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ESR1 mutant breast cancers show elevated basal
cytokeratins and immune activation
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Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive

(ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the

distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains

largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant

enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enri-

ched genes. Induction of BCKs is independent of ER binding and instead associated with

chromatin reprogramming centered around a progesterone receptor-orchestrated insulated

neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune

pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most

induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by

single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate

that ESR1 mutant tumors gain basal features associated with increased immune activation,

encouraging additional studies of immune therapeutic vulnerabilities.
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Breast cancer is characterized by a high degree of hetero-
geneity, originally identified through the use of immuno-
histochemistry and gene expression profiling1,2. Broadly,

molecular subtypes can be grouped into luminal (luminal A and
luminal B), HER2-enriched and basal-like tumors, primarily
driven by expression of ER, PR, HER2 and Ki673. Tumors with
different molecular subtypes show distinguishing clinical features
and therapeutic responses4,5, including metastatic spread and
immune profiles6,7.

The basal-like subtype, which represents 15–25% of all cases
and overlaps with triple negative breast cancers (TNBC), is
characterized by a unique gene expression profile similar to that
of myoepithelial normal mammary cells8. Basal-like breast
cancers are more aggressive and patients suffer from shorter
metastases-free survival compared to those with luminal
subtypes8,9. Mechanisms underlying increased invasive prop-
erties of basal-like tumors include deregulation of the CCL5/
CCR5 axis10, amplified EGFR11 kinase signaling and activation
of TGF-β signaling12. Despite multiple signaling aberrations
providing challenges for efficient therapeutic strategies, recent
studies have unveiled unique vulnerabilities of basal-like
breast cancers, such as higher levels of PD-L1 expression
along with constitutive IFNγ signaling activation13, in line with
higher immune-infiltration scores6. While the FDA has granted
an accelerated approval for atezolizumab, a monoclonal anti-
body drug targeting PD-L1, plus chemotherapy for the
treatment of TNBC14, the potential application of immune
therapies for patients with luminal breast cancer remains lar-
gely unknown.

Among the four intrinsic subtypes, basal and luminal subtypes
show opposite histochemical features and notable differences in
prognosis15,16, however there is increasing evidence that these
subtypes are on a continuum of “luminal-ness” and “basal-ness”
features. Models of breast cancer lineage evolution describe that
basal and luminal progenitor cells are derived from the same
bipotential progenitors17, indicating the potential of lineage
reprogramming during cancer progression. Such subtype
switching during tumor evolution has been described and is
critical for implementation of precision therapeutics18–20. A
recent study by Bi et al. reported loss of luminal and gain of basal
markers in endocrine resistant breast tumors21. Mechanisms
underlying the intrinsic subtype plasticity are largely unknown,
with some exceptions. JARID1B22 and ARID1A23 have been
described as essential luminal lineage driver genes and their
mutations result in luminal-to-basal subtypes switches. In addi-
tion, enhancer reprogramming at GATA3 and AP1 binding sites
has been highlighted as a pivotal epigenetic mechanism allowing
lineage plasticity21.

ER is well characterized as a luminal lineage marker24. Hotspot
mutations in its ligand-binding domain occur in 30–40% of
endocrine resistant breast tumors, promoting ligand-independent
ER activation and metastasis25–27. Several recent studies showed
that ESR1 mutant tumors are not only associated with endocrine
resistance, but also gain unexpected resistance towards CDK4/6
inhibitors28, mTOR inhibitors29 and radiation therapy30 in a
mutation subtype and context dependent manner, suggesting
potentially more complex re-wiring of ER mutant tumors.

Here, we set out to examine whether ESR1 mutations alter the
“luminal-ness” and “basal-ness” balance in breast cancer cell line
models and clinical specimens. We discover that ER mutant
tumors gain basal-like features, characterized by elevated
expression of basal cytokeratins as a result of epigenetic repro-
gramming. Immune context analyses in clinical specimens reveal
potential therapeutic vulnerabilities accompanying the increased
basal-ness in ESR1 mutant breast cancer, a finding of potential
clinical relevance.

Results
Basal gene signatures are enriched in ESR1 mutant breast
cancer. To examine whether ESR1 mutations alter “luminal-ness”
and “basal-ness” we utilized five independent luminal and basal
gene signatures (Fig. 1a and Supplementary Data 1). Gene sets
from Charafe-Jauffret et al.31 and Huper et al.32 were obtained
from MSigDB (Supplementary Fig. 1a, b), and in addition we
generated three other gene sets from i) intrinsic subtype genes33

differentially expressed between luminal (n= 33) and basal
(n= 39) breast cancer cell lines (Supplementary Data 2)34–36 and
ii) genes differentially expressed between luminal and basal pri-
mary tumors in TCGA37 and METABRIC38 (Supplementary
Fig. 1c–e). Although the overlap among the different gene sets
was limited (Fig. 1b), likely reflecting differences in methodology
and sources, some well described lineage marker genes (e.g., ESR1
and FOXA1 as luminal markers, and KRT6A and KRT16 as basal
markers) were observed in 4 out of 5 gene sets.

As expected, all five basal gene sets were significantly enriched
in basal versus luminal breast cancer cell lines and tumors
(Supplementary Fig. 2a, b), and vice versa for luminal gene sets
except for the Huper luminal markers, likely due to its derivation
from normal mammary tissue (Supplementary Fig. 2c, d). We
found concordantly increased enrichment of basal gene sets in
Y537S and D538G MCF7 ESR1 genome-edited mutant cells,
whereas no differences were observed in estrogen treated ESR1
wildtype cells (Fig. 1c). In contrast, we did not observe a
consistent change in the luminal gene sets (Fig. 1d). This was
further corroborated by PAM50-based analysis, where we found
MCF7 ESR1 mutant cells were predominantly called as basal
subtype with above 70% probability (Supplementary Fig. 3a) and
exhibited gene expressional similarities to basal breast cancer cell
lines (Supplementary Fig. 3b). The enrichment of the basal gene
sets in the ESR1 mutant cells was also seen in an independent
CRISPR-engineered MCF7 ESR1 mutant cell model recently
reported by Arnesen et al.39 (Supplementary Fig. 3c) and in our
T47D ESR1 mutant cells27 (Supplementary Fig. 3d). Of note, no
consistent and strong alterations of luminal and basal gene sets
enrichment levels were detected in ESR1 WT endocrine resistant
ER+ breast cancer cell models21,40–47 (eight tamoxifen resistant,
two fulvestrant resistant, and seven long-term estradiol depriva-
tion (LTED) models), suggesting that the “basal-ness” shift is a
unique feature acquired as a result of ESR1 mutations
(Supplementary Fig. 3e).

We next sought to extend our findings to clinical specimens
using RNA-seq data composed of 51 intra-patient matched ER+
primary-metastatic tumor pairs (7 ESR1 mutant and 44 ESR1WT
pairs) (Supplementary Table 1). Similar to observations in cell
lines, ESR1 mutant metastatic breast cancers showed a significant
enrichment of basal gene signatures compared to tumors with
WT ESR1 (Fig. 1e). We did not observe a concurrent decrease of
luminal markers (Fig. 1f). Taken together, these findings
suggested a unexpected gain of “basal-ness” in ESR1 mutant
tumors.

Basal cytokeratins are elevated in ESR1 mutant breast cancer
cells and tumors. We next interrogated the union of the five basal
gene sets (N= 742) to identify which basal marker genes were
consistently induced in ESR1 mutant breast cancer cells. Inte-
grating RNA-seq results from MCF7 cell models27 and clinical
samples identified a group of basal cytokeratins (BCKs) (KRT5,
KRT6A, KRT6B, KRT14, KRT16, and KRT17) as the top con-
sistently increased basal markers (Fig. 2a and Supplementary
Fig. 4a and Supplementary Table 2). Elevated basal cytokeratins
mRNA levels were further confirmed in independent qRT-PCR
experiment in ESR1 mutant MCF7 cells (Fig. 2b). Analyzing
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fold-change expression of all basal markers in a number of MCF7
ESR1 mutant cell models previously described25,27,39 revealed
KRT5,16 and 17 as the top increased basal genes (Supplementary
Fig. 4b–d). In the T47D ESR1 mutant cells, KRT16 was sig-
nificantly increased (Supplementary Fig. 4e), but the observed
enrichment of basal marker genes (Supplementary Fig. 3d) was
also driven by other non-canonical basal genes such as WLS and
HTRA1 (Supplementary Table 3), suggesting some context-
dependent mechanisms for the increased basalness.

We also queried KRT expression in overexpression models. In
MCF7 cells with stable overexpression of HA-tagged WT and
mutant ER (Y537S and D538G) (Supplementary Fig. 5a and 5b),
we again observed significant overexpression of KRT5, KRT6A,
KRT6B, KRT16, and KRT17 (Supplementary Fig. 5c).

