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A B S T R A C T   

Background: Exposure to air pollution is associated with a range of diseases. Biomarkers derived from DNA 
methylation (DNAm) offer potential mechanistic insights into human health differences, connecting disease 
pathogenesis and biological ageing. However, little is known about sensitive periods during the life course where 
air pollution might have a stronger impact on DNAm, or whether effects accumulate over time. We examined 
associations between air pollution exposure across the life course and DNAm-based markers of biological ageing. 
Methods: Data were derived from the Scotland-based Lothian Birth Cohort 1936. Participants’ residential history 
was linked to annual levels of fine particle (PM2.5), sulphur dioxide (SO2), nitrogen dioxide (NO2), and ozone 
(O3) around 1935, 1950, 1970, 1980, 1990, and 2001; pollutant concentrations were estimated using the 
EMEP4UK atmospheric chemistry transport model. Blood samples were obtained between ages of 70 and 80 
years, and Horvath DNAmAge, Hannum DNAmAge, DNAmPhenoAge, DNAmGrimAge, and DNAm telomere 
length (DNAmTL) were computed. We applied the structured life-course modelling approach: least angle 
regression identified best-fit life-course models for a composite measure of air pollution (air quality index [AQI]), 
and mixed-effects regression estimated selected models for AQI and single pollutants. 
Results: We included 525 individuals with 1782 observations. In the total sample, increased air pollution around 
1970 was associated with higher epigenetic age (AQI: b = 0.322 year, 95 %CI: 0.088, 0.555) measured with 
Horvath DNAmAge in late adulthood. We found shorter DNAmTL among males with higher air pollution around 
1980 (AQI: b = − 0.015 kilobase, 95 %CI: − 0.027, − 0.004) and among females with higher exposure around 
1935 (AQI: b = − 0.017 kilobase, 95 %CI: − 0.028, − 0.006). Findings were more consistent for the pollutants 
PM2.5, SO2 and NO2. 
Discussion: We tested the life-course relationship between air pollution and DNAm-based biomarkers. Air 
pollution around birth and in young-to-middle adulthood is linked to accelerated epigenetic ageing and 
telomere-associated ageing in later life.   

1. Introduction 

Ambient air pollution is one of the greatest environmental threats to 

human health, with serious consequences for morbidity and mortality 
(World Health Organization, 2021), and is responsible for an estimated 
$3.5 trillion welfare and $144 billion labour income losses annually 
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worldwide (World Bank, 2016). Based on the Global Burden of Diseases 
Study 2015, 4.2 million annual deaths and 103 million disability- 
adjusted life years can be attributed to exposure to fine particulate 
matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) (Cohen et al., 
2017). Gaseous pollutants, such as nitrogen dioxide (NO2), sulphur di
oxide (SO2) and ozone (O3) have been also associated with hazardous 
health effects and increased mortality (World Health Organization, 
2021). Research has established the impact of long-term exposure to air 
pollution on cardiovascular and respiratory diseases, and cancer (Cohen 
et al., 2017; Manisalidis et al., 2020), and there is growing evidence for 
its effect on the risk of neurodegenerative (Russ et al., 2021) and mental 
disorders (Braithwaite et al., 2019). 

Prolonged air pollution exposure can lead to leukocyte telomere 
length attrition (i.e. attrition of nucleoprotein complexes located at the 
ends of the chromosome) (Miri et al., 2019) and to epigenetic alter
ations, key hallmarks of ageing (Micheu et al., 2020; Dhingra et al., 
2018; López-Otín et al., 2013). One epigenetic mechanism that con
tributes to the regulation of gene expression is DNA methylation 
(DNAm) at 5-methylcytosine: the process of adding a methyl group to 
the fifth carbon of cytosine nucleotides in the genome, usually found at 
cytosine-phosphate-guanine (CpG) dinucleotides (Mathews and Janu
sek, 2011; Moore et al., 2013). Ageing cells undergo substantial changes 
in genome-wide DNAm levels; given this association with chronological 
age (i.e. calendar time since birth) (Horvath et al., 2012), epigenetic age 
estimators (or epigenetic clocks) have been developed as markers of 
biological ageing representing the workings of epigenetic maintenance 
systems (Horvath, 2013; Hannum et al., 2013; Horvath and Raj, 2018). 
Epigenetic clocks are derived from human tissues and calculated from 
the methylation level of sets of CpGs sites: whereas earlier clocks 
selected CpGs sites as best predicting chronological age, a surrogate of 
biological ageing, second generation clocks focus more on providing a 
prediction of healthy lifespan using other surrogate measures (Horvath 
and Raj, 2018). Accelerated ageing is a predictor of all-cause mortality 
(Marioni et al., 2015) and worse health outcomes (Horvath and Raj, 
2018), and it is associated with lower physical and cognitive fitness 
(Marioni et al., 2015). 

Recent evidence indicates accelerated biological ageing, including 
telomere shortening and epigenetic alterations, among individuals 
exposed to long-term ambient air pollution (measured usually as annual 
average concentration prior to outcome assessment) (Miri et al., 2019; 
Nwanaji-Enwerem et al., 20162016; Isaevska et al., 2021); however, 
evidence is lacking on the relationship covering longer periods across 
the life course. It remains largely unknown whether there are sensitive 
or critical periods where exposure to air pollution has a prominent and/ 
or long-lasting effect on biological ageing or – alternatively – whether 
the impact of air pollution gradually accumulates over time (Rider and 
Carlsten, 2019). These are profound questions as individuals’ ranking in 
leukocyte telomere length is relatively stable from birth to adulthood 
(Martens et al., 2021). Therefore, it is plausible that associations iden
tified in later life (Nwanaji-Enwerem et al., 2016; White et al., 2019; 
Ward-Caviness et al., 2016) are the consequence of exposures earlier in 
the life course combined with limited geographical mobility or moving 
to areas with similar air pollution levels (Pearce et al., 2018). Prolonged 
air pollution exposure can often have a stronger impact on DNAm pat
terns than short-term exposure (a few days) (Rider and Carlsten, 2019), 
which raises the question as to whether air pollution effects may accu
mulate over the life course. 

The current study addresses this research gap by applying the life- 
course approach (studying the long-term effects of physical and social 
exposures operating across an individual’s life course) (Kuh, 2003) and 
exploring associations between air pollution from birth onwards and 
DNAm-based biomarkers in late adulthood (i.e. epigenetic clocks, 
DNAm proxy for telomere length). Using a cohort of older, 1936-born 
Scottish adults with life-course residential addresses linked to histori
cal air pollution concentrations and DNAm data in their 70s, we inves
tigated whether local levels of pollution at different points across the life 

course (or their accumulation) are associated with biological ageing. 
Analyses focussed on four air pollutants (PM2.5, SO2, NO2, O3) with 
previously established impacts on health and wellbeing (World Health 
Organization, 2021). 

