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Abstract
We study sets of local dimensions for self-similar measures in R satisfying the
finite neighbour condition, which is formally stronger than the weak separation
condition (WSC) but satisfied in all known examples. Under a mild technical
assumption, we establish that the set of attainable local dimensions is a finite
union of (possibly singleton) compact intervals. The number of intervals is
bounded above by the number of non-trivial maximal strongly connected com-
ponents of a finite directed graph construction depending only on the governing
iterated function system. We also explain how our results allow computations of
the sets of local dimensions in many explicit cases. This contextualises and gen-
eralises a vast amount of prior work on sets of local dimensions for self-similar
measures satisfying the WSC.
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1. Introduction

A natural question when studying Borel probability measures on the real line, in particular
those which are not absolutely continuous with respect to Lebesgue measure, is to quantify
the singularity of the measure. The Hausdorff dimension of the measure provides one coarse
measurement. A more fine-grained approach is through the local dimensions of the measure μ
at points x in its support, namely, the quantities

dimloc μ(x) = lim
r→0

log μ(B(x, r))
log r

.

In this paper, we are interested in determining properties of the set of attainable local
dimensions for a given measure.

Our focus is on the invariant measures associated with an iterated function system (IFS)
of similarities on R, also known as self-similar measures. These measures are simple to
describe (see (3.1) for the definition), yet exhibit rich and complex behaviour. Historically,
such measures have been of great interest.

Investigation of the sets of local dimensions of self-similar measures is related to multifrac-
tal analysis, in which one studies dimensional properties of the level sets of the local dimension
function. A heuristic relationship, known as the multifractal formalism [13], implies (when it
is satisfied) that the set of local dimensions is a closed interval. The multifractal formalism
holds if the IFS satisfies the classical open set condition (OSC) and there are simple formulas
for the endpoints of the interval of attainable local dimensions [1, 20]. But when the OSC fails
to hold, the situation is much more complicated and less is known.

In [15], Hu and Lau discovered that when μ is the three-fold convolution of the classical
middle-third Cantor measure, the set of local dimensions ofμ consists of a closed interval along
with an isolated point. Generalisations of this example were studied in [11, 22], for example,
while Testud [23] gave an example of a Cantor-like measure, but with some of the similarities
in the IFS having negative contraction factors, whose set of local dimensions was the union
of two disjoint (non-trivial) intervals. Another much studied family of self-similar measures
which fail the OSC are the Bernoulli convolutions. These are the measures associated with
the IFS {ρx, ρx + 1 − ρ} where 1/2 < ρ < 1. (See [24] for more background on Bernoulli
convolutions.) It was shown by Feng [4] that when ρ is the reciprocal of a simple Pisot number,
such as the Golden mean, the set of local dimensions of the corresponding uniform Bernoulli
convolution is, again, a closed interval. However, all biased Bernoulli convolutions (regardless
of the choice of ρ) and unbiased Bernoulli convolutions with contraction ratio greater than the
reciprocal of the Golden mean have an isolated point in their set of local dimensions [8]. We
refer the reader to section 5 for more discussion on these important examples.

Convolutions of the middle-third Cantor measure and the Bernoulli convolutions with con-
traction factor the reciprocal of a Pisot number are all examples of self-similar measures
associated with IFSs that satisfy the weak separation condition (WSC) [16]. This separation
condition is similar to the OSC but allows exact overlaps [25]. For such measures, the second
author recently established the existence of a directed transition graph that encodes the local
behaviour of the measure, and related the multifractal analysis of the measure with connectiv-
ity properties of the graph [21]. One corollary of this earlier work is that when the transition
graph is strongly connected, the set of attainable local dimensions of the measure is a closed
interval.

In this paper, we significantly extend this local dimension result beyond the strongly con-
nected case to obtain a more thorough understanding of sets of attainable local dimensions.
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We specialise slightly to the case where the transition graph is finite, which we call the finite
neighbour condition. This separation condition is closely related to the generalised finite type
condition defined by Lau and Ngai [17]. The finite neighbour condition is equivalent to the
WSC when the support of the measure is an interval [12]. Our main contribution is to establish
under the finite neighbour condition, and a weak technical assumption, that the set of local
dimensions is a finite union of (possibly singleton) intervals. Moreover, the number of inter-
vals is bounded above by the number of non-trivial maximal strongly connected components
of the transition graph.

Our research generalises and contextualises the prior analysis of sets of local dimensions for
overlapping IFSs satisfying the WSC. We should emphasise that, in contrast with much of the
earlier work on this problem, we do not require the IFS to have similarities with commensurable
contraction factors. Moreover, we are not aware of any examples of self-similar measures in
R, satisfying the WSC, to which our results do not apply.

1.1. Organisation of the paper

The main content of the paper is separated into two conceptual components: analysis of a
graph-theoretic symbolic case, and specialisation to self-similar measures.

First, in section 2, we introduce a general weighted matrix product system. This symbolic
formalism can be thought of as a weighted generalisation of the matrix-valued functions on
shift space studied by past authors [2, 5, 6]. Under an irreducibility hypothesis similar to [5],
and using modified versions of the techniques contained therein, we establish in theorem 2.10
that the corresponding sets of Lyapunov exponents form a closed interval. We also establish in
proposition 2.13 the density of Lyapunov exponents at special types of paths for which local
dimension computations are particularly straightforward; this is useful in the computation of
sets of local dimensions for specific examples.

In section 3, we review the details of the transition graph construction from [21] with a
particular focus on self-similar measures μ on R that satisfy the finite neighbour condition
(see definition 3.6). This construction establishes the existence of a finite directed graph such
that infinite paths in the graph correspond (almost) injectively to points in the support of μ. In
fact, this directed graph construction is our motivation for studying the general matrix product
systems. The μ-measure of a rich set of intervals (generating the topology on the support of μ)
is determined by products of non-negative matrices. The weights in the matrix product system
allow us to handle non-equicontractive IFS.

Then, in section 4, we apply the results from the symbolic case to the study of the sets of
local dimensions for these measures. The relevant transition graph can be decomposed into
finitely many non-trivial strongly connected components, which we refer to as maximal loop
classes. Any infinite path in the graph is eventually in exactly one maximal loop class, so
maximal loop classes correspond to particular subsets of the support of μ. Under a technical
assumption—that each maximal loop class satisfies either a simplicity or irreducibility hypoth-
esis (see definition 3.10)—we relate the local dimensions at points corresponding to a maximal
loop class to the Lyapunov exponents of the associated matrix product system. This allows us
to establish in corollary 4.8 that the set of local dimensions at points corresponding to such a
maximal loop class forms a closed interval. Consequently, in corollary 4.11 we deduce that the
set of attainable local dimensions of the measure is a finite union of intervals, some of which
could be degenerate, with the number of intervals bounded above by the number of maximal
loop classes. The same results hold for upper local dimensions as well.

Lastly, in section 5, we illustrate these ideas with examples, including those mentioned
above.
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1.2. Some questions

(a) We do not know if every self-similar measure in R that satisfies the WSC also satisfies
our formally stronger finite neighbour condition, or if every measure satisfying the finite
neighbour condition satisfies the required technical assumption. If not, it would be of
interest to extend the analysis.

(b) Our results establish that the sets of local dimensions and sets of upper local dimensions
coincide. However, the set of lower local dimensions can be different, as seen in remark
4.9. In that example, the set of lower local dimensions is still, however, a finite union of
intervals corresponding to maximal loop classes. It is of interest to determine if similar
results hold for sets of lower local dimensions.

1.3. Notation

The reals R are a metric space with the usual Euclidean metric, and N is the set of natural
numbers beginning at 1. The set B(x, r) is a closed ball centred at x with radius r. Given a set
E ⊆ R, we write diam(E) = sup {|x − y| : x, y ∈ E}.

Given a set X, we write #X to denote the cardinality of X. Given two real-valued functions
f (z), g(z) defined on some index set Z, we write f � g (resp. f � g) if there exists some c > 0
such that f (z) � cg(z) (resp. f (z) � cg(z)) for each z ∈ Z. We say f � g if f � g and f � g.

If M is a square matrix, we denote by sp M the spectral radius of M. All matrices in this
document are non-negative.

2. Graph-directed matrix product systems

2.1. Basic definitions

Let G be a finite directed graph with vertex set V(G) and edge set E(G). We will assume that G is
strongly connected, which means that there is a directed path connecting any two vertices. Each
vertex v has a dimension d(v) ∈ N, and to each edge e = (v1, v2) we associate a non-negative
d(v1) × d(v2) transition matrix T(e) and a weight W(e) ∈ (0, 1). We let

dmax = max
v∈G

d(v).

