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Abstract

Background: Somatic copy number alterations (SCNAs) are an important class of genomic alteration in cancer. They
are frequently observed in cancer samples, with studies showing that, on average, SCNAs affect 34% of a cancer cell’s
genome. Furthermore, SCNAs have been shown to be major drivers of tumour development and have been
associated with response to therapy and prognosis. Large-scale cancer genome studies suggest that tumours are
driven by somatic copy number alterations (SCNAs) or single-nucleotide variants (SNVs). Despite the frequency of
SCNAs and their clinical relevance, the use of genomics assays in the clinic is biased towards targeted gene panels,
which identify SNVs but provide limited scope to detect SCNAs throughout the genome. There is a need for a
comparably low-cost and simple method for high-resolution SCNA profiling.

Results: We present conliga, a fully probabilistic method that infers SCNA profiles from a low-cost, simple, and
clinically-relevant assay (FAST-SeqS). When applied to 11 high-purity oesophageal adenocarcinoma samples, we
obtain good agreement (Spearman’s rank correlation coefficient, r; = 0.94) between conliga’s inferred SCNA profiles
using FAST-SeqsS data (approximately £14 per sample) and those inferred by ASCAT using high-coverage WGS
(gold-standard). We find that conliga outperforms CNVKit (r; = 0.89), also applied to FAST-SeqS data, and is
comparable to QDNAseq (r; = 0.96) applied to low-coverage WGS, which is approximately four-fold more expensive,
more laborious and less clinically-relevant. By performing an in silico dilution series experiment, we find that conliga is
particularly suited to detecting SCNAs in low tumour purity samples. At two million reads per sample, conliga is able
to detect SCNAs in all nine samples at 3% tumour purity and as low as 0.5% purity in one sample. Crucially, we show
that conliga’s hidden state information can be used to decide when a sample is abnormal or normal, whereas CNVkit
and QDNAseq cannot provide this critical information.
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(Continued from previous page)

Conclusions: We show that conliga provides high-resolution SCNA profiles using a convenient, low-cost assay. We
believe conliga makes FAST-SeqS a more clinically valuable assay as well as a useful research tool, enabling
inexpensive and fast copy number profiling of pre-malignant and cancer samples.

Keywords: Somatic copy number alterations, Copy number profiling, Cancer, Oesophageal adenocarcinoma, Barrett's
oesophagus, Tumour purity, FAST-SeqS, Bayesian nonparametrics, Probabilistic model, Sticky HDP-HMM, MCMC

Background

Somatic copy number alterations (SCNAs) are common in
cancer [1-5]. Certain SCNAs, particularly amplifications
of oncogenes and deletions of tumour suppressor genes,
have been found to be major drivers in tumour develop-
ment, associated with prognosis and response to therapy
[1, 6]. An early survey across multiple cancers saw SCNAs
in 34% of the genome, with 17% of the genome amplified
and 16% deleted [1], but SCNA burden varies considerably
between cancer types [3, 5] (with, for example, thyroid
cancer having low burden and ovarian cancer high bur-
den) and so any average will depend on the mix of cancer
samples considered.

Oesophageal adenocarcinoma (OAC) has relatively high
levels of SCNAs [7-10], and generally develops from Bar-
rett’s oesophagus (BO). Patients with OAC tend to be
diagnosed at a late stage, when spread has occurred to
lymph nodes and distant organs. This makes treatment
more difficult and leads to poor prognosis [11]. Although
most patients with BO do not progress, early-stage disease
(high-grade dysplasia or intramucosal adenocarcinoma)
can be successfully treated, usually obviating the need
for surgery. There is a critical need to develop technolo-
gies that can detect early disease and distinguish between
patients at low versus high risk for progression. Since most
mutations in OAC driver genes are already present in pre-
malignant disease [12], but an increased SCNA load can
identify OAC [13-15], low-cost SCNA profiling would be
a valuable research and clinical tool.

SCNAs have been identified using a number of meth-
ods, including comparative genomic hybridization (CGH)
[16], array-based CGH [17], single-nucleotide polymor-
phism (SNP) arrays [18], targeted resequencing [19, 20]
and whole-genome sequencing (WGS) [21]. Recently,
low-coverage (LC) WGS has gained popularity due to its
reduced cost and strong performance [22]. However, while
LC WGS reduces the cost of sequencing, standard WGS
library preparation is required with its associated fixed
expense and time needed to produce each sample. A tech-
nically simple, fast, easily automated, high-resolution and
inexpensive alternative method for SCNA detection, with
clinical potential, would be extremely valuable.

Recent studies have shown the genome can be ampli-
fied at multiple (>10,000) genomic loci with the use of

a single non-specific primer pair, using the FAST-SeqS
method [23, 24]. With this approach, two polymerase
chain reaction (PCR) rounds replace the complicated and
expensive library preparation steps associated with WGS.
The amplified regions are sufficiently short such that the
assay can be performed on cell-free DNA as well as DNA
extracted from tissue biopsies. The resulting amplicons
can be sequenced, with samples multiplexed on the same
sequencing lane. With this method, we maintain a simi-
lar sequencing depth to 30-50X high-coverage (HC) WGS
while sequencing only specific loci. This is in contrast to
LC WGS, which samples the whole genome but at reduced
sequencing depth (Supplementary Fig. S1). We found the
cost involved in sample preparation and sequencing com-
bined to be approximately £14 per sample compared with
approximately £52-72 for LC WGS, but this depends on
the library preparation kit used (Supplementary Note 1).
The sample preparation can be performed in less than an
hour with minimal hands-on time, compared to approxi-
mately three hours or greater for LC WGS.

The use of FAST-SeqS data, until now, has largely been
limited to the detection of whole chromosome gains [23]
and entire chromosome arm gains and losses [24, 25].
This means that shorter chromosome segment (focal)
alterations are not detected, or perhaps falsely considered
as whole chromosome or chromosome arm alterations.
Moreover, in these methods SCNAs are not quantified
and regions are simply classified as amplified, deleted or
normal.

Here, we present a method (and associated tool: ‘con-
liga’) that uses a fully probabilistic approach to infer rel-
ative copy number (RCN) alterations at each locus from
FAST-SeqS data. conliga provides an RCN profile per
sample and therefore enables this low-cost sequencing
approach to be used as a SCNA assay.

Results

Development of probabilistic model

Based on observations of raw data (Supplementary Note 2,
Supplementary Fig. S1), we created a probabilistic model
(Methods, Supplementary Note 3). The model takes
account of the observed bias in loci counts, which
predominantly results from unequal PCR efficiencies
between loci. Since neighbouring loci are likely to share
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the same copy number, we use a hidden Markov model
(HMM) to model the spatial dependence between loci.
This allows loci with high counts to share statistical
strength with neighbouring loci, enabling us to infer con-
tiguous regions of copy number more accurately. More-
over, we use a Bayesian nonparametric approach (sticky
HDP-HMM) [26] to address the issue of the unknown
number of copy number levels present in a given sample
a priori (Methods). We use Markov chain Monte Carlo
(MCMC) methods to infer the RCN of each locus, plus
all other latent variables in the model (Methods, Sup-
plementary Table S1, Supplementary Notes 4, 5 and 6).
This enables us to provide the uncertainty of the RCN
estimates, summarised by credible intervals, in conliga’s
standard output.

