 .049

M*overlap*categorical 56 71.71 404.48 .039

M*overlap*vars 56 60.9 343.37 .033

M*overlap*density 28 45.48 513.09 .025

M*density 7 34.48 1555.65 .019
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Based on the within data sets effects (Table 2) we determine which methods are
effective under which conditions. We start by considering two-way interactions first.
Then we discuss three-way interactions. In the presence of a significant interaction,
main effects and lower order effects were ignored.

Table 3 shows the ARI/AMI values of the eight methods by all factors. In general,
both measures yield similar results. The two-way interaction between method and
number of clusters shows that the number of clusters negatively affects the performance
of all methods, but the effect is more profound forMixed Reduced K-Means, when the
number of clusters is other than 3 (Fig. 6 andTable 3). The two-way interaction between
method and number of observations reveals that K-Prototypes performs slightly better
than other methods for the small sample-size scenario, n = 100 (Fig. 6 and Table 3).
KAMILA’s performance greatly improves for n = 600. The performance of HL/PAM,
Mixed K-Means and Gower/PAM does not appear to be significantly affected by n,
but their performance remains poor compared to other methods. Non-sphericity of the
clusters seems to affect all methods but not in a uniform manner (Fig. 6 and Table 3).
The difference in performance between KAMILA and other methods is less profound
when clusters are non-spherical. This is not surprising, since in KAMILA continuous
variables are assumed to follow amixture distribution with arbitrary spherical clusters.

The heat maps in Fig. 3 visualize the three-way interaction of method by cluster
overlap and percentage of categorical variables (mean ARI values). In the presence
of categorical variables, there are differences between methods. KAMILA and K-
Prototypes outperform other methods when the percentage of categorical variables
is low (20%), whereas FAMD/K-Means and Mixed Reduced K-Means perform best
when the percentage of categorical variables is high (80%). The performance ofMixed
Reduced K-Means deteriorates at a faster rate than other methods with increasing
overlap. Modha-Spangler K-Means performs best when the number of categorical
and continuous variables in the data set is equal (50%). The interaction of method by
cluster overlap and density is illustrated in Fig. 4. Some methods are affected more
than others by the presence of a small-size cluster and at different levels of overlap.
When cluster overlap is very low (.01) all methods perform better in the case of clusters
with equal size, but for higher levels of overlap (> .01) there is negligible difference in
cluster recovery or cluster recovery is slightly better in the small-size cluster scenario.
The interaction of method by cluster overlap and the number of variables (Fig. 5)
reveals that going from 8 to 16 variables, deteriorates the performance of KAMILA,
K-Prototypes, HL/PAM, Mixed K-Means and Gower/PAM, whereas cluster recovery
of Mixed Reduced K-Means and FAMD/K-Means is improved. This improvement,
however, is observed only when cluster overlap is low (≤ .05).

Last, it is worth underlining that in terms of absolute performance, the mean
ARI/AMI values in Table 3 and Figs. 3 to 6 suggest poor cluster recovery in the
vast majority of cases (ARI/AMI values below .65) for all methods under comparison.
Cluster recovery was found to be fair, albeit not good or excellent, for certain methods
and conditions only (values above .65 but less than .80). In particular, for three out
of eight methods (Mixed K-Means, HL/PAM, Gower/PAM) average cluster recovery
is poor across all factors, even for well-separated and equally sized clusters. For the
top-performing methods, there are cases when cluster recovery can be considered fair
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Fig. 3 Three-way interaction of method by overlap level and percentage of categorical variables. The
numbers indicate themeanARI for each combination of overlap level and percentage of categorical variables

to good, especially when clusters are well-separated, equally sized and the percentage
of categorical variables is low or moderate.

6 Discussion

This paper reports benchmark test results from applying distance-based partitioning
methods on simulated data sets with different characteristics. Eight methods were
selected to cover three general strategies of distance or dissimilarity-based partitioning
of mixed-type data (i.e., constructing a dissimilarity matrix between observations
given as input to K-Medoids, extending K-Means to mixed-type data and reducing the
number of variables and clustering of the observations in the reduced space).

One essential goal of the benchmark is to make the results available and reusable
to other researchers. Benchmark results revealed both similarities and differences in
the overall performance of the eight algorithms, as well as across different criteria.
A group of top-performing methods with similar performance can be distinguished,
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Fig. 4 Three-way interaction of method by overlap level and cluster density. The numbers indicate the mean
ARI for each combination of overlap level and cluster density

consisting of KAMILA, FAMD/K-Means and K-Prototypes. KAMILA was the best
method in about half of the 1620 different data scenarios (based on both ARI and
AMI). These are mostly data sets with moderate or large sample size and more contin-
uous than categorical variables. The deterioration of KAMILA’s performance in the
small sample size scenario was somewhat expected, since the method’s reliance on a
multinomial model for categorical variables requires a commensurate sample size, as
has been previously indicated in Foss et al. (2019). Therefore, we recommend the use
of KAMILA when the sample size is reasonably large and the categorical variables
are not dominant in the data set. FAMD/K-Means was the top-performing approach in
about one fifth of the cases. This method performed well for data sets with moderate
or large sample size and more categorical than continuous variables. In contrast to the
other two methods, FAMD/K-Means additionally involves a dimensionality reduc-
tion step, which can be convenient for visualizing and interpreting the clusters in the
reduced space. This means that it depends heavily on the amenability of the data set
to dimensionality reduction where a few principal components account for a high per-
centage of variability in the data set. Where this is not the case, the FAMD/K-Means
method cannot be reasonably applied. K-Prototypes was the best approach in about
13% of the distinct scenarios and is recommended in cases when the sample size is
relatively small and there are more continuous than categorical variables.
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Fig. 5 Three-way interaction of method by overlap level and number of variables. The numbers indicate
the mean ARI for each combination of overlap level and number of variables