Let Σ denote the set of all infinite paths (ei)∞i=1 in G and let Σ∗ denote the set of all finite
paths in G. A path is a cycle if it begins and ends at the same vertex. The length of a finite
path is the number of edges it contains. We say a path η ∈ Σ∗ is a prefix of a (finite or infinite)
path γ if γ = ηγ′ for some path γ ′. Given γ = (en)∞n=1 ∈ Σ, we write γ|n = (e1, . . . , en) ∈ Σ∗

to denote the unique prefix of length n.
Given η = (e1, . . . , en) ∈ Σ∗, we write

W(η) = W(e1) . . .W(en)

and if η ∈ Σ∗ has length at least 1, η− = (e1, . . . , en−1). For convenience, let

Wmin = min{W(e) : e ∈ E(G)} > 0, Wmax = max{W(e) : e ∈ E(G)} < 1.

If η is the empty path, we say W(η) = 1. Similarly, we write

T(η) = T(e1) . . .T(en) for η = (e1, . . . , en) ∈ Σ∗.
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We equip Σ with the topology induced by the metric

d(γ, ξ) = inf{W(η) : η a prefix of γ and ξ}.

With this topology, Σ is a compact totally disconnected metric space.
We refer to this data as a graph-directed matrix product system or, in short, a matrix product

system. Typically, we will denote this by G.

Definition 2.1. Given an infinite path γ = (e j)∞j=1 ∈ Σ, we define the lower Lyapunov
exponent by

λ(G, γ) = lim inf
n→∞

log‖T(e1) . . .T(en)‖
log W(e1) . . .W(en)

.

The upper Lyapunov exponent is defined similarly; when the values coincide, we call this value
the Lyapunov exponent of the path γ, and denote it by λ(G, γ). Typically, we omit writing G
when it is clear from the context.

For any t > 0, denote

Σt = {η ∈ Σ∗ : W(η) < t � W(η−), ‖T(η)‖ > 0},

which is the set of paths with non-zero transition matrix and weight approximately t.

2.2. Irreducible matrix product systems

It is clear that the geometric properties of the metric space Σ are determined completely from
the edge weights. However, in order to say meaningful things about products of matrices
and Lyapunov exponents, we require a stronger form of irreducibility than the graph G being
strongly connected.

Definition 2.2. We say that the matrix product system is irreducible if there exists a finite
family of paths H ⊂ Σ∗ such that for any vertices v1, v2, 1 � i � d(v1), and 1 � j � d(v2),
there exists a path γ ∈ H from vertex v1 to v2 such that T(γ)i, j > 0.

Remark 2.3. Equivalently, for each 1 � i, j � m = #V(G), define Mi, j = T(e) if there is an
edge e from vertex vi to v j, and let Mi, j = 0 otherwise. The matrix product system is irreducible
if and only if the block matrix

M =

⎛
⎜⎝

M1,1 . . . M1,m

...
. . .

...
Mm,1 . . . Mm,m

⎞
⎟⎠

is irreducible, i.e. there exists some r > 0 such that
∑r

k=1 Mk is a strictly positive matrix.
Of course, irreducible systems are necessarily strongly connected.

Remark 2.4. Our irreducibility criterion is very similar to the one assumed by Feng [5].
However, since our weights depend on the edge rather than the source vertex, we find it more
natural to speak of infinite paths in a graph rather than words in a sequence space. One may
equivalently think of the graph as a subshift of finite type determined by a weighted adjacency
matrix.
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For the remainder of this section, unless otherwise stated, our matrix product system is
irreducible. Irreducibility is essential for obtaining the following estimates, which we will use
frequently.

Lemma 2.5. There are constants A, B > 0 such that for any paths η1, η2 ∈ Σ∗, there exists
some γ ∈ H such that η1γη2 is a path and

A‖T(η1)‖‖T(η2)‖ � ‖T(η1γη2)‖ � B‖T(η1)‖‖T(η2)‖

Proof. By the irreducibility assumption, for any v1, v2 ∈ V(G), 1 � i � d(v1), and
1 � j � d(v2), there exists a path γ = γ(v1, v2, i, j) ∈ H from v1 to v2 such that T(γ)i, j > 0.
Let

C = min{T(γ(v1, v2, i, j))i, j : v1, v2 ∈ V(G), 1 � i � d(v1), 1 � j � d(v2)}.

If η1, η2 are arbitrary paths, by the pigeonhole principle, there exists some k, i, j, � such that
d2

max T(η1)k,i � ‖T(η1)‖ and d2
max T(η2) j,� � ‖T(η2)‖. Assume η1 ends at vertex v1, η2 begins

at vertex v2, and take γ = γ(v1, v2, i, j) ∈ H. Then η1γη2 is a path and

‖T(η1γη2)‖ � T(η1)k,iT(γ)i, jT(η2) j,� � C
d4

max
‖T(η1)‖‖T(η2)‖.

The lower bound follows by taking A = C/d4
max.

To obtain the upper bound, we simply note that

‖T(η1γη2)‖ � ‖T(η1)‖‖T(γ)‖‖T(η2)‖

and it suffices to take B = max{‖T(γ)‖ : γ ∈ H}. �

In the following lemma, we do not formally need the irreducibility hypothesis: it suffices to
know that if η is any path in G, then T(η) is not the zero matrix.

Lemma 2.6. There are constants A, r > 0 such that for any t1, t2 ∈ (0, 1), η1 ∈ Σt1 , and
η2 ∈ Σt2 , there are paths φ and ψ such that η1φη2ψ ∈ Σt1t2r and

‖T(η1φη2ψ)‖ � A‖T(η1)‖‖T(η2)‖.

Proof. Take r = min{W(η) : η ∈ H}. By the irreducibility hypothesis, there exists some
φ ∈ H such that ‖T(η1φη2)‖ > 0.

Moreover, for any path η with ‖T(η)‖ > 0, there exists an edge e such that ηe is a path
and ‖T(ηe)‖ > 0. Since t1t2W−2

min � W(η1φη2) � t1t2r, repeatedly applying this observation,
there exists ψ such that η1φη2ψ ∈ Σt1t2r. Note that W(ψ) � rW2

min. Thus ‖T(η1φη2ψ)‖ �
A‖T(η1)‖‖T(η2)‖ where

A = max{‖T(η)‖ : η ∈ E(G), W(η) � rW2
min} · max{‖T(η) : η ∈ H‖}

as required. �

Lemma 2.7. There are constants A, B > 0 such that for any path η ∈ Σ∗, there exists some
φ ∈ H such that ηφ is a cycle and

A‖T(η)‖ � sp T(ηφ) � B‖T(η)‖.
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Proof. Let C be the minimal strictly positive coefficient of any T(φ) for φ ∈ H. Suppose
T(η)i,� is the maximal coordinate of T(η). Get φ ∈ H such that ηφ is a cycle and T(φ)�,i � C >
0. Then

Tr T(ηφ) � T(ηφ)i,i � T(η)i,�T(φ)�,i � ‖T(η)‖ C
d2

max
.

Since the trace of a matrix is the sum of its eigenvalues,

Tr(T(ηφ)) � dmax sp T(ηφ).

Thus with A = C/d3
max, we have sp(T(ηφ)) � A‖T(η)‖.

Conversely, we have

sp(T(ηφ)) � ‖T(ηφ)‖ � ‖T(η)‖‖T(φ)‖ � B‖T(η)‖

where B = max{‖T(γ)‖ : γ ∈ H}. �

2.3. Attainable Lyapunov exponents

The main goal of this subsection is to determine the possible values of Lyapunov exponents of
paths in the matrix product system.

We begin with notation. Put

αmin(G) = αmin := lim
t→0

min
η∈Σt

log‖T(η)‖
log t

,

αmax(G) = αmax := lim
t→0

max
η∈Σt

log‖T(η)‖
log t

.

(2.1)

We will first show that αmin and αmax are well defined and take real values. This will use
the following standard submultiplicativity result, which is a slightly modified version of, for
example [14, theorem 7.6.1].

Lemma 2.8. Let f : (0, 1) → R be measurable and suppose there exists c > 0 and r > 0
such that f (t1t2r) � c · f (t1) f (t2) for all t1, t2 ∈ (0, 1). Then

lim
t→0

log f (t)
log t

= inf
t>0

log f (t)
log t

.

Note the similarity of the following lemma with [5, lemma 2.3].

Lemma 2.9. The limits defining αmin and αmax exist and take real values.