2. Material and methods 

2.1. Study participants 

We used data from the Lothian Birth Cohort 1936 (LBC1936) (Taylor 
et al., 2018). Participants were born in 1936 and took part in the Scottish 
Mental Survey 1947, a nationwide school-based cognitive test at the age 
of 11 (Taylor et al., 2018). Between 2004 and 2007, 1091 surviving men 
and women of the Scottish Mental Survey 1947 living in the City of 
Edinburgh and in the Lothian area of Scotland were retraced and 
recruited for participating in the LBC1936. The average age was 70 in 
the first wave. Follow-up waves took place at age ~ 73 (2007–2010; n =
866), ~76 (2011–2013; n = 697), and ~ 79 (2014–2017; n = 550) 
(Taylor et al., 2018). In 2014, LBC1936 participants were asked to 
complete a lifegrid questionnaire (Berney and Blane, 2003) supported 
by ‘flashbulb’ memory prompts (e.g. 9/11 attacks in New York) aiming 
to capture residential histories from birth to the date of completing the 
lifegrid (Taylor et al., 2018). Out of 704 individuals remaining in the 
study at that point, 593 participants provided 7423 addresses, which 
were georeferenced using automatic geocoders and historical building 
databases (Pearce et al., 2018). The LBC1936 study was conducted ac
cording to the Declaration of Helsinki guidelines with ethical permission 
obtained from the Multi-Centre Research Ethics Committee for Scotland 
(MREC/01/0/56), Lothian Research Ethics Committee (wave 1, LREC/ 
2003/2/29), and the Scotland A Research Ethics Committee (waves 2–4, 
07/MRE00/58). Written consent was obtained from all participants. 

2.2. Historical air pollution exposure 

Annual concentrations of PM2.5, SO2, NO2, and O3 were estimated 
using the EMEP4UK (Vieno et al., 2010; Vieno et al., 2014; Vieno et al., 
2016) atmospheric chemistry transport model for the model years of 
1935, 1950, 1970, 1980, 1990 and 2001 (Fig. 1) (details on data gen
eration and the feasibility of using historical air pollution estimates in 
epidemiological research has been published previously) (Russ et al., 
2021). The model has a horizontal resolution of 0.5◦ × 0.5◦ used to 
provide the boundary condition for a nested UK domain with a hori
zontal resolution of 0.055◦ × 0.055◦ (~5 × 6 km2). The EMEP4UK 
model has been extensively evaluated for the UK and globally (Lin et al., 
2017; Ge et al., 2021). 

Individual exposure was derived based on latitudes and longitudes of 
geocoded residential addresses. We extracted annual concentrations of 
pollutants for each UK-based address using time bands around EME
P4UK model output years (i.e. 1935 output linked to pre-1943 ad
dresses, 1950 to 1943–1959, 1970 to 1960–1975, 1980 to 1976–1985, 
1990 to 1986–1995, and 2001 to 1996–2006 addresses). Since partici
pants could reside at multiple locations within a given time band, we 
calculated the unweighted mean level of exposure per time point, 
resulting in no more than six estimates per pollutant for each partici
pant. (Russ et al., 2021). 

Within each measurement period, exposure to pollutants was highly 
correlated: we found strong positive associations between PM2.5, SO2 
and NO2 (Pearson correlation coefficients ranged between 0.58 and 
1.00), and they were negatively correlated with O3 (ranged between 
− 0.63 and − 0.97) (Fig. S1). Correlation coefficients were particularly 
high for the modelling years of 1935 and 1950. To reflect this high de
gree of shared variance, we constructed a composite air quality index 
(AQI), an additive cumulative measure of multi-pollutants exposure. 
(Giang and Castellani, 2020) We first scaled and centred PM2.5, SO2, 
NO2 and O3 values, and then summed them for each measurement pe
riods (i.e. AQI in 1935, 1950, 1970, 1980, 1990, and 2001). 
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2.3. DNAm-based biomarkers 

DNA methylation was derived from blood samples collected from 
LBC1936 participants in waves 1–4 (mean ages ~ 70, 73, 76, 79 years). 
Methylation was measured at 485,512 CpG sites using the Illumina 
HumanMethylation450BeadChips array; details are published else
where (Shah et al., 2014). Extensive quality control was carried out by 
removing (a) probes with low detection rate (<95%); (b) low-quality 
samples (e.g. inadequate hybridization); (c) samples with a low call 
rate (i.e. below 450,000 probes); and (d) samples where sex based on XY 
probes (predicted based on the median intensity of the X and Y chro
mosomes) did not match reported sex (Marioni et al., 2015; Shah et al., 
2014). After quality control, there remained 895 samples in wave 1, 792 
in wave 2, 611 in wave 3 and 499 in wave 4. 

Five biomarkers were computed from the available DNA methylation 
data using an online calculator (https://dnamage.genetics.ucla.edu/) 
(Horvath, 2013). First generation clocks derived from chronological age 
included (1) Horvath’s multi-tissue epigenetic clock based on 353 CpGs 
(Horvath DNAmAge) (Horvath et al., 2012), and (2) Hannum’s epige
netic clock based on 71 CpGs (Hannum DNAmAge) (Hannum et al., 
2013). We included also two second generation clocks: (3) DNAm 
PhenoAge, where CpGs were identified based on a composite measure of 
phenotypic age (Levine et al., 2018), and (4) DNAm GrimAge, a 

predictor of mortality trained on time-to-death, which is derived from a 
linear combination of age, sex, and DNAm surrogates for seven plasma 
proteins and smoking pack-years (Lu et al., 2019). Finally, (5) a DNA 
methylation-based proxy for telomere length (DNAmTL) was derived 
based on 140 CpGs selected by regressing leukocyte telomere length on 
methylation data (Lu et al., 2019). 