Application to high-purity oesophageal adenocarcinoma
samples and performance comparison to other methods
To test our method, we analysed 11 oesophageal adeno-
carcinoma tumours (Methods, Supplementary Tables S2
and S3), which had been sequenced using HC WGS
(>50X) and FAST-SeqS. In addition, we downsampled the
WGS data of each sample to nine million reads to simulate
typical LC WGS (~0.1X coverage) samples (Methods). We
compared the copy number calls derived from ASCAT
[27] applied to HC WGS data, with the RCN calls from
QDNAseq [22] applied to LC WGS data, CNVkit applied
to FAST-SeqS data and conliga applied to FAST-SeqS data
(Methods).

In Fig. 1a-e, we demonstrate that similar SCNA profiles
are obtained with the four methods for an example sam-
ple (OAC2) and that high-resolution SCNA information
is maintained by sampling genomic loci using FAST-SeqS.
As is evidenced by the copy number calls on chromo-
somes 1, 5, 8, 10, 13 and 17 for this sample, conliga
provides greater detail in its inferred RCN profile than
CNVkit and is more comparable to those inferred by
ASCAT and QDNAseq. Figure 1f shows the performance
of conliga, CNVkit and QDNAseq across all 11 OAC
samples, measured by comparing each tool’s RCN calls
with those inferred by ASCAT (Methods). The Spear-
man’s rank correlation coefficient between ASCAT’s RCN
calls (gold-standard) and conliga, CNVkit and QDNAseq
was 0.94, 0.89 and 0.96, respectively. In Fig. 1g, we see that
when compared with CNVKkit, conliga’s RCN calls tend
to be closer to those of ASCAT’s and conliga has more
comparable performance to QDNAseq in this regard.

From the literature [15, 28] we selected a set of 36 genes
that have been observed to be recurrently amplified or
deleted in OAC (Supplementary Table S4, Methods). We
determined the weighted mean of the RCN calls for these
genes for each sample via each method (Methods, Supple-
mentary Tables S5 and S6). The Spearman’s rank corre-
lation coefficient between ASCAT’s weighted mean RCN

Page 3 0of 17

calls (gold-standard) and conliga, CNVkit and QDNAseq
was 0.87, 0.65 and 0.95, respectively. In Fig. 1g, we see that
there are two instances from 396 comparisons (36 genes
x 11 samples) where a substantially different result would
be achieved by conliga. Even within this panel of 36, it is
notable that 13 genes harbour FAST-SeqS loci (Supple-
mentary Tables S7 and S8), providing evidence of intra
gene SCNAs in some cases, such as the focal deletions
detected by conliga in FHIT, PARK2, and MACROD2
(Supplementary Fig. S2).

In silico dilution series and limit of SCNA detection

The purity of tumour samples obtained by dissection can
vary widely [29], as can samples obtained non-invasively,
e.g. ctDNA from plasma [30]. As tumour purity reduces,
the copy number signal-to-noise ratio decreases. To deter-
mine the performance of conliga, CNVkit and QDNAseq
under different purity conditions, we generated samples
with varying purity by mixing sequencing reads from
normal and OAC samples (Methods). FAST-SeqS sam-
ples were generated with two million reads and LC WGS
samples were generated with nine million reads.

Figure 2a shows the inferred RCN profiles obtained for
each method at varying purity levels for sample OAC3.
At 30% purity, conliga, CNVkit and QDNAseq recapitu-
late the copy number profile of the undiluted sample as
determined by ASCAT. It is noticeable that CN'Vkit does
not capture as much detail of the profile, for example on
chromosome 12. The focal amplification on chromosome
12 is identified by conliga at 0.75% and 0.5% purity and
not detected by QDNAseq below 1% or CNVKkit below 2%.
At 5% purity, other than the focal amplification on chro-
mosome 12, QDNAseq fails to detect subchromosomal
SCNAs, whereas conliga shows evidence of chromosome
arm and subchromosomal arm changes. At 2% purity,
conliga is able to distinguish some of the more prominent
chromosomal arm SCNAs. It appears that CN'VKkit detects
subchromosomal SCNAs at all purity levels. However, we
see a similar RCN profile inferred at 0% purity, where
the expectation is that all regions of the genome have
equal copy number, suggesting that these inferred differ-
ences in RCN are due to noise generated by segmentation.
The same is true for QDNAseq. Indeed, it is difficult
to distinguish true SCNAs from noise generated by seg-
mentation in the RCN profiles inferred by QDNAseq and
CNVKkit, while this is not the case for conliga’s inferred
profile.

In Fig. 2b, we show that conliga is able to detect SCNAs
at 3% purity in all samples (eight), five at 2% and one
at 0.5%. Here, the limit of detection is determined by
the number of hidden states inferred for each sample;
one hidden state means SCNAs were not detected and
more than one hidden state means SCNAs were detected.
With conliga, long chromosomal arm amplifications can
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be detected at 2-3% purity, while some focal amplifications
(particularly those occurring at loci with a bias towards
obtaining a high number of counts) can be detected at
<1% purity (e.g. chrl2 in OAC3, Fig. 2a). CNVKkit and
QDNAseq do not provide hidden state information, so we
used the number of unique RCN calls inferred for each
sample instead. Even at 0% purity, we see that there are
substantially more than one unique RCN call per sample.
This is the result of regions of the genome being seg-
mented independently, resulting in segmentation error,
which obscures the biological signal and makes it dif-
ficult to determine the limit of detection for CNVkit
and QDNAseq. CNVkit segments each chromosome arm
independently [20], with each 0% purity sample having
inferred 43 unique RCN calls. Using 43 RCN calls as the
baseline, we see that CNVkit detects SCNAs in two out
of eight samples at 4-6% purity, four out of eight samples
at 10%, and fails to detect SCNAs for any purity level of
OACY7 (up to 30% purity level tested).

Detection of clinically-relevant SCNAs in pre-malignant
disease and patient cohorts

SCNA load rather than SNVs within driver genes dis-
tinguishes OAC from its associated pre-malignant lesion,
Barrett’s oesophagus (BO). To assess whether we were
able to detect SCNAs in pre-malignant samples, we pro-
cessed BO samples with various grades of dysplasia using
FAST-SeqS and inferred their associated RCN profiles
using conliga. We were able to detect clinically-relevant
copy number alterations, such as evidence for focal gains
of PRKCI, ERBB2 and GATA6 and deletions of regions
containing CDKN2A, PTPRD, SMAD4 and TP53 (Supple
mentary Fig. S2).