Proof. We will first prove that the limit

lim
t→0

min
η∈Σt

log‖T(η)‖
log t

= lim
t→0

log maxη∈Σt‖T(η)‖
log t

exists. Set f (t) = maxη∈Σt‖T(η)‖. Let t1, t2 > 0 be arbitrary. If η ∈ Σt1t2Wmin , we may
write η = η1η2γ where η1 ∈ Σt1 and η2 ∈ Σt2 and W(γ) � W2

min. In particular, with
c = max{‖T(ψ)‖ : W(ψ) � W2

min}, we have ‖T(η)‖ � c‖T(η1)‖‖T(η2)‖ and therefore
f (t1t2Wmin) � c · f (t1) f (t2). Applying lemma 2.8 with c as above and r = Wmin, we have our
desired result.
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We now show that limt→0 maxη∈Σt
log‖T(η)‖

log t exists. Set g(t) = minη∈Σt‖T(η)‖. Let t1, t2 > 0
and let η1 ∈ Σt1 and η2 ∈ Σt2 be arbitrary. Note that η1η2 need not be a path, and even if it were,
it need not hold that η1η2 ∈ Σt1t2 . By lemma 2.6, there exists some c, r > 0 (not depending on
η1 and η2) and paths φ and ψ such that η1φη2ψ is an admissible path in Σrt1t2 and

g(rt1t2) � c‖T(η1)‖‖T(η2)‖. (2.2)

Now taking the minimum over all η1 ∈ Σt1 and η2 ∈ Σt2 yields g(rt1t2) � cg(t1)g(t2). Thus g
satisfies lemma 2.8.

To see that αmin,αmax ∈ R, let a be the smallest strictly positive entry in any T(e) for e ∈
E(G). Let b = min{‖T(e)‖ : e ∈ E(G)}. Then if η ∈ Σt is any path of length n, we have that

log b
log Wmin

� log‖T(η)‖
log t

� n log a
(n − 1) log Wmax

so that αmin,αmax are real-valued. �

Of course, if η ∈ Σt, then W(η) � t. Consequently,

αmin = lim
t→0

min
η∈Σt

log‖T(η)‖
log W(η)

and αmax = lim
t→0

max
η∈Σt

log‖T(η)‖
log W(η)

.

We are now ready to prove the following result about the set of attainable Lyapunov exponents.
We remind the reader that the Lyapunov exponent of the path γ, λ(γ), was defined in definition
2.1.

Our proof follows [5, lemma 2.3 and proposition 3.2].

Theorem 2.10. Let G be a matrix product system satisfying the irreducibility hypothesis.

(a) If γ ∈ Σ is any path, then λ(γ),λ(γ) ∈ [αmin,αmax].
(b) For anyα ∈ [αmin,αmax] and ξ ∈ Σ∗ with T(ξ) non-zero, there exists some γ = (em)∞m=1 ∈

Σ and a sequence (m j)∞j=1 such that λ(γ) = α, lim j→∞ m j+1/m j = 1, and for each j ∈ N,
ξ is a prefix of (em j , em j+1, . . .).

Proof. For (a), if γ ∈ Σ is arbitrary, then

λ(γ) = lim
k→∞

log‖T(γ|nk)‖
W(γ|nk)

for some subsequence nk. But if γ|nk ∈ Σtnk
, then W(γ|nk) � tnk and

αmin � lim
k→∞

log‖T(γ|nk)‖
log tnk

� αmax

from the existence of the limits defining αmin and αmax. The upper Lyapunov exponent result
is identical, giving (a).

Now for (b), given α ∈ [αmin,αmax], let s ∈ [0, 1] be such that α = sαmin + (1 − s)αmax.
For each n ∈ N, choose φn,ψn ∈ Σ2−n with the property that

log‖T(φn)‖
log W(φn)

= un → αmin and
log‖T(ψn)‖
log W(ψn)

= vn → αmax.

Let {An}∞n=1, {Bn}∞n=1 be sequences of natural numbers given by
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An = [sn]

Bn = [(1 − s)n],

where [x] denotes the integer part of x. Then define a sequence by

φ1, . . . ,φ1︸ ︷︷ ︸
A1

,ψ1, . . . ,ψ1︸ ︷︷ ︸
B1

, . . . ,φn, . . . ,φn︸ ︷︷ ︸
An

,ψn, . . . ,ψn︸ ︷︷ ︸
Bn

, . . .

and relabel it {ηn}∞n=1, i.e. η1 = φ1, ηA1 = φ1, ηA1+1 = ψ1, etc.
Now since ξ ∈ Σ∗ has T(ξ) non-zero, by repeatedly applying lemma 2.5, there are constants

C1, C2 > 0 such that for each n ∈ N there are paths ν(1)
n , ν(2)

n in H such that with νn := ν(1)
n ξν(2)

n ,

γ := (η1, ν1, η2, ν2, . . .)

is an infinite path and

Cm
1

m∏
i=1

‖T(ηi)‖ � ‖T(η1ν1 . . . ηmνm)‖ � Cm
2

m∏
i=1

‖T(ηi)‖. (2.3)

Since H is a finite set, there also exists D1, D2 > 0 such that

Dm
1

m∏
i=1

W(ηi) � W(η1ν1 . . . ηmνm) � Dm
2

m∏
i=1

W(ηi). (2.4)

For notation, let {nk}∞k=1 be the indices such that nk is the index of the edge preceding the first
edge of φk+1 in repetition Ak+1.

Let (m j)∞j=1 be the sequence of indices such that ξ is a prefix and fix some j ∈ N. For any
� ∈ N, since φ� and ψ� are in Σ2−� , there exists some a, b > 0 such that a� � |φ�| � b� where
|φ�| is the number of edges in φ�. Moreover, (γm j , γm j+1, . . .) has prefix ξζ1φ�ζ2ξ or ξζ1ψ�ζ2ξ
where � is chosen suitably and ζ1, ζ2 ∈ H have bounded length. Thus there exists some M >
0 such that m j+1 − m j � M + b�. On the other hand, it always holds that m j �

∑�−1
i=1 ai. It

follows that lim j→∞ m j+1/mj = 1, as claimed.
We now prove that λ(γ) � α; the lower bound λ(γ) � α will follow by a similar argument.

To this end, let n be a large number of edges and let k be maximal such that n � nk (that is,
k is the maximal number of completed blocks Ai, Bi which occur before edge n). There exist
constants C3, C4 > 0 such that

C
nk+1−nk
3

∥∥T(γ1 . . . γnk+1)
∥∥ � ‖T(γ|n)‖ � C

nk+1−nk
4

∥∥T(γ1 . . . γnk )
∥∥

and

W(γ1 . . . γnk+1 ) � W(γ|n) � W(γ1 . . . γnk ).

Since the number of edges contained in γ|n is at least
∑k

i=1(Ai + Bi) and at most
∑k+1

i=1 (Ai +
Bi), we deduce from (2.3) and (2.4) that

log‖T(γ|n)‖
log W(γ|n)

� (nk+1 − nk) log C3 +
∑k+1

i=1

(
(Ai + Bi) log C1 + Ai log‖T(φi)‖+ Bi log‖T(ψi)‖

)

∑k
i=1((Ai + Bi) log D2 + Ai log W(φi) + Bi log W(ψi))

.
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Since each φi,ψi ∈ Σt2−i , we have W(φi) � W(ψi) � 2−i. Recall, also, that Ai, Bi � i. There-
fore ∣∣∣∣∣

∑k+1
i=1 (Ai + Bi) log C1∑k

i=1(Ai log W(φi) + Bi log W(ψi))

∣∣∣∣∣ �
∑k+1

i=1 i∑k
i=1i2

� 1
k
→ 0

and a similar statement holds with the numerator replaced by
∑k

i=1 (Ai + Bi) log D2. Moreover,
since (nk+1 − nk) log C3 � (k + 1)(Ak+1 + Bk+1), we also have∣∣∣∣∣ (nk+1 − nk) log C3∑k

i=1(Ai log W(φi) + Bi log W(ψi))

∣∣∣∣∣→ 0

We thus have that

lim sup
n

log‖T(γ|n)‖
log W(γ|n)

� lim sup
k

∑k+1
i=1 (Ai log‖T(φi)‖+ Bi log ‖T(ψi)‖)∑k

i=1(Ai log W(φi) + Bi log W(ψi))

= lim sup
k

∑k+1
i=1 (Aiui log W(φi) + Bivi log W(ψi))∑k

i=1(Ai log W(φi) + Bi log W(ψi))

= lim sup
k

∑k+1
i=1 (iAiui + iBivi)∑k

i=1(iAi + iBi)

= lim sup
k

∑k+1
i=1 i2(sui + (1 − s)vi)∑k

i=1i2
.

Fix ε > 0. Since limi→∞(sui + (1 − s)vi) = α, for large enough N, sui + (1 − s)vi � α+ ε
for all i � N. Thus

lim sup
n

log‖T(γ|n)‖
log W(γ|n)

� lim sup
k

∑k+1
i=N i2(α+ ε)∑k

i=1 i2
� α+ ε.

Similar reasoning shows that

lim inf
n

log‖T(γ|n)‖
log W(γ|n)

� α− ε.

As ε > 0 was arbitrary, it follows that λ(γ) = α, as claimed. �
The following result now follows directly from theorem 2.10.

Corollary 2.11. Let G be an irreducible matrix product system. Then the set of attainable
Lyapunov exponents is the compact interval [αmin,αmax].