Given higher BCK mRNA expression in ESR1 mutant cells, we
examined their expression at the protein level. We confirmed
higher CK5 and CK16 protein levels in early passage (P6-8) ESR1
mutant cells, but curiously expression was not detectable in later
passages (P30-32) (Supplementary Fig. 6a). This finding was
consistent with prior reports on slower growth of CK5+ sub-
populations48, reflecting selection forces eliminating BCK-
positive subclones from luminal cell populations. To determine
whether BCK expression was limited to minor sub-populations in
ESR1 mutant cells, we performed IF staining for CK5, CK16, and

CK17 in early passage cells (below P12) (Fig. 2c). No BCK
positive clones were identified in MCF7-WT cells, while 0.5–1%
of Y537S and D538G ESR1 mutant cells exhibited strong diffuse
cytoplasmic CK5/16/17 expression. In addition, 3–5% of ESR1
mutant cells displayed strong BCK signals localized as foci
adjacent to the nucleus (Supplementary Fig. 6b), and this was
again not observed in the WT cells. Furthermore, co-staining of
CK5+ CK16 and CK16+CK17 showed that the BCK proteins
were predominantly (in 75–90% imaged cells) upregulated in the
same sub-population of cells (Supplementary Fig. 6c, d). In
contrast, luminal cytokeratin CK8 was homogenously expressed
with stronger expression at the edges of each cell cluster
(Supplementary Fig. 6e), suggesting that the marked hetero-
geneity was a unique feature for BCK expression in the luminal
cell background. Importantly, the heterogenous expression of
CK5 and CK17 was confirmed in an ER+ liver metastatic lesion
harboring an Y537S mutation (Fig. 2e, f and Supplementary
Fig. 4f).

BCK induction is independent of mutant ER DNA binding but
requires low ER expression. Mutant ER can function in a ligand-
independent manner26,27, and we thus tested whether induction
of BCKs resulted from ligand-independent ER activity. We

Fig. 1 Basal breast cancer gene sets are enriched in ESR1 mutant breast cancers. a Five pairs of luminal/basal gene sets applied in this study with gene
numbers specified in each set. b Venn diagram representing the overlap of genes from the basal (left) and luminal (right) gene sets. Genes overlapping in
at least four gene sets are indicated. c, d Dot plots showing GSVA score of the five pairs of basal (c) and luminal (d) gene sets enrichment in MCF7
genome-edited cell models. Four biologically independent replicates were used from the original RNA-seq data set (GSE89888) for one time computation.
Scores from luminal (n= 33) and basal (n= 39) breast cancer cell lines were used as positive controls. Data are presented as mean ± SD. Dunnett’s test
(two-sided) was used to compare with WT-vehicle set within each gene set. e, f Box plots representing basal (e) and luminal (f) gene set enrichments in
intra-patient matched paired primary-metastatic samples. Delta GSVA score for each sample was calculated by subtracting the scores of primary tumors
from the matched metastatic tumors. Box plots span the upper quartile (upper limit), median (center) and lower quartile (lower limit). Whiskers extend a
maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was performed to compare the Delta GSVA scores between WT (N= 44) or ESR1 mutation-
harboring (N= 7) paired tumors. Source data are provided as a Source Data file for c–f.
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interrogated eight publicly available RNA-seq and microarray data
sets with estradiol (E2) treatment in six different ER+ breast
cancer cell lines26,27,49–52. In contrast to strong E2 induction of
classical ER target genes such as GREB1, TFF1, and PGR, expres-
sion of basal and luminal cytokeratins genes was not regulated by
E2 with the exception of KRT7 (Fig. 3a). We then examined
whether BCK expression was regulated via de novo genomic

binding of mutant ER at BCK genes. We performed ChIP-seq in
MCF7 WT and ESR1 mutant cells in the absence and presence of
E2. As expected, in the absence of E2 we detected very few ER
binding sites in WT MCF7 cells (n= 125), whereas E2 stimulation
triggered substantial ER binding events (n= 12,472) (Supplemen-
tary Table 4). Consistent with previous studies25,26, Y537S and
D538G ER show strong ligand-independent binding, with 657

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29498-9

4 NATURE COMMUNICATIONS |         (2022) 13:2011 | https://doi.org/10.1038/s41467-022-29498-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


binding sites in Y537S and 1016 in D538G mutant cells (Supple-
mentary Fig. 7a). The GREB1 gene locus is shown as a repre-
sentative example (Fig. 3b, left panel). Furthermore, intersection
analysis with other reported ChIP-seq data sets of ESR1 mutant
cells revealed considerable intersection ratios (Supplementary
Fig. 7b)25,26,39, despite some inter-model variations. Co-occupancy
analyses between WT-E2 and mutant-vehicle sets demonstrated
that one third of all Y537S (36%) and D538G (31%) ER binding
sites were not detected in the WT+ E2 data suggesting gain-of-
function binding sites (Supplementary Fig. 7c); however, none of
them mapped to the BCKs genes with increased expression in
ESR1 mutant cells (−/+ 50 kb of transcriptional start sites)
(Fig. 3b, middle and right panel). This was further corroborated in
four additional ER ChIP-seq data sets in MCF7 ESR1 mutant cell
models25,26,39 (Supplementary Fig. 7d).

We then expanded our analyses and examined potential
estrogen-regulation of all basal marker genes, again using the
union of the five basal gene sets (N= 742). Comparison of E2 and
ESR1 mutation-conferred fold changes of these genes in MCF7
cells revealed that the top upregulated basal markers in ESR1
mutant cells were not E2-induced (Supplementary Fig. 7e, f). In
addition, only 23 basal genes (3%) harbor mutant ER binding
sites at −/+ 50 kb of TSS (Supplementary Fig. 7g), and 20 of
those were not differentially expressed between WT and mutant
cells (Supplementary Fig. 7h). Taken together, these analyses
suggest that the shift to “basal-ness” in ESR1 mutant cells was not
mediated via ligand-independent binding of mutant ER to BCK
gene loci.

To further understand interplay between ESR1 and KRT gene
expression, we determined expression of basal and luminal KRT
genes in ER+ primary breast tumors. As shown in Fig. 3c, the six
BCKs were significantly negatively correlated with ESR1 expres-
sion, whereas the luminal KRT were mostly positively correlated
with ESR1 (Fig. 3c). Luminal KRT7 was again the exception, being
negatively correlated with ESR1 expression, in line with it being
repressed by ER (Fig. 3a). The inverse correlation between BCK
and ESR1 expression was also reflected in results from ER
knockdown experiments, in which loss of ESR1 significantly
increased expression of BCKs in MCF7 WT and mutant cells
(Fig. 3d). Similar results were obtained in five additional ER+
breast cancer cell lines, where we observed a general increase of
BCK expression after ESR1 knockdown (Supplementary Fig. 8).
In addition, co-staining of ER and CK5/CK16/17 in MCF7 ESR1
mutant cells showed significantly lower ER expression in BCK+
cells than in the surrounding BCK- cells (Fig. 3e). Collectively,
these data demonstrate that ER serves as a negative regulator of
BCKs expression independent of ligand and mutational status,
and suggest that low ER expression is likely necessary but not
sufficient to facilitate BCKs overexpression in a subpopulation of

ESR1 mutant cells. These data also support a role for mutant ER
in regulating BCK expression via epigenetic regulation, a
mechanism that we have recently shown to be used by mutant
ER39.

PR regulation of BCK expression through binding at a CTCF-
driven chromatin loop at the KRT14/16/17 loci in ESR1mutant
cells. To investigate potential epigenetic regulation of KRT5/6A/
6B and KRT14/16/17, we first compared their regional epigenetic
landscapes on chromosome 12 and 17, respectively, in luminal
and basal breast cancer cell lines and tumors (Supplementary
Fig. 9). Integrative analysis of ATAC-seq and ChIP-seq profiles of
H3K4me2, H3K4me3, H3K9ac, and H3K27ac suggested that
these two regions are epigenetically silent in MCF7 (Supple-
mentary Fig. 9a), consistent with low expression. In basal breast
cancer cell lines and tumors, there is an enrichment of H3K27
acetylation (Supplementary Fig. 9b) and number of ATAC-seq
peaks (Supplementary Fig. 9c) at BCK loci, consistent with
increased mRNA expression (Supplementary Fig. 9d–f). This is
also observed in ESR1 mutant cell models (Supplementary
Fig. 9g).