2.4. Covariates 

Covariates are presented in a directed acyclic graph (DAG) taking 
into consideration the years of air pollution exposure and the timing of 
covariates during the life course (Fig. 2). We considered age at the time 
of outcome assessment, sex (male, female) and parental occupational 
social class (OSC) (professional-managerial [I/II] versus skilled, partly 
skilled and unskilled [III/IV/V]) (Office of Population Censuses and 
Surveys, 1980) as common confounders for all life-course models. 
Childhood smoking (initiating ≤ 16 years; yes, no) was considered as a 
confounder from adolescence, years spent in full-time education from 
young adulthood, adult smoking (initiating > 16 years; yes, no) and 
adult OSC (I/II versus III/IV/V) (Office of Population Censuses and 
Surveys, 1980) from middle adulthood onwards, whereas BMI at age 70 
was considered as a confounder during late adulthood. 

Fig. 1. PM2.5 annual mean concentrations for the UK in 1935, 1950, 1970, 1980, 1990, and 2001 estimated with the EMEP4UK atmospheric chemistry trans
port model. 
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2.5. Statistical analysis 

To explore the associations between exposure to air pollution across 
the life course and DNAm-based biomarkers in late adulthood, we 
applied the two-stage structured life-course modelling approach origi
nally developed by Mishra et al (Mishra et al., 2009) and modified by 
Smith et al (Smith et al., 2016) for continuous exposures. As different 
life-course models might be appropriate for biological ageing among 
males and females (Ward-Caviness et al., 2016; Marini et al., 2020), sex- 
stratified models are also presented. A flowchart outlining analyses can 
be found in Fig. S2. 

In the first stage, the life-course model(s) most strongly supported by 
the observed data were selected from multiple simultaneously 
competing ones by applying the least angle regression (LARS) (Smith 
et al., 2016). LARS is a variable selection algorithm which implements 
the least absolute shrinkage and selection operator (lasso), and indicates 
the best lasso fit for each number of selected variables (Efron et al., 
2004; Smith et al., 2015). This approach always identifies the variable 
with the strongest association to the outcome in the observed data, and 
then it selects further variables based on their strength of association, 
applying an absolute value penalty; the process continues until all var
iables have been selected (Smith et al., 2015). In order to identify the 
most appropriate variable(s) supported by LARS, we used the covariance 
test for the lasso indicating whether additional variables significantly (p 
< 0.05) improve explained outcome variance (Lockhart et al., 2014). 
Five biomarkers were tested in our study; to minimise type 1 errors 
arising from multiple comparisons, we provided false discovery rate 
(FDR) adjusted p-values (pFDR) for the covariance test across outcomes. 
As LARS cannot accommodate multilevel data structure with individuals 
having repeated outcome measurements, we conducted model selection 
for one wave of DNAm-based biomarkers by choosing the wave with the 
largest sample size. This approach is based on a causal assumption 
concerning the exposure, outcome and confounders and requires having 
the same measurement error for all life-course models (Smith et al., 
2016). 

We investigated seven life-course models, which were inputted as 
variables into LARS (Smith et al., 2016). Six sensitive periods (SPi) 

captured average exposure to air pollution at the six measurement pe
riods outlined in section 2.2. (SP1935 = X1936− 1942; SP1950 = X1943− 1959; 
SP1970 = X1960− 1975; SP1980 = X1976− 1985; SP1990 = X1986− 1995; SP2001 =

X1996− 2006). Accumulation of air pollution exposure across the life 
course was conveyed as the sum of sensitive periods, weighted with the 
number of years (ti) spent in the respective period (A =

∑
itiSPi; i =

1935, 1950, 1970, 1980, 1990, 2001). We found stronger correlations 
between sensitive periods closer to each other in time, and between 
sensitive periods and accumulation (Fig. S4). To adjust for confounding 
before model selection, we produced model residuals after regressing 
life-course models on their specific confounders picked individually 
using the DAG (Table S1). 

In the second stage, we estimated effect sizes for selected life-course 
models utilising linear mixed-effects regression with random intercepts 
making use of all available epigenetic data across waves 1 and 4. 
Random slopes for chronological age were not considered as trajectories 
because age acceleration did not change significantly during shorter 
follow-ups (Marioni et al., 2015). All presented models in this stage were 
adjusted for white blood cell proportions as fixed effects (i.e. CD8T, 
CD4T, NK, Bcell, Mono, Gran), extracted from the same blood sample as 
for DNAm using Houseman’s algorithm (Houseman et al., 2012). 
Methylation data were generated across three separate set of laboratory 
experiments (Table S2); position on array, plate and set of experiment 
were included in the models as random effects (other technical variables 
were dropped due to high collinearity). Moreover, we adjusted for the 
same life-course specific confounders in the regression as used in the 
model selection stage. In addition to primary findings for the AQI (co
efficients expressed as 1-unit increase), we also reported results sepa
rately for PM2.5, SO2, NO2, and O3 (expressed as 1-μg m− 3). To aid the 
comparison of the magnitude of associations across all findings, we 
presented standardized coefficients as βs. Potential sex-differences 
identified in the male and female samples were formally investigated 
in the non-stratified sample using the interaction term of AQI × sex. 

Five sets of analyses were carried out to assess the sensitivity and 
robustness of our findings. First, we reran model selection using the 
second largest wave to verify life-course models identified in the main 
analysis. Second, instead of accounting for relevant life-course 

Fig. 2. Directed acyclic graph depicting the associations between air pollution exposure across the life course, markers of biological ageing, and their life-course 
confounders. Double dashed lines are years with modelled air pollution concentrations (i.e. EMEP4UK atmospheric chemistry transport models), light blue bars 
show time bands where addresses were linked to a respective air pollution modelling year. Differently shaded covariates and arrows indicate time-specific con
founding: dark green covariates are confounders from childhood, medium green covariates from young adulthood, dashed light green covariates from middle 
adulthood, and dotted light green covariates from late adulthood onwards. Arrows present associations, black solid arrows are the associations of interest. Links 
between covariates are not shown for simplicity. BMI = body mass index; OSC = occupational social class. 
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confounders in the model selection stage, we regressed life-course 
models on all confounders (i.e. age, [sex], parental OSC, childhood 
smoking, years spent in education, adult smoking, adult OSC, BMI) to 
reduce the likelihood of unmeasured confounding (e.g. there is high 
correlation between BMI assessments from adolescence onwards (Sim
monds et al., 2016), but LBC1936 only captures BMI data from late 
adulthood). After selecting the best-fit life-course models, we also pre
sented main models with adjustments for all confounders. Third, we ran 
two-pollutant models to explore co-pollutant confounding, whereby 
each pollutant was added as a covariate in the models for every other 
pollutant and calculated variance inflation factors to report collinearity 
between them. Fourth, in a post-hoc analysis we estimated all life-course 
models for the outcomes identified as being associated with air pollu
tion, to explore missed life-course models and help the interpretation of 
findings (pFDR are also provided). Last, air pollution exposure around 
1935 was originally derived from addresses between 1936 and 1942; in 
further post-hoc analysis we presented findings for relevant models using 
1936 addresses only, providing a stronger case for exposure around birth 
and excluding exposures overlapping with World War II. 