2.4. Density of periodic paths

An interesting class of paths are the so-called periodic paths, which are the paths in Σ of the
form

γ = (θ, θ, . . .)

where θ is a cycle. We denote them by P . We refer to θ as a period of the path.
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The Lyapunov exponent of a periodic path always exists and has a simple formula.

Proposition 2.12. Let γ be a periodic path with period θ. Then the Lyapunov exponent of
γ exists and is given by

λ(γ) =
log sp T(θ)
log W(θ)

.

Proof. Assume that θ = (θ1, . . . , θk). For any positive integer k and j = 1, . . . , k,

‖T(θnθ1 . . . θ j)‖ � ‖T(θn)‖‖T(θ1 . . . θ j)‖

and ∥∥T(θn+1)
∥∥ � ‖T(θnθ1 . . . θ j)‖‖T(θ j+1 . . . θk)‖.

Consequently, there is some A, B > 0, depending only on θ, such that

A
∥∥T(θn+1)

∥∥ � ‖T(θnθ1 . . . θ j)‖ � B‖T(θn)‖.

The result follows directly from the fact that

lim
n→∞

log‖T(θn)‖
n

= log sp(T(θ)).

�

Proposition 2.13. The set {λ(γ) : γ ∈ P} is dense in [αmin,αmax].

Proof. It suffices to show that if γ ∈ Σ is an arbitrary path such that λ(γ) exists, there exists
a sequence of periodic paths {yn}∞n=1 such that limn→∞ λ(yn) = λ(γ).

By lemma 2.7, there are constants A, B > 0 such that for any k ∈ N, there is a path ηk ∈ H
such that (γ|k)ηk =: θk is a cycle and

A‖T(γ|k)‖ � sp T(θk) � B‖T(γ|k)‖.

Let θk = (θk, θk, . . .). This is a periodic path with period θk, so that

λ(θk) =
log sp(T(θk))

log W(θk)

by proposition 2.12. Also, W(γ|k) � W(θk). Hence

lim sup
k→∞

λ(θk) � lim sup
k→∞

log A‖T(γ|k)‖
log W(γ|k)

= λ(γ)

and the lower bound follows identically. Thus limk→∞ λ(θk) = λ(γ) and we have density, as
claimed. �

3. Iterated function systems and their matrix product systems

We now turn to studying IFSs of similarities. In this section, we will describe how the dynamics
of associated self-similar sets and measures can be encoded with a matrix product system.
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3.1. The transition graph and the finite neighbour condition

We begin with notation and terminology. By an IFS, {Si}m
i=1, we mean a finite set of similarities

Si(x) = rix + di : R→ R for each i = 1, . . . , m (3.1)

with 0 < |ri| < 1 and m � 1. We say that the IFS is equicontractive if r1 = . . . = rm > 0.
Each IFS generates a unique non-empty, compact set K satisfying

K =
m⋃

i=1

Si(K),

known as the associated self-similar set. We will assume K is not a singleton. By translating
the di as necessary, without loss of generality we may assume that the convex hull of K is [0, 1].

Given probabilities p = (pi)m
i=1 where pi > 0 and

∑m
i=1 pi = 1, there exists a unique Borel

probability measure μp satisfying

μp(E) =
m∑

i=1

piμp(S−1
i (E)) (3.2)

for any Borel set E ⊆ K. This non-atomic measure μp is known as an associated self-similar
measure and has as its support the self-similar set K.

Given σ = (σ1, . . . , σ j) ∈ {1, . . . , m} j, we denote

σ− = (σ1, . . . , σ j−1), Sσ = Sσ1 ◦ . . . ◦ Sσ j and rσ = rσ1 . . . rσ j .

For t > 0, put

Λt = {σ : |rσ | < t � |rσ−|}.

The elements of Λt are called the words of generation t. We remark that in the literature it is
more common to see this defined by the rule |rσ | � t < |rσ−|, but this essentially equivalent
choice is more convenient for our purposes.

The notions of net intervals and neighbour sets were first introduced in [3] and extended in
[12, 21]. We summarise the key ideas here.

Let h1, . . . , hs(t) be the collection of distinct elements of the set {Sσ(0), Sσ(1) : σ ∈ Λt} listed
in strictly ascending order and set

Ft = {[h j, h j+1] : 1 � j < s(t) and (h j, h j+1) ∩ K 
= ∅}.

The elements of Ft are called the net intervals of generation t. Note that [0, 1] is the (unique)
net interval of any generation t > 1 and denote by

F =
⋃
t>0

Ft

the set of all net intervals.
Given a net interval Δ, we denote by TΔ the unique similarity TΔ(x) = rx + a with r > 0

such that

TΔ([0, 1]) = Δ.
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Of course, here r = diam(Δ) and a is the left endpoint of Δ.

Definition 3.1. We will say that a similarity f (x) = Rx + a is a neighbour ofΔ ∈ Ft if there
exists some σ ∈ Λt such that Sσ(K) ∩Δ◦ 
= ∅ and f = T−1

Δ ◦ Sσ . In this case, we also say that
Sσ generates the neighbour f .

The neighbour set of Δ is the maximal set

Vt(Δ) = { f 1, . . . , fk}

where each f i = T−1
Δ ◦ Sσi is a distinct neighbour of Δ. We denote by

Rmax(Δ) := max{|R| : x �→ Rx + a ∈ Vt(Δ)}

the maximum contraction factor of any neighbour of Δ.

When the generation is implicit, we will often write V(Δ). Since K =
⋃

σ∈Λt
Sσ(K), every

net interval Δ has a non-empty neighbour set.

Remark 3.2. As explained in [21, remark 2.2], for an equicontractive IFS {λx + di}i∈I with
0 < λ < 1, our notion of neighbour set is closely related to Feng’s neighbour and characteristic
vector construction [3]. Instead of normalising by some global factor of the form λn, we nor-
malise locally with respect to diam(Δ). In this case, the words of generationλn−1 are the words
of length n and the net intervals of generation n (in Feng’s notation) have diameter comparable
to λn.

This is important since, outside the equicontractive case, there is no uniform notion of an
integer-valued generation.

We now discuss some illustrative examples of this construction.
AssumeΔ ∈ Ft has neighbour set { f1, . . . , fk} and for each i, let Sσi generate the neighbour

f i. The transition generation of Δ, denoted tg(Δ), is given by

tg(Δ) = max{|rσi | : 1 � i � k}.

It is straightforward to verify that tg(Δ) = Rmax(Δ)diam(Δ). The children of (parent) Δ are
the net intervals of generation tg(Δ) contained in Δ. We remark that if there is only one child,
Δ1, then V(Δ) 
= V(Δ1). Given Δ = [a, b], with child Δ1 = [a1, b1], we define the position
index q(Δ,Δ1) = (a1 − a)/diamΔ. The position index will enable us to distinguish children
with the same neighbour set.

The children of a net interval are locally determined by the neighbour set of the net interval
in the following sense.

Theorem 3.3. ([21], theorem 2.8). Let {Si}m
i=1 be an arbitrary IFS. Then for any Δ ∈

Ft with children (Δ1, . . . ,Δn) in Ftg(Δ), the index n, neighbour sets V(Δi), position indices
q(Δ,Δi), and ratios tg(Δi)/ tg(Δ) depend only on V(Δ).

Thus much of the important information about the IFS is captured in the behaviour of the
neighbour sets. This motivates the construction of the directed transition graph, G({Si}m

i=1),
defined as follows. The vertex set of G, denoted V(G), is the set of distinct neighbour sets,
V(G) = {V(Δ) : Δ ∈ F}. For each parent/child pair of net intervals, Δ ∈ Ft and Δi ∈ Ftg(Δ),
we introduce an edge e = (Vt(Δ),Vtg(Δ)(Δi), q(Δ,Δi)). Here Vt(Δ) is the source vertex and
Vtg(Δ)(Δi) is the target vertex. We write E(G) for the set of all edges. By theorem 3.3, this
construction is well-defined since it depends only on the neighbour set of Δ.

An (admissible) path η in G is a sequence of edges η = (e1, . . . , en) in G where the target
of ei is the source of ei+1. A path in G is a cycle if it begins and ends at the same vertex. We
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denote by Σ0 the set of infinite paths beginning at the root vertex V([0, 1]), and Σ∗
0 the set of

finite paths beginning at V([0, 1]).
Nested sequences of net intervals are in correspondence with finite paths in Σ∗

0. Given Δ ∈
Ft, consider the sequence (Δ0, . . . ,Δn) where Δ0 = [0, 1], Δn = Δ, and each Δi is a child
of Δi−1. By the symbolic representation of Δ, we mean the finite path η = (e1, . . . , en) in G
where

ei = (V(Δi−1),V(Δi), q(Δi−1,Δi)) for each i = 1, . . . , n.

Conversely, if η = (e1, . . . , en) is any finite path, we say that η is realised by (Δi)n
i=0 if each

Δi is a child of Δi−1 and each ei = (V(Δi−1),V(Δi), q(Δi−1,Δi)). We denote the symbolic
representation of Δ by [Δ].