We recently reported CCCTC-binding factor (CTCF) motif as
one of the top enriched motifs in unique ESR1 mutant-regulated
accessible genomic regions39. To determine whether CTCF has a
role in the epigenetic regulation of BCK, we developed a CTCF
gene signature by identification of the top 100 differentially
expressed genes before and after CTCF knockdown in MCF753

(Supplementary Data 1). The positively correlated CTCF
signature (i.e., using genes that were repressed after CTCF
knockdown) was significantly enriched in both MCF7 ESR1
mutant cells (Fig. 4a) and metastatic tumors (Fig. 4b) compared
to their WT counterparts, whereas E2 stimulation had no effect
(Fig. 4a). CTCF is a multimodal epigenetic regulator in breast
cancer54, in part through generating boundaries of insulated
neighborhoods and guiding of DNA self-interaction55. Mapping
the genomic occupancy of CTCF and three other cohesion
complex members (RAD21, STAG1 and SMC1A) in MCF7
cells56–58 (Fig. 4c) identified five putative insulated neighborhood
boundaries at the KRT14/16/17 (Fig. 4d) loci and three at the
KRT5/6A/6B (Supplementary Fig. 10a) loci. Integration of an
additional MCF7 CTCF ChIA-PET dataset59 showed that a
strong chromatin loop is predicted to span the KRT14/16/17
genes, further supported by the pattern of convergent CTCF
motif orientations at the predicted insulated neighborhood
boundaries (Fig. 4c) and visualization of a Hi-C data set in
MCF7 cell line42 (Supplementary Fig. 10b). Since the KRT5/6A/
6B locus did not harbor strong chromatin loops (>3 linkages), we
focused our further analysis on the KRT14/16/17 locus.

Fig. 2 Overexpression of basal cytokeratins (BCK) in ESR1mutant breast cancer cells and tumors. a Correlation between basal gene fold changes (FC) in
MCF7-Y537S/D538G cells (normalized to WT vehicle) and intra-patient paired mutant tumors (normalized to WT tumors) (N= 742). Consistently
increased or decreased genes in the two MCF7 mutant cells and tumors compared to their WT counterparts were highlighted in red or blue respectively,
and six basal cytokeratin genes are indicated. Inconsistently changed genes among the three comparisons are labeled in black. b KRT5/6A/6B/14/16/17
mRNA levels in MCF7 WT and ESR1 mutant cells. Relative mRNA fold change normalized to WT cells and RPLP0 levels measured as the internal control.
Each bar represents mean ± SD with three biological replicates. Representative results from three independent experiments are shown. Dunnett’s test
(two-sided) was used to compare BCKs expression levels between WT and mutant cells. c Representative images of immunofluorescence staining on CK5,
CK16, and CK17 in MCF7 WT and ESR1 mutant cells. Regions with CK positive cells were highlighted in the magnified images. MDA-MB-468 was included
as positive control. Images were taken under ×20 magnification. d Quantification of percentages of CK positive cells in MCF7 WT and ESR1 mutant cells.
Each bar represents mean ± SD from four different regions. Data shown are from one representative experiment of three independent experiments.
Dunnett’s test (two-sided) was used to compare BCKs positive cell prevalence between WT and mutant cells. e, f Immunofluorescent (e) and
immunohistochemistry (f) staining of CK5 and CK17 on sections from MCF10A (positive control) and a Y537S ESR1 mutant liver metastasis tissue. Images
were taken under ×10 (IF) or ×20 (IHC) magnification. Subclones with CK5 or CK17 expression were further magnified and highlighted with white arrow.
This experiment was done once on clinical specimens. Source data are provided as a Source Data file for a, b, d.
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ChIP revealed strong enrichment of CTCF binding at the base
of the chromatin loops of the KRT14/16/17 locus in ESR1 mutant
cells, however there was a lack of E2 regulation (Fig. 4e).
Decreasing CTCF levels led to increased expression of KRT14,
KRT16, and KRT17 mRNA levels in ESR1 mutant cells (Supple-
mentary Fig. 10c), potentially reflecting a role for CTCF as
“classical” insulator, suppressing high expression of these BCKs

through the identified super enhancer at the KRT14, KRT16 locus
(Fig. 4f). Given identification of progesterone receptor (PR)
binding sites within this super enhancer, PR’s previously
identified role in regulating KRT5 expression in luminal breast
cancer cells48,60, and finally its overexpression in multiple ESR1
mutant cell models25–27,61 (Supplementary Fig. 10d, e), we tested
whether PR regulates KRT14/16/17 expression.
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PR ChIP-seq revealed a ligand-inducible PR binding sites in
MCF7 cells approximately 32 kb upstream of the KRT14/16/17
loop region62 (Fig. 4f). This PR binding site overlapped with a
curated super-enhancer in MCF7 cells63, which was additionally
supported by strong active histone modifications (Supplementary
Fig. 9). Knockdown of PR partially rescued the increased
expression of KRT14, 16, and 17 in both ESR1 mutants (Fig. 4g,
Supplementary Fig. 10f). We also observed a similar rescue effect
for KRT5 (Supplementary Fig. 10f), consistent with previous
studies60. Identification of double positive (CK17+ and PR+)
cells in a Y537S ESR1 mutant patient-derived xenograft tumor
(HCI-013EI)64 provides further support for regulation of BCK by
PR (Supplementary Fig. 10g). Furthermore, both PR agonist (P4)
and antagonist (RU486) treatment increased KRT5, 16, and 17
expression in Y537S ESR1 mutant cells, while only RU486
triggered KRT5 and KRT16 expression in D538G mutant (Fig. 4h
and Supplementary Fig. 10h). The marked induction effect of
RU486, a PR antagonist, is likely due to its previously reported
partial agonism via recruitment of coactivators65. The RU486-
induced CK5 and CK16 increase was further examined by IF,
where CK5 (Supplementary Fig. 10i) and CK16 (Fig. 4i, j) positive
cells increased from 1 to 5%. Of note, CK17 positive cells were
not increased by RU486 treatment (Supplementary Fig. 10j),
suggesting translational efficiency differences between different
BCK subtypes. Together, these data demonstrated that elevated
PR expression in ESR1 mutant cells was essential for BCKs
induction, and this was possibly due to an orchestration with a
super enhancer which is accessible to regulate KRT14/16/17 genes
via the CTCF-driven chromatin loop.

Since glucocorticoid receptor (GR, NR3C1) shares similar
response motif with PR, we tested whether GR could also activate
BCKs expression in ESR1 mutant cells. Unlike the substantial
overexpression of PR, GR expression was moderately repressed in
ESR1 mutant MCF7 cells (Supplementary Fig. 11a). Knockdown
of GR increased expression of BCKs (except KRT17) in both ESR1
WT and mutant cells (Supplementary Fig. 11b), and GR binding
was identified at the super enhancer region at KRT14/16/17 loci
(Supplementary Fig. 11c). These data suggest that although GR
can bind to regulatory regions in keratin genes, it is unlikely to
play a causative role in BCK induction observed in ESR1
mutant cells.

Enhanced immune activation, associated with S100A8-S100A9
secretion and signaling in ESR1 mutant tumors. Finally, we
investigated whether the increased expression of basal genes in
ESR1 mutant tumors confers basal-like features and potentially
novel therapeutic vulnerabilities. To identify basal cytokeratin-
associated pathways enriched in ER mutant tumors, we at first
identified ER+ tumors with the top and bottom quantile of BCK

gene enrichment and then computed hallmark pathways differ-
entially enriched between these two groups (Supplementary
Fig. 12a). Intersection of these BCKs-associated pathways with
those enriched in ESR1 mutant metastases uncovered seven
shared molecular functions, the top five of which are all related to
immune responses (Fig. 5a and Supplementary Figs. 12b, S12c
and Supplementary Table 5). An orthogonal approach—bioin-
formatic evaluation using ESTIMATE66—confirmed the unique
enhancement of immune activation in BCK-high vs. BCK-low
ER+ tumors which is not seen in ER-/HER2+ or TNBC subtypes
(Supplementary Fig. 12d), albeit overall it is still lower than in
basal tumors (Fig. 5b). In addition, BCK-high tumors displayed
higher lymphocyte and leukocyte fractions according to a recent
biospecimens report67 (Fig. 5c), and higher PDCD1 mRNA levels
(Supplementary Fig. 12e). Intriguingly, patients with BCK-high
ER+ tumors experience improved outcomes in univariable and
multivariable analysis (Fig. 5d and Supplementary Fig. 12f), and
although entirely speculative at this point in time, one could
hypothesize that this might be due to increased anti-tumor
immune activation.

Similar to BCK-high ER+ tumors, ESR1 mutant metastatic
tumors exhibited higher immune scores compared to those with
ESR1 WT (Fig. 5e). Immune cell subtype deconvolution68,69

revealed significantly higher CD8+ T, NK, and dendritic cells,
along with macrophages in ESR1 mutant tumors. The higher
CD8+ T cell scores were also observed in BCK-high primary
tumors in TCGA and METABRIC (Supplementary Fig. 12g). In
addition, immune checkpoint expression analysis revealed higher
expression of VISTA in ESR1 mutant tumors (Supplementary
Fig. 12h), which has been characterized as a key suppressor of T
cell-associated immune response in human cancer70 and can be
pharmacologically targeted71. Basal breast cancers harbor high
immune infiltrations at least in part due to higher tumor
mutation burden (TMB)72, however, we did not detect higher
TMB in BCK-high vs. low ER+ tumors (Supplementary Fig. 12i).