In addition to use as a detection tool, inexpensive pro-
duction of FAST-SeqS data allows for large cohorts of
patients to be studied to find relationships between SCNA
profiles and response to therapies, for example. With this
in mind, we looked at the average SCNA profiles across
small cohorts of patients with OAC, gastric adenocarci-
noma (GAC) and BO (Supplementary Fig. S2, Methods),
which highlighted amplifications of known oncogenes
such as EGFR, MYC, GATA4, and MDM?2, some with
known drug targets, and deletions of tumour suppressor
genes, e.g. FHIT, TP53, SMAD4 and RUNX1.

Discussion

Work by Ciriello et al. [3] suggests that either somatic
single-nucleotide variants (SNVs) or SCNAs can drive
oncogenesis. However, there is a bias towards screen-
ing for SNVs using targeted gene panels [31] meaning
SCNA-driven cancers, such as OAC, may not be detected.
Our data suggest that there is potential for FAST-SeqS
and conliga to be used alongside existing low-cost gene
panels to detect SCNAs, in addition to SN'Vs, to screen
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and surveil patients for the development of cancer. Other
potential uses include low-cost screening of samples in
large-scale cancer genomes studies, such as the Interna-
tional Cancer Genome Consortium (ICGC) [32] and The
Cancer Genome Atlas (TCGA) [33] projects, prior to fur-
ther genomic analyses. Furthermore, due to the low-cost
and low-input DNA required, several spatially or tempo-
rally related samples can be analysed for the purposes of
determining how SCNAs accumulate in normal tissues
and contribute to tumour evolution, similar to previous
studies on somatic mutations in the eyelid epidermis [34].

We showed that conliga (applied to FAST-SeqS data)
had better performance in inferring RCN profiles from
high-purity cancer samples than CNVKkit (also applied to
FAST-SeqS data), and a lower, though comparable perfor-
mance to QDNAseq (applied to LC WGS data). It should
be noted that this analysis is biased in favour of QDNAseq.
To obtain the LC WGS reads used by QDNAseq, we
downsampled the reads from the same HC WGS sam-
ple that was used for ASCAT, which was used as the
gold-standard comparison. A fairer comparison would
have been to perform separate library preparation and
sequencing for the samples processed by QDNAseq. By
not doing this, we may have inflated QDNAseq’s perfor-
mance. Furthermore, we used nine million reads to obtain
0.1X coverage, which is commonly used for LC WGS copy
number profiling [22]. The corresponding FAST-SeqS
samples had fewer reads (min: 607,073, mean: 1,806,904,
max: 4,651,028). If we were to increase the number of
FAST-SeqS reads to nine million, we would likely see an
increase in conliga’s performance.

Another limitation of the comparison to ASCAT is that
ASCAT’s assumption of a fully clonal sample places a
restriction on the copy number profiles it can infer, which
is not an assumption or restriction shared by QDNAseq,
CNVkit and conliga. This will be one source of the
RCN differences observed between ASCAT and the other
methods. However, since this limitation applies equally to
each tested method, it does not bias the results in favour
of one method over the other.

CNVkit and QDNAseq both use a popular change point
detection algorithm, circular binary segmentation [35],
and apply this to regions of the genome independently [20,
22]. This means that genomic regions with the same copy
number may be assigned different RCN values, which we
refer to as segmentation error. As we showed in Fig. 2b,
this error introduced by segmentation may obscure the
RCN signal in the data, making it difficult to distinguish
between true copy number differences between regions
of the genome and segmentation error. This may not
be problematic when profiling high-purity samples, since
the RCN signal tends to be substantially greater than
the error introduced. However, in cancer screening and
surveillance, samples are often obtained non-invasively
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and, either 1) they are of low tumour purity if tumour
DNA is present or 2) they will contain no tumour DNA
if the sample is normal. Discriminating between these
two cases is critical in cancer detection and surveil-
lance. For low-purity samples, regions with differing copy
number will have relatively small RCN differences typi-
cally, and discriminating between genuine copy number
changes and segmentation error is more challenging. An
advantage of conliga over other methods is its use of
HMMs and its Bayesian nonparametric approach, specif-
ically its use of the Sticky HDP-HMM [26]. This allows
the total number of distinct copy numbers in the sam-
ple to be inferred from the data. As we showed in the
in silico dilution experiment, this gives us a natural way
to distinguish between samples with and without inferred
SCNAs.

The Dirichlet process prior, that is part of the conliga
model, biases the model against creating additional copy
number states when there is little evidence to do so. One
disadvantage is that this means that copy numbers that
involve few loci, for example focal amplifications with
differing copy numbers, may be merged into one copy
number state. We can see the effect of this in Fig. 1, when
comparing the profiles inferred by ASCAT and conliga;
regions that are inferred to be copy number 5 and 6 by
ASCAT are inferred to have the same copy number by
conliga. This is also the case for regions inferred to be copy
number 9 and 11 by ASCAT. However, the ability to dis-
cern a difference in copy number between regions that are
highly amplified may have limited clinical utility in prac-
tice. As such, we believe the advantages of using of the
Dirichlet process prior outweigh the disadvantages.

As we saw in Fig. 2a and b, the number of copy num-
ber states inferred by conliga decrease as tumour purity
reduces. Assuming two million reads per sample and high
tumour purity (>60%), aside from high copy numbers with
few affected loci, we would expect conliga to accurately
detect and quantify most copy numbers present in a sam-
ple. In the high-purity case, we would expect that most
inferred copy number states should provide a one-to-one
mapping to true underlying copy number signals in the
data, as we saw in Fig. 1le for example. As tumour purity
reduces below 30%, we would expect copy number sig-
nals in the data to be increasingly merged together into
the same copy number state, as we observed in Fig. 2. Our
results suggest that conliga can detect some chromosome-
arm level alterations between 2-5% tumour purity, but
that we cannot expect conliga to detect these large alter-
ations below 2% without increasing the number of reads
per sample. As we discuss below, under certain conditions,
conliga may be able to detect highly focal amplifications
below 1%.

By modelling the loci counts with an appropriate para-
metric count distribution (beta-binomial) and the spatial
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dependence between loci with a HMM, loci that tend to
receive greater read counts can propagate their increased
statistical strength regionally to neighbouring loci and
globally to their associated hidden states to infer more
accurate RCN profiles. We believe this is one of the rea-
sons why conliga has better performance than CNVkit in
inferring RCN profiles from FAST-SeqS data. There are
substantial differences between the PCR efficiencies of
FAST-SeqS loci and, as a consequence, large differences in
the magnitude of read counts between loci (Supplemen-
tary Fig. S1). The loci with higher counts carry greater
influence than the noisier, lower count loci on the infer-
ence of RCN profiles, due to the model implemented.