Definition 3.4. Given some x ∈ K, we say that an infinite path γ ∈ Σ0 is a symbolic
representation of x if

{x} =

∞⋂
i=1

Δi

where for each n, [Δn] is the symbolic representation of the length n prefix of γ, denoted by
γ|n. We say that x is an interior point of K if x has a unique symbolic representation.

If x is not an interior point, then x must be an endpoint of two distinct net intervals at any
sufficiently small scale.

Definition 3.5. Let G be the transition graph of an IFS. We define the edge weight,
W : E(G) → (0, 1) by the rule that if edge e has source V(Δ1) and target V(Δ2), then
W(e) = tg(Δ2)/ tg(Δ1).

This function is well-defined by theorem 3.3. We extend W to finite paths by putting
W(η) = W(e1) . . . W(en) when η = (e1, . . . , en).

An important observation is that if Δ ∈ Ft is any net interval with symbolic representation
η, then W(η) � t, with constants of comparability not depending on Δ. While the above choice
of the weight for an edge is not unique with this property, a straightforward argument shows
that any such function must agree with W on any cycle.

Definition 3.6. We say that the IFS {Si}m
i=1 satisfies the finite neighbour condition if its

transition graph is a finite graph.

Equivalently, there are only finitely many neighbours. We also say that the associated self-
similar measure satisfies the finite neighbour condition, even though this condition does not
depend on the choice of probabilities.

The finite neighbour condition was introduced in [12] and explored in more detail in [21,
section 5]. In [12] it was shown that the finite neighbour condition is equivalent to the gener-
alised finite type condition holding with respect to the invariant open set (0, 1) (see [17] for the
original definition of GFT) and hence satisfies the WSC [17]. In particular, all IFS that satisfy
the OSC or the finite type condition with respect to (0, 1) (see [3] for the definition of finite
type) satisfy the finite neighbour condition. For simplicity, throughout the remainder of this
document, whenever we say that an IFS satisfies the finite type condition, we always mean
with respect to (0, 1).

This includes examples such as the IFSs

{ρx, ρx + (1 − ρ)}

4889



Nonlinearity 35 (2022) 4876 K E Hare and A Rutar

Figure 1. Transition graph for the Golden mean Bernoulli convolution.

where ρ is the reciprocal of a Pisot number. Here, the associated self-similar measures are the
much studied Bernoulli convolutions (cf [4, 24], and the many references cited therein), or the
overlapping Cantor-like IFS

{x/d + i(d − 1)/md : i = 0, 1, . . . , m}

where d � 3 is a natural number (see [11, 22]). For example, in the case of the Bernoulli
convolution with ρ the reciprocal of the Golden mean, there are six neighbour sets. These are
listed in section 5.1 and the transition graph is given in figure 1.

A non-equicontractive example is given by the IFS {ρx, rx + ρ(1 − r), rx + 1 − r} where
ρ, r > 0 satisfy ρ+ 2r − ρr � 1. This was introduced in [18] where it was shown to satisfy the
WSC. In fact, this IFS satisfies the finite neighbour condition (see [17] or [21, section 5.3]).
Note that it does not satisfy the OSC (due to the existence of exact overlaps) and does not
necessarily have commensurable contraction factors, so it cannot be of finite type. See figure 3
for its transition graph and section 5.3.2 for more details about its structure. Other examples
of IFS satisfying the finite neighbour condition can also be found in section 5.

In [12, theorem 4.4] it was proven, under the assumption that the self-similar set is an inter-
val, that the finite neighbour condition is equivalent to the WSC. It is unknown if the two
properties coincide for IFS in R. Further details on these various separation conditions for IFS
can be found in [12].

3.2. Transition matrices

We now show how one can encode the measure of net intervals through the so-called transition
matrices.

For the remainder of the paper, we fix a total order on the set of all neighbours { f :
f ∈ V(Δ),Δ ∈ F}. Let e ∈ E(G) be an edge, say e = (V(Δ1),V(Δ2), q(Δ1,Δ2)). Assume
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the neighbour sets are given by V(Δ1) = { f 1, . . . , fk} and V(Δ2) = {g1, . . . , gn} where
f1 < . . . < fk and g1 < . . . < gn. We define the transition matrix T(e) as the non-negative
k × n matrix given by

T(e)i, j = p� (3.3)

if there exists an index � ∈ {1, . . . , m} such that f i is generated by σ and gj is generated by
σ�; otherwise, set T(e)i, j = 0. Note that this definition is slightly different than the original
definition; see [21, section 5.2] for more detail concerning this.

It is clear from theorem 3.3 that this definition depends only on the edge e. If η = (e1, . . . , en)
is a path, we define

T(η) = T(e1) . . .T(en).

We refer to these matrices as transition matrices, as well.
Recall that if σ′ generates any neighbour of Δ2, then necessarily σ′ = σ� for some σ which

generates a neighbour of Δ1; thus, every column of T(e) has a positive entry. More generally,
if η is a path, then T(η) has a positive entry in every column. However, it may not hold that
each row of T(η) has a positive entry.

We continue to use the notation ‖T‖ =
∑

i, j Ti j for the matrix one-norm of a non-negative
matrix T.

The following relationship between the measure of net intervals and transition matrices is
known.

Proposition 3.7. ([21], corollary 5.5). Suppose Δ is a net interval with symbolic repre-
sentation η. Then

μp(Δ) � ‖T(η)‖,

with constants of comparability not depending on the choice of Δ.

Thus the transition matrices encode the distribution of μp on net intervals. We conclude this
subsection by mentioning the following straightforward property of transition matrices.

Lemma 3.8. Let γ be a finite path. Fix n ∈ N and let γ ′ = (γn+ j)∞j=0. We have
‖T(γ ′)‖ � ‖T(γ)‖ with constant of comparability depending only on n.

Proof. Write γ = ηγ ′ where η is a path of length n. Since every transition matrix has a non-
zero entry in each column, a straightforward calculation shows that there exists some constant
a = a(η) such that ‖T(ηγ ′)‖ � a(η)‖T(γ ′)‖. On the other hand, ‖T(ηγ ′)‖ � ‖T(η)‖‖T(γ ′)‖.
But there are only finitely many paths η of length n, giving the result. �

3.3. Maximal loop classes and irreducibility

From this point on we will assume that G is the matrix product system corresponding to an IFS
that satisfies the finite neighbour condition.

Let L be an induced subgraph of G (i.e. L is the graph consisting of the vertices V(L) and
any edge e ∈ E(G) such that e connects two vertices in L). Of course, the induced subgraph
naturally inherits a matrix product system from the full graph.

Definition 3.9. We say that the subgraph L is a loop class if for any vertices v1, v2 ∈ V(L),
there is a non-empty directed path connecting v1 and v2, and we call L maximal if it is maximal
with this property.
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Two maximal loop classes necessarily have disjoint vertex sets, but not all vertices need to
belong to a maximal loop class. However, given any symbolic representation γ = (γi)∞i=0, there
is a unique maximal loop class L in which γ is eventually, meaning there exists some N such
that γ ′ := (γi)∞i=N is an element of Σ(L).

We will let

KL = {x ∈ K : x has a symbolic representation that is eventually inL}.

Every element of K belongs to at least one set KL for a maximal loop class L, and at most two
such sets.

Abusing notation slightly, given γ which is eventually in L, we write

λ(L, γ) = lim
n→∞

log‖T(γ|n)‖
log W(γ|n)

.

By lemma 3.8, for k � N we have ‖T(γ|k)‖ � ‖T(γ ′|k − N)‖ where γ′ is as above. Since,
also, W(γ|k) � W(γ′|k − N), we have λ(L, γ) = λ(L, γ ′) (and similarly for upper and lower
Lyapunov exponents), where γ′ is a path in L, justifying our notation.

We are primarily interested in three types of maximal loop classes.

Definition 3.10.

(a) We say that a maximal loop class is irreducible if the corresponding matrix product system
is irreducible.

(b) We say that a maximal loop class is simple if all cycles share the same edge set.
(c) We say that a maximal loop class is an essential class if any vertex reachable from the

maximal loop class by a directed path is also in the maximal loop class.

For example, the IFS {ρx, ρx + 1 − ρ} where ρ is the reciprocal of the Golden ratio has an
essential class with three elements, and two other singleton maximal loop classes. These loop
classes are all irreducible; for more details, see section 5.1. Other examples are also given in
section 5.

Note that irreducibility is a statement about the IFS and does not depend on the choice of
(non-zero) probabilities.

Any IFS satisfying the weak separation condition (such as those satisfying the finite neigh-
bour condition) has a unique essential class by [21, proposition 3.3]. In fact, the finite neighbour
condition can be characterised by the property that the associated transition graph has a finite
essential class [21, theorem 5.3].