All analyses were conducted in R 4.1.0. (R Core Team. R, 2021). 

3. Results 

3.1. Study sample 

The sample included 525 individuals; 437 participated in wave 1, 
489 in wave 2, 455 in wave 3 and 401 in wave 4. The majority of 
excluded LBC1936 participants dropped out before the lifegrid ques
tionnaire was distributed in 2014 (n = 387) or did not provide address 
history (n = 111). A comparatively small number of individuals had 
missing information on air pollution exposure in at least one time 
period, due to living outside of the UK (n = 22), or missing covariate or 
outcome data (n = 46) (Fig. 3). Excluded individuals were more likely to 
have smoked in childhood, had higher BMI at age 70 and more likely 

belonged to the ‘skilled, partly skilled and unskilled’ OSC in adulthood 
(Table S3). Descriptive statistics for the total sample and stratified by sex 
are presented in Table 1. Between waves 1 and 4, participants aged on 
average 10 years; the biological ageing process during these years 
materialised in increasing epigenetic clock estimates and shortening 
DNAmTL. Correlation coefficients between markers of biological ageing 
were moderate-to-strong – for DNAmTL the direction was negative 
(Fig. S4). There was also high correlation between the same biomarkers 
measured across waves (r > 0.49) (Fig. S5). Table S4 shows white blood 
cell proportions across waves. Participants’ residential exposure to air 
pollution changed markedly during their life course, with PM2.5 and SO2 
levels monotonically dropping from the 1950s, whereas exposure to NO2 
and O3 increased across the life course (Fig. 4; Table S5). 

3.2. Stage 1: Identifying best-fit life-course models 

For the model selection stage, we utilised outcome data from wave 2 
as it provided the largest sample size (n = 489), thus allowing the best 
approximation of the total sample. The covariance test for the lasso 
indicated that air pollution exposure around 1970 reduced outcome 
variance for Horvath DNAmAge (R2 = 0.009), accounting for 0.9% of 
the residual variance after adjusting for life-course confounders selected 
based on the DAG (i.e. age, sex, parental OSC, childhood smoking, years 
spent in education, adult smoking). In the non-stratified sample, air 
pollution was not associated with any other biomarkers (Table 2). 
Among males (n = 265), we found that a sensitive period around 1980 
was the most appropriate life-course model for DNAmTL, accounting for 
3.1% of the residual variance (R2 = 0.031). In the female subsample (n 
= 224), air pollution exposure around 1935 explained 2.6% of the re
sidual variance in DNAmTL (R2 = 0.026) (Table 2). 

3.3. Stage 2: Estimating best-fit life-course models 

Selected life-course models (i. sensitive period around 1970 for 
Horvath DNAmAge; ii. sensitive period around 1980 for DNAmTL 
among male; and iii. sensitive period around 1935 for DNAmTL among 
female) were estimated in mixed-effects regressions using all available 
epigenetic data (n = 525; obs = 1782) and adjusting for white blood cell 
proportions, technical variables and life-course specific confounders. 

We found that 1-unit increase in AIQ around 1970 was associated 
with 0.322 years (95% CI: 0.088, 0.555) higher epigenetic age measured 
in Horvath DNAmAge (Table 3); no sex differences were identified (b =
0.072, 95% CI: − 0.399, 0.542; Fig. S6). Estimating the associations for 
single air pollutants showed that 1 μg m− 3 increase in PM2.5, SO2 and 
NO2 levels around 1970 was associated with an epigenetic age increase 
of 0.299 (95% CI: 0.046, 0.552), 0.078 (95% CI: 0.005, 0.151) and 0.115 
(95% CI: 0.010, 0.220) years, respectively (Table 3). 

Among males (n = 277; obs = 950), 1-unit increase in AQI around 
1980 was associated with 0.015 kilobase (95% CI − 0.027, − 0.004) 
reduction in DNAmTL. A 1 μg m− 3 increase in PM2.5 and NO2 levels 
around 1980 was associated with − 0.018 kilobase reduction (95% CI: 
− 0.034, − 0.003) and − 0.007 kilobase reduction (95% CI: − 0.012, 
− 0.002) respectively, while 1 μg m− 3 increase in O3 was associated with 
0.012 kilobase increase (95% CI: 0.001, 0.023) in estimated telomere 
length (Table 3). In the female subsample (n = 248; obs = 832), we found 
that 1-unit increase in AQI around 1935 was associated with an esti
mated telomere attrition of − 0.017 kilobase (95% CI − 0.028, − 0.006); 
higher PM2.5 (− 0.002, 95% CI: − 0.004, − 0.001), SO2 (− 0.001, 95% CI: 
− 0.002, − 0.000) and NO2 (− 0.006, 95% CI: − 0.010, − 0.002) exposure 
with shorter, and higher O3 (0.015, 95% CI: 0.004, 0.027) with longer 
estimated telomeres (Table 3) (note that correlation coefficients be
tween pollutants were > 0.9 in 1935). Testing for sex differences found 
DNAmTL attrition only present among males when exposed to higher air 
pollution around 1980 (AQI: b = − 0.018, 95% CI: − 0.035, − 0.001); but 
we could not confirm a clear sex-difference in the 1935 air pollution and 
DNAmTL relationship (b = 0.011, 95% CI: − 0.005, 0.026) (Fig. S6). 

Fig. 3. Flowchart indicating sample selection. We utilised wave 2 data for 
model selection, the complete sample with repeated measurements for model 
estimation. LBC1936 = Lothian Birth Cohort 1936. 
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Finally, fully standardized coefficients are presented in Fig. 5. This 
indicates that all associations were of small effect size (Sullivan and 
Feinn, 2012). Associations with DNAmTL were generally numerically 
stronger than for Horvath DNAmAge, and coefficients for O3 were 
weaker compared to PM2.5, SO2 and NO2. (However, these were not 
formally tested, and we point out that the 95% CIs overlap in all cases.). 