Modha-Spangler K-Means and Mixed Reduced K-Means form a second group of
methods with similar performance, not far from the first group in terms of cluster
recovery. Modha-Spangler K-Means was the best method in 11% of the different sce-
narios, mainly when the number of continuous variables is equal or greater than that
of categorical variables. This is also demonstrated in Foss et al. (2016), where Modha-
Spangler K-Means was found to underperform relative to competing methods when
there are more categorical than continuous variables because of its over-reliance on
continuous variables. Mixed Reduced K-Means was the best approach in 7% of the
cases, performing well for moderate or large samples sizes, more categorical than con-
tinuous variables and low levels of cluster overlap. AlthoughMixedReducedK-Means
was expected to improve upon FAMD/K-Means, in the sense that it was developed to
address the cluster masking problem by optimizing a single objective function (Vichi
et al. 2019), this hypothesis was not confirmed by the study results. Therefore, when
dimensionality reduction is an additional goal, FAMD/K-Means seems to be a more
reasonable choice than Mixed Reduced K-Means. However, both FAMD/K-Means
and Mixed Reduced K-Means have in common that they perform worse for a sam-
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Fig. 6 Two-way interactions of method by overlap level, percentage of categorical variables, number of
clusters, number of observations, number of variables, density, and cluster sphericity (mean ARI values).
Subplots/factors are arranged, from left to right, by decreasing effect size, partial η2

ple size of 100 compared to larger sample sizes; a sample size of 100 is usually not
sufficient for PCA-based methods (see e.g., Saccenti and Timmerman 2016).

A third group of methods, clearly distinct from the other two in terms of clus-
ter recovery, contains HL/PAM, Mixed K-Means and Gower/PAM. These methods
demonstrated poor performance in our experiments, with Gower/PAM being the worst
performing method across all criteria, even for well-separated clusters. This could be

123



E. Costa et al.

seen as a surprising finding, considering that Gower/PAM is among the most popu-
lar choices in the literature for clustering mixed-type data. A potential explanation
for this could be that the task of clustering multivariate normal distributions, as the
objective of the simulations conducted in the current study, can be expected to favour
K-Means-like approaches that use a squared loss function; PAM-based approaches
instead are known to be more robust against non-normality (Kaufman and Rousseeuw
1990, p.117). Also notice thatHL/PAMperformed better thanGower/PAM in all tested
scenarios but did not reach the performance of K-Means-based methods.

There are some limitations with the current study. First, to generate mixed-type
data for the simulations, continuous variables were generated by drawing from finite
mixtures of multivariate normal distributions; categorical variables were generated via
discretization of such continuous variables. Ideally, for our experimentswewould need
to generate purelymixed-type data, that is, purely categorical variables and purely con-
tinuous variables with a cluster structure. However, controlling the overlap between
clusters in mixed-type data sets with more than two clusters is not straightforward
(see, e.g., Maitra and Melnykov 2010). In addition, the covariance structure between
the variables was not user-defined. Controlling the correlation structure between the
variables could have been useful, so as to draw conclusions on how correlated vari-
ables affect the performance of clustering algorithms. Also, the simulations could be
extended to mixtures of non-Gaussian distributions. Second, clustering performance
depends on the software implementation used; different implementations of a method
often lead to different results. The included clustering methods were required to have
an R-implementation that can be used in a default way without additional tuning in
order to allow for a comparison that is not influenced by different tuning flexibilities.
Furthermore, in a study by Steinley (2006), the K-Means algorithm with 100 random
initializations has been shown to produce the same solution for well-separated clus-
ters, but the algorithm produced different solutions in the case of overlapping clusters.
The author recommended using several thousand random initializations. Based on this
observation, the 100 random starts used in our study might not be sufficiently high for
K-Means-based clustering methods to avoid local minima. However, from a compu-
tational viewpoint, this would result in a much higher and prohibitive computational
cost. Another limitation is that for the methods under comparison, the number of
clusters was always correctly specified, instead of incorporating cluster number esti-
mation in the clustering task. Although this is a challenging and interesting endeavour,
it requires additional decisions, such as the choice of the index/method to be used for
cluster estimation and was beyond the scope of the current study. Last, the results of
the current study were based on simulated data sets only. An empirical comparison of
cluster analysis methods on real mixed-type data (see, e.g., Hennig 2022) is expected
to further highlight how different clustering methods produce solutions with different
data analytic characteristics, which can help a user choosing an appropriate method
for the research question of interest.
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