Moreover, the essential class is always irreducible; this is essentially shown in [21,
lemma 3.9] (or [5, lemma 6.4] in the equicontractive case), but we include a self-contained
proof here as an illustrative example:

Proposition 3.11. Let G be the transition graph of an IFS satisfying the finite neighbour
condition with essential class Gess. Then Gess is irreducible.

Proof. It suffices to show that for any v1, v2 ∈ Gess, 1 � i � d(v1), 1 � j � d(v2), there exists
a path η from v1 to v2 such that T(η)i, j > 0. Let Δ ∈ F be some net interval with V(Δ) = v1,
let Δ0 ∈ Ft0 be a net interval with neighbour set in the essential class such that Rmax(Δ0) is
maximal and#V(Δ0) maximal among such net intervals. Let φ be a path fromV(Δ0) to v2. Let
ξ generate neighbour i of Δ and let σ ∈ I∗ have prefix ξ, rσ > 0 and Sσ([0, 1]) ⊆ Δ; such a σ
must necessarily exist since Δ◦ ∩ Sξ(K) 
= ∅. Write V(Δ0) = { f 1, . . . , fk} with f1 < . . . < fk

where each neighbour f j is generated by some word ω j ∈ Λt0 . We have Δ0 = [Sτ1 (z1), Sτ2(z2)]
where τ1, τ2 ∈ Λt0 and z1, z2 ∈ {0, 1}.
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We now show that Sσ(Δ0) is indeed a net interval. Note that the words στ j and σω j are in
Λrσ t0 by direct computation. Suppose for contradiction Sσ(Δ0) is not a net interval. Without
loss of generality, let ω1 have |rω1 | = Rmax(Δ0)diam(Δ0). Since Sω1(K) ∩Δ0

◦ 
= ∅, we have
Sσω1(K) ∩ Sσ(Δ0)◦ 
= ∅ so there exists some net interval Δ′ ⊆ Sσ(Δ0) where the inclusion is
proper and Sσω1(K) ∩ (Δ′)◦ 
= ∅. But then Rmax (Δ′) > Rmax (Δ0), contradicting the choice of
Δ0. Thus Δ1 := Sσ(Δ0) is indeed a net interval.

Moreover, Δ1 has neighbours generated by the words Sσ ◦ Sωi , and since
rσ > 0, T−1

Δ1
= T−1

Δ0
◦ S−1

σ and thus V(Sσ(Δ0)) ⊇ V(Δ0). Equality then follows by the
maximality of #V(Δ0).

As ξ is a prefix of σ, write σ = ξτ for some τ ∈ I∗. Let Δ have symbolic representation
φ0. Since Δ1 ⊆ Δ, there exists η1 such that Δ1 has symbolic representation φ0η1. Since each
neighbour of Δ1 is generated by a word σω j = ξτω j, by definition of the transition matrix and
choice of ξ, row i of the matrix T(η1) is strictly positive. But then η := η1φ is an admissible
path from v1 to v2, and since every column of a transition matrix has a positive entry, row i of
the matrix T(η) is strictly positive as well. �

Remark 3.12. In fact, as we argued in the above proof, the essential class satisfies a some-
what stronger form of irreducibility: for any v1, v2 ∈ Gess and 1 � j � d(v2), there exists a path
η from v1 to v2 such that row j of T(η) is strictly positive. This property is closely related to
the key feature of the quasi-product structure under the WSC demonstrated by Feng and Lau
[7]. Moreover, under somewhat stronger hypotheses (satisfied, for example, when the attractor
K is an interval), the path η can be chosen such that T(η) is a positive matrix (see [11] for a
proof in the equicontractive case, but the general case follows similarly).

4. Sets of local dimensions of self-similar measures

We continue to use the notation of the previous section. In particular, we assume that G is the
matrix product system associated with an IFS that satisfies the finite neighbour condition.

4.1. Basic results about local dimensions and periodic points

The following notion is a well-studied way of quantifying the singularity of the measure μ with
respect to Lebesgue measure at a point x ∈ suppμ = K.

Definition 4.1. Let x ∈ K be arbitrary. Then the lower local dimension of μ at x is given by

dimloc μ(x) = lim inf
t→0

log μ(B(x, t))
log t

and the upper local dimension is given similarly with the limit infimum replaced by the limit
supremum. When the values of the upper and lower local dimension agree, we call the shared
value the local dimension of μ at x.

Intuitively, the multifractal analysis of self-similar sets satisfying the finite neighbour condi-
tion is related to the multifractal analysis of the corresponding matrix product system. However,
the exact relationship is somewhat more complicated to establish: while the Lyapunov exponent
of a path γ depends only on the single sequence of edges determining γ, the local dimension
of μp at a point x ∈ K can also depend on net intervals which are adjacent to net intervals con-
taining x. This happens when x is the shared boundary point of two distinct net intervals, but
it can also happen when x is approximated very well by boundary points (so that balls B(x, r)
overlap significantly with neighbouring net intervals, for many values of r).
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A point x ∈ K is said to be periodic if it has a symbolic representation that is eventually a
periodic path. For such points, this issue with overlaps is easy to resolve. A boundary point
of a net interval is a periodic point and all elements of a simple loop class are periodic points.
Indeed, for each simple loop class there is a cycle θ such that all elements in the loop class have
a symbolic representation of the form γ0θ where θ is the infinite periodic path with cycle θ. If x
has two distinct symbolic representations, then x is necessarily the endpoint of a net interval so
the finite neighbour condition ensures that both symbolic representations are periodic points.
Note that a periodic point can be an interior point (in the sense of definition 3.4), but every
non-periodic point is interior.

By [21, proposition 3.15] (see also [11, proposition 2.7]), we have the following simple
formula for the local dimension of a periodic point:

Proposition 4.2. ([21], proposition 3.15). Suppose x is an interior, periodic point with
unique symbolic representation γ which is eventually in the loop classL. Let θ be any period of
γ and let θ ∈ Σ(L) denote the path formed by repeating θ infinitely. Then the local dimension
exists at x and is given by

dimloc μp(x) =
log sp(T(θ))

log W(θ)
= λ(L, θ).

Otherwise, x has two distinct symbolic representations with periods θ1 and θ2 and

dimloc μp(x) = min

{
log sp(T(θ1))

log W(θ1)
,

log sp(T(θ2))
log W(θ2)

}
.

Corollary 4.3. If x ∈ KL is a periodic point, then dimloc μp(x) belongs to

m⋃
i=1

{λ(Li, γ) : γ ∈ Σ(Li)}

where L1, . . . ,Lm is a complete list of the maximal loop classes in G.

More generally, when the Lyapunov exponent exists or the local dimension exists, we can
relate the two notions.

Proposition 4.4. Suppose x ∈ K is an interior point with exactly one symbolic representa-
tion γ that is eventually in the maximal loop class L.

(a) Then

αmin(L) � λ(L, γ) � dimloc μp(x) � λ(L, γ) � αmax(L).

(b) If λ(L, γ) exists, then dimloc μp(x) = λ(γ).
(c) If dimloc μp(x) exists, then λ(γ) = dimloc μp(x).

Proof. By assumption, x belongs to KL and L is unique with this property.

(a) We have already seen that λ(L, γ) � αmax(L) and λ(L, γ) � αmin(L) in theorem 2.10.
For any t > 0, we have B(x, t) ⊇ Δ(γ|t) and therefore

dimloc μp(x) = lim sup
t→0

log μp(B(x, t))
log t

� lim sup
t→0

log ‖T(γ|t)‖
log t

= λ(L, γ).

If x is not a boundary point of some net interval, since there are only finitely
many neighbour sets, there exists some ρ > 0 and a monotonically increasing sequence
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(nk)∞k=1 with n1 > N such that for each k ∈ N we have B(x, ρW(γ|nk)) ⊆ Δ(γ|nk). Since
ρW(γ|nk) � W(γ|nk) we have

dimloc μp(x) = lim sup
t→0

log μp(B(x, t))
log t

� lim sup
k→∞

log μp(B(x, ρW(γ|nk)))
log ρW(γ|nk)

� lim sup
k→∞

log‖T(γ|nk)‖
log W(γ|nk)

� λ(L, γ).

as required.
Otherwise, x is a boundary point with a unique symbolic representation. In this case,

for suitable ρ > 0 and large n, B(x, ρW(γ|n))∩ KL ⊆ Δ(γ|n), so we can argue similarly.
(b) This is immediate from (a) as λ(L, γ) = λ(L, γ).
(c) The same argument as (a) shows that dimloc μp(x) � λ(L,α), from which the result

follows.

�

4.2. Sets of local dimensions for simple and irreducible loop classes

We begin by noting that periodic points are dense in the set of local dimensions.

Proposition 4.5. Let L be an irreducible, maximal loop class that is not simple. Then the
set of local dimensions at interior periodic points is dense in [αmin(L),αmax(L)].