3.4. Sensitivity and robustness analyses 

LARS identified the exact same life-course models when the second 
largest wave (i.e. wave 3) was used for model selection (Table S6). 
Similarly, adjusting life-course models with all confounders indepen
dently of their timing during the life course (i.e. sex, age, parental OSC, 
childhood smoking, years spent in full-time education, adult smoking, 
adult OSC, and BMI) resulted in a similar selection of life-course models 
as in the main analysis (Table S7); estimating models after these ad
justments did not alter the results (Table S8). In two-pollutant models, 
we did not find evidence for one pollutant having an independent effect 

above any other (Table S9). Rather the single pollutant models with 
comparable effect sizes and the two-pollutant models with high collin
earity indicated that the generalised effect of air pollution cannot be 
attributed to any single component of poor air quality in the current 
sample. Still, we observed that around 1935 and 1970 PM2.5 and SO2, 
and around 1980 NO2 and PM2.5, had stronger associations in compar
ison to their co-pollutants, and O3 was always more weakly associated 
with biological ageing markers. 

We explored post-hoc whether there were other life-course models 
associated with DNAmAge and DNAmTL not identified through LARS 
model selection (see Fig. S7 for standardized effect sizes). We found that 
in addition to exposure around 1970 (β = 0.078, 95% CI: 0.021, 0.135; p 
= 0.007; pFDR = 0.049), air pollution around 1980 was associated with 
Horvath DNAmAge (β = 0.060, 95% CI: 0.003, 0.118; p = 0.041; pFDR =

0.126) suggesting a longer sensitive period stretching from young-to- 
middle adulthood, especially among males. DNAm estimation of telo
mere shortening was not only associated with 1980 exposure among 
males (β = − 0.131, 95% CI: − 0.229, − 0.033; p = 0.010; pFDR = 0.059) 

Table 1 
Descriptive statistics for the analytical sample, Lothian Birth Cohort 1936.  

Characteristics Total 
(n = 525) 

Male 
(n = 277) 

Female 
(n = 248) 

p 

Parental occupational social class, n (%)     
I and II 141 (26.86%) 77 (27.80%) 64 (25.81%)  
III, IV and V 384 (73.14%) 200 (72.20%) 184 (74.19%)  0.678 

Childhood smoking (≤16 years), n (%)     
Yes 437 (83.24%) 68 (24.55%) 20 (8.06%)  
No 88 (16.76%) 209 (75.45%) 228 (91.94%)  <0.001 

Years spent in education (mean ± SD) 10.77 ± 1.10 10.78 ± 1.12 10.77 ± 1.08  0.924 
Adult smoking (>16 years), n (%)     

Yes 174 (33.14%) 88 (31.77%) 86 (34.68%)  
No 351 (66.86%) 189 (68.23%) 162 (65.32%)  0.539 

Adult occupational social class, n (%)     
I and II 321 (61.14%) 160 (57.76%) 161 (64.92%)  
III, IV and V 204 (38.86%) 117 (42.24%) 87 (35.08%)  0.112 

BMI at wave 1 (mean ± SD) 27.39 ± 4.04 27.68 ± 3.72 27.06 ± 4.35  0.082 
Chronological age (mean ± SD)     

Wave 1a 69.50 ± 0.84 69.50 ± 0.83 69.50 ± 0.85  0.973 
Wave 2b 72.47 ± 0.71 72.47 ± 0.70 72.49 ± 0.71  0.641 
Wave 3c 76.24 ± 0.69 76.27 ± 0.68 76.21 ± 0.69  0.376 
Wave 4d 79.27 ± 0.62 79.27 ± 0.60 79.26 ± 0.64  0.861 

Horvath DNAmAge (mean ± SD)     
Wave 1a 64.78 ± 7.21 65.22 ± 7.26 64.27 ± 7.14  0.172 
Wave 2b 68.10 ± 6.69 68.54 ± 6.29 67.58 ± 7.11  0.116 
Wave 3c 72.13 ± 6.51 72.89 ± 6.75 71.27 ± 6.13  0.007 
Wave 4d 74.78 ± 5.95 75.58 ± 6.46 73.87 ± 5.19  0.003 

Hannum DNAmAge (mean ± SD)     
Wave 1a 71.43 ± 5.67 72.65 ± 5.58 70.03 ± 5.45  <0.001 
Wave 2b 73.01 ± 5.77 74.40 ± 5.62 71.38 ± 5.51  <0.001 
Wave 3c 77.64 ± 5.74 79.09 ± 5.84 75.99 ± 5.17  <0.001 
Wave 4d 82.39 ± 5.56 84.43 ± 5.93 80.10 ± 4.04  <0.001 

DNAm GrimAge (mean ± SD)     
Wave 1a 66.64 ± 4.70 68.54 ± 4.34 64.48 ± 4.15  <0.001 
Wave 2b 69.57 ± 4.64 71.46 ± 4.34 67.34 ± 3.95  <0.001 
Wave 3c 72.60 ± 4.91 74.59 ± 4.66 70.35 ± 4.17  <0.001 
Wave 4d 75.37 ± 4.56 77.34 ± 4.26 73.20 ± 3.85  <0.001 

DNAm PhenoAge (mean ± SD)     
Wave 1a 66.31 ± 7.17 67.07 ± 7.02 65.44 ± 7.26  0.018 
Wave 2b 66.85 ± 7.09 67.38 ± 6.26 66.22 ± 7.92  0.078 
Wave 3c 70.43 ± 7.78 71.09 ± 7.69 69.68 ± 7.83  0.054 
Wave 4d 73.38 ± 6.62 74.65 ± 7.05 71.94 ± 5.81  <0.001 

DNAmTL (mean ± SD)     
Wave 1a 6.75 ± 0.22 6.68 ± 0.20 6.83 ± 0.21  <0.001 
Wave 2b 6.71 ± 0.21 6.65 ± 0.21 6.78 ± 0.20  <0.001 
Wave 3c 6.62 ± 0.22 6.56 ± 0.22 6.69 ± 0.21  <0.001 
Wave 4d 6.55 ± 0.22 6.48 ± 0.22 6.63 ± 0.20  <0.001 

P-values are based on two-sample t-tests for mean difference, and chi-squared tests for differences in distribution. DNAmTL = DNAm based telomere length; SD =
standard deviation. 

a Sample size n = 437. 
b Sample size n = 489. 
c Sample size n = 455. 
d Sample size n = 401. 
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Fig. 4. Average exposure to air pollution across participants of the Lothian Birth Cohort 1936, expressed as (A) absolute values (μg m− 3) and as (B) relative change to 
1935 levels (n = 525). Concentrations were estimated using the EMEP4UK atmospheric chemistry transport models for the modelling years of 1935, 1950, 1970, 
1980, 1990, and 2001 (dotted lines). Clean Air Acts of 1956, 1968 and 1993 – key legislative triggers for the implementation of policy measures to reduce emissions 
of air pollutants and resulting in the reduction of ambient pollutant concentrations over the study period – are signalised as dashed lines. Recommended WHO air 
quality guideline levels (2021) are 5 μg m− 3 for annual PM2.5, 10 μg m− 3 for annual NO2 exposure. For SO2 and O3, shorter averaging times are available with the 24- 
hour level of 40 μg m− 3 for SO2, and the peak season level of 60 μg m− 3 for O3. 