In Fig. 1h and Supplementary Fig. S2, we observed that
conliga was able to detect amplifications of known onco-
genes, some with known drugs targets, and deletions of
tumour suppressor genes in OAC, BO and GAC sam-
ples. Of the 36 frequently amplified and deleted genes in
OAC, 13 were found to contain FAST-SeqS loci within
their gene boundaries. This meant that in some cases,
conliga could identify intra-gene deletions within tumour
suppressor genes. Focal deletions such as these may be
functionally relevant, potentially rendering tumour sup-
pressor genes inactive. The ability of conliga to detect
focal alterations depends on the characteristics of the
associated genomic region (in particular, e.g., the effect
size, the number of loci affected, and their associated
amplification biases etc). As we saw in Fig. 2, conliga was
able to detect a focal amplification in chromosome 12
at a lower tumour purity than QDNAseq and CNVKit.
Indeed, this region contained loci that tend to receive high
read counts, which helped to detect the alteration at puri-
ties as low as 0.5%. It is worth noting that, due to their
larger effect sizes, it is easier to detect highly amplified
regions in low purity samples than to detect deletions,
which have smaller effect sizes. We would not expect con-
liga to detect focal deletions with regularity, particularly
if tumour purity is low or if the deleted region does not
contain FAST-SeqS loci that tend to have high counts
(high amplification bias).

FAST-SeqS would not be the assay of choice if one is
only interested in a small gene panel. However, there are
only two instances from 396 comparisons (36 genes x
11 samples) where a substantially different result would
be achieved by conliga compared with ASCAT (Fig. 1h).
In these two instances, we saw that conliga and CNVkit
did not detect very highly focal amplifications of recur-
rently amplified genes. On inspection of the ASCAT
results, these two amplified regions were so narrow as
to fall between two FAST-SeqS loci. Naturally, conliga
and CNVKkit would be able to detect these alterations if
there are no FAST-SeqS locilocated in the altered regions.
Furthermore, the single primer pair used in FAST-SeqS
amplifies primate-specific LINE1s dispersed throughout
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the genome. Indeed, it has been shown that genomic
deletions can occur due to unequal homologous recom-
bination between two repeat elements. This can lead
to deletions occurring between neighbouring LINE1 ele-
ments [36, 37] and as such, FAST-SeqS would not be
able to provide evidence of such deletions. These are lim-
itations of the FAST-SeqS assay, and users should bear
this in mind before use. As we show in Supplementary
Fig. S1, the distribution of distances between neighbour-
ing loci has a heavy right tail. While the median distance
is approximately 120 Kbp (after filtering for robust loci),
there are some regions of the genome that have larger gaps
between FAST-SeqS loci that are greater than 1 Mbp in
length. One avenue of further work could be to extend
conliga to infer SCNA profiles using targeted gene panel
data jointly with FAST-SeqS data. In doing so, we could
avoid missing SCNAs that involve important and clinically
relevant genes.

Another approach to reduce the chance of miss-
ing regions of interest would be to use RealSeqS [38]
instead of FAST-SeqS. RealSeqS uses a single-primer pair
to amplify a greater number (~350,000) of repetitive
elements dispersed throughout the genome [38]. The
associated machine learning method used to analyse
RealSeqS data aims to provide an overall aneuploidy score
for each sample. Subchromosomal arm features are used
as input to determine this score. However, these features
are limited to contiguous regions of at least 5 Mb in length
[38]. We would expect the properties of FAST-SeqS and
RealSeqS data to be similar, and potentially conliga could
be applied to RealSeqS data to provide an amplicon-level
copy number profile. Further work would be required
to determine if conliga can be applied to RealSeqS data,
or whether alterations to the method and algorithms
would be required. If it can be applied, a higher-resolution
copy number profile could be obtained compared with
those obtained using FAST-SeqS data. However, increased
sequencing per sample would be required in order to
obtain a similar sequencing depth to FAST-SeqS data,
which would increase costs. Avenues for future study
include applying conliga to RealSeqS data to determine
the benefit of the increased spatial resolution and deter-
mining the sequencing depth required to achieve similar
or improved performance compared with conliga applied
to FAST-SeqS. Furthermore, we hypothesise that greater
sensitivity could be achieved if amplicon-level copy num-
ber profiles are used as features for cancer detection,
compared with current approaches that use less granu-
lar features to determine sample-level aneuploidy scores.
More generally, we envisage further development of repet-
itive element sequencing to reduce technical variability
and modifications of the assays to alter the number of
reads obtained at specific loci to increase statistical power
in regions of interest.
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Conclusions

We have shown that FAST-SeqS data can be used as a
viable, inexpensive, and simple alternative to LC WGS
for the purpose of SCNA detection and quantification.
conliga provides accurate and high-resolution SCNA pro-
files across the genome and at regions of interest such as
oncogenes and tumour suppressors. conliga (applied to
FAST-SeqS data with two million reads per sample) is par-
ticularly useful for detecting and discriminating SCNAs in
low purity samples. We believe that conliga makes FAST-
SeqS a more clinically valuable diagnostic assay to detect
and monitor patients for the development of cancer, as
well as a useful research tool, enabling inexpensive and
fast SCNA profiling of cancer samples.

Methods

conliga: statistical model

Statistical model for sample counts

We model the sample counts, in L selected loci, by assum-
ing that the count at locus / in chromosome arm r in
sample j is distributed:

Yri;j ~ Binomial(n, 0,1 ) (1)

Here, n; is the total number of sequencing reads aligned
to the L loci in sample j, 6,.;; represents the probability of
observing an aligned read at locus / in chromosome arm r
in sample j. We model 6,,;; as follows:

01 ~ Beta(siCrjmy, 1, 8j(1 — Cp 1 jmy)) (2)

Here, s; is the inverse dispersion variable for sample j
where s; > 0, m,,; represents the probability of an aligned
sequencing read originating from locus / in chromosome
arm r in a control sample, where ), ZlL;l m,; = 1 and
Cr,1j is the relative copy number at locus / in chromosome
arm r in sample j. The number of loci in each chromo-
some arm is denoted as L, and so the total number of loci,
L=YL.

We can interpret m as defining the bias in observ-
ing aligned read counts from the FAST-SeqS protocol.
This bias can be explained by unequal PCR efficien-
cies between loci in addition to biases in aligning reads
uniquely to FAST-SeqS loci, among other factors. Note
that:

E [er,l,j] = er,l,jmr,l (3)

We can interpret this equation intuitively; the relative
copy number scales the probability of reads to align to a
locus. For example, if the relative copy number of a locus is
2 we expect the proportion of reads at the locus to double.
This fits with our observations shown in Supplementary
Fig. S1.

The inverse dispersion variable, s;, is sample specific
and reflects our observations that the level of disper-
sion varies between samples. This variation in dispersion
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between samples might be due to varying levels of DNA
degradation and/or varying quantities of starting material
between samples, among other factors. s; relates to the
variance and the mean of 6,;; in the following way:

(E [0r1;] — E [Qr,l,j]z) (4)

The expected count, 1, in chromosome arm r at locus
[ in sample j is:

Var (Qr,l,j) = S]?