Proof. This follows by slightly modifying the proof of proposition 2.13 by choosing the
paths ηk such that they are also interior paths. Thus the corresponding point in KL is interior
periodic and has local dimension equal to the symbolic local dimension by proposition 4.4.
Then the result follows from corollary 2.11, which states that {λ(L, γ) : γ eventually inL} =
[αmin(L),αmax(L)]. �

Our next result establishes a converse to proposition 4.4.

Theorem 4.6. Let L be an irreducible, maximal loop class that is not simple. Then

[αmin(L),αmax(L)] ⊆ {dimloc μp(x) : x ∈ KL, x interior}.

Proof. Since L is not simple, there exists a path ξ ∈ Σ∗(L) such that if ξ is realised by
(Δi)m

i=0, thenΔm ⊆ Δ◦
0. Let α ∈ [αmin(L),αmax(L)] be arbitrary and by theorem 2.10 get some

γ = (en)∞n=1 ∈ Σ(L) and a sequence (n j)∞j=1 with lim jn j+1/nj = 1 such that λ(γ) = α and for
each j, ξ is a prefix of (en j , en j+1, . . .). Let ζ0 be such that ζ0γ is a path in G beginning at the
root vertex V([0, 1]). By the choice of ξ, there exists a unique interior point x with symbolic
representation ζ0γ. We will show that dimlocμp(x) = α.

We first note that B(x, t) ⊇ Δt(x) where Δt(x) is the unique net interval in generation t
containing x. Thus if ζ0e1 . . . en is the symbolic representation of Δt(x), then

μp(B(x, t))) � μp(Δt(x)) � ‖T(ζ0e1 . . . en)‖ � ‖T(e1 . . . en)‖

by lemma 3.8. Hence for some constant C > 0 we have

log μp(B(x, t))
log t

� log C‖T(e1 . . . en)‖
log t

.
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Since log t � W(e1 . . . en), it follows that

dimloc μp(x) � α.

To obtain the other inequality, we use the special properties of the path γ. For each k ∈ N,
let Δ(k) be the net interval with symbolic representation ζ0e1 . . . enk−1. Let ρ > 0 be such that
for each k ∈ N,

B(x, ρ diam(Δ(k))) ⊆ Δ(k).

Given t > 0 sufficiently small, let k be such that ρ diam(Δ(k+1)) � t < ρ diam(Δ(k)), so that

B(x, t) ⊆ B(x, ρ diam(Δ(k))) ⊆ Δ(k).

This ensures that μp(B(x, t)) � μp(Δ
(k)). We also have

t � ρdiam(Δ(k+1)) � W(ζ0e1 . . . enk+1−1)

= W(ζ0e1 . . . enk−1)W(enk . . . enk+1−1)

� W
nk+1−nk
min W(ζ0e1 . . . enk−1) � W

nk+1−nk
min diam(Δ(k)).

Combining these observations, we see that there exist positive constants C1, C2 such that

log μp(B(x, t))
log t

� log μp(Δ
(k))

log t
� log C1 + log

∥∥T(e1 . . . enk−1)
∥∥

log ρ+ log diam(Δ(k+1))

� log C1 + log
∥∥T(e1 . . . enk−1)

∥∥
(nk+1 − nk) log C2 + log diam(Δ(k))

But log diam(Δ(k)) � −nk and limk(nk+1 − nk)/nk = 0 by choice of γ, so that

dimloc μp(x) � lim inf
k→∞

log
∥∥T(e1 . . . enk−1)

∥∥
log diam(Δ(k))

� lim inf
n→∞

log‖T(e1 . . . en)‖
log W(e1 . . . en)

= α.

We have thus shown that dimloc μp(x) = α, as required. �

Remark 4.7. If L is a simple loop class with interior points, it is clear that the conclusions
of the theorem also hold and αmin = αmax.

The preceding theorem gives us strong information about the set of attainable local
dimensions:

Corollary 4.8. Let L be an irreducible, maximal loop class that is not simple. Then

[αmin(L),αmax(L)] = {dimloc μp(x) : x ∈ KL, x interior}

= {dimloc μp(x) : x ∈ KL, x interior}.

Proof. This follows by combining theorem 4.6 and proposition 4.4, noting that the set of
local dimensions is contained in the set of upper local dimensions. �

Remark 4.9. When L is the essential class, this result was shown in [21]. Moreover, in that
case, [αmin,αmax] is also the set of lower local dimensions.

4896



Nonlinearity 35 (2022) 4876 K E Hare and A Rutar

However, outside the essential class, the same statement need not hold for the lower local
dimension in place of the upper local dimension; the set of lower local dimensions can be
strictly larger. Consider the example from section 5.3.4; this example and the result here is
treated in [11, section 6]. In that example, with our notation, if L is the irreducible maximal
loop class not equal to the essential class, then

[αmin(L),αmax(L)] =

[
log 7
log 4

,
log 14
log 4

]
,

while

{dimloc μp(x) : x ∈ KL interior} =

[
1
2

,
log 14
log 4

]
.

Here 1/2 is also the local dimension of a boundary point (that is not interior).
It would be interesting to know if the set of lower local dimensions at interior points is

always an interval.

IfL is a loop class that contains interior points, then the set of local dimensions at these inte-
rior points is given by the interval [αmin(L),αmax(L)]. If L does not contain any interior points,
then L is a simple loop class. In this situation, it may hold that every x ∈ KL has two symbolic
representations, and the local dimension is always given by the symbolic representation of the
adjacent path which is not eventually in L. This motivates the following definition:

Definition 4.10. We say that a loop class L is non-degenerate if L is not simple, or if L is
simple with period θ and there exists some x ∈ KL such that

dimloc μp(x) = λ(θ).

We say that L is degenerate otherwise.

We emphasise that, unlike simplicity or irreducibility, degeneracy depends on the choice of
probabilities. For an example of this phenomenon, see section 5.3.3.

The point is that if L is a degenerate loop class, then the local dimension at any point x ∈ KL
is given by the Lyapunov exponent of a path not in L. We now have the following corollary,
which holds under the assumptions that all maximal loop classes are either irreducible or
simple.

Corollary 4.11. Let {Si}i∈I be an IFS satisfying the finite neighbour condition with maximal
loop classes {Li}�i=1. Suppose each Li is either irreducible or simple. Let {Li}�

′
i=1 denote the

non-degenerate maximal loop classes. Then

{dimloc μp(x) : x ∈ K} = {dimloc μp(x) : x ∈ K} =

�′⋃
i=1

[αmin(Li),αmax(Li)].

Proof. If x is a periodic point, then dimloc μp(x) = λ(L, γ) for some path γ in some non-
degenerate loop class L according to proposition 4.2. Otherwise, x must be an interior
point of some KL where L is not simple. By corollary 4.8, dimloc μp(x) = α for some
α ∈ [αmin(L),αmax(L)].

On the other hand, if L is a non-simple loop class, then theorem 4.6 shows that each
α ∈ [αmin(L),αmax(L)] is attained as a local dimension. If L is a simple loop class, then
αmin(L) = αmax(L) and this value is attained as a local dimension precisely when L is
non-degenerate. �
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Remark 4.12. The authors do not know if this result continues to hold without the irre-
ducibility assumption. However, we are not aware of any examples in R satisfying the WSC
which do not satisfy the hypotheses for corollary 4.11.

5. Examples of IFS satisfying the finite neighbour condition

Throughout this section, for L a maximal loop class and μp a self similar measure, we will
write

D(L) = {λ(x) : x ∈ Σ(L)}
D(μp) = {dimloc μp(x) : x ∈ suppμp}.

5.1. Bernoulli convolutions

One much studied example of an equicontractive IFS of finite type is the IFS with two
contractions,

{ρx, ρx + 1 − ρ}, (5.1)

with ρ the reciprocal of the Golden mean. Feng [4] (see also [10, 11]) computed the neigh-
bour sets (or characteristic vectors in his terminology) with respect to the original net interval
construction.

In our slightly modified setting, there are six neighbour sets. These are:

v1 = {x} v2 = {x · (1 + ρ)}
v3 = {x · (1 + ρ) − ρ} v4 = {x · (2 + ρ), x(2 + ρ) − (1 + ρ)}

v5 = {x · (3 + 2ρ) − (1 + ρ)} v6 = {x · (1 + ρ), x · (1 + ρ) − ρ}.

The weight function is given by W(e) = ρ for all edges e. The essential class has V(Gess) =
{v4, v5, v6} and there are two other maximal loop classes, L1 and L2, which are the simple
loops with vertex sets V(L1) = {v2} and V(L2) = {v3}. Both simple loop classes are non-
degenerate since 0 and 1 are interior points. We have Kess = (0, 1), KL1 = {0}, and KL2 = {1}.
See figure 1 for the transition graph as well as the associated transition matrices.

Since the essential class is always irreducible and the non-essential maximal loop classes
are simple, the set of local dimensions is a union of a possibly non-singleton interval along
with at most two isolated points. The corresponding sets of Lyapunov exponents are

D(L1) =

{
log p
log ρ

}
and D(L2) =

{
log(1 − p)

log ρ

}
.