To understand which factors might contribute to immune
activation in ESR1 mutant and BCK-high ER+ tumors, we
compared gene expression of major immune genes derived from
ESTIMATE73 (n= 141) between ESR1 mutant and WT tumors,
and BCK-high vs. BCK-low ER+ tumors. This analysis identified
S100A8 and S100A9 as the two top consistently increased
immune-related genes (Fig. 6a), and this overexpression was also
seen in MCF7 ESR1 mutant cell models (Supplementary Fig. 12j).
S100A8 and S100A9 are pro-inflammatory cytokines that form
heterodimers and play crucial roles in shaping immune
landscapes45,46. As expected, S100A8/A9 expression correlated
positively with immune scores in ER+ tumors (Fig. 6b), however,
S100A8/A9 expression did not associate with improved survival,
suggesting a more complex role in this context (Supplementary

Fig. 3 Basal cytokeratins induction is independent of mutant ER genomic binding but requires low ER expression. a Heatmap representing fold change
mRNA expression (E2/veh) of six basal cytokeratins and four luminal cytokeratins in ER+ breast cancer lines from six publicly available data sets
(GSE89888, GSE94493, GSE108304, GSE3834, GSE38132, and GSE50693). GREB1, PGR, and TFF1 are canonical E2-regulated genes included as positive
controls. b Genomic track showing ER binding intensities at KRT5/6A/6B and KRT14/16/17 loci from ER ChIP-seq data sets of MCF7 ESR1 mutant cells.
GREB1 locus serve as a positive control. c Graphic view of Pearson correlation between expression of ESR1 and each basal or luminal cytokeratin in ER+
breast tumors in TCGA (n= 808) and METABRIC (n= 1505) cohorts. Color scale and size of dots represent correlation coefficient and significance,
respectively. d qRT-PCR measurement of ESR1, KRT5/6A/6B/14/16/17 mRNA levels in MCF7 WT and ESR1 mutant cells with ESR1 siRNA knockdown for
7 days. mRNA fold changes were normalized to WT cells; RPLP0 levels were measured as internal control. Each bar represents mean ± SD with three
biological replicates. Data shown are representative from three independent experiments. Student’s t-test (two-sided) was used to compare the gene
expression between scramble and knockdown groups. e Representative images of ER, CK5, CK16, and CK17 staining in MCF7-Y537S and D538G cells.
BCKs positive cells are highlighted with white arrows. Images were taken under ×20 magnification. f Dot plots quantifying the ER intensities in BCKs
positive (blue) and the corresponding proximal negative (red) cells from each region. Individual data points from five different regions per group from one
experiment, representative of three independent experiments are shown. Paired t-test (two-sided) was applied to compare ER intensities between BCKs
positive and negative cells. Source data are provided as a Source Data file for a, c, d, f.
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Fig. 12k). BCKs levels failed to differentiate immune scores in
ER+ tumors among the subset of tumors exhibit high S100A8-A9
(Fig. 6b). S100A8/A9 are secreted proteins and function as
heterodimers. To confirm S100A8/A9 protein overexpression, we
measured S100A8/A9 heterodimer levels in plasma samples from
patients with ESR1 WT (n= 7) and mutant (n= 11) tumors
(Supplementary Table 6) (Fig. 6c). This analysis revealed
significantly higher circulatory S100A8/A9 heterodimers

concentrations in plasma from patients with ESR1 mutations
(Fig. 6d).

S100A8-A9 heterodimer mainly stimulates downstream cas-
cades through two receptors: toll-like receptor 4 (TLR4) and
receptor for advanced glycation end products (RAGE), and both
of them are widely reported to impact cancer immunity. A further
gene set variation analysis in WCRC/DFCI primary-matched
paired metastatic samples revealed consistent enrichment of both
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pathways in ESR1 mutant tumors (Fig. 6e and Supplementary
Data 1), suggesting both TLR4 and RAGE signaling are
hyperactive in ESR1 mutant tumors. However, in vitro stimula-
tion of human-derived macrophages with S100A8/S100A9
purified proteins failed to induce cytokine production (Supple-
mentary Fig. 12l), possibly due to required interaction of the
S100A8/S100A9 heterodimer with additional factors from the
tumor microenvironment.

To further elucidate the specific cell–cell communication by
S100A8/S100A9 signaling in the tumor ecosystem, we analyzed
RAGE and TLR4 signaling via measuring ligand and receptor
expression in different cell types using single-cell RNA-seq data
from two breast cancer metastases. Highest expression of S100A8/
S100A9 was seen in epithelial cells, followed by fibroblast and
macrophages (Fig. 6f, g). This was confirmed by immunofluor-
escent staining in the Y537S liver metastatic tissue, where we
found S100A8/A9+ cells overlapped with approximately 60% and
40% EpCAM+ and CD45+ cells, respectively (Fig. 6h, i),
validating that epithelial cancer cells are a prevalent source for
S100A8/A9 production in the ecosystem. In contrast, TLR4 and
AGER showed low expression in the epithelial cells, but instead
were widely expressed in the stroma, especially in fibroblasts and
macrophages. In general, AGER displayed lower expression levels
in all cell types compared to TLR4 (Fig. 6f, g).

Taken together, these data support the concept that the
increase in basal-ness of ESR1 mutant tumors is associated with
immune activation, in part facilitated by the paracrine S100A8/
A9-TLR4 signaling.

Discussion
Recurrence of ER+ breast cancer causes over 24,000 deaths each
year in the US alone. Given that ESR1 mutation occur in as many
as 20–30% of metastatic recurrences, it is imperative to identify
therapeutic vulnerabilities through dissecting mechanisms of
action. In this study we have uncovered a previously unrecog-
nized plasticity of ESR1 mutant cells, reflected by enrichment of
basal subtype genes in ESR1 mutant tumors and in particular a
gain of BCK expression, resulting from epigenetic reprogram-
ming of a mutant ER-specific PR-linked chromatin loop. This
molecular evolution, i.e., an increase of basal-like feature in the
ESR1 mutant tumors was associated with immune activation
including enhanced S100A8/A9-TLR4 signaling (Fig. 7).

Increased plasticity of tumors has previously been shown to be
associated with tumor initiation and progression21,47,74–76.
PAM50 intrinsic subtype switching has been described to occur in
as many as 40% of breast cancer metastases20. Here we show that
ESR1 mutant cells gain basal-ness, and a similar observation was
recently reported by Gu et al.77 showing a luminal to basal switch

in MCF7 ESR1 Y537S CRISPR cells compared to parental cells.
However, luminal to basal subtype switching is rare in breast
cancer20 and we have previously reported on clinically relevant
gene expression changes in brain metastases (increased in HER2
gene expression) without clear subtype switching18. These results
are in line with the increasing appreciation of the molecular
subtypes being on a continuum rather than representing discrete
stages. Of note, we did not observe a similar gain of basal-ness in
a series of ESR1 wildtype endocrine resistant in vitro models, with
the exception being a study revealing a “luminal-to-basal” switch
in an estradiol-deprived T47D xenograft derived cell line, indi-
cating a potential role for the microenvironment in mediating a
similar switch in ER wildtype tumors78.

We propose that the observed ESR1 mutant-cancer cell state
interconversions are of potential clinical relevance due to
increased stromal immune activation associated with the induc-
tion of BCK. Using in silico gene expression, pathway analyses,
and pathology information, we observed increased activation of a
number of immune-related pathways including S100A8/S100A9-
TLR4 signaling and increased lymphocytic infiltration. S100A8/
S100A9 heterodimers exhibit pro-inflammatory properties in
different contexts in breast cancer79,80, are associated with poor
prognosis in multiple cancer types36 including breast cancer81,
and blockade of their activity improves survival82. We observed
increased S100A8/S100A9 levels in blood from patients with
ESR1 mutant tumors but given complexity of tumor-cell intrinsic
and extrinsic roles of the inflammatory mediators and their
receptors (also supported by our single cell sequencing analysis)
additional work is needed to understand if and how they con-
tribute to tumor progression in patients with ER mutant tumors.
Notably, we failed to detect effects of S100A8/S100A9 using an
in vitro system, suggesting the need for more complex model
systems including in vivo models. This will also allow the analysis
of MDSC which have been described to play an important role in
S100A8/A9 function80,83. This is also supported by our recent
studies showing an enrichment of immune-suppressive macro-
phages in ER mutant tumors, along with increased expression of
interferon regulated genes84. Additional multi-center studies are
necessary to comprehensively characterize immune infiltration in
ESR1 mutant tumors, including the analysis of spatial hetero-
geneity, as a recent study demonstrates that spatial clustering of
immune cells (Immune Spatial Score) is linked to poor
recurrence-free survival in ER+ breast cancers85. Immune acti-
vation by S100A8/A9 may reshape the architecture of cancer-
immune ecosystem. Nevertheless, our data suggest the enhanced
immune activation in ESR1 mutant breast cancers as a ther-
apeutic vulnerability. There is data showing enhanced immune
filtrations were associated with worse outcome of ER+ breast