E [yr,l,j | er,l,j] =pn= njer,l,jmr,l (5)

The variance of y,,;; can be written as a quadratic function
of 1 with the coefficients bein% a function of #; and s;:
N —

1 n—-1
Var (v | 6r17) = (1 + i <n + s{ +1 ) v
] ]

si+1
(6)
Note that in the limit s; — oo, a binomial noise model is
recovered.

Probabilistic generative model of loci counts for control
samples

We assume that the loci within a control sample, &, have
equal copy numbers (diploid). This means that the RCN
for each locus is 1. By setting ¢,.; x = 1, we model the gen-
erative process of counts from a control sample as follows:

sk |~ Gamma(l/fshaper VYscale)
my | ¢ ~ Beta(ee,ri, bari)
Orik | Skomy,; ~ Beta(simy,p, si(1 — myp)

(7)
Xr 1k | Oriks ni ~ Binomial(ng, 01 1)

Here, Gamma(Vnaper Vscale) represents the prior distribu-
tion over the sample specific inverse dispersion parameter,
Sk, and Beta(¢ 1, ¢4.,,1) defines the prior distribution over
My [.

Linking FAST-SeqsS loci using a hidden Markov model

We assume that chromosome arms are independent. By
that we mean, the RCN of the first locus in arm q is inde-
pendent of the RCN of the last locus in arm p from the
same chromosome (and all other chromosome arms). As
such, we model each chromosome arm as an independent
Markov chain for each sample j. We denote (note that for
simplicity we have dropped the sample index j):

® 2z, as the hidden state (or copy number state) of the
Markov chain at locus I in chromosome arm r

o 779 as the initial distribution of the first locus (/ = 1),
in chromosome r

e 7, as the transition distribution for hidden state, u

e ¢, as the relative copy number associated with
hidden state, u.
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The first locus of a chromosome arm ([ = 1) is dis-
tributed:
zpy ~ 70 (8)
For all other loci (I > 1):
2t | Zri-1 ™~ Tz ) )

The count, y,;, at locus / in chromosome arm r is condi-
tionally independent of the hidden states and observations
of other loci:

Or1 | € 2p,1, My, 5 ~ Beta(scy, my, 1, s(1 — Cyp 11y1)) (10)
Yr1 | r1,n ~ Binomial(n, 6,

The joint density for L, loci in chromosome arm r is:

p(zr,I:Lr;yr,ler: er,ler)
=pWr1 | 2r1,6r,1)POr1 | 2r,1)p(2r1)
L
[ 120m1 1 200 6r0POn1 | 2e0P(ri | 211-1)
=2 (11)
=70 pOr1 | 21,65,0p0r1 | 21)
L

,
l_[ ”zr,l,l,z,,lp(y;’,l | 2,0 9r,l)P(9r,l | Zr,l)
=2

where, z, 1.1, denotes the sequence {z1,...,2r1.}, ¥r 1L,
denotes {y,1,...,¥rL,}, and 0,1.;, denotes {6, 1,...,0,1,}.
The joint density for all L loci in the genome is given by:

pz,0) = [ | prrL,yr1L, 011, (12)

r

Probabilistic generative model of a sample’s relative copy
number profile

The number of copy number states present in a sample
is unknown a priori. In samples that have equal copies of
each locus, only one copy number state is present. Con-
versely, it is possible (although unlikely) that each locus
has its own unique copy number, meaning that there could
be up to L copy number states in a sample. Addition-
ally, we expect neighbouring loci to share the same copy
number given their genomic distance from each other
(Supplementary Fig. S1). To address these two features of
the data, we used the sticky hierarchical Dirichlet pro-
cess hidden Markov model (sticky HDP-HMM) [26] as a
framework to model the generative process of a sample’s
relative copy number profile. By doing so, we adequately
model the spatial persistence of copy number states and
allow for countably infinite numbers of states within a
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sample. The generative model is as follows:

By ~GEM(y)
7% o, B~ DP(a, B)

1)
Ty |a,/<,,3~DP(oc+K,aﬁ+Ku>

o+ K
Cu | HyA ~ H()

Zr1 | 70 ~ 70

Z] | {ﬂu};ozpzr,l—l ~ 2y forl > 1
5 | 0 ~ Gamma(@giaper Oscale)
O | €}y 2o 1y1, 3 ~ Beta(5ey, 7ty , S(1 — &, 7i1y)))
Yr1 | 0,1, 71, ~ Binomial(iz, 6,,)
(13)

Note that we use 7, 5, 6,; to distinguish these vari-
ables from those in the probabilistic model of control
counts (Eq. 7) and denote them as specific to the sam-
ple with copy number profile. Here, GEM denotes the
stick-breaking construction of the Dirichlet process as
described in Fox et al. [26]. y is a hyperparameter of the
sticky HDP-HMM and represents our prior on the num-
ber of copy number states in the sample; the greater the
value of y, the greater number of copy number states we
expect in the sample. Each row of the transition matrix,
7y, is drawn from a Dirichlet process and depends on 8, «
and «. It can be shown that:

afy, + K(Su,v

o (14)

E[muy | o, k] =

where §,,, represents the discrete Kronecker delta func-
tion. If we define p = aik (as in Fox et al. [26]) and by
noting that o = (1 — p)(« + «), we obtain:

E [n”"/ | ,3,,0] =1 —p)By+ Pduy

As such, we see that p defines how much weight is placed
on self-transition within a copy number state. The vec-
tor, B, itself drawn from a Dirichlet process, represents the
global transition distribution and holds information about
the proportion of loci expected in each copy number state.

The variance of the transition probability from copy
number state u to v is given by:

E [nu,v | a,ﬁ,lc] (1 —-E [nu,v | a,ﬂ,/(])

(15)

Var(my,y | o, B, k)=

o+k+1
(16)

We see that o + « is inversely proportional to the variance
of the state transition probabilities.

H is the prior base distribution of the Dirichlet process
and represents a parametric distribution, which in this
case is a Gamma distribution, with parameters A. It can be
viewed as our prior probability distribution on the relative
copy number values of the hidden states.
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Note that 7, refers to the maximum a posteriori
(MAP) value of m,,; and is such assumed to be a known
quantity in Eq. 13. For simplicity, the hyperparameters (c,
K, ¥, A, o and n) are shown as fixed quantities in the
model. In practice, y, A, w and n are treated as fixed,
while the model is parameterised in terms of p and (@ +
k), with a Beta prior placed on p and a Gamma prior
placed on (¢ + k) as in Fox et al. [26]. See the section
on inference for further details of prior distributions used
and Supplementary Note 3 for further discussion on the
model.

Inference

Inference of loci count proportion bias (m)

Given a set of K control samples, and their loci counts,
xx, we used our model defined in Eq. 7 and Markov
Chain Monte Carlo (MCMC) methods to infer the latent
variables m and s (the vector of sample specific inverse
dispersion parameters). A Metropolis-Hastings MCMC
algorithm was used to obtain a sample of the posterior
probability of m1,; for all r and |, and s, for each sample k.
Full details of the algorithms are provided in Supplemen-
tary Notes 4 and 5. Count data for samples analysed in this
study, processed by the pipeline described, are provided in
Supplementary Table S9.