These are also the local dimensions at 0 and 1 respectively since 0 and 1 are interior points, so
we have D(L1),D(L2) ⊆ D(μp).

Now, for p � 1/2, note that the transition matrix of the cycle (e11, e12) has spectral radius
(1 − p)2 and weight ρ2. The Lyapunov exponent corresponding to this path is log(1−p)

log ρ
so that

D(L2) ⊆ D(Gess). Similarly if p � 1/2, then the cycle (e10, e12) has corresponding Lyapunov
exponent log p

log ρ
and D(L1) ⊆ D(Gess). In particular, when p = 1/2, then D(μp) is a closed

interval, and when p 
= 1/2, D(μp) is a closed interval along with at most a singleton point.
When p 
= 1/2, we know in general, by a short argument in [8], that D(μp) must contain an

isolated point corresponding to either x = 0 or x = 1, so D(μp) is precisely a closed interval
along with an isolated point.
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Figure 2. Transition graph for the Testud IFS.

5.2. Testud measures

Consider the IFS given by the maps

S1(x) =
x
4

S2(x) =
x
4
+

1
4

S3(x) =
x
4
+

1
2

S4(x) =
x
4
+

3
4

S5(x) = − x
4
+

1
4

S6(x) = − x
4
+

1
2

This example is treated in [23, section 6.2]. For each i, we have Si([0, 1]) = [ j/4, ( j+ 1)/4]
for some j ∈ {0, 1, 2, 3}. There are two neighbour sets,

v1 = {x} v2 = {−x + 1, x}.

The transition graph is given in figure 2, and there is the essential class Gess with vertex set
{v2} and a non-simple irreducible maximal loop class L with vertex set {v1}.

Every cycle inL is a concatenation of the edges e1 and e2; since the corresponding transition
matrices are singletons, we have

D(L) =

{
log(pn

3 pm
4 )

− log 4n+m
: n � 0, m � 0, n + m � 1

}

=

[
log max{p3, p4}

− log 4
,

log min{p3, p4}
− log 4

]
.

Similarly, the cycles in Gess are arbitrary concatenations of edges in {e5, e6, e7, e8}. Now,
under the assumption that p1 = p4 + p5 and p2 = p3 + p6, if η = (ei1 , ei2 , . . . , eik) is any path
in the essential class with n edges in {e5, e8} and m edges in {e6, e7}, one may show that
sp T(η) = pn

1 pm
2 . Thus

D(Gess) =

{
log(pn

1 pm
2 )

− log 4n+m
: n � 0, m � 0, n + m � 1

}

=

[
log max{p1, p2}

− log 4
,

log min{p1, p2}
− log 4

]
.
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We therefore have

D(μp) =

[
log max{p1, p2}

− log 4
,

log min{p1, p2}
− log 4

]

∪
[

log max{p3, p4}
− log 4

,
log min{p3, p4}

− log 4

]
.

In particular, if p1 < p2 < p3 < p4, then D(μp) is a disjoint union of two non-trivial closed
intervals.

Note that the other examples treated in [23] can be analyzed similarly.

5.3. Other examples

5.3.1. Cantor-like measures. Consider the family of IFS given by
{

S j(x) =
x
r
+

j
mr

(r − 1) : 0 � j � m

}

for integers m, r satisfying 2 � r � m. This family includes a rescaled version of the three-
fold convolution of the middle-third Cantor measure, which was the earliest example of a
self-similar measure known to exhibit isolated points in the set of local dimensions [15]. The
transition graph consists of an essential class along with two simple maximal loop classes L1

andL2, where KL1 = {0}, KL2 = {1}, and KGess = (0, 1). The loopsL1 andL2 consist of single
edges with 1 × 1 transition matrices, and

D(L1) =
log p0

−log r
D(L2) =

log pm

−log r
.

For appropriately chosen probabilities, these singletons contribute the isolated points in the set
of local dimensions for the self-similar measure μp and the essential class contributes a closed
interval of dimensions. See [11] for more details.

5.3.2. An example of Lau and Wang. By nature of the definition, an IFS of finite type
must have logarithmically commensurable contraction factors. Here is an example of an IFS
satisfying the finite neighbour condition which does not have commensurable contraction
factors.

The IFS {ρx, rx + ρ(1 − r), rx + 1 − r} where ρ+ 2r − ρr � 1 was seen to satisfy the
WSC in [18], but it is not of finite type when ρ and r are non-commensurable. For simplic-
ity, we consider the case ρ = 1/3 and r = 1/4; for a more general treatment, this family was
studied in [21, section 5.2].

There are five neighbour sets given by

v1 = {x} v2 = {4x/3}
v3 = {3x/2 − 1/2} v4 = {3x, 4x − 3}

v5 = {x, 3x}.

The transition graph and transition matrices are given in figure 3. One can see that there is
only one maximal loop class, which is the essential class; thus, the set of local dimensions is a
closed interval. For more details on the computations of the set of attainable local dimensions,
we refer the reader to [21].
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Figure 3. Transition graph for the example of Lau and Wang.

5.3.3. A non-equicontractive finite type example. Here is an example which satisfies the finite
type condition without equal contraction ratios.

Take ρ = (
√

5 − 1)/2, the reciprocal of the Golden mean. Consider the IFS given by the
maps

S1(x) = ρx S2(x) = ρ2x + ρ− ρ2 S3(x) = ρ2x + (1 − ρ2)

with probabilities (pi)3
i=1. This IFS has seven neighbour sets given by

v1 = {x}
v2 = {(2 + ρ)x}

v3 = {x, (1 + ρ)x − (1 + ρ)}
v4 = {(2 + ρ)x, (3 + 2ρ)x − (1 + ρ)}

v5 = {(1 + ρ)x − ρ, (2 + ρ)x, (2 + ρ)x − (1 + ρ)}
v6 = {(1 + ρ)x, (2 + ρ)x, (2 + ρ)x − 1}

v7 = {(2 + ρ)x, (2 + ρ)x − (1 + ρ), (3 + 2ρ)x − 2(1 + ρ), (3 + 2ρ)x − (1 + ρ)}.

There are three simple non-essential maximal loop classes, with vertex sets V(L1) = {v1},
V(L2) = {v2}, and V(L3) = {v3}. The essential class has vertex set V(Gess) = {v4, v5, v6, v7}.
The transition graph and transition matrices are given in figure 4.

A direct computation shows that D(L1) = D(L3) = log p3
2 log ρ

and D(L2) = log p1
log ρ

. Thus D(μp)
consists of a possibly non-singleton interval along with at most two isolated points. Both KL1

and KL2 contain interior points, so they are non-degenerate. However, every point in x ∈ KL3

has two symbolic representations of the form

(e1, . . . , e1︸ ︷︷ ︸
n

, e3, e6, e6, . . .) and (e1, . . . , e1︸ ︷︷ ︸
n

, e1, e2, e4, e4, . . .)
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Figure 4. Transition graph for the non-equicontractive finite type example.

for some n � 0. Thus for any x ∈ KL3 , we have

dimloc μp(x) = min

{
log p1

log ρ
,

log p3

2 log ρ

}

and when the minimum is not attained at log p3
2 log ρ

, L3 is a degenerate loop class. However, this
does not impact the set of possible local dimensions.

Suppose in particular that the probabilities satisfy p2
1 > p2 and p3 > p2. Then the cycle

(e10, e11) in the essential class has sp T(e10, e11) = p2
1 and W(e10, e11) = ρ2, so

D(L2) ⊆ D(Gess).

Similarly, the cycle (e12, e13) has sp T(e12, e13) = p3 and W(e12, e13) = ρ2 so

D(L1) = D(L3) ⊆ D(Gess)
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Therefore D(μp) = D(Gess) is a closed interval for such probabilities.

5.3.4. An example with the set of lower local dimensions not equal to the set of upper local
dimensions. The IFS with Si(x) = x/4 + di/12 for di = i when i = 0, 1, . . . , 5, d6 = 8, d7 =
9, is known to be of finite type [11, 19] and satisfies the finite neighbour condition. The essential
class is a single vertex with four outgoing edges, and there are two additional loop classes: a
simple loop class with one vertex, along with a non-simple irreducible loop class with three
vertices.

This example is notable since the set of lower local dimensions in the non-essential irre-
ducible loop class need not coincide with the set of upper local dimensions (see remark
4.9).

5.3.5. A Pisot reciprocal Bernoulli convolution with a non-simple non-essential loop class.
Another interesting example is the Bernoulli convolution with parameter ρ, where ρ is the
reciprocal of the Pisot root of x3 − x2 − 1. This finite type IFS has five maximal loop classes:
the essential class with 46 elements, another irreducible loop class with 23 elements, and 3
additional simple loop classes. For more details on this IFS, we refer the reader to [9].
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