Table 2 
Selecting best-fit life-course models for the association between air pollution exposure (measured with air quality index) and DNAm-based biomarkers in the Lothian 
Birth Cohort 1936.  

Outcome Total 
(n = 489)  

Male 
(n = 265)  

Female 
(n = 224) 

Model R2 p pFDR  Model R2 p pFDR  Model R2 p pFDR 

Horvath DNAmAge SP 1970  0.009  0.046  0.230  SP 1970  0.007  0.287  0.478  SP 1980  0.003  0.734  0.953 
Hannum DNAmAge SP 1950  0.003  0.468  0.585  SP 1950  0.004  0.526  0.619  SP 1990  <0.001  0.953  0.953 
DNAm GrimAge SP 1935  0.003  0.438  0.585  Accumulation  0.007  0.274  0.478  SP 1935  0.002  0.773  0.953 
DNAm PhenoAge SP 1980  0.006  0.154  0.385  SP 1980  0.003  0.619  0.619  SP 1980  0.006  0.492  0.953 
DNAmTL SP 1980  0.001  0.873  0.873  SP 1980  0.031  0.003  0.013  SP 1935  0.026  0.009  0.044 

Life-course models were progressively adjusted for confounders: SP 1935 for age, (sex,) parental occupational social class; SP 1950 additionally for childhood smoking; 
SP 1970 additionally for years spent in education; SP 1980 additionally for adult smoking; SP 1990 additionally for adult occupational social class; SP 2001 and 
Accumulation additionally for BMI. We provide false discovery rate adjusted p-values (pFDR). DNAmTL = DNAm telomere length; SP = sensitive period. 
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but also with accumulated air pollution exposure (β = − 0.120, 95% CI: 
− 0.218, − 0.022; p = 0.017; pFDR = 0.059). In the female subsample, 
only air pollution exposure around 1935 was associated with DNAmTL 
(β = − 0.151, 95% CI: − 0.249, − 0.053; p = 0.003; pFDR = 0.021), with a 
standardized effect size of > 3times greater than for any other life-course 
model. This relatively strong association likely explained why the as
sociation became also significant in the total sample for this sensitivity 
analysis. Moreover, when we matched 1935 air pollution estimates with 
1936 addresses only (instead of addresses between 1936 and 1942), the 
magnitude of association between the revised AQI around 1935 and 
DNAmTL increased by approximately 25% (β = − 0.188, 95% CI: 
− 0.286, − 0.090; p < 0.001), highlighting the likelihood of a critical 
period around birth. 

4. Discussion 

Our study based on 525 older Scottish adults examined the rela
tionship between life-course air pollution exposure and DNAm-based 
biomarkers. Out of a large number of tested hypotheses, our main an
alyses identified three key life-course associations, reporting a link be
tween greater exposure to air pollution during sensitive time windows 
across the life course and older-appearing markers of biological ageing 
in later life. Exposure to air pollution in young-to-middle adulthood was 
associated with epigenetic age measured with Horvath’s epigenetic 
clock. Shorter estimated telomere lengths were evident among males 
with higher exposure to air pollution in mid-adulthood, and we also 
found some evidence for an accumulating impact of air pollution across 
the life course. Among females, air pollution only around birth was 
linked to estimated telomere attrition. Effect estimates reported across 
this study were small in magnitude. 

Associations between exposure to air pollution and DNAm among 
various age groups have been reported previously (see (Rider and 
Carlsten, 2019; Ferrari et al., 2019) for reviews). However, those studies 
focussing on epigenetic clocks mainly utilised samples capturing middle- 
aged and older adults alongside contemporaneous exposure measures. 
An investigation utilising the US-based Normative Ageing Study, an all- 
male cohort of 589 individuals in their 70s, found that PM2.5 exposure 
was associated with Horvath DNAmAge (Nwanaji-Enwerem et al., 
2016). Further analyses suggested that CpGs contributing to this asso
ciation were mapping genes involved in lung pathologies (Nwanaji- 
Enwerem et al., 2016) and, among the heterogeneous chemical com
ponents of PM2.5, sulphate and ammonium were most associated with 
accelerated ageing (Nwanaji-Enwerem et al., 2017). Other studies using 
the same dataset did not find an association between long-term PM2.5 
exposure and Hannum DNAmAge (Nwanaji-Enwerem et al., 2017) or 
DNAm PhenoAge (Wang et al., 2020); but two chemical components of 
PM2.5 (i.e. lead and calcium) led to accelerated ageing measured with 

DNAm PhenoAge (Wang et al., 2020). The KORA study in Germany with 
1777 older participants confirmed the link between higher annual PM2.5 
exposure at the time of data collection and extrinsic epigenetic age ac
celeration derived from Horvath’s epigenetic clock; however, associa
tions (and their direction) differed between males and females (Ward- 
Caviness et al., 2016). More recently, findings based on 2747 women 
aged 35–74 in the Sister Study from the United States indicated age 
acceleration using Hannum DNAmAge when exposed to higher NO2 
levels, while only clusters of PM2.5 components were associated with 
Horvath DNAmAge and DNAm PhenoAge (White et al., 2019). Whereas 
these previous reports described the associations between air pollution 
exposure and faster epigenetic clocks, none has been able to look at how 
exposure at different epochs relates to DNAm-based biomarkers in older 
age. Our study not only confirms the relationship between epigenetic 
ageing based on Horvath DNAmAge among individuals exposed to 
higher air pollution (Nwanaji-Enwerem et al., 2016; Ward-Caviness 
et al., 2016), but also extends the literature suggesting a sensitive 
period in young-to-middle adulthood. In contrast to previous findings 
(White et al., 2019; Wang et al., 2020), we were unable to confirm as
sociations between air pollution and DNAm PhenoAge or Hannum 
DNAmAge, which may be related to our comparably smaller sample size 
or unobserved cohort-specific characteristics. 