For each sequencing experiment, a suitable set of con-
trols samples were used (see Supplementary Table S10 for
the list of samples used in each experiment). As described
in Eq. 7, control samples were assumed to have a rela-
tive copy number of one at each locus. In all experiments
described in this paper, we used the following values for
the hyperparameters:

b 1//shape = 1.5, Yseate = 106; where wshape and VYscale
define the shape and scale of the Gamma prior
distribution on s, respectively.

® ¢y =1land ¢;,; = 1forall r and [; i.e. we used a
flat Beta(1, 1) prior for all m,,

In each sequencing experiment, 20,000 iterations of the
MCMC were run and the first 5,000 iterations were dis-
carded (burn-in). Maximum a posteriori (MAP) estimates
of m (denoted as 7u) were obtained by determining the
mode of the sampled posterior densities for each locus
using the KernSmooth R package [39]. Note that the MAP
estimates are unlikely to sum to one exactly, as such we
rescale them so that they sum to 1.

Inference of relative copy number profile

Given m and the loci counts (y) for a sample with
unknown copy number profile, we used the generative
model defined in Eq. 13 and MCMC methods (based on
algorithm 3 in Fox et al. [26]) to infer the latent vari-
ables in our model. MCMC methods were used to obtain
a sample of the posterior probability of the hidden state
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of each locus (z,, for all r and /), the relative copy num-
ber of each hidden state (¢,), the sample specific inverse
dispersion (5), along with other latent variables in our gen-
erative model. Full details of the MCMC algorithms can be
found in Supplementary Notes 4 and 6. In all experiments
described in this paper, we used the following values for
the hyperparameters:

o vy = 1

e Gamma(2000, 10) prior distribution (defined by
shape and scale) was placed on (« + «)

e Beta(100000, 100) prior was placed on p

e Gamma(3, 1) prior distribution (defined by shape and
scale) was placed on the relative copy number value
of the hidden states; the shape and scale parameters
are defined by A in Eq. 13

® Ogigpe = 1.5, Oscqle = 10%; where Wshape and Wscqle
define the shape and scale of the Gamma prior
distribution on §, respectively

The output of the MCMC was summarised in two main
ways, 1) by marginalizing out the copy number state infor-
mation and computing the MAP estimate (using KernS-
mooth R package [39]) and credible interval of the relative
copy number of each locus, 2) by making use of the copy
number state assignments in the following way:

1. We determined the MAP number of states observed
in the MCMC chain (after burn-in). This was
achieved by calculating the number of populated
states in each iteration of the MCMC, and then
choosing the most frequently observed number of
populated states. Note that a state was considered
populated in an iteration of the MCMC if at least one
locus was assigned to it.

2. We filtered the iterations of the MCMC (after
burn-in), choosing only those iterations that had the
number of populated states equal to the MAP
number of states.

3. We used the Stephens algorithm (algorithm 2 in the
paper) [40] along with the Hungarian (Munkres)
algorithm [41] to relabel the states, to resolve the label
switching problem inherent in MCMC methods.

4. We calculated the MAP estimate and credible
intervals for the relative copy number values of each
relabelled state.

5. We assigned each locus to a relabelled state, choosing
the relabelled state it was most frequently assigned to
in the filtered iterations of the MCMC chain.

For the results presented in Fig. 2, summarisation
method 2 was used. For all other results presented in
the paper, summarisation method 1 was used. For the
oesophageal cancer, gastric cancer and Barrett’s oesoph-
agus samples, 50,000 iterations of the MCMC were run

Page 11 of 17

and the chain was thinned such that every 5th iteration
of the MCMC was output to file. Additionally, the first
20,000 iterations of the MCMC were discarded (burn-in),
to ensure the Markov chain had reached its equilibrium
distribution. For the in silico diluted samples, presented in
Fig. 2, 30,000 iterations were run, with the chain thinned
so that every 5th sample was output to file and the first
5,000 iterations of the MCMC were discarded.

Sample preparation and sequencing of samples

Source of samples

All samples were obtained with written informed con-
sent. OAC, blood and GAC samples were obtained under
Oesophageal Cancer Clinical and Molecular Stratification
(OCCAMS) (Ethics number 10/H0305/1). OAC and GAC
were obtained either as an endoscopic sample or from
surgical resection specimens and stored as fresh frozen
tissue. Barrett’s oesophagus tissue was obtained under
BEST2: East of England—Cambridge Central Research
Ethics Committee (No: 10/H0308/71). Samples of dys-
plastic Barrett’s oesophagus were obtained from patients
with a prior diagnosis of Barrett’s oesophagus attending
for their routine surveillance endoscopy. Barrett’s oesoph-
agus was defined as the presence of >1 cm of columnar
lined oesophagus continuous with the squamocolumnar
junction.

All tissue underwent expert histopathological assess-
ment using a haematoxylin and eosin stain from a section
adjacent to the sections from which DNA was extracted.
All specimen were reviewed by two expert histopatholo-
gists. Cellularity estimates were performed by two expert
histopathologists and, where there was a major discor-
dance, resolved by a third expert histopathologist.

Sample preparation and generation of FAST-SeqS data

Sequencing libraries were prepared using two rounds of
PCR, using a similar protocol to previously published
methods [23, 24]. Each extracted DNA sample under-
went a 50 ul first round PCR reaction with 10 pul 5x
Phusion HF Buffer (ThermoFisher Scientific), 1 ul 10 mM
dNTP (ThermoFisher Scientific), 5 pl of both the forward
and reverse primers (0.5 uM) each (Sigma-Aldrich), 0.5 pl
Phusion Hot Start II DNA Polymerase 2U/pul, 5-10 pl
DNA template depending on the extracted concentration,
and RNAse free water to make the total reaction volume.
The cycling conditions for the LIPA7 primers were 98 °C
for 120s followed 2 cycles of 98°C for 10s, 57 °C for
1205, and 72 °C for 120 s. The second round was also car-
ried out as a 50 pl sample reaction using 20 pl taken from
the first round. The rest of the reaction constituents were
the same as the first round reaction, with the exception
of primers (Supplementary Table S11), which contained a
unique index for each sample. The cycling conditions for
the second round reaction were 98 °C for 120 s followed
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by 13 cycles of 98°C for 10s, 65°C for 155, and 72°C
for 155 for all the primers. After the second round, sam-
ples underwent quantification using the 2200 TapeStation
(Agilent), Agilent 2100 Bioanalyser (Agilent) and Kapa
quantification (KapaBiosystems) prior to submission for
sequencing. The samples were then pooled in equimolar
concentrations and gel extracted according to manufac-
turer’s instructions (Qiaquick Gel Extraction Kit, Qiagen).
Finally, the samples were submitted for sequencing on a
MiSeq (Illumina) platform. All samples were run with 20%
PhiX to increase complexity for sequencing. Sequencing
was performed as 150bp single end. Samples were run
with at least three normal controls prepared at the same
time and sequenced on the same platform.