Fig. 4 PR regulation of BCK expression through binding at a CTCF-driven chromatin loop. a, b Enrichment levels of CTCF gene signature in MCF7 ESR1
mutant cells (n= 4) (a) and ESR1 WT (n= 44) and mutant (n= 7) metastases (b). Box plots span the upper quartile (upper limit), median (center) and
lower quartile (lower limit). Whiskers extend a maximum of 1.5× IQR. Dunnett’s test (two-sided) (a) and Mann–Whitney U-test (two-sided) was used. c, d
Genomic track illustrating the CTCF and cohesion complex (c) binding and CTCF-driven chromatin loops (d) at KRT14/16/17 proximal genomic region in
MCF7 cells. CTCF motif orientations of each peak is labeled with arrows. Y-axis represents signal intensity of each track. e CTCF binding events at binding
sites 1 and 5 in c. Each bar represents mean ± SD of fold enrichment normalized to IgG from three independent experiments. Pair-wise t-test (two-sided)
was performed. f Genomic track view of PR ChIP-seq in MCF7 cells under R5020 and progesterone treatments. Y-axis represents signal intensity under the
same scale. Super enhancer range is highlighted. g KRT14, 16, and 17 mRNA levels in MCF7 ESR1 WT and mutant cells with PGR siRNA knockdown for
7 days. Each bar represents mean ± SD of fold changes normalized to WT cells with three biological replicates as a representative from three independent
experiments. Student’s t-test (two-sided) was used. h KRT16 and 17 mRNA levels in MCF7 ESR1 WT and mutant cells treated with 0.1% EtOH, 100 nM P4
or 1 μM RU486 for 3 days. Each bar represents mean ± SD of fold changes normalized to WT cells with three biological replicates as a representative from
three independent experiments. Dunnett’s (two-sided) test was used. i Representative images of immunofluorescence staining of CK5 and CK16 in MCF7
WT and ESR1 mutant cells after 3 day treatment with 1% EtOH or 1 μM RU486. j Quantification of CK positive cells in i. Each bar represents mean ± SD
from eight different regions combining from two independent experiments. Student’s t-test (two-sided) was used. Source data are provided as a Source
Data file for a, b, e, g, h, j.
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Fig. 5 Gain of basal cytokeratin expression is associated with enhanced immune activation in ESR1 mutant tumors. a Venn diagrams showing the
intersection of significantly enriched hallmark pathways in three sets of comparisons: BCK-high vs low in 1) TCGA ER+ tumors (n= 202 in each group), 2)
METABRIC ER+ tumors (n= 376 in each group) and 3) ESR1 mutant (n= 7) vs. WT (n= 44) metastatic tumors. BCKs high and low were defined by the
upper and bottom quartiles of each subset. The seven overlapping pathways are shown in a frame, and immune-related pathways are highlighted in red.
b Immune scores based on ESTIMATE evaluations in basal tumors (METABRIC n= 328; TCGA n= 190), BCK-high (METABRIC n= 376; TCGA n= 202)
and low (METABRIC n= 376; TCGA n= 202) subsets of ER+ tumors. Box plots span the upper quartile (upper limit), median (center) and lower quartile
(lower limit). Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was used for comparison. c Lymphocytes and leukocyte
fractions67 comparisons among TCGA basal subtype tumors (n= 161), ER+ BCK-high (n= 163) and low (n= 179) tumors. Box plots span the upper
quartile (upper limit), median (center) and lower quartile (lower limit). Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was
applied. d Kaplan–Meier plots showing the disease-specific survival (DSS) (METABRIC) and overall survival (OS) (TCGA) comparing patients with ER+
BCKs high vs. low tumors. Censored patients were labeled in cross symbols. Log-rank test (two-sided) was used and hazard ratio with 95% CI were
labeled. e Immune scores based on ESTIMATE evaluations in ESR1 mutant (n= 7) and WT metastatic (n= 44) lesions. Box plots span the upper quartile
(upper limit), median (center) and lower quartile (lower limit). Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was used.
f Dot plot showing the enrichment level alterations of immune cell subtypes in ESR1 mutant metastatic lesions using Davoli68 and Tamborero69 signatures
between ESR1mutant (n= 7) and WT (n= 44) tumors. Significantly increased immune cell subtypes in ESR1mutant tumors were labeled in red (p < 0.05).
Source data are provided as a Source Data file for b–f.
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cancer86, opening up the possibility that BCK-associated immune
alterations might contribute to the inferior outcome of patients
with ESR1 mutant breast cancer. The undoubtedly complex role
of immune infiltrates in ER+ breast cancer, particularly in the
setting of ESR1 mutant disease, requires further thorough inves-
tigation. Intriguingly, our analysis revealed the immune check-
point gene VISTA to be upregulated in ESR1 mutant tumors.

VISTA occupies a unique position as a candidate for cancer
immune therapy. Several pre-clinical studies have showed VISTA
blockade could efficiently enhance immune activation and abro-
gated tumor immune escape87. In addition, two VISTA antago-
nists, JNJ-61610588 and CA-170 are currently under evaluation
in clinical trials71, suggesting the necessity of elucidating the role
of VISTA in ESR1 mutant breast cancer using comprehensive
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immune competent models. Together, these data imply oppor-
tunities for immune therapies for patients with ER mutant
tumors that should be analyzed further.

We and others26,27,39 previously identified genes that have
altered expression in ESR1 mutant cells but are not E2 regulated
in WT cells. Here, all six BCK belong to this group of gain-of-
function target genes according to ER ChIP-seq. Technically, our
ChIP-seq exhibited fewer peaks compared other reported
models25,26,39. This could be possibly owning to our more
stringent hormone deprivation protocol or the brand/batch of
charcoal-stripped serum utilized in the experiment, which could
largely influence the sensitivity of readout detection88. Never-
theless, our ChIP-seq data showed considerable overlapped pro-
portion with our data sets and all these ER ChIP-seq supported
that BCKs are not regulated as a result of ligand-mimicking nor
de novo transactivation by mutant ER, and their expression is
strongly and negatively correlated with ER levels. A similar cor-
relation was also observed with P4-induced CK5+ luminal breast
cancer cells displaying low ER and PR levels60. One possible
explanation is that ER, regardless of its liganded status or geno-
type, serves as a direct epigenetic suppressor that represses BCK
expression to maintain luminal identity. For example, it has been
shown that ER silences basal, EMT and stem cell related genes by

recruiting pivotal methyl-transferases like EZH2 and DNMTs to
reshape the DNA and histone methylation landscape89. This
could also explain why BCKs mRNAs are increased upon ER
knockdown despite PR downregulation: ER and PR control BCK
expression through two independent routes. PR only triggers
BCKs expression via transcriptional activation on the basis of
unique insulated neighborhoods in ESR1 mutant cells, whereas
ER serves as a higher-level epigenetic suppressor in both ESR1
WT and mutant cells. Knockdown of ER removes the epigenetic
repression and allows chromatin accessibility for multiple tran-
scriptional activators, which turns on BCKs expression regardless
of PR downregulation. We can not exclude an important role of
additional ESR1 mutant-specific transcriptional regulator beyond
PR, although our data lead us to exclude GR. More studies are
required to further elucidate the regulatory network between ER,
PR, and BCKs. Given bi-directional interactions between tumor
and stromal cells in BCK regulation, it will be important to
perform future studies in improved model systems such as those
recently described for analysis of complex regulation of CK14
expression and function90.

Assessment of BCK expression revealed that a 50-fold increase
in mRNA was reflected in only ~1% cells being positive for BCK
protein. This finding is consistent with a previous study showing

Fig. 6 Immune activation in ESR1mutant tumors is associated with S100A8/A9-TLR4 paracrine crosstalk. a Expressional fold changes of immune genes
from ESTIMATE (n= 141)73 comparing ER+ BCK-high vs. low tumors (TCGA and METABRIC) and ESR1 WT/mutant tumors. Consistently increase,
decreased or inconsistent genes in are highlighted in red, blue, and black. b BCK-high and low quantiles of ER+ tumors were further divided by the mean of
S100A8 and S100A9. Immune scores were compared across all four subsets (n= 188 and 101 per group of METABRIC and TCGA) together with basal
tumors (n= 328 METABRIC and n= 190 TCGA). Box plots span the upper quartile (upper limit), median (center) and lower quartile (lower limit).
Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was used. c Graphical presentation of experimental strategy of d. d S100A8/
9 heterodimer concentrations in plasma from patients with ESR1 WT (n= 7) and mutant (n= 11) metastatic breast cancer. Box plots span the upper
quartile (upper limit), median (center) and lower quartile (lower limit). Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was
utilized. This experiment was done once. e TLR4 and RAGE signature enrichments between ESR1 mutant (n= 7) and WT (n= 44) tumors. Delta GSVA
score was calculated by subtracting the scores of primary tumors from the matched metastatic tumors. Box plots span the upper quartile (upper limit),
median (center), and lower quartile (lower limit). Whiskers extend a maximum of 1.5× IQR. Mann–Whitney U-test (two-sided) was performed. f Violin
plots showing expression of four genes by log2 normalized counts in different cell subtypes using single-cell RNA-seq data from two ER+ bone metastases.
g Percent of cells expressing S100A8, S100A9, TLR4, and AGER, using single cell RNA seq data shown in f. h Immunofluorescent staining of S100A8/A9
with CD45 or EpCAM in a Y537S ESR1 mutant liver metastasis. Double positive cells are pointed out and magnified. This experiment was done once.
i Percentage of S100A8/A9+ cells overlapped with EpCAM+ or CD45+ cells. Data were quantified based on six representative regions of the section.
Source data are provided as a Source Data file for a, b, d–g, i.