We found shorter DNAmTL among older males exposed to higher air 
pollution exposure in middle adulthood, with some evidence suggesting 
also the detrimental impact of accumulated life course exposure. These 
findings corroborate and extend prior work relating to leukocyte telo
mere length. Long-term exposure to air pollution is associated with 
shorter telomere length, whereby pollution likely increases the repli
cation rate of cells and telomere loss during cell replication (Miri et al., 
2019). Findings from the KORA study indicated sex-differences in the air 
pollution (i.e. black carbon) and telomere length relationship, with 
significant attrition found only among males (Ward-Caviness et al., 
2016). DNAmTL is a robust measure of telomere-associated ageing, 
which is related to cell replication and cellular ageing, distinct from 
epigenetic ageing (Lu et al., 2019). CpGs used to derived epigenetic 
clocks and DNAmTL are not overlapping; CpGs for DNAmTL are located 
near cadherin and cell signalling genes (Lu et al., 2019). DNAmTL has 
been shown to outperform leukocyte telomere length in predicting 
health-related outcomes (Lu et al., 2019); and, to our knowledge, it has 
not been used before to explore the air pollution-biological ageing 
relationship. 

A key finding of this study showed that exposure to air pollution 
around birth was associated with shorter DNAmTL among females. This 
is supported by a recent systematic review concluding that prenatal 
exposure to air pollution is linked to global and specific alterations in 
DNAm levels and to telomere attrition, whereby the beginning of the 
pregnancy is a potentially susceptible period (Isaevska et al., 2021). 

Table 3 
Associations between air pollution exposure and DNAm-based biomarkers for selected life-course models in the Lothian Birth Cohort 1936.  

Exposure Total 
(n = 525, obs = 1782) 
Horvath DNAmAgea 

Air pollution in 1970  

Male 
(n = 277, obs = 950) 
DNAmTLb 

Air pollution in 1980  

Female 
(n = 248, obs = 832) 
DNAmTLc 

Air pollution in 1935 

Estimate (95% CI) p  Estimate (95% CI) p  Estimate (95% CI) p 

Air Quality Index 0.322 (0.088, 0.555)  0.007  − 0.015 (− 0.027, − 0.004)  0.010  − 0.017 (− 0.028, − 0.006)  0.003 
Air pollutants (in 1-μg m− 3)         
PM2.5 0.299 (0.046, 0.552)  0.021  − 0.018 (− 0.034, − 0.003)  0.019  − 0.002 (− 0.004, − 0.001)  0.003 
SO2 0.078 (0.005, 0.151)  0.038  − 0.004 (− 0.009, 0.000)  0.057  − 0.001 (− 0.002, − 0.000)  0.003 
NO2 0.115 (0.010, 0.220)  0.032  − 0.007 (− 0.012, − 0.002)  0.006  − 0.006 (− 0.010, − 0.002)  0.007 
O3 − 0.185 (− 0.439, 0.069)  0.153  0.012 (0.001, 0.023)  0.041  0.015 (0.004, 0.027)  0.012 

Models were fitted with mixed-effects regression with random intercepts for study participants. All models were adjusted for white blood cell proportions as fixed 
(CD8T, CD4T, NK, Bcell, Mono, Gran) and technical variables as random effects (set, position, plate). Abbreviations: DNAmTL = DNAm telomere length. 

a Models were adjusted for sex, age, parental occupational social class, childhood smoking, and years spent in education. 
b Models were adjusted for age, parental occupational social class, childhood smoking, years spent in education, and adult smoking. 
c Models were adjusted for age and parental occupational social class. 
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Particles can translocate into or across the placenta and induce oxidative 
stress; production of reactive oxygen species leads to DNA damage and 
epigenetic alterations (Saenen et al., 2019). In turn, changes in 
methylation levels in the embryonic development are associated with 
abnormal development (Yin et al., 2012). Mediation analyses have 
confirmed the role of DNAm in the pathway between air pollution 
exposure and foetal growth (Zhao et al., 2021), and later life health 
outcomes (Sbihi et al., 2019). In our study, exposure around birth was 
associated with DNAmTL mainly among females (although sex differ
ences were not significant), which is not unexpected given sex differ
ences in the impact of air pollution on pregnancy outcomes (Ghosh et al., 
2007). In line with our finding, a study from Mexico found shorter 
leukocyte telomere length among female but not male newborns after 
higher maternal PM2.5 exposure (Rosa et al., 2019). Similarly, prenatal 
exposure to organic pollutants in the Shanghai Allergy Cohort was 

linked to shorter leukocyte telomere length at birth among females, and 
mediation analyses highlighted the role of elevated oxidative stress (Liu 
et al., 2018). 

The air we breathe typically contains a mixture of multiple pollut
ants. Although we provided estimates for PM2.5, NO2, SO2 and O3 
separately, these were highly correlated making it impossible to prop
erly disentangle their effects on DNAm-based biomarkers, which is 
generally challenging in the absence of experimental data. High corre
lation is not surprising, given that during the earlier years for our cohort 
by far the largest emission sources were from coal/fossil fuel combus
tion, leading to high spatial and temporal correlation between PM2.5, 
SO2 and NO2; and the significant uncertainty of emissions for these 
modelling years. Weakening correlation over time might be explained 
by the introduction of clean air measures that particularly affected large, 
stationary combustion sources, and by road transport sources making a 

Fig. 5. Standardized effect sizes (β and their 95% CIs) 
providing comparable estimates for the associations 
between air pollution exposure and DNAm-based 
biomarkers in the Lothian Birth Cohort 1936 (n =
525). In addition to white blood cell proportions 
(CD8T, CD4T, NK, Bcell, Mono, Gran) and technical 
variables (set, position, plate), Model A was adjusted 
for sex, age, parental occupational social class, child
hood smoking, and years spent in education; Model B 
for age, parental occupational social class, childhood 
smoking, years spent in education, and adult smoking; 
and Model C for age, and parental occupational social 
class. Abbreviations: AQI = air quality index; 
DNAmTL = DNAm telomere length.   
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larger contribution (Carnell et al., 2019). NO2 and SO2, for example, are 
emitted as primary pollutants, whereas PM2.5 is a mixture of primary 
and other secondary pollutants; fossil fuel combustion sources 
contribute the major share of all three pollutants. O3 is not directly 
emitted into the air, but it is produced through complex chemical re
actions in the atmosphere (World Health Organization, 2021). Due to 
the titration effect, O3 is depleted in areas where high NOx emissions are 
present, which results to O3 being negatively correlated with NO2 (and 
to a smaller degree with PM2.5 and SO2). While there is some evidence of 
a positive association between O3 exposure and leukocyte telomere 
length among critically ill patients (Wang et al., 2020), our unexpected 
findings on O3 and slower biological ageing might be an artefact given 
the above presented correlation pattern between pollutants. Two- 
pollutant models further suggested that overall results were mainly 
driven by PM2.5, NO2, and SO2, making a plausible positive association 
between O3 and DNAmTL less likely. 