Sample preparation and generation of high-coverage WGS
data

WGS library preparation and sequencing was performed
as previously described by Secrier et al. [9].

In silico generation of low-coverage WGS data

For our purposes, LC WGS data were defined as nine mil-
lion single-end 50 base pair reads per sample because this
was the type of data analysed in Scheinin et al. [22]. Sam-
ples are typically multiplexed together and sequenced on
a single Illumina sequencing lane. After processing and
alignment of the reads, we expect approximately 0.1X cov-
erage of the genome (as per analysis described in Scheinin
et al.). We obtained LC WGS data by downsampling reads
from HC WGS BAM files in the following way:

1. We selected a subset of the alignments, containing
only reads sequenced on a single lane (chosen to be
the lane from the first read in the BAM file), and
trimmed the reads and Phred scores to the first 50
base pairs using a custom Bash script.

2. The resulting alignments were filtered (using
samtools [42] version 0.1.18), excluding those that
were secondary alignments (-F 256) and including
only those that were first in a pair (-f 64) and output
to a new BAM file.

3. This BAM file was downsampled to 9 million
reads/alignments using the DownsampleSam
command from Picard tools (http://broadinstitute.
github.io/picard, version 2.9.1) using the "Chained"
strategy.

4. The resulting BAM file was converted to FASTQ by
SamToFastq (Picard tools).

5. The FASTQ file was aligned to GRCh38 (GenBank
accession: GCA_000001405.15, no alt analysis set)
using BWA-backtrack (bwa samse and bwa aln,
version 0.7.15-r1140) [43], which is more suitable for
reads below 70 base pairs in length.

6. In the resulting BAM file, we removed PCR
duplicates and removed alignments with mapping
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quality below 37 as per the analysis undertaken by
Scheinin et al. [22] using samtools (version 0.1.18).

We performed these steps for 11 oesophageal samples
and their matched normal samples along with an addi-
tional four normal samples obtained from other patients
(Supplementary Table S1). This resulted in greater than
seven million primary alignments per sample.

In silico generation of FAST-SeqS dilution data

We performed an in silico dilution of FAST-SeqS data by
mixing sequencing reads from control samples with reads
from OAC samples. Since the number of reads in the
matched controls were insufficient to create samples with
two million reads, we created a pool of control reads (in
silico) which were used to dilute the OAC samples. This
was done by subsampling two million reads from 12 con-
trol samples (which were prepared and sequenced in the
same batch as the OAC samples). The total number of
reads from these 12 control samples was 14,405,596. To
obtain a pool of 2 million reads, we used the ‘sample’ com-
mand from seqtk (https://github.com/lh3/seqtk, version:
1.2-r101) to sample a proportion (2/14.405596) of each
control sample’s reads and merged these together into a
single FASTQ file. The reads that were subsampled were
removed from the control samples (using a custom python
script) to avoid using the same reads to fit m.

We mixed the pool of control reads with the OAC sam-
ples in varying proportions to achieve a desired diluted
tumour purity. The OAC samples did not have a tumour
purity of 100%, instead they were themselves a mixture
of tumour and normal DNA. The purity of these sam-
ples were determined by ASCAT-NGS (version 2.1) [27].
Based on ASCAT’s purity value, we calculated the num-
ber of reads required from the OAC sample to achieve
a desired dilution and total number of reads. This was
calculated as follows:

required tumour reads

round desired purity proportion - required total reads
= rou
ASCAT inferred purity proportion
(17)

Hence, the number of control reads required were:

required control reads = required total reads (18)
— required tumour reads

We produced in silico dilution FASTQ files in the fol-
lowing way:

1. We used the ‘sample’ command from seqtk to sample
the required number of tumour reads from the OAC
FAST-SeqS FASTQ file
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2. We used the ‘sample’ command from seqtk to sample
the required number of control reads from the
pooled control reads FASTQ file

3. We merged the sampled tumour and control reads
into a single FASTQ file

We performed these steps for each OAC sample to cre-
ate diluted samples with two million total reads and the
following purity values: 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.06,
0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005, 0.0025 and O.
Here, purity is defined as the proportion of tumour reads
in the sample. Of the 11 OAC samples, 8 (OAC1-7 and 9,
Supplementary Table S1) were of sufficient initial tumour
purity to feasibly create all the desired dilution levels.

In silico generation of LC WGS dilution data

We produced in silico diluted LC WGS tumour sam-
ples by mixing reads from tumour and matched normal
LC WGS BAM files (previously downsampled and fil-
tered as described above). We first calculated the number
of reads in the tumour BAM and normal BAM files
using samtools (samtools view -F 256 -c [BAM
filel). Next, we calculated the number of reads required
using Eqs. 17 and 18. Using the DownsampleSAM com-
mand (Picard tools) and the ‘HighAccuracy’ strategy, we
sampled the corresponding desired proportion of reads
from the tumour BAM file and normal BAM file. We used
samtools to merge the resulting sampled tumour BAM
file with the normal BAM file into a single file represent-
ing the diluted sample. We aimed to obtain seven million
filtered primary alignments per diluted sample (as this
is what we expect from nine million reads after align-
ment and filtering) and dilution levels which matched the
diluted FAST-SeqS samples. This was performed for 8
OAC samples and their matched normals (OAC1-7 and 9).

Processing of FAST-SeqS sequencing data to counts

Each sequencing run of the Illumina MiSeq platform
produced a BCL file which was converted to FASTQ for-
mat (using Illumina’s bcl2fastq tool). Sequencing reads
that failed the Illumina chastity filter were removed.
The FASTQ file was demultiplexed into separate FASTQ
files corresponding to each sample using the demuxFQ
tool (https://github.com/gdbzork/demuxFQ) with the
default settings. The sample barcodes are provided in
Supplementary Table S11. Each sample’s FASTQ file was
then processed through a custom pipeline which we
describe below.

Identifying forward primer position

For each read in the FASTQ file, the position of the for-
ward primer sequence was detected by searching for the
sequence with the minimum Hamming distance to the
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forward primer sequence using a sliding window. Reads
with a minimum Hamming distance greater than 5 were

discarded.

Read trimming

The portion of the reads before and including the forward
primer sequence were trimmed. The ends of the reads
were also trimmed such that the length of the reads used
for downstream analyses were 100 base pairs minus the
forward primer length. Any reads shorter than 100 base
pairs minus the forward primer length after trimming
were discarded.

Quality control

After trimming, reads were discarded if they contained
at least one base with a Phred quality score less than 20
and/or contained one or more ambiguous base calls (N).

Obtaining unique sequences and counts per unique sequence
To avoid aligning the same sequence multiple times, only
unique read sequences were kept. For each unique read,
the number of identical fragments were recorded.