Fig. 7 Graphical presentation of proposed mechanisms and relevance of basal cytokeratin induction in ESR1 mutant breast cancer. ESR1 WT cells
exhibit low basal cytokeratin expression with baseline insulated neighborhood prevalence spanning KRT14/16/17 loci. In contrast, a minor subpopulation of
ESR1 mutant cells exhibit strong basal cytokeratin expression, due to PR activated enhancer at the KRT14/16/17 gene locus-spanning insulated
neighborhoods. Increased expression of basal cytokeratin is associated with immune activation in ESR1 mutant tumor similar to that seen in basal tumors,
at least in part mediated via enhanced S100A8/A9-TLR4 paracrine crosstalk between epithelial and stromal cells, including macrophages. Figure is
generated using BioRender.
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that P4 stimulation of breast cancer cells caused a 100-fold
induction of CK5 promoter activation ultimately translating to
1–10% of cells positive for CK5 protein60. In addition, dis-
cordance between mRNA and protein of CK7 and CK14 in breast
cancer tissue has been documented91. It is possible that BCK
protein translation in luminal cells is aberrant, resulting in poorly
localized or transported protein, consistent with our detection of
BCK protein foci rather than the broad distribution pattern over
full cytoskeleton similar to what has been previously reported for
example for formation of CK17 foci. The discordance in mRNA
and protein expression may be due to the cell heterogeneity, with
individual cells having high mRNA and protein compared to the
negative population, potentially due to heterogenous expression
of miRNAs regulating BCK expression92. These BCKs positive
cells might be pre-selected by multiple genetic and epigenetic cues
including but not limited to low ER expression and chromatin
loop formation as identified in our study. The discordance
between mRNA and protein expression may also help to explain
differences in prognosis using mRNA expression profiling like in
our study vs IHC in previous studies93,94.

We provide evidence to support BCK as emerging biomarkers
of ESR1 mutant breast cancer and its prognosis, yet their direct
functional impact remains ambiguous. CK14 positive cells typi-
cally lead collective invasion across major subtypes of breast
cancer cells95, and this is in line with previously identified
enhanced cell migration in ESR1 mutant cells96. In addition, as
previously described, CK5 positive luminal cells acquire stem-like
properties and chemotherapy resistance48,60. Importantly, we
found several other consistently increased basal marker genes
such as interferon-alpha inducible protein 27 (IFI27). Previous
studies have reported a role of IFI27 in regulating innate
immunity in breast cancer97 and cisplatin resistance in gastric
cancer36. Thus, the “basal-ness” shift might confer several broad
functional alterations to ESR1 mutant tumors.

We identified a PR-orchestrated insulated neighborhoods at
the KRT14/16/17 genomic locus in ESR1 mutant cells, and we
propose that the simultaneous generation of a de novo CTCF
loop and ER ligand-independent PR overexpression is necessary
for KRT14/16/17 in ESR1 mutant cells. Intriguingly, knockdown
of CTCF selectively increased KRT14/16/17 mRNA levels whereas
knockdown of PR blocked their induction in ESR1 mutant cells.
This unexpected discrepancy may highlight that CTCF binding
may simultaneously serve as a transcriptional insulator to restrict
KRT14/16/17 in an inactive compartment54,98. Importantly, data
indicates that CTCF knockdown alone is not sufficient to elim-
inate insulated neighborhoods but instead promotes the forma-
tion of new chromatin interactions that alter gene expression99.
We also unexpectedly found that both PR agonist P4 and PR
antagonist RU486 elevated BCK expression, which was incon-
sistent with previous reported findings where P4 and RU486
exhibited opposite effects in regulating CK560. Given RU486 is
well-characterized for its partial agonism, it is possible that ESR1
mutant cells uniquely express a particular strong PR coactivator
that confers the partial agonism of RU486 in this context.
Another possibility is that RU486 alternatively stimulates other
nuclear receptors such as glucocorticoid93,100 or potentially even
androgen receptor101 to reprogram BCKs expression. The
reversed PR pharmacological response in ESR1 mutant cells is
intriguing and warrants future investigation.

Our study discovered a unique aspect of ESR1 mutant cells and
addressed the underlying mechanisms as well as its clinical
relevance, albeit with some remaining limitations, such as limited
numbers of clinical samples due to inherent difficulties of
obtaining metastatic tissues. The enhanced immune infiltration
requires additional validation by TIL counting on ESR1 mutant
tumor sections. Confirmation and studies in in vivo models

should be included into future studies. Our preliminary analysis
in a ESR1 Y541S (mouse ortholog of Y537S mutation) knock-in
mouse model showed overexpression of BCK at RNA and protein
level in mammary tumors102. And finally, the in silico prediction
of enhanced CTCF-driven chromatin loop at the basal cytoker-
atin gene locus requires confirmation by orthogonal approaches,
such as chromosome conformation capture. Nonetheless, our
study serves as a robust pre-clinical report uncovering mechan-
istic insights into ESR1 mutations and their roles in conferring
basal-like feature to ER+ breast cancer and implicates the
immune therapeutic vulnerabilities to this subset of patients.

Methods
The authors confirm that this study complies with all relevant ethical regulations.
The use of human specimens has been approved by the University of Pittsburgh
Human Research Protection Office (HRPO).

Human tissue and blood studies. Fifty-one paired primary matched metastatic
samples were from DFCI (n= 15) and our Women’s Cancer Research Center
(WCRC) (n= 36) cohorts as previously reported103,104. For all WCRC metastatic
samples, ESR1 mutations status were called from RNA-sequencing. For bone/
brain/GI metastatic lesions, ESR1 mutations status were additionally examined
using droplet digital PCR for Y537S/C/N and D538G mutations in ESR1 LBD
region as previously reported105. For DFCI cohort, ESR1 mutations were all called
from matched whole exome sequencing106.

Deidentified samples were obtained from the Pitt Biospecimen Core (PBC) with
patients consenting to either the Breast Disease Research Repository (BDRR) (04-
162) or to HCC-16-082 (STUDY19060376). For the study of de-identified blood,
samples were also obtained from PBC with patients consenting to BDRR (04-162),
and the samples were accessed using STUDY19040404 or STUDY19070357
approved by the University of Pittsburgh Institutional Review Board.

ESR1 mutation detection using droplet digital PCR. Hotspot ESR1 mutation
identification procedure was previously described by us107. In brief, blood samples
were collected in EDTA tubes (BD, #367856) and cfDNA was isolated from plasma
samples using Qiagen circulating nucleic acid kit (#55114). ESR1 ligand binding
domain was pre-amplified in cfDNA and the products were subjected to droplet
digital PCR detection with Y537S/C/N and D538G probes. Droplets were analyzed
using BioRad droplet reader and QuantaSoft software (BioRad, Version 1.7)

Cell culture. Establishments of rAAV-edited MCF7 (Park lab)27, CRISPR-Cas9-
edited MCF7 (Gertz39 and Ali25 lab) and CRISPR-Cas9-edited T47D cells27 were
reported previously. Individual clones were maintained in DMEM, supplemented
with 10% FBS, 100 μg/mL penicillin and 100 mg/mL streptomycin, at 37 °C in a
humidified incubator with 5% CO2. Mutation allele frequencies were confirmed
using ddPCR. For all experiments, hormone deprivation was performed unless
stated otherwise, cells were maintained in phenol-red-free IMEM (Gibco, A10488)
with 5% charcoal-stripped serum (CSS, Gemini, #100-119), twice a day for three
days. For genome-edited models with multiple clones, individual clones with the
same genotypes were equally pooled for subsequent experiments.

Generation of BCK4 cells has been previously reported108. MDA-MB-468
(HTB-132), MDA-MB-134-VI (HTB-132), MDA-MB-330 (HTB-127), ZR75-1
(CRL-1500) were obtained from ATCC. Cell lines were maintained in the following
media (Life Technologies) with 10% FBS: MDA-MB-468 in DMEM, MDA-MB-
134-VI and MDA-MB-330 in 1:1 DMEM: L-15, ZR75-1 in RPMI and BCK4 in
MEM with nonessential amino acids (Thermo Fisher, #11140050) and insulin
(Sigma-Aldrich, #91077C).