Analyses in this study were based on over 500 individuals, 1700 
epigenetic samples with 5 different DNAm-based biomarkers measured 
in older age, and on pollution exposure estimated across the lifecourse 
(Taylor et al., 2018). LBC1936 is a narrow-age birth cohort from a 
specific region of Scotland which lowers the risk of historical events 
causing spurious association by only affecting part of the sample. We 
utilised robust and validated methods of measuring different aspects of 
biological ageing; this is particularly important for telomere-related 
ageing, where the traditional methods of estimating leukocyte telo
mere length can be challenging (Lu et al., 2019). A unique feature of the 
cohort is the presence of life-course addresses (Pearce et al., 2018), 
which made it possible to link individual residence to historical air 
pollution concentrations. Whereas retrospective recall is well-known to 
be prone to bias, the lifegrid approach with lightbulb prompt indicates 
that residential address recall among older people shows good accuracy 
(Berney and Blane, 2003). We are unaware of any other datasets that can 
allow interrogation of these relationships in the same individuals with 
coverage from birth to the 8th decade of life. Our analytical approach 
was particularly useful when competing life-course hypotheses were 
equally plausible (Smith et al., 2016) and we were able to test these 
without over-inflating coefficients and biasing the hypothesis test 
(Lockhart et al., 2014). To further indicate the robustness of our find
ings, we provided FDR adjusted p-values. 

Still, several limitations need to be considered that potentially affect 
the interpretation of the results. First, LBC1936 compiles an ethnically 
homogenous sample of Scottish adults, thereby limiting the generaliz
ability of our findings. Moreover, address data were collected when 
participants were in their late 70s, leaving healthier individuals in our 
analytical sample, introducing not only selection but also survival bias 
(Taylor et al., 2018). Second, residential address in 1936 indicated by 
the participants may not correspond with pre-birth location, leading to 
exposure misclassification. Third, the selection of the best-fit life-course 
models was based on 489 (and 455 in sensitivity analysis) out of 525 
participants, as DNAm data were not available for the complete sample 
in any of the follow-up waves. Unavailability of data for some partici
pants might have reduced statistical power to identify all relevant life- 
course models. Fourth, despite lifegrid methods being a validated way 
of gathering historical residential addresses (Berney and Blane, 2003), 
recall inaccuracy might have led to underestimating potential associa
tions. Fifth, due to lack of data we were unable to control for the effect of 
several key life-course confounders (e.g. health status in young adult
hood) increasing the risk of residual confounding; similarly, lack of data 
on DNAm measurement across the life course should be also acknowl
edged. Sixth, there is a large degree of uncertainty when estimating 
historical concentrations of air pollution. While atmospheric chemistry 
transport models are routinely and widely evaluated against observa
tions in present-day conditions, showing good agreement between 
modelled and observed concentrations (Lin et al., 2017; Ge et al., 2021), 
the further back in time emissions of relevant air pollutants have to be 
estimated, the larger uncertainties are with regard to their spatial 

distribution, as well as their volume. There are few, if any, reliable ob
servations available prior to the 1970s; for some pollutants not before 
the late 1980s. Also, atmospheric chemistry transport models rely on 
meteorological driver data to represent atmospheric transport and 
chemical transformation processes and for this analysis one constant set 
of meteorological data has been used for all calculations (Skamarock 
et al., 2008). While these aspects contribute to uncertainties in the es
timates in ambient air pollutant concentrations and thus exposures, the 
consistent model setup and handling of input data (i.e. anthropogenic 
emissions and meteorological drivers) means that relative changes in the 
spatial distribution of concentrations can be considered to be sufficiently 
accurate. Seventh, the spatial resolution of ~5 × 6 km (World Bank, 
2016) used in this study is likely too coarse, especially for urban areas, 
and may lead to underestimating exposures and health impacts 
(Korhonen et al., 2019). This is pertinent for the 2001 air pollution 
exposure estimate: while during their life course LBC1936 participants 
resided in various places across the UK, they all lived in the Lothian 
region of Scotland when the cohort was established in 2004, reducing 
the heterogeneity of exposure. Finally, we were only able to use resi
dential addresses to estimate air pollution exposure; incorporating 
school, work and other key locations could have led to more precise 
findings. 

Due to lack of previous life-course investigations on air pollution and 
markers of biological ageing, our findings are provisional and should be 
considered as hypotheses until future studies can explore how and why 
air pollution during specific life stages impacts males and females 
differently. Alternative explanations for reported associations include 
different toxicity and level of pollutants, as both the composition of 
aerosols and their magnitude changed substantially during the study 
period in response to changes in pollution source (e.g. domestic heating 
to motor vehicles) and the regulation of emissions. On the exposure, 
historical air pollution data at finer scale resolution may overcome the 
challenges originating from the very high correlation between pollutants 
and provide further heterogeneity of exposure. Collecting historical data 
on neighbourhood indicators could further address area-level con
founding. Telomere length based on DNAm proved a valuable biomarker 
in our study; future investigations should further explore its utility in 
understanding how environmental exposures can ‘get under the skin’. 
Finally, research should aim to replicate our results in larger, nationally 
representative cohort studies with more diverse populations and explore 
more thoroughly possible life-course confounders and mediators. 

5. Conclusions 

This study utilised historical air pollution concentrations of PM2.5, 
SO2, NO2 and O3 and applied the life-course approach for the first time 
to contribute to the understanding of air pollution and biological ageing. 
We found that exposure to lower air quality at earlier stages of the life (i. 
e. around birth, young-to-middle adulthood) can have a modest but 
detectable association with epigenetic and telomere-associated ageing 
in later life, which likely persists across the entire life course. This study 
demonstrated the utility of DNAmTL in environmental research, a 
biomarker of cellular ageing, which seems to be particularly susceptible 
to air pollution exposures. Future studies should explore options to 
refine historical air pollution data and reinforce our findings in larger 
cohorts. Policy actions at national-level targeting air pollution reduction 
can likely have long-lasting effects on the development of future gen
erations, especially in light of findings on effects around birth, and 
contribute to healthy population ageing. 
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