Alignment of unique sequences

Unique raw read sequences were aligned with Bowtie 1.0.0
[44] (using the option: -r). Three mismatches were permit-
ted (option: -v3) and reads aligning to multiple locations
were discarded (option: -m1). The reads were aligned to
GRCh38 (GenBank accession: GCA_000001405.15, no alt
analysis set).

Counts and alignments combined

Each sample’s unique read alignments and their corre-
sponding unique read counts were combined into a single
file consisting of a matrix of counts. The rows corre-
sponded to genomic positions (the union of genomic
positions from the alignments in all samples) and columns
corresponded to samples. The first three columns of the
matrix corresponded to the chromosome, position and
strand for the locus, respectively. The matrix of counts
used in this analysis can be found in the conliga R package
and in Supplementary Table S9.

Selecting loci

Rows of the count matrix corresponding to genomic loci
within chromosomes X, Y and within unplaced or unre-
solved contigs were discarded. For each batch of samples,
genomic loci obtaining a zero count in any one of a set
of control samples were also discarded. Depending on
the sequencing batch we analysed and the controls cho-
sen to filter loci (Supplementary Table S10), this resulted
in approximately 10,000 - 12,000 genomic loci across
chromosomes 1 to 22.


https://github.com/gdbzork/demuxFQ
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Analysis of copy number from FAST-SeqS data using
conliga

conliga (version 0.1.0) [45] was used to obtain RCN pro-
files for all FAST-SeqS samples in this study (Supplemen-
tary Table S1) using R (version 3.2.3) [46] and RcppA-
ramdillo (version 0.6.500.4.0) [47]. Of the 15 OAC samples
sequenced, four were excluded due to having fewer than
350,000 reads. Two control samples were excluded due to
their inferred RCN profiles having two main hidden states
incompatible with their supposed ‘normal’ status. The val-
ues for the priors used and MCMC settings are stated in
the inference sections above. The samples used as a basis
to filter loci and fit 1 for each experiment are listed in
Supplementary Table S10.

Analysis of copy number from FAST-SeqS data using CNVKit
We used python 3.5.2 and CNVKkit [20] version 0.9.9 to
obtain RCN profiles for the OAC samples listed in Sup-
plementary Table S1 and their corresponding in silico
diluted samples using CNVkit’s batch command. The
same four OAC samples and two normal samples were
excluded as above. We produced a bedfile, containing the
same FAST-SeqsS loci used by conliga for each experiment
(high-purity OAC samples and OAC in silico dilution
series), i.e. those loci that had at least one read across all
normal/control samples for each experiment. This bed-
file was passed to CNVKkit using the targets argument.
The method argument was set as amplicon. For each
corresponding experiment, we used the same set of con-
trol samples (listed in Supplementary Table S10) that were
used by conliga as the normal reference samples. This pro-
cess produced a segmented log?2 ratio (.cns) file for each
sample.

Analysis of copy number from high-coverage WGS data
High-coverage WGS samples were processed and aligned
using BWA-MEM [48] (version 0.5.9) and total copy
number (TCN) profiles and normal contamination esti-
mates were provided by ASCAT-NGS (version 2.1) using
a pipeline previously described by Secrier et al. [9]. The
only exception to this was that the reads were aligned to
GRCh38 (GenBank accession: GCA_000001405.15, no alt
analysis set) rather than GRCh37.

Analysis of copy number from low-coverage WGS data

QDNAseq (version 1.6.1) was used to obtain relative copy
number calls for all LC WGS data. The bin size used was
15Kb as per the analysis performed in Scheinin et al. [22]
for 0.1X LC WGS. The bins were created using GRCh38
(BSgenome.Hsapiens. NCBI.GRCh38) and a mappability
file (bigWig format) for 50-mers was created for GRCh38
using the GEM library (GEM-binaries-Linux-x86_64-
core_i3-20130406-045632) https://sourceforge.net/pro-
jects/gemlibrary/. 15 normal LC WGS samples (Supple-
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mentary Table S1), were used to run the applyFilters and
iterateResiduals functions. 11 of these 15 samples corre-
spond to the matched normals of the oesophageal samples
(Supplementary Table S1). We did not run the functions
normalizeBins and normalizeSegmentedBins which scale
the read counts by the median value. This was not neces-
sary and would make the comparison between ASCAT,
QDNAseq and conliga results more difficult to interpret.

Comparison of copy number between methods
ASCAT outputs TCN in contiguous genomic regions,
QDNAseq outputs logz RCN in 15 Kb bins across
the genome, CNVKkit outputs logy RCN in contiguous
genomic regions, and conliga outputs RCN values at spe-
cific FAST-SeqS loci. To make a fair comparison between
the tools, it was necessary to convert ASCAT’s TCN calls
to RCN as follows:

(1 — normal) - TCN; + normal - 2

mean TCN

Here, normal represents the estimated normal contami-
nation value provided by ASCAT and i represents a con-
tiguous genomic region or a discrete locus or fragment. In
the case of a contiguous region, the mean TCN (or ploidy)
was calculated as follows:

> (TCN,- . lengthi)

RCN; = (19)

TCN = 20
mean S length, (20)
and in the case of discrete loci or fragments:
; TCN;
mean TCN = % (21)

where L represents the total number of loci or fragments
considered. Furthermore, we converted QDNAseq and
CNVkit’s calls from logy RCN to RCN for downstream
comparison to ASCAT and conliga.

In Fig. 1f and g, we compared the RCN values at the
intersection of genomic loci across ASCAT, QDNAseq,
CNVkit and conliga. Since this intersection represented
a subset of each method’s genomic loci, the RCN val-
ues were rescaled considering only this subset. QDNAseq,
CNVKkit and conliga RCN values were rescaled by the sam-
ple’s mean RCN of the considered loci. ASCAT’s RCN was
calculated using Eqgs. 19 and 21.

In Fig. 1h, we compared RCN values in genes of interest.
Recurrently amplified and deleted genes were obtained
from Dulak et al. [28] and Ross-innes et al. [15]. Here,
ASCAT’s RCN values were calculated using Eqgs. 19 and
20 using all called regions for each sample. For each gene
in each sample, the weighted mean of the relative copy
number (weighted by the length of the overlapping called
region) was computed for ASCAT and QDNAseq. This
was calculated as follows:

il

RCNgene = (22)
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where /; represents the length of the overlapping portion
of the called region with the gene.

For CNVkit and conliga, we used the corresponding
RCN values at FAST-SeqS loci. If loci occurred within
the gene, the mean of the RCN values within the gene
was used, otherwise the loci directly upstream and down-
stream, i.e. either side, of the gene were used, and a mean
value was taken. See Supplementary Table S4 for the full
list of genes used in the analysis.

Computing Spearman’s rank correlation

When calculating the Spearman’s rank correlation coef-
ficient for all calls across all samples, we used the
rescaled RCN value at the intersecting genomic loci
between ASCAT, QDNAseq, CNVkit and conliga, using
the rescaled RCN values described above for Fig. 1f and g.
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