MCF7 (Park lab)/T47D (Oesterreich lab) ESR1 WT and mutant cells (April,
2016), MDA-MB-468 (May, 2020), T47D (February, 2017), ZR75-1 (October,
2016), MDA-MB-134-VI (January, 2020), MDA-MB-330 (January, 2020), and
BCK4 (May, 2020) were authenticated at the University of Arizona Genetics Core
using autosomal STR profiling with specific time indicated. MCF7 WT and Y537S
ESR1 mutant cell model from Ali lab were authenticated by LGC Standards in
March, 2016. MCF7 ESR1 WT and mutant cell lines from Gertz lab were
authenticated as matching the correct parental origin using STR marker analysis in
August, 2017.

Generation of MCF7 stable overexpression ESR1 mutation cell model. To
generate ESR1 mutant overexpression cell models, ESR1 WT and mutant plasmids
in pcDNA3.1 backbone were obtained from Addgene (ESR1-HA-WT #49498;
ESR1-HA-Y537S #49499; ESR1-HA-D538G #49500, Empty vector #V790-20).
MCF7 parental cells (ATCC, HTB-22) maintained in 10% FBS DMEM were
transfected with each of the plasmid and subjected to 500 μg/mL G418 (Thermo
Fisher, #10131035) selection for 3 weeks. G418-containing medium were changed
every 3 days during the selection process. Overexpression of WT and mutant ER
was further examined by immunoblot and ddPCR in pooled clones and used for
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further experiments. MCF7 parental cell line was authenticated at the University of
Arizona Genetics Core using autosomal STR profiling in July, 2017.

Reagents. siRNA against ESR1(L-003401), PGR (L-003433), CTCF (L-020165),
NR3C1 (L-003424) and non-targeting scrambled control (D-001820-01) were
purchased from Horizon Discovery. Progesterone (P1030) and RU486 (m8046)
were obtained from Sigma-Aldrich.

Immunofluorescent staining. MCF7 cells were hormone deprived and seeded on
coverslips. After desired treatments, cells were fixed with 4% paraformaldehyde and
blocked with 3% BSA solution plus 0.1% tritonX-100. Primary antibody against
CK8 (Abcam, ab53280, 1:100), CK5 (Abcam, ab52635, 1:100), CK16 (Abcam,
ab76416, 1:100) and CK17 (Cell Signaling Technology, #4543, 1:100) was applied
to stain the cells. For counterstaining, CK16 (Santa Cruz, sc-53255, 1:100) and ER
(Leica, PA0151, 1:100) mouse monoclonal antibodies were used to combine with
above-mentioned rabbit CK5/16/17 antibodies. Secondary Alexa Fluor 488 or 546-
conjugated antibodies (Thermo Scientific, A11008 & A11018, 1:200) and Hoechst
(Thermo Scientific, #62249) were used following primary antibody incubation.
Coverslips were mounted and images were taken using fluorescence microscope
(Olympus, CZX16) under objective of 20× using cellSens software (Olympus
Version 1.4). CK5/16/17 positivity quantification was performed by dividing cells
with full cytoskeleton CK expression to total cell numbers of each image. For ER
counterstaining quantification, ER signal intensity was quantified using ImageJ for
each CK positive cell and five proximal CK negative cells.

For staining on tissues, samples were fixed in 10% buffered formalin. Tissue was
processed, paraffin embedded, and cut into 5 μm sections. After high-temperature
antigen retrieval in citrate buffer (pH 6.0). Sections were permeabilized with 0.1%
Triton-X100 in PBS and blocked with 10% normal goat serum for 1 h. Sections
were stained with primary antibodies specific for CK5 (rabbit, 1:200, ab75869,
Abcam), CK17 (rabbit, 1:100, ab109725, Abcam), PR (M3569, mouse, 1:100,
Agilent) EpCAM (rabbit, 1:100, ab71916, Abcam), CD45 (rabbit, 1:200, ab10558,
Abcam), or S100A8/9 (mouse, 1:200, NBP1-60157, Novus Biologicals, Littleton,
CO, USA) for 2 h at RT. Sections were stained with secondary antibodies Alexa
Fluor goat-anti-mouse 488 (1:200, A-11001, Life Technologies, Rockville, MD,
USA) and Alexa Fluor goat-anti-rabbit 647 (1:200, A-21245, Life Technologies) for
1 h at RT. Sections were counterstained with Hoechst dye (1:2000 in PBS, Life
Technologies). Slides were mounted using Fluoro-Gel Mounting Medium with Tris
buffer (1798510, Electron Microscopy Sciences, Hatfield, PA, USA). Slides were
imaged using an Olympus IX83 fluorescent microscope or a Nikon A1R confocal
microscope. The HCI-013EI PDX model was obtained from Dr. Alana Welm at
Univesity of Utah, Huntsman Cancer Institute with Material Transfer Agreement
(MTA002948).

Immunohistochemistry staining. Tissue sections were processed as above and
were stained with antibodies specific for CK5 (rabbit, 1:200, ab75869, Abcam,
Cambridge, UK) and CK17 (rabbit, 1:100, ab109725, Abcam) for 2 h at RT. Sec-
tions were blocked using HRP Blocking Reagent (Abcam) EnVision+/HRP
Visualization (Agilent, Santa Clara, CA, USA) and DAB substrate kit (Agilent)
were used to visualize staining. Sections were counterstained with hematoxylin and
mounted with Permount Mounting Medium (Fisher Scientific, Waltham, MA,
USA). Representative photographs were taken under a light microscope at ×20
magnification.

Quantitative real-time polymerase chain reaction (qRT-PCR). Different cell
models were seeded into 6-well plate with 120,000 cells per well using biological
triplicates. After the respective treatments, RNAs were extracted using Qiagen
RNeasy Kit, and cDNAs were synthesized using PrimeScript RT Master Mix
(Takara Bio, #RR036). qRT-PCR reactions were performed with SybrGreen
Supermix (BioRad, #1726275) and data were recorded using CFX Manager soft-
ware (BioRad Version 3.1), and the ΔΔCt method was used to analyze relative
mRNA fold changes and RPLP0 levels were measured as the internal control. All
primer sequences are shown in Supplementary Table 7.

Immunoblotting. Cells were lysed with RIPA buffer plus protease and phosphatase
cocktail (Thermo Scientific, #78442) and sonicated. Protein concentration of each
sample was determined by Pierce BCA assay kit (ThermoFisher, #23225). Forty
microgram (ER, HA, and PR) or 120 µg (CK5 and CK16) proteins were loaded
onto 10% SDS-PAGE gel, and then transferred onto PVDF (ER, HA, and PR blot)
or NC (CK5 and CK16 blot) membrane. The blots were immune-stained with
corresponding antibodies. For ER, HA, and PR blots visualization, Licor blot
fluorescence scanner was used following IRDye 680LT or 800CW secondary
antibodies incubation using Image Studio software (Licor, Version 3.1). For CK5
and CK16 blot, chemiluminescent approach was used following Amersham HRP-
linked secondary antibody (Millipore Sigma (GENA934) and Clarity Western ECL
substrate (BioRad, #1705061) incubation. Antibodies against ER (#8644, 1:1000),
HA-tag (#3724, 1:1000) and PR (#3176, 1:500) were purchased from Cell Signaling.
Tubulin antibody was obtained from Sigma (T5168, 1:5000). Antibody against CK5
(ab52635, 1:500) and CK16 (ab76416, 1:500) were from Abcam. Uncropped blots
images are provided in the Supplementary Fig. 13.

S100A8/S100A9 heterodimer ELISA. Human S100A8/S100A9 heterodimer
amounts in human plasma samples were quantified using S100A8/S100A9 het-
erodimer Quantikine ELISA kit (R&D System, DS8900) following the manufacture
protocol. All plasma samples were first diluted in calibration buffer with 1:50 ratio
and loaded into antibody-coated plate.

Cytokine array with human-derived macrophages. Human-derived monocytes
were obtained from a leukopak from a healthy donor. Monocytes were treated with
M-CSF (Peprotech, 300-025) for 5 days to differentiate into M0 macrophages. Cells
were then treated with medium alone, 100 ng/ml lipopolysaccharide (LPS, Milli-
pore Sigma, L4391) or 10 µg/ml recombinant human S100A8/S100A9 heterodimer
protein (R&D Systems, 8226-S8) for 24 h. Seven hundred microliter of cell
supernatant was harvested for each sample and centrifuged to remove particles.
Supernatants were analyzed with the Proteome Profiler Human Cytokine Array Kit
(R&D Systems, ARY005B) following manufacturer protocol. Briefly, membranes
were blocked with blocking buffer supplied by the kit. Samples were diluted with
assay buffer as described in the manufacturers protocol and incubated overnight
with membranes and antibody cocktail. Membranes were washed, incubated with
Streptavidin-HRP buffer supplied in the kit and incubated for 30 min at room
temperature. Arrays were washed and imaged by chemiluminescence using a
BioRad ChemiDoc XRS+molecular imager.

Chromatin-immunoprecipitation (ChIP) and sequencing analysis. ChIP was
performed as previously described52. Briefly, hormone-deprived MCF7 WT and
mutant cells were treated with vehicle or 1 nM E2 for 45 min. Chromatin DNA was
then extracted from each sample. The immunoprecipitation was performed using
CTCF (EMD Millipore, 07-729), ERα (Santa Cruz Biotechnologies, sc543) and
rabbit IgG (Santa Cruz Biotechnologies, sc2027) antibodies. 5 μg antibody were
used for each sample. For CTCF ChIP, qPCR was employed and fold enrichment
method was used to quantify the binding enrichment at the selected sites. All
primers used was recorded in Supplementary Table 7. For ER ChIP-seq, pooled
DNA samples from individual clones were sent to McGill sequencing core using
Illumina Hiseq 2000 Platform.

ChIP-seq reads were aligned to hg38 genome assembly using Bowtie 2.0109, and
peaks were called using MACS2.0 with p value below 10E−5110. We used DiffBind
package (Version 2.2.12)111 to perform principle component analysis, identify
differentially expressed binding sites and analyze intersection ratios with other data
sets. Heatmaps and intensity plots for binding peaks were visualized by EaSeq.
Annotation of genes at peak proximity was conducted using ChIPseeker (Version
1.26.0)112, taking the promoter region as +/− 3000 bp of the transcriptional start
site (TSS) and 50 kb as peak flank distance.

RNA sequencing analysis. RNA sequencing data sets were analyzed using R
version 3.6.1. Log2 (TPM+ 1) values were used for the RNA-seq of Oesterreich
ESR1 mutant cell models and TMM normalized Log2(CPM+ 1) values were used
for Gertz RNA-seq data. TCGA reads were reprocessed using Salmon v0.14.1113

and Log2 (TPM+ 1) values were used. For the METABRIC data set, normalized
probe intensity values were obtained from Synapse. For genes with multiple probes,
probes with the highest inter-quartile range (IQR) were selected to represent the
gene. For pan-breast cancer cell line transcriptomic clustering, 97 breast cancer cell
line RNA-seq data were reprocessed using Salmon and merged from three
studies34–36, batch effects were removed using “removeBatchEffect” function of
“limma”114 package (Version 3.46.0). Gene set variation analysis was performed
using “GSVA” package (Version 1.38.0)115. Survival comparisons were processed
using “survminer” packages (Version 0.4.8) using Cox Proportional-Hazards
model and log-rank test. Data visualizations were performed using “ggpubr
(Version 0.4.0)”, “VennDiagram (Version 1.6.2)”116 and “plot3D (Version 1.0)”.
PAM50 subtype prediction was performed using “genefu (Version 2.26.0)”
package117 using the 97 breast cancer cell line panel as reference.

Single-cell RNA-sequencing analysis. Two bilateral bone metastases (BoMs)
were collected from a patient initially diagnosed with ER+ primary breast cancer,
and immediately dissociated into single cells using tumor dissociation kit from
Miltenyi Biotech (130095929) following manufacturer’s protocol. Red blood cell
lysis (Qiagen158904) and dead cell removal (Miltenyi Biotech 130090101) were
performed according to the manual.

Raw counts were mapped to human genome assembly (version GRCh38) using
cellranger count function, and the mapped count matrix was imported into Seurat
(v 3.1.4) for further analysis. Genes with detected expression in less than 20 cells, as
well as cells expressing less than 300 genes or more than 8000 genes, or containing
more than 45% mitochondrial genes were removed, resulting in 10,056 cells for
downstream analysis. Mitochondrial genes were regressed out before principle
component analysis, and a shared nearest neighbor optimization based clustering
method was used for identifying cell clusters. Cell type of each cluster was assigned
by the expression of canonical cell markers, and cell signatures derived from single
cells RNA sequencing data of defined cell types collected in PanglaoDB database.
Log normalized counts values of S100A8, S100A9, TLR4, and AGER were compared
between different cell types.
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Tumor mutation burden (TMB) analysis. TMB calculation was performed as
previous described118. Briefly, TCGA mutation annotation files from 982 patients
were downloaded from FireBrowse and mutation subtypes were summarized using
“maftool” package (Version 2.6.0)119. Mutations subtypes were classified into
truncated (nonsense, frame-shift deletion, frame-shift insertion, splice-site) and
non-truncated mutations (missense, in-frame deletion, in-frame insertion, non-
stop). TMB was calculated as 2× Truncating mutation numbers + non-truncating
mutation numbers.

Generation of gene sets. For Sorlie et al., the original set of intrinsic genes were
downloaded from Stanford Genomics Breast Cancer Consortium (http://genome-
www.stanford.edu/breast_cancer/). Four hundred and fifty three genes were
annotated from 553 probes. Expression of these 453 genes were examined in 33
luminal and 39 basal breast cancer cell lines. Significantly higher (FDR < 0.01)
intrinsic genes in basal or luminal cells were called as basal (n= 75) or luminal
(n= 68) markers in Sorlie gene sets. For the TCGA and METABRIC gene set,
differentially expressed genes were called between basal and luminal A or basal and
luminal B ER+ tumors using raw counts or normalized probe intensities by
DESeq2 (Version 1.34.0) or limma (Version 3.46.0). The top 200 increased genes of
these two comparisons were further intersected. Overlapped DE genes in basal and
luminal tumors were called as TCGA and METABRIC gene sets. For CTCF gene
signature establishment, a previous RNA-seq data set on MCF7 cells with or
without CTCF knockdown was downloaded and analyzed53, top 100 down-
regulated genes with CTCF knockdown were used as the CTCF gene signature. All
the gene signatures used in this study are provide in Supplementary Data 1.

Chromatin interaction data analysis. CTCF ChIA-PET data were downloaded
from GSE72816. Chromatin linkages were visualized on 3D genome browser
(http://promoter.bx.psu.edu/hi-c/) after processed with ChIA-PET tool (Version
3)120. Confident insulated neighborhoods boundaries were defined by the coloca-
lization of CTCF and cohesion complex subunits together with called chromatin
interactions. Hi-C data were downloaded from GSE130916, hiC file was visualized
using WashU Epigenome Browser.

Super-enhancer identification. Super-enhancers were identified from a widely
used human super enhancer database-SEdb121 (http://www.licpathway.net/sedb/
index.php) which curates and processes H3K27ac ChIP-seq data sets from publicly
available resources and further computes super enhancers using the ROSE
pipeline122. Specifically, we used the super enhancer information called from a
MCF7 H3K27ac ChIP-seq data set from GSE57436123. The recognized super
enhancer at KRT14/16/17 region was ranked #25 among all 210 super enhancers.

Statistical analysis. All statistical analysis were specified at the corresponding
figure legends. For data processing and visualization, Microsoft Excel 2020,
Graphpad Prism (Version 8) and R (version 3.6.1) was used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ER ChIP-seq data from MCF7 ESR1 mutant cell model and single-cell RNA data set
from two bone metastasis generated in this study have been deposited in Gene
Expression Omnibus with accession number of GSE125117 and GSE190772. MSigDB
curated gene sets were downloaded from GSEA website [http://
software.broadinstitute.org/gsea/msigdb/index.jsp]. RNA-seq data and clinical
information from TCGA and METABRIC were obtained from the GSE62944 and
Synapse software platform under accession number syn1688369, respectively. TCGA
biospecimen immune profile data were downloaded from Saltz et al.67. TCGA mutation
annotation format (MAF) files and methylation data were downloaded from FireBrowse
website [http://firebrowse.org/]. The DFCI data set has been described in previous
publications26,124–127. Complete RNA-seq data from DFCI cohort have been deposited
into the database of Genotypes and Phenotypes (dbGaP) under accession number
phs001285.v1.p1 and will be available following standard restriction policy of dbGaP.
Further questions regarding data access should be sent to Dr. Nikhil Wagle
(Nikhil_Wagle@dfci.harvard.edu). RNA-Seq data for the paired primary and metastatic
samples in WCRC cohort has been previously generated and reported18,104,128. Raw
sequencing data cannot be published openly in order to protect participants identities but
will be made available upon request by the corresponding author Dr. Steffi Oesterreich
(oesterreichs@upmc.edu) under regulatory compliance via a data usage agreement
(DUA). Data can be accessed as soon as documents according to required policy have
been completed. No further restrictions will be applied. For all WCRC samples, the
processed data (transcript counts processed via Salmon) are available at [https://
github.com/leeoesterreich]. Processed RNA-seq data (in TMM normalized
Log2(CPM+ 1)) from both WCRC and DFCI cohorts used in this study (51 pairs of
primary-metastatic tumors) and the annotation files can be accessed in R data file format
with the corresponding codes from Code Ocean [https://codeocean.com/capsule/
2816027/tree/v1]. File names are: DFCI_pairs_DF.Rda; WCRC_pairs_DF.Rda;

DFCI_Key.Rda; WCRC_Key.Rda. All the raw data and scripts are available upon request
from the corresponding author. Sources of all public available data sets used in this study
are summarized in Supplementary Table 8. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data are provided with
this paper.

Code availability
R script associated with this study was deposited into Code Ocean and can be accessed
using the link https://codeocean.com/capsule/2816027/tree/v1.
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